Sample records for antibody-coated magnetic nanoparticles

  1. Phosphonate-anchored monolayers for antibody binding to magnetic nanoparticles.

    PubMed

    Benbenishty-Shamir, Helly; Gilert, Roni; Gotman, Irena; Gutmanas, Elazar Y; Sukenik, Chaim N

    2011-10-04

    Targeted delivery of magnetic iron oxide nanoparticles (IONPs) to a specific tissue can be achieved by conjugation with particular biological ligands on an appropriately functionalized IONP surface. To take best advantage of the unique magnetic properties of IONPs and to maximize their blood half-life, thin, strongly bonded, functionalized coatings are required. The work reported herein demonstrates the successful application of phosphonate-anchored self-assembled monolayers (SAMs) as ultrathin coatings for such particles. It also describes a new chemical approach to the anchoring of antibodies on the surface of SAM-coated IONPs (using nucleophilic aromatic substitution). This anchoring strategy results in stable, nonhydrolyzable, covalent attachment and allows the reactivity of the particles toward antibody binding to be activated in situ, such that prior to the activation the modified surface is stable for long-term storage. While the SAMs do not have the well-packed crystallinity of other such monolayers, their structure was studied using smooth model substrates based on an iron oxide layer on a double-side polished silicon wafer. In this way, atomic force microscopy, ellipsometry, and contact angle goniometry (tools that could not be applied to the nanoparticles' surfaces) could contribute to the determination of their monomolecular thickness and uniformity. Finally, the successful conjugation of IgG antibodies to the SAM-coated IONPs such that the antibodies retain their biological activity is verified by their complexation to a secondary fluorescent antibody. © 2011 American Chemical Society

  2. An Electrochemiluminescence Immunosensor Based on Gold-Magnetic Nanoparticles and Phage Displayed Antibodies

    PubMed Central

    Mu, Xihui; Tong, Zhaoyang; Huang, Qibin; Liu, Bing; Liu, Zhiwei; Hao, Lanqun; Dong, Hua; Zhang, Jinping; Gao, Chuan

    2016-01-01

    Using the multiple advantages of the ultra-highly sensitive electrochemiluminescence (ECL) technique, Staphylococcus protein A (SPA) functionalized gold-magnetic nanoparticles and phage displayed antibodies, and using gold-magnetic nanoparticles coated with SPA and coupled with a polyclonal antibody (pcAb) as magnetic capturing probes, and Ru(bpy)32+-labeled phage displayed antibody as a specific luminescence probe, this study reports a new way to detect ricin with a highly sensitive and specific ECL immunosensor and amplify specific detection signals. The linear detection range of the sensor was 0.0001~200 µg/L, and the limit of detection (LOD) was 0.0001 µg/L, which is 2500-fold lower than that of the conventional ELISA technique. The gold-magnetic nanoparticles, SPA and Ru(bpy)32+-labeled phage displayed antibody displayed different amplifying effects in the ECL immunosensor and can decrease LOD 3-fold, 3-fold and 20-fold, respectively, compared with the ECL immunosensors without one of the three effects. The integrated amplifying effect can decrease the LOD 180-fold. The immunosensor integrates the unique advantages of SPA-coated gold-magnetic nanoparticles that improve the activity of the functionalized capturing probe, and the amplifying effect of the Ru(bpy)32+-labeled phage displayed antibodies, so it increases specificity, interference-resistance and decreases LOD. It is proven to be well suited for the analysis of trace amounts of ricin in various environmental samples with high recovery ratios and reproducibility. PMID:26927130

  3. Highly efficient antibody immobilization with multimeric protein Gs coupled magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Choi, H. K.; Chang, J. H.

    2011-10-01

    This work reports the immobilization of monomeric, dimeric and trimer protein Gs onto silica magnetic nanoparticles for self-oriented antibody immobilization. To achieve this, we initially prepared the silica-coated magnetic nanoparticle having about 170 nm diameters. The surface of the silica coated magnetic nanoparticles was modified with 3- aminopropyl-trimethoxysilane (APTMS) to chemically link to multimeric protein Gs. The conjugation of amino groups on the SiO2-MNPs to cysteine tagged in multimeric protein Gs was performed using a sulfo-SMCC coupling procedure. The binding efficiencies of monomer, dimer and trimer were 77 %, 67 % and 55 % respectively. However, the efficiencies of antibody immobilization were 70 %, 83 % and 95 % for monomeric, dimeric and trimeric protein G, respectively. To prove the enhancement of accessibility by using multimeric protein G, FITC labeled goat-anti-mouse IgG was treated to mouse IgG immobilized magnetic silica nanoparticles through multimeric protein G. FITC labeled goat anti-mouse IgGs were more easily bound to mouse IgG immobilized by trimeric protein G than others. Finally protein G bound silica magnetic nanoparticles were utilized to develop highly sensitive immunoassay to detect hepatitis B antigen.

  4. Magnetism in nanoparticles: tuning properties with coatings.

    PubMed

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-04

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.

  5. Multifunctional biocompatible coatings on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bychkova, A. V.; Sorokina, O. N.; Rosenfeld, M. A.; Kovarski, A. L.

    2012-11-01

    Methods for coating formation on magnetic nanoparticles used in biology and medicine are considered. Key requirements to the coatings are formulated, namely, biocompatibility, stability, the possibility of attachment of pharmaceutical agents, and the absence of toxicity. The behaviour of nanoparticle/coating nanosystems in the body including penetration through cellular membranes and the excretion rates and routes is analyzed. Parameters characterizing the magnetic properties of these systems and their magnetic controllability are described. Factors limiting the applications of magnetically controlled nanosystems for targeted drug delivery are discussed. The bibliography includes 405 references.

  6. Magnetic Purification of Antibodies

    NASA Astrophysics Data System (ADS)

    Dhadge, Vijaykumar Laxman

    This work aimed at the development of magnetic nanoparticles for antibody purification and at the evaluation of their performance in Magnetic fishing and in a newly developed hybrid technology Magnetic Aqueous Two Phase Systems. Magnetic materials were produced by coprecipitation and solvothermal approaches. Natural polymers such as dextran, extracellular polysaccharide and gum Arabic were employed for coating of iron oxide magnetic supports. Polymer coated magnetic supports were then modified with synthetic antibody specific ligands,namely boronic acid, a triazine ligand (named 22/8) and an Ugi ligand (named A2C7I1). To optimize the efficacy of magnetic nanoparticles for antibody magnetic fishing, various solutions of pure and crude antibody solutions along with BSA as a non-specific binding protein were tested. The selectivity of magnetic nanoparticle for antibody, IgG, was found effective with boronic acid and ligand 22/8. Magnetic supports were then studied for their performance in high gradient magnetic separator for effective separation capability as well as higher volume handling capability. The magnetic materials were also supplemented to aqueous two phase systems, devising a new purification technology. For this purpose, magnetic particles modified with boronic acid were more effective. This alternative strategy reduced the time of operation,maximized separation capability (yield and purity), while reducing the amount of salt required. Boronic acid coated magnetic particles bound 170 +/- 10 mg hIgG/g MP and eluted 160 +/- 5 mg hIgG/g MP, while binding only 15 +/- 5 mg BSA/g MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 x 105 M-1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed/g MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely

  7. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia.

    PubMed

    Kim, Dong-Hyun; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Lee, Yong-Keun

    2009-01-01

    The delivery of hyperthermic thermoseeds to a specific target site with minimal side effects is an important challenge in targeted hyperthermia, which employs magnetic method and functional polymers. An external magnetic field is used to control the site-specific targeting of the magnetic nanoparticles. Polymer-coated magnetic nanoparticles can confer a higher affinity to the biological cell membranes. In this study, uncoated, chitosan-coated, and starch-coated magnetic nanoparticles were synthesized for use as a hyperthermic thermoseed. Each sample was examined with respect to their applications to hyperthermia using XRD, VSM, and FTIR. In addition, the temperature changes under an alternating magnetic field were observed. As in vitro tests, the magnetic responsiveness of chitosan- and starch-coated magnetite was determined by a simple blood vessel model under various intensities of magnetic field. L929 normal cells and KB carcinoma cells were used to examine the cytotoxicity and affinity of each sample using the MTT method. The chitosan-coated magnetic nanoparticles generated a higher DeltaT of 23 degrees C under an AC magnetic field than the starch-coated magnetite, and the capturing rate of the particles was 96% under an external magnetic field of 0.4 T. The highest viability of L929 cells was 93.7%. Comparing the rate of KB cells capture with the rate of L929 cells capture, the rate of KB cells capture relatively increased with 10.8% in chitosan-coated magnetic nanoparticles. Hence, chitosan-coated magnetic nanoparticles are biocompatible and have a selective affinity to KB cells. The targeting of magnetic nanoparticles in hyperthermia was improved using a controlled magnetic field and a chitosan-coating. Therefore, chitosan-coated magnetic nanoparticles are expected to be promising materials for use in magnetic targeted hyperthermia. 2008 Wiley Periodicals, Inc.

  8. Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy

    PubMed Central

    Uthaman, Saji; Cherukula, Kondareddy; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Today, nanotechnology plays a vital role in biomedical applications, especially for the diagnosis and treatment of various diseases. Among the many different types of fabricated nanoparticles, magnetic metal oxide nanoparticles stand out as unique and useful tools for biomedical applications, because of their imaging characteristics and therapeutic properties such as drug and gene carriers. Polymer-coated magnetic particles are currently of particular interest to investigators in the fields of nanobiomedicine and fundamental biomaterials. Theranostic magnetic nanoparticles that are encapsulated or coated with polymers not only exhibit imaging properties in response to stimuli, but also can efficiently deliver various drugs and therapeutic genes. Even though a large number of polymer-coated magnetic nanoparticles have been fabricated over the last decade, most of these have only been used for imaging purposes. The focus of this review is on polysaccharide-coated magnetic nanoparticles used for imaging and gene delivery. PMID:26078971

  9. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.

    PubMed

    Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong

    2010-05-01

    In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.

  10. High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun

    2008-10-01

    This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.

  11. Human-like collagen protein-coated magnetic nanoparticles with high magnetic hyperthermia performance and improved biocompatibility

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoli; Zhang, Huan; Chang, Le; Yu, Baozhi; Liu, Qiuying; Wu, Jianpeng; Miao, Yuqing; Ma, Pei; Fan, Daidi; Fan, Haiming

    2015-01-01

    Human-like collagen (HLC)-coated monodispersed superparamagnetic Fe3O4 nanoparticles have been successfully prepared to investigate its effect on heat induction property and cell toxicity. After coating of HLC, the sample shows a faster rate of temperature increase under an alternating magnetic field although it has a reduced saturation magnetization. This is most probably a result of the effective heat conduction and good colloid stability due to the high charge of HLC on the surface. In addition, compared with Fe3O4 nanoparticles before coating with HLC, HLC-coated Fe3O4 nanoparticles do not induce notable cytotoxic effect at higher concentration which indicates that HLC-coated Fe3O4 nanoparticles has improved biocompatibility. Our results clearly show that Fe3O4 nanoparticles after coating with HLC not only possess effective heat induction for cancer treatment but also have improved biocompatibility for biomedicine applications.

  12. Amine functional magnetic nanoparticles via waterborne thiol-ene suspension photopolymerization for antibody immobilization.

    PubMed

    Muhsir, Pelin; Çakmakçi, Emrah; Demir, Serap; Ogan, Ayşe

    2018-05-28

    The modification of magnetic nanoparticles (MNPs) via different routes for biomolecule binding is an attractive area of research. Waterborne thiol-ene suspension photopolymerization (TESP) can be a useful method for preparing functional MNPs. In this study, for the very first time waterborne TESP was performed in the presence of MNPs. Neat MNPs were coated and in situ functionalized with amine groups by using thiol-ene chemistry. Engrailed-2 (EN2) protein, a potential biomarker for various cancers such as prostate cancer, bladder cancer, breast cancer and ovarian cancer, is known to be a strong binder to a specific DNA sequence (50-TAATTA-30) to regulate transcription. Anti-EN2 antibodies were immobilized onto these MNPs by physical adsorption and covalent bonding methods, respectively. The amount of the physically immobilized antibodies (0.54 mg/g) were found to be lower than the loading of the covalently bonded antibodies (1.775 mg/g). The biomarker level in the artificial solutions prepared was determined by enzyme-linked immunosorbent assay. Coated MNPs were characterized by FTIR, TGA, SEM and STEM. After TESP, the average diameter of the neat magnetite nanoparticles increased from ∼15 nm to ∼32 nm. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  14. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery.

    PubMed

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.

  15. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    NASA Astrophysics Data System (ADS)

    Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten

    2017-03-01

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.

  16. LSMO Nanoparticles Coated by Hyaluronic Acid for Magnetic Hyperthermia

    NASA Astrophysics Data System (ADS)

    Chen, Yuanwei; Wang, Ying; Liu, Xi; Lu, Mai; Cao, Jiangwei; Wang, Tao

    2016-12-01

    Magnetic hyperthermia with the treating temperature range of 41-46 °C is an alternative therapy for cancer treatment. In this article, lanthanum strontium manganates (La1- x Sr x MnO3, 0.25 ≤ × ≤ 0.35) magnetic nanoparticles coated by hyaluronic acid (HA) which possesses the ability of targeting tumor cells were prepared by a simple hydrothermal method combined with a high-energy ball milling technique. The crystal structure, morphology, magnetic properties of the HA-coated magnetic nanoparticles (MNPs), and their heating ability under alternating magnetic field were investigated. It was found the HA-coated La0.7Sr0.3MnO3, with particle diameter of 100 nm, Curie temperature of 45 °C at a concentration 6 mg/ml, gave the optimal induction heating results. The heating temperature saturates at 45.7 °C, and the ESAR is 5.7 × 10-3 W/g · kHz · (kA/m2) which is much higher than other reported results.

  17. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Maciel, J. C.; D. Mercês, A. A.; Cabrera, M.; Shigeyosi, W. T.; de Souza, S. D.; Olzon-Dionysio, M.; Fabris, J. D.; Cardoso, C. A.; Neri, D. F. M.; C. Silva, M. P.; Carvalho, L. B.

    2016-12-01

    It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe 3+ ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ˜15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and 57Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite ( γFe2O3). The coated magnetic nanoparticles (sample labeled "mPANI") presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample "mPANIG-Trypsin"). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 ∘C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

  18. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming

    2016-09-01

    Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR. Copyright © 2016. Published by Elsevier B.V.

  19. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Allam, Ayat A.; Sadat, Md Ehsan; Potter, Sarah J.; Mast, David B.; Mohamed, Dina F.; Habib, Fawzia S.; Pauletti, Giovanni M.

    2013-10-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated

  20. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    PubMed Central

    Chen, Hongwei; Wang, Liya; Yu, Qiqi; Qian, Weiping; Tiwari, Diana; Yi, Hong; Wang, Andrew Y; Huang, Jing; Yang, Lily; Mao, Hui

    2013-01-01

    Antifouling magnetic iron oxide nanoparticles (IONPs) coated with block copolymer poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS) were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv) of antibody against epidermal growth factor receptor (ScFvEGFR) to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs). The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours) in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs. PMID:24124366

  1. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator.

    PubMed

    Kang, Kiho; Choi, Jinsub; Nam, Joong Hee; Lee, Sang Cheon; Kim, Kyung Ja; Lee, Sang-Won; Chang, Jeong Ho

    2009-01-15

    The work describes a simple and convenient process for highly efficient and direct DNA separation with functionalized silica-coated magnetic nanoparticles. Iron oxide magnetic nanoparticles and silica-coated magnetic nanoparticles were prepared uniformly, and the silica coating thickness could be easily controlled in a range from 10 to 50 nm by changing the concentration of silica precursor (TEOS) including controlled magnetic strength and particle size. A change in the surface modification on the nanoparticles was introduced by aminosilanization to enhance the selective DNA separation resulting from electrostatic interaction. The efficiency of the DNA separation was explored via the function of the amino-group numbers, particle size, the amount of the nanoparticles used, and the concentration of NaCl salt. The DNA adsorption yields were high in terms of the amount of triamino-functionalized nanoparticles used, and the average particle size was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticles was the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only (10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M of the NaCl concentration. To elucidate the agglomeration of nanoparticles after electrostatic DNA binding, the Guinier plots were calculated from small-angle X-ray diffractions in a comparison of the results of energy diffraction TEM and confocal laser scanning microscopy. Additionally, the direct separation of human genomic DNA was achieved from human saliva and whole blood with high efficiency.

  2. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  3. Magnetic studies of SiO2 coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Singh, Shashi B.; Das, Raja; Poddar, Pankaj; Abyaneh, Majid K.; Kulkarni, Sulabha K.

    2017-11-01

    Oleic acid capped CoFe2O4 nanoparticles which exhibit a high coercivity of ∼9.47 kOe at room temperature were coated with a robust coating of SiO2. We have used chemical synthesis method to obtain SiO2 coated CoFe2O4 nanoparticles with different weight percentages of CoFe2O4 in SiO2 (1.5, 3.1 and 4.8 wt.%). The morphological investigation of the coated nanoparticles by transmission electron microscopy shows that the particles are spherical with average size ∼160 nm. Infrared spectroscopy reveals that oleic acid capping on the surface of CoFe2O4 nanoparticles is retained after silica coating process. The complete coating of SiO2 on CoFe2O4 nanoparticles is confirmed by X-ray photoelectron spectroscopy as there is no signature of cobalt or iron ions on the surface. Magnetic measurements show that coercivity of SiO2 coated CoFe2O4 particles remains more or less unaffected as in CoFe2O4 nanoparticles at room temperature. In addition, the temperature dependent magnetic measurements show that at 5 K the CoFe2O4 and SiO2 coated 1.5 wt.% CoFe2O4 samples exhibit a very high value of coercivity (∼20 kOe) which is more than twice as compared to room temperature coercivity value (∼9.47 kOe). We conclude that silica coating in our study does not significantly affect the coercivity of CoFe2O4 nanoparticles.

  4. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles.

    PubMed

    Allam, Ayat A; Sadat, Md Ehsan; Potter, Sarah J; Mast, David B; Mohamed, Dina F; Habib, Fawzia S; Pauletti, Giovanni M

    2013-10-17

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated

  5. HAI-178 antibody-conjugated fluorescent magnetic nanoparticles for targeted imaging and simultaneous therapy of gastric cancer

    NASA Astrophysics Data System (ADS)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Zhang, Lingxia; Fu, Hualin; Wang, Yutian; Wang, Kan; Li, Chao; Deng, Min; Liao, Qiande; Ni, Jian; Cui, Daxiang

    2014-05-01

    The successful development of safe and highly effective nanoprobes for targeted imaging and simultaneous therapy of in vivo gastric cancer is a great challenge. Herein we reported for the first time that anti-α-subunit of ATP synthase antibody, HAI-178 monoclonal antibody-conjugated fluorescent magnetic nanoparticles, was successfully used for targeted imaging and simultaneous therapy of in vivo gastric cancer. A total of 172 specimens of gastric cancer tissues were collected, and the expression of α-subunit of ATP synthase in gastric cancer tissues was investigated by immunohistochemistry method. Fluorescent magnetic nanoparticles were prepared and conjugated with HAI-178 monoclonal antibody, and the resultant HAI-178 antibody-conjugated fluorescent magnetic nanoparticles (HAI-178-FMNPs) were co-incubated with gastric cancer MGC803 cells and gastric mucous GES-1 cells. Gastric cancer-bearing nude mice models were established, were injected with prepared HAI-178-FMNPs via tail vein, and were imaged by magnetic resonance imaging and small animal fluorescent imaging system. The results showed that the α-subunit of ATP synthase exhibited high expression in 94.7% of the gastric cancer tissues. The prepared HAI-178-FMNPs could target actively MGC803 cells, realized fluorescent imaging and magnetic resonance imaging of in vivo gastric cancer, and actively inhibited growth of gastric cancer cells. In conclusion, HAI-178 antibody-conjugated fluorescent magnetic nanoparticles have a great potential in applications such as targeted imaging and simultaneous therapy of in vivo early gastric cancer cells in the near future.

  6. Molecules coating magnetic nanoparticles for oil-field applications

    NASA Astrophysics Data System (ADS)

    Zuluaga, Sebastian; Manchanda, Priyanka; Pantelides, Sokrates

    Magnetic nanoparticles have recently attracted significant attention in scientific and industrial communities due to their use in the fields of catalysis, spintronics, biomedical applications, and oil recovery and reservoir characterization. However, these nanoparticles have to be protected with a coating layer of molecules that prevents the nanoparticles from oxidation, which is known to occur in air, and from agglomeration into larger nanoparticles. Therefore, the binding of the molecules to the nanoparticles is critical before a large scale implementation can be done. Here we report results of density functional theory calculations on several molecules (methylamine, acetic acid, boronic acid, ethyl phosphate, and ethyl trihydroxysilane) and magnetic nanoparticles (Fe3O4, NiFe2O4, and Fe3C). We focus on two main points: 1) the bond strength between the organic molecule and the nano particle, and 2) how, H2O and H+ in the oil well may facilitate the desorption of the molecules. The results show that H+ and H2O molecules facilitate the desorption of molecules reducing the bond strength by several eV. On the other hand, the results allow us to identify and design molecules that exhibit the best performance in protecting each nanoparticle. Supported by a Grant from the Petroleum Institute, Abu Dhabi.

  7. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895

  8. [Characteristics of electroosmotic flow in open-tubular capillary electrochromatography with magnetic nanoparticle coating as mixed-mode stationary phase].

    PubMed

    Qin, Sasa; Zhou, Chaoran; Zhu, Yaxian; Ren, Zhiyu; Zhang, Lingyi; Fu, Honggang; Zhang, Weibing

    2011-09-01

    A novel open-tubular capillary electrochromatography (OT-CEC) column with magnetic nanoparticle coating as mixed-mode stationary phase was prepared. The mixed-mode stationary phases were obtained by mixing C18 and amino modified magnetic nanoparticles with different ratios. The mixed modified magnetic nanoparticles as stationary phase were introduced into the capillary by using external magnetic force. The magnetic nanoparticle coating can be easily regenerated by removing the external magnetic field, and applied to other separation modes. The characteristics of electroosmotic flow (EOF) were theoretically investigated through the effect of physicochemical properties of different stationary phases on EOF. The experiment was conducted under different ratios of mixed-mode stationary phases and coating lengths, and it was verified that the theoretical conclusions accorded with the experimental results. It was shown that the EOF can be easily adjusted by changing the ratio of stationary phases or the number of permanent magnets.

  9. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  10. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2007-06-05

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  11. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  12. Self-cleaning superhydrophobic epoxy coating based on fibrous silica-coated iron oxide magnetic nanoparticles.

    PubMed

    Alamri, Haleema; Al-Shahrani, Abdullah; Bovero, Enrico; Khaldi, Turki; Alabedi, Gasan; Obaid, Waleed; Al-Taie, Ihsan; Fihri, Aziz

    2018-03-01

    Inspired by the self-cleaning lotus leaf, a facile method of fabricating superhydrophobic silica coated magnetite nanoparticles using a cost-effective process is presented in this work. The structural characterizations and magnetic properties of the obtained core-shell magnetic nanoparticles were characterized by means of X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). TEM analysis revealed that the particles present flower-like dendrimeric fibers morphology. The particles were uniformly dispersed on the surface of an epoxy resin coating with the purpose to increase the roughness and reduce the surface energy of the surface. The resulting superhydrophobic surface provides robust water-repellent surface under harsh conditions, thanks to its self-cleaning characteristic. The superhydrophobicity of this surface was confirmed based on the measurements of a water contact angle around 175°, which surpasses the theoretical limit of the superhydrophobicity. The simplicity and the cost-effectiveness of the process developed in this study appears to be a promising route for the preparation of other magnetic superhydrophobic organic-inorganic hybrid materials that would be beneficial in a wide variety of applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer.

    PubMed

    Semkina, Alevtina S; Abakumov, Maxim A; Skorikov, Alexander S; Abakumova, Tatiana O; Melnikov, Pavel A; Grinenko, Nadejda F; Cherepanov, Sergey A; Vishnevskiy, Daniil A; Naumenko, Victor A; Ionova, Klavdiya P; Majouga, Alexander G; Chekhonin, Vladimir P

    2018-05-03

    In presented paper we have developed new system for cancer theranostics based on vascular endothelial growth factor (VEGF) targeted magnetic nanoparticles. Conjugation of anti-VEGF antibodies with bovine serum albumin coated PEGylated magnetic nanoparticles allows for improved binding with murine breast adenocarcinoma 4T1 cell line and facilitates doxorubicin delivery to tumor cells. It was shown that intravenous injection of doxorubicin loaded VEGF targeted nanoparticles increases median survival rate of mice bearing 4T1 tumors up to 50%. On the other hand magnetic resonance imaging (MRI) of 4T1 tumors 24 h after intravenous injection showed accumulation of nanoparticles in tumors, thus allowing simultaneous cancer therapy and diagnostics. Copyright © 2018. Published by Elsevier Inc.

  14. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging.

    PubMed

    Cowger, Taku A; Tang, Wei; Zhen, Zipeng; Hu, Kai; Rink, David E; Todd, Trever J; Wang, Geoffrey D; Zhang, Weizhong; Chen, Hongmin; Xie, Jin

    2015-01-01

    Iron oxide nanoparticles have been extensively used as T2 contrast agents for liver-specific magnetic resonance imaging (MRI). The applications, however, have been limited by their mediocre magnetism and r2 relaxivity. Recent studies show that Fe5C2 nanoparticles can be prepared by high temperature thermal decomposition. The resulting nanoparticles possess strong and air stable magnetism, suggesting their potential as a novel type of T2 contrast agent. To this end, we improve the synthetic and surface modification methods of Fe5C2 nanoparticles, and investigated the impact of size and coating on their performances for liver MRI. Specifically, we prepared 5, 14, and 22 nm Fe5C2 nanoparticles and engineered their surface by: 1) ligand addition with phospholipids, 2) ligand exchange with zwitterion-dopamine-sulfonate (ZDS), and 3) protein adsorption with casein. It was found that the size and surface coating have varied levels of impact on the particles' hydrodynamic size, viability, uptake by macrophages, and r2 relaxivity. Interestingly, while phospholipid- and ZDS-coated Fe5C2 nanoparticles showed comparable r2, the casein coating led to an r2 enhancement by more than 2 fold. In particular, casein coated 22 nm Fe5C2 nanoparticle show a striking r2 of 973 mM(-1)s(-1), which is one of the highest among all of the T2 contrast agents reported to date. Small animal studies confirmed the advantage of Fe5C2 nanoparticles over iron oxide nanoparticles in inducing hypointensities on T2-weighted MR images, and the particles caused little toxicity to the host. The improvements are important for transforming Fe5C2 nanoparticles into a new class of MRI contrast agents. The observations also shed light on protein-based surface modification as a means to modulate contrast ability of magnetic nanoparticles.

  15. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles.

    PubMed

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2017-06-01

    Biocompatible ferrofluids based on dextran coated iron oxide nanoparticles were fabricated by conventional co-precipitation method. The experimental results show that the presence of dextran in reaction medium not only causes to the appearance of superparamagnetic behavior but also results in significant suppression in saturation magnetization of dextran coated samples. These results can be attributed to size reduction originated from the role of dextran as a surfactant. Moreover, weight ratio of dextran to magnetic nanoparticles has a remarkable influence on size and magnetic properties of nanoparticles, so that the sample prepared with a higher weight ratio of dextran to nanoparticles has the smaller size and saturation magnetization compare with the other samples. In addition, the ferrofluids containing such nanoparticles have an excellent stability at physiological pH for several months. Furthermore, the biocompatibility studies reveal that surface modification of nanoparticles by dextran dramatically decreases the cytotoxicity of bare nanoparticles and consequently improves their potential application for diagnostic and therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Surface spins disorder in uncoated and SiO2 coated maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeb, F.; Nadeem, K.; Shah, S. Kamran Ali; Kamran, M.; Gul, I. Hussain; Ali, L.

    2017-05-01

    We studied the surface spins disorder in uncoated and silica (SiO2) coated maghemite (γ-Fe2O3) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO2 coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (TB) for SiO2 coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (Ms) of SiO2 coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO2 coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1- BTb)) was fitted well for both uncoated and SiO2 coated nanoparticles and yields: B =3×10-7 K-b, b=2.22 and B=0.0127 K-b, b=0.57 for uncoated and SiO2 coated nanoparticles, respectively. Higher value of B for SiO2 coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO2 coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO2 coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO2 coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface spins disorder in SiO2 coated nanoparticles than in uncoated γ-Fe2O3 nanoparticles.

  17. Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages

    PubMed Central

    Bruckman, Michael A.; Randolph, Lauren N.; Gulati, Neetu M.; Stewart, Phoebe L.; Steinmetz, Nicole F.

    2015-01-01

    The molecular imaging of in vivo targets allows non-invasive disease diagnosis. Nanoparticles offer a promising platform for molecular imaging because they can deliver large payloads of imaging reagents to the site of disease. Magnetic resonance imaging (MRI) is often preferred for clinical diagnosis because it uses non-ionizing radiation and offers both high spatial resolution and excellent penetration. We have explored the use of plant viruses as the basis of for MRI contrast reagents, specifically Tobacco mosaic virus (TMV), which can assemble to form either stiff rods or spheres. We loaded TMV particles with paramagnetic Gd ions, increasing the ionic relaxivity compared to free Gd ions. The loaded TMV particles were then coated with silica maintaining high relaxivities. Interestingly, we found that when Gd(DOTA) was loaded into the interior channel of TMV and the exterior was coated with silica, the T1 relaxivities increased by three-fold from 10.9 mM−1 s−1 to 29.7 mM−1s−1 at 60 MHz compared to uncoated Gd-loaded TMV. To test the performance of the contrast agents in a biological setting, we focused on interactions with macrophages because the active or passive targeting of immune cells is a popular strategy to investigate the cellular components involved in disease progression associated with inflammation. In vitro assays and phantom MRI experiments indicate efficient targeting and imaging of macrophages, enhanced contrast-to-noise ratio was observed by shape-engineering (SNP > TMV) and silica-coating (Si-TMV/SNP > TMV/SNP). Because plant viruses are in the food chain, antibodies may be prevalent in the population. Therefore we investigated whether the silica-coating could prevent antibody recognition; indeed our data indicate that mineralization can be used as a stealth coating option to reduce clearance. Therefore, we conclude that the silica-coated protein-based contrast agent may provide an interesting candidate material for further investigation

  18. An ultrasensitive chemiluminescence immunoassay for fumonisin B1 detection in cereals based on gold-coated magnetic nanoparticles.

    PubMed

    Jie, Mingsha; Yu, Songcheng; Yu, Fei; Liu, Lie; He, Leiliang; Li, Yanqiang; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B; Wu, Yongjun

    2018-07-01

    In the present study, a novel highly sensitive magnetic enzyme chemiluminescence immunoassay (MECLIA) was developed to detect fumonisin B 1 (FB 1 ) in cereal samples. The gold-coated magnetic nanoparticles (Fe 3 O 4 @Au, GoldMag) were used as solid phase carrier to develop a competitive CLIA for detecting FB 1 , in which FB 1 in samples would compete with FB 1 -ovalbumin coated on the surface of Fe 3 O 4 @Au nanoparticles for binding with FB 1 antibodies. Successively, horseradish peroxidase labeled goat anti-rabbit IgG (HRP-IgG) was conjugated with FB 1 antibodies on the microplate. In substrate solution containing luminol and H 2 O 2 , HRP-IgG catalyzed luminol oxidation by H 2 O 2 , generating a high chemiluminescence signal. The FB 1 immune GoldMag particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and zeta potential analysis, etc. RESULTS: The concentrations and the reaction times of these immunoreagents were optimized to improve the performances of this method. The established method could detect as low as 0.027 ng mL -1 FB 1 from 0.05 ng mL -1 to 25 ng mL -1 , demonstrating little cross-reaction (less than 2.4%) with other structurally related compounds. The average intrassay relative SD (RSD) (n = 6) was 3.4% and the average interassay RSD (n = 6) was 5.4%. This method was successfully applied for the determination of FB 1 in corn and wheat and gave recoveries of between 98-110% and 91-105%, respectively. The results of the present study suggest that the MECLIA approach has potential application for high-throughput fumonisin screening in cereals. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. Aggregation state and magnetic properties of magnetite nanoparticles controlled by an optimized silica coating

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Moya, C.; Tartaj, P.; Labarta, A.; Batlle, X.

    2017-01-01

    The control of magnetic interactions is becoming essential to expand/improve the applicability of magnetic nanoparticles (NPs). Here, we show that an optimized microemulsion method can be used to obtain homogenous silica coatings on even single magnetic nuclei of highly crystalline Fe3-xO4 NPs (7 and 16 nm) derived from a high-temperature method. We show that the thickness of this coating is controlled almost at will allowing much higher average separation among particles as compared to the oleic acid coating present on pristine NPs. Magnetic susceptibility studies show that the thickness of the silica coating allows the control of magnetic interactions. Specifically, as this effect is better displayed for the smallest particles, we show that dipole-dipole interparticle interactions can be tuned progressively for the 7 nm NPs, from almost non-interacting to strongly interacting particles at room temperature. The quantitative analysis of the magnetic properties unambiguously suggests that dipolar interactions significantly broaden the effective distribution of energy barriers by spreading the distribution of activation magnetic volumes.

  20. Biodesulfurization of Dibenzothiophene by Microbial Cells Coated with Magnetite Nanoparticles

    PubMed Central

    Shan, GuoBin; Xing, JianMin; Zhang, HuaiYing; Liu, HuiZhou

    2005-01-01

    Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (δs) was 8.39 emu · g−1. The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability. PMID:16085841

  1. The effect of coating on heat generation properties of Iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan

    Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating. Commercially available suspensions of iron oxide nanoparticles with a diameter of approximately 10 nm and different coatings relevant to biomedical applications such as aminosilane, carboxymethyl-dextran, protein A, biotin were extensively characterized. First of all, magnetic phase reduction of magnetite nanoparticles was examined by studying the discrepancy between the volume fraction of magnetic phase calculated from magnetization curve and the magnetic core concentration obtained from Tiron chelation test. The findings indicated that coatings might interact with the surface atoms of the magnetic core and form a magnetically disordered layer reducing the total amount of the magnetic phase. Secondly, the impact of coating and aggregation

  2. Effective surface modification of MnFe2O4@SiO2@PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization

    NASA Astrophysics Data System (ADS)

    Rashid, Zahra; Soleimani, Masoud; Ghahremanzadeh, Ramin; Vossoughi, Manouchehr; Esmaeili, Elaheh

    2017-12-01

    The present study is aimed at the synthesis of MnFe2O4@SiO2@PMIDA in terms of highly efficient sensing platform for anti-prostate specific membrane antigen (PSMA) immobilization. Superparamagnetic manganese ferrite nanoparticles were synthesized following co-precipitation method and then SiO2 shell was coated on the magnetic core with tetraethyl orthosilicate (TEOS) through a silanization reaction to prevent oxidation, agglomeration and, increase the density of OH groups on the surface of MnFe2O4. Subsequently, MnFe2O4@SiO2@PMIDA obtained as a result of the reaction between N-(phosphonomethyl)iminodiacetic acid (PMIDA) and MnFe2O4@SiO2. The reactive carboxyl groups on the surface of magnetic nanoparticles can efficiently conjugate to a monoclonal antibody, specific to PSMA, which was confirmed by enzyme-linked immune sorbent assay (ELISA). Thus, this kind of functionalized magnetic nanoparticles is promising to be utilized in the improvement of ELISA-based biosensors and also will be effective in a variety of biomedical applications such as cell separation, diagnosis, and monitoring of human diseases.

  3. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery.

    PubMed

    Fay, Francois; McLaughlin, Kirsty M; Small, Donna M; Fennell, Dean A; Johnston, Patrick G; Longley, Daniel B; Scott, Christopher J

    2011-11-01

    Colloidal nanoparticle drug delivery systems have attracted much interest for their ability to enable effective formulation and delivery of therapeutic agents. The selective delivery of these nanoparticles to the disease site can be enhanced by coating the surface of the nanoparticles with targeting moieties, such as antibodies. In this current work, we demonstrate that antibodies on the surface of the particles can also elicit key biological effects. Specifically, we demonstrate the induction of apoptosis in colorectal HCT116 cancer cells using PLGA nanoparticles coated with Conatumumab (AMG 655) death receptor 5-specific antibodies (DR5-NP). We show that DR5-NP preferentially target DR5-expressing cells and present a sufficient density of antibody paratopes to induce apoptosis via DR5, unlike free AMG 655 or non-targeted control nanoparticles. We also demonstrate that DR5-targeted nanoparticles encapsulating the cytotoxic drug camptothecin are effectively targeted to the tumour cells, thereby producing enhanced cytotoxic effects through simultaneous drug delivery and apoptosis induction. These results demonstrate that antibodies on nanoparticulate surfaces can be exploited for dual modes of action to enhance the therapeutic utility of the modality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Biotransformation of magnetic nanoparticles as a function of coating in a rat model

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Gutiérrez, L.; Cáceres-Vélez, P. R.; Santos, D.; Chaves, S. B.; Fascineli, M. L.; Garcia, M. P.; Azevedo, R. B.; Morales, M. P.

    2015-10-01

    Long-term in vivo studies in murine models have shown that DMSA-coated nanoparticles accumulate in spleen, liver and lung tissues during extended periods of time (at least up to 3 months) without any significant signs of toxicity detected. During that time, nanoparticles undergo a process of biotransformation either by reducing the size or the particle aggregation or both. Using a rat model, we have evaluated the transformations of magnetic nanoparticles injected at low doses. Particles with two different coatings, dimercaptosuccinic acid (NP-DMSA) and polyethylene glycol (NP-PEG-(NH2)2) have been administered to animals, to evaluate the role of coating in the degradation of the particles. We have found that low doses of magnetic nanoparticles are quickly metabolized by the animals. In fact, using a nanoparticle dose four times lower than in previous experiments, NP-DMSA were not observed 24 h after the administration either in the liver or in the lungs. Interestingly, an increased amount of ferritin, the iron storage protein, was observed in liver tissues from rats that were treated with the low dose of NP-DMSA in comparison with the control ones, suggesting a rapid metabolization of the particles into ferritin iron. On the other side we have found that, NP-PEG-(NH2)2 are still detectable in several organs 24 h after their administration at low doses. Probably, due to the longer circulation times of the NP-PEG-(NH2)2, there is a delay in the arrival of the particles to the tissue and this is the reason why we are able to see the particles 24 h post-administration. PEG coating could also be protecting the nanoparticles from rapid degradation of the reticuloendothelial system. Knowledge on the biodistribution, circulation time and degradation processes is required to gain a better understanding of the safety evaluation of this kind of nanomaterial for biomedical applications.

  5. An effective intracellular delivery system of monoclonal antibody for treatment of tumors: erythrocyte membrane-coated self-associated antibody nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Lipeng; Han, Lin; Ding, Xiaoling; Xu, Jiaojiao; Wang, Jing; Zhu, Jianzhong; Lu, Weiyue; Sun, Jihong; Yu, Lei; Yan, Zhiqiang; Wang, Yiting

    2017-08-01

    Antibody-based drugs have attracted much attention for their targeting ability, high efficacy and low toxicity. But it is difficult for those intrabodies, a kind of antibody whose targets are intracellular biomarkers, to become effective drugs due to the lack of intracellular delivery strategy and their short circulation time in blood. Human telomerase reverse transcriptase (hTERT), an important biomarker for tumors, is expressed only in cytoplasm instead of on cell membrane. In this study, the anti-hTERT blocking monoclonal antibody (mAb), as the model intrabody, was used to prepare nanoparticles (NPs), followed by the encapsulation of erythrocyte membrane (EM), to obtain the EM-coated anti-hTERT mAb NPs delivery system. The final NPs showed a z-average hydrodynamic diameter of about 197.3 nm. The in vitro cellular uptake by HeLa cells confirmed that compared with free anti-hTERT mAb, the EM-coated anti-hTERT mAb NPs exhibited a significantly increased uptake by tumor cells. Besides, the pharmacokinetic study confirmed that the EM encapsulation can remarkably prolong the circulation time and increase the area under curve (AUC) of NPs in blood. The EM-coated anti-hTERT mAb NPs exhibited a remarkably decreased uptake by macrophages than uncoated NPs, which may be responsible for the prolonged circulation time and increased AUC. Furthermore, the frozen section of tumor tissue was performed and proved that the EM-coated anti-hTERT mAb NPs can be more effectively accumulated in tumor tissues than the free mAb and uncoated NPs. In summary, this study indicated that EM-coated anti-hTERT mAb NPs are an effective delivery system for the long circulation and intracellular delivery of an intrabody, and make it possible for the intracellular biomarkers to become the potential targets of drugs.

  6. Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment.

    PubMed

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan

    2017-12-04

    Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia.

  7. Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment

    PubMed Central

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Nguyen, Van Tu; Kim, Hye Hyun; Nam, Seung Yun; Lee, Kang Dae; Oh, Junghwan

    2017-01-01

    Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia. PMID:29207552

  8. Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.

    PubMed

    Dávila-Ibáñez, Ana B; Buurma, Niklaas J; Salgueiriño, Verónica

    2013-06-07

    The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.

  9. Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents.

    PubMed

    Kainz, Quirin M; Reiser, Oliver

    2014-02-18

    The work-up of chemical reactions by standard techniques is often time consuming and energy demanding, especially when chemists have to guarantee low levels of metal contamination in the products. Therefore, scientists need new ideas to rapidly purify reaction mixtures that are both economically and environmentally benign. One intriguing approach is to tether functionalities that are required to perform organic reactions to magnetic nanoparticles, for example, catalysts, reagents, scavengers, or chelators. This strategy allows researchers to quickly separate active agents from reaction mixtures by exploiting the magnetic properties of the support. In this Account, we discuss the main attributes of magnetic supports and describe how we can make the different nanomagnets accessible by surface functionalization. Arguably the most prominent magnetic nanoparticles are superparamagnetic iron oxide nanoparticles (SPIONs) due to their biologically well-accepted constituents, their established size-selective synthesis methods, and their diminished agglomeration (no residual magnetic attraction in the absence of an external magnetic field). However, nanoparticles made of pure metal have a considerably higher magnetization level that is useful in applications where high loadings are needed. A few layers of carbon can efficiently shield such highly reactive metal nanoparticles and, equally important, enable facile covalent functionalization via diazonium chemistry or non-covalent functionalization through π-π interactions. We highlight carbon-coated cobalt (Co/C) and iron (Fe/C) nanoparticles in this Account and compare them to SPIONs stabilized with surfactants or silica shells. The graphene-like coating of these nanoparticles offers only low loadings with functional groups via direct surface modification, and the resulting nanomagnets are prone to agglomeration without effective steric stabilization. To overcome these restrictions and to tune the dispersibility of the

  10. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.

    2017-10-01

    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  11. Generation of drugs coated iron nanoparticles through high energy ball milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhika Devi, A.; Murty, B. S.; Chelvane, J. A.

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  12. Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.

    PubMed

    Bele, Marjan; Hribar, Gorazd; Campelj, Stanislav; Makovec, Darko; Gaberc-Porekar, Vladka; Zorko, Milena; Gaberscek, Miran; Jamnik, Janko; Venturini, Peter

    2008-05-01

    The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.

  13. Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo.

    PubMed

    Heun, Yvonn; Hildebrand, Staffan; Heidsieck, Alexandra; Gleich, Bernhard; Anton, Martina; Pircher, Joachim; Ribeiro, Andrea; Mykhaylyk, Olga; Eberbeck, Dietmar; Wenzel, Daniela; Pfeifer, Alexander; Woernle, Markus; Krötz, Florian; Pohl, Ulrich; Mannell, Hanna

    2017-01-01

    In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro . Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo , we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy.

  14. Biocompatible Polysiloxane-Containing Diblock Copolymer PEO-b-PγMPS for Coating Magnetic Nanoparticles

    PubMed Central

    Chen, Hongwei; Wu, Xinying; Duan, Hongwei; Wang, Y. Andrew; Wang, Liya; Zhang, Minming; Mao, Hui

    2009-01-01

    We report a biocompatible polysiloxane containing amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS), for coating and stabilizing nanoparticles for biomedical applications. Such amphiphilic diblock copolymer which comprises both a hydrophobic segment with “surface anchoring moiety” (silane group) and a hydrophilic segment with PEO (Mn=5000 g/mol) was obtained by the reversible addition fragmentation chain transfer (RAFT) polymerization using the PEO macromolecular chain transfer agent. When used for coating paramagnetic iron oxide nanoparticles (IONPs), copolymers were mixed with hydrophobic oleic acid coated core size uniformed IONPs (D=13 nm) in co-solvent tetrahydrofuran. After being aged over a period of time, resulting monodispersed IONPs can be transferred into aqueous medium. With proper PγMPS block length (Mn=10,000 g/mol), polysiloxane containing diblock copolymers formed a thin layer of coating (~3 nm) around monocrystalline nanoparticles as measured by transmission electron microscopy (TEM). Magnetic resonance imaging (MRI) experiments showed excellent T2 weighted contrast effect from coated IONPs with a transverse relaxivity r2=98.6 mM−1s−1 (at 1.5 Tesla). Such thin coating layer has little effect on the relaxivity when compared to that of IONPs coated with conventional amphiphilic copolymer. Polysiloxane containing diblock copolymer coated IONPs are stable without aggregation or binding to proteins in serum when incubated for 24 h in culture medium containing 10% serum. Furthermore, much lower level of intracellular uptake by macrophage cells was observed with polysiloxane containing diblock copolymers coated IONPs, suggesting the reduction of non-specific cell uptakes and antibiofouling effect. PMID:20161520

  15. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.

    PubMed

    Isojima, Tatsushi; Suh, Su Kyung; Vander Sande, John B; Hatton, T Alan

    2009-07-21

    The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.

  16. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kaur, Navjot; Chudasama, Bhupendra

    2015-05-01

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe3O4) nanoparticles and their coating with SiO2 is reported. Fe3O4 nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.

  17. Development of new magnetic nanoparticles: Oligochitosan obtained by γ-rays and -coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Le Thi, Thao Nguyen; Nguyen, Thi Hiep; Hoang, Dong Quy; Tran, Tuong, Vi; Nguyen, Ngoc Thuy; Nguyen, Dai Hai

    2017-11-01

    Oligochitosan (OCS) have been utilized as a potential bioactive material for improving food quality and human health. In this study, superparamagnetic iron oxide (Fe3O4) nanoparticles were originally coated with OCS irradiated by gamma rays for their possible biomedical applications. The formation of Fe3O4@OCS was characterized by Fourier transform infrared (FT-IR), X-ray diffraction patterns (XRD), energy dispersive X-ray spectroscopy (EDS) and thermogravimetric analysis (TGA). In addition, the superparamagnetic properties and sizes and morphologies of Fe3O4 and Fe3O4@OCS nanoparticles were demonstrated by vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM), respectively. These results indicated that Fe3O4@OCS nanoparticles still maintained their superparamagnetic properties after polymeric coating, and were nearly spherical in shape with average diameter of 14.4 ± 0.31 nm, compared with 11.8 ± 0.52 nm of bare Fe3O4 nanoparticles, respectively. As a result, Fe3O4@OCS nanoparticles may serve as a promising platform for the development of new magnetic materials, which could be useful for biomedical applications.

  18. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  19. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    NASA Astrophysics Data System (ADS)

    Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2014-09-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

  20. Dual immobilization and magnetic manipulation of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jian, Z. F.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.; Wu, C. C.; Lee, Y. H.

    By suitably bio-functionalizing the surfaces, magnetic nanoparticles are able to bind specific biomolecules, and may serve as vectors for delivering bio-entities to target tissues. In this work, the synthesis of bio-functionalized magnetic nanoparticles with two kinds of bio-probes is developed. Here, the stem cell is selected as a to-be-delivered bio-entity and infarcted myocardium is the target issue. Thus, cluster designation-34 (CD-34) on stem cell and creatine kinase-MB (CK-MB) (or troponin I) on infarcted myocardium are the specific biomolecules to be bound with bio-functionalized magnetic nanoparticles. In addition to demonstrating the co-coating of two kinds of bio-probes on a magnetic nanoparticle, the feasibility of manipulation on bio-functionalized magnetic nanoparticles by external magnetic fields is investigated.

  1. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    PubMed

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.

  2. Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T2 contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahmad, Ashfaq; Bae, Hongsub; Rhee, Ilsu

    2018-05-01

    Highly stable silica-coated manganese ferrite nanoparticles were fabricated for application as magnetic resonance imagining (MRI) contrast agents. The manganese ferrite nanoparticles were synthesized using a hydrothermal technique and coated with silica. The particle size was investigated using transmission electron microscopy and was found to be 40-60 nm. The presence of the silica coating on the particle surface was confirmed by Fourier transform infrared spectroscopy. The crystalline structure was investigated by X-ray diffraction, and the particles were revealed to have an inverse spinel structure. Superparamagnetism was confirmed by the magnetic hysteresis curves obtained using a vibrating sample magnetometer. The efficiency of the MRI contrast agents was investigated by using aqueous solutions of the particles in a 4.7 T MRI scanner. The T1 and T2 relaxivities of the particles were 1.42 and 60.65 s-1 mM-1, respectively, in water. The ratio r2/r1 was 48.91, confirming that the silica-coated manganese ferrite nanoparticles were suitable high-efficacy T2 contrast agents.

  3. Effects of coating molecules on the magnetic heating properties of Au-Fe3O4 heterodimer nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ogasawara, J.; Himukai, H.; Itoh, T.

    2016-10-01

    In this paper, we report the heating properties of gold-magnetite (Au-Fe3O4) heterodimer nanoparticles (NPs) subjected to an alternating magnetic field. The Au-Fe3O4 NPs coated with oleic acid and oleylamine (OA) were synthesized through a method that combines seed mediation and high-temperature decomposition. The coating was replaced with dimercaptosuccinic acid (DMSA) by the ligand-exchange method. The specific absorption rates (SARs) for the OA- and DMSA-coated Au-Fe3O4 NPs coated with OA and DMSA at room temperature were determined through the calorimetric and magnetometric methods. SAR depended on the square of the magnetic field H up to an H value of 4 kA/m. The absolute value of the SAR for DMSA-coated NPs is about fivefold higher than that of the OA-coated NPs. The AC magnetic hysteresis measurements showed the recovery of the magnetic volume and the decrease in the magnetic anisotropy of the DMSA-coated NPs relative to those of the OA-coated NPs. These results suggest that the protective agent influences the magnetic properties of magnetite NPs via gold NPs.

  4. Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia

    NASA Astrophysics Data System (ADS)

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-06-01

    Dextran-coated magnetite (Fe3O4) nanoparticles with average particle sizes of 4 and 19 nm were synthesized through in situ and semi-two-step co-precipitation methods, respectively. The experimental results confirm the formation of pure phase of magnetite as well as the presence of dextran layer on the surface of modified magnetite nanoparticles. The results also reveal that both samples have the superparamagnetic behavior. Furthermore, calorimetric measurements show that the dextran-coated Fe3O4 nanoparticles with an average size of 4 nm cannot produce any appreciable heat under a biologically safe alternating magnetic field used in hyperthermia therapy; whereas, the larger ones (average size of 19 nm) are able to increase the temperature of their surrounding medium up to above therapeutic range. In addition, measured specific absorption rate (SAR) values confirm that magnetite nanoparticles with an average size of 19 nm are very excellent candidates for application in magnetic hyperthermia therapy.

  5. Synthesis, characterization and magnetic property of maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles and their protective coating with pepsin for bio-functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandhu, A.; Sutradhar, S.; Mukherjee, S.

    Highlights: • Maghemite nanoparticles were prepared by a modified co-precipitation method. • Nanoparticles were then successfully coated with pepsin for bio-functionlization. • XRD and Mössbauer spectra confirmed the maghemite phase of the nanoparticles. • Magnetic data were analysed to evaluate particle size, anisotropy etc. - Abstract: Maghemite nanoparticles (γ-Fe{sub 2}O{sub 3}) are prepared by co-precipitation method. To obtain bio-functionalized magnetic nanoparticles for magnetically controlled drug delivery, the prepared nanoparticles are successfully coated with pepsin, a bio-compatible polymer and digestive enzyme. Crystallographic phase of the nanoparticles is confirmed by X-ray diffractograms (XRD), high resolution transmission electron microscopy (HRTEM) and {sup 57}Femore » Mössbauer spectrometry. The average size of nanoparticles/nanocrystallites is estimated from the (3 1 1) peak of the XRD pattern using Debye–Scherrer formula. Results of HRTEM of coated and bare samples are in good agreement with those extracted from the XRD analysis. The dynamic magnetic properties are observed and different quantities viz., coercive field, magnetization, remanence, hysteresis losses etc., are estimated, which confirmed the presence of superparamagnetic relaxation of nanoparticles. Mössbauer spectra of the samples recorded at both 300 and 77 K, confirmed that the majority of particles are maghemite together with a very small fraction of magnetite nanoparticles.« less

  6. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Navjot, E-mail: navjot.dhindsa2989@gmail.com; Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe{sub 3}O{sub 4}) nanoparticles and their coating with SiO{sub 2} is reported. Fe{sub 3}O{sub 4} nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identicalmore » to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.« less

  7. Cell viability and MRI performance of highly efficient polyol-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Arteaga-Cardona, Fernando; Gutiérrez-García, Eric; Hidalgo-Tobón, Silvia; López-Vasquez, Ciro; Brito-Barrera, Yazmín A.; Flores-Tochihuitl, Julia; Angulo-Molina, Aracely; Reyes-Leyva, Julio R.; González-Rodríguez, Roberto; Coffer, Jeffery L.; Pal, Umapada; Diaz-Conti, Mario Pérez-Peña; Platas-Neri, Diana; Dies-Suarez, Pilar; Fonseca, Rebeca Sosa; Arias-Carrión, Oscar; Méndez-Rojas, Miguel A.

    2016-11-01

    This work aimed at determining conditions that would allow us to control the size of the NPs and create a system with characteristics apt for biomedical applications. We describe a comprehensive study on the synthesis and physical characterization of two highly sensitive sets of triethylene glycol (TREG) and polyethylene glycol (PEG)-coated superparamagnetic iron oxide nanoparticles (SPIONs) to be evaluated for use as magnetic resonance (MR) contrast agents. The ferrofluids demonstrated excellent colloidal stability in deionized water at pH 7.0 as indicated by dynamic light scattering (DLS) data. The magnetic relaxivities, r 2, were measured on a 1.5 T clinical MRI instrument. Values in the range from 205 to 257 mM-1 s-1 were obtained, varying proportionally to the SPIONs' sizes and coating nature. Further in vitro cell viability tests and in vivo biodistribution analyses of the intravenously administered nanoparticles showed that the prepared systems have good biocompatibility and migrate to several organs, mainly the meninges, spleen, and liver. Based on these results, our findings demonstrated the potential utility of these nanosystems as clinical contrast agents for MR imaging.

  8. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery

    NASA Astrophysics Data System (ADS)

    Tansık, Gülistan; Yakar, Arzu; Gündüz, Ufuk

    2014-01-01

    One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells, which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale-based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an external magnetic field. Thus, the drug can be carried to the targeted site safely. The aim of this study is to prepare poly( dl-lactic- co-glycolic acid) (PLGA)-coated magnetic nanoparticles and load anti-cancer drug, doxorubicin to them. For this purpose, magnetite (Fe3O4) iron oxide nanoparticles were synthesized as a magnetic core material (MNP) and then coated with oleic acid. Oleic acid-coated MNP (OA-MNP) was encapsulated into PLGA. Effects of different OA-MNP/PLGA ratios on magnetite entrapment efficiency were investigated. Doxorubicin-loaded magnetic polymeric nanoparticles (DOX-PLGA-MNP) were prepared. After the characterization of prepared nanoparticles, their cytotoxic effects on MCF-7 cell line were studied. PLGA-coated magnetic nanoparticles (PLGA-MNP) had a proper size and superparamagnetic character. The highest magnetite entrapment efficiency of PLGA-MNP was estimated as 63 % at 1:8 ratio. Cytotoxicity studies of PLGA-MNP did not indicate any notable cell death between the concentration ranges of 2 and 125 μg/ml. Drug loading efficiency was estimated as 32 %, and it was observed that DOX-PLGA-MNP showed significant cytotoxicity on MCF-7 cells compared to PLGA-MNP. The results showed that prepared nanoparticles have desired size and superparamagnetic characteristics without serious toxic effects on cells. These nanoparticles may be suitable for targeted drug delivery applications.

  9. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  10. PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadhav, S.V.; Nikam, D.S.; Khot, V.M.

    2015-04-15

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} magnetic nanoparticles are synthesized by a solution combustion method and functionalised with polyvinyl alcohol and polyethylene glycol. The induction heating characteristics of coated magnetic nanoparticles (42 °C) were observed at a reasonably low concentration (5 mg/mL). Remarkably, coated magnetic nanoparticles exhibited a promisingly high specific absorption rate with varying magnetic field and constant frequency. The surface analysis is carried out by X-ray photoelectron spectroscopy. A reduction in the agglomeration of the particles was observed when the magnetic nanoparticles were functionalised with polyvinyl alcohol or polyethylene glycol and can be confirmed by transmission electron microscopy and dynamicmore » light scattering studies. Vibrating sample magnetometer measurements indicate superparamagnetic behaviour at room temperature before and after coating. Colloidal stability revealed a considerably higher zeta potential value for coated system. In vitro cytotoxicity test of the magnetic nanoparticles indicates that coated nanoparticles have no significant effect on cell viability within the tested concentrations (1–5 mg mL{sup -1}) as compared to uncoated La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. All these findings explore the potentiality of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles for magnetic fluid hyperthermia. - Highlights: • Surface functionalization of LSMO nanoparticles — first time with PVA • Surface functionalization of LSMO nanoparticles — first time with PEG • BSA protein — first time used as dispersion medium for stability of LSMO nanoparticles • The heating ability observed at low concentration • Improved efficiency of magnetic fluid hyperthermia treatment with surfactants.« less

  11. Properties and biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Regmi, Rajesh Kumar

    Magnetic nanoparticles have a number of unique properties, making them promising agents for applications in medicine including magnetically targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and radiation therapy. They are biocompatible and can also be coated with biocompatible surfactants, which may be further functionalized with optically and therapeutically active molecules. These nanoparticles can be manipulated with non-invasive external magnetic field to produce heat, target specific site, and monitor their distribution in vivo. Within this framework, we have investigated a number of biomedical applications of these nanoparticles. We synthesized a thermosensitive microgel with iron oxide adsorbed on its surface. An alternating magnetic field applied to these nanocomposites heated the system and triggered the release of an anticancer drug mitoxantrone. We also parameterized the chain length dependence of drug release from dextran coated iron oxide nanoparticles, finding that both the release rate and equilibrium release fraction depend on the molecular mass of the surfactant. Finally, we also localized dextran coated iron oxide nanoparticles labeled with tat peptide to the cell nucleus, which permits this system to be used for a variety of biomedical applications. Beyond investigating magnetic nanoparticles for biomedical applications, we also studied their magnetohydrodynamic and dielectric properties in solution. Magnetohydrodynamic properties of ferrofluid can be controlled by appropriate selection of surfactant and deielctric measurement showed magnetodielectric coupling in this system. We also established that some complex low temperature spin structures are suppressed in Mn3O4 nanoparticles, which has important implications for nanomagnetic devices. Furthermore, we explored exchange bias effects in Ni-NiO core-shell nanoparticles. Finally, we also performed extensive magnetic studies in nickel metalhydride (NiMH) batteries to

  12. Switching assay as a novel approach for specific antigen- antibody interaction analysis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Parr, M.; Illarionov, R.; Marchenko, Y.; Yakovleva, L.; Nikolaev, B.; Ischenko, A.; Shevtsov, M.

    2016-08-01

    Switching assay was applied for the detection of antigen-antibody interaction between 70-kDa heat shock protein (Hsp70) and anti-Hsp70 monoclonal antibodies in water solutions using conjugates with magnetic iron oxide nanoparticles (MNPs). Hsp70 is a ubiquitous intracellular protein that plays a crucial role in cancerogenesis and many other pathologies. Detection of the Hsp70 level in the biological fluids might have a prognostic and diagnostic value in clinic. The developed switch assay for the detection of Hsp70 demonstrated high sensitivity for antigen-antibody interaction analysis thus proving its potential for further preclinical and clinical studies.

  13. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  14. Nano-magnetic particles used in biomedicine: core and coating materials.

    PubMed

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Super magnetic nanoparticles NiFe2O4, coated with aluminum-nickel oxide sol-gel lattices to safe, sensitive and selective purification of his-tagged proteins.

    PubMed

    Mirahmadi-Zare, Seyede Zohreh; Allafchian, Alireza; Aboutalebi, Fatemeh; Shojaei, Pendar; Khazaie, Yahya; Dormiani, Kianoush; Lachinani, Liana; Nasr-Esfahani, Mohammad-Hossein

    2016-05-01

    Super magnetic nanoparticle NiFe2O4 with high magnetization, physical and chemical stability was introduced as a core particle which exhibits high thermal stability (>97%) during the harsh coating process. Instead of multi-stage process for coating, the magnetic nanoparticles was mineralized via one step coating by a cheap, safe, stable and recyclable alumina sol-gel lattice (from bohemite source) saturated by nickel ions. The TEM, SEM, VSM and XRD imaging and BET analysis confirmed the structural potential of NiFe2O4@NiAl2O4 core-shell magnetic nanoparticles for selective and sensitive purification of His-tagged protein, in one step. The functionality and validity of the nickel magnetic nanoparticles were attested by purification of three different bioactive His-tagged recombinant fusion proteins including hIGF-1, GM-CSF and bFGF. The bonding capacity of the nickel magnetics nanoparticles was studied by Bradford assay and was equal to 250 ± 84 μg Protein/mg MNP base on protein size. Since the metal ion leakage is the most toxicity source for purification by nickel magnetic nanoparticles, therefor the nickel leakage in purified final protein was determined by atomic absorption spectroscopy and biological activity of final purified protein was confirmed in comparison with reference. Also, in vitro cytotoxicity of nickel magnetic nanoparticles and trace metal ions were investigated by MTS assay analysis. The results confirmed that the synthesized nickel magnetic nanoparticles did not show metal ion toxicity and not affected on protein folding. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Chemical synthesis and characterization of hollow dopamine coated, pentagonal and flower shaped magnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Riasat, Rabia; Kaynat, Sumbal

    2018-04-01

    Iron oxide nanoparticles have gained attention recently in the field of nanoscience and technology due to their unique physicochemical properties. We hereby chemically synthesized novel pentagonal flower shaped iron oxide nanoparticles by thermal decomposition of iron penta-carbonyl in a two way annealing process. Controlled oxidation by acid etching was performed for these nanoparticles. At first 13 nm core shell nanoparticles of iron oxide (Fe/Fe3O4) were synthesized at 120°C annealing temperature that act as template material. The core shell nanoparticles then converted into porous hollow core shell nanoparticles (PH Fe/ Fe3O4) in a two way annealing process of heating, first at 100°C then at 250°C and heating rate of 5°C was kept constant throughout the reaction time. X-Ray diffraction (XRD) was done for the phase confirmation of as synthesized nanoparticles. Transmission electron microscopy (TEM) and higher resolution transmission electron microscopy (HRTEM) clearly shows the flower like nanoparticles that are approx. 16 nm-18 nm in size having the 4-5 nm core of Fe and 1-2 nm of the pores in the shell while the cavity between the shell and core is about 2 nm and the shell is 4-5 nm in diameter according to the TEM micrographs. The as prepared nanoparticles were then surface functionalized by dopamine polymer to make them water dispersible. Fourier transform Infrared spectroscopy confirmed the dopamine coating on the nanoparticles and the magnetic saturation of 38 emu/g of nanoparticles was analyzed by vibrating sample magnetometer (VSM). Magnetic saturation persists in the dopamine coated nanoparticles. These nanoparticles were surface functionalized with dopamine and show dispersity in the aqueous media and can further be exploited in many nano-biotechnological applications including target specific therapeutic applications for several diseases.

  17. Simultaneous hyperthermia and doxorubicin delivery from polymer-coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Delgado, A. V.; González-Caballero, F.; Ramos-Tejada, M. M.

    2017-06-01

    In this work, the hyperthermia response, (i.e., heating induced by an externally applied alternating magnetic field) and the simultaneous release of an anti-cancer drug (doxorubicin) by polymer-coated magnetite nanoparticles have been investigated. After describing the setup for hyperthermia measurements in suspensions of magnetic nanoparticles, the hyperthermia (represented by the rate of suspension heating and, ultimately, by the specific absorption rate or SAR) of magnetite nanoparticles (both bare and polymer-coated as drug nanocarriers) is discussed. The effect of the applied ac magnetic field on doxorubicin release is also studied, and it is concluded that the field does not interfere with the release process, demonstrating the double functionality of the investigated particles.

  18. Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application

    NASA Astrophysics Data System (ADS)

    Raland, R. D.; Saikia, D.; Borgohain, C.; Borah, J. P.

    2017-08-01

    In pursuit of developing magnetic nanoparticles with optimal heat dissipation capabilities, we have successfully synthesized manganese ferrite (MnFe2O4) nanoparticles coated with various concentrations of oleic acid (OA) via co-precipitation. We found that the particle size decreases gradually with increasing OA concentration (35 nm for 0% OA  →  30 nm for 5% OA  →  27 nm for 7% OA  →  20 nm for 9% OA), which was confirmed by the x-ray diffractogram, Williamson-Hall plot and transmission electron micrograph. We also observe a decrease in lattice parameter, and interestingly, change in the shape of MnFe2O4 nanoparticles to quasi-cubic with the increase of OA concentration. These structural changes also manifest in the cation re-distribution, bond length and angle between the octahedral and tetrahedral sites. The magnetic properties are determined by vibrational sample magnetometry (VSM), which shows an increase in the saturation magnetization (M s) from 26 emu g-1 to 38 emu g-1 with almost negligible coercivity, indicating the superparamagnetic nature of the nanoparticles. Finally, the efficiency of induction heating is measured by its specific absorption rate (SAR) and intrinsic loss power (ILP), whose value varies as a function of saturation magnetization, engendered by the changes in the structural motifs of the MnFe2O4 nanoparticles under the influence of OA coating and their concentrations. This study demonstrates the quantitative link between the size, shape and magnetic anisotropy, which are intimately entwined with the heating performance of the nanoparticle.

  19. Tailoring magnetic nanoparticle for transformers application.

    PubMed

    Morais, P C; Silva, A S; Leite, E S; Garg, V K; Oliveira, A C; Viali, W R; Sartoratto, P P C

    2010-02-01

    In this study photoacoustic spectroscopy was used to investigate the effect of dilution of an oil-based magnetic fluid sample on the magnetic nanoparticle surface-coating. Changes of the photoacoustic signal intensity on the band-L region (640 to 830 nm) upon dilution of the stock magnetic fluid sample were discussed in terms of molecular surface desorption. The model proposed here assumes that the driving force taking the molecules out from the nanoparticle surface into the bulk solvent is the gradient of osmotic pressure. This gradient of osmotic pressure is established between the nanoparticle surface and the bulk suspension. It is further assumed that the photoacoustic signal intensity (area under the photoacoustic spectra) scales linearly with the number of coating molecules (surface grafting) at the nanoparticle surface. This model picture provides a non-linear analytical description for the reduction of the surface grafting coefficient upon dilution, which was successfully-used to curve-fit the photoacoustic experimental data.

  20. Plasmonic and silicon spherical nanoparticle antireflective coatings

    NASA Astrophysics Data System (ADS)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  1. Plasmonic and silicon spherical nanoparticle antireflective coatings

    PubMed Central

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  2. A facile method for emulsified oil-water separation by using polyethylenimine-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lü, Ting; Qi, Dongming; Zhang, Dong; Lü, Yulan; Zhao, Hongting

    2018-04-01

    Oil spills and oily wastewater discharges from ships and industrial activities have serious impacts on the environment and human health. In this study, a class of easy-to-synthesize polyethylenimine (PEI)-coated Fe3O4 magnetic nanoparticles (MNPs) was successfully synthesized via a one-step coprecipitation method. The synthesized PEI-coated Fe3O4 MNPs were characterized by using multiple technologies and applied in emulsified oil-water separation for the first time. It was found that the PEI effectively tuned the surface charge and wettability of MNPs. As a result, the PEI-coated MNPs could successfully assemble at the oil-water interface and promote the coalescence of oil droplets, thereby facilitating the subsequent magnetic separation. Results showed that the oil-water separation performance was superior and enhanced with the increase of ionic strength. Recycling experiment indicated that the PEI-coated MNPs could be reused up to six times without showing a significant decrease in separation efficiency. All of these results suggested that the PEI-coated MNP could potentially be used as a class of promising nanomaterials for emulsified oil-water separation. [Figure not available: see fulltext.

  3. Magnetite Nanoparticles Coated with Rifampicin and Chlortetracycline for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Nǎdejde, Claudia; Ciurlicǎ, Ecaterina Foca-nici; Creangǎ, Dorina; Cârlescu, Aurelian; Bǎdescu, Vasile

    2010-12-01

    Four types of biocompatible magnetic fluids based on superparamagnetic nanoparticles with Fe3O4 cores were functionalized with antibiotics (rifampicin or chlortetracycline) as potential candidates for in vivo biomedical applications, such as magnetically controlled drug delivery. The synthesis consisted in coprecipitation of iron oxide in basic, as well as in acid medium, followed by the dispersion of the resulted magnetite nanoparticles in aqueous solution containing the antibiotic. The chosen method to prepare the magnetite-core/drug-shell systems avoided intermediate organic coating of the magnetic nanoparticles. Comparative analysis of the rheological features of the aqueous magnetic fluid samples was performed. The structural features of the coated magnetic particles were investigated by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometry (VSM). Good crystallinity and adequate stability in time were evidenced. Drug delivery curves were spectrophotometrically provided.

  4. Magnetic Core-Shell Silica Nanoparticles with Large Radial Mesopores for siRNA Delivery.

    PubMed

    Xiong, Lin; Bi, Jingxu; Tang, Youhong; Qiao, Shi-Zhang

    2016-09-01

    A novel type of magnetic core-shell silica nanoparticles is developed for small interfering RNA (siRNA) delivery. These nanoparticles are fabricated by coating super-paramagnetic magnetite nanocrystal clusters with radial large-pore mesoporous silica. The amine functionalized nanoparticles have small particle sizes around 150 nm, large radial mesopores of 12 nm, large surface area of 411 m(2) g(-1) , high pore volume of 1.13 cm(3) g(-1) and magnetization of 25 emu g(-1) . Thus, these nanoparticles possess both high loading capacity of siRNA (2 wt%) and strong magnetic response under an external magnetic field. An acid-liable coating composed of tannic acid can further protect the siRNA loaded in these nanoparticles. The coating also increases the dispersion stability of the siRNA-loaded carrier and can serve as a pH-responsive releasing switch. Using the magnetic silica nanoparticles with tannic acid coating as carriers, functional siRNA has been successfully delivered into the cytoplasm of human osteosarcoma cancer cells in vitro. The delivery is significantly enhanced with the aid of the external magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Anisotropic magnetic field observed at 300 K in citrate-coated iron oxide nanoparticles: effect of counterions

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.; Li, Lin; Mukherjee, Sudip; Ghosh, Goutam

    2015-12-01

    Iron oxide nanoparticles (IONPs) have been synthesized by chemical co-precipitation method and coated with three citrates, namely, tri-lithium citrate (TLC), tri-sodium citrate (TSC), or tri-potassium citrate (TKC). In these `core-shell' structures, the `core' is a cluster of average 3 IONPs which is enveloped by a `shell' of citrate molecules and counterions, and thus called `core-shell' nano-clusters (CS-NCs), of average size 20 to 22 nm. The counterions in the three CS-NCs differ in ionic radii (r_{{ion}}), in the order of Li+ < Na+ < K+. Our aim was to investigate the effect of counterions on magnetic interactions between CS-NCs in different powder samples at 300 K, using vibrating sample magnetometer and electron magnetic resonance (EMR) techniques. The hysteresis loops showed negligible coercivity field ( H c) in all samples. The saturation magnetization ( M S) was the highest for TLC-coated CS-NCs. The blocking temperature ( T B), obtained from zero-field-cooled measurements, was >300 K for TLC-coated CS-NCs and <300 K for TSC- and TKC-coated CS-NCs. The EMR linewidth (∆ B PP), measured at 300 K, was also the broadest for TLC-coated CS-NCs. At low temperatures, Δ B PP was found to increase more significantly for TSC- and TKC-coated CS-NCs than for TLC-coated CS-NCs. These results indicate a significant anisotropic field effect; arising due to thermal motion of counterions at 300 K, on the magnetic interactions in TLC-coated CS-NCs. To our knowledge, this is the first report on the effect of counterions on magnetic interactions between CS-NCs.

  6. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-02-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  7. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application.

    PubMed

    Foglia, Sabrina; Ledda, Mario; Fioretti, Daniela; Iucci, Giovanna; Papi, Massimiliano; Capellini, Giovanni; Lolli, Maria Grazia; Grimaldi, Settimio; Rinaldi, Monica; Lisi, Antonella

    2017-04-19

    Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed the in vitro biocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.

  8. Thrombolysis based on magnetically-controlled surface-functionalized Fe3O4 nanoparticle

    PubMed Central

    Chang, Ming; Lin, Yu-Hao; Gabayno, Jacque Lynn; Li, Qian; Liu, Xiaojun

    2017-01-01

    ABSTRACT In this study, the control of magnetic fields to manipulate surface-functionalized Fe3O4 nanoparticles by urokinase coating is investigated for thrombolysis in a microfluidic channel. The urokinase-coated Fe3O4 nanoparticles are characterized using particle size distribution, zeta potential measurement and spectroscopic data. Thrombolytic ratio tests reveal that the efficiency for thrombus cleaning is significantly improved when using magnetically-controlled urokinase-coated Fe3O4 nanoparticles than pure urokinase solution. The average increase in the rate of thrombolysis with the use of urokinase-coated Fe3O4 nanoparticles is about 50%. In vitro thrombolysis test in a microfluidic channel using the coated nanoparticles shows nearly complete removal of thrombus, a result that can be attributed to the clot busting effect of the urokinase as it inhibits the possible formation of blood bolus during the magnetically-activated microablation process. The experiment further demonstrates that a thrombus mass of 10.32 mg in the microchannel is fully removed in about 180 s. PMID:27689864

  9. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  10. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  11. Quantification of the aggregation of magnetic nanoparticles with different polymeric coatings in cell culture medium

    NASA Astrophysics Data System (ADS)

    Eberbeck, D.; Kettering, M.; Bergemann, C.; Zirpel, P.; Hilger, I.; Trahms, L.

    2010-10-01

    The knowledge of the physico-chemical characteristics of magnetic nanoparticles (MNPs) is essential to enhance the efficacy of MNP-based therapeutic treatments (e.g. magnetic heating, magnetic drug targeting). According to the literature, the MNP uptake by cells may depend on the coating of MNPs, the surrounding medium as well as on the aggregation behaviour of the MNPs. Therefore, in this study, the aggregation behaviour of MNPs in various media was investigated. MNPs with different coatings were suspended in cell culture medium (CCM) containing fetal calf serum (FCS) and the distribution of the hydrodynamic sizes was measured by magnetorelaxometry (MRX). FCS as well as bovine serum albumin (BSA) buffer (phosphate buffered saline with 0.1% bovine serum albumin) may induce MNP aggregation. Its strength depends crucially on the type of coating. The degree of aggregation in CCM depends on its FCS content showing a clear, local maximum at FCS concentrations, where the IgG concentration (part of FCS) is of the order of the MNP number concentration. Thus, we attribute the observed aggregation behaviour to the mechanism of agglutination of MNPs by serum compartments as for example IgG. No aggregation was induced for MNPs coated with dextran, polyarabic acid or sodium phosphate, respectively, which were colloidally stable in CCM.

  12. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles

    PubMed Central

    Alzahrani, Eman

    2015-01-01

    The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln⁡(C o/C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638

  13. Carbon coated magnetic nanoparticles as a novel magnetic solid phase extraction adsorbent for simultaneous extraction of methamphetamine and ephedrine from urine samples.

    PubMed

    Taghvimi, Arezou; Hamishehkar, Hamed

    2017-01-15

    This paper develops a highly selective, specific and efficient method for simultaneous determination of ephedrine and methamphetamine by a new carbon coated magnetic nanoparticles (C/MNPs) as a magnetic solid phase extraction (MSPE) adsorbent in biological urine medium. The characterization of synthesized magnetic nano adsorbent was completely carried out by various characterization techniques like Fourier transform infrared (FT-IR) spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Nine important parameters influencing extraction efficiency including amount of adsorbent, amounts of sample volume, pH, type and amount of extraction organic solvent, time of extraction and desorption, agitation rate and ionic strength of extraction medium, were studied and optimized. Under optimized extraction conditions, a good linearity was observed in the concentration range of 100-2000ng/mL for ephedrine and 100-2500ng/mL for methamphetamine. Analysis of positive urine samples was carried out by proposed method with the recovery of 98.71 and 97.87% for ephedrine and methamphetamine, respectively. The results indicated that carbon coated magnetic nanoparticles could be applied in clinical and forensic laboratories for simultaneous determination of abused drugs in urine media. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Poly(vinylpyrrolidone) coated iron nanoparticles in polar aprotic solvent.

    PubMed

    Ban, Zhihui; Cushing, Brian L; O'Connor, Charles J

    2008-04-01

    Poly(vinylpyrrolidone) (PVP) coated iron nanoparticles which show well-defined core-shell structures have been successfully synthesized in a polar aprotic solvent. In this approach, PVP was employed not as capping agent, but as coating polymer directly applied to the metallic (iron) core nanoparticles. The morphologies, structures, compositions and magnetic properties of the products were investigated by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), SQUID magnetometry and FTIR spectroscopy.

  15. Gold nanoparticles-coated magnetic microspheres as affinity matrix for detection of hemoglobin A1c in blood by microfluidic immunoassay.

    PubMed

    Chen, Shao-Peng; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-08-15

    A novel microfluidic immunoassay system for specific detection of hemoglobin A1c (HbA1c) was developed based on a three-component shell/shell/core structured magnetic nanocomposite Au/chitosan/Fe(3)O(4), which was synthesized with easy handling feature of Fe(3)O(4) by magnet, high affinity for gold nanoparticles of chitosan and good immobilization ability for anti-human hemoglobin-A1c antibody (HbA1c mAb) of assembled colloidal gold nanoparticles. The resulting HbA1c mAb/Au/chitosan/Fe(3)O(4) magnetic nanoparticles were then introduced into microfluidic devices coupled with a gold nanoband microelectrode as electrochemical detector. After that, three-step rapid immunoreactions were carried out in the sequence of HbA1c, anti-human hemoglobin antibodies (Hb mAb) and the secondary alkaline phosphatase (AP)-conjugated antibody within 20 min. The current response of 1-naphtol obtained from the reaction between the secondary AP-conjugated antibody and 1-naphthyl phosphate (1-NP) increased proportionally to the HbA1c concentration. Under optimized electrophoresis and detection conditions, HbA1c responded linearly in the concentration of 0.05-1.5 μg mL(-1), with the detection limit of 0.025 μg mL(-1). This system was successfully employed for detection of HbA1c in blood with good accuracy and renewable ability. The proposed method proved its potential use in clinical immunoassay of HbA1c. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Preparation and characterization of magnetic core-shell iron oxide@glycyrrhizic acid nanoparticles in ethanol-water mixed solvent

    NASA Astrophysics Data System (ADS)

    Saeedi, Mostafa; Vahidi, Omid

    2018-06-01

    In this research, we used the co-precipitation method to synthesize glycyrrhizic acid coated iron oxide magnetic nanoparticles. The aim of this study is to investigate how different amounts of glycyrrhizic acid affect the structural, biological, magnetic, and hyperthermic characteristics of the synthesized magnetic nanoparticles. The synthesis was conducted under different glycyrrhizic acid concentrations in water with the presence of ethanol to generate coated nanoparticles with different amounts of coating agent. The characteristics of the synthesized nanoparticles were examined by several devices including X-ray diffractometer, transmission electron microscope, field-emission scanning electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra, and thermal gravimetric analyzer. The cytotoxicity of synthesized nanoparticles was examined by MTT assay using L929 fibroblast cell line. The results indicated the enhanced biocompatibility of the coated iron oxide nanoparticles due to the presence of glycyrrhizic acid. The comparison of the coated samples shows that the samples with higher amounts of coating agent were more biocompatible. The possibility of using the synthesized magnetic nanoparticles for medical hyperthermia was examined by performing hyperthermia process on a nanofluid made up of the nanoparticles dispersed in water using a high-frequency alternating magnetic field generator and the results confirm the effectiveness of the synthesized nanoparticles in the elevation of the solutions temperature.

  17. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    NASA Astrophysics Data System (ADS)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  18. Effect of chitosan coating on the structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Mdlalose, W. B.; Mokhosi, S. R.; Dlamini, S.; Moyo, T.; Singh, M.

    2018-05-01

    We report the influence of polymer coatings on structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoferrites synthesized by glycol thermal technique and then coated with chitosan viz. CHI-MnFe2O4 and CHI-Mn0.5Co0.5Fe2O4. The compounds were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), high-resolution scanning electron microscopy (HRSEM), Mössbauer spectroscopy and magnetization measurements. The powder XRD patterns of naked nanoferrites confirmed single-phase spinel cubic structure with an average crystallite size of 13 nm, while the coated samples exhibited an average particle size of 15 nm. We observed a reduction in lattice parameters with coating. HRTEM results correlated well with XRD results. 57Fe Mössbauer spectra showed ordered magnetic spin states in both nanoferrites. This study shows that coatings have significant effects on the structural and magnetic properties of Mn-nanoferrites. Magnetization studies performed at room temperature in fields up to 14 kOe revealed the superparamagnetic nature of both naked and coated nanoparticles with spontaneous magnetizations at room temperature of 49.2 emu/g for MnFe2O4, 23.6 emu/g for coated CHI-MnFe2O4 nanoparticles, 63.2 emu/g for Mn0.5Co0.5Fe2O4 and 33.2 emu/g for coated CHI-Mn0.5Co0.5Fe2O4 nanoparticles. We observed reduction in coercive fields due to coating. Overall, chitosan-coated manganese and manganese-cobalt nanoferrites present as suitable candidates for biomedical applications owing to physicochemical, and magnetic properties exhibited.

  19. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer

    NASA Astrophysics Data System (ADS)

    Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G.; Yun, Dong Soo; Belcher, Angela M.; Kelly, Kimberly A.

    2012-10-01

    Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and would improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection.

  20. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer.

    PubMed

    Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G; Yun, Dong Soo; Belcher, Angela M; Kelly, Kimberly A

    2012-10-01

    Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and would improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection.

  1. Targeted drug delivery to the brain using magnetic nanoparticles.

    PubMed

    Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Moos, Torben

    2015-01-01

    Brain capillary endothelial cells denote the blood-brain barrier (BBB), and conjugation of nanoparticles with antibodies that target molecules expressed by these endothelial cells may facilitate their uptake and transport into the brain. Magnetic nanoparticles can be encapsulated in liposomes and carry large molecules with therapeutic potential, for example, siRNA, cDNA and polypeptides. An additional approach to enhance the transport of magnetic nanoparticles across the BBB is the application of extracranially applied magnetic force. Stepwise targeting of magnetic nanoparticles to brain capillary endothelial cells followed by transport through the BBB using magnetic force may prove a novel mechanism for targeted therapy of macromolecules to the brain.

  2. Evasion of the accelerated blood clearance phenomenon by coating of nanoparticles with various hydrophilic polymers.

    PubMed

    Ishihara, Tsutomu; Maeda, Taishi; Sakamoto, Haruka; Takasaki, Naoko; Shigyo, Masao; Ishida, Tatsuhiro; Kiwada, Hiroshi; Mizushima, Yutaka; Mizushima, Tohru

    2010-10-11

    The accelerated blood clearance (ABC) phenomenon is induced upon repeated injections of poly(ethylene glycol) (PEG)-coated colloidal carriers. It is essential to suppress this phenomenon in a clinical setting because the pharmacokinetics must be reproducible. In this study, we evaluated the induction of the ABC phenomenon using nanoparticles coated with various hydrophilic polymers instead of PEG. Nanoparticles encapsulating prostaglandin E1 were prepared by the solvent diffusion method from a blend of poly(lactic acid) (PLA) and block copolymers consisting of various hydrophilic polymers and PLA. Coating of nanoparticles with poly(N-vinyl-2-pyrrolidone) (PVP), poly(4-acryloylmorpholine), or poly(N,N-dimethylacrylamide) led to extended residence of the nanoparticles in blood circulation in rats, although they had a shorter half-life than the PEG-coated nanoparticles. The ABC phenomenon was not induced upon repeated injection of PVP-coated nanoparticles at various time intervals, dosages, or frequencies, whereas it was elicited by PEG-coated nanoparticles. In addition, anti-PVP IgM antibody, which is estimated to be one of the crucial factors for induction of the ABC phenomenon, was not produced after injection of PVP-coated nanoparticles. These results suggest that the use of PVP, instead of PEG, as a coating material for colloidal carriers can evade the ABC phenomenon.

  3. Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia.

    PubMed

    Menelaou, M; Georgoula, K; Simeonidis, K; Dendrinou-Samara, C

    2014-03-07

    Nickel ferrite nanoparticles were synthesized via a facile solvothermal approach. Oleylamine (OAm) was used in all synthetic procedures as a stabilizing agent and solvent. By varying the polarity of the solvents, hydrophobic NiFe2O4 nanoparticles coated with OAm of relatively similar sizes (9-11.7 nm) and in a range of magnetization values (32.0-53.5 emu g(-1)) were obtained. The as-prepared hydrophobic nanoparticles were characterized by XRD, TEM, SEM, TGA and VSM and converted to hydrophilic by two different approaches. The addition of a positively charged ligand (cetyltrimethyl ammonium bromide, CTAB) and the ligand exchange procedure (2,3-dimercaptosuccinic acid, DMSA) have been successfully applied. The aqueous suspensions of NiFe2O4@CTAB and NiFe2O4@DMSA showed good colloidal stability after a long period of time. The different surface modification affected both the NMR relaxometric measurements and the hyperthermia effects. In both techniques CTAB modification demonstrated higher r2 relaxivity (278.9 s(-1) mM(-1) in an NMR spectrometer at 11.7 T) and SAR values (423.4 W g(-1) at an applied AC field with a particle concentration of 0.5 mg mL(-1)). The results indicate that a coating with a larger molecule as CTAB under the same size, shape and magnetization of NiFe2O4 NPs gave rise to NMR relaxometric properties and heating efficacy.

  4. Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.

    PubMed

    Fernández Barquín, L; Yedra Martínez, A; Rodríguez Fernández, L; Rojas, D P; Murphy, F J; Alba Venero, D; Ruiz González, L; González-Calbet, J; Fdez-Gubieda, M L; Pankhurst, Q A

    2012-03-01

    The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

  5. Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Wang, Jun

    2018-01-01

    Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g-1 when the initial uranium(VI) concentration was 100 mg L-1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.

  6. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Zhong, Zhihui; Wang, Li; Li, Hongxia; Xiao, Kai

    2014-10-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating.

  7. Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro

    NASA Astrophysics Data System (ADS)

    Satishkumar, R.; Vertegel, A. A.

    2011-12-01

    The objective of this paper was to study the effect of antibody-directed targeting of S. aureus by comparing the activities of lysostaphin conjugated to biodegradable polylactide nanoparticles (NPs) in the presence and in the absence of co-immobilized anti-S. aureus antibody. Lysostaphin-antibody-NP conjugates were synthesized through physical adsorption at different enzyme:antibody:NP ratios. The synthesized enzyme-NP conjugates were characterized by means of dynamic light scattering and zeta potential analysis, and the total protein binding yield on the NPs was characterized using Alexa Fluor 350 and 594 dyes for the S. aureus antibody and lysostaphin respectively. We observed enhanced antimicrobial activity for both enzyme-coated and enzyme-antibody-coated NPs for lysostaphin coatings corresponding to ~ 40% of the initial monolayer and higher compared to the free enzyme case (p < 0.05). At the highest antibody coating concentration, bacterial lysis rates for antibody-coated samples were significantly higher than for lysostaphin-coated samples lacking the antibody (p < 0.05). Such enzyme-NP conjugates thus have the potential for becoming novel therapeutic agents for treating antibiotic-resistant S. aureus infections.

  8. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    PubMed

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  9. Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells.

    PubMed

    Horák, Daniel; Svobodová, Zuzana; Autebert, Julien; Coudert, Benoit; Plichta, Zdeněk; Královec, Karel; Bílková, Zuzana; Viovy, Jean-Louis

    2013-01-01

    Monodisperse (4 μm) macroporous crosslinked poly(glycidyl methacrylate) (PGMA) microspheres for use in microfluidic immunomagnetic cell sorting, with a specific application to the capture of circulating tumor cells (CTCs), were prepared by multistep swelling polymerization in the presence of cyclohexyl acetate porogen and hydrolyzed and ammonolyzed. Iron oxide was then precipitated in the microspheres to render them magnetic. Repeated precipitation made possible to raise the iron oxide content to more than 30 wt %. To minimize nonspecific adsorption of the microspheres in a microchannel and of cells on the microspheres, they were coated with albumin crosslinked with glutaraldehyde. Antibodies of epithelial cell adhesion molecule (anti-EpCAM) were then immobilized on the albumin-coated magnetic microspheres using the carbodiimide method. Capture of breast cancer MCF7 cells as a model of CTCs by the microspheres with immobilized anti-EpCAM IgG was performed in a batch experiment. Finally, MCF7 cells were captured by the anti-EpCAM-immobilized albumin-coated magnetic microspheres in an Ephesia chip. A very good rejection of lymphocytes was achieved. Thus, albumin-coated monodisperse magnetic PGMA microspheres with immobilized anti-EpCAM seem to be promising for capture of CTCs in a microfluidic device. Copyright © 2012 Wiley Periodicals, Inc.

  10. Synthesis, characterization and application of lipase-conjugated citric acid-coated magnetic nanoparticles for ester synthesis using waste frying oil.

    PubMed

    Patel, Unisha; Chauhan, Kishor; Gupte, Shilpa

    2018-04-01

    In the present work, magnetic nanoparticles (MNPs) were prepared by chemical precipitation of trivalent and divalent iron ions which were functionalized using citric acid. The bacterial isolate Staphylococcus epidermidis KX781317 was isolated from oil-contaminated site. The isolate produced lipase, which was purified and immobilized on magnetic nanoparticles (MNPs) for ester synthesis from waste frying oil (WFO). The characterization of MNPs employed conventional TEM, XRD and FTIR techniques. TEM analysis of MNPs showed the particle size in the range of 20-50 nm. FTIR spectra revealed the binding of citric acid to Fe 3 O 4 and lipase on citric acid-coated MNPs. The citric acid-coated MNPs and lipase-conjugated citric acid-coated MNPs had similar XRD patterns which indicate MNPs could preserve their magnetic properties. The maximum immobilization efficiency 98.21% of lipase-containing citric acid-coated MNPs was observed at ratio 10:1 of Cit-MNPs:lipase. The pH and temperature optima for lipase conjugated with Cit-MNPs were 7 and 35 °C, respectively. Isobutanol was found to be an effective solvent for ester synthesis and 1:2 ratio of oil:alcohol observed significant for ester formation. The ester formation was determined using TLC and the % yield of ester conversion was calculated. The rate of ester formation is directly proportional to the enzyme load. Formed esters were identified as isobutyl laurate ester and isobutyl myristate ester through GC-MS analysis.

  11. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  12. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  13. Effects of coating spherical iron oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milosevic, Irena; Motte, Laurence; Aoun, Bachir

    2017-01-01

    We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide onmore » the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazu and Dr. Federica Migliardo.« less

  14. Trichoderma sp. spores and Kluyveromyces marxianus cells magnetic separation: Immobilization on chitosan-coated magnetic nanoparticles.

    PubMed

    Palacios-Ponce, Sócrates; Ramos-González, Rodolfo; Ruiz, Héctor A; Aguilar, Miguel A; Martínez-Hernández, José L; Segura-Ceniceros, Elda P; Aguilar, Cristóbal N; Michelena, Georgina; Ilyina, Anna

    2017-07-03

    In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By Plackett-Burman design, it was demonstrated that factors which directly influenced on yeast cell immobilization and magnetic separation were inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30°C. For Trichoderma sp. spore adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E + 09 spores (C-MNP g -1 ). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (K f ) estimated as 2.05E + 08 cells (C-MNP g -1 ). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.

  15. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties

    NASA Astrophysics Data System (ADS)

    Jirák, Zdeněk; Kuličková, Jarmila; Herynek, Vít; Maryško, Miroslav; Koktan, Jakub; Kaman, Ondřej

    2017-04-01

    Novel procedure for coating of oxide nanoparticles with titania, employing hydrolysis and polycondensation of titanium alkoxides under high-dilution conditions and cationic surfactants, is developed and applied to magnetic cores of perovskite manganite. Bare particles of the ferromagnetic La0.65Sr0.35MnO3 phase, possessing high magnetization, M10 kOe(4.5 K) = 63.5 emu g-1, and Curie temperature, TC = 355 K, are synthesized by sol-gel procedure and subsequently coated with titania. Further, a comparative silica-coated product is prepared. In order to analyse the morphology, colloidal stability, and surface properties of these two types of coated particles, a detailed study by means of transmission electron microscopy, dynamic light scattering, zeta-potential measurements, and IR spectroscopy is carried out. The experiments on the titania-coated sample reveal a continuous though porous character of the TiO2 shell, the nature of which is amorphous but can be transformed to anatase at higher temperatures. Finally, the relaxometric study at the magnetic field of 0.5 T, performed to quantity the transverse relaxivity and its temperature dependence, reveals important differences between the titania-coated and silica-coated nanoparticles.

  16. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer

    PubMed Central

    Ghosh, Debadyuti; Lee, Youjin; Thomas, Stephanie; Kohli, Aditya G.; Yun, Dong Soo; Belcher, Angela M.; Kelly, Kimberly A.

    2014-01-01

    Molecular imaging allows clinicians to visualize the progression of tumours and obtain relevant information for patient diagnosis and treatment1. Owing to their intrinsic optical, electrical and magnetic properties, nanoparticles are promising contrast agents for imaging dynamic molecular and cellular processes such as protein-protein interactions, enzyme activity or gene expression2. Until now, nanoparticles have been engineered with targeting ligands such as antibodies and peptides to improve tumour specificity and uptake. However, excessive loading of ligands can reduce the targeting capabilities of the ligand3,4,5 and reduce the ability of the nanoparticle to bind to a finite number of receptors on cells6. Increasing the number of nanoparticles delivered to cells by each targeting molecule would lead to higher signal-to-noise ratios and improve image contrast. Here, we show that M13 filamentous bacteriophage can be used as a scaffold to display targeting ligands and multiple nanoparticles for magnetic resonance imaging of cancer cells and tumours in mice. Monodisperse iron oxide magnetic nanoparticles assemble along the M13 coat, and its distal end is engineered to display a peptide that targets SPARC glycoprotein, which is overexpressed in various cancers. Compared with nanoparticles that are directly functionalized with targeting peptides, our approach improves contrast because each SPARC-targeting molecule delivers a large number of nanoparticles into the cells. Moreover, the targeting ligand and nanoparticles could be easily exchanged for others, making this platform attractive for in vivo high-throughput screening and molecular detection. PMID:22983492

  17. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

    PubMed

    Cole, Adam J; David, Allan E; Wang, Jianxin; Galbán, Craig J; Hill, Hannah L; Yang, Victor C

    2011-03-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, potentially enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140-190 nm) and relative PEG labeling (1.5% of surface amines - A5/D5, 0.4% - A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37 °C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 h) and D20 (11.75 h) showing much longer half-lives than D (0.12 h). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC(0-∞). Sustained tumor exposure over 24 h was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that a polyethylene glycol modified, cross-linked starch-coated MNP is a promising platform for enhanced magnetic tumor targeting, warranting further study in tumor models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.

    PubMed

    Purushotham, S; Chang, P E J; Rumpel, H; Kee, I H C; Ng, R T H; Chow, P K H; Tan, C K; Ramanujan, R V

    2009-07-29

    Thermoresponsive polymer-coated magnetic nanoparticles loaded with anti-cancer drugs are of considerable interest for novel multi-modal cancer therapies. Such nanoparticles can be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release. Gamma-Fe(2)O(3) iron oxide magnetic nanoparticles (MNP) with average sizes of 14, 19 and 43 nm were synthesized by high temperature decomposition. Composite magnetic nanoparticles (CNP) of 43 nm MNP coated with the thermoresponsive polymer poly-n-isopropylacrylamide (PNIPAM) were prepared by dispersion polymerization of n-isopropylacrylamide monomer in the presence of the MNP. In vitro drug release of doxorubicin-(dox) loaded dehydrated CNP at temperatures below and above the lower critical solution temperature of PNIPAM (34 degrees C) revealed a weak dependence of drug release on swelling behavior. The particles displayed Fickian diffusion release kinetics; the maximum dox release at 42 degrees C after 101 h was 41%. In vitro simultaneous hyperthermia and drug release of therapeutically relevant quantities of dox was achieved, 14.7% of loaded dox was released in 47 min at hyperthermia temperatures. In vivo magnetic targeting of dox-loaded CNP to hepatocellular carcinoma (HCC) in a buffalo rat model was studied by magnetic resonance imaging (MRI) and histology. In summary, the good in vitro and in vivo performance of the doxorubicin-loaded thermoresponsive polymer-coated magnetic nanoparticles suggests considerable promise for applications in multi-modal treatment of cancer.

  19. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  20. Oleate Coated Magnetic Cores Based on Magnetite, Zn Ferrite and Co Ferrite Nanoparticles - Preparation, Physical Characterization and Biological Impact on Helianthus Annuus Photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursache-Oprisan, Manuela; Foca-nici, Ecaterina; Cirlescu, Aurelian

    2010-12-02

    Sodium oleate was used as coating shell for magnetite, Zn ferrite and Co ferrite powders to stabilize them in the form of aqueous magnetic suspensions. The physical characterization was carried out by applying X-ray diffraction and magnetization measurements. Both crystallite size and magnetic core diameter ranged between 7 and 11 nm. The influence of magnetic nanoparticle suspensions (corresponding to magnetic nanoparticle levels of 10{sup -14}-10{sup -15}/cm{sup 3}) on sunflower seedlings was studied considering the changes in the photosynthesis pigment levels. Similar responses were obtained for magnetite and cobalt ferrite nanoparticle treatment consisting in the apparent inhibition of chlorophyll biosynthesis whilemore » for zinc ferrite nanoparticles some concentrations seemed to have stimulatory effects on the chlorophylls as well as on the carotene levels. But the chlorophyll ratio was diminished in the case of all three types of magnetic nanoparticles meaning their slight negative effect on the light harvesting complex II (LHC II) from the chloroplast membranes and consequently on the photosynthesis efficiency.« less

  1. Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs).

    PubMed

    Can, Hatice Kaplan; Kavlak, Serap; ParviziKhosroshahi, Shahed; Güner, Ali

    2018-03-01

    Dextran-coated iron oxide nanoparticles (DIONPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging (MRI) contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. This paper reports the experimental detail for preparation, characterization and investigation of thermal and dynamical mechanical characteristics of the dextran-coated Fe 3 O 4 magnetic nanoparticles. In our work, DIONPs were prepared in a 1:2 ratio of Fe(II) and Fe(III) salt in the HCl solution with NaOH at given temperature. The obtained dextran-coated iron-oxide nanoparticles structure-property correlation was characterized by spectroscopic methods; attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and XRD. Coating dextran on the iron-oxide proof of important peaks can be seen from the ATR-FTIR. Dramatic crystallinity increment can be observed from the XRD pattern of the iron-oxide dextran nanoparticles. The thermal analysis was examined by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Dynamical mechanical properties of dextran nanoparticles were analysed by dynamic mechanical analysis (DMA). Thermal stability of the iron oxide dextran nanoparticles is higher than that of the dextran.

  2. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system.

    PubMed

    Sunkara, B K; Misra, R D K

    2008-03-01

    The study demonstrates a distinct enhancement of antimicrobial activity of W4+-doped titania that is coated on nickel ferrite nanoparticles in comparison to undoped titania. The composite nanoparticles were synthesized by uniquely combining reverse micelle and chemical hydrolysis synthesis methods [Rana S, Rawat J, Misra RDK, Acta Biomater 2005;1:691]. The superior antimicrobial activity of W4+-doped titania is related to the inhibition of electron-hole recombination and decrease in the band gap energy of titania. The function of the ferrite is to facilitate the removal of nanoparticles from the sprayed surface using a small magnetic field. The coating of ferrite nanoparticles with titania retains superparamagnetic character and magnetic strength of composite nanoparticles signifying non-deterioration of magnetic properties and promoting their use as removable antimicrobial photocatalyst nanoparticles.

  3. Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity

    NASA Astrophysics Data System (ADS)

    Kaman, Ondřej; Dědourková, Tereza; Koktan, Jakub; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Havelek, Radim; Královec, Karel; Turnovcová, Karolína; Jendelová, Pavla; Schröfel, Adam; Svoboda, Ladislav

    2016-04-01

    Magnetic oxide nanoparticles provide a fascinating tool for biological research and medicine, serving as contrast agents, magnetic carriers, and core materials of theranostic systems. Although the applications rely mostly on iron oxides, more complex oxides such as perovskite manganites may provide a much better magnetic performance. To assess the risk of their potential use, in vitro toxicity of manganite nanoparticles was thoroughly analysed and compared with another prospective system of Mn-Zn ferrite nanoparticles. Magnetic nanoparticles of La0.63Sr0.37MnO3 manganite were prepared by two distinct methods, namely the molten salt synthesis and the traditional sol-gel route, whereas nanoparticles of Mn0.61Zn0.42Fe1.97O4 ferrite, selected as a comparative material, were synthesized by a new procedure under hydrothermal conditions. Magnetic cores were coated with silica and, moreover, several samples of manganite nanoparticles with different thicknesses of silica shell were prepared. The size-fractionated and purified products were analysed using transmission electron microscopy, dynamic light scattering, measurement of the zeta-potential dependence on pH, IR spectroscopy, and SQUID magnetometry. The silica-coated products with accurately determined concentration by atomic absorption spectroscopy were subjected to a robust evaluation of their cytotoxicity by four different methods, including detailed analysis of the concentration dependence of toxicity, analysis of apoptosis, and experiments on three different cell lines. The results, comparing two manganese-containing systems, clearly indicated superior properties of the Mn-Zn ferrite, whose silica-coated nanoparticles show very limited toxic effects and thus constitute a promising material for bioapplications.

  4. Folate receptor mediated in vivo targeted delivery of human serum albumin coated manganese ferrite magnetic nanoparticles to cancer cells

    NASA Astrophysics Data System (ADS)

    Zaidan, A.; Ilhami, F.; Fahmi, M. Z.; Purwanto, B.; Kharisma, R. Z.

    2017-05-01

    Manganese ferrite nanoparticles (MnFe2O4) have received increasing attention due to their remarkable magnetic properties and have been used for various biomedical applications. They have potential applications in magnetic resonance imaging and hyperthermia for cancer. Both novel applications require a delivery system that will allow nanoparticle to move easily and localization of nanoparticle to the target tissue. In our work, we developed human serum albumin coated manganese ferrite magnetic nanoparticles (HSA-MF NPs). The nanoparticles were prepared using solvothermal method and modified with folic acid for targeted delivery. Structure and morphology of manganese ferrite nanoparticle were characterized by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM). The size of folic acid conjugated HSA-MF NPs (HSA-MF-FA NPs) were studied by dynamic light scattering (DLS). In the in vivo study, we used benzopyrene-induced cancer in mice. We successfully delivered HSA-MF-FA NPs through intravenous tail injection after induction of the tumour. We found that 54% of initial HSA-MF-FA NPs which previously injected localize in the target tissue. While obtained p-value from independent T-test is 0.013 which shows that there is a difference between the control group (HSA-MF NPs) and the treated group (HSA-MF-FA NPs)

  5. Magneto-controlled bioelectronics for the antigen-antibody interaction based on magnetic-core/gold-shell nanoparticles functionalized biomimetic interface.

    PubMed

    Tang, Dianping; Yuan, Ruo; Chai, Yaqin

    2008-02-01

    A new protein assay system for the antigen-antibody interaction was developed by immobilization of carcinoembryonic antibody (anti-CEA) onto magnetic-core/gold-shell nanoparticles-functionalized biomimetic interface on multiporous polythionine modified magnetic carbon paste electrodes (MCPE). Differential pulse voltammetric (DPV) technique was employed to investigate the antigen-antibody interaction in pH 6.8 acetate acid buffer solution after incubation with various CEA samples for 50 min at room temperature. The peak currents decreased with increased CEA concentration, and were proportional to the CEA concentration in the range of 1.5-60 ng/ml with a detection limit of 0.3 ng/ml at a signal-to-noise ratio of 3. Moreover, the selectivity, reproducibility and stability of the proposed immunoassay system were acceptable. Compared with the conventional immunoassays, the developed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the proposed methodology would be valuable for diagnosis and monitoring of carcinoma and its metastasis.

  6. Magnetic Resonance Imaging of Tumors with the Use of Iron Oxide Magnetic Nanoparticles as a Contrast Agent.

    PubMed

    Semkina, A S; Abakumov, M A; Grinenko, N F; Lipengolts, A A; Nukolova, N V; Chekhonin, V P

    2017-04-01

    We studied the possibility of using BSA-coated magnetic iron oxide nanoparticles for magnetic resonance imaging diagnosis of C6 glioblastoma, 4T1 mammary adenocarcinoma, and RS-1 hepatic mucous carcinoma. In all three cases, magnetic nanoparticles accumulated in the tumor and its large vessels. Magnetic resonance imaging with contrast agent allows visualization of the tumor tissue and its vascularization.

  7. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Bo; Zhang, Hui; Chen, Jin; Zhai, Chuanxin; Yang, Deren; Jiang, Biao; Wu, Yulian

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  8. Polyethylene glycol coated CoFe{sub 2}O{sub 4} nanoparticles: A potential spinel ferrite for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbe, Ashok V.; Birajdar, Shankar D.; Jadhav, K. M., E-mail: drjadhavkm@gmail.com

    2015-06-24

    The structural and magnetic properties of the polyethylene glycol (PEG) coated cobalt spinel ferrite (CoFe{sub 2}O{sub 4}) nanoparticles have been reported in the present study. CoFe{sub 2}O{sub 4} nanoparticles were prepared by sol-gel auto-combustion method using citric acid + ethylene glycol as a fuel. The prepared powder of cobalt ferrite nanoparticles was annealed at 600°C for 6h and used for further study. The structural characterization of CoFe{sub 2}O{sub 4} nanoparticles were carried out by X-ray diffraction technique. The X-ray analysis confirmed the formation of single phase cubic spinel structure. The crystallite size, Lattice constant and X-ray density of the PEGmore » coated CoFe{sub 2}O{sub 4} nanoparticles were calculated by using XRD data. The presence of PEG on CoFe{sub 2}O{sub 4} nanoparticles and reduced agglomeration in the CoFe{sub 2}O{sub 4} nanoparticles were revealed by SEM studies. The magnetic properties were studied by pulse field hysteresis loop tracer technique at a room temperature. The magnetic parameters such as saturation magnetization, remanence magnetization, coercivity etc have been obtained. These magnetic parameters were get decreased by PEG coating.« less

  9. Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications.

    PubMed

    Kohara, Kaori; Yamamoto, Shinpei; Seinberg, Liis; Murakami, Tatsuya; Tsujimoto, Masahiko; Ogawa, Tetsuya; Kurata, Hiroki; Kageyama, Hiroshi; Takano, Mikio

    2013-03-28

    Carboxylated SiO2-coated α-Fe nanoparticles have been successfully prepared via CaH2-mediated reduction of SiO2-coated Fe3O4 nanoparticles followed by surface carboxylation. These α-Fe-based nanoparticles, which are characterized by ease of coating with additional functional groups, a large magnetization of 154 emu per g-Fe, enhanced corrosion resistivity, excellent aqueous dispersibility, and low cytotoxicity, have potential to be a versatile platform in biomedical applications.

  10. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells

    NASA Astrophysics Data System (ADS)

    Khmara, I.; Koneracka, M.; Kubovcikova, M.; Zavisova, V.; Antal, I.; Csach, K.; Kopcansky, P.; Vidlickova, I.; Csaderova, L.; Pastorekova, S.; Zatovicova, M.

    2017-04-01

    This study was aimed at development of biocompatible amino-functionalized magnetic nanoparticles as carriers of specific antibodies able to detect and/or target cancer cells. Poly-L-lysine (PLL)-modified magnetic nanoparticle samples with different PLL/Fe3O4 content were prepared and tested to define the optimal PLL/Fe3O4 weight ratio. The samples were characterized for particle size and morphology (SEM, TEM and DLS), and surface properties (zeta potential measurements). The optimal PLL/Fe3O4 weight ratio of 1.0 based on both zeta potential and DLS measurements was in agreement with the UV/VIS measurements. Magnetic nanoparticles with the optimal PLL content were conjugated with antibody specific for the cancer biomarker carbonic anhydrase IX (CA IX), which is induced by hypoxia, a physiologic stress present in solid tumors and linked with aggressive tumor behavior. CA IX is localized on the cell surface with the antibody-binding epitope facing the extracellular space and is therefore suitable for antibody-based targeting of tumor cells. Here we showed that PLL/Fe3O4 magnetic nanoparticles exhibit cytotoxic activities in a cell type-dependent manner and bind to cells expressing CA IX when conjugated with the CA IX-specific antibody. These data support further investigations of the CA IX antibody-conjugated, magnetic field-guided/activated nanoparticles as tools in anticancer strategies.

  11. Surface functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Wydra, Robert John

    Despite recent advances, cancer remains the second leading cause of deaths in the United States. Magnetic nanoparticles have found various applications in cancer research as drug delivery platforms, enhanced contrast agents for improved diagnostic imaging, and the delivery of thermal energy as standalone therapy. Iron oxide nanoparticles absorb the energy from an alternating magnetic field and convert it into heat through Brownian and Neel relaxations. To better utilize magnetic nanoparticles for cancer therapy, surface functionalization is essential for such factors as decreasing cytotoxicity of healthy tissue, extending circulation time, specific targeting of cancer cells, and manage the controlled delivery of therapeutics. In the first study, iron oxide nanoparticles were coated with a poly(ethylene glycol) (PEG) based polymer shell. The PEG coating was selected to prevent protein adsorption and thus improve circulation time and minimize host response to the nanoparticles. Thermal therapy application feasibility was demonstrated in vitro with a thermoablation study on lung carcinoma cells. Building on the thermal therapy demonstration with iron oxide nanoparticles, the second area of work focused on intracellular delivery. Nanoparticles can be appropriately tailored to enter the cell and deliver energy on the nanoscale eliminating individual cancer cells. The underlying mechanism of action is still under study, and we were interested in determining the role of reactive oxygen species (ROS) catalytically generated from the surface of iron oxide nanoparticles in this measured cytotoxicity. When exposed to an AMF, the nanoscale heating effects are capable of enhancing the Fenton-like generation of ROS determined through a methylene blue degradation assay. To deliver this enhanced ROS effect to cells, monosaccharide coated nanoparticles were developed and successfully internalized by colon cancer cell lines. Upon AMF exposure, there was a measured increase in

  12. Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)

    2004-01-01

    A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.

  13. Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance

    PubMed Central

    Riggio, Cristina; Calatayud, Maria Pilar; Hoskins, Clare; Pinkernelle, Josephine; Sanz, Beatriz; Torres, Teobaldo Enrique; Ibarra, Manuel Ricardo; Wang, Lijun; Keilhoff, Gerburg; Goya, Gerardo Fabian; Raffa, Vittoria; Cuschieri, Alfred

    2012-01-01

    Purpose It has been proposed in the literature that Fe3O4 magnetic nanoparticles (MNPs) could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1) high saturation magnetization, (2) a negligible cytotoxic profile, and (3) a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies. Methods Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM]) as well as their colloidal (Z potential) and magnetic properties (Superconducting QUantum Interference Devices [SQUID]). Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reactive oxygen species production. Particle uptake was monitored via Prussian blue staining, intracellular iron content quantification via a ferrozine-based assay, and direct visualization by dual-beam (focused ion beam/scanning electron microscopy [FIB/SEM]) analysis. Experiments were performed on human neuroblastoma SH-SY5Y cell line and primary Schwann cell cultures of the peripheral nervous system. Results This paper reports on the synthesis and characterization of polymer-coated magnetic Fe3O4 nanoparticles with an average diameter of 73 ± 6 nm that are designed as magnetic actuators for neural guidance. The cells were able to incorporate quantities of iron up to 2 pg/cell. The intracellular distribution of MNPs obtained by optical and electronic microscopy showed large structures of MNPs crossing the cell membrane into the cytoplasm, thus rendering them suitable for magnetic manipulation by external

  14. Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance.

    PubMed

    Riggio, Cristina; Calatayud, Maria Pilar; Hoskins, Clare; Pinkernelle, Josephine; Sanz, Beatriz; Torres, Teobaldo Enrique; Ibarra, Manuel Ricardo; Wang, Lijun; Keilhoff, Gerburg; Goya, Gerardo Fabian; Raffa, Vittoria; Cuschieri, Alfred

    2012-01-01

    It has been proposed in the literature that Fe(3)O(4) magnetic nanoparticles (MNPs) could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1) high saturation magnetization, (2) a negligible cytotoxic profile, and (3) a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies. Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM]) as well as their colloidal (Z potential) and magnetic properties (Superconducting QUantum Interference Devices [SQUID]). Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reactive oxygen species production. Particle uptake was monitored via Prussian blue staining, intracellular iron content quantification via a ferrozine-based assay, and direct visualization by dual-beam (focused ion beam/scanning electron microscopy [FIB/SEM]) analysis. Experiments were performed on human neuroblastoma SH-SY5Y cell line and primary Schwann cell cultures of the peripheral nervous system. This paper reports on the synthesis and characterization of polymer-coated magnetic Fe(3)O(4) nanoparticles with an average diameter of 73 ± 6 nm that are designed as magnetic actuators for neural guidance. The cells were able to incorporate quantities of iron up to 2 pg/cell. The intracellular distribution of MNPs obtained by optical and electronic microscopy showed large structures of MNPs crossing the cell membrane into the cytoplasm, thus rendering them suitable for magnetic manipulation by external magnetic fields

  15. Nanoparticles Affect PCR Primarily via Surface Interactions with PCR Components: Using Amino-Modified Silica-Coated Magnetic Nanoparticles as a Main Model.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Shi, Xianming

    2015-06-24

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic nanoparticles (ASMNPs, which can be collected very easily using an external magnetic field) as a model and compared them with gold nanoparticles (AuNPs, which have been studied extensively) to reveal the mechanisms by which nanoparticles affect PCR. We found that nanoparticles affect PCR primarily by binding to PCR components: (1) inhibition, (2) specifity, and (3) efficiency and yield of PCR are impacted. (1) Excess nanomaterials inhibit PCR by adsorbing to DNA polymerase, Mg(2+), oligonucleotide primers, or DNA templates. Nanoparticle surface-active groups are particularly important to this effect. (2, a) Nanomaterials do not inhibit nonspecific amplification products caused by false priming as previously surmised. It was shown that relatively low concentrations of nanoparticles inhibited the amplification of long amplicons, and increasing the amount of nanoparticles inhibited the amplification of short amplicons. This concentration phenomenon appears to be the result of the formation of "joints" upon the adsorption of ASMNPs to DNA templates. (b) Nanomaterials are able to inhibit nonspecific amplification products due to incomplete amplification by preferably adsorbing single-stranded incomplete amplification products. (3) Some types of nanomaterials, such as AuNPs, enhance the efficiency and yield of PCR because these types of nanoparticles can adsorb to single-stranded DNA more strongly than to double-stranded DNA. This behavior assists in the rapid and thorough denaturation of double-stranded DNA templates. Therefore, the interaction between the surface of nanoparticles and PCR components is sufficient to explain most of the effects of nanoparticles on PCR.

  16. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    PubMed

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.

  17. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    PubMed

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  18. Simulation study of depositing the carbon film on nanoparticles in the magnetized methane plasma

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Hosein; Pourali, Nima; Ebadi, Zahra

    2018-03-01

    Plasma coating of nanoparticles in low-temperature magnetized methane plasma is studied by a simulation approach. To this end, by using the global model, the electron temperature and concentration of different species considered in this plasma are determined in the center of a capacitively coupled discharge. Then, the plasma-wall transition region in the presence of an oblique magnetic field is simulated by the multi-component fluid description. Nanoparticles with different radii are injected into the transition region and surface deposition and heating models, as well as dynamics and charging models, are employed to examine the coating process. The results of the simulation show that the non-spherical growth of nanoparticles is affected by the presence of the magnetic field, as with passing time, an oscillating increase is seen in the thickness of the film deposited on nanoparticles. Also, it is shown that the uniformity of the deposited film is dependent on the rotation velocity of nanoparticles. Generally, the obtained results imply that the sphericity of nanoparticles and uniformity of the film coated on them are controllable by the magnitude and orientation of the magnetic field.

  19. Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Catalano, E.; Di Benedetto, A.

    2017-05-01

    Superparamagnetic iron oxide nanoparticles have recently been investigated for their potential to kill cancer cells with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe3O4 magnetic nanoparticles were synthesized to induce magnetic hyperthermia, and targeted delivering of chemotherapeutics in the cancer microenvironment. The characteristic properties of synthesized bare and CS-MNPs were analyzed by various analytical methods: X-ray diffraction, Fourier transformed infrared spectroscopy, Scanning electron microscopy and Thermo-gravimetric analysis/differential thermal analysis. Magnetic nanoparticles were successfully synthesized using the co-precipitation method. This synthesis technique resulted in nanoparticles with an average particle size of 16 nm. The pure obtained nanoparticles were then successfully encapsulated with 4-nm-thick chitosan coating. The formation of chitosan on the surface of nanoparticles was confirmed by physicochemical analyses. Heating experiments at safe magnetic field (f = 100 kHz, H =10-20 kA m-1) revealed that the maximum achieved temperature of water stable chitosan-coated nanoparticles (50 mg ml-1) is fully in agreement with cancer therapy and biomedical applications.

  20. Biocompatible core-shell magnetic nanoparticles for cancer treatment

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Qiang, You; Meyer, Daniel; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald

    2008-04-01

    Nontoxic magnetic nanoparticles (MNPs) have expanded treatment delivery options in the medical world. With a size range from 2to200nm, MNPs can be compiled with most of the small cells and tissues in the living body. Monodispersive iron-iron oxide core-shell nanoparticles were prepared by our novel cluster deposition system. This unique method of preparing core-shell MNPs gives the nanoparticles a very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells. Since core iron enhances the heating effect [L. Baker, Q. Zeing, W. Li, and S. Sullivan, J. Appl. Phys. 99, 08H106 (2006)], the rate of oxidation of iron nanoparticles was also tested in de-ionized water at a certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by x-ray diffraction scan after 0, 24, 48, 96, and 204h. Due to the high magnetic moment offered by MNPs produced in our laboratory, we predict that even at low applied external alternating field, the desired temperature could be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover our MNPs do not require additional transfection agent, providing a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

  1. Microgel coating of magnetic nanoparticles via bienzyme-mediated free-radical polymerization for colorimetric detection of glucose

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Wang, Xia; Liao, Chuanan; Wei, Qingcong; Wang, Qigang

    2015-10-01

    This study describes a new strategy for the fabrication of magnetic core-shell microgels by free-radical polymerization triggered by the cascade reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP). The mild polymerization around the interface of the magnetic nanoparticles permits the mild coating of the microgel layer with excellent characteristics for various applications in biocatalysis and medical diagnostics, as well as in clinical fields. The immobilized bienzyme within the microgel has a largely retained activity relative to the non-immobilized one. The confining effect of the microgel and the well designed distance between the two enzymes can benefit the diffusion of intermediates to the HRP active site. The final microgels can be incontestably employed as sensitive biosensors for colorimetric glucose detection.This study describes a new strategy for the fabrication of magnetic core-shell microgels by free-radical polymerization triggered by the cascade reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP). The mild polymerization around the interface of the magnetic nanoparticles permits the mild coating of the microgel layer with excellent characteristics for various applications in biocatalysis and medical diagnostics, as well as in clinical fields. The immobilized bienzyme within the microgel has a largely retained activity relative to the non-immobilized one. The confining effect of the microgel and the well designed distance between the two enzymes can benefit the diffusion of intermediates to the HRP active site. The final microgels can be incontestably employed as sensitive biosensors for colorimetric glucose detection. Electronic supplementary information (ESI) available: Experimental details and ESI figures. See DOI: 10.1039/c5nr05716g

  2. Thermally stable silica-coated hydrophobic gold nanoparticles.

    PubMed

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  3. Magnetic Nanoparticles for Cancer Diagnosis and Therapy

    PubMed Central

    Yigit, Mehmet V.; Moore, Anna

    2013-01-01

    Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline. PMID:22274558

  4. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  5. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  6. Functionalization and Characterization of Metal Oxide Coatings of Stainless Steel and Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Slaney, Anne Margaret

    The development of tolerogens, fabricated devices eliciting tolerance toward incompatible donor ABO antigens in implant patients, is the ultimate goal of this project. This would permit ABO incompatible organ transplants, increase the donor pool for patients, increase efficiency in the use of available organs, reduce waitlist times and reduce mortality rates of patients. Stainless steel stents and silica nanoparticles were chosen as platforms for the stationary and circulating tolerogens. Stainless steel was coated with silica by solgel dip-coating, electrodeposition, and atomic layer deposition (ALD). The coatings were evaluated by CV, EIS, SEM, AFM, VASE, FTIR, XPS, and AES. Of the silica films, those deposited by ALD provided superior insulating, conformal, and thin coatings. These silica ALD films outperformed even titania ALD films upon stressing. Silica ALD films were subsequently functionalized with mixtures of silane derivatives of poly(ethylene glycol) (PEG), to prevent nonspecific protein binding, and monosaccharides (MS) or trisaccharide and tetrasaccharide (TS) antigens. Functionalizations were characterized by FTIR, XPS and UV-Vis following enzyme-linked lectin assays (ELLAs) or enzyme-linked immunosorbent assays (ELISAs). Effective functionalization allowing biological availability and activity even after incubation in blood plasma was confirmed. Microarray microscope slides were similarly developed with all ABO antigen subtypes, characterized by ToF-SIMS and ELISA, and proved useful in detecting antibodies in human blood samples. Silica nanoparticles, including fluorescent and magnetic varieties, in a range of sizes were prepared by sol-gel synthesis. The nanoparticles were evaluated by SEM, DLS, zeta potential measurements, fluorescence imaging, flow cytometry, two-photon excitation fluorescence correlation spectroscopy and TEM. Different dye incorporation methods were used for effective detection of NPs, and additional silica layers improved

  7. Magnetic nanoparticle-based drug delivery for cancer therapy.

    PubMed

    Tietze, Rainer; Zaloga, Jan; Unterweger, Harald; Lyer, Stefan; Friedrich, Ralf P; Janko, Christina; Pöttler, Marina; Dürr, Stephan; Alexiou, Christoph

    2015-12-18

    Nanoparticles have belonged to various fields of biomedical research for quite some time. A promising site-directed application in the field of nanomedicine is drug targeting using magnetic nanoparticles which are directed at the target tissue by means of an external magnetic field. Materials most commonly used for magnetic drug delivery contain metal or metal oxide nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs consist of an iron oxide core, often coated with organic materials such as fatty acids, polysaccharides or polymers to improve colloidal stability and to prevent separation into particles and carrier medium [1]. In general, magnetite and maghemite particles are those most commonly used in medicine and are, as a rule, well-tolerated. The magnetic properties of SPIONs allow the remote control of their accumulation by means of an external magnetic field. Conjugation of SPIONs with drugs, in combination with an external magnetic field to target the nanoparticles (so-called "magnetic drug targeting", MDT), has additionally emerged as a promising strategy of drug delivery. Magnetic nanoparticle-based drug delivery is a sophisticated overall concept and a multitude of magnetic delivery vehicles have been developed. Targeting mechanism-exploiting, tumor-specific attributes are becoming more and more sophisticated. The same is true for controlled-release strategies for the diseased site. As it is nearly impossible to record every magnetic nanoparticle system developed so far, this review summarizes interesting approaches which have recently emerged in the field of targeted drug delivery for cancer therapy based on magnetic nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Metal-coated magnetic nanoparticles in an optically active medium: A nonreciprocal metamaterial

    NASA Astrophysics Data System (ADS)

    Christofi, Aristi; Stefanou, Nikolaos

    2018-03-01

    We report on the optical response of a nonreciprocal bianisotropic metamaterial, consisting of spherical, metal-coated magnetic nanoparticles embedded in an optically active medium, thus combining gyrotropy, plasmonic resonances, and chirality in a versatile design. The corresponding effective medium is deduced by an appropriate two-step generalized Maxwell-Garnett homogenization scheme. The associated photonic band structure and transmission spectra are obtained through a six-vector formulation of Maxwell equations, which provides an efficient framework for general bianisotropic structures going beyond existing approaches that involve cumbersome nonlinear eigenvalue problems. Our results, analyzed and discussed in the light of group theory, provide evidence that the proposed metamaterial exhibits some remarkable frequency-tunable properties, such as strong, plasmon-enhanced nonreciprocal polarization azimuth rotation and magnetochiral dichroism.

  9. Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications.

    PubMed

    Sood, Ankur; Arora, Varun; Shah, Jyoti; Kotnala, R K; Jain, Tapan K

    2017-11-01

    In this paper we report synthesis of aqueous based gold coated iron oxide nanoparticles to integrate the localized surface plasma resonance (SPR) properties of gold and magnetic properties of iron oxide in a single system. Iron oxide-gold core shell nanoparticles were stabilized by attachment of thiolated sodium alginate to the surface of nanoparticles. Transmission electron microscope (TEM) micrograph presents an average elementary particle size of 8.1±2.1nm. High resolution TEM (HR-TEM) and X-ray photon spectroscopy further confirms the presence of gold shell around iron oxide core. Gold coating is responsible for reducing saturation magnetization (M s ) value from ~41emu/g to ~24emu/g - in thiolated sodium alginate stabilized gold coated iron oxide core-shell nanoparticles. The drug (curcumin) loading efficiency for the prepared nanocomposites was estimated to be around 7.2wt% (72μgdrug/mg nanoparticles) with encapsulation efficiency of 72.8%. Gold-coated iron oxide core-shell nanoparticles could be of immense importance in the field of targeted drug delivery along with capability to be used as contrast agent for MRI & CT. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    PubMed Central

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200

  11. Preparation and characterization of polymer-coated core-shell structured magnetic microbeads

    NASA Astrophysics Data System (ADS)

    Liu, Z. L.; Ding, Z. H.; Yao, K. L.; Tao, J.; Du, G. H.; Lu, Q. H.; Wang, X.; Gong, F. L.; Chen, X.

    2003-09-01

    Composite microbeads consisting of polymer-coated iron oxide nanoparticles are prepared by the microemulsion polymerization of styrene, divinyl benzene and methacrylic acid in the presence of emulsifiers. Fourier transform infrared spectrometer analysis indicates the presence of -COOH groups and Fe 3O 4 of the microbeads. The amount of -COOH groups localized on the surface, which is about 0.15 mmol/g, is determined by conductometric titration. Transmission electron microscope picture reveals that the microbeads have a core-shell structure. The dissolving experiments of microbeads in hydrochloric acid and toluene further identify the core-shell structure. Optical microscope indicates that the magnetic microbeads have uniform and spherical forms with the size of 1-5 μm. Magnetic sensitivity measurement indicates that the microbeads can be used conveniently. Magnetic property measurement shows very little residual magnetization and coercivity, which are below 0.5 emu/g and around 15 Oe, respectively. The magnetic properties are greatly related to the particle sizes. The thermal gravity analysis result shows the improvement of thermal stability. The experiment of immobilized antibody indicates that the functional groups on the surface are appropriate.

  12. The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity

    PubMed Central

    Wydra, Robert J.; Rychahou, Piotr G.; Evers, B. Mark; Anderson, Kimberly W.; Dziubla, Thomas D.; Hilt, J. Zach

    2015-01-01

    Monosaccharide coated iron oxide nanoparticles were developed to selectively target colon cancer cell lines for magnetically mediated energy delivery therapy. The nanoparticles were prepared using a coupling reaction to attach the glucose functional group to the iron oxide core, and functionality was confirmed with physicochemical characterization techniques. The targeted nanoparticles were internalized into CT26 cells at a greater extent than non-targeted nanoparticles, and the nanoparticles were shown to be localized within lysosomes. Cells with internalized nanoparticles were exposed to an AMF to determine the potential to delivery therapy. Cellular ROS generation and apoptotic cell death was enhanced with field exposure. The nanoparticle coatings inhibit the Fenton-like surface generation of ROS suggesting a thermal or mechanical effect is more likely the source of the intracellular effect. PMID:26143604

  13. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tadyszak, Krzysztof; Kertmen, Ahmet; Coy, Emerson; Andruszkiewicz, Ryszard; Milewski, Sławomir; Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan; Chybczyńska, Katarzyna

    2017-07-01

    Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe3O4@SiO2 nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  14. Magnetic nanoparticles: In vivo cancer diagnosis and therapy.

    PubMed

    Lima-Tenório, Michele K; Pineda, Edgardo A Gómez; Ahmad, Nasir M; Fessi, Hatem; Elaissari, Abdelhamid

    2015-09-30

    Recently, significant research efforts have been devoted to the finding of efficient approaches in order to reduce the side effects of traditional cancer therapy and diagnosis. In this context, magnetic nanoparticles have attracted much attention because of their unique physical properties, magnetic susceptibility, biocompatibility, stability and many more relevant characteristics. Particularly, magnetic nanoparticles for in vivo biomedical applications need to fulfill special criteria with respect to size, size distribution, surface charge, biodegradability or bio-eliminability and optionally bear well selected ligands for specific targeting. In this context, many routes have been developed to synthesize these materials, and tune their functionalities through intriguing techniques including functionalization, coating and encapsulation strategies. In this review article, the use of magnetic nanoparticles for cancer therapy and diagnosis is evaluated addressing potential applications in MRI, drug delivery, hyperthermia, theranostics and several other domains. In view of potential biomedical applications of magnetic nanoparticles, the review focuses on the most recent progress made with respect to synthetic routes to produce magnetic nanoparticles and their salient accomplishments for in vivo cancer diagnosis and therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Infrared imaging for tumor detection using antibodies conjugated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Levy, Arie; Gannot, Israel

    2008-04-01

    Thermography is a well known approach for cost effective early detection of concourse tumors. However, till now - more than 5 decades after its introduction - it is not considered as a primary tool for cancer early detection, mainly because its poor performance compared to other techniques. This work offers a new thermographic approach for tumor detection which is based on the use of antibody conjugated magnetic nanoparticles ("MNP") as a tumor specific marker. Wename this method "Thermal Beacon Thermography" ("TBT"), and it has the potential to provide considerable advantages over conventional thermographic approach. TBT approach is based on the fact that MNP are producing heat when subjected to an alternating magnetic field ("AMF"). Once these particles are injected to the patient blood stream, they specifically accumulate at the tumor site, providing a local heat source at the tumor that can be activated and deactivated by external control. This heat source can be used as a "thermal beacon" in order to detect and locate tumor by detecting temperature changes at the skin surface using an IR camera and comparing them to a set of pre-calculated numerical predictions. Experiments were conducted using an in vitro tissue model together with industrial inductive heating system and an IR camera. The results shows that this approach can specifically detect small tumor phantom (D=1.5mm) which was embedded below the surface of the tissue phantom.

  16. Oleate-based hydrothermal preparation of CoFe2O4 nanoparticles, and their magnetic properties with respect to particle size and surface coating

    NASA Astrophysics Data System (ADS)

    Repko, Anton; Vejpravová, Jana; Vacková, Taťana; Zákutná, Dominika; Nižňanský, Daniel

    2015-09-01

    We present a facile and high-yield synthesis of cobalt ferrite nanoparticles by hydrothermal hydrolysis of Co-Fe oleate in the presence of pentanol/octanol/toluene and water at 180 or 220 °C. The particle size (6-10 nm) was controlled by the composition of the organic solvent and temperature. Magnetic properties were then investigated with respect to the particle size and surface modification with citric acid or titanium dioxide (leading to hydrophilic particles). The as-prepared hydrophobic nanoparticles (coated by oleic acid) had a minimum inter-particle distance of 2.5 nm. Their apparent blocking temperature (estimated as a maximum of the zero-field-cooled magnetization) was 180 K, 280 K and 330 K for the particles with size of 6, 9 and 10.5 nm, respectively. Replacement of oleic acid on the surface by citric acid decreased inter-particle distance to less than 1 nm, and increased blocking temperature by ca. 10 K. On the other hand, coating with titanium dioxide, supported by nitrilotri(methylphosphonic acid), caused increase of the particle spacing, and lowering of the blocking temperature by ca. 20 K. The CoFe2O4@TiO2 nanoparticles were sufficiently stable in water, methanol and ethanol. The particles were also investigated by Mössbauer spectroscopy and alternating-current (AC) susceptibility measurements, and their analysis with Vögel-Fulcher and power law. Effect of different particle coating and dipolar interactions on the magnetic properties is discussed.

  17. Synthesis and application of surfactants coated magnetite nanoparticles for demulsification of crude oil in water emulsion

    NASA Astrophysics Data System (ADS)

    Yau, Xin Hui; Khe, Cheng Seong; Liu, Wei Wen; Lai, Chin Wei; Oo, Zeya

    2017-10-01

    Magnetite nanoparticles were synthesized through co-precipitation method, in which surfactant such as polyvinylpyrrolidone (PVP) and sodium dodecyl benzene sulfonate (SDBS) were applied as stabilizing agent. Various techniques were employed to characterize the synthesized magnetite nanoparticles. Magnetite nanoparticles with spinel structure are successfully synthesized and confirmed by X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results proved that surface of magnetite nanoparticles were successfully coated with PVP and SDBS. From the transmission electron microscope (TEM), it showed that surfactant coated magnetite nanoparticles possess smaller particle size than that of bare magnetite nanoparticles. In comparison with SDBS, PVP has a better capping efficiency and the PVP coated magnetite nanoparticles have an average particle size of 10.8 nm. In addition, surfactant coated magnetite nanoparticles also exhibited lower value of saturation magnetization (Ms). Lower value of Ms might be attributed to the small sized nanoparticles. All magnetite nanoparticles synthesized with and without surfactant showed superparamagnetic behaviour. Bare and surfactant coated magnetite nanoparticles have been utilized as a demulsifier for crude oil in water emulsion. Those nanoparticles that produced using SDBS (ED= 87%) showed higher efficiency than that of PVP coated (ED=80%) and bare magnetite nanoparticles (ED=85%) in demulsification tests.

  18. Coating agents affected toward magnetite nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petcharoen, Karat; Sirivat, Anuvat

    2012-02-01

    Magnetite nanoparticles --MNPs-- are innovative materials used in biological and medical applications. They respond to magnetic field through the superparamagnetic behavior at room temperature. In this study, the MNPs were synthesized via the chemical co-precipitation method using various coating agents. Fatty acids, found naturally in the animal fats, can be used as a coating agent. Oleic acid and hexanoic acid were chosen as the surface modification agents to study the improvement in the suspension of MNPs in water and the magnetite properties. Suspension stability, particle size, and electrical conductivity of MNPs are critically affected by the modification process. The well-dispersed MNPs in water can be improved by the surface modification and the oleic acid coated MNPs possess excellent suspension stability over 1 week. The particle size of MNPs increases up to 40 nm using oleic acid coated MNPs. The electrical conductivity of the smallest particle size is 1.3x10-3 S/cm, which is 5 times higher than that of the largest particle, suggesting potential applications as a biomedical material under both of the electrical and magnetic fields.

  19. Apparently enhanced magnetization of Cu(I)-modified γ-Fe2O3 based nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoyan; He, Zhenghong; Mao, Hong; Zhang, Ting; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Meng, Xiangshen; Li, Jian

    2017-11-01

    Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3ṡ6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent "dead layer", which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which "awakened" the "dead layer" on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles.

  20. A tetravalent dengue nanoparticle stimulates antibody production in mice.

    PubMed

    Silva, Elisângela F; Orsi, Mariana; Andrade, Angela L; Domingues, Rosana Z; Silva, Breno M; de Araújo, Helena R C; Pimenta, Paulo F P; Diamond, Michael S; Rocha, Eliseu S O; Kroon, Erna G; Malaquias, Luiz C C; Coelho, Luiz F L

    2012-03-22

    Dengue is a major public health problem worldwide, especially in the tropical and subtropical regions of the world. Infection with a single Dengue virus (DENV) serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients experiencing secondary infection with a different serotype progresses to the severe form of the disease, dengue hemorrhagic fever/dengue shock syndrome. Currently, there are no licensed vaccines or antiviral drugs to prevent or treat dengue infections. Biodegradable nanoparticles coated with proteins represent a promising method for in vivo delivery of vaccines. Here, we used a murine model to evaluate the IgG production after administration of inactivated DENV corresponding to all four serotypes adsorbed to bovine serum albumin nanoparticles. This formulation induced a production of anti-DENV IgG antibodies (p < 0.001). However, plaque reduction neutralization assays with the four DENV serotypes revealed that these antibodies have no neutralizing activity in the dilutions tested. Our results show that while the nanoparticle system induces humoral responses against DENV, further investigation with different DENV antigens will be required to improve immunogenicity, epitope specicity, and functional activity to make this platform a viable option for DENV vaccines.

  1. Preparation of Chitosan Coated Magnetic Hydroxyapatite Nanoparticles and Application for Adsorption of Reactive Blue 19 and Ni2+ Ions

    PubMed Central

    Nguyen, Van Cuong; Pho, Quoc Hue

    2014-01-01

    An adsorbent called chitosan coated magnetic hydroxyapatite nanoparticles (CS-MHAP) was prepared with the purpose of improvement for the removal of Ni2+ ions and textile dye by coprecipitation. Structure and properties of CS-MHAP were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Weight percent of chitosan was investigated by thermal gravimetric analysis (TGA). The prepared CS-MHAP presents a significant improvement on the removal efficiency of Ni2+ ions and reactive blue 19 dye (RB19) in comparison with chitosan and magnetic hydroxyapatite nanoparticles. Moreover, the adsorption capacities were affected by several parameters such as contact time, initial concentration, adsorbent dosage, and initial pH. Interestingly, the prepared adsorbent could be easily recycled from an aqueous solution by an external magnet and reused for adsorption with high removal efficiency. PMID:24592158

  2. Development and characterization of antibody reagents for detecting nanoparticles

    NASA Astrophysics Data System (ADS)

    Ravichandran, Supriya; Sullivan, Mark A.; Callahan, Linda M.; Bentley, Karen L.; Delouise, Lisa A.

    2015-11-01

    The increasing use of nanoparticles (NPs) in technological applications and in commercial products has escalated environmental health and safety concerns. The detection of NPs in the environment and in biological systems is challenged by limitations associated with commonly used analytical techniques. In this paper we report on the development and characterization of NP binding antibodies, termed NProbes. Phage display methodology was used to discover antibodies that bind NPs dispersed in solution. We present a proof-of-concept for the generation of NProbes and their use for detecting quantum dots and titanium dioxide NPs in vitro and in an ex vivo human skin model. Continued development and refinement of NProbes to detect NPs that vary in composition, shape, size, and surface coating will comprise a powerful tool kit that can be used to advance nanotechnology research particularly in the nanotoxicology and nanotherapeutics fields.The increasing use of nanoparticles (NPs) in technological applications and in commercial products has escalated environmental health and safety concerns. The detection of NPs in the environment and in biological systems is challenged by limitations associated with commonly used analytical techniques. In this paper we report on the development and characterization of NP binding antibodies, termed NProbes. Phage display methodology was used to discover antibodies that bind NPs dispersed in solution. We present a proof-of-concept for the generation of NProbes and their use for detecting quantum dots and titanium dioxide NPs in vitro and in an ex vivo human skin model. Continued development and refinement of NProbes to detect NPs that vary in composition, shape, size, and surface coating will comprise a powerful tool kit that can be used to advance nanotechnology research particularly in the nanotoxicology and nanotherapeutics fields. Electronic supplementary information (ESI) available: Figures and detailed methods of various techniques

  3. Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field

    PubMed Central

    Kekalo, K.; Baker, I.; Meyers, R.; Shyong, J.

    2015-01-01

    This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma-Fe2O3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz. PMID:26884816

  4. Preparation of highly fluorescent magnetic nanoparticles for analytes-enrichment and subsequent biodetection.

    PubMed

    Zhang, Bingbo; Chen, Bingdi; Wang, Yilong; Guo, Fangfang; Li, Zhuoquan; Shi, Donglu

    2011-01-15

    Bifunctional nanoparticles with highly fluorescence and decent magnetic properties have been widely used in biomedical application. In this study, highly fluorescent magnetic nanoparticles (FMNPs) with uniform size of ca. 40 nm are prepared by encapsulation of both magnetic nanoparticles (MNPs) and shell/core quantum dots (QDs) with well-designed shell structure/compositions into silica matrix via a one-pot reverse microemulsion approach. The spectral analysis shows that the FMNPs hold high fluorescent quantum yield (QY). The QYs and saturation magnetization of the FMNPs can be regulated by varying the ratio of the encapsulated QDs to MNPs. Moreover, the surface of the FMNPs can be modified to offer chemical groups for antibody conjugation for following use in target-enrichment and subsequent fluorescent detection. The in vitro immunofluorescence assay and flow cytometric analysis indicate that the bifunctional FMNPs-antibody bioconjugates are capable of target-enrichment, magnetic separation and can also be used as alternative fluorescent probes on flow cytometry for biodetection. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Maghemite nanoparticles with enhanced magnetic properties: one-pot preparation and ultrastable dextran shell.

    PubMed

    Di Corato, Riccardo; Aloisi, Alessandra; Rella, Simona; Greneche, Jean-Marc; Pugliese, Giammarino; Pellegrino, Teresa; Malitesta, Cosimino; Rinaldi, Rosaria

    2018-05-10

    In the field on nanomedicine, superparamagnetic nanoparticles are one of the most studied nanomaterials for theranostics. In this paper, a one-pot synthesis of magnetic nanoparticles is presented, with elevated control on particles size from 10 to 40 nm. The monitoring of vacuum level is here introduced as a crucial parameter for achieving a fine particle morphology. Magnetic properties of these nanoparticles are highly affected by disorders or mismatches in crystal structure. A prolonged oxidation step is applied to the obtained nanoparticles to transform the magnetic phases into a pure maghemite one, confirmed by a high resolution XPS analysis, by Mössbauer spectrometry and, indirectly, by increased performances in magnetization curves and in relaxation times. Afterward, the attained nanoparticles are transferred in water by a non-derivatized dextran coating. The thermogravimetric analysis confirms that the polysaccharide molecules replace the oleic acid on the surface by stabilizing the particles in aqueous phase and culture media. Preliminary in vitro test reveals as the dextran coated nanoparticles are not passively internalized from the cells. As proof of concept, a secondary layer of chitosan assures a positive charge to the nanoparticle surface, thus enhancing the cellular internalization.

  6. Tuning the magnetism of ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Viñas, S. Liébana; Simeonidis, K.; Li, Z.-A.; Ma, Z.; Myrovali, E.; Makridis, A.; Sakellari, D.; Angelakeris, M.; Wiedwald, U.; Spasova, M.; Farle, M.

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe2O4 where M=Fe, Co, Mn) and core-shell ferrite nanoparticles consisting of a magnetically softer (MnFe2O4) or magnetically harder (CoFe2O4) core and a magnetite (Fe3O4) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe2O4) by Fe3O4 provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe3O4 outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects.

  7. Synthesis and characterization of polymer-coated manganese ferrite nanoparticles as controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Zhao, Dexing; Ma, Yingying; Zhang, Zhixiao; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Zhang, Zheng

    2018-01-01

    In this study, monodisperse and superparamagnetic manganese ferrite (MnFe2O4) nanoparticles have been synthesized by a one-pot sonochemical method using polyvinylpyrrolidone (PVP) as stabilizer. The as-prepared MnFe2O4 nanoparticles were investigated systematically by TEM, XRD, FTIR, XPS, SQUID and MTT. The TEM observation showed that the PVP-coated MnFe2O4 nanoparticles had uniform dispersion with narrow particle size distribution. The magnetization curves demonstrated superparamagnetic properties of the coated MnFe2O4 nanoparticles with good hydrophilicity at room temperature. The in vitro cytotoxicity experiments exhibited negligible cytotoxicity of the obtained PVP-coated MnFe2O4 nanoparticles even at the high concentration of 150 μg/mL after 24 h treatment. More importantly, anti-cancer model drug of doxorubicin hydrochloride (DOX) was loaded on the surface of MnFe2O4 nanoparticles. The drug loading capacity of the developed nanocarrier reached 0.45 mg/mg and the loaded DOX exhibited interesting pH-dependent release behavior. In conclusion, the as-prepared PVP-coated MnFe2O4 nanoparticles were proposed as a potential candidate for controlled drug delivery.

  8. Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy

    PubMed Central

    Yallapu, Murali M.; Othman, Shadi F.; Curtis, Evan T.; Gupta, Brij K.; Jaggi, Meena; Chauhan, Subhash C.

    2010-01-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy. PMID:21167595

  9. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Yallapu, Murali M; Othman, Shadi F; Curtis, Evan T; Gupta, Brij K; Jaggi, Meena; Chauhan, Subhash C

    2011-03-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug-loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin-loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC-3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapeutic agent for cancer therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Magnetic and Mössbauer spectroscopy studies of hollow microcapsules made of silica-coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lyubutin, I. S.; Gervits, N. E.; Starchikov, S. S.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Wang, Cheng-Chien; Chen, I.-Han; Ogarkova, Yu L.; Korotkov, N. Yu

    2016-01-01

    The hollow microcapsules made of silica-coated CoFe2O4 nanoparticles were synthesized using chemical co-precipitation, followed by the sol-gel method. Poly(MMA-co-MAA) microspheres were used as a core template which can be completely removed after annealing at 450 °C. The microcapsules are monodisperse with the outer diameter of about 450 nm and the thickness of the shell is about 50 nm. The nanoparticles of Co-ferrite are single crystalline. The size of the nanoparticles and magnetic properties of CoFe2O4/SiO2 hollow spheres can be tuned with high accuracy at the annealing stage. The Mössbauer data indicate that CoFe2O4 ferrite is an inverse spinel, in which Fe3+ and Co2+ ions are distributed in both octahedral and tetrahedral sites with the inversion degree close to the bulk ferrite value. At low temperature the CoFe2O4/SiO2 nanoparticles are in antiferromagnetic (AFM) state due to the canted or triangular magnetic structure. Under heating in the applied field, AFM structure transforms to the ferrimagnetic (FM) structure, that increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles do not show superparamagnetic behavior, but they transit to the paramagnetic state by the jump-like first order magnetic transition (JMT). This effect is a specific property of the magnetic nanoparticles isolated by inert material. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  11. Biofunctionalization of silica-coated magnetic particles mediated by a peptide

    NASA Astrophysics Data System (ADS)

    Care, Andrew; Chi, Fei; Bergquist, Peter L.; Sunna, Anwar

    2014-08-01

    A linker peptide sequence with affinity to silica-containing materials was fused to Streptococcus protein G', an antibody-binding protein. This recombinant fusion protein, linker-protein G (LPG) was produced in E. coli and exhibited strong affinity to silica-coated magnetic particles and was able to bind to them at different pHs, indicating a true pH-independent binding. LPG was used as an anchorage point for the oriented immobilization of antibodies onto the surface of the particles. These particle-bound "LPG-Antibody complexes" mediated the binding and recovery of different cell types (e.g., human stem cells, Legionella, Cryptosporidium and Giardia), enabling their rapid and simple visualization and identification. This strategy was used also for the efficient capture of Cryptosporidium oocysts from water samples. These results demonstrate that LPG can mediate the direct biofunctionalization of silica-coated magnetic particles without the need for complex surface chemical modification.

  12. Multifunctional magnetic nanoparticles for targeted imaging and therapy

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2008-01-01

    Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters and combined therapeutic molecules have further opened potential clinical applications of these materials. This review summarizes some of the recent biomedical applications of these newer magnetic nanomaterials. PMID:18508157

  13. Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin.

    PubMed

    Gruskiene, Ruta; Krivorotova, Tatjana; Staneviciene, Ramune; Ratautas, Dalius; Serviene, Elena; Sereikaite, Jolanta

    2018-05-08

    Nisin is a known bacteriocin approved as a food additive for food preservation. It exhibits a wide spectrum antimicrobial activity against Gram-positive bacteria. Iron oxide magnetic nanoparticles were synthesized and characterized by X-ray diffraction method. A main part of iron oxide nanoparticles was found to be maghemite though a small quantity of magnetite could also be present. Magnetic nanoparticles were stabilized by citric, ascorbic, gallic or glucuronic acid coating. Stable iron oxide magnetic nanoparticles were functionalized by nisin using a simple and low cost adsorption method. Nisin loading was confirmed by FT-IR spectra, thermogravimetric analysis, dynamic light scattering and atomic force microscopy methods. Nisin-loaded iron oxide magnetic nanoparticles were stable at least six weeks as judged by the measurements of zeta-potential and hydrodynamic diameter. The antimicrobial activity of nisin-loaded iron oxide magnetic nanoparticles was demonstrated toward Gram-positive bacteria. Functionalized nanoparticles could therefore find the application as antimicrobials in innovative and emerging technologies based on the magnetic field. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages

    PubMed Central

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S.; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs. PMID:26444829

  15. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages.

    PubMed

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

  16. Magnetic Gold Nanoparticle-Labeled Heparanase Monoclonal Antibody and its Subsequent Application for Tumor Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Li, Ning; Jie, Meng-Meng; Yang, Min; Tang, Li; Chen, Si-Yuan; Sun, Xue-Mei; Tang, Bo; Yang, Shi-Ming

    2018-04-01

    Heparanase (HPA) is ubiquitously expressed in various metastatic malignant tumors; previous studies have demonstrated that HPA was a potential tumor-associated antigen (TAA) for tumor immunotherapy. We sought to evaluate the feasibility of HPA as a common TAA for magnetic resonance imaging (MRI) of tumor metastasis and its potential application in tumor molecular imaging. We prepared a targeted probe based on magnetic gold nanoparticles coupled with an anti-HPA antibody for the specific detection of HPA by MRI. The specificity of the targeted probe was validated in vitro by incubation of the probe with various tumor cells, and the probe was able to selectively detect HPA (+) cells. We found the probes displayed significantly reduced signal intensity in several tumor cells, and the signal intensity decreased significantly after the targeted probe was injected in tumor-bearing nude mice. In the study, we demonstrated that the HPA&GoldMag probe had excellent physical and chemical properties and immune activities and could specifically target many tumor cell tissues both in vitro and in vivo. This may provide an experimental base for molecular imaging of tumor highly expressing heparanase using HPA mAbs.

  17. Peptide-functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Hauser, Anastasia Kruse

    Lung cancer is one of the leading causes of cancer deaths in the United States. Radiation and chemotherapy are conventional treatments, but they result in serious side effects and the probability of tumor recurrence remains high. Therefore, there is an increasing need to enhance the efficacy of conventional treatments. Magnetic nanoparticles have been previously studied for a variety of applications such as magnetic resonance imaging contrast agents, anemia treatment, magnetic cell sorting and magnetically mediated hyperthermia (MMH). In this work, dextran coated iron oxide nanoparticles were developed and functionalized with peptides to target the nanoparticles to either the extracellular matrix (ECM) of tumor tissue or to localize the nanoparticles in subcellular regions after cell uptake. The magnetic nanoparticles were utilized for a variety of applications. First, heating properties of the nanoparticles were utilized to administer hyperthermia treatments combined with chemotherapy. The nanoparticles were functionalized with peptides to target fibrinogen in the ECM and extensively characterized for their physicochemical properties, and MMH combined with chemotherapy was able to enhance the toxicity of chemotherapy. The second application of the nanoparticles was magnetically mediated energy delivery. This treatment does not result in a bulk temperature rise upon actuation of the nanoparticles by an alternating magnetic field (AMF) but rather results in intracellular damage via friction from Brownian rotation or nanoscale heating effects from Neel relaxations. The nanoparticles were functionalized with a cell penetrating peptide to facilitate cell uptake and lysosomal escape. The intracellular effects of the internalized nanoparticles alone and with activation by an AMF were evaluated. Iron concentrations in vivo are highly regulated as excess iron can catalyze the formation of the hydroxyl radical through Fenton chemistry. Although often a concern of using iron

  18. Characterization of the modified nickel-zinc ferrite nanoparticles coated with APTES by salinization reaction

    NASA Astrophysics Data System (ADS)

    Zainal, Israa G.; Al-Shammari, Ahmed Majeed; Kachi, Wjeah

    2018-05-01

    Surface functionalization of magnetic iron oxide nanoparticles (NPs) is a kind of functional materials, which have been widely used in the biotechnology and catalysis. In this study, Nickel-Zinc ferrite nanoparticles was functionalized with amino propyl triethoxy silane (APTES) by silanization reaction and both non coated and organosilane-coated magnetite characterized by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy. Basic groups of amino anchored on the external surface of the coated magnetite were observed. Our study procedure nanoparticles which have surface with free - NH2 groups which can carry out ionic interaction with carboxylic groups and act as a carrier of biological molecules, drugs and metals.

  19. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  20. Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruan, Jing; Wang, Kan; Song, Hua; Xu, Xin; Ji, Jiajia; Cui, Daxiang

    2011-12-01

    Fluorescent magnetic nanoparticles exhibit great application prospects in biomedical engineering. Herein, we reported the effects of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles (FMNPs) on human embryonic kidney 293 (HEK293) cells and mice with the aim of investigating their biocompatibility. FMNPs with 150 nm in diameter were prepared, and characterized by high-resolution transmission electron microscopy and photoluminescence (PL) spectra and magnetometer. HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days. Cell viability and adhesion ability were analyzed by CCK8 method and Western blotting. 30 mice were randomly divided into three groups, and were, respectively, injected via tail vein with 20, 60, and 100 μg FMNPs, and then were, respectively, raised for 1, 7, and 30 days, then their lifespan, important organs, and blood biochemical parameters were analyzed. Results show that the prepared water-soluble FMNPs had high fluorescent and magnetic properties, less than 50 μg/ml of FMNPs exhibited good biocompatibility to HEK293 cells, the cell viability, and adhesion ability were similar to the control HEK293 cells. FMNPs primarily accumulated in those organs such as lung, liver, and spleen. Lung exposed to FMNPs displayed a dose-dependent inflammatory response, blood biochemical parameters such as white blood cell count (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), displayed significant increase when the FMNPs were injected into mice at dose of 100μg. In conclusion, FMNPs exhibit good biocompatibility to cells under the dose of less than 50 μg/ml, and to mice under the dose of less than 2mg/kg body weight. The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

  1. Cyclodextrin-Based Magnetic Nanoparticles for Cancer Therapy

    PubMed Central

    Jędrzak, Artur; Szutkowski, Kosma; Grześkowiak, Bartosz F.; Markiewicz, Roksana; Jesionowski, Teofil; Jurga, Stefan

    2018-01-01

    Polydopamine (PDA)-coated magnetic nanoparticles functionalized with mono-6-thio-β-cyclodextrin (SH-βCD) were obtained and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Nuclear and Magnetic Resonance Imaging (NMR and MRI), and doxorubicin (DOXO)-loading experiments. The liver cancer cellular internalization of DOXO-loaded nanoparticles was investigated by confocal imaging microscopy. Synthesized nanomaterials bearing a chemotherapeutic drug and a layer of polydopamine capable of absorbing near-infrared light show high performance in the combined chemo- and photothermal therapy (CT-PTT) of liver cancer due to the synergistic effect of both modalities as demonstrated in vitro. Moreover, our material exhibits improved T2 contrast properties, which have been verified using Carr-Purcell-Meiboom-Gill pulse sequence and MRI Spin-Echo imaging of the nanoparticles dispersed in the agarose gel phantoms. Therefore, the presented results cast new light on the preparation of polydopamine-based magnetic theranostic nanomaterials, as well as on the proper methodology for investigation of magnetic nanoparticles in high field MRI experiments. The prepared material is a robust theranostic nanoasystem with great potential in nanomedicine. PMID:29547559

  2. Genesis of supported carbon-coated Co nanoparticles with controlled magnetic properties, prepared by decomposition of chelate complexes

    NASA Astrophysics Data System (ADS)

    Tarasov, Konstantin; Beaunier, Patricia; Che, Michel; Marceau, Eric; Li, Yanling

    2011-05-01

    Following procedures formerly developed for the preparation of supported heterogeneous catalysts, carbon-coated cobalt nanoparticles dispersed on porous alumina have been prepared by impregnation of γ-Al2O3 with (NH4)2[Co(EDTA)] and thermal decomposition in inert atmosphere. Below 350 °C, Co(II) ions are complexed in a hexa-coordinated way by the EDTA ligand. The thermal treatment at 400-900 °C leads to the EDTA ligand decomposition and recovering of the support porosity, initially clogged by the impregnated salt. According to X-ray absorption spectroscopy, and due to in situ redox reactions between the organic ligand and Co(II), both oxidic and metallic cobalt phases are formed. Characterisation by transmission electron microscopy, X-ray diffraction and magnetic measurements reveals that an increase in the treatment temperature leads to an increase of the degree of cobalt reduction as well as to a growth of the cobalt metal particles. As a consequence, the samples prepared at 400-700 °C exhibit superparamagnetism and a saturation magnetisation of 1.7-6.5 emu g-1 at room temperature, whilst the sample prepared at 900 °C has a weak coercivity (0.1 kOe) and a saturation magnetisation of 12 emu g-1. Metal particles are homogeneously dispersed on the support and appear to be protected by carbon; its elimination by a heating in H2 at 400 °C is demonstrated to cause sintering of the metal particles. The route investigated here can be of interest for obtaining porous magnetic adsorbents or carriers with high magnetic moments and low coercivities, in which the magnetic nanoparticles are protected from chemical aggression and sintering by their coating.

  3. Different preparation methods and characterization of magnetic maghemite coated with chitosan

    NASA Astrophysics Data System (ADS)

    Hojnik Podrepšek, Gordana; Knez, Željko; Leitgeb, Maja

    2013-06-01

    The preparation of maghemite (γ-Fe2O3) micro- and nanoparticles coated with chitosan, used as carriers for immobilized enzymes, was investigated. γ-Fe2O3 nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ ions in the presence of ammonium. They were coated with chitosan by the microemulsion process, suspension cross-linking technique, and covalent binding of chitosan on the γ-Fe2O3 surface. The methods distinguished the concentration of chitosan, concentration of acetic acid solution, concentration of a cross-linking agent, temperature of synthesis, pH of the medium, and time of synthesis. γ-Fe2O3 micro- and nanoparticles coated with chitosan prepared after three preparation methods were evaluated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy analysis, energy dispersive spectrometry, thermogravimetric analysis, differential scanning calorimetry analysis, vibrating sample magnetometry, dynamic light scattering, laser diffraction granulometry, and X-ray diffractometry. These positive attributes demonstrated that these magnetic micro- and nanoparticles coated with chitosan may be used as a promising carrier for further diverse biomedical applications.

  4. Bioactivity of gelatin coated magnetic iron oxide nanoparticles: in vitro evaluation.

    PubMed

    Gaihre, Babita; Khil, Myung Seob; Kang, Hyo Kyoung; Kim, Hak Yong

    2009-02-01

    Current research explores formation of bone like apatite on gelatin coated magnetic iron oxide nanoparticles (GIOPs) to evaluate the bioactivity of the material. The GIOPs were soaked in simulated body fluid (SBF) and the apatite formation on the surface was investigated in regular interval of time. Fourier transform-infrared (FT-IR) and x-ray diffraction spectroscopic (XRD) analyses were done to investigate the chemical changes and field emission-scanning electron microscopic (FE-SEM) analysis was done to investigate the morphological changes occurring on the surface of the GIOPs after soaking in different time intervals. The kinetic studies of the apatite growth in SBF suggest that initially calcium and phosphorous ions were deposited to the surface of the GIOPs from the SBF leading to formation of amorphous Ca/P particles. Later, after 9 days of the incubation the amorphous particles were fused to form needle and blade like crystalline structures of bone like apatite.

  5. Magnetic nanoparticles for medical applications: Progress and challenges

    NASA Astrophysics Data System (ADS)

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Hempelmann, R.; Caltun, O. F.

    2013-11-01

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose ZnxCo1-xFe2O4 ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.

  6. Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles.

    PubMed

    Yang, Shieh-Yueh; Chiu, Ming-Jang; Lin, Chin-Hsien; Horng, Herng-Er; Yang, Che-Chuan; Chieh, Jen-Jie; Chen, Hsin-Hsien; Liu, Bing-Hsien

    2016-06-08

    It is difficult to discriminate healthy subjects and patients with Parkinson disease (PD) or Parkinson disease dementia (PDD) by assaying plasma α-synuclein because the concentrations of circulating α-synuclein in the blood are almost the same as the low-detection limit using current immunoassays, such as enzyme-linked immunosorbent assay. In this work, an ultra-sensitive immunoassay utilizing immunomagnetic reduction (IMR) is developed. The reagent for IMR consists of magnetic nanoparticles functionalized with antibodies against α-synuclein and dispersed in pH-7.2 phosphate-buffered saline. A high-Tc superconducting-quantum-interference-device (SQUID) alternative-current magnetosusceptometer is used to measure the IMR signal of the reagent due to the association between magnetic nanoparticles and α-synuclein molecules. According to the experimental α-synuclein concentration dependent IMR signal, the low-detection limit is 0.3 fg/ml and the dynamic range is 310 pg/ml. The preliminary results show the plasma α-synuclein for PD patients distributes from 6 to 30 fg/ml. For PDD patients, the concentration of plasma α-synuclein varies from 0.1 to 100 pg/ml. Whereas the concentration of plasma α-synuclein for healthy subjects is significantly lower than that of PD patients. The ultra-sensitive IMR by utilizing antibody-functionalized magnetic nanoparticles and high-Tc SQUID magnetometer is promising as a method to assay plasma α-synuclein, which is a potential biomarker for discriminating patients with PD or PDD.

  7. Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection

    PubMed Central

    Kim, Min-Ho; Yamayoshi, Itsukyo; Mathew, Steven; Liln, Hubert; Nayfach, Joseph; Simon, Scott I.

    2013-01-01

    The incidence of wound infections that do not adequately respond to standard-of-care antimicrobial treatment has been increasing. To address this challenge, a novel antimicrobial magnetic thermotherapy platform has been developed in which a high-amplitude, high-frequency, alternating magnetic field (AMF) is used to rapidly heat magnetic nanoparticles that are bound to Staphylococcus aureus (S. aureus). The antimicrobial efficacy of this platform was evaluated in the treatment of both an in vitro culture model of S. aureus biofilm and a mouse model of cutaneous S. aureus infection. We demonstrated that an antibody-targeted magnetic nanoparticle bound to S. aureus was effective at thermally inactivating S. aureus and achieving accelerated wound healing without causing tissue injury. PMID:23149904

  8. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    PubMed Central

    Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220

  9. Gold-Coated Superparamagnetic Nanoparticles for Single Methyl Discrimination in DNA Aptamers

    PubMed Central

    Tintoré, Maria; Mazzini, Stefania; Polito, Laura; Marelli, Marcello; Latorre, Alfonso; Somoza, Álvaro; Aviñó, Anna; Fàbrega, Carme; Eritja, Ramon

    2015-01-01

    Au- and iron-based magnetic nanoparticles (NPs) are promising NPs for biomedical applications due to their unique properties. The combination of a gold coating over a magnetic core puts together the benefits from adding the magnetic properties to the robust chemistry provided by the thiol functionalization of gold. Here, the use of Au-coated magnetic NPs for molecular detection of a single methylation in DNA aptamer is described. Binding of α-thrombin to two aptamers conjugated to these NPs causes aggregation, a phenomenon that can be observed by UV, DLS and MRI. These techniques discriminate a single methylation in one of the aptamers, preventing aggregation due to the inability of α-thrombin to recognize it. A parallel study with gold and ferromagnetic NPs is detailed, concluding that the Au coating of FexOy NP does not affect their performance and that they are suitable as complex biosensors. These results prove the high detection potency of Au-coated SPIONs for biomedical applications especially for DNA repair detection. PMID:26593913

  10. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  11. Rapid one-step whole blood C-reactive protein magnetic permeability immunoassay with monoclonal antibody conjugated nanoparticles as superparamagnetic labels and enhanced sedimentation.

    PubMed

    Ibraimi, Filiz; Kriz, Dario; Lu, Min; Hansson, Lars-Olof; Kriz, Kirstin

    2006-02-01

    A rapid (5.5 min) one-step whole blood C-reactive protein (CRP) magnetic permeability immunoassay utilizing monoclonal antibody conjugated dextran iron oxide nanoparticles (70 nm) as superparamagnetic labels and mixed fractions (1:1 ratio of 15-40 and 60 microm) of polyclonal anti-CRP conjugated silica microparticles for enhanced sedimentation is described. In this one-step assay procedure, a whole blood sample (4 microl) is applied to an assay glass vial, containing both antibody conjugates, and mixed for 30 s. The target analyte, CRP, forms a sandwich complex between the conjugated nanoparticles and microparticles, and, subsequently, the complex sediments under normal gravitation within 5 min to the bottom of the vial. The magnetic permeability increase of the sediment due to the presence of the complexed superparamagnetic nanoparticles is determined using an inductance-based transducer. Assayed patient whole blood samples were compared with the Abbott Diagnostics Architect reference method. A strong linear correlation was observed for the CRP concentration range 0-260 mg/l in whole blood (y=1.001x+0.42, R2=0.982, n=50). The CRP assay presented showed a limit of detection of 3 mg/l and a total imprecision (coefficient of variation) of 10.5%. On the basis of our observations, we propose a rapid, one-step, CRP assay for near-patient testing.

  12. Bio-Magnetics Interfacing Concepts: A Microfluidic System Using Magnetic Nanoparticles for Quantitative Detection of Biological Species

    DTIC Science & Technology

    2004-09-30

    nanoparticles that consist of a polymer coated ?-Fe2O3 superparamagnetic core and CdSe/ZnS quantum dots (QDs) shell. A single layer of QDs was bound to the...Fe2O3) with polymer coating, the scale bar is 20 nm; b) A TEM image of QDs magnetic beads core-shell nanoparticles. The scale bar is 20 nm. c) A High...common practice in microfluidic/GMR sensor integration is using hybrid approaches by adding-on polymer based fluidic structures (such as PDMS fluidic

  13. Bioassay using blocking temperature: Interparticle interactions between biofunctionalized magnetic nanoparticles conjugated with biotargets

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Yang, T. W.; Shen, D.; Chen, K. L.; Chen, J. M.; Liao, S. H.; Chieh, J. J.; Yang, H. C.; Wang, L. M.

    2017-03-01

    This paper reports a bioassay of alpha-fetoprotein (AFP) concentration achieved via the measurement of blocking temperature (TB). Biofunctionalized magnetic nanoparticles (BMNs) consisting of anti-alpha-fetoprotein coated onto dextran-coated magnetic nanoparticles composed of Fe3O4 were prepared and then conjugated with AFP biotargets. It was found that both the saturation magnetization and value of TB increased with the concentration of the associated AFP. Furthermore, the dependence of TB of the samples on magnetic field agreed with the interparticle interaction model. Thus, this study demonstrated a platform to detect biomarkers by characterizing TB with a sensitivity limit of 20 ppb of AFP. The promising results obtained for this bioassay can be attributed to the interparticle interactions and Néel motions of magnetic moments in the BMNs.

  14. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Morales, M. P.

    2016-06-01

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml-1 after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.

  15. Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing.

    PubMed

    Nichkova, Mikaela; Dosev, Dosi; Perron, Richard; Gee, Shirley J; Hammock, Bruce D; Kennedy, Ian M

    2006-02-01

    Lanthanide oxide nanoparticles are promising luminescent probes in bioanalysis, because of their unique spectral properties, photostability, and low-cost synthesis. We report for the first time the application of europium-doped gadolinium oxide (Eu:Gd2O3) nanoparticles to the optical imaging of antibody micropatterns. The nanoparticles were synthesized by spray pyrolysis and coated with antibody (IgG) molecules by physical adsorption. Our experiments showed that the Eu:Gd2O3 is a good biocompatible solid support for antibody immobilization. The antibodies (anti-rabbit IgG) immobilized on the nanoparticles had excellent biological activity in the specific recognition reaction with rabbit IgG patterned in line strips (10 micromx10 microm) on a glass substrate by use of a micro-contact printing technique. The specific immunoreaction was confirmed by two independent microscopic techniques-fluorescence and scanning electron microscopy (SEM). Both microscopic images revealed that the nanoparticles were organized into designated structures as defined by the microcontact printing process with negligible non-specific binding. The nanoparticles can be used as fluorescent markers in a variety of immunosensing applications in a microscale format.

  16. Development of novel magnetic nanoparticles for hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack

    2011-03-01

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values.

  17. Magnetic Iron Oxide Nanoparticles and a Polydiacetylene Coating to Create a Biocompatible and Stable Molecule for Use in Cancer Diagnostics and Early Detection in Molecular Medicine

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Shweta

    Earlier cancer detection and diagnosis is essential to prevent cancer mortality in nanomedicine and nanotechnology. Fluorescence and magnetic signals provide a way for earlier detection through imaging systems. Magnetic iron oxide nanoparticles have a superparamagnetism feature that allows them to act as contrast agents that can be detected through a magnetic resonance imaging system. These iron oxide cores have a polymer coating around them to provide stability, prevent aggregation, and allow for biocompatibility within the body. In addition, these functional coatings can have ligands and peptides for detection and therapy purposes. One functional coating is a polydiacetylene coating due to its chromatic and optical properties. When polymerized, it has the ability to change color in the visible spectrum to blue (not a fluorescent signal) and when heated, it changes to a red color (fluorescent signal). This way a strong and stable layer is formed around the iron oxide cores. These coatings are placed on the iron cores using a modified dual solvent exchange method, in which DMSO is slowly replaced by water without the use of organic solvents previous used. In addition, these nanoparticles can then be PEGylated, which provides a more stable and water soluble compound in aqueous solutions. Measurements can be taken through dynamic light scattering for size distributions and zeta potential and the Nanodrop for absorbance. Ideal sizes are about 30 nm for MNPs. Moreover, for future directions, there can be more molecules attached to the coated layers to use for molecular detection and analysis.

  18. Magnetic nanoparticle based purification and enzyme-linked immunosorbent assay using monoclonal antibody against enrofloxacin

    PubMed Central

    Kim, Nam-Gun; Kim, Myeong-Ae; Park, Young-Il; Jung, Tae-Sung; Son, Seong-Wan; So, ByungJae

    2015-01-01

    Monoclonal anti-enrofloxacin antibody was prepared for a direct competitive enzyme-linked immunosorbent assay (ELISA) and purification system using monoclonal antibody (mAb) coupled magnetic nanoparticles (MNPs). The IC50 values of the developed mAb for enrofloxacin (ENR), ciprofloxacin, difloxacin, sarafloxacin, pefloxacin, and norfloxacin were 5.0, 8.3, 9.7, 21.7, 36.0, and 63.7 ng/mL, respectively. The lowest detectable level of ENR was 0.7 ng/mL in the prepared ELISA system. To validate the developed ELISA in the food matrix, known amounts of ENR were spiked in meat and egg samples at 10, 20 and 30 ng/mL. Recoveries for ENR ranged from 72.9 to 113.16% with a coefficient of variation (CV) of 2.42 to 10.11%. The applicability of the mAb-MNP system was verified by testing the recoveries for ENR residue in three different matrices. Recoveries for ENR ranged from 75.16 to 86.36%, while the CV ranged from 5.08 to 11.53%. Overall, ENR-specific monoclonal antibody was prepared and developed for use in competitive to ELISAs for the detection of ENR in animal meat samples. Furthermore, we suggest that a purification system for ENR using mAb-coupled MNPs could be useful for determination of ENR residue in food. PMID:26040610

  19. Biphasic magnetic nanoparticles-nanovesicle hybrids for chemotherapy and self-controlled hyperthermia.

    PubMed

    Gogoi, Manashjit; Sarma, Haladhar D; Bahadur, Dhirendra; Banerjee, Rinti

    2014-05-01

    The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.

  20. Synthesis, Properties and Application of Glucose Coated Fe3O4 Nanoparticles Prepared by Co-precipitation Method

    NASA Astrophysics Data System (ADS)

    Sari, Ayu Y.; Eko, A. S.; Candra, K.; Hasibuan, Denny P.; Ginting, M.; Sebayang, P.; Simamora, P.

    2017-07-01

    Synthesis of glucose coated Fe3O4 magnetic nanoparticles have been successfully prepared with co-precipitation method. Raw material of natural iron-sand was obtained from Buaya River, Deliserdang, Indonesia. The milled iron-sand was dissolved in HCl (37 mole %), and stirred in 300 rpm at 70°C for 90 minutes. Glucose was added to the filtered powder with varied content of 0.01, 0.02, and 0.03 mole, and precipitated by NH3 (25 mole%). After drying process, the final product subsequently was glucose coated magnetite (Fe3O4) nanoparticles. The characterizations performed were true density measurement, FTIR, VSM, XRD, BET, and adsorbent performance by AAS. The FTIR analysis showed that M-O (bending) with M=Fe (stretching vibration) with υ = 570.92 and 401.19 cm-1. While glucose coated well on nanoparticle Fe3O4, proved by functional groups C=O (stretching), M-O (stretching) and C-H (bending) with υ = 1404.17, 570.92, and 2368.58 cm-1, respectively. Single phase of magnetite (Fe3O4) structure was determined from XRD analysis with cubic spinel structure and lattice parameter of 8.396 Å. The optimum conditions, obtained on the Fe3O4 nanoparticles with 0.01 mole of glucose addition, which has true density value of 4.57 g/cm3, magnetic saturation, M s = 35,41 emu/g, coercivity, H cJ = 83.58 Oe, average particle size = 12.3 nm and surface area = 124.88 m2/g. This type magnetic nanoparticles of glucose-coated Fe3O4 was capable to adsorbed 93.78 % of ion Pb. Therefore, the glucose-coated Fe3O4 nanoparticle is a potential candidate to be used as heavy metal removal from wastewater.

  1. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles.

    PubMed

    Lin, Run; Li, Yuancheng; MacDonald, Tobey; Wu, Hui; Provenzale, James; Peng, Xingui; Huang, Jing; Wang, Liya; Wang, Andrew Y; Yang, Jianyong; Mao, Hui

    2017-02-01

    Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×10 5 non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads ® ). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Magnetic nanoparticles for medical applications: Progress and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.

    2013-11-13

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignantmore » or benign tumors. For this purpose Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.« less

  3. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets.

    PubMed

    Zlateski, Vladimir; Fuhrer, Roland; Koehler, Fabian M; Wharry, Scott; Zeltner, Martin; Stark, Wendelin J; Moody, Thomas S; Grass, Robert N

    2014-04-16

    In the pursuit of robust and reusable biocatalysts for industrial synthetic chemistry, nanobiotechnology is currently taking a significant part. Recently, enzymes have been immobilized on different nanoscaffold supports. Carbon coated metallic nanoparticles were found to be a practically useful support for enzyme immobilization due to their large surface area, high magnetic saturation, and manipulatable surface chemistry. In this study carbon coated cobalt nanoparticles were chemically functionalized (diazonium chemistry), activated for bioconjugation (N,N-disuccinimidyl carbonate), and subsequently used in enzyme immobilization. Three enzymes, β-glucosidase, α-chymotrypsin, and lipase B were successfully covalently immobilized on the magnetic nonsupport. The enzyme-particle conjugates formed retained their activity and stability after immobilization and were efficiently recycled from milliliter to liter scales in short recycle times.

  5. Magnetoelectric behavior of carbonyl iron mixed Mn oxide-coated ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahad, Faris B. Abdul; Lee, Shang-Fan; Hung, Dung-Shing; Yao, Yeong-Der; Yang, Ruey-Bin; Lin, Chung-Kwei; Tsay, Chien-Yie

    2010-05-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the cavity perturbation method at x-band microwave frequencies ranging from 7-12.5 GHz with controlled external magnetic field up to 2.2 kOe at room temperature. Different ratios (5%, 10%, and 20% by weight) of coated NPs were prepared by sol-gel method then mixed with carbonyl iron powder in epoxy matrix. The saturation magnetization is inversely proportional to the NPs ratio in the mixture between 150 and 180 emu/g. The real part of the permittivity decreased with increasing NPs concentration, but the permittivity change by magnetic field increased. The tunability behavior is explained by insulator-ferromagnetic interface magnetoelectricity and the large surface volume ratio for the NPs.

  6. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying

    2014-06-01

    Graft through strategy was utilized to coat magnetic Fe3O4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host-guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

  7. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.

  8. Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting

    PubMed Central

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Hill, Hannah L.; Yang, Victor C.

    2010-01-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955

  9. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery

    PubMed Central

    Unterweger, Harald; Tietze, Rainer; Janko, Christina; Zaloga, Jan; Lyer, Stefan; Dürr, Stephan; Taccardi, Nicola; Goudouri, Ourania-Menti; Hoppe, Alexander; Eberbeck, Dietmar; Schubert, Dirk W; Boccaccini, Aldo R; Alexiou, Christoph

    2014-01-01

    A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs) bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 μg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta potential of −45 mV. No signs of particle precipitation were observed over a period of at least 8 weeks. Analysis of drug-release kinetics using the dialysis tube method revealed that these were driven by inverse ligand substitution and diffusion through the polymer shell as well as enzymatic degradation of hyaluronic acid. The biological activity of the particles was investigated in a nonadherent Jurkat cell line using flow cytometry. Further, cell viability and proliferation was examined in an adherent PC-3 cell line using xCELLigence analysis. Both tests demonstrated that particles without cisplatin were biocompatible with these cells, whereas particles with the drug induced apoptosis in a dose-dependent manner, with secondary necrosis after prolonged incubation

  10. Development of antibody directed nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Ivkov, R.; DeNardo, S. J.; Meirs, L. A.; Natarajan, A.; DeNardo, G. L.; Gruettner, C.; Foreman, A. R.

    2007-02-01

    The pharmacokinetics, tumor uptake, and biologic effects of inductively heating 111In-chimeric L6 (ChL6) monoclonal antibody (mAb)-linked iron oxide nanoparticle (bioprobes) by externally applied alternating magnetic fields (AMF) were studied in athymic mice bearing human breast cancer HBT 3477 xenografts. In addition, response was correlated with calculated total deposited heat dose. Methods: Using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide HCl, 111In-7,10-tetraazacyclododecane-N, N',N'',N'''-tetraacetic acid-ChL6 was conjugated to the carboxylated polyethylene glycol on dextran-coated iron oxide 20-nm particles, one to two mAbs per nanoparticle. After magnetic purification and sterile filtration, pharmacokinetics, histopathology, and AMF/bioprobe therapy were done using 111In-ChL6 bioprobe doses (20 mcg/2.2 mg ChL6/ bioprobe), i.v. with 50 mcg ChL6 in athymic mice bearing HBT 3477; a 153 kHz AMF was given 72 hours postinjection for therapy with amplitudes of 1,300, 1,000, or 700 Oe. Weights, blood counts, and tumor size were monitored and compared with control mice receiving nothing, or AMF, or bioprobes alone. Results: 111In-ChL6 bioprobe binding in vitro to HBT 3477 cells was 50% to 70% of that of 111In-ChL6. At 48 hours, tumor, lung, kidney, and marrow uptakes of the 111In-ChL6 bioprobes were not different from that observed in prior studies of 111In-ChL6. Significant therapeutic responses from AMF/bioprobe therapy were shown compared with no treatment. In addition, greatest therapeutic benefit was observed for the 700 Oe treatment cohort. Toxicity was only seen in the 1,300 Oe AMF cohort, with 4 of 12 immediate deaths associated with skin erythema and petechiae. Conclusion: This study shows that mAb-conjugated nanoparticles (bioprobes), when given i.v., escape into the extravascular space and bind to cancer cell membrane antigen.Thus, bioprobes can be used in concert with externally applied AMF to deliver thermoablative cancer therapy. Therapeutic benefit

  11. Study of the temperature dependent immuno-reaction kinetics for the bio-functionalized magnetic nanoparticle assay of bio-markers of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Chang, J. F.; Chen, T. C.; Yang, C. C.; Ho, C. S.

    2014-01-01

    By conjugating antibodies on magnetic nanoparticles, target antigens can be quantitatively detected by measuring the magnetic signals of the magnetic nanoparticles due to their association with target antigens. This method of detection is called magnetically labeled immunoassay. The assay characteristics of magnetically labeled immunoassay have been reported widely. However, the immuno-reaction kinetics of magnetically labeled immunoassay has not been studied. In this work, the reaction rates between magnetic nanoparticles and target antigens are measured at various temperatures. It is found that the temperature dependent reaction rate obeys Arrhenius's equation, which shows the collision frequency and activation energy for the immuno-reaction between antibody-functionalized magnetic nanoparticles and target antigens. The carcinoembryonic antigen, which is a regular blood bio-marker for in-vitro diagnosis of colorectal cancer, is used as a target antigen for the example.

  12. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy.

    PubMed

    Kempe, Maria; Kempe, Henrik; Snowball, Ian; Wallén, Rita; Arza, Carlos Rodriguez; Götberg, Matthias; Olsson, Tommy

    2010-12-01

    Implant-assisted targeting of magnetic particles under the influence of an external magnetic field has previously been verified through mathematical modeling, in vitro studies, and in vivo studies on rat carotid arteries as a feasible method for localized drug delivery. The present study focuses on the development of nanoparticles for the treatment of in-stent thrombosis. Magnetic nanoparticles in the size-range 10-30 nm were synthesized in a one-pot procedure by precipitation of ferrous hydroxide followed by oxidation to magnetite. The nanoparticles were silanized with tetraethyl orthosilicate in the presence of triethylene glycol and/or polyethylene glycol. The surface coated magnetite nanoparticles were activated with either N-hydroxysulfosuccinimide or tresyl chloride for covalent immobilization of tissue plasminogen activator (tPA). Hysteresis loops showed saturation magnetizations of 55.8, 44.1, and 43.0 emu/g for the naked nanoparticles, the surface coated nanoparticles, and the tPA-nanoparticle conjugates, respectively. The hemolytic activity of the nanoparticles in blood was negligible. An initial in vivo biocompatibility test in pig, carried out by intravascular injection of the nanoparticles in a stented brachial artery, showed no short-term adverse effects. In vitro evaluation in a flow-through model proved that the nanoparticles were captured efficiently to the surface of a ferromagnetic coiled wire at the fluid velocities typical for human arteries. A preliminary test of the tPA-nanoparticle conjugates in a pig model suggested that the conjugates may be used for treatment of in-stent thrombosis in coronary arteries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Triple Therapy of HER2+ Cancer Using Radiolabeled Multifunctional Iron Oxide Nanoparticles and Alternating Magnetic Field.

    PubMed

    Zolata, Hamidreza; Afarideh, Hossein; Davani, Fereydoun Abbasi

    2016-11-01

    By using radio-labeled multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) and an alternating magnetic field (AMF), we carried out targeted hyperthermia, drug delivery, radio-immunotherapy (RIT), and controlled chemotherapy of cancer tumors. We synthesized and characterized Indium-111-labeled, Trastuzumab and Doxorubicin (DOX)-conjugated APTES-PEG-coated SPIONs in our previous work. Then, we evaluated their capability in SPECT/MRI (single photon emission computed tomography/magnetic resonance imaging) dual modal molecular imaging, targeting, and controlled release. In this research, AMF was introduced to evaluate therapeutic effects of magnetic hyperthermia on radionuclide-chemo therapy of HER2 + cells and tumor (HER2 + )-bearing mice. In vitro and in vivo experiments using synthesized complex were repeated under an AMF (f: 100 KHz, H: 280 Gs). Instead of an intra-tumor injection in most hyperthermia experiments, SPIONs were injected to the tail vein, based on our delivery strategies. For magnetic delivery, we held a permanent Nd-B-Fe magnet near the tumor region. The results showed that simultaneous magnetic hyperthermia enhanced SKBR3 cancer cells, killing by 24%, 28%, 33%, and 80% at 48 hours post-treatment for treated cells with (1) bare SPIONs; (2) antibody-conjugated, DOX-free, surface-modified SPIONs; (3) 111 In-labeled, antibody-conjugated surface-modified SPIONs; and (4) 111 In-labeled, antibody- and DOX-conjugated surface-modified SPIONs, respectively. Moreover, tumor volume inhibitory rate was 85% after a 28 day period of treatment. By using this method, multimodal imaging-guided, targeted hyperthermia, RIT, and controlled chemotherapy could be achievable in the near future.

  14. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  15. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance

    PubMed Central

    Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P

    2013-01-01

    A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021

  16. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.

    PubMed

    Mashhadi Malekzadeh, Asemeh; Ramazani, Ali; Tabatabaei Rezaei, Seyed Jamal; Niknejad, Hassan

    2017-03-15

    Magnetic drug targeting is a drug delivery strategy that can be used to improve the therapeutic efficiency on tumor cells and reduce the side effects on normal cells and tissues. The aim in this study is designing a novel multifunctional drug delivery system based on superparamagnetic nanoparticles for cancer therapy. Magnetic nanoparticles were synthesized by coprecipitation of iron oxide followed by coating with poly citric acid (PCA) dendritic macromolecules via bulk polymerization strategy. It was further surface-functionalized with poly(ethylene glycol) (PEG) and then to achieve tumor cell targeting property, folic acid was further incorporated to the surface of prepared carriers via a facile coupling reaction between the hydroxyl end group of the PEG and the carboxyl group of folic acid. The so prepared nanocarriers (Fe 3 O 4 @PCA-PEG-FA) were characterized by X-ray diffraction, TEM, TGA, FT-IR, DLS and VSM techniques. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. Transmission electron microscopy and dynamic light scattering were also performed which revealed that size of nanocarriers was lying in the range of 10-49nm. Quercetin loading and release profiles of prepared nanocarriers showed that up to 83% of loaded drug was released in 250h. Fluorescent microscopy showed that the cellular uptake by folate receptor-overexpressing HeLa cells of the quercetin-loaded Fe 3 O 4 @PCA-PEG-FA nanoparticles was higher than that of non-folate conjugated nanoparticles. Thus, folate conjugation significantly increased nanoparticle cytotoxicity. Also, T 2 -weighted MRI images of Fe 3 O 4 @PCA-PEG-FA nanoparticles showed that the magnetic resonance signal is enhanced significantly with increasing nanoparticle concentration in water and they also served as MRI contrast agents with relaxivities of 3.4mM -1 s -1 (r 1 ) and 99.8mM -1 s -1 (r 2 ). The results indicate that this multifunctional nanocarrier is a significant breakthrough

  17. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties.

    PubMed

    Lartigue, Lenaic; Innocenti, Claudia; Kalaivani, Thangavel; Awwad, Azzam; Sanchez Duque, Maria del Mar; Guari, Yannick; Larionova, Joulia; Guérin, Christian; Montero, Jean-Louis Georges; Barragan-Montero, Véronique; Arosio, Paolo; Lascialfari, Alessandro; Gatteschi, Dante; Sangregorio, Claudio

    2011-07-13

    Synthesis of functionalized magnetic nanoparticles (NPs) for biomedical applications represents a current challenge. In this paper we present the synthesis and characterization of water-dispersible sugar-coated iron oxide NPs specifically designed as magnetic fluid hyperthermia heat mediators and negative contrast agents for magnetic resonance imaging. In particular, the influence of the inorganic core size was investigated. To this end, iron oxide NPs with average size in the range of 4-35 nm were prepared by thermal decomposition of molecular precursors and then coated with organic ligands bearing a phosphonate group on one side and rhamnose, mannose, or ribose moieties on the other side. In this way a strong anchorage of the organic ligand on the inorganic surface was simply realized by ligand exchange, due to covalent bonding between the Fe(3+) atom and the phosphonate group. These synthesized nanoobjects can be fully dispersed in water forming colloids that are stable over very long periods. Mannose, ribose, and rhamnose were chosen to test the versatility of the method and also because these carbohydrates, in particular rhamnose, which is a substrate of skin lectin, confer targeting properties to the nanosystems. The magnetic, hyperthermal, and relaxometric properties of all the synthesized samples were investigated. Iron oxide NPs of ca. 16-18 nm were found to represent an efficient bifunctional targeting system for theranostic applications, as they have very good transverse relaxivity (three times larger than the best currently available commercial products) and large heat release upon application of radio frequency (RF) electromagnetic radiation with amplitude and frequency close to the human tolerance limit. The results have been rationalized on the basis of the magnetic properties of the investigated samples.

  18. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  19. Laser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites

    PubMed Central

    Elsherbini, Alsayed AM; Saber, Mahmoud; Aggag, Mohamed; El-Shahawy, Ahmed; Shokier, Hesham AA

    2011-01-01

    Introduction The current radiofrequency ablation technique requires invasive needle placement. On the other hand, most of the common photothermal therapeutic methods are limited by lack of accuracy of targeting. Gold and magnetic nanoparticles offer the potential to heat tumor tissue selectively at the cellular level by noninvasive interaction with laser and radiofrequency. Methods Gold nanospheres and gold-coated magnetic nanocomposites were used for inducing hyperthermia to treat subcutaneous Ehrlich carcinoma implanted in female mice. Results In mice treated with gold nanospheres, tumors continued to grow but at a slow rate. In contrast, more than 50% of the tumors treated with gold-coated magnetic nanocomposites completely disappeared. Conclusion This simple and noninvasive method shows great promise as a technique for selective magnetic photothermal treatment. PMID:22114479

  20. Characterization of magnetic nanoparticle by dynamic light scattering

    PubMed Central

    2013-01-01

    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350

  1. Fabrication of water-repellent cellulose fiber coated with magnetic nanoparticles under supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Xu, Shengjie; Shen, Danping; Wu, Peiyi

    2013-04-01

    Hematite nanoparticle-coated magnetic composite fiber was prepared in supercritical carbon dioxide (scCO2). With the help of scCO2, cellulose did not need to be dissolved and regenerated and it could be in any form (e.g., cotton wool, filter paper, textile, etc.). The penetrating and swelling effect of scCO2, the slowing reaction rate of weak alkalis, and the template effect of cellulose fibers were discovered to be the key factors for the fabrication of ordered cellulose/Fe2O3 composite fibers. The structures of the composite fibers as well as the layers of Fe2O3 particles were characterized by means of scanning/transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman investigation. It was found that α-Fe2O3 granules which ranged from 30 to 85 nm with average diameter around 55 nm would be generated on the surface of cellulose fibers via potassium acetate, while irregular square prisms (ranged from 200 to 600 nm) which were composed of smaller nanoparticles ( 10 nm) would be fabricated via urea. And, the obtained composite was highly water repellent with superparamagnetic or ferromagnetic properties.

  2. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery.

    PubMed

    Mohammed, Leena; Ragab, Doaa; Gomaa, Hassan

    2016-01-01

    Engineered magnetic nanoparticles (MNPs) possess unique properties and hold great potential in biomedicine and clinical applications. With their magnetic properties and their ability to work at cellular and molecular level, MNP have been applied both in-vitro and in-vivo in targeted drug delivery and imaging. Focusing on Iron Oxide Superparamagnetic nanoparticles (SPIONs), this paper elaborates on the recent advances in development of hybrid polymeric-magnetic nanoparticles. Their main applications in drug delivery include Chemotherapeutics, Hyperthermia treatment, Radio-therapeutics, Gene delivary, and Biotheraputics. Physiochemical properties such as size, shape, surface and magnetic properties are key factors in determining their behavior. Additionally tailoring SPIONs surface is often vital for desired cell targetting and improved efficiency. Polymer coating is specifically reviewed with brief discussion of SPIONs administration routes. Commonly used drug release models for describing release mechanisms and the nanotoxicity aspects are also discussed. This review focus on superparamagnetic nanoparticles coated with different types of polymers starting with the key physiochemical features that dominate their behavior. The importance of surface modification is addressed. Subsequently, the major classes of polymer modified iron oxide nanoparticles is demonstrated according to their clinical use and application. Clinically approved nanoparticles are then addressed and the different routes of administration are mentioned. Lastly, mathematical models of drug release profile of the common used nanoparticles are addressed. MNPs emerging in recent medicine are remarkable for both imaging and therapeutics, particularly, as drug carriers for their great potential in targeted delivery and cancer treatment. Targeting ability and biocompatibility can be improved though surface coating which provides a mean to alter the surface features including physical characteristics and

  3. Serum albumin 'camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics.

    PubMed

    Pitek, Andrzej S; Jameson, Slater A; Veliz, Frank A; Shukla, Sourabh; Steinmetz, Nicole F

    2016-05-01

    Plant virus-based nanoparticles (VNPs) are a novel class of nanocarriers with unique potential for biomedical applications. VNPs have many advantageous properties such as ease of manufacture and high degree of quality control. Their biocompatibility and biodegradability make them an attractive alternative to synthetic nanoparticles (NPs). Nevertheless, as with synthetic NPs, to be successful in drug delivery or imaging, the carriers need to overcome several biological barriers including innate immune recognition. Plasma opsonization can tag (V)NPs for clearance by the mononuclear phagocyte system (MPS), resulting in shortened circulation half lives and non-specific sequestration in non-targeted organs. PEG coatings have been traditionally used to 'shield' nanocarriers from immune surveillance. However, due to broad use of PEG in cosmetics and other industries, the prevalence of anti-PEG antibodies has been reported, which may limit the utility of PEGylation in nanomedicine. Alternative strategies are needed to tailor the in vivo properties of (plant virus-based) nanocarriers. We demonstrate the use of serum albumin (SA) as a viable alternative. SA conjugation to tobacco mosaic virus (TMV)-based nanocarriers results in a 'camouflage' effect more effective than PEG coatings. SA-'camouflaged' TMV particles exhibit decreased antibody recognition, as well as enhanced pharmacokinetics in a Balb/C mouse model. Therefore, SA-coatings may provide an alternative and improved coating technique to yield (plant virus-based) NPs with improved in vivo properties enhancing drug delivery and molecular imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood-derived mesenchymal stem cells.

    PubMed

    Park, Ki-Soo; Tae, Jinsung; Choi, Bongkum; Kim, Young-Seok; Moon, Cheol; Kim, Sa-Hyun; Lee, Han-Sin; Kim, Jinhyun; Kim, Junsung; Park, Jaeberm; Lee, Jung-Hee; Lee, Jong Eun; Joh, Jae-Won; Kim, Sungjoo

    2010-04-01

    Live imaging is a powerful technique that can be used to characterize the fate and location of stem cells in animal models. Here we investigated the characteristics and in vitro cytotoxicity of human mesenchymal stem cells (MSCs) labeled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate, MNPs@SiO2(RITC). We also conducted various in vivo-uptake tests with nanoparticle-labeled human MSCs. MNPs@SiO2(RITC) showed photostability against ultraviolet light exposure and were nontoxic to human MSCs, based on the MTT, apoptosis, and cell cycle arrest assays. In addition, MNPs@SiO2(RITC) did not affect the surface phenotype or morphology of human MSCs. We also demonstrated that MNPs@SiO2(RITC) have stable retention properties in MSCs in vitro. Furthermore, using optical and magnetic resonance imaging, we successfully detected a visible signal from labeled human MSCs that were transplanted into NOD.CB17-Prkdc(SCID) (NOD-SCID) mice. These results demonstrate that MNPs@SiO2(RITC) are biocompatible and useful tools for human MSC labeling and bioimaging. The characteristics and in vitro cytotoxicity of human mesenchymal stem cells (MSCs) labeled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate, RITC were investigated in this study. RITC showed photostability against ultraviolet light exposure and was nontoxic to human MSCs. Using both optical and magnetic resonance imaging, successful detection of signal from labeled human MSCs transplanted into mice is demonstrated. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Various ligand-coated ultrasmall gadolinium-oxide nanoparticles: Water proton relaxivity and in-vivo T1 MR image

    NASA Astrophysics Data System (ADS)

    Park, Ja Young; Kim, Sung June; Lee, Gang Ho; Jin, Seonguk; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok

    2015-04-01

    Surface coating of nanoparticles with ligands is essential in magnetic resonance imaging (MRI) because of solubility in water and biocompatibility. In this study, five organic molecules were used for surface coating of ultrasmall gadolinium-oxide (Gd2O3) nanoparticles (d avg = 2.0 nm). All of the samples showed large longitudinal (r1) and transverse (r2) water proton relaxivities with r2/r1 ratios that were close to one, corresponding to ideal conditions for T1 MRI contrast agents. Finally, in-vivo T1 MR images were acquired to prove the effectiveness of the surface-coated ultrasmall Gd2O3 nanoparticles as a T1 MRI contrast agent.

  6. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation

    PubMed Central

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. PMID:24564857

  7. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system.

    PubMed

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.

  8. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    NASA Astrophysics Data System (ADS)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  9. Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance

    NASA Astrophysics Data System (ADS)

    Luo, Dahao; Wu, Chen; Yan, Mi

    2018-04-01

    Three inorganic-organic hybrids have been designed by incorporating epoxy-modified silicone resin (ESR) with SiO2, Fe3O4 and their mixture in the application as the coating of Fe soft magnetic composites (SMCs). The introduced SiO2 nanoparticles are well dispersed in the ESR, while the Fe3O4 tends to agglomerate or even separate from the ESR. Simultaneous addition of the SiO2 and Fe3O4 gives rise to satisfactory distribution of both nanoparticles and optimized magnetic performance of the SMCs with high permeability (124.6) and low loss (807.8 mW/cm3). On one hand, introduction of the ferromagnetic Fe3O4 reduces the magnetic dilution effect, which is beneficial for improved magnetization and permeability. On the other hand, SiO2 incorporation prevents the agglomeration of the Fe3O4 nanoparticles and gives rise to increased electrical resistivity for reduced core loss as well as enhanced mechanical strength of the SMCs.

  10. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format

    NASA Astrophysics Data System (ADS)

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey

    2016-11-01

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

  11. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format.

    PubMed

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J; Piletsky, Sergey

    2016-11-24

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

  12. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format

    PubMed Central

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey

    2016-01-01

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays. PMID:27883023

  13. A moderate method for preparation DMSA coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, L. N.; Gu, N.; Zhang, Y.

    2017-01-01

    A moderate way to prepare water soluble magnetic Fe3O4 nanoparticles has been developed. Firstly, oleic acid coated Fe3O4 is prepared by coprecipitation. Second, oleic acid were replaced by 2,3-dimercaptosuccinnic acid (DMSA) to prepare DMSA/Fe3O4 in the mixed solution of n-hexane and acetone. After dialysis and filtration the DMSA/Fe3O4 can be transferred into distilled water to form stable Fe3O4 nanoparticle solutions. The TEM images indicated that the particles had spherical shape and the nanoparticles were found to be 12 nm with a relatively narrow size distribution with the hydrodynamic size of 30 nm. And the result of VSM shows that DMSA/Fe3O4 nanoparticles have a saturation magnetization of 31 emu/g. The IR spectra indicated that the iron oxide was located by carboxyl matrix.

  14. The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors

    PubMed Central

    Jiráková, Klára; Šeneklová, Monika; Jirák, Daniel; Turnovcová, Karolína; Vosmanská, Magda; Babič, Michal; Horák, Daniel; Veverka, Pavel; Jendelová, Pavla

    2016-01-01

    Introduction Magnetic resonance (MR) imaging is suitable for noninvasive long-term tracking. We labeled human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) with two types of iron-based nanoparticles, silica-coated cobalt zinc ferrite nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated γ-Fe2O3) and studied their effect on proliferation and neuronal differentiation. Materials and methods We investigated the effect of these two contrast agents on neural precursor cell proliferation and differentiation capability. We further defined the intracellular localization and labeling efficiency and analyzed labeled cells by MR. Results Cell proliferation was not affected by PLL-coated γ-Fe2O3 but was slowed down in cells labeled with CZF. Labeling efficiency, iron content and relaxation rates measured by MR were lower in cells labeled with CZF when compared to PLL-coated γ-Fe2O3. Cytoplasmic localization of both types of nanoparticles was confirmed by transmission electron microscopy. Flow cytometry and immunocytochemical analysis of specific markers expressed during neuronal differentiation did not show any significant differences between unlabeled cells or cells labeled with both magnetic nanoparticles. Conclusion Our results show that cells labeled with PLL-coated γ-Fe2O3 are suitable for MR detection, did not affect the differentiation potential of iPSC-NPs and are suitable for in vivo cell therapies in experimental models of central nervous system disorders. PMID:27920532

  15. Polyethylenimine-coated iron oxide magnetic nanoparticles for high efficient gene delivery

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh H.; Abdelrasoul, Gaser N.; Lin, Donghai; Maadi, Hamid; Tong, Junfeng; Chen, Grace; Wang, Richard; Anwar, Afreen; Shoute, Lian; Fang, Qiang; Wang, Zhixiang; Chen, Jie

    2018-04-01

    Properties of magnetic nanoparticles (MNPs) are of notable interest in many fields of biomedical engineering, especially for gene therapy. In this paper, we report a method for synthesis and delivery of MNPs loaded with DNAs, which overcomes the drawbacks of high cost and cytotoxicity associated with current delivery techniques (chemical- and liposome-based designs). 24-nm MNPs (Fe3O4) were synthesized, functionalized and characterized by analytical techniques to understand the surface properties for DNA binding and cellular uptake. The simple surface functionalization with polyethylenimine (PEI) through glutaraldehyde linker activation gave the complex of PEI-coated MNPs, resulting in high stability with a positive surface charge of about + 31 mV. Under the guidance of an external magnetic field, the functionalized MNPs with a loaded isothiocyanate (FITC) or green fluorescent protein (GFP) will enter the cells, which can be visualized by the fluorescence of FITC or GFP. We also examined the cytotoxicity of our synthesized MNPs by MTT assay. We showed that the IC50s of these MNPs for COS-7 and CHO cells were low and at 0.2 and 0.26 mg/mL, respectively. Moreover, our synthesized MNPs that were loaded with plasmids encoding GFP showed high transfection rate, 38.3% for COS-7cells and 27.6% for CHO cells. In conclusion, we established a promising method with low cost, low toxicity, and high transfection efficiency for siRNA and gene delivery.

  16. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.

    2014-11-01

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.

  17. Capture Efficiency of Biocompatible Magnetic Nanoparticles in Arterial Flow: A Computer Simulation for Magnetic Drug Targeting.

    PubMed

    Lunnoo, Thodsaphon; Puangmali, Theerapong

    2015-12-01

    The primary limitation of magnetic drug targeting (MDT) relates to the strength of an external magnetic field which decreases with increasing distance. Small nanoparticles (NPs) displaying superparamagnetic behaviour are also required in order to reduce embolization in the blood vessel. The small NPs, however, make it difficult to vector NPs and keep them in the desired location. The aims of this work were to investigate parameters influencing the capture efficiency of the drug carriers in mimicked arterial flow. In this work, we computationally modelled and evaluated capture efficiency in MDT with COMSOL Multiphysics 4.4. The studied parameters were (i) magnetic nanoparticle size, (ii) three classes of magnetic cores (Fe3O4, Fe2O3, and Fe), and (iii) the thickness of biocompatible coating materials (Au, SiO2, and PEG). It was found that the capture efficiency of small particles decreased with decreasing size and was less than 5 % for magnetic particles in the superparamagnetic regime. The thickness of non-magnetic coating materials did not significantly influence the capture efficiency of MDT. It was difficult to capture small drug carriers (D<200 nm) in the arterial flow. We suggest that the MDT with high-capture efficiency can be obtained in small vessels and low-blood velocities such as micro-capillary vessels.

  18. Magnetic Nanoparticle-Based Imaging of RNA Transcripts in Breast Cancer Cells

    DTIC Science & Technology

    2009-06-01

    iron oxide NPs via thermal decomposition. - Prepared gold-coated iron oxide NPs. - Developed a click chemistry protocol (i.e. Cu-catalyzed terminal...D.L.J., Elias, D.R., Tsourkas, A. (2009) Comparative analysis of nanoparticle-antibody conjugations: carbodiimide versus click chemistry . Submitted...carbodiimide versus click chemistry . Submitted. APPENDICES: 1) Thorek, D.L.J., Tsourkas, A. (2008) Size, charge, and concentration dependent

  19. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  20. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.

    PubMed

    Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang

    2011-05-01

    A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. © The Royal Society of Chemistry 2011

  1. In vitro genotoxicity and cytotoxicity of polydopamine-coated magnetic nanostructures.

    PubMed

    Woźniak, Anna; Walawender, Magdalena; Tempka, Dominika; Coy, Emerson; Załęski, Karol; Grześkowiak, Bartosz F; Mrówczyński, Radosław

    2017-10-01

    Synthesis of magnetic nanoparticles and magnetic nanoclusters was performed by the co-precipitation method or solvothermal synthesis, respectively, followed by oxidative polymerization of dopamine, resulting in a polydopamine (PDA) shell. The nanomaterials obtained were described using TEM, FTIR and magnetic measurements. For the first time, cyto- and genotoxicity studies of polydopamine-coated nanostructures were performed on cancer and normal cell lines, providing in-depth insight into the toxicity of such materials. The tests conducted, e.g. ROS, apoptosis and DNA double-break of the nanomaterials obtained revealed the low toxicity of these structures. Thus, these results prove the biocompatibility and low genotoxicity of these materials and provide new data on the toxicity of PDA-coated materials, which is of great importance for their biomedical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yang, Dexing; Du, Lei; Xu, Zengqi; Jiang, Yajun; Xu, Jian; Wang, Meirong; Bai, Yang; Wang, Haiyan

    2014-02-01

    A magnetic field sensor based on a tilted fiber Bragg grating (TFBG) coated with magnetic fluid is proposed and demonstrated experimentally. The sensing element is made by injecting the magnetic fluid into a capillary tube which contains a TFBG. The resonant wavelengths of the cladding modes of TFBG shift by varying the magnetic field which is perpendicular to the axis of TFBG. The results indicate that the resonant wavelength shifts of the cladding modes show a nonlinear dependence on the magnetic field. As the magnetic field increases to 32 mT, the largest resonant wavelength shift reaches to 106 pm. Moreover, this sensor shows good repeatability when it is used for magnetic field sensing.

  3. Biotin avidin amplified magnetic immunoassay for hepatitis B surface antigen detection using GoldMag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, An; Geng, Tingting; Fu, Qiang; Chen, Chao; Cui, Yali

    2007-04-01

    Using GoldMag (Fe3O4/Au) nanoparticles as a carrier, a biotin-avidin amplified ELISA was developed to detect hepatitis B surface antigen (HBsAg). A specific antibody was labeled with biotin and then used to detect the antigen with an antibody coated on GoldMag nanoparticles by a sandwich ELISA assay. The results showed that 5 mol of biotin were surface bound per mole of antibody. The biotin-avidin amplified ELISA assay has a higher sensitivity than that of the direct ELISA assay. There is 5-fold difference between HBsAg positive and negative serum even at dilution of 1:10000, and the relative standard deviation of the parallel positive serum at dilution of 1:4000 is 5.98% (n=11).

  4. Selective binding and magnetic separation of His-tagged proteins using Fe3O4/PAM/NTA-Ni2+ Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guo, Huiling; Li, Mengyun; Tu, Shu; Sun, Honghao

    2018-03-01

    Fe3O4 nanoparticles coated with polyacrylamide (PAM) were synthesized. The magnetic core, with an average hydrodynamic size of 235.5 nm, allowed the magnetic nanoparticles (MNPs) rapid separation from solutions under an external magnetic field. NTA-Ni2+ was modified on the surface of Fe3O4/PAM MNPs to selectively trap his-tagged green fluorescent protein (GFP). The results showed that Fe3O4/PAM/NTA-Ni2+ MNPs exhibited remarkable capability of selective binding and separating his-tagged GFP. The adsorption efficiency was 93.37%.

  5. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system.

    PubMed

    Rana, S; Rawat, J; Sorensson, M M; Misra, R D K

    2006-07-01

    The present study describes and makes a relative comparison of the antimicrobial function of undoped and neodymium-doped titania coated-nickel ferrite composite nanoparticles processed by uniquely combining the reverse micelle and chemical hydrolysis approaches. This methodology facilitates the formation of undoped and doped photocatalytic titania shells and a magnetic ferrite core. The ferrite core is needed to help in the removal of particles from the sprayed surface using a small magnetic field. Doping of the titania shell with neodymium significantly enhances the photocatalytic and anti-microbial function of the core-shell composite nanoparticles without influencing the magnetic characteristics of the nickel ferrite core. The increased performance is believed to be related to the inhibition of electron-hole recombination and a decrease in the band gap energy of titania. The retention of magnetic strength ensures controlled movement of the composite nanoparticles by the magnetic field, facilitating their application as removable anti-microbial photocatalyst nanoparticles. The consistent behavior of the composite nanoparticles points to the viability of the synthesis process adopted.

  6. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.

    2014-09-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.

  7. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  8. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro

    PubMed Central

    Phukan, Geetika; Shin, Tae Hwan; Shim, Jeom Soon; Paik, Man Jeong; Lee, Jin-Kyu; Choi, Sangdun; Kim, Yong Man; Kang, Seong Ho; Kim, Hyung Sik; Kang, Yup; Lee, Soo Hwan; Mouradian, M. Maral; Lee, Gwang

    2016-01-01

    The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 μg/μl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 μg/μl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α–synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles. PMID:27378605

  9. Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy

    PubMed Central

    Tseng, Shih-Heng; Chou, Min-Yuan; Chu, I-Ming

    2015-01-01

    We have developed a theranostic nanoparticle, ie, cet-PEG-dexSPIONs, by conjugation of the anti-epidermal growth factor receptor (EGFR) monoclonal antibody, cetuximab, to dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) via periodate oxidation. Approximately 31 antibody molecules were conjugated to each nanoparticle. Cet-PEG-dexSPIONs specifically bind to EGFR-expressing tumor cells and enhance image contrast on magnetic resonance imaging. Cet-PEG-dexSPION-treated A431 cells showed significant inhibition of epidermal growth factor-induced EGFR phosphorylation and enhancement of EGFR internalization and degradation. In addition, a significant increase in apoptosis was detected in EGFR-overexpressing cell lines, A431 and 32D/EGFR, after 24 hours of incubation at 37°C with cet-PEG-dexSPIONs compared with cetuximab alone. The antibody-dependent cell-mediated cytotoxicity of cetuximab was observed in cet-PEG-dexSPIONs. The results demonstrated that cet-PEG-dexSPIONs retained the therapeutic effect of cetuximab in addition to having the ability to target and image EGFR-expressing tumors. Cet-PEG-dexSPIONs represent a promising targeted magnetic probe for early detection and treatment of EGFR-expressing tumor cells. PMID:26056447

  10. Magnetic inductive heating of organs of mouse models treated by copolymer coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pham, Hong Nam; Giang Pham, Thi Ha; Nguyen, Dac Tu; Thong Phan, Quoc; Thu Huong Le, Thi; Thu Ha, Phuong; Do, Hung Manh; Nhung Hoang, Thi My; Phuc Nguyen, Xuan

    2017-06-01

    Biodistribution studies provide basic information to design and perform various applications of superparamagnetic iron oxide magnetic nanoparticles (SPIOs) in biomedicine such as drug delivery, MRI as well as hyperthermia. Recently, several quantitative measurements as well as new imaging methods have been used to characterize the SPIOs distribution in organs and in tissues of animal model. In this report we used the fabricated iron oxide nanoparticles coated with two block copolymers of polystyrene-co-polyacrylic acid (St-co-PAA) and polylactic acid-co-polyethylene glycol (PLA-PEG). The biodistributions were investigated ex-vivo for several organs of both healthy and Sarcoma transplanted Swiss mice. The SPIOs concentrations were verified mainly by magnetic inductive heating (MIH) measurement with a combination with atomic absorption spectroscopy (AAS). The results indicated the density detected highest in liver and lowest in kidney. The SPIOs concentration increased significantly up to 24 h after the injection. The observations by our two methods not only are in agreement with each other but also consistent with the tendency reported by other techniques. Discussion will also concern injection strategy for various aspects of hyperthermia applications. Invited talk at 8th Int. Workshop on Advanced Materials Science and Nanotechnology (Ha Long City, Vietnam, 8-12 November 2016).

  11. Silica Coating of Nonsilicate Nanoparticles for Resin-Based Composite Materials

    PubMed Central

    Kaizer, M.R.; Almeida, J.R.; Gonçalves, A.P.R.; Zhang, Y.; Cava, S.S.; Moraes, R.R.

    2016-01-01

    This study was designed to develop and characterize a silica-coating method for crystalline nonsilicate ceramic nanoparticles (Al2O3, TiO2, and ZrO2). The hypothesis was that the coated nonsilicate nanoparticles would stably reinforce a polymeric matrix due to effective silanation. Silica coating was applied via a sol-gel method, with tetraethyl orthosilicate as a silica precursor, followed by heat treatment. The chemical and microstructural characteristics of the nanopowders were evaluated before and after silica coating through x-ray diffraction, BET (Brunauer-Emmett-Teller), energy-dispersive x-ray spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy analyses. Coated and noncoated nanoparticles were silanated before preparation of hybrid composites, which contained glass microparticles in addition to the nanoparticles. The composites were mechanically tested in 4-point bending mode after aging (10,000 thermal cycles). Results of all chemical and microstructural analyses confirmed the successful obtaining of silica-coated nanoparticles. Two distinct aspects were observed depending on the type of nanoparticle tested: 1) formation of a silica shell on the surface of the particles and 2) nanoparticle clusters embedded into a silica matrix. The aged hybrid composites formulated with the coated nanoparticles showed improved flexural strength (10% to 30% higher) and work of fracture (35% to 40% higher) as compared with composites formulated with noncoated nanoparticles. The tested hypothesis was confirmed: silanated silica-coated nonsilicate nanoparticles yielded stable reinforcement of dimethacrylate polymeric matrix due to effective silanation. The silica-coating method presented here is a versatile and promising novel strategy for the use of crystalline nonsilicate ceramics as a reinforcing phase of polymeric composite biomaterials. PMID:27470069

  12. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    PubMed

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  13. A biological method for in-situ synthesis of hydroxyapatite-coated magnetite nanoparticles using Enterobacter aerogenes: Characterization and acute toxicity assessments.

    PubMed

    Ahmadzadeh, Elham; Talebnia Rowshan, Farid; Hosseini, Morteza

    2017-04-01

    Hydroxyapatite (HA)-coated magnetite nanoparticles (MNPs) are being widely investigated for various applications in medical engineering and wastewater treatment. In this work, the MNPs were thoroughly coated by bacterial synthesized HA nanoparticles during biomineralization process using Enterobacter aerogenes. The resulting bacterial-induced precipitate was then calcined at 600°C and investigated with respect to structural characteristics, particle size and magnetic strength by XRD, FT-IR, SEM, EDS, TEM and VSM analyses. The effects of MNPs and HA-coated MNPs (HA-MNPs) on the viability of human MCF-7 cell lines were also investigated via mitochondrial activity test (MTT) and lactate dehydrogenase (LDH) assays. The powder characterization results showed appropriate structural properties for HA-MNPs samples. The particles diameter size of the MNPs and HA-MNPs were in the range of 3-25nm and 20-80nm, respectively. The biologically-synthesized HA-MNPs formed a stable suspension in water while keeping their magnetic property. The saturation magnetization (Ms) of HA-MNPs was measured at ~10emug -1 which was in good agreement with the structural composition of this sample. Finally, the results of the cell lines viability indicated that coating of toxic MNPs via biomineralization was a promising approach in order to synthesize bio-compatible magnetic nanoparticles with suitable physical and chemical structural characteristics. The toxicity level of MNPs was reduced by 10 fold when coated by bacterial-synthesized HA. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Specific binding of magnetic nanoparticle probes to platelets in whole blood detected by magnetorelaxometry

    NASA Astrophysics Data System (ADS)

    Eberbeck, Dietmar; Wiekhorst, Frank; Steinhoff, Uwe; Schwarz, Kay Oliver; Kummrow, Andreas; Kammel, Martin; Neukammer, Jörg; Trahms, Lutz

    2009-05-01

    The binding of monoclonal antibodies labelled with magnetic nanoparticles to CD61 surface proteins expressed by platelets in whole blood samples was measured by magnetorelaxometry. This technique is sensitive to immobilization of the magnetic labels upon binding. Control experiments with previous saturation of the epitopes on the platelet surfaces demonstrated the specificity of the binding. The kinetics of the antibody antigen reaction is accessible with a temporal resolution of 12 s. The minimal detectable platelet concentration is about 2000 μL -1 (sample volume 150 μL). The proportionality of the magnetic relaxation amplitude to the number of bound labels allows a quantification of the antibody binding capacity.

  15. Corrosion Prevention of Aluminum Nanoparticles by a Polyurethane Coating.

    PubMed

    Nishimura, Toshiyasu; Raman, Vedarajan

    2014-06-19

    In order to prevent corrosion, aluminum nanoparticles were coated with a polyurethane polymer. The coverage of the polyurethane polymer was controlled from 0 to 100%, which changed the corrosion rate of the nanoparticles quantitatively. The surface of the polymer coating was investigated by Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), and the corrosion resistance of the nanoparticles was estimated by a wet/dry corrosion test on a Pt plate with a NaCl solution. From a TEM with EDAX analysis, the 10 mass% polymer coated Al particles in the synthesis were almost 100% covered on the surface by a polymer film of 10 nm thick. On the other hand, the 3 mass% polymer coated Al was almost 40% covered by a film. In the AFM, the potential around the Al particles had a relatively low value with the polymer coating, which indicated that the conductivity of the Al was isolated from the Pt plate by the polymer. Both the corrosion and H₂ evolution reaction rates were quantitatively reduced by the mass% of polymer coating. In the case of the 10 mass% coated sample, there was no corrosion of Al nanoparticles. This fact suggested that the electrochemical reaction was suppressed by the polymer coating. Moreover, the reaction rate of Al nanoparticles was suppressed in proportion to the coverage percentage of the coating. Thus, to conclude, it was found that the corrosion rate of Al nanoparticles could be quantitatively suppressed by the coverage percentage of the polymer coating.

  16. Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis.

    PubMed

    Dongargaonkar, Alpana A; Clogston, Jeffrey D

    2018-01-01

    Nanoparticles are critical components in nanomedicine and nanotherapeutic applications. Some nanoparticles, such as metallic nanoparticles, consist of a surface coating or surface modification to aid in its dispersion and stability. This surface coating may affect the behavior of nanoparticles in a biological environment, thus it is important to measure. Thermogravimetric analysis (TGA) can be used to determine the amount of coating on the surface of the nanoparticle. TGA experiments run under inert atmosphere can also be used to determine residual metal content present in the sample. In this chapter, the TGA technique and experimental method are described.

  17. Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol.

    PubMed

    Jafari, T; Simchi, A; Khakpash, N

    2010-05-01

    Core-shell iron-gold (Fe@Au) nanoparticles were synthesized by a facile reverse micelle procedure and the effect of water to surfactant molar ratio (w) on the size, size distribution and magnetic properties of the nanoparticles was studied. MTT assay was utilized to evaluate the cell toxicity of the nanoparticles. To functionalize the particles for MRI imaging and targeted drug delivery, the particles were coated by polyglycerol through capping with thiol followed by polymerization of glycidol. The characteristics of the particles were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). It was found that the size and size distribution of the nanoparticles increase by increasing the water to surfactant molar ratio (w). The particles were spherical in shape with a thin layer of gold. Complementary growth of the gold shell on the iron core was noticed. Meanwhile, two types of agglomeration including magnetic beads and magnetic colloidal nanocrystals clusters were observed dependent on the w-value. The magnetic measurement studies revealed the superparamagnetic behavior of the nanoparticles. MTT assay result indicated the synthesized nanoparticles are nontoxic that will be useful for biomedical applications. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells.

    PubMed

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-07-01

    In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise.

  19. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells

    PubMed Central

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-01-01

    Aim: In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Materials & methods: Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. Results: TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Conclusion: Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise. PMID:27388639

  20. Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Bakhshi, Hamed; Shokuhfar, Ali; Vahdati, Nima

    2016-09-01

    Cobalt ferrite nanoparticles (CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition (TCVD). In this process, acetylene gas (C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750°C. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples' magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond- like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size.

  1. Magneto-plasmonic Au-Coated Co nanoparticles synthesized via hot-injection method

    NASA Astrophysics Data System (ADS)

    Souza, João B., Jr.; Varanda, Laudemir C.

    2018-02-01

    A synthetic procedure is described for the obtaining of superparamagnetic Co nanoparticles (NPs) via hot-injection method in the presence of sodium borohydride. The Co NPs obtained have an average diameter of 5.3 nm and saturation magnetization of 115 emu g-1. A modified Langevin equation is fitted to the magnetization curves using a log-normal distribution for the particle diameter and an effective field to account for dipolar interactions. The calculated magnetic diameter of the Co NPs is 0.6 nm smaller than TEM-derived values, implying a magnetic dead layer of 0.3 nm. The magnetic core is coated with Au to prevent oxidation, resulting in water-stable magneto-plasmonic Co/Au core/shell NPs with saturation of 71.6 emu g-1. The coating adds a localized surface plasmon resonance property with absorbance in the so-called ‘therapeutic window’ (690-900 nm), suitable for biomedical applications. It is suggested that these multifunctional NPs are distinguished as a potential platform for applied and fundamental research.

  2. Magnetic properties of ferritin and akaganeite nanoparticles in aqueous suspension

    NASA Astrophysics Data System (ADS)

    Koralewski, Marceli; Pochylski, Mikołaj; Gierszewski, Jacek

    2013-09-01

    We have studied the magnetically induced optical birefringence Δ n of horse spleen ferritin (HSF) and aqueous suspensions of several different-sized iron oxyhydroxide nanoparticles coated with different polysaccharides mimicking ferritin. The structure and dimensions of the akaganeite mineral core were characterized by XRD and TEM, respectively. The stability of the suspensions in the measurement temperature range from 278 to 358 K was confirmed by UV-Vis absorption spectroscopy. The values of optical polarizability anisotropy Δ α, magnetic susceptibility anisotropy Δ χ, and permanent magnetic dipole moment μ m of the akaganeite nanoparticles have been estimated on the basis of the temperature dependence of the Cotton-Mouton (C-M) constant. The magnetic birefringence of Fe-sucrose has been described tentatively by different types of Langevin function allowing another estimation of Δ χ and μ m. The obtained permanent magnetic dipole moment μ m of the studied akaganeite nanoparticles proves small and comparable to that of HSF. The value of μ m is found to increase with decreasing nanoparticle diameter. Observed in a range spanning more than five orders of magnitude, the linear relation between the C-M constant and the iron concentration provides a basis for possible analytical application of the C-M effect in biomedicine. The established relation between the C-M constant and the nanoparticle diameter confirms that the dominant contribution to the measured magnetic birefringence comes from the magnetic susceptibility anisotropy Δ χ. A comparison of the C-M constants of the studied akaganeite nanoparticles with the data obtained for HSF provides evidence that the ferritin core behaves as a non-Euclidian solid.

  3. Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation

    NASA Astrophysics Data System (ADS)

    Hilger, Ingrid; Kießling, Andreas; Romanus, Erik; Hiergeist, Robert; Hergt, Rudolf; Andrä, Wilfried; Roskos, Martin; Linss, Werner; Weber, Peter; Weitschies, Werner; Kaiser, Werner A.

    2004-08-01

    The minimally invasive elimination of tumours using heating as a therapeutic agent is an emerging technology in medical applications. Particularly, the intratumoural application of magnetic nanoparticles as potential heating sources when exposed to an alternating magnetic field has been demonstrated. The present work deals with the estimation of the basic relationships when the magnetic material has access and binds to structures on cell membranes of target cells at the tumour region, particularly as a consequence of administration through tumour supplying vessels. Therefore, using mouse endothelial cells in culture, the binding of dextran coated magnetic nanoparticles (mean hydrodynamic particle diameter 65 nm) was modelled using the periodate method. The efficacy of cell labelling was demonstrated by magnetorelaxometry (MRX)—a selective method for the detection of only those magnetic nanoparticles that were immobilized—as well as by electron microscopy and iron staining. The amount of iron immobilized on cells was found to be 153 ± 56 µg Fe per 1 × 107 cells as determined by atomic absorption spectrometry. Moreover, after exposure of those 1 × 107 labelled cells to an alternating magnetic field (frequency 410 kHz, amplitude 11 kA m-1) for 5 min, temperature increases of 2 °C were achieved. The consequences of particle immobilization are reflected by the results of the measurements related to the specific heating power (SHP) of the magnetic material. Basically, the heating potential is explained by the superposition of Brown and Neél relaxation while for immobilized nanoparticles the Brown contribution is absent. In the long term the data could open the door to targeted magnetic heating after further optimization of the heating potential of magnetic material as well as after functionalization with biomolecules which recognize specific structures on the surface of cells at the target region.

  4. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Background Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. Methods and results We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate “burst release” and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Conclusion Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and

  5. Rapid Detection and Isolation of Escherichia coli O104:H4 from Milk Using Monoclonal Antibody-coated Magnetic Beads

    PubMed Central

    Luciani, Mirella; Di Febo, Tiziana; Zilli, Katiuscia; Di Giannatale, Elisabetta; Armillotta, Gisella; Manna, Laura; Minelli, Fabio; Tittarelli, Manuela; Caprioli, Alfredo

    2016-01-01

    Monoclonal antibodies (MAbs) specific for the lipopolysaccharide (LPS) of Escherichia coli O104:H4 were produced by fusion of Sp2/O-Ag-14 mouse myeloma cells with spleen cells of Balb/c mice, immunized with heat-inactivated and sonicated E. coli O104:H4 bacterial cells. Four MAbs specific for the E. coli O104:H4 LPS (1E6G6, 1F4C9, 3G6G7, and 4G10D2) were characterized and evaluated for the use in a method for the detection of E. coli O104:H4 in milk samples that involves antibody conjugation to magnetic microbeads to reduce time and increase the efficiency of isolation. MAb 1E6G6 was selected and coupled to microbeads, then used for immuno-magnetic separation (IMS); the efficiency of the IMS method for E. coli O104:H4 isolation from milk was evaluated and compared to that of the EU RL VTEC conventional culture-based isolation procedure. Milk suspensions also containing other pathogenic bacteria that could potentially be found in milk (Campylobacter jejuni, Listeria monocytogenes, and Staphylococcus aureus) were also tested to evaluate the specificity of MAb-coated beads. Beads coated with MAb 1E6G6 showed a good ability to capture the E. coli O104:H4, even in milk samples contaminated with other bacteria, with a higher number of E. coli O104:H4 CFU reisolated in comparison with the official method (121 and 41 CFU, respectively, at 103 E. coli O104:H4 initial load; 19 and 6 CFU, respectively, at 102 E. coli O104:H4 initial load; 1 and 0 CFU, respectively, at 101 E. coli O104:H4 initial load). The specificity was 100%. PMID:27379071

  6. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    NASA Astrophysics Data System (ADS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-03-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.

  7. Electromagnetic characteristics of manganese oxide-coated Fe3O4 nanoparticles at 2-18 GHz

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Lin, C. K.

    2011-04-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the transmission/reflection method in 2-18 GHz. MnOx-coated Fe3O4 NPs were prepared by sol-gel method followed by heat-treating at 300, 400, and 500 °C, respectively. The heat-treated powders were then used as magnetic fillers and added to an epoxy resin to prepare MnOx-coated Fe3O4 composites for the complex permittivity (ɛ'-jɛ″) and permeability (μ'-jμ″) measurements. After the sol-gel process, the coating of manganese oxide (mixture of major Mn2O3 and minor Mn3O4) reduced the value of ɛ'. The lower the heat-treating temperature, the larger the decrease in ɛ'. The relative decrease in ɛ', compared with uncoated Fe3O4 nanoparticles, is 28.7, 23.5, and 20.0% for coated MnOx heat-treated at 300, 400, and 500 °C, respectively, while the relative decrease in ɛ″ is 74.1, 68.8, and 65.2%, respectively. In the present study, MnOx-coated Fe3O4 exhibited a significant decrease in dielectric loss tangent of ˜100% compared to that of uncoated NPs and can be of practical use for microwave components.

  8. Fe3O4 nanoparticles for magnetic hyperthermia and drug delivery; synthesis, characterization and cellular studies

    NASA Astrophysics Data System (ADS)

    Palihawadana Arachchige, Maheshika

    In recent years, magnetic nanoparticles (MNPs), especially superparamagnetic Fe3O4nanoparticles, have attracted a great deal of attention because of their potential applications in biomedicine. Among the other applications, Magnetic hyperthermia (MHT), where localized heating is generated by means of relaxation processes in MNPs when subjected to a radio frequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. Specific absorption rate (SAR), which measures the efficiency of heat generation, depends on magnetic properties of the particles such as saturation magnetization (M s), magnetic anisotropy (K), particle size distribution, magnetic dipolar interactions, and the rheological properties of the target medium.We have investigated MHT in two Fe3O4 ferrofluids prepared by co-precipitation (CP) and hydrothermal (HT) synthesis methods showing similar physical particle size distribution and Ms, but very different SAR 110 W/g and 40 W/g at room temperature. This observed reduction in SAR has been explained by taking the dipolar interactions into account using the so called T* model. Our analysis reveals that HT ferrofluid shows an order of magnitude higher effective dipolar interaction and a wider distribution of magnetic core size of MNPs compared to that of CP ferrofluid. We have studied dextran coated Gd-doped Fe3O4 nanoparticles as a potential candidate in theronostics for multimodal contrast imaging and cancer treatment by hyperthermia. The effect of surfactant on the MHT efficiency and cytotoxicity on human pancreatic cancer cells was explored as well. Though further in vivo study is necessary in the future, these results imply that the dextran coated Fe3O4 dispersion could maintain their high heating capacity in physiological environments while citric acid coating require further surface modification to reduce the non-specific protein adsorption. We have also investigated the traffic, distribution, and cytotoxicity, associated

  9. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

    PubMed

    Mahdavi, Mahnaz; Ahmad, Mansor Bin; Haron, Md Jelas; Namvar, Farideh; Nadi, Behzad; Rahman, Mohamad Zaki Ab; Amin, Jamileh

    2013-06-27

    Superparamagnetic iron oxide nanoparticles (MNPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. These applications required that the MNPs such as iron oxide Fe₃O₄ magnetic nanoparticles (Fe₃O₄ MNPs) having high magnetization values and particle size smaller than 100 nm. This paper reports the experimental detail for preparation of monodisperse oleic acid (OA)-coated Fe₃O₄ MNPs by chemical co-precipitation method to determine the optimum pH, initial temperature and stirring speed in order to obtain the MNPs with small particle size and size distribution that is needed for biomedical applications. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The results show that the particle size as well as the magnetization of the MNPs was very much dependent on pH, initial temperature of Fe²⁺ and Fe³⁺ solutions and steering speed. The monodisperse Fe₃O₄ MNPs coated with oleic acid with size of 7.8 ± 1.9 nm were successfully prepared at optimum pH 11, initial temperature of 45°C and at stirring rate of 800 rpm. FTIR and XRD data reveal that the oleic acid molecules were adsorbed on the magnetic nanoparticles by chemisorption. Analyses of TEM show the oleic acid provided the Fe₃O₄ particles with better dispersibility. The synthesized Fe₃O₄ nanoparticles exhibited superparamagnetic behavior and the saturation magnetization of the Fe₃O₄ nanoparticles increased with the particle size.

  10. Optimization of Antibody-Conjugated Magnetic Nanoparticles for Target Preconcentration and Immunoassays

    DTIC Science & Technology

    2010-01-01

    protein, AlexaFluor647– chicken IgG (Alexa647–chick IgG). Antibody-labeled MNPs (Alexa647– chick–MNPs) were used to preconcentrate the target via magnetic...separation and as the tracer to dem- onstrate binding to slides modified with anti- chicken IgG as a capture agent. A full optimization study of the...magnetically assisted transport evanescent field fluoroimmunoassay; Alexa647–chick–MNPs, MNPs functionalized with fluorescently labeled target chicken IgG

  11. Molecularly-Targeted Gold-Based Nanoparticles for Cancer Imaging and Near-Infrared Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Day, Emily Shannon

    2011-12-01

    This thesis advances the use of nanoparticles as multifunctional agents for molecularly-targeted cancer imaging and photothermal therapy. Cancer mortality has remained relatively unchanged for several decades, indicating a significant need for improvements in care. Researchers are evaluating strategies incorporating nanoparticles as exogenous energy absorbers to deliver heat capable of inducing cell death selectively to tumors, sparing normal tissue. Molecular targeting of nanoparticles is predicted to improve photothermal therapy by enhancing tumor retention. This hypothesis is evaluated with two types of nanoparticles. The nanoparticles utilized, silica-gold nanoshells and gold-gold sulfide nanoparticles, can convert light energy into heat to damage cancerous cells. For in vivo applications nanoparticles are usually coated with poly(ethylene glycol) (PEG) to increase blood circulation time. Here, heterobifunctional PEG links nanoparticles to targeting agents (antibodies and growth factors) to provide cell-specific binding. This approach is evaluated through a series of experiments. In vitro, antibody-coated nanoparticles can bind breast carcinoma cells expressing the targeted receptor and act as contrast agents for multiphoton microscopy prior to inducing cell death via photoablation. Furthermore, antibody-coated nanoparticles can bind tissue ex vivo at levels corresponding to receptor expression, suggesting they should bind their target even in the complex biological milieu. This is evaluated by comparing the accumulation of antibody-coated and PEG-coated nanoparticles in subcutaneous glioma tumors in mice. Contrary to expectations, antibody targeting did not yield more nanoparticles within tumors. Nevertheless, these studies established the sensitivity of glioma to photothermal therapy; mice treated with PEG-coated nanoshells experienced 57% complete tumor regression versus no regression in control mice. Subsequent experiments employed intracranial tumors to

  12. Leach-proof magnetic thrombolytic nanoparticles and coatings of enhanced activity

    NASA Astrophysics Data System (ADS)

    Drozdov, Andrey S.; Vinogradov, Vasiliy V.; Dudanov, Ivan P.; Vinogradov, Vladimir V.

    2016-06-01

    Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic carrier leaving non-active matrix, thus making the whole system active only for a limited period of time. Such systems often have very complex structure organization and composition, consisting of materials not approved for parenteral injection, making them poor candidates for real clinical trials and implementation. Here we report, for the first time, the production of thrombolytic magnetic composite material with non-releasing behavior and prolonged action. Obtained composite shows good thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active thrombolytic coatings or magnetically-targetable thrombolytic agents.

  13. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice.

    PubMed

    Oyewumi, Moses O; Yokel, Robert A; Jay, Michael; Coakley, Tricia; Mumper, Russell J

    2004-03-24

    The purpose of these studies was to compare the cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium (Gd) nanoparticles. Gd is a potential agent for neutron capture therapy (NCT) of tumors. Gd nanoparticles were engineered from oil-in-water microemulsion templates. To obtain folate-coated nanoparticles, a folate ligand [folic acid chemically linked to distearoylphosphatidylethanolamine (DSPE) via a PEG spacer MW 3350] was included in nanoparticle preparations. Similarly, control nanoparticles were coated with DSPE-PEG-MW 3350 (PEG-coated). Nanoparticles were characterized based on size, size distribution, morphology, biocompatibility and tumor cell uptake. In vivo studies were carried out in KB (human nasopharyngeal carcinoma) tumor-bearing athymic mice. Biodistribution and tumor retention studies were carried out at pre-determined time intervals after injection of nanoparticles (10 mg/kg). Gd nanoparticles did not aggregate platelets or activate neutrophils. The retention of nanoparticles in the blood 8, 16 and 24 h post-injection was 60%, 13% and 11% of the injected dose (ID), respectively. A maximum Gd tumor localization of 33+/-7 microg Gd/g was achieved. Both folate-coated and PEG-coated nanoparticles had comparable tumor accumulation. However, the cell uptake and tumor retention of folate-coated nanoparticles was significantly enhanced over PEG-coated nanoparticles. Thus, the benefits of folate ligand coating were to facilitate tumor cell internalization and retention of Gd-nanoparticles in the tumor tissue. The engineered nanoparticles may have potential in tumor-targeted delivery of Gd thereby enhancing the therapeutic success of NCT.

  14. Polyelectrolyte coating on superparamagnetic iron oxide nanoparticles as interface between magnetic core and biorelevant media

    PubMed Central

    Farkas, Katalin; Földesi, Imre; Szekeres, Márta; Illés, Erzsébet; Tóth, Ildikó Y.; Nesztor, Daniel; Szabó, Tamás

    2016-01-01

    Nanoparticles do not exist in thermodynamical equilibrium because of high surface free energy, thus they have only kinetic stability. Spontaneous changes can be delayed by designed surface coating. In biomedical applications, superparamagnetic iron oxide nanoparticles (SPIONs) require an optimized coating in order to fulfil the expectation of medicine regulatory agencies and ultimately that of biocompatibility. In this work, we show the high surface reactivity of naked SPIONs due to ≡Fe–OH sites, which can react with H+/OH− to form pH- and ionic strength-dependent charges. We explain the post-coating of naked SPIONs with organic polyacids via multi-site complex bonds formed spontaneously. The excess polyacids can be removed from the medium. The free COOH groups in coating are prone to react with active biomolecules like proteins. Charging and pH- and salt-dependent behaviour of carboxylated SPIONs were characterized quantitatively. The interrelation between the coating quality and colloidal stability measured under biorelevant conditions is discussed. Our coagulation kinetics results allow us to predict colloidal stability both on storage and in use; however, a simpler method would be required to test SPION preparations. Haemocompatibility tests (smears) support our qualification for good and bad SPION manufacturing; the latter ‘promises’ fatal outcome in vivo. PMID:27920900

  15. Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application

    NASA Astrophysics Data System (ADS)

    Illés, Erzsébet; Szekeres, Márta; Tóth, Ildikó Y.; Szabó, Ákos; Iván, Béla; Turcu, Rodica; Vékás, Ladislau; Zupkó, István; Jaics, György; Tombácz, Etelka

    2018-04-01

    Biocompatible magnetite nanoparticles (MNPs) were prepared by post-coating the magnetic nanocores with a synthetic polymer designed specifically to shield the particles from non-specific interaction with cells. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers and acrylic acid (AA) small molecular monomers were chemically coupled by quasi-living atom transfer radical polymerization (ATRP) to a comb-like copolymer, P(PEGMA-co-AA) designated here as P(PEGMA-AA). The polymer contains pendant carboxylate moieties near the backbone and PEG side chains. It is able to bind spontaneously to MNPs; stabilize the particles electrostatically via the carboxylate moieties and sterically via the PEG moieties; provide high protein repellency via the structured PEG layer; and anchor bioactive proteins via peptide bond formation with the free carboxylate groups. The presence of the P(PEGMA-AA) coating was verified in XPS experiments. The electrosteric (i.e., combined electrostatic and steric) stabilization is efficient down to pH 4 (at 10 mM ionic strength). Static magnetization and AC susceptibility measurements showed that the P(PEGMA-AA)@MNPs are superparamagnetic with a saturation magnetization value of 55 emu/g and that both single core nanoparticles and multicore structures are present in the samples. The multicore components make our product well suited for magnetic hyperthermia applications (SAR values up to 17.44 W/g). In vitro biocompatibility, cell internalization, and magnetic hyperthermia studies demonstrate the excellent theranostic potential of our product.

  16. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences.

    PubMed

    Jun, Young-Wook; Seo, Jung-Wook; Cheon, Jinwoo

    2008-02-01

    Magnetic nanoparticles, which exhibit a variety of unique magnetic phenomena that are drastically different from those of their bulk counterparts, are garnering significant interest since these properties can be advantageous for utilization in a variety of applications ranging from storage media for magnetic memory devices to probes and vectors in the biomedical sciences. In this Account, we discuss the nanoscaling laws of magnetic nanoparticles including metals, metal ferrites, and metal alloys, while focusing on their size, shape, and composition effects. Their fundamental magnetic properties such as blocking temperature (Tb), spin life time (tau), coercivity (Hc), and susceptibility (chi) are strongly influenced by the nanoscaling laws, and as a result, these scaling relationships can be leveraged to control magnetism from the ferromagnetic to the superparamagnetic regimes. At the same time, they can be used in order to tune magnetic values including Hc, chi, and remanence (Mr). For example, life time of magnetic spin is directly related to the magnetic anisotropy energy (KuV) and also the size and volume of nanoparticles. The blocking temperature (Tb) changes from room temperature to 10 K as the size of cobalt nanoparticles is reduced from 13 to 2 nm. Similarly, H c is highly susceptible to the anisotropy of nanoparticles, while saturation magnetization is directly related to the canting effects of the disordered surface magnetic spins and follows a linear relationship upon plotting of ms (1/3) vs r(-1). Therefore, the nanoscaling laws of magnetic nanoparticles are important not only for understanding the behavior of existing materials but also for developing novel nanomaterials with superior properties. Since magnetic nanoparticles can be easily conjugated with biologically important constituents such as DNA, peptides, and antibodies, it is possible to construct versatile nano-bio hybrid particles, which simultaneously possess magnetic and biological functions

  17. Polydopamine-coated magnetic nanoparticles for isolation and enrichment of estrogenic compounds from surface water samples followed by liquid chromatography-tandem mass spectrometry determination.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Piovesana, Susy; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2016-06-01

    Estrogens, phytoestrogens, and mycoestrogens may enter into the surface waters from different sources, such as effluents of municipal wastewater treatment plants, industrial plants, and animal farms and runoff from agricultural areas. In this work, a multiresidue analytical method for the determination of 17 natural estrogenic compounds, including four steroid estrogens, six mycoestrogens, and seven phytoestrogens, in river water samples has been developed. (Fe3O4)-based magnetic nanoparticles coated by polydopamine (Fe3O4@pDA) were used for dispersive solid-phase extraction, and the final extract was analyzed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The Fe3O4 magnetic nanoparticles were prepared by a co-precipitation procedure, coated by pDA, and characterized by scanning electron microscopy, infrared spectroscopy, and elemental analysis. The sample preparation method was optimized in terms of extraction recovery, matrix effect, selectivity, trueness, precision, method limits of detection, and method limits of quantification (MLOQs). For all the 17 analytes, recoveries were >70 % and matrix effects were below 30 % when 25 mL of river water sample was treated with 90 mg of Fe3O4@pDA nanoparticles. Selectivity was tested by spiking river water samples with 50 other compounds (mycotoxins, antibacterials, conjugated hormones, UV filters, alkylphenols, etc.), and only aflatoxins and some benzophenones showed recoveries >60 %. This method proved to be simple and robust and allowed the determination of natural estrogenic compounds belonging to different classes in surface waters with MLOQs ranging between 0.003 and 0.1 μg L(-1). Graphical Abstract Determination of natural estrogenic compounds in water by magnetic solid phase extraction followed by liquid chromatography-tandem mass spectrometry analysis.

  18. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    PubMed

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe 3 O 4 ) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    NASA Astrophysics Data System (ADS)

    Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.

  20. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  1. Study of magnetic nanoparticles and overcoatings for biological applications including a sensor device

    NASA Astrophysics Data System (ADS)

    Grancharov, Stephanie G.

    I. A general introduction to the field of nanomaterials is presented, highlighting their special attributes and characteristics. Nanoparticles in general are discussed with respect to their structure, form and properties. Magnetic particles in particular are highlighted, especially the iron oxides. The importance and interest of integrating these materials with biological media is discussed, with emphasis on transferring particles from one medium to another, and subsequent modification of surfaces with different types of materials. II. A general route to making magnetic iron oxide nanoparticles is explained, both as maghemite and magnetite, including properties of the particles and characterization. A novel method of producing magnetite particles without a ligand is then presented, with subsequent characterization and properties described. III. Attempts to coat iron oxide nanoparticles with a view to creating biofunctional magnetic nanoparticles are presented, using a gold overcoating method. Methods of synthesis and characterization are examined, with unique problems to core-shell structures analyzed. IV. Solubility of nanoparticles in both aqueous and organic media is discussed and examined. The subsequent functionalization of the surface of maghemite and magnetite nanoparticles with a variety of biomaterials including block copolypeptides, phospholipids and carboxydextran is then presented. These methods are integral to the use of magnetic nanoparticles in biological applications, and therefore their properties are examined once tailored with these molecules. V. A new type of magnetic nanoparticle sensor-type device is described. This device integrates bio-and DNA-functionalized nanoparticles with conjugate functionalized silicon dioxide surfaces. These techniques to pattern particles to a surface are then incorporated into a device with a magnetic tunnel junction, which measures magnetoresistance in the presence of an external magnetic field. This configuration

  2. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy.

    PubMed

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory's development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery.

  3. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy

    PubMed Central

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory’s development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. PMID:26082630

  4. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  5. Synthesis and characterization of tat-mediated O-CMC magnetic nanoparticles having anticancer function

    NASA Astrophysics Data System (ADS)

    Zhao, Aijie; Yao, Peng; Kang, Chunshang; Yuan, Xubo; Chang, Jin; Pu, Peiyu

    2005-08-01

    This paper describes a new formulation of magnetic nanoparticles coated by a novel polymer matrix—O-carboxylmethylated chitosan (O-CMC) as drug/gene carrier. The O-CMC magnetic nanoparticles were derivatized with a peptide sequence from the HIV-tat protein to improve the translocational property and cellar uptake of the nanoparticles. To evaluate the O-MNPs-tat as drug carriers, MTX was incorporated as a model drug and MTX-loaded O-MNPs-tat with an average diameter of 45-60 nm were prepared and characterized by TEM, AFM and VSM. The cytotoxicity of MTX-loaded O-MNPs-tat was investigated with U-937 tumor cells. The results showed that the MTX-loaded O-MNPs-tat retained significant antitumor toxicity; additionally, sustained release of MTX from O-CMC nanoparticles was observed in vitro, suggesting that the tat-O-MNPs could be a novel magnetic targeting carrier.

  6. From oleic acid-capped iron oxide nanoparticles to polyethyleneimine-coated single-particle magnetofectins

    NASA Astrophysics Data System (ADS)

    Cruz-Acuña, Melissa; Maldonado-Camargo, Lorena; Dobson, Jon; Rinaldi, Carlos

    2016-09-01

    Various inorganic nanoparticle designs have been developed and used as non-viral gene carriers. Magnetic gene carriers containing polyethyleneimine (PEI), a well-known transfection agent, have been shown to improve DNA transfection speed and efficiency in the presence of applied magnetic field gradients that promote particle-cell interactions. Here we report a method to prepare iron oxide nanoparticles conjugated with PEI that: preserves the narrow size distribution of the nanoparticles, conserves magnetic properties throughout the process, and results in efficient transfection. We demonstrate the ability of the particles to electrostatically bind with DNA and transfect human cervical cancer (HeLa) cells by the use of an oscillating magnet array. Their transfection efficiency is similar to that of Lipofectamine 2000™, a commercial transfection reagent. PEI-coated particles were subjected to acidification, and acidification in the presence of salts, before DNA binding. Results show that although these pre-treatments did not affect the ability of particles to bind DNA they did significantly enhanced transfection efficiency. Finally, we show that these magnetofectins (PEI-MNP/DNA) complexes have no effect on the viability of cells at the concentrations used in the study. The systematic preparation of magnetic vectors with uniform physical and magnetic properties is critical to progressing this non-viral transfection technology.

  7. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    PubMed

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  8. Magnetically encoded luminescent composite nanoparticles through layer-by-layer self-assembly.

    PubMed

    Song, Erqun; Han, Weiye; Xu, Hongyan; Jiang, Yunfei; Cheng, Dan; Song, Yang; Swihart, Mark T

    2014-11-03

    Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2 @n Fe3 O4 composite nanoparticles, by using a layer-by-layer self-assembly approach based on electrostatic interactions, is described. Silica-coated CdTe quantum dots (CdTe@SiO2 ) serve as core templates for the deposition of alternating layers of Fe3 O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2 @n Fe3 O4 (n=1, 2, 3, …︁) composite nanoparticles with a defined number (n) of Fe3 O4 layers. Composite nanoparticles were characterized by zeta-potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2 @n Fe3 O4 composite nanoparticles exhibited excellent luminescence properties coupled with well-defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near-simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2 @n Fe3 O4 nanoparticles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic properties of iron nanoparticles prepared by exploding wire technique.

    PubMed

    Alqudami, Abdullah; Annapoorni, S; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2007-06-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to the normal bulk material. The room temperature hysteresis measurements upto a field of 1.0 tesla were performed on a suspension of iron particles in the solution as well as in the powders obtained by filtration. The hysteresis loops indicate that the particles are superparamagnetic in nature. The saturation magnetizations was approximately 60 emu/gm. As these iron particles are very sensitive to oxygen a coating of non-magnetic iron oxide tends to form around the particles giving it a core-shell structure. The core particle size is estimated theoretically from the magnetization measurements. Suspensions of iron nanoparticles in water have been proposed to be used as an effective decontaminant for ground water.

  10. Polymer-coated surface enhanced Raman scattering (SERS) gold nanoparticles for multiplexed labeling of chronic lymphocytic leukemia cells

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Parker, Edward P. K.; Walker, Gilbert C.; Wang, Chen

    2012-01-01

    The ease and flexibility of functionalization and inherent light scattering properties of plasmonic nanoparticles make them suitable contrast agents for measurement of cell surface markers. Immunophenotyping of lymphoproliferative disorders is traditionally undertaken using fluorescence detection methods which have a number of limitations. Herein, surface-enhanced Raman scattering (SERS) gold nanoparticles conjugated to monoclonal antibodies are used for the selective targeting of CD molecules on the surface of chronic lymphocytic leukemia (CLL) cells. Raman-active reporters were physisorbed on to the surface of 60 nm spherical Au nanoparticles, the particles were coated with 5kDa polyethylene glycol (PEG) including functionalities for conjugation to monoclonal IgG1 antibodies. A novel method for quantifying the number of antibodies bound to SERS probes on an individual basis as opposed to obtaining averages from solution was demonstrated using metal dots in transmission electron microscopy (TEM). The specificity of the interaction between SERS probes and surface CD molecules of CLL cells was assessed using Raman spectroscopy and dark field microscopy. An in-depth study of SERS probe targeting to B lymphocyte marker CD20 was undertaken, and proof-of-concept targeting using different SERS nanoparticle dyes specific for cell surface CD19, CD45 and CD5 demonstrated using SERS spectroscopy.

  11. Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media.

    PubMed

    Mukherjee, Joyeeta; Gupta, Munishwar N

    2012-11-08

    Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water) by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter) led to the formation of enzyme coated clusters of nanoparticles (ECCNs). These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering). Transmission electron microscopy (TEM), showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3) showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein.Circular Dichroism (CD)(with a spinning cell accessory) showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15% α-helix, 37%

  12. Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media

    PubMed Central

    2012-01-01

    Background Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water) by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Results Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter) led to the formation of enzyme coated clusters of nanoparticles (ECCNs). These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering). Transmission electron microscopy (TEM), showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3) showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein. Circular Dichroism (CD)(with a spinning cell accessory) showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15%

  13. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G

    USDA-ARS?s Scientific Manuscript database

    A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...

  14. Role of SiO2 coating in multiferroic CoCr2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamran, M.; Ullah, Asmat; Mehmood, Y.; Nadeem, K.; Krenn, H.

    2017-02-01

    Effect of silica (SiO2) coating concentration on structural and magnetic properties of multiferroic cobalt chromite (CoCr2O4) nanoparticles have been studied. The nanoparticles with average crystallite size in the range 19 to 28 nm were synthesised by sol-gel method. X-ray diffraction (XRD) analysis has verified the composition of single-phase cubic normal spinel structure of CoCr2O4 nanoparticles. The average crystallite size and cell parameter decreased with increasing SiO2 concentration. TEM image revealed that the shape of nanoparticles was non-spherical. Zero field cooled/field cooled (ZFC/FC) curves revealed that nanoparticles underwent a transition from paramagnetic (PM) state to collinear short-range ferrimagnetic (FiM) state, and this PM-FiM transition temperature decreased from 101 to 95 K with increasing SiO2 concentration or decreasing crystallite size. A conical spin state at Ts = 27 K was also observed for all the samples which decreased with decreasing average crystallite size. Low temperature lock-in transition was also observed in these nanoparticles at 12 K for uncoated nanoparticles which slightly shifted towards low temperature with decreasing average crystallite size. Saturation magnetization (Ms) showed decreasing trend with increasing SiO2 concentration, which was due to decrease in average crystallite size of nanoparticles and enhanced surface disorder in smaller nanoparticles. The temperature dependent AC-susceptibility also showed the decrease in the transition temperature (Tc), broadening of the Tc peak and decrease in magnetization with increasing SiO2 concentration or decreasing average crystallite size. In summary, the concentration of SiO2 has significantly affected the structural and magnetic properties of CoCr2O4 nanoparticles.

  15. Gas-Phase Synthesis of Gold- and Silica-Coated Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boies, Adam Meyer

    2011-12-01

    Composite nanoparticles consisting of separate core-shell materials are of interest for a variety of biomedical and industrial applications. By combining different materials at the nanoscale, particles can exhibit enhanced or multi-functional behavior such as plasmon resonance combined with superparamagnetism. Gas-phase nanoparticle synthesis processes are promising because they can continuously produce particles with high mass-yield rates. In this dissertation, new methods are investigated for producing gas-phase coatings of nanoparticles in an "assembly-line" fashion. Separate processes are developed to create coatings from silica and gold that can be used with a variety of core-particle chemistries. A photoinduced chemical vapor deposition (photo-CVD) method is used to produce silica coatings from tetraethyl orthosilicate (TEOS) on the surface of nanoparticles (diameter ˜5--70 nm). Tandem differential mobility analysis (TDMA) of the process demonstrates that particle coatings can be produced with controllable thicknesses (˜1--10 nm) by varying system parameters such as precursor flow rate. Electron microscopy and infrared spectroscopy confirm that the photo-CVD films uniformly coat the particles and that the coatings are silica. In order to describe the coating process a chemical mechanism is proposed that includes gas-phase, surface and photochemical reactions. A chemical kinetics model of the mechanism indicates that photo-CVD coating proceeds primarily through the photodecomposition of TEOS which removes ethyl groups, thus creating activated TEOS species. The activated TEOS then adsorbs onto the surface of the particle where a series of subsequent reactions remove the remaining ethyl groups to produce a silica film with an open site for further attachment. The model results show good agreement with the experimentally measured coating trends, where increased TEOS flow increases coating thickness and increased nitrogen flow decreases coating thickness. Gold

  16. Investigation of magnetic properties of Fe{sub 3}O{sub 4} nanoparticles using temperature dependent magnetic hyperthermia in ferrofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemala, H.; Thakur, J. S.; Lawes, G.

    2014-07-21

    Rate of heat generated by magnetic nanoparticles in a ferrofluid is affected by their magnetic properties, temperature, and viscosity of the carrier liquid. We have investigated temperature dependent magnetic hyperthermia in ferrofluids, consisting of dextran coated superparamagnetic Fe{sub 3}O{sub 4} nanoparticles, subjected to external magnetic fields of various frequencies (188–375 kHz) and amplitudes (140–235 Oe). Transmission electron microscopy measurements show that the nanoparticles are polydispersed with a mean diameter of 13.8 ± 3.1 nm. The fitting of experimental dc magnetization data to a standard Langevin function incorporating particle size distribution yields a mean diameter of 10.6 ± 1.2 nm, and a reduced saturation magnetization (∼65 emu/g) comparedmore » to the bulk value of Fe{sub 3}O{sub 4} (∼95 emu/g). This is due to the presence of a finite surface layer (∼1 nm thickness) of non-aligned spins surrounding the ferromagnetically aligned Fe{sub 3}O{sub 4} core. We found the specific absorption rate, measured as power absorbed per gram of iron oxide nanoparticles, decreases monotonically with increasing temperature for all values of magnetic field and frequency. Using the size distribution of magnetic nanoparticles estimated from the magnetization measurements, we have fitted the specific absorption rate versus temperature data using a linear response theory and relaxation dissipation mechanisms to determine the value of magnetic anisotropy constant (28 ± 2 kJ/m{sup 3}) of Fe{sub 3}O{sub 4} nanoparticles.« less

  17. Nanolubricant: magnetic nanoparticle based

    NASA Astrophysics Data System (ADS)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  18. The influence of PEG-4000 and silica on crystal structure and magnetic properties of magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puspitarum, Deska Lismawenning; Hermawan, Agung; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id

    2016-04-19

    In this paper, reports the influence of polyethylene glycol (PEG-4000) and silica on crystal structure and magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles which is synthesized by the co-precipitation method. The particle size of before coated MgFe{sub 2}O{sub 4} was around 10.5 nm, and became 5.2 nm after PEG-4000 coating and 18.8 nm after silica coating. After coating, there were appeared new phases, α-Fe{sub 2}O{sub 3} (antiferromagnetic), SiO{sub 2} and γ-FeO(OH) which are paramagnetics. The second phase sample decreased responses to the external field. Transmission Electron Microscopy (TEM) morphology analysis on nanoparticles which was coated with PEG 4000 showed that the particles becomemore » more spherical, more dispersive, and less aglomerated. The magnetic hysteresis loops which was investigated with Vibrating Sample Magnetometer (VSM) indicated that coercivity of MgFe{sub 2}O{sub 4} was 120.7 Oe, and then decreased to 40.9 Oe after coating and 34.7 Oe for coating with PEG-4000 and silica, respectively. At 15 kOe, the magnetization value decreased from 2.69 emu/g to 0.96 emu/g after coating with PEG-4000 and increased 2.82 emu/g after silica coating. The result revealed the coating with both PEG-4000 and silica influence the magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles.« less

  19. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung

    2009-04-01

    In general, gold nanoparticles are recognized as being as nontoxic. Still, there have been some reports on their toxicity, which has been shown to depend on the physical dimension, surface chemistry, and shape of the nanoparticles. In this study, we carry out an in vivo toxicity study using 13 nm-sized gold nanoparticles coated with PEG (MW 5000). In our findings the 13 nm sized PEG-coated gold nanoparticles were seen to induce acute inflammation and apoptosis in the liver. These nanoparticles were found to accumulate in the liver and spleen for up to 7 days after injection and to have longmore » blood circulation times. In addition, transmission electron microscopy showed that numerous cytoplasmic vesicles and lysosomes of liver Kupffer cells and spleen macrophages contained the PEG-coated gold nanoparticles. These findings of toxicity and kinetics of PEG-coated gold nanoparticles may have important clinical implications regarding the safety issue as PEG-coated gold nanoparticles are widely used in biomedical applications.« less

  20. Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements

    PubMed Central

    Torrey, Jessica D.; Kirschling, Teresa L.; Greenlee, Lauren F.

    2015-01-01

    The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces. While the technique has traditionally been used for measuring adsorption to flat surfaces and thin ridged films, it can also be extended to study adsorption to nanoparticle surfaces when the nanoparticles are fixed to the crystal surface. The sensitivity and accuracy of the measurement depend on the users’ ability to reproducibly prepare a thin uniform nanoparticle coating. This study evaluated four coating techniques, including spin coating, spray coating, drop casting, and electrophoretic deposition, for two unique particle chemistries [nanoscale zero valent iron (nZVI) and titanium dioxide (TiO2)] to produce uniform and reproducible nanoparticle coatings for real-time quartz-crystal microbalance measurements. Uniform TiO2 coatings were produced from a 50 mg/mL methanol suspension via spin coating. Nanoscale zero-valent iron was best applied by spray coating a low concentration 1.0 mg/mL suspended in methanol. The application of multiple coatings, rather than an increase in the suspension concentration, was the best method to increase the mass of nanoparticles on the crystal surface while maintaining coating uniformity. An upper mass threshold was determined to be approximately 96 µg/cm2; above this mass, coatings no longer maintained their uniform rigid characteristic, and a low signal to noise ratio resulted in loss of measurable signal from crystal resonances above the fundamental. PMID:26958434

  1. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.

    PubMed

    Jo, Yun Kee; Seo, Jeong Hyun; Choi, Bong-Hyuk; Kim, Bum Jin; Shin, Hwa Hui; Hwang, Byeong Hee; Cha, Hyung Joon

    2014-11-26

    During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields.

  2. Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications.

    PubMed

    Silva, Luisa H A; da Silva, Jaqueline R; Ferreira, Guilherme A; Silva, Renata C; Lima, Emilia C D; Azevedo, Ricardo B; Oliveira, Daniela M

    2016-07-18

    Nanoparticles' unique features have been highly explored in cellular therapies. However, nanoparticles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of gold and maghemite nanoparticles functionalized with 2,3-dimercaptosuccinic acid (DMSA), Au-DMSA and γ-Fe2O3-DMSA respectively, with human mesenchymal stem cells. Also, we tested these nanoparticles as tracers for mesenchymal stem cells in vivo tracking by computed tomography and as agents for mesenchymal stem cells magnetic targeting. Significant cell death was not observed in MTT, Trypan Blue and light microscopy analyses. However, ultra-structural alterations as swollen and degenerated mitochondria, high amounts of myelin figures and structures similar to apoptotic bodies were detected in some mesenchymal stem cells. Au-DMSA and γ-Fe2O3-DMSA labeling did not affect mesenchymal stem cells adipogenesis and osteogenesis differentiation, proliferation rates or lymphocyte suppression capability. The uptake measurements indicated that both inorganic nanoparticles were well uptaken by mesenchymal stem cells. However, Au-DMSA could not be detected in microtomograph after being incorporated by mesenchymal stem cells. γ-Fe2O3-DMSA labeled cells were magnetically responsive in vitro and after infused in vivo in an experimental model of lung silicosis. In terms of biocompatibility, the use of γ-Fe2O3-DMSA and Au-DMSA as tracers for mesenchymal stem cells was assured. However, Au-DMSA shown to be not suitable for visualization and tracking of these cells in vivo by standard computed microtomography. Otherwise, γ-Fe2O3-DMSA shows to be a promising agent for mesenchymal stem cells magnetic targeting.

  3. Bioresponsive polymer coating on nanoparticles

    NASA Astrophysics Data System (ADS)

    Laemthong, Tunyaboon

    Nanotechnology incorporated with molecular biology became a promising way to treat cancer. The size of nanoparticles enables them to overcome the side effects noticed in cancer treatment like chemotherapy and surgery. Various types and shapes of nanoparticles have been synthesized and used in drug delivery to tumor sites. However, one of problems of using these nanoparticles is the aggregation after injecting them into human body due to flow rate of bloodstream. The coagulation and aggregation will result in clogging blood vessel and lower therapeutic efficacy. In this thesis, a solution to the aggregation problem was proposed, which is coating biopolymer on nanoparticles (NPs). The experimental sections covered synthesis and characterization of breast cancer specific targeting drug-encapsulated NPs and biopolymer coating on the surface of Au-Fe3O4 NPs for thermal therapy. Furthermore, in vitro studies of these NPs with breast cancer cells were also included. The specific targeting anticancer drug-encapsulated NRs showed significant inhibition in BT-474 breast cancer cell growth. The Au-Fe3O4 NPs has a possibility to treat cancer cells using the thermal therapy approach.

  4. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  5. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating.

    PubMed

    Meyer, Hajo; Winkler, Felix; Kunz, Peter; Schmidt, Annette M; Hamacher, Alexandra; Kassack, Matthias U; Janiak, Christoph

    2015-12-07

    Maghemite (Fe2O3) iron oxide nanoparticles (IONPs) were synthesized, modified with covalent surface-bound CO-releasing molecules of a tri(carbonyl)-chlorido-phenylalaninato-ruthenium(II) complex (CORM), and coated with a dextran polymer. The time- and temperature-dependent CO release from this CORM-3 analogue was followed by a myoglobin assay. A new measurement method for the myoglobin assay was developed, based on confining "water-soluble" polymer-coated Dextran500k@CORM@IONP particles in hollow spheres of nontoxic and easily prepared calcium alginate. Dropping a mixture of Dextran500k@CORM@IONP and sodium alginate into a CaCl2 solution leads to stable hollow spheres of Ca(2+) cross-linked alginate which contain the Dextran500k@CORM@IONP particles. This "alginate-method" (i) protects CORM-3 analogues from rapid CO-displacement reactions with a protein, (ii) enables a spatial separation of the CORM from its surrounding myoglobin assay with the alginate acting as a CO-permeable membrane, and (iii) allows the use of substances with high absorptivity (such as iron oxide nanoparticles) in the myoglobin assay without interference in the optical path of the UV cell. Embedding the CORM@IONP nanoparticles in the alginate vessel represents a compartmentation of the reactive component and allows for close contact with, yet facile separation from, the surrounding myoglobin assay. The half-life of the CO release from Dextran500k@CORM@IONP particles surrounded by alginate was determined to be 890 ± 70 min at 20 °C. An acceleration of the CO release occurs at higher temperature with a half-life of 172 ± 27 min at 37 °C and 45 ± 7 min at 50 °C. The CO release can be triggered in an alternating current magnetic field (31.7 kA m(-1), 247 kHz, 39.9 mT) through local magnetic heating of the susceptible iron oxide nanoparticles. With magnetic heating at 20 °C in the bulk solution, the half-life of CO release from Dextran500k@CORM@IONP particles decreased to 155 ± 18 min

  6. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

    PubMed

    Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.

  7. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    PubMed Central

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  8. Tailored magnetic nanoparticles for in vitro, in vivo and in situ magnetorelaxometry

    NASA Astrophysics Data System (ADS)

    Pisanic, Thomas R., II

    The development of novel methods of probing biological interactions is critical to the advancement of biomedical science. Recent progress in the synthesis and science of nanoscale structures has engendered a renaissance in the evolution of techniques aimed at the analysis of these interactions. The use of nanomaterials provides the researcher with access to the extended quantum behaviors of these materials and the ability to intimately interact with the fundamental subunits of biology. Magnetic materials on this size scale, such as magnetic nanoparticles (MNPs), also exhibit unique properties not available in larger structures and have likewise become of chief interest in the field of nanotechnology. Through exploitation of various synthesis techniques and parameters, the physicochemical and magnetic properties of magnetic nanoparticles can be exquisitely controlled. Magnetorelaxometry is the field of study concerned with the mechanisms of magnetic relaxation and the development of applications that capitalize upon these phenomena. The preferred instrument for the analysis of these magnetic properties is the superconducting quantum interference device (SQUID). This work focuses on the development and chemical modification of MNPs for use with this instrument and the demonstration of novel magnetorelaxometric applications in biomedicine. The basic chemical synthesis of magnetic nanoparticles is first developed and demonstrated, after which the SQUID system and the magnetic properties of a library of synthesis products are analyzed and evaluated for use in magnetorelaxometry. An in vitro assay for sepsis diagnostics is then developed based upon the conjugation of anti-Escherichia coli O157:H7 antibodies to magnetic nanoparticles and the magnetorelaxometric quantification of binding of these MNPs to the target pathogen in buffer, serum and blood. Next, parameters for the conjugation of insecticidic crystal proteins to MNPs are developed and optimized for an in vivo

  9. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery.

    PubMed

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-04-10

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release.

  10. Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery

    PubMed Central

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-01-01

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release. PMID:25867479

  11. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu

    2013-05-01

    Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of

  12. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia

    NASA Astrophysics Data System (ADS)

    Yu, Xia; Zhu, Yufang

    2016-01-01

    We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO2), and the rattle-type structured MMS nanoparticles (MCN/mSiO2) were obtained after the removal of the carbon layers from MCN@C/mSiO2 nanoparticles. The morphology, structure, magnetic hyperthermia ability, drug release behavior, in vitro cytotoxicity and cellular uptake of MMS nanoparticles were investigated. The results revealed that the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had spherical morphology and average particle sizes of 390 and 320 nm, respectively. The MCN@C/mSiO2 nanoparticles exhibited higher magnetic hyperthermia ability compared to the MCN/mSiO2 nanoparticles, but the MCN/mSiO2 nanoparticles had higher drug loading capacity. Both MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had similar drug release behavior with pH-controlled release and temperature-accelerated release. Furthermore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles showed low cytotoxicity and could be internalized into HeLa cells. Therefore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles would be promising for the combination of drug delivery and magnetic hyperthermia treatment in cancer therapy.

  13. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia.

    PubMed

    Yu, Xia; Zhu, Yufang

    2016-01-01

    We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO 2 ), and the rattle-type structured MMS nanoparticles (MCN/mSiO 2 ) were obtained after the removal of the carbon layers from MCN@C/mSiO 2 nanoparticles. The morphology, structure, magnetic hyperthermia ability, drug release behavior, in vitro cytotoxicity and cellular uptake of MMS nanoparticles were investigated. The results revealed that the MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles had spherical morphology and average particle sizes of 390 and 320 nm, respectively. The MCN@C/mSiO 2 nanoparticles exhibited higher magnetic hyperthermia ability compared to the MCN/mSiO 2 nanoparticles, but the MCN/mSiO 2 nanoparticles had higher drug loading capacity. Both MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles had similar drug release behavior with pH-controlled release and temperature-accelerated release. Furthermore, the MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles showed low cytotoxicity and could be internalized into HeLa cells. Therefore, the MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles would be promising for the combination of drug delivery and magnetic hyperthermia treatment in cancer therapy.

  14. Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Petryk, Alicia A.; Hoopes, Paul J.

    2011-03-01

    Hyperthermia has been shown to be an effective radiosensitizer. Its utility as a clinical modality has been limited by a minimally selective tumor sensitivity and the inability to be delivered in a tumor-specific manner. Recent in vivo studies (rodent and human) have shown that cancer cell-specific cytotoxicity can be effectively and safely delivered via iron oxide magnetic nanoparticles (mNP) and an appropriately matched noninvasive alternating magnetic field (AMF). To explore the tumor radiosensitization potential of mNP hyperthermia we used a syngeneic mouse breast cancer model, dextran-coated 110 nm hydrodynamic diameter mNP and a 169 kHz / 450 Oe (35.8 kA/m) AMF. Intradermally implanted (flank) tumors (150 +/- 40 mm3) were treated by injection of 0.04 ml mNP (7.5 mg Fe) / cm3 into the tumor and an AMF (35.8 kA/m and 169 kHz) exposure necessary to achieve a CEM (cumulative equivalent minute) thermal dose of 60 (CEM 60). Tumors were treated with mNP hyperthermia (CEM 60), radiation alone (15 Gy, single dose) and in combination. Compared to the radiation and heat alone treatments, the combined treatment resulted in a greater than two-fold increase in tumor regrowth tripling time (tumor treatment efficacy). None of the treatments resulted in significant normal tissue toxicity or morbidity. Studies were also conducted to compare the radiosensitization effect of mNP hyperthermia with that of microwave-induced hyperthermia. The effects of incubation of nanoparticles within tumors (to allow nanoparticles to be endocytosed) before application of AMF and radiation were determined. This preliminary information suggests cancer cell specific hyperthermia (i.e. antibody-directed or anatomically-directed mNP) is capable of providing significantly greater radiosensitization / therapeutic ratio enhancement than other forms of hyperthermia delivery.

  15. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Turcheniuk, Kostiantyn; Tarasevych, Arkadii V.; Kukhar, Valeriy P.; Boukherroub, Rabah; Szunerits, Sabine

    2013-10-01

    The synthesis of superparamagnetic nanostructures, especially iron-oxide based nanoparticles (IONPs), with appropriate surface functional groups has been intensively researched for many high-technological applications, including high density data storage, biosensing and biomedicine. In medicine, IONPs are nowadays widely used as contrast agents for magnetic resonance imaging (MRI), in hyperthermia therapy, but are also exploited for drug and gene delivery, detoxification of biological fluids or immunoassays, as they are relatively non-toxic. The use of magnetic particles in vivo requires IONPs to have high magnetization values, diameters below 100 nm with overall narrow size distribution and long time stability in biological fluids. Due to the high surface energies of IONPs agglomeration over time is often encountered. It is thus of prime importance to modify their surface to prevent aggregation and to limit non-specific adsorption of biomolecules onto their surface. Such chemical modifications result in IONPs being well-dispersed and biocompatible, and allow for targeted delivery and specific interactions. The chemical nature of IONPs thus determines not only the overall size of the colloid, but also plays a significant role for in vivo and in vitro applications. This review discusses the different concepts currently used for the surface functionalization and coating of iron oxide nanoparticles. The diverse strategies for the covalent linking of drugs, proteins, enzymes, antibodies, and nucleotides will be discussed and the chemically relevant steps will be explained in detail.

  16. Comparison of magnetic properties and high-temperature phase stability of phosphate- and oleic acid-capped iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Muthukumaran, T.; Pati, S. S.; Singh, L. H.; de Oliveira, A. C.; Garg, V. K.; Philip, John

    2018-03-01

    We study the influence of dynamic capping of Fe3O4 nanoparticles with phosphate and oleic acid, on their structure, magnetic properties and thermal stability of magnetic nanoparticles. It is observed that the phosphate coating on iron oxide lowers the dipole-dipole interaction significantly, as compared to oleic acid capping. The Mössbauer results show that the spin canting order of oxidized shell and the mean hyperfine field values follow the order Fe0 (uncoated) > FeOA (oleic acid capped) > FP1 (phosphate capped). The uncoated Fe3O4 nanoparticle is non-stoichiometric in nature due to oxidation, whereas FP1 and FeOA are of the correct stoichiometry. Mössbauer and photoacoustic spectroscopic studies on air-annealed phosphate-coated magnetite nanoparticles confirm that the magnetic iron oxide phase is preserved up to 833 K and a complete conversion of Fe3O4 into the non-magnetic hematite phase occurs at 1173 K. The iron oxide air annealed at 833 K is found to have a shell of orthorhombic α-Fe2O3 over the magnetite core. However, in oleic acid-coated nanoparticles, the magnetic to non-magnetic phase transformation commences at 623 K and the conversion was complete at 823 K. The photoacoustic spectra of the air-annealed phosphate-coated Fe3O4 particles showed a flipping of the absorption intensity between 500-700 nm and 800-1000 nm, due to the conversion of Fe3O4 to γ-Fe2O3 at 923 and γ-Fe2O3 to α-Fe2O3 at 1173 K, respectively. The γ-Fe2O3 showed an intense absorption peak above 750 nm, whereas the α-Fe2O3 showed a peak broadening in the wavelength range of 600-700 nm, in addition to the strong peaks at a wavelength above 750 nm. This study suggests that the photoacoustic spectroscopy can distinguish clearly the three polymorphs of iron oxide i.e., Fe3O4, γ-Fe2O3 and α-Fe2O3. Our results confirm the ability of phosphate-capped iron oxide particles to retard the oxidation of Fe2+ contents during the crystal growth process.

  17. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

    NASA Astrophysics Data System (ADS)

    Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Candiota, Ana Paula; Roca, Alejandro G.; Acosta, Milena; Schwartz, Simó; Arus, Carles; Marquina, Clara; Martinez, Gema; Santamaria, Jesus

    2014-03-01

    Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (<10 μg Fe/ml). Moreover, cell uptake assays on HeLa and U87MG and hemolysis tests have demonstrated that TEG-SPIONs and DMSA-SPIONs were well internalized by the cells and did not induce any adverse effect on the red blood cells at the tested concentrations. Finally, in vitro relaxivity measurements and post mortem MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

  18. Magnetic luminescent nanoparticles as internal calibration for an immunoassay for ricin

    NASA Astrophysics Data System (ADS)

    Dosev, Dosi; Nichkova, Mikaela; Ma, Zhi-Ya; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2008-02-01

    Fluorescence techniques rely on measurement of relative fluorescence units and require calibration to obtain reliable and comparable quantitative data. Fluorescent immunoassays are a very sensitive and convenient method of choice for rapid detection of biotoxins, such as ricin. Here we present the application of magnetic luminescent nanoparticles (MLNPs) with a magnetic core of Fe 3O 4 and a fluorescent shell of Eu:Gd IIO 3 as carriers for a nanobead-immunoassay for the detection of ricin with internal calibration. A sandwich immunoassay for ricin was performed on the surface of the MLNPs. The particles were functionalized with capture polyclonal antibodies. Anti-ricin antibodies labeled with Alexa Fluor dye were used as the detecting antibodies. After magnetic extraction, the amount of ricin bound to the particle surface was quantified and related to the fluorescence signal of the nanoparticles. In this new platform, the MLNPs have three main functions: (1) a probe for the specific extraction of the target analyte from the sample; (2) a carrier in the quantitative immunoassay with magnetic separation; and (3) an internal standard in the fluorescence measurement of the dye reporter. The MLNPs serve as an internal control for the total analysis including extraction and assay performance. This approach eliminates the experimental error inherent in particle extraction and measurement of absolute organic dye fluorescence intensities. All fluorescent measurements were performed in a microplate reader. The standard curve for ricin had a dynamic range from 20 ng/ml to 100 μg/ml with a detection limit of 5 ng/ml. The configuration that has been developed can be easily adapted to a high throughput miniaturized system.

  19. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    NASA Astrophysics Data System (ADS)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  20. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies

    PubMed Central

    Colombo, Miriam; Fiandra, Luisa; Alessio, Giulia; Mazzucchelli, Serena; Nebuloni, Manuela; De Palma, Clara; Kantner, Karsten; Pelaz, Beatriz; Rotem, Rany; Corsi, Fabio; Parak, Wolfgang J.; Prosperi, Davide

    2016-01-01

    Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect. PMID:27991503

  1. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions.

    PubMed

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-08-30

    A novel molecularly imprinted polymer (MIP)-coated magnetic TiO2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC-MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, "green" and low-cost degradation of CR in industrial printing and dyeing wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Impact of surface coated magnetite used in magnetic drug delivery system on immune response

    NASA Astrophysics Data System (ADS)

    Oaku, Yoshihiro; Tamada, Junya; Mishima, Fumihito; Akiyama, Yoko; Osako, Mariana Kiomy; Koriyama, Hiroshi; Nakagami, Hironori; Nishijima, Shigehiro

    2015-05-01

    Magnetic drug delivery system (MDDS) is a technique to effectively accumulate drugs, which are combined with ferromagnetic particles, into the affected area using magnetic force control. This study intends to apply MDDS for immunotherapy by enhancing immune responses by a surface treatment of a ferromagnetic particle. The objective of this study is to give the adjuvant effect to a ferromagnetic particle by the surface treatment with alum, which is known as one of the common adjuvants that activates inflammasome pathway. First, magnetite was prepared as a ferromagnetic particle and coated with alum. Alum-coated magnetite increased the expression of caspase-1, which is an activated indicator of inflammasome, in the culture of human monocyte cell (THP-1 cell). To evaluate the potential of the surface coated particles, the particles were subcutaneously injected to mice with a peptide vaccine. As a result, the antibody titer was increased by the surface coated particles as assessed by ELISA. Although a magnetic force has not yet applied in this study, the administration experiment to mice using magnetic force control is our next step. In conclusion, we modified the immune response to magnetite by coating the surface with alum. This can lead to a clinical application for vaccine therapy in future.

  3. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Prabha, G.; Raj, V.

    2016-06-01

    In the present research work, the anticancer drug 'curcumin' is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe3O4) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183-390 nm with a zeta potential value of 26-41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix.

  4. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Lee, Nohyun; Kang, Hyun Wook; Oh, Junghwan

    2016-03-01

    Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.

  5. Magnetic nanoparticle-enhanced PCR for the detection and identification of Staphylococcus aureus and Salmonella enteritidis.

    PubMed

    Houhoula, Dimitra; Papaparaskevas, Joseph; Zatsou, Katerina; Nikolaras, Nikolaos; Malkawi, Hanan I; Mingenot-Leclercq, Marie-Paule; Konteles, Spyros; Koussisis, Stamatis; Tsakris, Athanassios; Charvalos, Ekatherina

    2017-07-01

    This paper evaluated magnetic nanoparticle-enhanced PCR for the detection and identification of Staphylococcus aureus and Salmonella enteritidis. Two different types of magnetic nanoparticles designated MPIO (iron concentration 2.5 mg/ml, size 1 µm) and NP (iron concentration 8.7 mg/ml, size 60 nm), both conjugated with S. aureus or S. enteritidis antibodies were evaluated as an enrichment procedure for PCR-detection of the pathogens in Trypticase Soy Broth, milk, blood and meat broth. Bacterial suspensions (1.5x108 cfu/ml) were prepared and serial diluted 10-1. The MPIO and NP nanoparticles were added, followed by incubation for 1 hour at room temperature, magnetic separation of the pellet, DNA extraction and PCR, targeting the femA and invA sequences. The nanoparticle-free and the NP-supplemented dilutions were positive down to the 1.5x102 cfu/ml concentration for both bacteria. The MPIO-supplemented dilutions were positive down to approx. 2x100 cfu/ml concentration, respectively. Bacteria-free TSB was negative by PCR. MPIO nanoparticles (size 1 µm) enhanced the detection of S. aureus and S. enteritidis by PCR, whilst NP nanoparticles (size 60 nm) did not, thus indicating that the size of the magnetic nanoparticles play a significant role in the enrichment procedure.

  6. Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings

    NASA Astrophysics Data System (ADS)

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich

    2014-05-01

    Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution.

  7. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  8. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials.

    PubMed

    Vo, Duc-Thang; Sabrina, Sabrina; Lee, Cheng-Kang

    2017-04-01

    Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan due to the increased cationic -NH 3 + groups resulted from the intra- and intermolecular interactions between the carboxyl and amino groups. CMCS was grafted onto the surface of silica coated magnetic nanoparticles (MNPs) to obtain magnetically retrievable and deliverable antimicrobial nanoparticles (MNPs@CMCS). The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs). The deposition of AgNPs on the surface of MNPs@CMCS could significantly increase its antimicrobial activity against planktonic cells due to the dual action of CMCS and AgNPs. Due to its high magnetism, the as-prepared MNPs@CMCS-Ag could be efficiently delivered into an existing biofilm under the guidance of an applied magnetic field. Without direct contact, the Ag ions and/or radical oxygen species (ROS) released from the deposited Ag nanoparticles could effectively kill the bacteria embedded in the extracellular polymeric substances (EPS) matrix of biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system.

    PubMed

    Barahuie, Farahnaz; Dorniani, Dena; Saifullah, Bullo; Gothai, Sivapragasam; Hussein, Mohd Zobir; Pandurangan, Ashok Kumar; Arulselvan, Palanisamy; Norhaizan, Mohd Esa

    2017-01-01

    Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell.

  10. Cancer hyperthermia using magnetic nanoparticles.

    PubMed

    Kobayashi, Takeshi

    2011-11-01

    Magnetic-nanoparticle-mediated intracellular hyperthermia has the potential to achieve localized tumor heating without any side effects. The technique consists of targeting magnetic nanoparticles to tumor tissue followed by application of an external alternating magnetic field that induces heat through Néel relaxation loss of the magnetic nanoparticles. The temperature in tumor tissue is increased to above 43°C, which causes necrosis of cancer cells, but does not damage surrounding normal tissue. Among magnetic nanoparticles available, magnetite has been extensively studied. Recent years have seen remarkable advances in magnetite-nanoparticle-mediated hyperthermia; both functional magnetite nanoparticles and alternating-magnetic-field generators have been developed. In addition to the expected tumor cell death, hyperthermia treatment has also induced unexpected biological responses, such as tumor-specific immune responses as a result of heat-shock protein expression. These results suggest that hyperthermia is able to kill not only local tumors exposed to heat treatment, but also tumors at distant sites, including metastatic cancer cells. Currently, several research centers have begun clinical trials with promising results, suggesting that the time may have come for clinical applications. This review describes recent advances in magnetite nanoparticle-mediated hyperthermia. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, Jefferson F. D. F.; Costa, Mateus C.; Louro, Sonia R. W.; Bruno, Antonio C.

    2017-03-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10-7 Am2. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am2/kg (i.e 0.4%) at saturation and below 0.5 Am2/kg (i.e. 10%) at remanence.

  12. Synthesis and surface modification of magnetic nanoparticles for in vivo biomedical applications

    NASA Astrophysics Data System (ADS)

    Sun, Conroy Ghin Chee

    Magnetic nanoparticles (MNPs) possess unique magnetic properties and the ability to function at the cellular and molecular level of biological interactions making them an attractive platform to serve as contrast agents for magnetic resonance imaging (MRI) and as carriers for drug delivery. Recent advances in nanotechnology have improved the ability to engineer the features and properties of MNPs allowing them to be tailored specifically for these biomedical applications. MNPs composed of metallic, oxide, and nanoalloy cores and a variety of protective coatings are being investigated for applications in the detection, diagnosis, and treatment of malignant tumors, cardiovascular disease, and neurological disease. To better address specific clinical needs, MNPs with higher magnetic moments, non-fouling surfaces, and increased functionalities are now being developed. The goal of this interdisciplinary research is to develop novel superparamagnetic nanoprobes for non-invasive cancer diagnosis and treatment. This strategy utilizes iron oxide nanoparticles coated with various biocompatible polymers, such as poly(ethylene glycol) (PEG) and chitosan, to serve as both a contrast agent for MRI and a carrier for drug delivery. In this project, we have conjugated various targeting agents, such as folic acid (FA) and chlorotoxin (CTX), to these iron oxide nanoparticles to improve their tumor specific accumulation. The folate receptor is known to be overexpressed on the surfaces of many human tumor cells, including ovarian, lung, breast, endometrial, renal, and colon cancers, while CTX binds with high affinity to gliomas, medulloblastomas, and other tumors of the neuroectodermal origin. To evaluate its effectiveness as a targeted drug carrier, methotrexate (MTX), a convention chemotherapeutic agent, was conjugated to iron oxide nanoparticles in combination with CTX. Specific tumor cell targeting of our nanoparticle system has been demonstrated through increased contrast

  13. A Novel Method of Coating Orthodontic Archwires with Nanoparticles

    PubMed Central

    Syed, Shibli S; Kulkarni, Dinraj; Todkar, Rohit; Bagul, Ravikiran S; Parekh, Kreena; Bhujbal, Nikita

    2015-01-01

    Background: The major hazard to the orthodontic tooth movement is the friction developing at the bracket wire interface. In the past, there have been various attempts to reduce this friction. We believe that coating the commercially available orthodontic wires with nanoparticles can result in a successful reduction of this friction. The objective of this study is to develop a novel method of coating orthodontic archwires with nanoparticles. Materials and Methods: Stainless steel (Ormco, CA, USA), titanium molybdenum alloy (Ormco, CA, USA) and nickel-titanium (G and H Wire Company, USA) orthodontic wires with a rectangular cross-section dimension of 0.019”× 0.025”, were selected. The wires were later coated with a uniform and smooth nanoparticle film using 100 ml nanocremics. The coating procedure described in this article is a sol-gel thin film dip coating method. Results: The coating procedure was verified by comparing the surface topography of nanocoated archwires with the commercially available archwires in an environmental scanning electron microscope (ESEM). The ESEM images prove that the surface topography of the coated wires was found to be smoother with less surface deteriorations as compared to the commercially available wires. Conclusion: Commercially available orthodontic wires can be successfully coated using a novel method of sol-gel thin film dip coating method. PMID:26028899

  14. Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy.

    PubMed

    Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Sreejith, Raveendran; Nagaoka, Yutaka; Iwai, Seiki; Suzuki, Masashi; Fukuda, Takahiro; Hasumura, Takashi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, Dasappan Nair

    2014-06-01

    Microbial exopolysaccharides (EPSs) are highly heterogeneous polymers produced by fungi and bacteria that have garnered considerable attention and have remarkable potential in various fields, including biomedical research. The necessity of biocompatible materials to coat and stabilize nanoparticles is highly recommended for successful application of the same in biomedical regime. In our study we have coated magnetic nanoparticles (MNPs) with two bacterial EPS-mauran (MR) and gellan gum (GG). The biocompatibility of EPS coated MNPs was enhanced and we have made it multifunctional by attaching targeting moiety, folate and with encapsulation of a potent anticancerous drug, 5FU. We have conjugated an imaging moiety along with nanocomposite to study the effective uptake of nanoparticles. It was also observed that the dye labeled folate targeted nanoparticles could effectively enter into cancer cells and the fate of nanoparticles was tracked with Lysotracker. The biocompatibility of EPS coated MNPs and synergistic effect of magnetic hyperthermia and drug for enhanced antiproliferation of cancer cells was also evaluated. More than 80% of cancer cells was killed within a period of 60 min when magnetic hyperthermia (MHT) was applied along with drug loaded EPS coated MNPs, thus signifying the combined effect of drug loaded MNPs and MHT. Our results suggests that MR and GG coated MNPs exhibited excellent biocompatibility with low cell cytotoxicity, high therapeutic potential, and superparamagnetic behavior that can be employed as prospective candidates for bacterial EPS based targeted drug delivery, cancer cell imaging and for MHT for killing cancer cells within short period of time.

  15. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    NASA Astrophysics Data System (ADS)

    Jiemsakul, Thanakorn; Manakasettharn, Supone; Kanharattanachai, Sivakorn; Wanna, Yongyuth; Wangsuya, Sujint; Pratontep, Sirapat

    2017-01-01

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO2 laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs.

  16. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model.

    PubMed

    Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu

    2013-05-21

    Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.

  17. Signal enhancement using a switchable magnetic trap

    DOEpatents

    Beer, Neil Reginald [Pleasanton, CA

    2012-05-29

    A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.

  18. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  19. Rapid detection of Staphylococcus aureus in dairy and meat foods by combination of capture with silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification.

    PubMed

    Chen, Xingxing; Wu, Xiaoli; Gan, Min; Xu, Feng; He, Lihua; Yang, Dong; Xu, Hengyi; Shah, Nagendra P; Wei, Hua

    2015-03-01

    Staphylococcus aureus is one of the main pathogens in dairy and meat products; therefore, developing a highly sensitive and rapid method for its detection is necessary. In this study, a quantitative detection method for Staph. aureus was developed using silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification. First, genomic DNA was extracted from lysed bacteria using silica-coated magnetic nanoparticles and amplified using thermophilic helicase-dependent isothermal amplification. After adding the nucleic-acid dye SYBR Green I to the amplicons, the fluorescence intensity was observed using a UV lamp or recorded using a fluorescence spectrophotometer. This detection system had a detection limit of 5×10(0) cfu/mL in pure culture and milk-powder samples and 5×10(1) cfu/mL in pork samples using a UV light in less than 2h. In addition, a good linear relationship was obtained between fluorescence intensity and bacterial concentrations ranging from 10(2) to 10(4) cfu/mL under optimal conditions. Furthermore, the results from contaminated milk powder and pork samples suggested that the detection system could be used for the quantitative analysis of Staph. aureus and applied potentially to the food industry for the detection of this pathogen. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria

    PubMed Central

    Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe3O4@Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe3O4@Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. Results The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0–11.0), a short assay time (<30 min), and a low detection limit (5×102 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus, and methicillin-resistant S. aureus. Conclusion This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis. PMID:29520142

  1. Sonochemical coating of textile fabrics with antibacterial nanoparticles

    NASA Astrophysics Data System (ADS)

    Beddow, Jamie; Singh, Gagandeep; Blanes, María; Molla, Korina; Perelshtein, Ilana; Gedanken, Aharon; Joyce, Eadaoin; Mason, Timothy

    2012-05-01

    The high incidence of hospital-acquired infections places a huge financial burden on our healthcare systems. These infections are also responsible for many millions of deaths each year. Antibacterial fabrics for use in medical textiles, such as hospital uniforms, bedding and wound dressings, can provide a useful weapon in the on-going fight against these infections. The aim of this EU funded Framework 7 project is to develop a pilot line sonochemical coating machine for the production of antibacterial fabrics. The sonochemical coating technology under development is based on a lab scale process that was developed at Bar-Ilan University (BIU). It involves two processes that are driven by acoustic cavitation; the in situ generation of the metal oxide (MO) nanoparticles and the simultaneous high velocity propulsion of these nanoparticles onto a fabric leading to impregnation. Here we report on a comparison of 2 different MO nanoparticle coatings, ZnO and CuO, that were sonochemically applied on to a plain cotton fabric. Both of these coatings were prepared by BIU. In this work, the antibacterial efficacy of the coated fabrics was quantitatively assessed using the absorption method from BS EN ISO 20743:2007. Both types of metal oxide nanoparticle displayed antibacterial activity against all of the test bacteria with particularly high levels of bacterial reduction observed with the CuO coating. The results presented here are from an EU Framework 7 funded project (SONO, EU Project Number: 228730). The project is a collaboration between 17 partner organizations from 10 different European countries. Further details can be found on the project website at: www.fp7-sono.eu.

  2. Chemiluminescence immunoassay for the rapid and sensitive detection of antibody against porcine parvovirus by using horseradish peroxidase/detection antibody-coated gold nanoparticles as nanoprobes.

    PubMed

    Zhou, Yuan; Zhou, Tao; Zhou, Rui; Hu, Yonggang

    2014-06-01

    A rapid, simple, facile, sensitive and enzyme-amplified chemiluminescence immunoassay (CLIA) method to detect antibodies against porcine parvovirus has been developed. Horseradish peroxidase (HRP) and the detection antibody were simultaneously co-immobilized on the surface of gold nanoparticles using the electrostatic method to form gold nanoparticle-based nanoprobes. This nanoprobe was employed in a sandwich-type CLIA, which enables CL signal readout from enzymatic catalysis and results in signal amplification. The presence of porcine parvovirus infection was determined in porcine parvovirus antibodies by measuring the CL intensity caused by the reaction of HRP-luminol with H2 O2 . Under optimal conditions, the obtained calibration plot for the standard positive serum was approximately linear within the dilution range of 1:80 to 1:5120. The limit of detection for the assay was 1:10,240 (S/N = 3), which is much lower than that typically achieved with an enzyme-linked immunosorbent assay (1:160; S/N = 3). A series of repeatability measurements using 1:320-fold diluted standard positive serum gave reproducible results with a relative standard deviation of 4.9% (n = 11). The ability of the immunosensor to analyze clinical samples was tested on porcine sera. The immunosensor had an efficiency of 90%, a sensitivity of 93.3%, and a specificity of 87.5% relative to the enzyme-linked immunosorbent assay results. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    NASA Astrophysics Data System (ADS)

    Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.

    2014-07-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.

  4. Modeling the Efficiency of a Magnetic Needle for Collecting Magnetic Cells

    PubMed Central

    Butler, Kimberly S; Adolphi, Natalie L.; Bryant, H C; Lovato, Debbie M; Larson, Richard S; Flynn, Edward R

    2014-01-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in 1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and 2) water in which 3, 5, 10 and 100 % of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency vs. time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium. PMID:24874577

  5. Magneto-optic evaluation of antiferromagnetic α-Fe2O3 nanoparticles coated on a quartz substrate

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Srinath; Panmand, Rajendra; Kumar, Ganapathy; Mahajan, Satish M.; Kale, Bharat B.

    2016-03-01

    This paper presents a prima facie study of the magneto-optic response of antiferromagnetic α-Fe2O3 nanoparticles coated on a quartz substrate investigated by MOKE. The concentrations of the iron oxide nanoparticles in the films were varied from 8.6% to 21.5% and showed a linear increase in film thicknesses. As the concentration of the iron oxide nanoparticles were increased, the samples changed from a net-like morphology to a crystalline morphology. Magnetization reversals in the lower concentration samples were asymmetric with the reversals for the ascending and descending branch of the hysteresis loop occurring on the same side. The asymmetry in the magnetization reversal was attributed to the angle between the antiferromagnetic easy axis and the external magnetic field. With increase in concentration, an improvement in the magneto-optic response was observed with the magnetization reversal occurring via coherent rotation for both ascending and descending branches of the hysteresis loop. The changes in the magneto-optic behavior for the samples with higher concentrations is attributed to the strong exchange interactions and changes in the shape of the nanoparticles. Sensitivity studies performed on the samples showed an increased magneto-optic sensitivity to changes in magnetic field for samples of higher concentration. The high sensitivity of these samples could be exploited in magneto-optic sensors. Nanoparticles on a quartz substrate could find applications in bio-medicine due to their bio-compatibility.

  6. Surface functionalization of magnetic nanoparticles formed by self-associating hydrophobized oxidized dextrans

    NASA Astrophysics Data System (ADS)

    Farber, Shimon; Ickowicz, Diana E.; Melnik, Kristie; Yudovin-Farber, Ira; Recko, Daniel; Rampersaud, Arfaan; Domb, Abraham J.

    2014-06-01

    Magnetic iron oxide nanoparticles surface covered with oleic acid layer followed by a second layer of hydrophobized oxidized dextran aldehyde were prepared and tested for physico-chemical properties and ligand- and cell-specific binding. It was demonstrated that oleic acid-iron oxide nanoparticles coated with an additional layer of hydrophobized oxidized dextran were dispersible in buffer solutions and possess surface aldehyde active groups available for further binding of ligands or markers via imine or amine bond formation. Hydrophobized dextrans were synthesized by periodate oxidation and conjugation of various alkanamines to oxidized dextran by imination. Physico-chemical properties, as separation using magnetic field, magnetite concentration, and particle diameter, of the prepared magnetic samples are reported. The biotin-binding protein, neutravidin, was coupled to the particle surface by a simple reductive amination procedure. The particles were used for specific cell separation with high specificity.

  7. Determination of Montelukast in Plasma Using β - Cyclodextrins Coated on CoFe2O4 Magnetic Nanoparticles in Luminol-H2O2 Chemiluminescence System Optimized by Doehlert Design.

    PubMed

    Samadi-Maybodi, Abdolraouf; Bakhtiar, Alireza; Fatemi, Mohammad Hossein

    2016-05-01

    A novel chemiluminescence method using β - cyclodextrins coated on CoFe2O4 magnetic nanoparticles is proposed for the chemiluminometric determination of montelukast in plasma. The effect of coated β - cyclodexterinon CoFe2O4 magnetic nanoparticles in the chemiluminescence of luminol-H2O2 system was investigated. It was found that β - cyclodexterin coated on CoFe2O4 magnetic nanoparticles could greatly enhance the chemiluminescence of the luminol-H2O2 system. Doehlert design was applied in order to optimize the number of experiments to be carried out to ascertain the possible interactions between the parameters and their effects on the chemiluminescence emission intensity. This design was selected because the levels of each variable may vary in a very efficient way with few experiments. Doehlert design and response surface methodology have been employed for optimization pH and concentrations of the components. Results showed under the optimized experimental conditions, the relative CL intensity (ΔI) is increased linearly in the concentration range of 0.003-0.586 μgml(-1) of montelukast with limit of detection (LOD) 1.09 × 10(-4) μgml(-1) at S/N ratio of 3, limit of quantitative (LOQ) 3.59 × 10(-4) μgml(-1) and the relative standard deviation 2.63 %. The method has been successfully applied to the determination of montelukast in plasma of human body. Results specified that relative chemiluminescence intensity (ΔI) has good proportional with the montelukast concentration with R(2) = 0.99979. The test of the recovery efficiency for known amounts of montelukast was also performed, the recoveries range obtained from 98.2 to 103.3 %, with RSDs of <4 % indicated that the proposed method was reliable.

  8. Sheddable Coatings for Long-Circulating Nanoparticles

    PubMed Central

    Romberg, Birgit; Hennink, Wim E.

    2007-01-01

    Nanoparticles, such as liposomes, polymeric micelles, lipoplexes and polyplexes are frequently studied as targeted drug carrier systems. The ability of these particles to circulate in the bloodstream for a prolonged period of time is often a prerequisite for successful targeted delivery. To achieve this, hydrophilic ‘stealth’ polymers, such as poly(ethylene glycol) (PEG), are used as coating materials. Such polymers shield the particle surface and thereby reduce opsonization by blood proteins and uptake by macrophages of the mononuclear phagocyte system. Yet, after localizing in the pathological site, nanoparticles should deliver their contents in an efficient manner to achieve a sufficient therapeutic response. The polymer coating, however, may hinder drug release and target cell interaction and can therefore be an obstacle in the realization of the therapeutic response. Attempts have been made to enhance the therapeutic efficacy of sterically stabilized nanoparticles by means of shedding, i.e. a loss of the coating after arrival at the target site. Such an ‘unmasking’ process may facilitate drug release and/or target cell interaction processes. This review presents an overview of the literature regarding different shedding strategies that have been investigated for the preparation of sterically stabilized nanoparticulates. Detach mechanisms and stimuli that have been used are described. PMID:17551809

  9. Surfactant-enhanced spectrofluorimetric determination of total aflatoxins from wheat samples after magnetic solid-phase extraction using modified Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manafi, Mohammad Hanif; Allahyari, Mehdi; Pourghazi, Kamyar; Amoli-Diva, Mitra; Taherimaslak, Zohreh

    2015-07-01

    The extraction and preconcentration of total aflatoxins (including aflatoxin B1, B2, G1, and G2) using magnetic nanoparticles based solid phase extraction (MSPE) followed by surfactant-enhanced spectrofluorimetric detection was proposed. Ethylene glycol bis-mercaptoacetate modified silica coated Fe3O4 nanoparticles as an efficient antibody-free adsorbent was successfully applied to extract aflatoxins from wheat samples. High surface area and strong magnetization properties of magnetic nanoparticles were utilized to achieve high enrichment factor (97), and satisfactory recoveries (92-105%) using only 100 mg of the adsorbent. Furthermore, the fast separation time (less than 10 min) avoids many time-consuming cartridge loading or column-passing procedures accompany with the conventional SPE. In determination step, signal enhancement was performed by formation of Triton X-100 micelles around the analytes in 15% (v/v) acetonitrile-water which dramatically increase the sensitivity of the method. Main factors affecting the extraction efficiency and signal enhancement of the analytes including pH of sample solution, desorption conditions, extraction time, sample volume, adsorbent amount, surfactant concentration and volume and time of micelle formation were evaluated and optimized. Under the optimum conditions, wide linear range of 0.1-50 ng mL-1 with low detection limit of 0.03 ng mL-1 were obtained. The developed method was successfully applied to the extraction and preconcentration of aflatoxins in three commercially available wheat samples and the results were compared with the official AOAC method.

  10. EDTA functionalized magnetic nanoparticle as a multifunctional adsorbent for Congo red dye from contaminated water

    NASA Astrophysics Data System (ADS)

    Sahoo, Jitendra Kumar; Rath, Juhi; Dash, Priyabrat; Sahoo, Harekrushna

    2017-05-01

    The present work reports the applicability of magnetite iron nanoparticles (Fe3O4) functionalized with ethylenediaminetetraacetic acid (EDTA) as an efficient adsorbent for the removal of Congo red (CR) dye from contaminated water. Magnetic nanoparticles (Fe3O4) are prepared by chemical precipitation method in which Fe2+ and Fe3+ salt from aqueous solution were reacted in presence of ammonia solution. The surface of Fe3O4 nanoparticle was first coated with (3-aminopropyl) triethoxy silane (APTES) by a salinization reaction and then linked with EDTA via reaction between -NH2 and -COOH to form well dispersed surface functionalised biocompatible magnetic nanoparticles. The obtained EDTA functionalized magnetic nanoparticles are characterized in terms of their morphological, XRD, BET surface area analysis, Fourier transform infrared spectroscopy (FT-IR) and Vibrating sample magnetometer (VSM). The adsorption of CR on Fe3O4-APTES-EDTA nanocomposite corresponds well to the Langmuir model and the Freundlich model respectively. The adsorption processes for CR followed the pseudo-second-order model.

  11. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  12. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    PubMed Central

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  13. Shock-induced compaction of nanoparticle layers into nanostructured coating

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander E.; Ebel, Andrei A.

    2017-10-01

    A new process of shock wave consolidation of nanoparticles into a nanocrystalline coating is theoretically considered. In the proposed scheme, the nanoparticle layers, which are attached to the substrate surface by adhesion, are compacted by plane ultra-short shock waves coming from the substrate. The initial adhesion is self-arisen at any contact between the nanoparticles without a pre-compression. The absence of the nanoparticle ejections due to the shock wave action is connected with the strong adhesive forces, which allow nanoparticles to be attached to each other and to substrate while they are being compacted; this should be valid for small enough nanoparticles. Severe plastic deformation of the nanoparticles and the increased temperature due to collapse of voids between them facilitate their compaction into the monolithic nanocrystalline layer. We consider the examples of Cu and Ni nanoparticles on Al substrate using molecular dynamic simulations. We show the efficiency of the action of multiple shock waves with the duration in the range 2-20 ps and the amplitude in the range 4-12 GPa for sequential layerwise compaction of nanoparticles. A series of shock waves can be created by a repetitive powerful pulsed laser irradiation of the opposite surface of the substrate. The method offers the challenge for the formation of nanostructured coatings of various compositions. The thickness of the compacted nanocrystalline coating can be locally varied and controlled by the number of acting pulses.

  14. Interactions of DNA coated upconversion nanoparticles with 2D materials

    NASA Astrophysics Data System (ADS)

    Giust, Davide; Lucío, María. Isabel; Muskens, Otto L.; Kanaras, Antonios G.

    2018-02-01

    In this work we investigated the nature of quenching between different types of 2D materials (WS2, MoS2 and graphene oxide) and oligonucleotide coated-upconversion nanoparticles. This study contributes towards the efficient design of biosensors based on 2D materials and DNA-coated upconversion nanoparticles.

  15. Glass frits coated with silver nanoparticles for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-01

    Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  16. Liquid Plasma Synthesis of Carbon Coated Iron Oxide Particles

    NASA Astrophysics Data System (ADS)

    Uygun, Aysegul; Hershkowitz, Noah; Eren, Esin; Uygun, Emre; Celik Cogal, Gamze; Yurdabak Karaca, Gozde; Manolache, Sorin; Sundaram, Gunasekaran; Sadak, Omer; Oksuz, Lutfi

    2017-10-01

    Recently, magnetic metal or metal oxide nanoparticles encapsulated in carbon are important in biomedical applications. The relevant reason to study toxicity of the magnetic nanoparticles coated by carbon is that they have great potential to contribute to cancer treatment. In this work, the synthesis of iron oxide nano-particles coated by graphitic carbon shells using pulsed plasma in liquid method. Short duration of RF plasma discharge, low electrical energy and fast quenching of the surrounding media can let to synthesize various kinds of pure nanoparticles. Corresponding author: ayseguluygun@sdu.edu.tr, lutfioksuz@sdu.edu.tr.

  17. Non-rare earth magnetic nanoparticles

    DOEpatents

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  18. Wear resistance of WC/Co HVOF-coatings and galvanic Cr coatings modified by diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Assenova, E.

    2017-02-01

    The efforts in the recent 20 years are related to search of ecological solutions in the tribotechnologies for the replacement of galvanic Cr coatings in the contact systems operating under extreme conditions: abrasion, erosion, cavitation, corrosion, shock and vibration loads. One of the solutions is in the composite coatings deposited by high velocity gas-flame process (HVOF). The present paper presents comparative study results for mechanical and tribological characteristics of galvanic Cr coatings without nanoparticles, galvanic Cr coatings modified by diamond nanoparticles NDDS of various concentration 0.6; 10; 15 и 20% obtained under three technological regimes, and composite WC-12Co coating. Comparative results about hardness, wear, wear resistance and friction coefficient are obtained for galvanic Cr-NDDS and WC-12Co coatings operating at equal friction conditions of dry friction on abrasive surface. The WC-12Co coating shows 5.4 to 7 times higher wear resistance compared to the galvanic Cr-NDDS coatings.

  19. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  20. Breast cancer cell targeted MR molecular imaging probe: Anti-MUC1 antibody-based magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Moradi Khaniabadi, P.; S. A Majid, A. M.; Asif, M.; Moradi Khaniabadi, B.; Shahbazi-Gahrouei, D.; Jaafar, M. S.

    2017-05-01

    Effective and specific diagnostic imaging techniques are important in early-stage breast cancer treatment. The objective of this study was to develop a specific breast cancer contrast agent for magnetic resonance imaging (MRI). In so doing, superparamagnetic iron oxide nanoparticles (SPIONs) were conjugated to C595 monoclonal antibody using EDC chemistry to produce nanoprobe with high relaxivity and narrow size (87.4±0.7 nm). To test the developed nanoprobe in vitro, assessments including Cell toxicity, targeting efficacy, cellular binding, and MR imaging were carried out. The results indicated that after 6 hrs incubation with MCF-7 cells at 200 to 25 µg Fe/ml doses, 76% to 16% T2 reduction was obtained. The presence of iron localised in MCF-7 cells measured by atomic absorption spectroscopy (AAS) was about 9.95±0.09 ppm iron/cell at higher doses of nanoprobe. Moreover, a linear relationship between iron concentration of nontoxic SPION-C595 and T2 relaxation times was observed. This study also revealed that developed nanoprobe might be used as a specific negative contrast agent for detecting breast cancer.

  1. Magnetic and structural properties of nanoparticles of nickel oxide

    NASA Astrophysics Data System (ADS)

    Shim, Hyunja (Jenny)

    In this dissertation, magnetic properties of NiO nanoparticles (NP) prepared by the sol-gel method in the size range D = 5 nm to 20 nm, with and without oleic acid (OA) coating, are reported. Transmission electron microscopy (TEM) studies show the morphology of the smaller particles to be primarily rod-like, changing over to nearly spherical shapes for D >10 nm. Average sizes D of NP determined by x-ray diffraction (XRD) are compared with the results from TEM. From the analysis of the XRD line intensities, the particle size dependence of the Debye-Waller factors for Ni and O atoms are derived. It is found that the Debye-Waller factors of nickel and oxygen atoms in smaller particles are larger than those in bulk NiO. For the coated and uncoated NiO nanorods of 5 nm diameter, variations of the magnetization M with temperature T (5 K to 370 K) and temperature variations of the EMR (electron magnetic resonance) spectra were measured to determine the respective blocking temperatures TB(m) and TB(EMR). The following differences are noted: (1) TB(m) is reduced from 230 K (uncoated) to 85 K(coated) for H = 25 Oe; (2) Decrease of TB(m) with H is weaker and the ratio TB(EMR)/T B(m) is smaller for the uncoated particles. These differences are due to stronger interparticle interaction present in the uncoated particles. Temperature variation (5 K-300 K) of the AC magnetic susceptibilities (chi' and chi") at various frequencies f (0.1-10,000 Hz) are reported for the coated and uncoated 5 nm diameter nanorods of NiO. Using the peak in chi' as the blocking temperature TB, it is observed that TB increases with increasing f. The data for the two samples fit the Vogel-Fulcher law: f = f0exp[-Ea/k(TB-T0)] with f 0 = 9.2 x 1011 Hz, Ea/k = 1085 K and T0 = 162 K (0 K) for the uncoated (coated) particles. This shows that T0 provides a good measure of the effects of interparticle interactions on magnetic relaxation and that these interactions are essentially eliminated with the OA coating

  2. Self-Assembled Double-Quarter Antireflective Coatings using Silica and Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lal, Anitesh; Castedo Velasco, Raisa; Mazilu, Dan

    2011-03-01

    Antireflective coatings have a wide range of applications, from eyeglass and camera lenses, to solar panels and optoelectronic devices, to name just a few. Our study examines several factors that affect the quality of antireflective coatings created by the self-assembly of alternating layers of SiO2 and/or TiO2 nanoparticles and poly(diallyldimethylammonium chloride) polycation on glass substrates. We use a factorial design to investigate the effects of the molarity of the nanoparticle solution, the size of the nanoparticles, the pH of the nanoparticle and polycation solutions, and the number of nanoparticle-polycation bilayers on the optical properties of the films. The first order effects of these factors, as well as their interactions, on the reflectance, transmittance, and uniformity of the coatings are reported.

  3. Characterization and Imaging of Antibody-Coated Gold Nanoparticles for Targeted Treatment of Microbial Keratitis

    NASA Astrophysics Data System (ADS)

    Mahan, Matthew

    Microbial keratitis (MK) is an infection of the cornea by pathogenic organisms that causes inflammation and irritation. It can lead to full or partial blindness if left untreated. Current clinical treatment methods rely on high frequency application of topical drugs which are subject to the issues of patient compliance and microbial resistance. In this work, gold nanoparticles (AuNP) were proposed as an alternative treatment method in light-based therapies. Particle formulation methods were investigated and assessed using transmission electron microscopy (TEM) and ultraviolet/visible spectroscopy (UV-Vis). AuNP of 20 nm diameter were used as platforms to attach monoclonal antibodies anti-FLAG or anti-F1 to enhance their cell-targeting ability as well as polyethylene glycol to reduce non-specific binding and protein adsorption. These functionalized particles were qualitatively assessed using UV-Vis. The antibody-functionalized AuNP were then assessed for their ability to attach directly to Pseudomonas aeruginosa, expressing FLAG peptide, or Aspergillus fumigatus, expressing the F1 receptor. Attachment was imaged using dark field microscopy, transmission electron microscopy, and fluorescence microscopy.

  4. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

    PubMed

    Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid

    2017-03-01

    Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2 *) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.

  5. Oleate Coated Magnetic Cores Based on Magnetite, Zn Ferrite and Co Ferrite Nanoparticles—Preparation, Physical Characterization and Biological Impact on Helianthus Annuus Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ursache-Oprisan, Manuela; Foca-nici, Ecaterina; Cirlescu, Aurelian; Caltun, Ovidiu; Creanga, Dorina

    2010-12-01

    Sodium oleate was used as coating shell for magnetite, Zn ferrite and Co ferrite powders to stabilize them in the form of aqueous magnetic suspensions. The physical characterization was carried out by applying X-ray diffraction and magnetization measurements. Both crystallite size and magnetic core diameter ranged between 7 and 11 nm. The influence of magnetic nanoparticle suspensions (corresponding to magnetic nanoparticle levels of 10-14-10-15/cm3) on sunflower seedlings was studied considering the changes in the photosynthesis pigment levels. Similar responses were obtained for magnetite and cobalt ferrite nanoparticle treatment consisting in the apparent inhibition of chlorophyll biosynthesis while for zinc ferrite nanoparticles some concentrations seemed to have stimulatory effects on the chlorophylls as well as on the carotene levels. But the chlorophyll ratio was diminished in the case of all three types of magnetic nanoparticles meaning their slight negative effect on the light harvesting complex II (LHC II) from the chloroplast membranes and consequently on the photosynthesis efficiency.

  6. Supercritical fluid technology of nanoparticle coating for new ceramic materials.

    PubMed

    Aymonier, Cyril; Elissalde, Catherine; Reveron, Helen; Weill, François; Maglione, Mario; Cansell, François

    2005-06-01

    This work highlights, for the first time, the coating of ferroelectric nanoparticles with a chemical fluid deposition process in supercritical fluids. BaTiO3 nanoparticles of about 50 nm are coated with a shell of a few nanometers of amorphous alumina and can be recovered as a dry powder for processing. The sintering of these core-shell nanoparticles gives access to a ceramic material with very interesting ferroelectric properties, in particular, dielectric losses below 1%.

  7. Repetitive Immunosensor with a Fiber-Optic Device and Antibody-Coated Magnetic Beads for Semi-Continuous Monitoring of Escherichia coli O157:H7

    PubMed Central

    Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji

    2017-01-01

    A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 (E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti-E. coli O157:H7 antibodies and anti-E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-(E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5-E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 105 to 1 × 107 cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible. PMID:28925937

  8. Repetitive Immunosensor with a Fiber-Optic Device and Antibody-Coated Magnetic Beads for Semi-Continuous Monitoring of Escherichia coli O157:H7.

    PubMed

    Taniguchi, Midori; Saito, Hirokazu; Mitsubayashi, Kohji

    2017-09-19

    A rapid and reproducible fiber-optic immunosensor for Escherichia coli O157:H7 ( E. coli O157:H7) was described. The biosensor consisted of a flow cell, an optical fiber with a thin Ni layer, and a PC linked fluorometer. First, the samples with E. coli O157:H7 were incubated with magnetic beads coated with anti- E. coli O157:H7 antibodies and anti- E. coli O157:H7 antibodies labeled cyanine 5 (Cy5) to make sandwich complexes. Then the Cy5-( E. coli O157:H7)-beads were injected into a flow cell and pulled to the magnetized Ni layer on the optical fiber set in the flow cell. An excitation light (λ = 635 nm) was used to illuminate the optical fiber, and the Cy5 florescent molecules facing the optical fiber were exposed to an evanescent wave from the optical fiber. The 670 nm fluorescent light was measured using a photodiode. Finally, the magnetic intensity of the Ni layer was removed and the Cy5- E. coli O157:H7-beads were washed out for the next immunoassay. E. coli O157:H7, diluted with phosphate buffer (PB), was measured from 1 × 10⁵ to 1 × 10⁷ cells/mL. The total time required for an assay was less than 15 min (except for the pretreatment process) and repeating immunoassay on one optical fiber was made possible.

  9. Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Raland, R. D.; Borah, J. P.

    2017-01-01

    Manganese doped Zinc ferrite (Mn-ZnFe2O4, where Mn  =  0%, 3%, 5% and 7%) nanoparticles were synthesized by a simple co-precipitation method. CTAB (cetyltrimethylammonium bromide) was used as a surfactant to inhibitgrowth and agglomeration. In this work, we have discussed on the influence of CTAB and Mn doping in tailoring the structural and magnetic properties of Mn-ZnFe2O4 nanoparticles for the effective application of magnetic hyperthermia. X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure of Mn-ZnFe2O4 nanoparticles. Lattice parameter and x-ray densities were obtained from the Rietveld refinement of the XRD pattern. The presence of CTAB as a stabilizing layer adsorbed on the surface of the nanoparticles were confirmed by transmission electron microscope (TEM) and Raman vibrational spectrum. The saturation magnetization showsan increasing trend with Mn addition owing to cationic re-distribution and an increase super-exchange interaction between the two sub-lattices. Superparamagnetic behaviorof Mn-ZnFe2O4 nanoparticles were confirmed by temperature-dependent zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves. The efficiency of induction heating measured by its specific absorption rate (SAR) and intrinsic loss power (ILP) value varies as a function of saturation magnetization. It has been hypothesized that the maximum generation of heat arises from Neel relaxation mechanism. The optimum generation of heat of Mn-ZnFe2O4 nanoparticle is determined by the higher frequency (f  =  337 kHz) range and maximum concentration of Mn doping.

  10. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field.

    PubMed

    Hamdous, Yasmina; Chebbi, Imène; Mandawala, Chalani; Le Fèvre, Raphael; Guyot, François; Seksek, Olivier; Alphandéry, Edouard

    2017-10-17

    Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the application of an alternating magnetic field. Heating, efficacy and internalization properties were then evaluated. Nanoparticles coated with chitosan, polyethyleneimine and neridronate are apyrogen, biocompatible and stable in aqueous suspension. The presence of a thin coating in M-Chi and M-PEI favors an arrangement in chains of the magnetosomes, similar to that observed in magnetosomes directly extracted from magnetotactic bacteria, while the thick matrix embedding M-Neri leads to structures with an average thickness of 3.5 µm 2 per magnetosome mineral. In the presence of GL-261 cells and upon the application of an alternating magnetic field, M-PEI and M-Chi lead to the highest specific absorption rates of 120-125 W/g Fe . Furthermore, while M-Chi lead to rather low rates of cellular internalization, M-PEI strongly associate to cells, a property modulated by the application of an alternating magnetic field. Coating of purified magnetosome minerals can therefore be chosen to control the interactions of nanoparticles with cells, organization of the minerals, as well as heating and cytotoxicity properties, which are important parameters to be considered in the design of a magnetic hyperthermia treatment of tumor.

  11. Silica coating of nanoparticles by the sonogel process.

    PubMed

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  12. Enzyme-linked immunosorbent assay for determination of aflatoxin M1 based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Atanasova, M. K.; Ivanova, N. V.; Godjevargova, T. I.

    2017-02-01

    A sensitive enzyme immunoassay with magnetic nanoparticles (Method A) for the quantitative determination of aflatoxin M1 in milk was developed. This immunoassay was based on the immobilization of monoclonal antibody (mAb) on the modified magnetic nanoparticles (MNPs-NH2). It was observed that for each mg of the MNPs, 25 µg of antibody was immobilized. Both aflatoxin M1 in the sample and aflatoxin M1-BSA-peroxidase conjugate competed for the immobilized antibody. The proposed Method A was compared with other method (B). The Method B was based on the immobilization of aflatoxin M1-BSA conjugate on the MNPs-NH2, which competed with the aflatoxin M1 in the sample for binding to the added mAb. The binding of mAb to the aflatoxin M1-BSA-MNPs-NH2 was detected using a target secondary IgG-peroxidase antibody. The analytical characteristics of the two methods were compared. Real milk samples were investigated for present of aflatoxin M1. Two methods were based on the use of MNPs as a solid support for covalently immunoreagents immobilization. A comfortable separation of bound and free fraction of the tracer can be performed only through a simple collection of the MNPs by a permanent magnet. The application of MNPs helps to eliminate non-specific binding and to retain higher activity of bound biomolecules. The development of a MNPs-based ELISA for determination of aflatoxin M1 has a great potential to supersede the traditional ELISA for aflatoxin M1 diagnosis.

  13. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    NASA Astrophysics Data System (ADS)

    Spirou, S. V.; Tsialios, P.; Loudos, G.

    2015-09-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.

  14. Light-induced covalent immobilization of monolayers of magnetic nanoparticles on hydrogen-terminated silicon.

    PubMed

    Leem, Gyu; Zhang, Shishan; Jamison, Andrew C; Galstyan, Eduard; Rusakova, Irene; Lorenz, Bernd; Litvinov, Dmitri; Lee, T Randall

    2010-10-01

    Specifically tailored ω-alkenyl-1-carboxylic acids were synthesized for use as surfactants in the single-step preparation of manganese ferrite (MnFe2O4) nanoparticles (NPs). Monodisperse manganese ferrite NPs terminated with ω-alkenyl moieties were prepared via a one-pot reaction at high temperature without the need of ligand exchange. Using this approach, simple adjustment of the rate of heating allowed precise tuning of the size of the nanoparticles, which were characterized in bulk form by transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). These surfactant-coated magnetic nanoparticles were then deposited onto hydrogen-terminated silicon(111) wafers and covalently anchored to the surface by UV-initiated covalent bonding. Analysis by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirmed that the UV treatment led to covalent immobilization of the NPs on the silicon surface with a consistent packing density across the surface. The magnetic properties of the stable, surface-bound nanoparticle arrays were characterized using a superconducting quantum interference device (SQUID) magnetometer. The materials and methods described here are being developed for use in bit-patterned ultrahigh density magnetic recording media and nanoscale biomagnetic sensing.

  15. The magnetic introduction of magnetite nanoparticles into live cells for radiosensibility enhancement

    NASA Astrophysics Data System (ADS)

    Yurenya, Anton Y.; Polikarpov, Mikhail A.; Chukalova, Aynur A.; Moskaleva, Elizaveta Y.; Taldenkov, Alexander N.; Panchenko, Vladislav Y.

    2017-04-01

    Earlier we proposed a new radiotherapy enhancement method that entails the administration of 57Fe iron-oxide nanoparticles into the cells [5]. Within this work we were prompt to investigate the capability of iron oxide nanoparticles with monolayer coating to penetrate into live cells. Magnetite particle samples were synthesized and stabilized with HCl or citric acid. The cells were incubated in the presence of nanoparticles for 1 h, washed and dried. To distinguish inside-cell particles from outside ones a set of experiments with low temperature incubation was carried out. Several cell samples were prepared in the presence of an external magnetic field in order to study the possibility of the nanoparticle uptake enhancement. To evaluate the amount of particles in each cell sample we used a SQUID-magnetometer. The nanoparticle suspension with HCl stabilization turned to be inadequate for intracellular introduction. Approximately 2·105 particles with citric acid covering conjugated with each cell after incubation at normal conditions. An application of an external magnetic field increased this amount up to 107 particles/cell. Most probably much of these particles penetrated into cells.

  16. Sub-tesla-field magnetization of vibrated magnetic nanoreagents for screening tumor markers

    NASA Astrophysics Data System (ADS)

    Chieh, Jen-Jie; Huang, Kai-Wen; Shi, Jin-Cheng

    2015-02-01

    Magnetic nanoreagents (MNRs), consisting of liquid solutions and magnetic nanoparticles (MNPs) coated with bioprobes, have been widely used in biomedical disciplines. For in vitro tests of serum biomarkers, numerous MNR-based magnetic immunoassay methods or schemes have been developed; however, their applications are limited. In this study, a vibrating sample magnetometer (VSM) was used for screening tumor biomarkers based on the same MNRs as those used in other immunoassay methods. The examination mechanism is that examined tumor biomarkers are typically conjugated to the bioprobes coated on MNPs to form magnetic clusters. Consequently, the sub-Tesla-field magnetization (Msub-T) of MNRs, including magnetic clusters, exceeds that of MNRs containing only separate MNPs. For human serum samples, proteins other than the targeted biomarkers induce the formation of magnetic clusters with increased Msub-T because of weak nonspecific binding. In this study, this interference problem was suppressed by the vibration condition in the VSM and analysis. Based on a referenced Msub-T,0 value defined by the average Msub-T value of a normal person's serum samples, including general proteins and few tumor biomarkers, the difference ΔMsub-T between the measured Msub-T and the reference Msub-T,0 determined the expression of only target tumor biomarkers in the tested serum samples. By using common MNRs with an alpha-fetoprotein-antibody coating, this study demonstrated that a current VSM can perform clinical screening of hepatocellular carcinoma.

  17. Enzymatic Synthesis of Magnetic Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  18. Preparation of magnetic resonance probes using one-pot method for detection of hepatocellular carcinoma.

    PubMed

    Li, You-Wei; Chen, Zheng-Guang; Zhao, Zhou-She; Li, Hong-Li; Wang, Ji-Chen; Zhang, Zong-Ming

    2015-04-14

    To prepare the specific magnetic resonance (MR) probes for detection of hepatocellular carcinoma (HCC) using one-pot method. The carboxylated dextran-coated nanoparticles were conjugated with anti-α-fetoprotein (anti-AFP) or anti-glypican 3 (anti-GPC3) antibodies through 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS)-mediated reaction to synthesize the probes. The physical and chemical properties of the probes were determined by transmission electron microscopy (TEM) and dynamic light scattering, and the relaxivity was compared to uncombined ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) using a 1.5T clinical MR scanner. The binding efficiency of the antibodies to nanoparticles was measured with an ultraviolet-visible spectrophotometer. In addition, the probes were incubated with targetable cells in vitro. The superparamagnetic MR probes (anti-GPC3-USPION probe and anti-AFP-USPION probe) were synthesized using one-pot method. Their mean hydrodynamic diameter was 47 nm with a broader slight size distribution. The coupling efficiency of carboxylated dextran-coated ultrasmall superparamagnetic iron oxide (USPIO) with anti-GPC3 or anti-AFP antibody was 15.9% and 88.8%, respectively. Each of the USPIO nanoparticles may bind 3 GPC3 antibodies or 12 AFP antibodies. The statistical analysis showed no significance (P > 0.05) in shortening the T1 and T2 values when comparing the USPIO-AFP or USPIO-GPC3 to USPIO. Analysis of TEM images revealed that anti-GPC3-USPION probes and anti-AFP-USPION probes could specifically enter into the HepG2 cell by combining with the GPC3 receptors or AFP receptors, whereas the HepG2 cell sample incubated with USPIONs showed no or few nanoparticles in the cytoplasm. The synthesized probes using one-pot method can be used for in vitro experimental study and have potential clinical application in MR imaging for detection of hepatocellular carcinomas.

  19. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

    PubMed

    Bertoli, Filippo; Davies, Gemma-Louise; Monopoli, Marco P; Moloney, Micheal; Gun'ko, Yurii K; Salvati, Anna; Dawson, Kenneth A

    2014-08-27

    Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Jang, Eunji; Han, Seungmin; Lee, Kwangyeol; Suh, Jin-Suck; Haam, Seungjoo; Huh, Yong-Min

    2014-06-01

    We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.

  1. Next-Generation Magnetic Nanocomposites: Cytotoxic and Genotoxic Effects of Coated and Uncoated Ferric Cobalt Boron (FeCoB) Nanoparticles In Vitro.

    PubMed

    Netzer, Katharina; Jordakieva, Galateja; Girard, Angelika M; Budinsky, Alexandra C; Pilger, Alexander; Richter, Lukas; Kataeva, Nadezhda; Schotter, Joerg; Godnic-Cvar, Jasminka; Ertl, Peter

    2018-03-01

    Metal nanoparticles (NPs) have unique physicochemical properties and a widespread application scope depending on their composition and surface characteristics. Potential biomedical applications and the growing diversity of novel nanocomposites highlight the need for toxicological hazard assessment of next-generation magnetic nanomaterials. Our study aimed to evaluate the cytotoxic and genotoxic properties of coated and uncoated ferric cobalt boron (FeCoB) NPs (5-15 nm particle size) in cultured normal human dermal fibroblasts. Cell proliferation was assessed via ATP bioluminescence kit, and DNA breakage and chromosomal damage were measured by alkaline comet assay and micronucleus test. Polyacryl acid-coated FeCoB NPs [polyacrylic acid (PAA)-FeCoB NPs) and uncoated FeCoB NPs inhibited cell proliferation at 10 μg/ml. DNA strand breaks were significantly increased by PAA-coated FeCoB NPs, uncoated FeCoB NPs and l-cysteine-coated FeCoB NPs (Cys-FeCoB NPs), although high concentrations (10 μg/ml) of coated NPs (Cys- and PAA-FeCoB NPs) showed significantly more DNA breakage when compared to uncoated ones. Uncoated FeCoB NPs and coated NPs (PAA-FeCoB NPs) also induced the formation of micronuclei. Additionally, PAA-coated NPs and uncoated FeCoB NPs showed a negative correlation between cell proliferation and DNA strand breaks, suggesting a common pathomechanism, possibly by oxidation-induced DNA damage. We conclude that uncoated FeCoB NPs are cytotoxic and genotoxic at in vitro conditions. Surface coating of FeCoB NPs with Cys and PAA does not prevent but rather aggravates DNA damage. Further safety assessment and a well-considered choice of surface coating are needed prior to application of FeCoB nanocomposites in biomedicine. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. Sol-gel NiFe2O4 nanoparticles: Effect of the silica coating

    NASA Astrophysics Data System (ADS)

    Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Gómez-Polo, C.

    2012-05-01

    NiFe2O4 and NiFe2O4-SiO2 nanoparticles were synthesized by a sol-gel method using citric acid as fuel, giving rise its combustion to the crystallization of the spinel phase. Different synthesis conditions were analyzed with the aim of obtaining stoichiometric NiFe2O4 nanoparticles. The spinel structure in the calcined nanoparticles (400 °C, 2 h) was evaluated by x-ray diffraction. Their nanometer size (mean diameters around 10-15 nm) was confirmed through electron microscopy (field emission scanning electron microscopy and transmission electron microscopy). Rietveld refinement indicates the existence of a small percentage of NiO and Fe3O4 phases and a certain degree of structural disorder. The main effect of the silica coating is to enhance the disorder effects and prevent the crystalline growth after post-annealing treatments. Due to the small particle size, the nanoparticles display characteristic superparamagnetic behaviour and surface effects associated to a spin-glass like state: i.e., reduction in the saturation magnetization values and splitting of the zero field cooled (ZFC)-field cooled (FC) high field magnetization curves. The fitting of the field dependence of the ZFC-FC irreversibility temperatures to the Almeida—Thouless equation confirms the spin-glass nature of the detected magnetic phenomena. Exchange bias effects (shifts in the FC hysteresis loops) detected below the estimated freezing temperature support the spin-glass nature of the spin disorder effects.

  3. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles.

    PubMed

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-10-28

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer's disease pathogenic factor

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Beom; Choi, Yu Yong; Song, Woo Keun; Song, Ki-Bong

    2014-05-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that leads to a decline in cognitive and intellectual abilities and an irreversible mental deterioration. Based on multidisciplinary AD research, the most universally accepted hypotheses on AD pathogenesis are the intracerebral aggregate formation of beta-amyloid (Aβ) peptides. According to medical paradigmatic transition from medical treatment to early diagnostic prevention, scientists have considered physiological body fluid as a biomarker medium, in which the promising AD biomarkers could be verified. Recently, use of saliva has been considered as one of the diagnostic fluids over the past decade with meaningful diagnostic potential. We utilized saliva as a biomarker medium to correlate the salivary Aβ levels to AD pathological aspects, especially to the mild cognitive impairment group among AD patients, and to verify our detecting system to be sensitive enough for an early diagnostic tool. The identification of the salivary AD biomarkers using a facile microarraying method would motivate this study with the assistance of magnetically assembled antibody-conjugated nanoparticles and a photomultiplier tube as an optical detector. This simple magnetoimmunoassay system measures the photointensity generated by fluorescence, enables the quantification of the Aβ peptides from AD salivary samples, and consequently classifies the salivary Aβ levels into AD pathological aspects. This method demonstrates a facile approach enabling it to simply detect salivary Aβ peptides at a concentration as low as ˜20 pg/ml. It is expected that our simple magnetoimmunoassay system may have a potential as a detector for low-level Aβ peptides with weak-fluorescence emission.

  5. Magnetic properties of carbon-coated, ferromagnetic nanoparticles produced by a carbon-arc method

    NASA Astrophysics Data System (ADS)

    Brunsman, E. M.; Sutton, R.; Bortz, E.; Kirkpatrick, S.; Midelfort, K.; Williams, J.; Smith, P.; McHenry, M. E.; Majetich, S. A.; Artman, J. O.; De Graef, M.; Staley, S. W.

    1994-05-01

    The Krätschmer-Huffman carbon-arc method of preparing fullerenes has been used to generate carbon-coated transition metal (TM) and TM-carbide nanocrystallites. The magnetic nanocrystallites were extracted from the soot with a magnetic gradient field technique. For TM=Co the majority of nanocrystals exist as nominally spherical particles, 0.5-5 nm in radius. Hysteretic and temperature-dependent magnetic response, in randomly and magnetically aligned powder samples frozen in epoxy, correspond to fine particle magnetism associated with monodomain TM particles. The magnetization exhibits a unique functional dependence on H/T, and hysteresis below a blocking temperature TB. Below TB, the temperature dependence of the coercivity can be expressed as Hc=Hc0[1-(T/TB)1/2], where Hc0 is the 0 K coercivity.

  6. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy.

    PubMed

    Hu, Qinglian; Wu, Min; Fang, Chun; Cheng, Changyong; Zhao, Mengmeng; Fang, Weihuan; Chu, Paul K; Ping, Yuan; Tang, Guping

    2015-04-08

    Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.

  7. Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@SiO2) core-shell nanoparticles.

    PubMed

    Joshi, Deepika P; Pant, Geeta; Arora, Neha; Nainwal, Seema

    2017-02-01

    Present work describes the formation of α-Fe 2 O 3 @SiO 2 core shell structure by systematic layer by layer deposition of silica shell on core iron oxide nanoparticles prepared via various solvents. Sol-gel method has been used to synthesize magnetic core and the dielectric shell. The average crystallite size of iron oxide nanoparticles was calculated ∼20 nm by X-ray diffraction pattern. Morphological study by scanning electron microscopy revealed that the core-shell nanoparticles were spherical in shape and the average size of nanoparticles increased by varying solvent from methanol to ethanol to isopropanol due to different chemical structure and nature of the solvents. It was also observed that the particles prepared by solvent ethanol were more regular and homogeneous as compared to other solvents. Magnetic measurements showed the weak ferromagnetic behaviour of both core α-Fe 2 O 3 and silica-coated iron oxide nanoparticles which remained same irrespective of the solvent chosen. However, magnetization showed dependency on the types of solvent chosen due to the variation in shell thickness. At room temperature, dielectric constant and dielectric loss of silica nanoparticles for all the solvents showed decrement with the increment in frequency. Decrement in the value of dielectric constant and increment in dielectric loss was observed for silica coated iron oxide nanoparticles in comparison of pure silica, due to the presence of metallic core. Homogeneous and regular silica layer prepared by using ethanol as a solvent could serve as protecting layer to shield the magnetic behaviour of iron oxide nanoparticles as well as to provide better thermal insulation over pure α-Fe 2 O 3 nanoparticles.

  8. Boronic acid-modified magnetic materials for antibody purification

    PubMed Central

    Dhadge, Vijaykumar L.; Hussain, Abid; Azevedo, Ana M.; Aires-Barros, Raquel; Roque, Ana C. A.

    2014-01-01

    Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions. PMID:24258155

  9. Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.

    PubMed

    Wang, Jun; Zhang, Kai; Zhu, Yuejin

    2005-05-01

    A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.

  10. PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Rostami, Elham

    2014-03-01

    In this study, poly ethylene glycol 100 stearate (PEG 100-S) was used to prepare coated solid lipid nanoparticles with loading levothyroxine sodium (levo-loaded PEG 100-S-coated SLNs) by microemulsification technique. Evaluation of the release kinetic of prepared colloidal carriers was conducted. The particle size and zeta potential of levo-loaded PEG 100-S-coated SLNs have been measured to be 187.5 nm and -23.0 mV, respectively, using photon correlation spectroscopy (PCS). Drug entrapment efficiency (EE) was calculated to be 99 %. Differential scanning calorimetry indicated that the majority of drug loaded in PEG 100-S-coated SLNs were in amorphous state which could be considered desirable for drug delivery. The purpose of this study was to develop a new nanoparticle system, consisting lipid nanoparticles coated with PEG 100-S. The modification procedure led to a reduction in the zeta potential values, varying from -40.0 to -23.0 mV for the uncoated and PEG-coated SLNs, respectively. Stability results of the nanoparticles in gastric and intestinal media show that the low pH of the gastric medium is responsible for the critical aggregation and degradation of the uncoated lipid nanoparticles. PEG 100-S-coated SLNs were more stable due to their polymer coating layer which prevented aggregation of SLNs. Consequently, it is possible that the PEG surrounds the particles reducing the attachment of enzymes and further degradation of the triglyceride cores. Shape and surface morphology of particles were determined by transition electron microscopy and scanning electron microscopy that revealed spherical shape of nanoparticles. In vitro drug release of PEG 100-S-coated SLNs was characterized using diffusion cell which showed a controlled release for drug.

  11. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia.

    PubMed

    Chung, Ren-Jei; Shih, Hui-Ting

    2014-01-24

    Iron core gold shell nanoparticles grafted with Methotrexate (MTX) and indocyanine green (ICG) were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid) (PSMA) to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2) via the magnetic hyperthermia mechanism and the release of MTX.

  12. WE-H-207A-09: Theoretical Limits to Molecular Biomarker Detection Using Magnetic Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, J; Geisel School of Medicine, Dartmouth College, Hanover, NH

    Purpose: Estimate the limits of molecular biomarker detection using magnetic nanoparticle methods like in vivo ELISA. Methods: Magnetic nanoparticles in an alternating magnetic field produce a magnetization that can be detected at exceedingly low levels because the signal at the harmonic frequencies is uniquely produced by the nanoparticles. Because the magnetization can also be used to characterize the nanoparticle rotational freedom, the bound state can be found. If the nanoparticles are coated with molecules that bind the desired biomarker, the rotational freedom reflects the biomarker concentration. The irreducible noise limit is the thermal noise or Johnson noise of the tissuemore » and the contrast that can be measured must be larger than that limit. The contrast produced is a function of the applied field and depends strongly on nanoparticle volume. We have estimated the contrast using a Langevin function of a single composite variable to approximate the full stochastic Langevin equation for nanoparticle dynamics. Results: The thermal noise for a bandwidth reasonable for spectroscopy suggests mid zeptomolar (10–21) to low attomolar (10–18) concentrations can be measured in a volume that is 10cm in scale. The suggested sensitivity is far below the physiologically concentrations of almost all critical biomarkers including cytokines (picomolar), hormones (nanomolar) and heat shock proteins. Conclusion: The sensitivity of in vivo ELISA concentration measurements should be sufficient to measure physiological concentrations of critical biomarkers like cytokines in vivo. Further the sensitivity should be sufficient to measure concentrations of other biomarkers that are six to eight orders of magnitude lower in concentration than immune signaling molecules like cytokines. NIH - 1U54CA151662-01 Department of Radiology.« less

  13. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Biswajit, E-mail: bpanda@mes.ac.in; Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH groupmore » of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.« less

  14. Substrates coated with silver nanoparticles as a neuronal regenerative material

    PubMed Central

    Alon, Noa; Miroshnikov, Yana; Perkas, Nina; Nissan, Ifat; Gedanken, Aharon; Shefi, Orit

    2014-01-01

    Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs) as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs) and zinc oxide nanoparticles (ZnONPs) demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies. PMID:24872701

  15. Morphology and orientational behavior of silica-coated spindle-type hematite particles in a magnetic field probed by small-angle X-ray scattering.

    PubMed

    Reufer, Mathias; Dietsch, Hervé; Gasser, Urs; Hirt, Ann; Menzel, Andreas; Schurtenberger, Peter

    2010-04-15

    Form factor and magnetic properties of silica-coated spindle-type hematite nanoparticles are determined from SAXS measurements with applied magnetic field and magnetometry measurements. The particle size, polydispersity and porosity are determined using a core-shell model for the form factor. The particles are found to align with their long axis perpendicular to the applied field. The orientational order is determined from the SAXS data and compared to the orientational order obtained from magnetometry. The direct access to both, the orientational order of the particles, and the magnetic moments allow one to determine the magnetic properties of the individual spindle-type hematite particles. We study the influence of the silica coating on the magnetic properties and find a fundamentally different behavior of silica-coated particles. The silica coating reduces the effective magnetic moment of the particles. This effect is enhanced with field strength and can be explained by superparamagnetic relaxation in the highly porous particles.

  16. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.

    PubMed

    Bo, Zhang; Avsar, Saziye Yorulmaz; Corliss, Michael K; Chung, Minsub; Cho, Nam-Joon

    2017-10-05

    As the worldwide usage of nanoparticles in commercial products continues to increase, there is growing concern about the environmental risks that nanoparticles pose to biological systems, including potential damage to cellular membranes. A detailed understanding of how different types of nanoparticles behave in environmentally relevant conditions is imperative for predicting and mitigating potential membrane-associated toxicities. Herein, we investigated the adsorption of two popular nanoparticles (silver and buckminsterfullerene) onto biomimetic supported lipid bilayers of varying membrane charge (positive and negative). The quartz crystal microbalance-dissipation (QCM-D) measurement technique was employed to track the adsorption kinetics. Particular attention was focused on understanding how natural organic matter (NOM) coatings affect nanoparticle-bilayer interactions. Both types of nanoparticles preferentially adsorbed onto the positively charged bilayers, although NOM coatings on the nanoparticle and lipid bilayer surfaces could either inhibit or promote adsorption in certain electrolyte conditions. While past findings showed that NOM coatings inhibit membrane adhesion, our findings demonstrate that the effects of NOM coatings are more nuanced depending on the type of nanoparticle and electrolyte condition. Taken together, the results demonstrate that NOM coatings can modulate the lipid membrane interactions of various nanoparticles, suggesting a possible way to improve the environmental safety of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  18. Magnetic nanoparticle temperature estimation.

    PubMed

    Weaver, John B; Rauwerdink, Adam M; Hansen, Eric W

    2009-05-01

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 degree K between 20 and 50 degrees C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  19. Evaluation of a novel ultra-sensitive nanoparticle probe-based assay for ricin detection.

    PubMed

    Yin, Hui-qiong; Jia, Min-xian; Shi, Li-jun; Liu, Jun; Wang, Rui; Lv, Mao-min; Ma, Yu-yuan; Zhao, Xiong; Zhang, Jin-gang

    2014-01-01

    A gold nanoparticle (GNP) probe-based assay (GNPA) modified from the bio-barcode assay (BCA) was developed for ultrasensitive detection of ricin, a potential biothreat agent. In the GNPA, a chain of ricin was captured by a GNP probe coated with polyclonal antibodies and single-stranded signal DNA. A magnetic microparticle (MMP) probe coated with ricin A chain monoclonal antibody was then added to form an immuno-complex. After being magnetically separated, the immuno-complex containing the single-stranded signal DNA was characterized by PCR and real-time PCR. A detection limit of 10(-2) fg/ml was determined for the ricin A chain; this is eight orders of magnitude more sensitive than that achieved with an ELISA and two orders more sensitive than that obtained with the BCA. The coefficients of variation (CV) of the intra- and inter-assay values ranged from 3.82-6.46%. The results here show that this novel assay is an ultrasensitive method for detection of ricin proteins and may be suitable for the ultrasensitive detection of other proteins.

  20. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples.

    PubMed

    Ghasemi, Ensieh; Sillanpää, Mika

    2015-01-01

    A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

    NASA Astrophysics Data System (ADS)

    Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.

    2016-06-01

    through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Electronic supplementary information (ESI) available: Detailed IONP synthetic methods, description of magnetic particle relaxometer set-up, TEM of reference IONP (Senior Scientific PrecisionMRX™ 25 nm oleic acid-coated nanoparticles), concentration dependent PSF of all IONP samples, PSF and SAR of Zn-Sph and Zn-Cube mixture sample, upper right quadrant of field-dependent hysteresis curve labelled with static field strengths, and the magnetic hyperthermia temperature profiles with and without the presence of external magnetic fields. See DOI: 10.1039/c6nr01877g

  2. Synthesis, Characterization, and Preliminary Investigation of Cell Interaction of Magnetic Nanoparticles with Catechol-Containing Shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Kerstin; Seemann, Thomas; Wyrwa, Ralf

    2010-12-02

    Superparamagnetic iron oxide cores were synthesized by co-precipitation of Fe(II) and Fe(III) salts and subsequently stabilized by coating with different catechols (levodopa, dopamine, hydrocaffeic acid, dopamine-containing carboxymethyl dextran) known to act as high-affinity, bidentate ligands for Fe(III). The prepared stable magnetic fluids were characterized with regard to their chemical composition (content of iron and shell material, Fe(II)/Fe(III) ratio) and their physical properties (size, surface charge, magnetic parameters). The nanoparticles showed no or only slight cytotoxic effects within 1 and 4 days of incubation with 3T3 fibroblast cells. Preliminary experiments were performed to study the interaction of the prepared nanoparticles withmore » human MCF-7 breast cancer cells and leukocytes. An intense interaction of the MCF-7 cells with these particles was found whereas the leukocytes showed a lower tendency of interaction. Based on these finding, the novel magnetic nanoparticles possess the potential for use in depletion of tumor cells from peripheral blood.« less

  3. Magnetic iron oxide nanoparticles mediated gene therapy for breast cancer--an in vitro study.

    PubMed

    Wei, Weizhong; Xu, Chunfang; Wu, Hua

    2006-01-01

    The aim of this study was to evaluate the feasibility and efficacy of using TRAIL gene to treat breast cancer mediated with a novel carrier - magnetic iron oxide nanoparticles (poly-MAG-1000) coated with PEI. The magnetic iron oxide nanoparticles were used as gene carrier to transfect TRAIL gene into MCF-7 cells. The polyMAG-1000 without TRAIL gene was transfected into the tumor cells as negative control. TRAIL gene transfection with liposome as carrier served as positive control. The apoptosis of cells was detected with TUNEL method. The apoptosis ratio of tumor cells was measured with flow cytometry (FCM). It was found that the apoptosis occurred in the tumor cells after transfection of TRAIL gene mediated by both polyMAG-1000 and liposome. The apoptosis ratio in the group with polyMAG-1000 as gene carrier was (25.11+/-2.85) %, whereas it was (5.06+/- 1.05) % in the control group with polyMAG-1000 (P<0.01). The apoptosis ratio was as low as (18.31+/-2.44) % in the group with liposome as gene carrier (P<0.05, as compared with the group with polyMAG-1000 as gene carrier). It is suggested that TRAIL gene may induce apoptosis in MCF-7 breast cancer cells. The magnetic iron oxide nanoparticles coated with PEI may be a potential gene carrier with high transfection efficacy for cancer gene therapy..

  4. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study.

    PubMed

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-07

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  5. Exosome purification based on PEG-coated Fe3O4 nanoparticles.

    PubMed

    Chang, Ming; Chang, Yaw-Jen; Chao, Pei Yu; Yu, Qing

    2018-01-01

    Cancer cells secrete many exosomes, which facilitate metastasis and the later growth of cancer. For early cancer diagnosis, the detection of exosomes is a crucial step. Exosomes exist in biological fluid, such as blood, which contains various proteins. It is necessary to remove the proteins in the biological fluid to avoid test interference. This paper presented a novel method for exosome isolation using Fe3O4 magnetic nanoparticles (MNPs), which were synthesized using the chemical co-precipitation method and then coated with polyethylene glycol (PEG). The experimental results showed that the diameter of the PEG-coated Fe3O4 nanoparticles was about 20 nm, while an agglomerate of MNPs reached hundreds of nanometers in size. In the protein removal experiments, fetal bovine serum (FBS) was adopted as the analyte for bioassays of exosome purification. PEG-coated Fe3O4 MNPs reduced the protein concentration in FBS to 39.89% of the original solution. By observing a particle size distribution of 30~200 nm (the size range of various exosomes), the exosome concentrations were kept the same before and after purification. In the gel electrophoresis experiments, the bands of CD63 (~53 kDa) and CD9 (~22 kDa) revealed that exosomes existed in FBS as well as in the purified solution. However, the bands of the serum albumins (~66 kDa) and the various immunoglobulins (around 160 ~ 188 kDa) in the purified solution's lane explained that most proteins in FBS were removed by PEG-coated Fe3O4 MNPs. When purifying exosomes from serum, protein removal is critical for further exosome investigation. The proposed technique provides a simple and effective method to remove proteins in the serum using the PEG-coated Fe3O4 MNPs.

  6. Biomolecule-functionalized magnetic nanoparticles for flow-through quartz crystal microbalance immunoassay of aflatoxin B1.

    PubMed

    Wang, Li; Gan, Xian-Xue

    2009-01-01

    A flow-through quartz crystal microbalance (QCM) immunoassay method has been developed based on aflatoxin B(1) antibody (anti-AFB(1))-functionalized magnetic core-shell Fe(3)O(4)/SiO(2) composite nanoparticles (bionanoparticles) in this study. To construct such an assay protocol, anti-AFB(1), as a model protein, was initially covalently immobilized onto the Fe(3)O(4)/SiO(2) surface, and then the functionalized nanoparticles were attached to the surface of the QCM probe with an external magnet. The binding of target molecules onto the immobilized antibodies decreased the sensor's resonant frequency, and the frequency shift was proportional to the AFB(1) concentration in the range of 0.3-7.0 ng/ml. The regeneration of the developed immunosensor was carried out via attaching or detaching the external magnet from the detection cell. In addition, the selectivity, reproducibility, and stability of the proposed immunoassay system were acceptable. Compared with the conventional ELISAs, the proposed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the proposed immunoassay method could be further developed for the immobilization of other antigens or biocompounds.

  7. Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin

    NASA Astrophysics Data System (ADS)

    Andhariya, Nidhi; Chudasama, Bhupendra; Mehta, R. V.; Upadhyay, R. V.

    2011-04-01

    The use of nanoparticles as drug delivery systems for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The aim of this study is to construct a novel drug delivery platform comprising a magnetic core and biodegradable thermoresponsive shell of tri-block-copolymer. Oleic acid-coated Fe3O4 nanoparticles and hydrophilic anticancer drug "doxorubicin" are encapsulated with PEO-PLGA-PEO (polyethylene oxide-poly d, l lactide-co-glycolide-polyethylene oxide) tri-block-copolymer. Structural, magnetic, and physical properties of Fe3O4 core are determined by X-ray diffraction, vibrating sample magnetometer, and transmission electron microscopy techniques, respectively. The hydrodynamic size of composite nanoparticles is determined by dynamic light scattering and is found to be 36.4 nm at 25 °C. The functionalization of magnetic core with various polymeric chain molecules and their weight proportions are determined by Fourier transform infrared spectroscopy and thermogravimetric analysis, respectively. Encapsulation of doxorubicin into the polymeric magnetic nanoparticles, its loading efficiency, and kinetics of drug release are investigated by UV-vis spectroscopy. The loading efficiency of drug is 89% with a rapid release for the initial 7 h followed by the sustained release over a period of 36 h. The release of drug is envisaged to occur in response to the physiological temperature by deswelling of thermoresponsive PEO-PLGA-PEO block-copolymer. This study demonstrates that temperature can be exploited successfully as an external parameter to control the release of drug.

  8. Self-Cleaning Ceramic Tiles Produced via Stable Coating of TiO₂ Nanoparticles.

    PubMed

    Shakeri, Amid; Yip, Darren; Badv, Maryam; Imani, Sara M; Sanjari, Mehdi; Didar, Tohid F

    2018-06-13

    The high photocatalytic power of TiO₂ nanoparticles has drawn great attention in environmental and medical applications. Coating surfaces with these particles enables us to benefit from self-cleaning properties and decomposition of pollutants. In this paper, two strategies have been introduced to coat ceramic tiles with TiO₂ nanoparticles, and the self-cleaning effect of the surfaces on degradation of an organic dye under ultraviolent (UV) exposure is investigated. In the first approach, a simple one-step heat treatment method is introduced for coating, and different parameters of the heat treatment process are examined. In the second method, TiO₂ nanoparticles are first aminosilanized using (3-Aminopropyl)triethoxysilane (APTES) treatment followed by their covalently attachment onto CO₂ plasma treated ceramic tiles via N -(3-Dimethylaminopropyl)- N ′-ethylcarbodiimide hydrochloride (EDC) and N -Hydroxysuccinimide (NHS) chemistry. We monitor TiO₂ nanoparticle sizes throughout the coating process using dynamic light scattering (DLS) and characterize developed surfaces using X-ray photoelectron spectroscopy (XPS). Moreover, hydrophilicity of the coated surfaces is quantified using a contact angle measurement. It is shown that applying a one-step heat treatment process with the optimum temperature of 200 °C for 5 h results in successful coating of nanoparticles and rapid degradation of dye in a short time. In the second strategy, the APTES treatment creates a stable covalent coating, while the photocatalytic capability of the particles is preserved. The results show that coated ceramic tiles are capable of fully degrading the added dyes under UV exposure in less than 24 h.

  9. Photo-crosslinked hyaluronic acid coated upconverting nanoparticles

    NASA Astrophysics Data System (ADS)

    Mrazek, Jiri; Kettou, Sofiane; Matuska, Vit; Svozil, Vit; Huerta-Angeles, Gloria; Pospisilova, Martina; Nesporova, Kristina; Velebny, Vladimir

    2017-02-01

    Hyaluronic acid (HA)-coated inorganic nanoparticles display enhanced interaction with the CD44 receptors which are overexpressed in many types of cancer cells. Here, we describe a modification of core-shell β-NaY0.80Yb0.18Er0.02F4@NaYF4 nanoparticles (UCNP) by HA derivative bearing photo-reactive groups. UCNP capped with oleic acid were firstly transferred to aqueous phase by an improved protocol using hydrochloric acid or lactic acid treatment. Subsequently, HA bearing furanacryloyl moieties (HA-FU) was adsorbed on the nanoparticle surface and crosslinked by UV irradiation. The crosslinking resulted in stable HA coating, and no polymer desorption was observed. As-prepared UCNP@HA-FU show a hydrodynamic diameter of about 180 nm and are colloidally stable in water and cell culture media. The cellular uptake by normal human fibroblasts and MDA MB-231 cancer cell line was investigated by upconversion luminescence imaging.

  10. Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion.

    PubMed

    Li, Ruyi; Fu, Guiming; Liu, Chengmei; McClements, David Julian; Wan, Yin; Wang, Shaoman; Liu, Ting

    2018-07-15

    The tannase (from Aspergillus niger) was immobilised by glutaraldehyde conjugation to amino-functionalised chitosan-coated magnetic nanoparticles (Fe 3 O 4 -CS nanoparticles). Fourier-transform infrared spectroscopy and thermo-gravimetric analysis showed that chitosan was coated on the surface of magnetic nanoparticles. Transmission electron microscopy indicated that the synthesised nanoparticles (Fe 3 O 4 -CS) were almost spherical or ellipsoidal with an average diameter of 5.97 ± 1.25 nm. The stability and functionality of free and immobilised tannase were compared. Both forms of tannase exhibited the same optimal temperature of 30 °C, whereas the optimal pH value of immobilised tannase (pH 4.5) was lower than that of the free tannase (pH 5.5). The pH and thermal stabilities of immobilised tannase were significantly better than those of free tannase. Immobilised tannase retained over 50% of its initial activity after repeated utilisation for eight cycles. Furthermore, the immobilised tannase effectively improve the clarity and colour of black and green tea infusions. These results showed that amino-functionalised Fe 3 O 4 -CS nanoparticles are an efficient carrier for immobilising tannase, and immobilised tannase can be used in the clarification of tea infusion. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Ionic liquid-modified silica-coated magnetic nanoparticles: promising adsorbents for ultra-fast extraction of paraquat from aqueous solution.

    PubMed

    Latifeh, Farzad; Yamini, Yadollah; Seidi, Shahram

    2016-03-01

    In the present study, ionic liquid-modified silica-coated magnetic nanoparticles (Fe3O4@SiO2@IL) were synthesized and applied as adsorbents for extraction and determination of paraquat (PQ) followed by high-performance liquid chromatography. For assurance of the extraction efficiency, the obtained results were compared with those obtained by bared magnetic nanoparticles (MNPs). Experimental design and response surface methodology were used for optimization of different parameters which affect extraction efficiency of paraquat using both adsorbents. Under the optimized conditions, extraction recoveries in the range of 20-25 and 35-40 % with satisfactory repeatability values (RSDs%, n = 4) less than 5.0 % were obtained for bared MNPs and Fe3O4@SiO2@IL, respectively. The limits of detection were 0.1 and 0.25 μg/L using Fe3O4@SiO2@IL and bared MNPs, respectively. The linearity was obtained in the range of 0.25 to 25 μg/L and 0.5 to 25 μg/L for Fe3O4@SiO2@IL and bared MNPs, respectively, with the coefficients of determination better than 0.9950. Finally, Fe3O4@SiO2@IL was chosen as superior adsorbent due to more dispersion ability, higher extraction recovery, lower detection limit, as well as better linearity and repeatability. Calculated errors (%) were in the range of 3 to 10 % depicting acceptable accuracy for the analysis of PQ by the proposed method. Finally, the method was successfully applied for extraction and determination of PQ in some water and countryside soil samples.

  12. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging.

    PubMed

    Unterweger, Harald; Janko, Christina; Schwarz, Marc; Dézsi, László; Urbanics, Rudolf; Matuszak, Jasmin; Őrfi, Erik; Fülöp, Tamás; Bäuerle, Tobias; Szebeni, János; Journé, Clément; Boccaccini, Aldo R; Alexiou, Christoph; Lyer, Stefan; Cicha, Iwona

    2017-01-01

    Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI) of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs) have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex) and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA) upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and the effects of size reduction on their biocompatibility were investigated. In vitro, SPIONdex did not induce hemolysis, complement or platelet activation, plasma coagulation, or leukocyte procoagulant activity, and had no relevant effect on endothelial cell viability or endothelial-monocytic cell interactions. Furthermore, SPIONdex did not induce CARPA even upon intravenous administration of 5 mg Fe/kg in pigs. Upon SPIONdex administration in mice, decreased liver signal intensity was observed after 15 minutes and was still detectable 24 h later. In addition, by changing synthesis parameters, a reduction in particle size <30 nm was achieved, without affecting their hemo- and biocompatibility. Our findings suggest that due to their excellent biocompatibility, safety upon intravenous administration and size-tunability, SPIONdex particles may represent a suitable candidate for a new-generation MRI contrast agent.

  13. In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment.

    PubMed

    Zhao, Lingyun; Huo, Meijun; Liu, Jiayi; Yao, Zhu; Li, Danye; Zhao, Zhiwei; Tang, Jintian

    2013-02-01

    Cancer comprehensive treatment has been fully recognized as it can provide an effective multimodality approach for fighting cancers. In therapeutic oncology, hyperthermic adjuvant chemotherapy termed as thermochemotherapy plays an increasing role in multimodality cancer treatment. Currently, targeted nanothermotherapy is one of the effective hyperthermia approach based on magnetic nanoparticles (MNPs), which can be achieved by applying biocompatible nanoscaled metallic particles that convert electromagnetic energy into heat, for instance, magnetic fluid hyperthermia (MFH) mediated by superparamagnetic iron oxide nanoparticles (SPIONs). Upon exposure under alternative magnetic field (AMF), SPIONs can generate heat through oscillation of their magnetic moment. Nowadays, clinical trials at phase II are now under investigations for MFH on patients in Germany and Japan and demonstrate very inspiring for cancer therapy. In this work we explore the feasibility and effectiveness of magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate, an anti-cancer drug, for breast cancer comprehensive treatment. Amino silane coated MNPs as agent of MFH were prepared by the chemical precipitation method. Physiochemical characterizations on MNPs have been systematically carried out by various instrumental analyses. Inductive heating property of the MNPs was evaluated by monitoring the temperature increase of the MNPs suspension under AMF. The in-vitro cytotoxicity results on human breast cancer cell MCF-7 by CCK-8 assay indicated the bi-modal cancer treatment approach for combined MFH and chemotherapy is more effective than mono-modal treatment, indicating a thermal enhancement effect of hyperthermia on drug cytocoxicity. The magnetic thermochemotherapy mediated by MNPs combined with methotrexate can realize cancer comprehensive treatment thus has great potential in clinical application.

  14. Application of methyl silane coated iron oxide magnetic nanoparticles for solid-phase extraction and determination of fat-soluble vitamins by high performance liquid chromatography.

    PubMed

    Momenbeik, Fariborz; Yazdani, Elham

    2015-01-01

    Methyl silane coated Fe3O4 magnetic nanoparticles were used for simultaneous extraction of the fat-soluble vitamins (FSVs). The amounts of extracted vitamins were determined by HPLC. The synthesized Fe3O4 nanoparticles were coated with silica and then modified with trimethoxymethylsilane (TMMS). The prepared particles were characterized by different methods. The best amounts of silica and TMMS in sorbent synthesis were 1.2 and 0.5 mL, respectively. The optimum pH values for the sample solution and washing buffer were 5 and 3, respectively. Application of 100 mg sorbent, 700 μL tetrahydrofuran, 5-fold dilution of the sample solution, and 1 min for sorption and desorption times were among the best conditions. At the optimum conditions, the calibration plots for each vitamin were obtained with good linearity (R(2) >0.9992) and suitable linear ranges. This method has a low LOD (<76.1 μg/mL), acceptable repeatability (RSD <5.63%) and reproducibility (RSD <4.71%), and good accuracy (recovery >90.3%). Preconcentration of low concentrations of vitamin D3 was performed, and results showed 3.7 times greater sensitivity after preconcentration. Finally, the amounts of the FSVs in pharmaceutical formulations were determined using the proposed method, and results showed good agreement with those reported by manufacturers.

  15. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles

    PubMed Central

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518

  16. Synthesis of magnetic composite nanoparticles enveloped in copolymers specified for scale inhibition application

    NASA Astrophysics Data System (ADS)

    Do, Bao Phuong Huu; Dung Nguyen, Ba; Duy Nguyen, Hoang; Nguyen, Phuong Tung

    2013-12-01

    We report the synthesis of magnetic iron oxide nanoparticles encapsulated in maleic acid-2-acrylamido-2-methyl-1-propanesulfonate based polymer. This composite nanoparticle is specified for the high-pressure/high-temperature (HPHT) oilfield scale inhibition application. The process includes a facile-ultrasound-supported addition reaction to obtain iron oxide nanoparticles with surface coated by oleic acid. Then via inverse microemulsion polymerization with selected monomers, the specifically designed copolymers have been formatted in nanoscale. The structure and morphology of obtained materials were characterized by transmission electron microscopy (TEM), x-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and the thermal stability. The effectiveness of synthesized compounds as a carbonate scale inhibitor was investigated by testing method NACE standard TM 03-074-95 at aging temperature of 70, 90 and 120 °C. The magnetic nanocomposite particles can be easily collected and detected demonstrating their superior monitoring ability, which is absent in the case of conventional copolymer-based scale inhibitor.

  17. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    PubMed

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy.

    PubMed

    McLaughlin, Mark F; Woodward, Jonathan; Boll, Rose A; Wall, Jonathan S; Rondinone, Adam J; Kennel, Stephen J; Mirzadeh, Saed; Robertson, J David

    2013-01-01

    Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo α-generator targeted radiotherapies can deliver multiple α particles to a receptor site dramatically amplifying the radiation dose delivered to the target. The major challenge with α-generator radiotherapies is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-target tissue. The recoil energy of the (225)Ac daughters following α decay will sever any metal-ligand bond used to form the bioconjugate. This work demonstrates that an engineered multilayered nanoparticle-antibody conjugate can deliver multiple α radiations and contain the decay daughters of (225)Ac while targeting biologically relevant receptors in a female BALB/c mouse model. These multi-shell nanoparticles combine the radiation resistance of lanthanide phosphate to contain (225)Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established gold chemistry for attachment of targeting moieties.

  19. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Wang, Hongbo; Yang, Chunming

    2013-03-15

    Novel Fe3O4 at TiO2 magnetic nanoparticles were prepared and developed for a new nanoparticle-based immunosensor for electrochemical quantification of organophosphorylated butyrylcholinesterase (BChE) in plasma, a specific biomarker of exposure to organophosphorus (OP) agents. The Fe3O4 at TiO2 nanoparticles were synthesized by hydrolysis of tetrabutyltitanate on the surface of Fe3O4 magnetic nanospheres, and characterized by attenuated total reflection Fourier-transform infrared spectra, transmission electron microscope and X-ray diffraction. The functional Fe3O4 at TiO2 nanoparticles were performed as capture antibody to selectively enrich phosphorylated moiety instead of phosphoserine antibody in the traditional sandwich immunoassays. The secondary recognition was served by quantum dots (QDs)-taggedmore » anti-BChE antibody (QDs-anti-BChE). With the help of a magnet, the resulting sandwich-like complex, Fe3O4 at TiO2/OP-BChE/QDs-anti-BChE, was easily isolated from sample solutions and the released cadmium ions were detected on a disposable screen-printed electrode (SPE). The binding affinities were investigated by both surface plasmon resonance (SPR) and square wave voltammetry (SWV). This method not only avoids the drawback of unavailability of commercial OP-specific antibody but also amplifies detection signal by QDs-tags together with easy separation of samples by magnetic forces. The proposed immunosensor yields a linear response over a broad OP-BChE concentrations range from 0.02 to 10 nM, with detection limit of 0.01 nM. Moreover, the disposable nanoparticle-based immunosensor has been validated with human plasma samples. It offers a new method for rapid, sensitive, selective and inexpensive screening/evaluating exposure to OP pesticides.« less

  20. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles.

    PubMed

    Rashid, Mamun; Price, Nathaniel T; Gracia Pinilla, Miguel Ángel; O'Shea, Kevin E

    2017-10-15

    Effective removal of excess phosphate from water is critical to counteract eutrophication and restore water quality. In this study, low cost, environmentally friendly humic acid coated magnetite nanoparticles (HA-MNP) were synthesized and applied for the remediation of phosphate from aqueous media. The HA-MNPs, characterized by FTIR, TEM and HAADF-STEM showed the extensive coating of humic acid on the magnetite surface. The magnetic nanoparticles with diameters of 7-12 nm could be easily separated from the reaction mixture by using a simple hand held magnet. Adsorption studies demonstrate the fast and effective separation of phosphate with maximum adsorption capacity of 28.9 mg/g at pH 6.6. The adsorption behavior follows the Freundlich isotherm suggesting the formation of non-uniform multilayers of phosphate on the heterogeneous surface of HA-MNP. The adsorption kinetic fits the pseudo-second order model well with rate constants of 0.206 ± 0.003, 0.073 ± 0.002 and 0.061 ± 0.003 g mg -1 min -1 for phosphate (P) concentrations of 2, 5 and 10 mg/L respectively. The removal of phosphate was found higher at acidic and neutral pH compared to basic conditions. The nanoparticles exhibit good selectivity and adsorption efficiency for phosphate in presence of co-existing ions such as Cl - , SO 4 2- and NO 3 - with some inhibition effect by CO 3 2- . The effect of temperature on the adsorption reveals that the process is endothermic and spontaneous. HA-MNPs are promising, simple, environmentally friendly materials for the removal of phosphate from aqueous media. Copyright © 2017. Published by Elsevier Ltd.

  1. Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: comparison of experiment and theory.

    PubMed

    Dani, Raj Kumar; Wang, Hongwang; Bossmann, Stefan H; Wysin, Gary; Chikan, Viktor

    2011-12-14

    Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 μs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles. © 2011 American Institute of Physics

  2. Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology.

    PubMed

    Chen, Chuanfang; Wang, Pingping; Li, Linlin

    2016-03-01

    The bacterial magnetic nanoparticle (BMP) has been well researched in nanobiotechnology as a new magnetic crystal. The BMPs are extracted from magnetotactic bacteria and under precise biological control. Compared with engineered magnetic nanoparticles synthesized by chemical approaches, BMPs have the properties of large production, monodispersity, high crystallinity, and close-to-bulk magnetization, which enable BMPs to be the highly promising magnetic nanoparticles for nanobiotechnology. In this paper, we review the biomedical applications of BMPs in magnetic hyperthermia, drug treatment with tumour and bioseparation. In addition, the biodistribution and toxicity are also reviewed.

  3. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522.

    PubMed

    Rose, Fabrice; Wern, Jeanette Erbo; Gavins, Francesca; Andersen, Peter; Follmann, Frank; Foged, Camilla

    2018-02-10

    Induction of mucosal immunity with vaccines is attractive for the immunological protection against pathogen entry directly at the site of infection. An example is infection with Chlamydia trachomatis (Ct), which is the most common sexually transmitted infection in the world, and there is an unmet medical need for an effective vaccine. A vaccine against Ct should elicit protective humoral and cell-mediated immune (CMI) responses in the genital tract mucosa. We previously designed an antibody- and CMI-inducing adjuvant based on poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles modified with the cationic surfactant dimethyldioctadecylammonium bromide and the immunopotentiator trehalose-6,6'-dibehenate. Here we show that immunization with these lipid-polymer hybrid nanoparticles (LPNs) coated with the mucoadhesive polymer chitosan enhances mucosal immune responses. Glycol chitosan (GC)-modified LPNs were engineered using an oil-in-water single emulsion solvent evaporation method. The nanoparticle design was optimized in a highly systematic way by using a quality-by-design approach to define the optimal operating space and to gain maximal mechanistic information about the GC coating of the LPNs. Cryo-transmission electron microscopy revealed a PLGA core coated with one or several concentric lipid bilayers. The GC coating of the surface was identified as a saturable, GC concentration-dependent increase in particle size and a reduction of the zeta-potential, and the coating layer could be compressed upon addition of salt. Increased antigen-specific mucosal immune responses were induced in the lungs and the genital tract with the optimized GC-coated LPN adjuvant upon nasal immunization of mice with the recombinant Ct fusion antigen CTH522. The mucosal responses were characterized by CTH522-specific IgG/IgA antibodies, together with CTH522-specific interferon γ-producing Th1 cells. This study demonstrates that mucosal administration of CTH522 adjuvanted with chitosan-coated

  4. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadat, M E; Patel, Ronak; Sookoor, Jason

    2014-09-01

    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe3O4) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe3O4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent ~10nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe3O4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while themore » unconfined was the free Fe3O4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems.« less

  5. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    PubMed

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Rapid Detection of Tetrodotoxin Using Surface-Enhanced Raman Spectroscopy and Fe3O4/SiO2/Au Gold/Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Neng, Jing; Wang, Xujun; Jia, Kan; Sun, Peilong

    2018-03-01

    Fe3O4 nanoparticles were first modified with tetraethoxylsilane to form Fe3O4/SiO2 nanoparticles, followed by the addition of 3-aminopropyltriethoxysilane and 3-thiolpropyltriethoxysilane to introduce -NH2 and -SH groups to the surface of Fe3O4/SiO2 nanoparticles. Gold nanoparticles were further assembled on the surface of Fe3O4/SiO2 via the electrostatic adsorption of -NH2 and the Au-S bond to produce stable core-shell Fe3O4/SiO2/Au gold/magnetic nanoparticles. These Fe3O4/SiO2/Au gold/magnetic nanoparticles were characterized by a variety of techniques such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), and afterwards conjugated with tetrodotoxin antibodies (Ab) and used as a Raman active substrate (Fe3O4/SiO2/Au-Ab) with Rhodamine B (RhB)-labeled tetrodotoxin antibody as a Raman reporter (Ab-RhB). Upon mixing these reagents with tetrodotoxin (TTX), a sandwich complex [Fe3O4/SiO2/Au-Ab···TTX···Ab-RhB] was generated due to the specific antibody-antigen interactions. The immunocomplex was subsequently separated by an externally applied magnetic source and concentrated into a pellet point, where the laser interrogation of the pellet produced a strong signal characteristic of RhB. The logarithmic intensity of the signal was found to be proportional to the concentration of TTX with a limit of detection of 0.01 μg/mL and a detection linearity range of 0.01-0.5 μg/mL. The established method eliminates the complicated procedures of traditional centrifuging, column separation, and incubation and achieves a rapid detection of tetrodotoxin with improved detection sensitivity.

  7. Magnetic nanoparticles based cancer therapy: current status and applications.

    PubMed

    Zhang, Huan; Liu, Xiao Li; Zhang, Yi Fan; Gao, Fei; Li, Ga Long; He, Yuan; Peng, Ming Li; Fan, Hai Ming

    2018-04-01

    Nanotechnology holds a promising potential for developing biomedical nanoplatforms in cancer therapy. The magnetic nanoparticles, which integrate uniquely appealing features of magnetic manipulation, nanoscale heat generator, localized magnetic field and enzyme-mimics, prompt the development and application of magnetic nanoparticles-based cancer medicine. Considerable success has been achieved in improving the magnetic resonance imaging (MRI) sensitivity, and the therapeutic function of the magnetic nanoparticles should be given adequate attention. This work reviews the current status and applications of magnetic nanoparticles based cancer therapy. The advantages of magnetic nanoparticles that may contribute to improved therapeutics efficacy of clinic cancer treatment are highlighted here.

  8. Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B1.

    PubMed

    Lin, Youxiu; Zhou, Qian; Zeng, Yongyi; Tang, Dianping

    2018-06-02

    The authors describe a photoelectrochemical (PEC) immunoassay for determination of aflatoxin B 1 (AFB 1 ) in foodstuff. The competitive immunoreaction is carried out on a microplate coated with a capture antibody against AFB 1 using AFB 1 -bovine serum albumin (BSA)-liposome-coated mesoporous silica nanoparticles (MSN) loaded with L-cysteine as a support. The photocurrent is produced by a photoactive material consisting of cerium-doped Bi 2 MoO 6 . Initially, L-cysteine acting as the electron donor is gated in the pores by interaction between mesoporous silica and liposome. Thereafter, AFB 1 -BSA conjugates are covalently bound to the liposomes. Upon introduction of the analyte (AFB 1 ), the labeled AFB 1 -BSA complex competes with the analyte for the antibody deposited on the microplate. Accompanying with the immunocomplex, the liposomes on the MSNs are lysed upon addition of Triton X-100. This results in the opening of the pores and in a release of L-cysteine. Free cysteine then induces the electron-hole scavenger of the photoactive nanosheets to increase the photocurrent. The photocurrent (relative to background signal) increases with increasing AFB 1 concentration. Under optimum conditions, the photoactive nanosheets display good photoelectrochemical responses, and allow the detection of AFB 1 at a concentration as low as 0.1 pg·mL -1 within a linear response in the 0.3 pg·mL -1 to 10 ng·mL -1 concentration range. Accuracy was evaluated by analyzing naturally contaminated and spiked peanut samples by using a commercial AFB 1 ELISA kit as the reference, and well-matching results were obtained. Graphical abstract Schematic presentation of a photoelectrochemical immunoassay for AFB 1 . It is based on the use of Ce-doped Bi 2 MoO 6 nanosheets and of liposome-coated mesoporous silica nanoparticles loaded with L-cysteine.

  9. Development of multifunctional nanoparticles towards applications in non-invasive magnetic resonance imaging and axonal tracing.

    PubMed

    Du, Yan; Qin, Yubo; Li, Zizhen; Yang, Xiuying; Zhang, Jingchang; Westwick, Harrison; Tsai, Eve; Cao, Xudong

    2017-12-01

    A multifunctional nanobiomaterial has been developed by deliberately combining functions of superparamagnetism, fluorescence, and axonal tracing into one material. Superparamagnetic iron oxide nanoparticles were first synthesized and coated with a silica layer to prevent emission quenching through core-dye interactions; a fluorescent molecule, fluorescein isothiocyanate, was doped inside second layer of silica shell to improve photo-stability and to enable further thiol functionalization. Subsequently, biotinylated dextran amine, a sensitive axonal tracing reagent, was immobilized on the thiol-functionalized nanoparticle surfaces. The resulting nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis spectroscopy, magnetic resonance imaging and fluorescence confocal microscopy. In vitro cell experiments using both undifferentiated and differentiated Neuro-2a cells showed that the cells were able to take up the nanoparticles intracellularly and that the nanoparticles showed good biocompatibilities. In summary, this new material demonstrated promising performances for both optical and magnetic resonance imaging modalities, suggesting its promising potentials in applications such as in non-invasive imaging, particularly in neuronal tracing.

  10. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water

    NASA Astrophysics Data System (ADS)

    Yu, Liuhua; Hao, Gazi; Gu, Junjun; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-11-01

    In this work, Fe3O4/PS composites with a rough surface and different coating rates were successfully designed and synthesized by emulsion polymerization. We carried out some comparative experiments to compare magnetic properties and oil absorption properties of the nano-magnetic materials. It had been found that several prepared groups of magnetic nanocomposites have a core-shell structure and good coating rates. These nanoparticles combined with unsinked, highly hydrophobic and superoleophilic properties. The absorption capacity of Fe3O4/PS composites for organic solvents and the composites could absorb diesel oil up to 2.492 times of its own weight. It is more important that the oil could be readily removed from the surfaces of nanoparticles by a simple ultrasonic treatment whereas the nanocomposites particles still kept highly hydrophobic and superoleophilic characteristics. With a combination of simple synthesis process, low density, magnetic responsibility and excellent hydrophobicity, Fe3O4/PS nanocomposites as a promising absorbent have great potential in the application of spilled oil recovery and environmental protection.

  11. In vitro cytotoxicity of Fe-Cr-Nb-B magnetic nanoparticles under high frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chiriac, Horia; Petreus, Tudor; Carasevici, Eugen; Labusca, Luminita; Herea, Dumitru-Daniel; Danceanu, Camelia; Lupu, Nicoleta

    2015-04-01

    The heating potential, cytotoxicity, and efficiency of Fe68.2Cr11.5Nb0.3B20 magnetic nanoparticles (MNPs), as such or coated with a chitosan layer, to decrease the cell viability in a cancer cell culture model by using high frequency alternating magnetic fields (AMF) have been studied. The specific absorption rate varied from 215 W/g for chitosan-free MNPs to about 190 W/g for chitosan-coated ones, and an equilibrium temperature of 46 °C was reached when chitosan-coated MNPs were subjected to AMF. The chitosan-free Fe68.2Cr11.5Nb0.3B20 MNPs proved a good biocompatibility and low cytotoxicity in all testing conditions, while the chitosan-coated ones induced strong tumoricidal effects when a cell-particle simultaneous co-incubation approach was used. In high frequency AMF, the particle-mediated heat treatment has proved to be a critical cause for decreasing in vitro the viability of a cancer cell line.

  12. Percolation Magnetism in Ferroelectric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  13. Engineering biofunctional magnetic nanoparticles for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.

    2010-09-01

    Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the

  14. Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging

    DOE PAGES

    Sun, Ziyan; Cheng, Kai; Wu, Fengyu; ...

    2016-10-31

    Grafting a robust organic shell around inorganic nanoparticles can optimize their colloidal features to dramatically improve their physicochemical properties. Here, we have developed a polymer coating procedure for providing colloidal stability to the nanoparticles and, more importantly, for applying a fast, facile fluorine-18 labeling of iron oxide nanoparticles (IONPs) for positron emission tomography (PET)/magnetic resonance (MR) dual-modality imaging. The structure of the amphiphilic polymer is based on a backbone of polyacrylic acid, conjugated with multiple oleylamines to form a comb-like branched structure. The dense polymer shell provides high colloidal stability to the IONPs against harsh conditions such as high temperature,more » low pH value, and high ion strength. By incorporating a 1,4,7-triazacyclononane (NOTA) chelator to the comb-like amphiphilic polymer for the chelation of aluminum fluoride ions, we applied a one-step radiolabeling approach for a fast, facile radiofluorination of magnetic nanoparticles. The new strategy can significantly reduce the procedure time and radiation exposure. In conclusion, the PET/MR dual modality imaging was successfully achieved in living subjects by using 18F labeled magnetic nanoparticles.« less

  15. Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ziyan; Cheng, Kai; Wu, Fengyu

    Grafting a robust organic shell around inorganic nanoparticles can optimize their colloidal features to dramatically improve their physicochemical properties. Here, we have developed a polymer coating procedure for providing colloidal stability to the nanoparticles and, more importantly, for applying a fast, facile fluorine-18 labeling of iron oxide nanoparticles (IONPs) for positron emission tomography (PET)/magnetic resonance (MR) dual-modality imaging. The structure of the amphiphilic polymer is based on a backbone of polyacrylic acid, conjugated with multiple oleylamines to form a comb-like branched structure. The dense polymer shell provides high colloidal stability to the IONPs against harsh conditions such as high temperature,more » low pH value, and high ion strength. By incorporating a 1,4,7-triazacyclononane (NOTA) chelator to the comb-like amphiphilic polymer for the chelation of aluminum fluoride ions, we applied a one-step radiolabeling approach for a fast, facile radiofluorination of magnetic nanoparticles. The new strategy can significantly reduce the procedure time and radiation exposure. In conclusion, the PET/MR dual modality imaging was successfully achieved in living subjects by using 18F labeled magnetic nanoparticles.« less

  16. An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/SiO2 nanocomposites and immune magnetic nanoparticles.

    PubMed

    Ye, Lingxian; Zhao, Guangying; Dou, Wenchao

    2018-05-15

    A sensitive Point-of-Care Testing (POCT) with Au-Pt bimetallic nanoparticles (Au@Pt) functionalized silica nanoparticle (SiO 2 NPs) and Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 NPs) was designed for the quantitative detection of Escherichia coli O157:H7 (E. coli O157:H7). The poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as a negatively charged polyelectrolyte can be easily coated on surface of the amino group modified SiO 2 NPs via electrostatic force. PSSMA is also a good stabilizer for water-soluble bimetallic nanostructures. The PSSMA is first time used as a "bridge" to connect the negative charge Au@Pt NPs to the SiO 2 NPs, forming Au@Pt/SiO 2 NPs. Antibody and invertase conjugated Au@Pt/SiO 2 NPs (denoted as Ab/invertase-Au@Pt/SiO 2 NPs) were used as signal labels. Monoclonal antibody against E. coli O157:H7 (Ab) functionalized magnetic nanoparticles (denoted as Ab-Fe 3 O 4 @SiO 2 NPs) were used to enrich and capture the E. coli O157:H7 in positive sample. The immunosensing platform also composed of a personal glucometer (PGM) using for signal readout. Based on this sandwich-type immunoassay, the invertase in the final formed sandwich immunocomplex catalyzed the hydrolysis of sucrose to produce a large amount of glucose for quantitative readout by the PGM. Under optimal conditions, a linear relationship between the glucose concentration and the logarithm of E. coli O157:H7 concentration was obtained in the concentration range from 3.5 × 10 2 to 3.5 × 10 8 CFU mL -1 with a detection limit of 1.83 × 10 2 CFU mL -1 (3σ). This method was used to detect E. coli O157:H7 in spiked milk samples, indicating its potential practical application. This protocol can be applied in various fields of study. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy

    NASA Astrophysics Data System (ADS)

    Xiong, Mingfeng; Gao, Yunxia; Liu, Jing

    2014-03-01

    In this study, Ni nanoparticles were loaded into the partially oxidized gallium and its alloys to fabricate desired magnetic nanofluid. It was disclosed that the Ni nanoparticles sharply increased the freezing temperature and latent heat of the obtained magnetic nano liquid metal fluid, while the melting process was less affected. For the gallium sample added with 10 vol% coated Ni particles, a hysteresis loop was observed and the magnetization intensity decreased with the increase of the temperature. The slope for the magnetization-temperature curve within 10-30 K was about 20 times of that from 40 K to 400 K. Further, the dynamic impact experiments of striking magnetic liquid metal droplets on the magnet revealed that the regurgitating of the leading edge of the liquid disk and the subsequent wave that often occurred in the gallium-indium droplets would disappear for the magnetic fluids case due to attraction force of the magnet.

  18. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  19. Magnetic field-enhanced cellular uptake of doxorubicin loaded magnetic nanoparticles for tumor treatment

    NASA Astrophysics Data System (ADS)

    Venugopal, Indu; Pernal, Sebastian; Duproz, Alexandra; Bentley, Jeromy; Engelhard, Herbert; Linninger, Andreas

    2016-09-01

    Cancer remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. In recent years, several varieties of nanoparticles (NPs) have been synthesized with the intent of being utilized as tumor drug delivery vehicles. We have produced superparamagnetic, gold-coated magnetite (Fe3O4@Au) NPs and loaded them with the chemotherapeutic drug doxorubicin (DOX) for magnetic drug targeting (MDT) of tumors. The synthetic strategy uses the food thickening agent gellan gum (Phytagel) as a negatively charged shell around the Fe3O4@Au NP onto which the positively charged DOX molecules are loaded via electrostatic attraction. The resulting DOX-loaded magnetic nanoparticles (DOX-MNPs) were characterized using transmission electron microscopy, energy dispersive x-ray spectroscopy, superconducting quantum interference device magnetometry, surface area electron diffraction, zeta potential measurements, fourier transform infrared spectroscopy as well as UV/Vis and fluorescence spectroscopy. Cytotoxicity of the DOX-MNPs was demonstrated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on C6 glioma cells. Cellular uptake of DOX-MNPs was enhanced with magnetic fields, which was quantitatively determined using flow cytometry. This improved uptake also led to greater tumor cell death, which was measured using MTT assay. These MDT results are promising for a new therapy for cancer.

  20. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid.

    PubMed

    Dennis, C L; Jackson, A J; Borchers, J A; Gruettner, C; Ivkov, R

    2018-05-25

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  1. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid

    NASA Astrophysics Data System (ADS)

    Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.

    2018-05-01

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  2. Synthesis and characterization of pHLIP® coated gold nanoparticles.

    PubMed

    Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K

    2017-07-01

    Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  3. Preparation of immunomagnetic iron-dextran nanoparticles and application in rapid isolation of E.coli O157:H7 from foods

    PubMed Central

    Duan, Hui-Li; Shen, Zhi-Qiang; Wang, Xin-Wei; Chao, Fu-Huan; Li, Jun-Wen

    2005-01-01

    AIM: To prepare a kind of magnetic iron-dextran nanoparticles that was coated with anti-E.coli O157:H7 IgG, analyze its application conditions, and try to use it to isolate E.coli O157:H7 from foods. METHODS: Magnetic iron-dextran nanoparticles were prepared by the reaction of a mixture of ferric and ferrous ions with dextran polymers under alkaline conditions. The particles were coated with antiserum against E.coli O157:H7 by the periodate oxidation-borohydride reduction procedure. The oxidation time, amount of antibody coating the particles, amount of nanoparticles, incubation time and isolation time were varied to determine their effects on recovery of the organisms. Finally, the optimum conditions for isolating E.coli O157:H7 from food samples were established. RESULTS: E.coli O157:H7 can be isolated from samples within 15 min with the sensitivity of 101 CFU/mL or even less. In the presence of 108 CFU/mL of other organisms, the sensitivity is 101-102 CFU/mL. Nonspecific binding of other bacteria to the particles was not observed. Two and a half hours of enrichment is enough for the particles to detect the target from the food samples inoculated with 1 CFU/g. CONCLUSION: Isolation of target bacteria by immuno-magnetic nanoparticles is an efficient method with high sensitivity and specificity. The technique is so simple that it can be operated in lab and field even by untrained personnel. PMID:15968716

  4. HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice.

    PubMed

    Corsi, Fabio; Fiandra, Luisa; De Palma, Clara; Colombo, Miriam; Mazzucchelli, Serena; Verderio, Paolo; Allevi, Raffaele; Tosoni, Antonella; Nebuloni, Manuela; Clementi, Emilio; Prosperi, Davide

    2011-08-23

    Subcellular destiny of targeted nanoparticles in cancer cells within living organisms is still an open matter of debate. By in vivo and ex vivo experiments on tumor-bearing mice treated with antibody-engineered magnetofluorescent nanocrystals, in which we combined fluorescence imaging, magnetic relaxation, and trasmission electron microscopy approaches, we provide evidence that nanoparticles are effectively delivered to the tumor by active targeting. These nanocrystals were demonstrated to enable contrast enhancement of the tumor in magnetic resonance imaging. In addition, we were able to discriminate between the fate of the organic corona and the metallic core upon cell internalization. Accurate immunohistochemical analysis confirmed that hybrid nanoparticle endocytosis is mediated by the complex formation with HER2 receptor, leading to a substantial downregulation of HER2 protein expression on the cell surface. These results provide a direct insight into the pathway of internalization and degradation of targeted hybrid nanoparticles in cancer cells in vivo and suggest a potential application of this immunotheranostic nanoagent in neoadjuvant therapy of cancer. © 2011 American Chemical Society

  5. A SPION-eicosane protective coating for water soluble capsules: Evidence for on-demand drug release triggered by magnetic hyperthermia.

    PubMed

    Che Rose, Laili; Bear, Joseph C; McNaughter, Paul D; Southern, Paul; Piggott, R Ben; Parkin, Ivan P; Qi, Sheng; Mayes, Andrew G

    2016-02-04

    An orally-administered system for targeted, on-demand drug delivery to the gastrointestinal (GI) tract is highly desirable due to the high instances of diseases of that organ system and harsh mechanical and physical conditions any such system has to endure. To that end, we present an iron oxide nanoparticle/wax composite capsule coating using magnetic hyperthermia as a release trigger. The coating is synthesised using a simple dip-coating process from pharmaceutically approved materials using a gelatin drug capsule as a template. We show that the coating is impervious to chemical conditions within the GI tract and is completely melted within two minutes when exposed to an RF magnetic field under biologically-relevant conditions. The overall simplicity of action, durability and non-toxic and inexpensive nature of our system demonstrated herein are key for successful drug delivery systems.

  6. Nanomedical innovation: the SEON-concept for an improved cancer therapy with magnetic nanoparticles.

    PubMed

    Lyer, Stefan; Tietze, Rainer; Unterweger, Harald; Zaloga, Jan; Singh, Raminder; Matuszak, Jasmin; Poettler, Marina; Friedrich, Ralf P; Duerr, Stephan; Cicha, Iwona; Janko, Christina; Alexiou, Christoph

    2015-01-01

    Nanomedicine offers tremendous opportunities for the development of novel therapeutic and diagnostic tools. During the last decades, extensive knowledge was gained about stabilizing and the coating of nanoparticles, their functionalization for drug binding and drug release and possible strategies for therapies and diagnostics of different diseases. Most recently, more and more emphasis has been placed on nanotoxicology and nanosafety aspects. The section of experimental oncology and nanomedicine developed a concept for translating this knowledge into clinical application of magnetic drug targeting for the treatment of cancer and other diseases using superparamagnetic iron oxide nanoparticles. This approach includes reproducible synthesis, detailed characterization, nanotoxicological testing, evaluation in ex vivo models, preclinical animal studies and production of superparamagnetic iron oxide nanoparticles according to good manufacturing practice regulations.

  7. Preparation and evaluation of APTES-PEG coated iron oxide nanoparticles conjugated to rhenium-188 labeled rituximab.

    PubMed

    Azadbakht, Bakhtiar; Afarideh, Hossein; Ghannadi-Maragheh, Mohammad; Bahrami-Samani, Ali; Asgari, Mehdi

    2017-05-01

    Radioimmuno-conjugated (Rhenium-188 labeled Rituximab), 3-aminopropyltriethoxysilane (APTES)-polyethylene glycol (PEG) coated iron oxide nanoparticles were synthesized and then characterized. Therapeutic effect and targeting efficacy of complex were evaluated in CD20 express B cell lines and tumor bearing Balb/c mice respectively. To reach these purposes, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized using coprecipitation method and then their surface was treated with APTES for increasing retention time of SPIONs in blood circulation and amine group creation. In the next step, N-hydroxysuccinimide (NHS) ester of polyethylene glycol maleimide (NHS-PEG-Mal) was conjugated to the APTES-treated SPIONs. After radiolabeling of Rituximab antibody with Rhenium-188 (T 1/2 =16.9h) using synthesized N 2 S 4 chelator, it was attached to the APTES-PEG-MAL-SPIONs surface through thiol-maleimide coupling reaction. In vitro evaluation of the 188 ReN 2 S 4 -Rituximab-SPION-complex thus obtained revealed that at 24 and 48h post-treatment effective cancer cell killing had been achieved. Bio-distribution study in tumor bearing mice showed capability of this complex for targeted cancer therapy. Active and passive tumor targeting strategies were applied through incorporated anti-CD20 (Rituximab) antibody and also enhanced permeability and retention (EPR) effect of solid tumors for nanoparticles respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  9. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    PubMed

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  11. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles.

    PubMed

    Roohi, Farnoosh; Lohrke, Jessica; Ide, Andreas; Schütz, Gunnar; Dassler, Katrin

    2012-01-01

    Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs. Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19-86 nm) were obtained by fractionating a broadly size-distributed CDX-SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), poly-ethylene glycol, and starch. Furthermore, small PAA-SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry. By changing the particle size without modifying any other parameters, the relaxivity r(2) increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material. In this report we systematically demonstrated that both particle size and coating material influence blood kinetics and magnetic properties of

  12. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

    PubMed Central

    Roohi, Farnoosh; Lohrke, Jessica; Ide, Andreas; Schütz, Gunnar; Dassler, Katrin

    2012-01-01

    Purpose: Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs. Methods: Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19–86 nm) were obtained by fractionating a broadly size-distributed CDX–SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), poly-ethylene glycol, and starch. Furthermore, small PAA–SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry. Results: By changing the particle size without modifying any other parameters, the relaxivity r2 increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material. Conclusion: In this report we systematically demonstrated that both particle size and coating material influence

  13. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths.

    PubMed

    McGill, Shayna L; Cuylear, Carla L; Adolphi, Natalie L; Osiński, Marek; Smyth, Hugh D C

    2009-03-01

    The purpose of this study is to investigate the potential of magnetic nanoparticles for enhancing drug delivery using a low oscillating magnetic field (OMF) strength. We investigated the ability of magnetic nanoparticles to cause disruption of a viscous biopolymer barrier to drug delivery and the potential to induce triggered release of drug conjugated to the surfaces of these particles. Various magnetic nanoparticles were screened for thermal response under a 295-kHz OMF with an amplitude of 3.1 kA/m. Based on thermal activity of particles screened, we selected the nanoparticles that displayed desired characteristics for evaluation in a simplified model of an extracellular barrier to drug delivery, using lambda DNA/HindIII. Results indicate that nanoparticles could be used to induce DNA breakage to enhance local diffusion of drugs, despite low temperatures of heating. Additional studies showed increased diffusion of quantum dots in this model by single-particle tracking methods. Bimane was conjugated to the surface of magnetic nanoparticles. Fluorescence and transmission electron microscope images of the conjugated nanoparticles indicated little change in the overall appearance of the nanoparticles. A release study showed greater drug release using OMF, while maintaining low bulk heating of the samples (T = 30 degrees C). This study indicates that lower magnetic field strengths may be successfully utilized for drug delivery applications as a method for drug delivery transport enhancement and drug release switches.

  14. The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells

    NASA Astrophysics Data System (ADS)

    Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.

    2015-04-01

    Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 μg/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.

  15. Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micropillars

    NASA Astrophysics Data System (ADS)

    Orlandi, G.; Kuzhir, P.; Izmaylov, Y.; Alves Marins, J.; Ezzaier, H.; Robert, L.; Doutre, F.; Noblin, X.; Lomenech, C.; Bossis, G.; Meunier, A.; Sandoz, G.; Zubarev, A.

    2016-06-01

    Microfluidic separation of magnetic particles is based on their capture by magnetized microcollectors while the suspending fluid flows past the microcollectors inside a microchannel. Separation of nanoparticles is often challenging because of strong Brownian motion. Low capture efficiency of nanoparticles limits their applications in bioanalysis. However, at some conditions, magnetic nanoparticles may undergo field-induced aggregation that amplifies the magnetic attractive force proportionally to the aggregate volume and considerably increases nanoparticle capture efficiency. In this paper, we have demonstrated the role of such aggregation on an efficient capture of magnetic nanoparticles (about 80 nm in diameter) in a microfluidic channel equipped with a nickel micropillar array. This array was magnetized by an external uniform magnetic field, of intensity as low as 6-10 kA/m, and experiments were carried out at flow rates ranging between 0.3 and 30 μ L /min . Nanoparticle capture is shown to be mostly governed by the Mason number Ma, while the dipolar coupling parameter α does not exhibit a clear effect in the studied range, 1.4 < α < 4.5. The capture efficiency Λ shows a strongly decreasing Mason number behavior, Λ ∝M a-1.78 within the range 32 ≤ Ma ≤ 3250. We have proposed a simple theoretical model which considers destructible nanoparticle chains and gives the scaling behavior, Λ ∝M a-1.7 , close to the experimental findings.

  16. Less is More: A Comparison of Antibody-Gold Nanoparticle Conjugates of Different Ratios.

    PubMed

    Byzova, Nadezhda A; Safenkova, Irina V; Slutskaya, Elvira S; Zherdev, Anatoly V; Dzantiev, Boris B

    2017-11-15

    This comprehensive study is related to gold nanoparticles (GNPs) conjugated with antibodies. The goal of the study is to determine the minimal concentration of antibodies for conjugate synthesis when the conjugates have high antigen-capturing activity. Two systems were studied: gold nanoparticles conjugated with monoclonal antibodies (mAb-GNP) specific to Helicobacter pylori and gold nanoparticles conjugated with polyclonal antibodies (pAb-GNP) specific to mouse immunoglobulins. Several conjugates were synthesized with different GNP-to-antibody molar ratios (from 1:1 to 1:245) through nondirectional and noncovalent immobilization on a surface of GNPs with a diameter of 25.3 ± 4.6 nm. The maximal antigen-capturing activities and equilibrium constants of the conjugates correlate with the formation of a constant hydrodynamic radius of the conjugates for mAb-GNP (GNP to antibody molar ratio 1:58) and with the stabilizing concentration by flocculation curves for pAb-GNP (GNP to antibody molar ratio 1:116). The application of the conjugates to the lateral flow immunoassay shows that the antibody concentrations used for the conjugation can be reduced (below the stabilizing concentration) without losing activity for the mAb-GNP conjugates. The findings highlight that the optimal concentration of antibodies immobilized on the surface of GNPs is not always equal to the stabilizing concentration determined by the flocculation curve.

  17. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents

    PubMed Central

    Zhang, Weizhong; Liu, Lin; Chen, Hongmin; Hu, Kai; Delahunty, Ian; Gao, Shi; Xie, Jin

    2018-01-01

    Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in the clinic. To improve imaging quality, MRI contrast agents, which can modulate local T1 and T2 relaxation times, are often injected prior to or during MRI scans. However, clinically used contrast agents, including Gd3+-based chelates and iron oxide nanoparticles (IONPs), afford mediocre contrast abilities. To address this issue, there has been extensive research on developing alternative MRI contrast agents with superior r1 and r2 relaxivities. These efforts are facilitated by the fast progress in nanotechnology, which allows for preparation of magnetic nanoparticles (NPs) with varied size, shape, crystallinity, and composition. Studies suggest that surface coatings can also largely affect T1 and T2 relaxations and can be tailored in favor of a high r1 or r2. However, the surface impact of NPs has been less emphasized. Herein, we review recent progress on developing NP-based T1 and T2 contrast agents, with a focus on the surface impact. PMID:29721097

  18. Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides

    NASA Astrophysics Data System (ADS)

    Chen, Yajing; Xiong, Zhichao; Zhang, Lingyi; Zhao, Jiaying; Zhang, Quanqing; Peng, Li; Zhang, Weibing; Ye, Mingliang; Zou, Hanfa

    2015-02-01

    Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g-1), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples.Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have

  19. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized bymore » quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.« less

  20. Cleavable ester linked magnetic nanoparticles for labeling of solvent exposed primary amine groups of peptides/proteins

    USDA-ARS?s Scientific Manuscript database

    In order to study the solvent exposed lysine residues of peptides/proteins, we previously reported disulfide linked N-hydrosuccinimide ester modified silica coated iron oxide magnetic nanoparticles (NHS-SS-SiO2@Fe3O4 MNPs). The presence of a disulfide bond in the linker limits the use of disulfide r...

  1. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.

    PubMed

    Shin, Won-Jeong; Basarir, Fevzihan; Yoon, Tae-Ho; Lee, Jae-Suk

    2009-04-09

    New nanoporous structures of Au-coated titania layers were prepared by using amphiphilic block copolymer nanoparticles as a template. A 3-D template composed of self-assembled quaternized polystyrene-b-poly(2-vinylpyridine) (Q-PS-b-P2VP) block copolymer nanoparticles below 100 nm was prepared. The core-shell-type nanoparticles were well ordered three-dimensionally using the vertical immersion method on the substrate. The polar solvents were added to the polymer solution to prevent particle merging at 40 degrees C when considering the interaction between polymer nanoparticles and solvents. Furthermore, Au-coated PS-b-P2VP nanoparticles were prepared using thiol-capped Au nanoparticles (3 nm). The 3-D arrays with Au-coated PS-b-P2VP nanoparticles as a template contributed to the preparation of the nanoporous Au-coated titania layer. Therefore, the nanoporous Au-coated titania layer was fabricated by removing PS-b-P2VP block copolymer nanoparticles by oxygen plasma etching.

  2. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  3. In vitro antiplasmodial activity of PDDS-coated metal oxide nanoparticles against Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2013-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people and the Plasmodium falciparum develops resistant to well-established antimalarial drugs. The newest antiplasmodial drug from metal oxide nanoparticles helps in addressing this problem. Commercial nanoparticles such as Fe3O4, MgO, ZrO2, Al2O3 and CeO2 coated with PDDS and all the coated and non-coated nanoparticles were screened for antiplasmodial activity against P. falciparum. The Al2O3 nanoparticles (71.42 ± 0.49 μg ml-1) showed minimum level of IC50 value and followed by MgO (72.33 ± 0.37 μg ml-1) and Fe3O4 nanoparticles (77.23 ± 0.42 μg ml-1). The PDDS-Fe3O4 showed minimum level of IC50 value (48.66 ± 0.45 μg ml-1), followed by PDDS-MgO (60.28 ± 0.42 μg ml-1) and PDDS-CeO2 (67.06 ± 0.61 μg ml-1). The PDDS-coated metal oxide nanoparticles showed superior antiplasmodial activity than the non-PDDS-coated metal oxide nanoparticles. Statistical analysis reveals that, significant in vitro antiplasmodial activity ( P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the nanoparticles after 48 h of incubation. It is concluded from the present study that, the PDDS-Fe3O4 showed good antiplasmodial activity and it might be used for the development of antiplasmodial drugs.

  4. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.

    PubMed

    Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J

    2017-06-07

    The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.

  5. A reusable piezoelectric immunosensor using antibody-adsorbed magnetic nanocomposite.

    PubMed

    Zhang, Yun; Wang, Hua; Yan, Bani; Zhang, Yuwei; Li, Jishan; Shen, Guoli; Yu, Ruqin

    2008-03-20

    This paper reports a simple, sensitive, and reusable piezoelectric immunosensor using magnetic hydroxyapatite (HAP)/gamma-Fe(2)O(3)/Au nanocomposite. Use of porous HAP nanocrystals embedded with gamma-Fe(2)O(3) and colloidal gold nanoparticles resulted in a multifunctional HAP/gamma-Fe(2)O(3)/Au nanocomposite. Under optimized conditions, the biocompatible nanocomposites were exploited for direct adsorption of large quantities of rabbit anti-human immunoglobulin G antibodies (anti-hIgG) with well-preserved immunoactivity. In a homogeneous bulk solution, the hIgG analytes were captured by the anti-hIgG-derivatized immunocomposites followed by magnetic separation/enrichment onto a bovine serum albumin (BSA)-sealed QCM probe before measuring. This QCM immunosensor can quantitatively determine concentrations of hIgG ranging from approximately 20 to 800 ng/ml, with a detection limit of approximately 15 ng/ml. Moreover, regeneration of the immunosensor can be simply realized by canceling the controllable magnetic field. With the possibility of performing the analysis automatically and considering its ease of use, high sensitivity, and good reusability, this magnetic separation-assisted QCM immunosensor may have great potential to be further tailored as a general and promising alternative for a broad range of practical applications.

  6. Effects of functional groups and ionization on the structure of alkanethiol coated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Lane, J. Matthew D.; Grest, Gary S.

    2013-03-01

    We report fully atomistic molecular dynamics simulations of alkanethiol coated gold nanoparticles solvated in water and decane. The structure of the coatings is analyzed as a function of various functional end groups, including amine and carboxyl groups in different neutralization states. We study the effects of charge in the end groups for two different chain lengths (10 and 18 carbons) and different counterions (mono- and divalent). For the longer alkanes we find significant local phase segregation of chains on the nanoparticle surface, which results in highly asymmetric coating structures. In general, the charged end groups attenuate this effect by enhancing the water solubility of the nanoparticles. Based on the coating structures and density profiles, we can qualitatively infer the overall solubility of the nanoparticles. The asymmetry in the alkanethiol coatings is also likely to have a significant effect on aggregation behavior. More importantly, our simulations suggest the ability to modulate end group charge states (e.g. by changing the pH of the solution) in order to control coating structure, and therefore control solubility and aggregation behavior.

  7. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy

    NASA Astrophysics Data System (ADS)

    Meng, Qian-Fang; Rao, Lang; Zan, Minghui; Chen, Ming; Yu, Guang-Tao; Wei, Xiaoyun; Wu, Zhuhao; Sun, Yue; Guo, Shi-Shang; Zhao, Xing-Zhong; Wang, Fu-Bing; Liu, Wei

    2018-04-01

    Nanotechnology possesses the potential to revolutionize the diagnosis and treatment of tumors. The ideal nanoparticles used for in vivo cancer therapy should have long blood circulation times and active cancer targeting. Additionally, they should be harmless and invisible to the immune system. Here, we developed a biomimetic nanoplatform with the above properties for cancer therapy. Macrophage membranes were reconstructed into vesicles and then coated onto magnetic iron oxide nanoparticles (Fe3O4 NPs). Inherited from the Fe3O4 core and the macrophage membrane shell, the resulting Fe3O4@MM NPs exhibited good biocompatibility, immune evasion, cancer targeting and light-to-heat conversion capabilities. Due to the favorable in vitro and in vivo properties, biomimetic Fe3O4@MM NPs were further used for highly effective photothermal therapy of breast cancer in nude mice. Surface modification of synthetic nanomaterials with biomimetic cell membranes exemplifies a novel strategy for designing an ideal nanoplatform for translational medicine.

  8. Silica-Coated Nonstoichiometric Nano Zn-Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment.

    PubMed

    Starsich, Fabian H L; Sotiriou, Georgios A; Wurnig, Moritz C; Eberhardt, Christian; Hirt, Ann M; Boss, Andreas; Pratsinis, Sotiris E

    2016-10-01

    Large-scale and reproducible synthesis of nanomaterials is highly sought out for successful translation into clinics. Flame aerosol technology with its proven capacity to manufacture high purity materials (e.g., light guides) up to kg h -1 is explored here for the preparation of highly magnetic, nonstoichiometric Zn-ferrite (Zn 0.4 Fe 2.6 O 4 ) nanoparticles coated in situ with a nanothin SiO 2 layer. The focus is on their suitability as magnetic multifunctional theranostic agents analyzing their T2 contrast enhancing capability for magnetic resonance imaging (MRI) and their magnetic hyperthermia performance. The primary particle size is closely controlled from 5 to 35 nm evaluating its impact on magnetic properties, MRI relaxivity, and magnetic heating performance. Most importantly, the addition of Zn in the flame precursor solution facilitates the growth of spinel Zn-ferrite crystals that exhibit superior magnetic properties over iron oxides typically made in flames. These properties result in strong MRI T2 contrast agents as shown on a 4.7 T small animal MRI scanner and lead to a more efficient heating with alternating magnetic fields. Also, by injecting Zn 0.4 Fe 2.6 O 4 nanoparticle suspensions into pork tissue, MR-images are acquired at clinically relevant concentrations. Furthermore, the nanothin SiO 2 shell facilitates functionalization with polymers, which improves the biocompatibility of the theranostic system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Experimental and theoretical investigation of intratumoral nanoparticle distribution to enhance magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Attaluri, Anilchandra

    Magnetic nanoparticles have gained prominence in recent years for use in clinical applications such as imaging, drug delivery, and hyperthermia. Magnetic nanoparticle hyperthermia is a minimally invasive and effective approach for confined heating in tumors with little collateral damage. One of the major problems in the field of magnetic nanoparticle hyperthermia is irregular heat distribution in tumors which caused repeatable heat distribution quite impossible. This causes under dosage in tumor area and overheating in normal tissue. In this study, we develop a unified approach to understand magnetic nanoparticle distribution and temperature elevations in gel and tumors. A microCT imaging system is first used to visualize and quantify nanoparticle distribution in both tumors and tissue equivalent phantom gels. The microCT based nanoparticle concentration is related to specific absorption rate (SAR) of the nanoparticles and is confirmed by heat distribution experiments in tissue equivalent phantom gels. An optimal infusion protocol is identified to generate controllable and repeatable nanoparticle distribution in tumors. In vivo animal experiments are performed to measure intratumoral temperature elevations in PC3 xenograft tumors implanted in mice during magnetic nanoparticle hyperthermia. The effect of nanofluid injection parameters on the resulted temperature distribution is studied. It shows that the tumor temperatures can be elevated above 50°C using very small amounts of ferrofluid with a relatively low magnetic field. Slower ferrofluid infusion rates result in smaller nanoparticle distribution volumes in the tumors, however, it gives the much required controllability and repeatability when compared to the higher infusion rates. More nanoparticles occupy a smaller volume in the vicinity of the injection site with slower infusion rates, causing higher temperature elevations in the tumors. Based on the microCT imaging analyses of nanoparticles in tumors, a mass

  10. Magnetic targeting of nanoparticles across the intact blood–brain barrier

    PubMed Central

    Kong, Seong Deok; Lee, Jisook; Ramachandran, Srinivasan; Eliceiri, Brian P.; Shubayev, Veronica I.; Lal, Ratnesh; Jin, Sungho

    2015-01-01

    Delivery of therapeutic or diagnostic agents across an intact blood–brain barrier (BBB) remains a major challenge. Here we demonstrate in a mouse model that magnetic nanoparticles (MNPs) can cross the normal BBB when subjected to an external magnetic field. Following a systemic administration, an applied external magnetic field mediates the ability of MNPs to permeate the BBB and accumulate in a perivascular zone of the brain parenchyma. Direct tracking and localization inside endothelial cells and in the perivascular extracellular matrix in vivo was established using fluorescent MNPs. These MNPs were inert and associated with low toxicity, using a non-invasive reporter for astrogliosis, biochemical and histological studies. Atomic force microscopy demonstrated that MNPs were internalized by endothelial cells, suggesting that trans-cellular trafficking may be a mechanism for the MNP crossing of the BBB observed. The silica-coated magnetic nanocapsules (SiMNCs) allow on-demand drug release via remote radio frequency (RF) magnetic field. Together, these results establish an effective strategy for regulating the biodistribution of MNPs in the brain through the application of an external magnetic field. PMID:23063548

  11. Stability of polyvinyl alcohol-coated biochar nanoparticles in brine

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher; Daigle, Hugh

    2017-01-01

    This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from 3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of 500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of 330 nm.

  12. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  13. Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles.

    PubMed

    Ashmore, D'Andrea; Chaudhari, Atul; Barlow, Brandi; Barlow, Brett; Harper, Talia; Vig, Komal; Miller, Michael; Singh, Shree; Nelson, Edward; Pillai, Shreekumar

    2018-01-01

    Escherichia coli causes various ailments such as septicemia, enteritis, foodborne illnesses, and urinary tract infections which are of concern in the public health field due to antibiotic resistance. Silver nanoparticles (AgNP) are known for their biocompatibility and antibacterial activity, and may prove to be an alternative method of treatment, especially as wound dressings. In this study, we compared the antibacterial efficacy of two polymer-coated silver nanoparticles either containing 10% Ag (Ag 10% + Polymer), or 99% Ag (AgPVP) in relation to plain uncoated silver nanoparticles (AgNP). Atomic force microscopy was used to characterize the nanoparticles, and their antibacterial efficacy was compared by the minimum inhibitory concentration (MIC) and bacterial growth curve assays, followed by molecular studies using scanning electron microscopy (SEM) and (qRT- PCR). AgNP inhibited the growth of E. coli only at 0.621 mg/mL, which was double the concentration required for both coated nanoparticles (0.312 mg/mL). Similarly, bacterial growth was impeded as early as 8 h at 0.156 mg/mL of both coated nanoparticles as compared to 0.312 mg/mL for plain AgNP. SEM data showed that nanoparticles damaged the cell membrane, resulting in bacterial cell lysis, expulsion of cellular contents, and complete disintegration of some cells. The expression of genes associated with the TCA cycle (aceF and frdB) and amino acid metabolism (gadB, metL, argC) were substantially downregulated in E. coli treated with nanoparticles. The reduction in the silver ion (Ag+) concentration of polymer-coated AgNP did not affect their antibacterial efficacy against E. coli.

  14. A novel technique for producing antibody-coated microprobes using a thiol-terminal silane and a heterobifunctional crosslinker.

    PubMed

    Routh, V H; Helke, C J

    1997-02-01

    Antibody-coated microprobes are used to measure neuropeptide release in the central nervous system. Although they are not quantitative, they provide the most precise spatial resolution of the location of in vivo release of any currently available method. Previous methods of coating antibody microprobes are difficult and time-consuming. Moreover, using these methods we were unable to produce evenly coated antibody microprobes. This paper describes a novel method for the production of antibody microprobes using thiol-terminal silanes and the heterobifunctional crosslinker, 4-(4-N-maleimidophenyl)butyric acid hydrazide HCl 1/2 dioxane (MPBH). Following silation, glass micropipettes are incubated with antibody to substance P (SP) that has been conjugated to MPBH. This method results in a dense, even coating of antibody without decreasing the biological activity of the antibody. Additionally, this method takes considerably less time than previously described methods without sacrificing the use of antibody microprobes as micropipettes. The sensitivity of the microprobes for SP is in the picomolar range, and there is a linear correlation between the log of SP concentration (M) and B/B0 (r2 = 0.98). The microprobes are stable for up to 3 weeks when stored in 0.1 M sodium phosphate buffer with 50 mM NaCl (pH 7.4) at 5 degrees C. Finally, insertion into the exposed spinal cord of an anesthetized rat for 15 min produces no damage to the antibody coating.

  15. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.

    PubMed

    Céspedes, Eva; Byrne, James M; Farrow, Neil; Moise, Sandhya; Coker, Victoria S; Bencsik, Martin; Lloyd, Jonathan R; Telling, Neil D

    2014-11-07

    Magnetic hyperthermia uses AC stimulation of magnetic nanoparticles to generate heat for cancer cell destruction. Whilst nanoparticles produced inside magnetotactic bacteria have shown amongst the highest reported heating to date, these particles are magnetically blocked so that strong heating occurs only for mobile particles, unless magnetic field parameters are far outside clinical limits. Here, nanoparticles extracellularly produced by the bacteria Geobacter sulfurreducens are investigated that contain Co or Zn dopants to tune the magnetic anisotropy, saturation magnetization and nanoparticle sizes, enabling heating within clinical field constraints. The heating mechanisms specific to either Co or Zn doping are determined from frequency dependent specific absorption rate (SAR) measurements and innovative AC susceptometry simulations that use a realistic model concerning clusters of polydisperse nanoparticles in suspension. Whilst both particle types undergo magnetization relaxation and show heating effects in water under low AC frequency and field, only Zn doped particles maintain relaxation combined with hysteresis losses even when immobilized. This magnetic heating process could prove important in the biological environment where nanoparticle mobility may not be possible. Obtained SARs are discussed regarding clinical conditions which, together with their enhanced MRI contrast, indicate that biogenic Zn doped particles are promising for combined diagnostics and cancer therapy.

  16. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage.

    PubMed

    Frey, Natalie A; Peng, Sheng; Cheng, Kai; Sun, Shouheng

    2009-09-01

    This tutorial review summarizes the recent advances in the chemical synthesis and potential applications of monodisperse magnetic nanoparticles. After a brief introduction to nanomagnetism, the review focuses on recent developments in solution phase syntheses of monodisperse MFe(2)O(4), Co, Fe, CoFe, FePt and SmCo(5) nanoparticles. The review further outlines the surface, structural, and magnetic properties of these nanoparticles for biomedicine and magnetic energy storage applications.

  17. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies.

    PubMed

    Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar

    2014-12-16

    The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.

  18. Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Peng, Yuandong; Nie, Junwu; Zhang, Wenjun; Ma, Jian; Bao, Chongxi; Cao, Yang

    2016-02-01

    We investigated the effect of the addition of Al2O3 nanoparticles on the permeability and core loss of Fe soft magnetic composites coated with silicone. Fourier transform infra-red spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis revealed that the surface layer of the powder particles consisted of a thin insulating Al2O3 layer with uniform surface coverage. The permeability and core loss of the composite with the Al2O3 addition annealed at 650 °C were excellent. The results indicated that the Al2O3 nanoparticle addition increases the permeability stablility with changing frequency and decreases the core loss over a wide range of frequencies.

  19. Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum.

    PubMed

    Koshkina, Olga; Lang, Thomas; Thiermann, Raphael; Docter, Dominic; Stauber, Roland H; Secker, Christian; Schlaad, Helmut; Weidner, Steffen; Mohr, Benjamin; Maskos, Michael; Bertin, Annabelle

    2015-08-18

    The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 μm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive

  20. Towards magnetic-enhanced cellular uptake, MRI and chemotherapeutics delivery by magnetic mesoporous silica nanoparticles.

    PubMed

    Liu, Qian; Zhang, Jixi; Xia, Weiliang; Gu, Hongchen

    2012-10-01

    A type of nanoparticle with three functional modalities was prepared with the aim of providing a multifunctional drug delivery system. The nanoparticle was 50 nm in size, with 2.7 nm mesopores and a magnetic nanocrystal core, which was further doped with FITC to enable the tracking of cellular uptake. We demonstrated that the internalization of the nanoparticles in tumor cells could be enhanced by applying an external magnetic field and furthermore, this kind of nanoparticle could be used in magnetic targeted drug delivery. With high transverse relaxivity, the magnetic nanoparticles shortened proton relaxation time and induced high magnetic resonance imaging contrast in tumor cells. Studies on anticancer drug loading and delivery capacity of anticancer drugs also showed that this type of nanoparticles could load water-soluble doxorubicin, and produce a prominent inhibitive effect against tumor cells. Taken together, the presented nanoparticles could become a promising agent in cancer theranostics.

  1. Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications.

    PubMed

    Maldonado-Camargo, Lorena; Unni, Mythreyi; Rinaldi, Carlos

    2017-01-01

    Iron oxide nanoparticles are of interest in a wide range of biomedical applications due to their response to applied magnetic fields and their unique magnetic properties. Magnetization measurements in constant and time-varying magnetic field are often carried out to quantify key properties of iron oxide nanoparticles. This chapter describes the importance of thorough magnetic characterization of iron oxide nanoparticles intended for use in biomedical applications. A basic introduction to relevant magnetic properties of iron oxide nanoparticles is given, followed by protocols and conditions used for measurement of magnetic properties, along with examples of data obtained from each measurement, and methods of data analysis.

  2. Gas phase synthesis of core-shell Fe@FeO x magnetic nanoparticles into fluids

    NASA Astrophysics Data System (ADS)

    Aktas, Sitki; Thornton, Stuart C.; Binns, Chris; Denby, Phil

    2016-12-01

    Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO x nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO x nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 104 J/m3 (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO x suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM-1 s-1.

  3. Wear mechanisms of the biotribological nanocomposite a-C : H coatings implanted by metallic nanoparticles.

    PubMed

    Major, L; Janusz, M; Lackner, J M; Kot, M; Dyner, M; Major, B

    2017-10-01

    Recently, to reduce the residual stress and increase the mechanical properties of a-C:H coatings, metallic nanoparticles have been implanted into their structure. In the present work, to improve the properties of the coating, metallic nanoparticles, including Cu, Nb, Ta, Zr, AgPt and Ag, were inserted into the a-C:H structure. The applied biological and mechanical analysis allowed the optimal biotribological parameters to be indicated for the potential application as protective coatings for metallic medical tools. Wear mechanisms operating at the small length of the designed biotribological coating, such as a-C:H implanted by Zr nanoparticles, were studied by means of transmission electron microscopy (TEM). The TEM analysis confirmed very good coating adhesion to the metallic substrate. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  4. Thermal potentiation of chemotherapy by magnetic nanoparticles

    PubMed Central

    Torres-Lugo, Madeline; Rinaldi, Carlos

    2014-01-01

    Clinical studies have demonstrated the effectiveness of hyperthermia as an adjuvant for chemotherapy and radiotherapy. However, significant clinical challenges have been encountered, such as a broader spectrum of toxicity, lack of patient tolerance, temperature control and significant invasiveness. Hyperthermia induced by magnetic nanoparticles in high-frequency oscillating magnetic fields, commonly termed magnetic fluid hyperthermia, is a promising form of heat delivery in which thermal energy is supplied at the nanoscale to the tumor. This review discusses the mechanisms of heat dissipation of iron oxide-based magnetic nanoparticles, current methods and challenges to deliver heat in the clinic, and the current work related to the use of magnetic nanoparticles for the thermal-chemopotentiation of therapeutic drugs. PMID:24074390

  5. Development of Ferrite-Coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Sunday, Katie Jo

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical

  6. Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy.

    PubMed

    Glover, Amanda L; Bennett, James B; Pritchett, Jeremy S; Nikles, Sarah M; Nikles, David E; Nikles, Jacqueline A; Brazel, Christopher S

    2013-01-01

    The inclusion of magnetic nanoparticles into block copolymer micelles was studied towards the development of a targeted, magnetically triggered drug delivery system for cancer therapy. Herein, we report the synthesis of magnetic nanoparticles and poly(ethylene glycol-b-caprolactone) block copolymers, and experimental verification of magnetic heating of the nanoparticles, self-assembly of the block copolymers to form magnetic micelles, and thermally-enhanced drug release. The semicrystalline core of the micelles melted at temperatures just above physiological conditions, indicating that they could be used to release a chemotherapy agent from a thermo-responsive polymer system. The magnetic nanoparticles were shown to heat effectively in high frequency magnetic fields ranging from 30-70 kA/m. Magnetic micelles also showed heating properties, that when combined with a chemotherapeutic agent and a targeting ligand could be developed for localized, triggered drug delivery. During the magnetic heating experiments, a time lag was observed in the temperature profile for magnetic micelles, likely due to the heat of fusion of melting of polycaprolactone micelle cores before bulk solution temperatures increased. Doxorubicin, incorporated into the micelles, released faster when the micelles were heated above the core melting point.

  7. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications

    PubMed Central

    Sosnovik, David E.; Nahrendorf, Matthias; Weissleder, Ralph

    2008-01-01

    Magnetic nanoparticles (MNP) are playing an increasingly important role in cardiovascular molecular imaging. These agents are superparamagnetic and consist of a central core of iron-oxide surrounded by a carbohydrate or polymer coat. The size, physical properties and pharmacokinetics of MNP make them highly suited to cellular and molecular imaging of atherosclerotic plaque and myocardial injury. MNP have a sensitivity in the nanomolar range and can be detected with T1, T2, T2*, off resonance and steady state free precession sequences. Targeted imaging with MNP is being actively explored and can be achieved through either surface modification or through the attachment of an affinity ligand to the nanoparticle. First generation MNP are already in clinical use and second generation agents, with longer blood half lives, are likely to be approved for routine clinical use in the near future. PMID:18324368

  8. Effects of oleic acid surface coating on the properties of nickel ferrite nanoparticles/PLA composites.

    PubMed

    Yin, Hong; Chow, Gan-Moog

    2009-11-01

    Nickel ferrite nanoparticles with or without oleic acid surface coating were mixed with poly(D,L-lactide) (PLA) by double emulsion method. If the nanoparticles were prepared without oleic acid coating, they adsorbed on the PLA surface. If the nanoparticles were coated with oleic acid, they could be readily encapsulated within the PLA microspheres. A slight depression in glass transition temperature was found in all composites and it could be related to the interfacial energies between nanoparticles and PLA. Optimum mixed composite was achieved by reducing interfacial energy. However, loading capacity was limited in this composite. Increasing the amount of nickel ferrite nanoparticles was not useful to increase loading capacity. Cytotoxicity of the composite decreased significantly when nickel ferrite nanoparticles were effectively encapsulated in PLA microspheres. (c) 2008 Wiley Periodicals, Inc.

  9. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter.

    PubMed

    Jain, Prashant; Pradeep, T

    2005-04-05

    Silver nanoparticles can be coated on common polyurethane (PU) foams by overnight exposure of the foams to nanoparticle solutions. Repeated washing and air-drying yields uniformly coated PU foam, which can be used as a drinking water filter where bacterial contamination of the surface water is a health risk. Nanoparticles are stable on the foam and are not washed away by water. Morphology of the foam was retained after coating. The nanoparticle binding is due to its interaction with the nitrogen atom of the PU. Online tests were conducted with a prototypical water filter. At a flow rate of 0.5 L/min, in which contact time was of the order of a second, the output count of Escherichia coli was nil when the input water had a bacterial load of 10(5) colony-forming units (CFU) per mL. Combined with the low cost and effectiveness in its applications, the technology may have large implications to developing countries. Copyright (c) 2005 Wiley Periodicals, Inc.

  10. Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB2/Fe wires

    NASA Astrophysics Data System (ADS)

    Novosel, Nikolina; Pajić, Damir; Mustapić, Mislav; Babić, Emil; Shcherbakov, Andrey; Horvat, Joseph; Skoko, Željko; Zadro, Krešo

    2010-06-01

    The effects of magnetic nanoparticle doping on superconductivity of MgB2/Fe wires have been investigated. Fe2B and SiO2-coated Fe2B particles with average diameters 80 and 150 nm, respectively, were used as dopands. MgB2 wires with different nanoparticle contents (0, 3, 7.5, 12 wt.%) were sintered at temperature 750°C. The magnetoresistivity and critical current density Jc of wires were measured in the temperature range 2-40 K in magnetic field B <= 16 T. Both transport and magnetic Jc were determined. Superconducting transition temperature Tc of doped wires decreases quite rapidly with doping level (~ 0.5 K per wt.%). This results in the reduction of the irreversibility fields Birr(T) and critical current densities Jc(B,T) in doped samples (both at low (5 K) and high temperatures (20 K)). Common scaling of Jc(B,T) curves for doped and undoped wires indicates that the main mechanism of flux pinning is the same in both types of samples. Rather curved Kramer's plots for Jc of doped wires imply considerable inhomogeneity.

  11. Nickel Ferrite Nanoparticles Anchored onto Silica Nanofibers for Designing Magnetic and Flexible Nanofibrous Membranes.

    PubMed

    Hong, Feifei; Yan, Chengcheng; Si, Yang; He, Jianxin; Yu, Jianyong; Ding, Bin

    2015-09-16

    Many applications proposed for magnetic silica nanofibers require their assembly into a cellular membrane structure. The feature to keep structure stable upon large deformation is crucial for a macroscopic porous material which functions reliably. However, it remains a key issue to realize robust flexibility in two-dimensional (2D) magnetic silica nanofibrous networks. Here, we report that the combination of electrospun silica nanofibers with zein dip-coating can lead to the formation of flexible, magnetic, and hierarchical porous silica nanofibrous membranes (SNM). The 290 nm diameter silica nanofibers act as templates for the uniform anchoring of nickel ferrite nanoparticles (size of 50 nm). Benefiting from the homogeneous and stable nanofiber-nanoparticle composite structure, the resulting magnetic SNM can maintain their structure integrity under repeated bending as high as 180° and can facilely recover. The unique hierarchical structure also provides this new class of silica membrane with integrated properties of ultralow density, high porosity, large surface area, good magnetic responsiveness, robust dye adsorption capacity, and effective emulsion separation performance. Significantly, the synthesis of such fascinating membranes may provide new insight for further application of silica in a self-supporting, structurally adaptive, and 2D membrane form.

  12. Synthesis of amino-rich silica coated magnetic nanoparticles and their application in the capture of DNA for PCR

    USDA-ARS?s Scientific Manuscript database

    Magnetic separation has great advantages over traditional bioseparation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor in allowing efficient capture of t...

  13. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    PubMed

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  14. Ni-Fe2O4 nanoparticles as contrast agents for magnetic resonance imaging.

    PubMed

    Ahmad, Tanveer; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun

    2011-07-01

    Reported herein is the synthesis of a dextran coating on nickel ferrite (Ni-Fe2O4) nanoparticles via chemical coprecipitation. The aqueous solution of the synthesized nanoparticles showed good colloidal stability, and no precipitate was observed 20 months after the synthesis. The coated nanoparticles were found to be cylindrical in shape in the TEM images, and showed a uniform size distribution with an average length and diameter of 17 and 4 nm, respectively. The coated particles were evaluated as potential T1 and T2 contrast agents for MRI. The T1 and T2 relaxations of the hydrogen protons in the water molecules in an aqueous solution of dextran-coated Ni-Fe2O4 nanoparticles were studied. It was found that the T1 relaxivity for the aqueous solution of dextran-coated nanoparticles was slightly greater than that of a commercial Gd-DTPA-BMA contrast agent. The T2 relaxivity, however, was almost twice that of the commercial Gd-DTPA-BMA contrast agent. Animal experimentation also demonstrated that the dextran-coated Ni-Fe2O4 nanoparticles are suitable for use as either T1 or T2 contrast agents in MRI.

  15. Simulations of magnetic nanoparticle Brownian motion

    PubMed Central

    Reeves, Daniel B.; Weaver, John B.

    2012-01-01

    Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion. Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature. PMID:23319830

  16. Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles

    PubMed Central

    Shukla, Sudeep; Arora, Vikas; Jadaun, Alka; Kumar, Jitender; Singh, Nishant; Jain, Vinod Kumar

    2015-01-01

    Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral–fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM). Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles. PMID:26261417

  17. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    PubMed

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of ZnO nanoparticle-coated packaging film on pork meat quality during cold storage.

    PubMed

    Suo, Biao; Li, Huarong; Wang, Yuexia; Li, Zhen; Pan, Zhili; Ai, Zhilu

    2017-05-01

    There has been limited research on the use of ZnO nanoparticle-coated film for the quality preservation of pork meat under low temperature. In the present study, ZnO nanoparticles were mixed with sodium carboxymethyl cellulose (CMC-Na) to form a nanocomposite film, to investigate the effect of ZnO nanoparticle-coated film on pork meat quality and the growth of bacteria during storage under low temperature. When ZnO nanoparticle-coated film was used as the packaging material for pork meat for 14 days of cold storage at 4 °C, the results demonstrated a significant effect on restricting the increases in total volatile basic nitrogen and pH levels, limiting the decreases of lightness (increased L* value) and redness (increased a* value), and maintaining the water-holding capacity compared to the control pork samples (P < 0.05). The present study also discovered that the ZnO nanoparticle-coated film restrained the increase in total plate count (TPC). When Staphylococcus aureus was used as the representative strain, scanning electron microscopy revealed that ZnO nanoparticles increased the occurrence of cell membrane rupture under cold conditions. ZnO nanoparticle-coated film helps retain the quality of pork meat during cold storage by increasing the occurrence of microorganism injury. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors

    PubMed Central

    Diaz, Roberto Jose; McVeigh, Patrick Z.; O’Reilly, Meaghan A.; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C.; Rutka, James T.

    2014-01-01

    Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50 nm or 120 nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120 nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. PMID:24374363

  20. Quantitative Characterization of Magnetic Mobility of Nanoparticle in Solution-Based Condition.

    PubMed

    Rodoplu, Didem; Boyaci, Ismail H; Bozkurt, Akif G; Eksi, Haslet; Zengin, Adem; Tamer, Ugur; Aydogan, Nihal; Ozcan, Sadan; Tugcu-Demiröz, Fatmanur

    2015-01-01

    Magnetic nanoparticles are considered as the ideal substrate to selectively isolate target molecules or organisms from sample solutions in a wide variety of applications including bioassays, bioimaging and environmental chemistry. The broad array of these applications in fields requires the accurate magnetic characterization of nanoparticles for a variety of solution based-conditions. Because the freshly synthesized magnetic nanoparticles demonstrated a perfect magnetization value in solid form, they exhibited a different magnetic behavior in solution. Here, we present simple quantitative method for the measurement of magnetic mobility of nanoparticles in solution-based condition. Magnetic mobility of the nanoparticles was quantified with initial mobility of the particles using UV-vis absorbance spectroscopy in water, ethanol and MES buffer. We demonstrated the efficacy of this method through a systematic characterization of four different core-shell structures magnetic nanoparticles over three different surface modifications. The solid nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and saturation magnetization (Ms). The surfaces of the nanoparticles were functionalized with 11-mercaptoundecanoic acid and bovine serum albumin BSA was selected as biomaterial. The effect of the surface modification and solution media on the stability of the nanoparticles was monitored by zeta potentials and hydrodynamic diameters of the nanoparticles. Results obtained from the mobility experiments indicate that the initial mobility was altered with solution media, surface functionalization, size and shape of the magnetic nanoparticle. The proposed method easily determines the interactions between the magnetic nanoparticles and their surrounding biological media, the magnetophoretic responsiveness of nanoparticles and the initial mobilities of the nanoparticles.