Science.gov

Sample records for anticancer drug-pretreated hs-5

  1. Germline deletion of Igh 3′ regulatory region elements hs5-7 affects B cell specific regulation, rearrangement and insulation of the Igh locus1

    PubMed Central

    Volpi, Sabrina A.; Verma-Gaur, Jiyoti; Hassan, Rabih; Ju, Zhongliang; Roa, Sergio; Chatterjee, Sanjukta; Werling, Uwe; Hou, Harry; Will, Britta; Steidl, Ulrich; Scharff, Matthew; Edelman, Winfried; Feeney, Ann J.; Birshtein, Barbara K.

    2012-01-01

    Regulatory elements located within a ~28 kb region 3′ of the Igh gene cluster (3′ regulatory region, 3′ RR) are required for class switch recombination and for high levels of IgH expression in plasma cells. We previously defined novel DNase I hypersensitive (hs) sites, i.e. hs5-7, immediately downstream of this region. Hs5-7 contains a high density of binding sites for CTCF, a zinc finger protein associated with mammalian insulator activity and is an anchor for interactions with CTCF sites flanking the DH region. To test the function of hs5-7, we have generated mice with an 8 kb deletion encompassing all three hs elements. B cells from hs5-7 KO mice showed a modest increase in expression of the nearest downstream gene. In addition, Igh alleles in hs5-7 KO mice were in a less contracted configuration compared to WT Igh alleles and showed a two-fold increase in the usage of proximal VH7183 gene families. Hs5-7 KO mice were essentially indistinguishable from wild type mice in B cell development, allelic regulation, class switch recombination, and chromosomal looping. We conclude that hs5-7--a high-density CTCF binding region at the 3′ end of the Igh locus--impacts usage of VH regions as far as 500 kb away. PMID:22345664

  2. Dissociated Primary Human Prostate Cancer Cells Coinjected with the Immortalized Hs5 Bone Marrow Stromal Cells Generate Undifferentiated Tumors in NOD/SCID-γ Mice

    PubMed Central

    Chen, Xin; Liu, Bigang; Li, Qiuhui; Honorio, Sofia; Liu, Xin; Liu, Can; Multani, Asha S.; Calhoun-Davis, Tammy; Tang, Dean G.

    2013-01-01

    Reconstitution of tumor development in immunodeficient mice from disaggregated primary human tumor cells is always challenging. The main goal of the present study is to establish a reliable assay system that would allow us to reproducibly reconstitute human prostate tumor regeneration in mice using patient tumor-derived single cells. Using many of the 114 untreated primary human prostate cancer (HPCa) samples we have worked on, here we show that: 1) the subcutaneum represents the most sensitive site that allows the grafting of the implanted HPCa pieces; 2) primary HPCa cells by themselves fail to regenerate tumors in immunodeficient hosts; 3) when coinjected in Matrigel with rUGM (rat urogenital sinus mesenchyme), CAF (carcinoma-associated fibroblasts), or Hs5 (immortalized bone marrow derived stromal) cells, primary HPCa cells fail to initiate serially transplantable tumors in NOD/SCID mice; and 4) however, HPCa cells coinjected with the Hs5 cells into more immunodeficient NOD/SCID-IL2Rγ−/− (NSG) mice readily regenerate serially transplantable tumors. The HPCa/Hs5 reconstituted ‘prostate’ tumors present an overall epithelial morphology, are of the human origin, and contain cells positive for AR, CK8, and racemase. Cytogenetic analysis provides further evidence for the presence of karyotypically abnormal HPCa cells in the HPCa/Hs5 tumors. Of importance, HPCa/Hs5 xenograft tumors contain EpCAM+ cells that are both clonogenic and tumorigenic. Surprisingly, all HPCa/Hs5 reconstituted tumors are undifferentiated, even for HPCa cells derived from Gleason 7 tumors. Our results indicate that primary HPCa cells coinjected with the immortalized Hs5 stromal cells generate undifferentiated tumors in NSG mice and we provide evidence that undifferentiated HPCa cells might be the cells that possessed tumorigenic potential and regenerated HPCa/Hs5 xenograft tumors. PMID:23451107

  3. 131I therapy for 345 patients with refractory severe hyperthyroidism: Without antithyroid drug pretreatment.

    PubMed

    Ding, Yong; Xing, Jialiu; Fang, Yi; Wang, Yong; Zhang, Youren; Long, Yahong

    2016-02-01

    The aim of this study is to evaluate the safety and long-term results of (131)I therapy alone for patients with refractory severe hyperthyroidism without antithyroid drug pretreatment. From January 2002 to December 2012, 408 patients with refractory severe hyperthyroidism were treated with (131)I alone. Among them, 345 were followed up for 1 to 10 years for physical examination, thyroid function, and thyroid ultrasound. Complete Blood Count (CBC) liver function, electrocardiogram, echocardiogram, and Emission Computed Tomography (ECT) thyroid imaging were performed as indicated. The 345 patients had concomitant conditions including thyrotoxic heart disease, severe liver dysfunction, enlarged thyroid weighing 80 to 400 g, severe cytopenia, and vasculitis. One to two weeks prior to (131)I therapy, all patients were given low-iodine diet. The dose of (131)I therapy was 2.59 to 6.66 MBq (70 to180 µCi) per gram of thyroid with an average of 3.83 ± 0.6 MBq (103.6 ± 16.4 µCi); and the total (131)I activity administrated for the individuals was 111 to 3507.6 MBq (3.0 to 94.8 mCi, mean 444 ± 336.7 MBq (12.0 ± 9.1 mCi)). Out of the 408 patients, 283 were cured, 15 with complete remission, and 47 with incomplete remission. No treatment failure or significant clinical worsening was noted in these patients. Our data indicated that (131)I therapy alone for patients with refractory severe hyperthyroidism without antithyroid drug pretreatment is safe and effective.

  4. 131I therapy for 345 patients with refractory severe hyperthyroidism: Without antithyroid drug pretreatment

    PubMed Central

    Xing, Jialiu; Fang, Yi; Wang, Yong; Zhang, Youren; Long, Yahong

    2015-01-01

    The aim of this study is to evaluate the safety and long-term results of 131I therapy alone for patients with refractory severe hyperthyroidism without antithyroid drug pretreatment. From January 2002 to December 2012, 408 patients with refractory severe hyperthyroidism were treated with 131I alone. Among them, 345 were followed up for 1 to 10 years for physical examination, thyroid function, and thyroid ultrasound. Complete Blood Count (CBC) liver function, electrocardiogram, echocardiogram, and Emission Computed Tomography (ECT) thyroid imaging were performed as indicated. The 345 patients had concomitant conditions including thyrotoxic heart disease, severe liver dysfunction, enlarged thyroid weighing 80 to 400 g, severe cytopenia, and vasculitis. One to two weeks prior to 131I therapy, all patients were given low-iodine diet. The dose of 131I therapy was 2.59 to 6.66 MBq (70 to180 µCi) per gram of thyroid with an average of 3.83 ± 0.6 MBq (103.6 ± 16.4 µCi); and the total 131I activity administrated for the individuals was 111 to 3507.6 MBq (3.0 to 94.8 mCi, mean 444 ± 336.7 MBq (12.0 ± 9.1 mCi)). Out of the 408 patients, 283 were cured, 15 with complete remission, and 47 with incomplete remission. No treatment failure or significant clinical worsening was noted in these patients. Our data indicated that 131I therapy alone for patients with refractory severe hyperthyroidism without antithyroid drug pretreatment is safe and effective. PMID:26341470

  5. Aqueous poly(amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study.

    PubMed

    Kavyani, Sajjad; Amjad-Iranagh, Sepideh; Modarress, Hamid

    2014-03-27

    Poly(amidoamine) (PAMAM) dendrimers play an important role in drug delivery systems, because the dendrimers are susceptible to gain unique features with modification of their structure such as changing their terminals or improving their interior core. To investigate the core improvement and the effect of core nature on PAMAM dendrimers, we studied two generations G3 and G4 PAMAM dendrimers with the interior cores of commonly used ethylendiamine (EDA), 1,5-diaminohexane (DAH), and bis(3-aminopropyl) ether (BAPE) solvated in water, as an aqueous dendrimer system, by using molecular dynamics simulation and applying a coarse-grained (CG) dendrimer force field. To consider the electrostatic interactions, the simulations were performed at two protonation states, pHs 5 and 7. The results indicated that the core improvement of PAMAM dendrimers with DAH produces the largest size for G3 and G4 dendrimers at both pHs 5 and 7. The increase in the size was also observed for BAPE core but it was not so significant as that for DAH core. By considering the internal structure of dendrimers, it was found that PAMAM dendrimer shell with DAH core had more cavities than with BAPE core at both pHs 5 and 7. Also the moment of inertia calculations showed that the generation G3 is more open-shaped and has higher structural asymmetry than the generation G4. Possessing these properties by G3, specially due to its structural asymmetry, make penetration of water beads into the dendrimer feasible. But for higher generation G4 with its relatively structural symmetry, the encapsulation efficiency for water molecules can be enhanced by changing its core to DAH or BAPE. It is also observed that for the higher generation G4 the effect of core modification is more profound than G3 because the core modification promotes the structural asymmetry development of G4 more significantly. Comparing the number of water beads that penetrate into the PAMAM dendrimers for EDA, DAH, and BAPE cores indicates a

  6. Anticancer chemotherapy

    SciTech Connect

    Weller, R.E.

    1988-10-01

    Despite troubled beginnings, anticancer chemotherapy has made significant contribution to the control of cancer in man, particularly within the last two decades. Early conceptual observations awakened the scientific community to the potentials of cancer chemotherapy. There are now more than 50 agents that are active in causing regression of clinical cancer. Chemotherapy's major conceptual contributions are two-fold. First, there is now proof that patients with overt metastatic disease can be cured, and second, to provide a strategy for control of occult metastases. In man, chemotherapy has resulted in normal life expectancy for some patients who have several types of metastatic cancers, including choriocarcinoma, Burkitt's lymphomas, Wilm's tumor, acute lymphocytic leukemia, Hodgkins disease, diffuse histiocytic lymphoma and others. Anticancer chemotherapy in Veterinary medicine has evolved from the use of single agents, which produce only limited remissions, to the concept of combination chemotherapy. Three basic principles underline the design of combination chemotherapy protocols; the fraction of tumor cell killed by one drug is independent of the fraction killed by another drug; drugs with different mechanisms of action should be chosen so that the antitumor effects will be additive; and since different classes of drugs have different toxicities the toxic effects will not be additive.

  7. Anticancer drugs during pregnancy.

    PubMed

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs.

  8. Cimetidine: an anticancer drug?

    PubMed

    Kubecova, Martina; Kolostova, Katarina; Pinterova, Daniela; Kacprzak, Grzegorz; Bobek, Vladimir

    2011-04-18

    Cimetidine, H(2) receptor antagonists, is commonly prescribed for gastric and duodenal ulcer disease. Additionally, cimetidine has been shown to have anticancer effects. This review describes the mechanism of antitumor action of cimetidine including its ability to interfere with tumor cell adhesion, angiogenesis and proliferation; its effect on the immune system; as well as inhibition of postoperative immunosuppression. Its anticancer effect is also compared to that of the other H(2) receptor antagonists as well as outcomes of cimetidine in clinical studies in cancer patients.

  9. Anticancer properties of Monascus metabolites.

    PubMed

    Yang, Tao; Liu, Junwen; Luo, Feijun; Lin, Qinlu; Rosol, Thomas J; Deng, Xiyun

    2014-08-01

    This review provides up-to-date information on the anticancer properties of Monascus-fermented products. Topics covered include clinical evidence for the anticancer potential of Monascus metabolites, bioactive Monascus components with anticancer potential, mechanisms of the anticancer effects of Monascus metabolites, and existing problems as well as future perspectives. With the advancement of related fields, the development of novel anticancer Monascus food products and/or pharmaceuticals will be possible with the ultimate goal of decreasing the incidence and mortality of malignancies in humans.

  10. Sesterterpenoids with Anticancer Activity

    PubMed Central

    Evidente, Antonio; Kornienko, Alexander; Lefranc, Florence; Cimmino, Alessio; Dasari, Ramesh; Evidente, Marco; Mathieu, Véronique; Kiss, Robert

    2016-01-01

    Terpenes have received a great deal of attention in the scientific literature due to complex, synthetically challenging structures and diverse biological activities associated with this class of natural products. Based on the number of C5 isoprene units they are generated from, terpenes are classified as hemi- (C5), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri (C30), and tetraterpenes (C40). Among these, sesterterpenes and their derivatives known as sesterterpenoids, are ubiquitous secondary metabolites in fungi, marine organisms, and plants. Their structural diversity encompasses carbotricyclic ophiobolanes, polycyclic anthracenones, polycyclic furan-2-ones, polycyclic hydroquinones, among many other carbon skeletons. Furthermore, many of them possess promising biological activities including cytotoxicity and the associated potential as anticancer agents. This review discusses the natural sources that produce sesterterpenoids, provides sesterterpenoid names and their chemical structures, biological properties with the focus on anticancer activities and literature references associated with these metabolites. A critical summary of the potential of various sesterterpenoids as anticancer agents concludes the review. PMID:26295461

  11. Melatonin Anticancer Effects: Review

    PubMed Central

    Di Bella, Giuseppe; Mascia, Fabrizio; Gualano, Luciano; Di Bella, Luigi

    2013-01-01

    Melatonin (N-acetyl-5-methoxytryptamine, MLT), the main hormone produced by the pineal gland, not only regulates circadian rhythm, but also has antioxidant, anti-ageing and immunomodulatory properties. MLT plays an important role in blood composition, medullary dynamics, platelet genesis, vessel endothelia, and in platelet aggregation, leukocyte formula regulation and hemoglobin synthesis. Its significant atoxic, apoptotic, oncostatic, angiogenetic, differentiating and antiproliferative properties against all solid and liquid tumors have also been documented. Thanks, in fact, to its considerable functional versatility, MLT can exert both direct and indirect anticancer effects in factorial synergy with other differentiating, antiproliferative, immunomodulating and trophic molecules that form part of the anticancer treatment formulated by Luigi Di Bella (Di Bella Method, DBM: somatostatin, retinoids, ascorbic acid, vitamin D3, prolactin inhibitors, chondroitin-sulfate). The interaction between MLT and the DBM molecules counters the multiple processes that characterize the neoplastic phenotype (induction, promotion, progression and/or dissemination, tumoral mutation). All these particular characteristics suggest the use of MLT in oncological diseases. PMID:23348932

  12. Anticancer substances of mushroom origin.

    PubMed

    Ivanova, T S; Krupodorova, T A; Barshteyn, V Y; Artamonova, A B; Shlyakhovenko, V A

    2014-06-01

    The present status of investigations about the anticancer activity which is inherent to medicinal mushrooms, as well as their biomedical potential and future prospects are discussed. Mushroom products and extracts possess promising immunomodulating and anticancer effects, so the main biologically active substances of mushrooms responsible for immunomodulation and direct cytoto-xicity toward cancer cell lines (including rarely mentioned groups of anticancer mushroom proteins), and the mechanisms of their antitumor action were analyzed. The existing to date clinical trials of mushroom substances are mentioned. Mushroom anticancer extracts, obtained by the different solvents, are outlined. Modern approaches of cancer treatment with implication of mushroom products, including DNA vaccinotherapy with mushroom immunomodulatory adjuvants, creation of prodrugs with mushroom lectins that can recognize glycoconjugates on the cancer cell surface, development of nanovectors etc. are discussed. The future prospects of mushroom anticancer substances application, including chemical modification of polysaccharides and terpenoids, gene engineering of proteins, and implementation of vaccines are reviewed.

  13. Anticancer mechanisms of cannabinoids

    PubMed Central

    Velasco, G.; Sánchez, C.; Guzmán, M.

    2016-01-01

    In addition to the well-known palliative effects of cannabinoids on some cancer-associated symptoms, a large body of evidence shows that these molecules can decrease tumour growth in animal models of cancer. They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals. In this review, we discuss the current understanding of cannabinoids as antitumour agents, focusing on recent discoveries about their molecular mechanisms of action, including resistance mechanisms and opportunities for their use in combination therapy. Those observations have already contributed to the foundation for the development of the first clinical studies that will analyze the safety and potential clinical benefit of cannabinoids as anticancer agents. PMID:27022311

  14. Acupuncture as anticancer treatment?

    PubMed Central

    Kilian-Kita, Aneta; Püsküllüoglu, Mirosława; Krzemieniecki, Krzysztof

    2017-01-01

    The mystery of Traditional Chinese Medicine has been attracting people for years. Acupuncture, ranked among the most common services of Complementary and Alternative Medicine, has recently gained a lot of interest in the scientific world. Contemporary researchers have been continuously trying to shed light on its possible mechanism of action in human organism. Numerous studies pertaining to acupuncture’s application in cancer symptoms or treatment-related side effects management have already been published. Moreover, since the modern idea of acupuncture’s immunomodulating effect seems to be promising, scientists have propounded a concept of its potential application as part of direct anti-tumor therapy. In our previous study we summarized possible use of acupuncture in management of cancer symptoms and treatment-related ailments, such as chemotherapy-induced nausea and vomiting, pain, xerostomia, vasomotor symptoms, neutropenia, fatigue, anxiety, insomnia, lymphoedema after mastectomy and peripheral neuropathy. This article reviews the studies concerning acupuncture as a possible tool in modern anticancer treatment. PMID:28239282

  15. [Anticancer drug adherence].

    PubMed

    Despas, Fabien; Roche, Henri; Laurent, Guy

    2013-05-01

    A large number of anticancer drugs have been introduced during the two last decades with significant impact for survival, making cancer a chronic disease in a growing number of indications. However, these drugs are costly, induce adverse effects and their efficacy frequently depends on the dose. For all these reasons, adherence in cancer therapy is critical for an optimal benefit-risk ratio. Patient adherence remains virtually unexplored in many cancers, such as malignant blood diseases. When measured, adherence is poor, especially when the drug is administered as oral and prolonged therapy (hormonotherapy in breast cancer, imatinib). Physician nonadherence represents another form of drug misadministration; poorly documented, its mechanism remains obscure. Adherence may be measured by a panel of methods, each of them displaying limits and pitfalls, suggesting that several complementary methods should be used in the context of prospective studies. Risk factors are age, socio-educative profile, disease stage and physician profile. This review emphasizes some methods to prevent nonadherence. Finally, this review argues for prospective studies, which should integrate a social pharmacology approach, including medicine, psycho-sociology and economics.

  16. Phytosterols as anticancer compounds.

    PubMed

    Bradford, Peter G; Awad, Atif B

    2007-02-01

    Phytochemicals have been proposed to offer protection against a variety of chronic ailments including cardiovascular diseases, obesity, diabetes, and cancer. As for cancer protection, it has been estimated that diets rich in phytochemicals can significantly reduce cancer risk by as much as 20%. Phytosterols are specific phytochemicals that resemble cholesterol in structure but are found exclusively in plants. Phytosterols are absorbed from the diet in small but significant amounts. Epidemiological data suggest that the phytosterol content of the diet is associated with a reduction in common cancers including cancers of the colon, breast, and prostate. The means by which dietary phytosterols may be achieving these effects is becoming clearer from molecular studies with tumorigenic research models. Phytosterols affect host systems potentially enabling more robust antitumor responses, including the boosting of immune recognition of cancer, influencing hormonal dependent growth of endocrine tumors, and altering sterol biosynthesis. In addition, phytosterols have effects that directly inhibit tumor growth, including the slowing of cell cycle progression, the induction of apoptosis, and the inhibition of tumor metastasis. This review summarizes the current state of knowledge regarding the anticancer effects of phytosterols.

  17. Classification of current anticancer immunotherapies

    PubMed Central

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  18. Classification of current anticancer immunotherapies.

    PubMed

    Galluzzi, Lorenzo; Vacchelli, Erika; Bravo-San Pedro, José-Manuel; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P; Coussens, Lisa; Dhodapkar, Madhav V; Eggermont, Alexander M; Fearon, Douglas T; Fridman, Wolf H; Fučíková, Jitka; Gabrilovich, Dmitry I; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M; Klein, Eva; Knuth, Alexander; Lewis, Claire E; Liblau, Roland; Lotze, Michael T; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J; Mittendorf, Elizabeth A; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E; Pienta, Kenneth J; Porgador, Angel; Prendergast, George C; Rabinovich, Gabriel A; Restifo, Nicholas P; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J; Speiser, Daniel E; Spisek, Radek; Srivastava, Pramod K; Talmadge, James E; Tartour, Eric; Van Der Burg, Sjoerd H; Van Den Eynde, Benoît J; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S; Whiteside, Theresa L; Wolchok, Jedd D; Zitvogel, Laurence; Zou, Weiping; Kroemer, Guido

    2014-12-30

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.

  19. Safety Pharmacology of Anticancer Agents.

    PubMed

    Martin, Pauline L

    2015-01-01

    The safety pharmacology testing for anticancer agents has historically differed for small molecule pharmaceutical drugs versus large-molecule biopharmaceuticals. For pharmaceutical drugs, dedicated safety pharmacology studies have been conducted according to the ICH M3 (R2), ICH 7A, and ICH S7B guidance documents. For biopharmaceuticals, safety pharmacology endpoints have been incorporated into the repeated-dose toxicology studies according to ICHS6 (R1). However, the introduction of the ICH S9 guidance document for the nonclinical evaluation for anticancer pharmaceuticals has allowed for a streamlined approach for both types of molecules to facilitate access of new potential therapeutics to cancer patients and to reduce the number of animal studies. Examples of the testing strategies that have previously been employed for some representative anticancer agents are provided, and their predictivity to adverse events noted in the clinic is discussed.

  20. Novel Anticancer β-Lactams

    NASA Astrophysics Data System (ADS)

    Banik, Bimal K.; Banik, Indrani; Becker, Frederick F.

    Stereocontrolled synthesis of racemic and chiral novel β-lactams using polyaromatic imines has been accomplished. Domestic and automated microwave-induced reactions have been investigated for the preparation of these types of β-lactams. A preliminary mechanism of this reaction has been advanced. Formation of trans-β-lactams has been explained through isomerization of the enolates formed during the reaction of acid chloride with imines in the presence of tertiary base. A donor-acceptor complex pathway has been believed to be involved in the formation of cis-β-lactams. The effect of a peri hydrogen has been found to be significant in controlling the stereochemistry of the β-lactams. Structure-activity relationship has identified β-lactams with anticancer activity. The presence of an acetoxy group has proven very important for anticancer activity. The preparation and mechanism of action of several other new anticancer β-lactams have also been explored.

  1. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  2. Fungal metabolites with anticancer activity.

    PubMed

    Evidente, Antonio; Kornienko, Alexander; Cimmino, Alessio; Andolfi, Anna; Lefranc, Florence; Mathieu, Véronique; Kiss, Robert

    2014-05-01

    Covering: 1964 to 2013. Natural products from bacteria and plants have played a leading role in cancer drug discovery resulting in a large number of clinically useful agents. In contrast, the investigations of fungal metabolites and their derivatives have not led to a clinical cancer drug in spite of significant research efforts revealing a large number of fungi-derived natural products with promising anticancer activity. Many of these natural products have displayed notable in vitro growth-inhibitory properties in human cancer cell lines and select compounds have been demonstrated to provide therapeutic benefits in mouse models of human cancer. Many of these compounds are expected to enter human clinical trials in the near future. The present review discusses the reported sources, structures and biochemical studies aimed at the elucidation of the anticancer potential of these promising fungal metabolites.

  3. Anticancer Molecular Mechanisms of Resveratrol.

    PubMed

    Varoni, Elena M; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment.

  4. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.

    PubMed

    Ali, Imran; Lone, Mohammad Nadeem; Al-Othman, Zeid A; Al-Warthan, Abdulrahman; Sanagi, Mohd Marsin

    2015-01-01

    Cancer has been cursed for human beings for long time. Millions people lost their lives due to cancer. Despite of the several anticancer drugs available, cancer cannot be cured; especially at the late stages without showing any side effect. Heterocyclic compounds exhibit exciting medicinal properties including anticancer. Some market selling heterocyclic anticancer drugs include 5-flourouracil, methortrexate, doxorubicin, daunorubicin, etc. Besides, some natural products such as vinblastine and vincristine are also used as anticancer drugs. Overall, heterocyclic moeities have always been core parts in the expansion of anticancer drugs. This article describes the importance of heterocyclic nuclei in the development of anticancer drugs. Besides, the attempts have been made to discuss both naturally occurring and synthetic heterocyclic compounds as anticancer agents. In addition, some market selling anticancer heterocyclic compounds have been described. Moreover, the efforts have been made to discuss the mechanisms of actions and recent advances in heterocyclic compounds as anticancer agents. The current challenges and future prospectives of heterocyclic compounds have also been discussed. Finally, the suggestions for syntheses of effective, selective, fast and human friendly anticancer agents are discussed into the different sections.

  5. Rising cost of anticancer drugs in Australia.

    PubMed

    Karikios, D J; Schofield, D; Salkeld, G; Mann, K P; Trotman, J; Stockler, M R

    2014-05-01

    Anticancer drugs are often expensive and are contributing to the growing cost of cancer care. Concerns have been raised about the effect rising costs may have on availability of new anticancer drugs. This study aims to determine the recent changes in the costs of anticancer drugs in Australia. Publicly available expenditure and prices paid by the Australian Pharmaceutical Benefits Scheme (PBS) for anticancer drugs from 2000 to 2012 were reviewed. The measures used to determine changes in cost were total PBS expenditure and average price paid by the PBS per prescription for anticancer drugs and for all PBS listed drugs. An estimated monthly price paid for newly listed anticancer drugs was also calculated. Annual PBS expenditure on anticancer drugs rose from A$65 million in 1999-2000 to A$466 million in 2011-2012; an average increase of 19% per annum. The average price paid by the PBS per anticancer drug prescription, adjusted for inflation, increased 133% from A$337 to A$786. The real average annual increase in the price per anticancer drug prescription was more than double that for all other PBS drugs combined (7.6% vs 2.8%, difference 4.8%, 95% confidence interval -0.4% to 10.1%, P = 0.07). The median price for a month's treatment of the new anticancer drugs listed was A$4919 (range A$1003 to A$12 578, 2012 prices). PBS expenditure and the price of anticancer drugs in Australia rose substantially from 2000 to 2012. Dealing with these burgeoning costs will be a major challenge for our health system and for those affected by cancer. © 2014 The Authors; Internal Medicine Journal © 2014 Royal Australasian College of Physicians.

  6. Novel antibodies as anticancer agents.

    PubMed

    Zafir-Lavie, I; Michaeli, Y; Reiter, Y

    2007-05-28

    In recent years antibodies, whether generated by traditional hybridoma technology or by recombinant DNA strategies, have evolved from Paul Ehrlich's 'magic bullets' to a modern age 'guided missile'. In the recent years of immunologic research, we are witnessing development in the fields of antigen screening and protein engineering in order to create specific anticancer remedies. The developments in the field of recombinant DNA, protein engineering and cancer biology have let us gain insight into many cancer-related mechanisms. Moreover, novel techniques have facilitated tools allowing unique distinction between malignantly transformed cells, and regular ones. This understanding has paved the way for the rational design of a new age of pharmaceuticals: monoclonal antibodies and their fragments. Antibodies can select antigens on both a specific and a high-affinity account, and further implementation of these qualities is used to target cancer cells by specifically identifying exogenous antigens of cancer cell populations. The structure of the antibody provides plasticity resonating from its functional sites. This review will screen some of the many novel antibodies and antibody-based approaches that are being currently developed for clinical applications as the new generation of anticancer agents.

  7. Advances in chalcones with anticancer activities.

    PubMed

    Karthikeyan, Chandrabose; Moorthy, Narayana S H Narayana; Ramasamy, Sakthivel; Vanam, Uma; Manivannan, Elangovan; Karunagaran, Devarajan; Trivedi, Piyush

    2015-01-01

    Chalcones are naturally occurring compounds exhibiting broad spectrum biological activities including anticancer activity through multiple mechanisms. Literature on anticancer chalcones highlights the employment of three pronged strategies, namely; structural manipulation of both aryl rings, replacement of aryl rings with heteroaryl scaffolds, molecular hybridization through conjugation with other pharmacologically interesting scaffolds for enhancement of anticancer properties. Methoxy substitutions on both the aryl rings (A and B) of the chalcones, depending upon their positions in the aryl rings appear to influence anticancer and other activities. Similarly, heterocyclic rings either as ring A or B in chalcones, also influence the anticancer activity shown by this class of compounds. Hybrid chalcones formulated by chemically linking chalcones to other prominent anticancer scaffolds such as pyrrol[2,1-c][1,4]benzodiazepines, benzothiazoles, imidazolones have demonstrated synergistic or additive pharmacological activities. The successful application of these three pronged strategies for discovering novel anticancer agents based on chalcone scaffold has resulted in many novel and chemically diverse chalcones with potential therapeutic application for many types of cancer. This review summarizes the concerted efforts expended on the design and development of anticancer chalcones recorded in recent literature and also provides an overview of the patents published in this area between 2007 and 2014 (WO2013022951, WO201201745 & US2012029489).

  8. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  9. [Anticancer propaganda: myth or reality?].

    PubMed

    Demin, E V; Merabishvili, V M

    2014-01-01

    The authors raise a very important problem of anticancer propaganda aimed at the early detection of cancer to be solved nowadays by means of screening and constructive interaction between oncologists and the public. To increase the level of knowledge of the population in this area it is necessary to expand the range of its adequate awareness of tumor diseases. Only joint efforts can limit the destructive effect of cancer on people's minds, so that every person would be responsible for his own health, clearly understanding the advantages of early visit to a doctor. This once again highlights the need of educational work with the public, motivational nature of which allows strengthening the value of screening in the whole complex of measures to fight cancer.

  10. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  11. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  12. Development of synthetic lethality anticancer therapeutics.

    PubMed

    Fang, Bingliang

    2014-10-09

    The concept of synthetic lethality (the creation of a lethal phenotype from the combined effects of mutations in two or more genes) has recently been exploited in various efforts to develop new genotype-selective anticancer therapeutics. These efforts include screening for novel anticancer agents, identifying novel therapeutic targets, characterizing mechanisms of resistance to targeted therapy, and improving efficacies through the rational design of combination therapy. This review discusses recent developments in synthetic lethality anticancer therapeutics, including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations in multiple genes and abnormalities in multiple signaling pathways, synthetic lethality for a specific tumor suppressor gene or oncogene is likely cell context-dependent. Delineation of the mechanisms underlying synthetic lethality and identification of treatment response biomarkers will be critical for the success of synthetic lethality anticancer therapy.

  13. Anticancer Properties of Capsaicin Against Human Cancer.

    PubMed

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities.

  14. Therapeutic drug monitoring of targeted anticancer therapy.

    PubMed

    Decosterd, Laurent A; Widmer, Nicolas; Zaman, Khalil; Cardoso, Evelina; Buclin, Thierry; Csajka, Chantal

    2015-01-01

    New oral targeted anticancer therapies are revolutionizing cancer treatment by transforming previously deadly malignancies into chronically manageable conditions. Nevertheless, drug resistance, persistence of cancer stem cells, and adverse drug effects still limit their ability to stabilize or cure malignant diseases in the long term. Response to targeted anticancer therapy is influenced by tumor genetics and by variability in drug concentrations. However, despite a significant inter-patient pharmacokinetic variability, targeted anticancer drugs are essentially licensed at fixed doses. Their therapeutic use could however be optimized by individualization of their dosage, based on blood concentration measurements via the therapeutic drug monitoring (TDM). TDM can increase the probability of therapeutic responses to targeted anticancer therapies, and would help minimize the risk of major adverse reactions.

  15. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  16. Pharmacogenomics: road to anticancer therapeutics nirvana?

    PubMed

    Desai, Apurva A; Innocenti, Federico; Ratain, Mark J

    2003-09-29

    Interindividual differences in the toxicity and response to anticancer therapies are currently observed for essentially all available treatment regimens. Such 'unpredictable' drug responses are particularly dangerous in the context of anticancer agents that have narrow therapeutic indices. Pharmacogenomics attempts to elucidate the inherited basis of interindividual differences in drug response, with the eventual goal of minimizing such variability through the use of 'individualized' treatments. There are several emerging examples of genetic polymorphisms of drug-metabolizing enzymes, DNA repair genes and drug targets that have been shown to influence the toxicity and efficacy of anticancer treatment. This review discusses the role of genetic variants of UGT1A1, TS and EGFR to exemplify the potential impact of phramacogenomics on the field of anticancer therapeutics.

  17. Serendipity in anticancer drug discovery.

    PubMed

    Hargrave-Thomas, Emily; Yu, Bo; Reynisson, Jóhannes

    2012-01-10

    It was found that the discovery of 5.8% (84/1437) of all drugs on the market involved serendipity. Of these drugs, 31 (2.2%) were discovered following an incident in the laboratory and 53 (3.7%) were discovered in a clinical setting. In addition, 263 (18.3%) of the pharmaceuticals in clinical use today are chemical derivatives of the drugs discovered with the aid of serendipity. Therefore, in total, 24.1% (347/1437) of marketed drugs can be directly traced to serendipitous events confirming the importance of this elusive phenomenon. In the case of anticancer drugs, 35.2% (31/88) can be attributed to a serendipitous event, which is somewhat larger than for all drugs. The therapeutic field that has benefited the most from serendipity are central nervous system active drugs reflecting the difficulty in designing compounds to pass the blood-brain-barrier and the lack of laboratory-based assays for many of the diseases of the mind.

  18. Prodrugs in photodynamic anticancer therapy.

    PubMed

    Musiol, Robert; Serda, Maciej; Polanski, Jaroslaw

    2011-01-01

    Photodynamic therapy (PDT), the concept of cancer treatment through the selective uptake of a light-sensitive agent followed by exposure to a specific wavelength, is limited by the transport of a photosensitizer (PS) to the tumor tissue. Porphyrin, an important PS class, can be used in PDT in the form of its prodrug molecule 5-aminolevulinic acid (5-ALA). Unfortunately, its poor pharmacokinetic properties make this compound difficult to administer. Two different methods for eliminating this problem can be distinguished. The first approach is to play with its formulation in order to improve the drug's applicability. The second approach, which is to find possible 5- ALA prodrugs, is an example of the double-prodrug method, a strategy often used in modern drug design. In this approach, the biological mechanisms in a long biosynthetic pathway involving several steps must be completed before the active drug appears. Recently, an idea of enhancing PDT sensitization using the so-called iron chelators seemed to increase the accumulation of protoporphyrin in cells. At the same time, iron chelators can destroy tumor cells by producing active oxygen after the formation of an active drug by chelating iron in the cancer cells. Thus, in the latter case, the therapy resembles a prodrug strategy. The mechanism can be explained by the Fenton reaction. Vitamin C is another example of a potential anticancer agent of this type.

  19. Serendipity in anticancer drug discovery

    PubMed Central

    Hargrave-Thomas, Emily; Yu, Bo; Reynisson, Jóhannes

    2012-01-01

    It was found that the discovery of 5.8% (84/1437) of all drugs on the market involved serendipity. Of these drugs, 31 (2.2%) were discovered following an incident in the laboratory and 53 (3.7%) were discovered in a clinical setting. In addition, 263 (18.3%) of the pharmaceuticals in clinical use today are chemical derivatives of the drugs discovered with the aid of serendipity. Therefore, in total, 24.1% (347/1437) of marketed drugs can be directly traced to serendipitous events confirming the importance of this elusive phenomenon. In the case of anticancer drugs, 35.2% (31/88) can be attributed to a serendipitous event, which is somewhat larger than for all drugs. The therapeutic field that has benefited the most from serendipity are central nervous system active drugs reflecting the difficulty in designing compounds to pass the blood-brain-barrier and the lack of laboratory-based assays for many of the diseases of the mind. PMID:22247822

  20. Protease Mediated Anti-Cancer Therapy

    DTIC Science & Technology

    2006-08-01

    anticancer therapy and focal light illumination is expected to be an effective treatment with reduced phototoxicity given the quenched state of the...to months following photodynamic therapy (PDT). Herein, we report a novel design of protease-mediated photosensitization by which phototoxicity can...W81XWH-05-1-0515 TITLE: Protease Mediated Anti-Cancer Therapy PRINCIPAL INVESTIGATOR: Ching-Hsuan Tung CONTRACTING ORGANIZATION

  1. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  2. Modulation of anticancer drug toxicity by solcoseryl.

    PubMed

    Sołtysiak-Pawluczuk, D; Jedrych, A; Jastrzebski, Z; Czyzewska-Szafran, H; Danysz, A

    1991-01-01

    The studies of the effect of solcoseryl on toxicity of selected anticancer drugs were performed in mice. The observed differential influence of solcoseryl was dependent on the type of anticancer drug as well as on the schedule of solcoseryl administration. The protective effect of the biostimulator was noticed exclusively against 5-FU toxicity. The results of our studies could provide possible implications for therapeutic approach.

  3. [Genomic markers and anticancer chemotherapy].

    PubMed

    Nishiyama, Masahiko

    2008-02-01

    Worldwide research on the human genome exerts a major impact on medical science. The growing evidence that genetic polymorphisms in the metabolism, the disposition, and the targets of drugs can have an even greater influence on the efficacy and the toxicity led to the creation of a novel chemotherapeutic strategy, personalized medicine. Much effort has been directed toward identifying the indicators of individual response to drugs, and these studies have provided a variety of potent predictive markers of individual drug response, which include some significant markers in clinical practice with sufficient evidence. Personalized medicine based on the response prediction using genomic marker is increasingly being recognized as a practical treatment approach in cancer chemotherapy, and to be indispensable when molecular targeted drugs are involved in the therapy. Even so, the ingenious and intricate mechanism of individual drug response creates obstacles in predicting chemotherapeutic response: Multiple factors are involved in the mechanisms, and key factors for drug response vary significantly among individuals. DNA chip technology enables us to overview a huge number of gene expressions simultaneously, but gene expression profiles of drug sensitivity vary considerably even for the same drug, which shows the limited value of a static microarray-expression profile as a marker aimed at individualizing patient therapy. Selection of a set of truly significant genomic markers and understanding of their interplay are of key importance in prediction of individual response to drug therapies. Challenges to such biological complexity are now started to identify a better genomic marker. The contribution of genomic marker research to anticancer chemotherapy and problems of the day were reviewed.

  4. Anticancer metal drugs and immunogenic cell death.

    PubMed

    Terenzi, Alessio; Pirker, Christine; Keppler, Bernhard K; Berger, Walter

    2016-12-01

    Conventional chemotherapeutics, but also innovative precision anticancer compounds, are commonly perceived to target primarily the cancer cell compartment. However, recently it was discovered that some of these compounds can also exert immunomodulatory activities which might be exploited to synergistically enhance their anticancer effects. One specific phenomenon of the interplay between chemotherapy and the anticancer immune response is the so-called "immunogenic cell death" (ICD). ICD was discovered based on a vaccination effect exerted by cancer cells dying from pretreatment with certain chemotherapeutics, termed ICD inducers, in syngeneic transplantation mouse models. Interestingly, only a minority of drugs is able to trigger ICD without a clear-cut relation to chemical structures or their primary modes-of-action. Nevertheless, generation of reactive oxygen species (ROS) and induction of endoplasmic reticulum (ER) stress are clearly linked to ICD. With regard to metal drugs, oxaliplatin but not cisplatin is considered a bona fide ICD inducer. Taken into account that several experimental metal compounds are efficient ROS and ER stress mediators, presence of potent ICD inducers within the plethora of novel metal complexes seems feasible and has occasionally been reported. In the light of recent successes in cancer immunotherapy, here we review existing literature regarding anticancer metal drugs and ICD induction. We recommend a more profound investigation of the immunogenic features of experimental anticancer metal drugs.

  5. Hybrid Compounds as Multitarget Directed Anticancer Agents.

    PubMed

    Kucuksayan, Ertan; Ozben, Tomris

    2017-01-01

    Cancer is a multifactorial disease including interactions of complex genetic and environmental factors. Clinical efficacy of anticancer chemotherapies is hampered by various factors including multidrug resistance (MDR). There is a strong need to discover more potent novel cancer drugs to kill cancer cells selectively. The recent new strategy for cancer treatment involves the design and synthesis of hybrid compounds as multitargeted anticancer agents. In this review, we focus on studies using hybrid compounds which were designed and synthesized from two or more different bioactive moieties conjugating them into a single hybrid drug. Hybrid compounds having more than a single target have been considered as more efficient and potent anticancer agents, since it is almost impossible to destroy cancer cells with a single target. Hybrid compounds overcome many disadvantages of single cancer drugs such as low solubility, adverse effects, and multi drug resistance. We have compiled the data of recent studies using the new hybrid anticancer drugs in cancer treatment. Thus, the design, synthesis and clinical trials of new hybrid compounds should be continued and supported in future. Results of recent studies have proved that they have a great potential to be used as novel anticancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Agents from amphibians with anticancer properties.

    PubMed

    Lu, Chuang-Xin; Nan, Ke-Jun; Lei, Yan

    2008-11-01

    Amphibians have been found to be a source of agents with anticancer properties. Bufalin, for example, is an anticancer agent that may induce apoptosis by its interaction with other genes and cellular components. Certain peptides with anticancer activities have been found in amphibian skin; they include magainins, aureins, citropin 1.1 and gaegurins. These peptides may exert a cytotoxic effect on human cancer cells through various mechanisms. Onconase, amphinase, cSBL (sialic acid-binding lectin purified from Rana catesbeiana eggs) and jSBL (sialic acid-binding lectin purified from Rana japonica eggs), which belong to the RNase A family, were purified from the oocyte cells and eggs of three amphibians, and they induce cytotoxicity by degrading cellular RNA. This paper discusses the medical and pharmaceutical significance of products derived from amphibians.

  7. Anticancer Properties of Phyllanthus emblica (Indian Gooseberry)

    PubMed Central

    Zhao, Tiejun; Sun, Qiang; Marques, Maud; Witcher, Michael

    2015-01-01

    There is a wealth of information emanating from both in vitro and in vivo studies indicating fruit extract of the Phyllanthus emblica tree, commonly referred to as Indian Gooseberries, has potent anticancer properties. The bioactivity in this extract is thought to be principally mediated by polyphenols, especially tannins and flavonoids. It remains unclear how polyphenols from Phyllanthus emblica can incorporate both cancer-preventative and antitumor properties. The antioxidant function of Phyllanthus emblica can account for some of the anticancer activity, but clearly other mechanisms are equally important. Herein, we provide a brief overview of the evidence supporting anticancer activity of Indian Gooseberry extracts, suggest possible mechanisms for these actions, and provide future directions that might be taken to translate these findings clinically. PMID:26180601

  8. Tetrazole Derivatives as Promising Anticancer Agents.

    PubMed

    Popova, Elena A; Protas, Aleksandra V; Trifonov, Rostislav E

    2017-03-27

    Tetrazole cycle is a promising pharmacophore fragment frequently used in the development of novel drugs. This moiety is a stable, practically non-metabolized bioisosteric analog of carboxylic, cis-amide, and other functional groups. Over recent 10-15 years, various isomeric forms of tetrazole (NH-unsubstituted, 1H-1-substituted, and 2H-2-substituted tetrazoles) have been successfully used in the design of promising anticancer drugs. Coordination compounds of transition metals containing tetrazoles as ligands, semisynthetic tetrazolyl derivatives of natural compounds (biogenic acids, peptides, steroids, combretastatin, etc.), 5-oxo and 5-thiotetrazoles, and some other related compounds have been recognized as promising antineoplastic agents. This review presents a comprehensive analysis of modern approaches to synthesis of these tetrazole derivatives as well as their biological (anticancer) properties. The most promising structure types of tetrazoles to be used as anticancer agents have been picked out.

  9. Emerging new anticancer therapies in 2013.

    PubMed

    Gomez-Roca, Carlos; Delord, Jean-Pierre

    2014-05-01

    Year 2013 has been rich in presentations and publications about new emerging anticancer agents, both in peer-review journals and in international meetings such as American Society of Clinical Oncology (ASCO), European Cancer Congress (European Cancer Organization - ECCO/European Society of Medical Oncology - ESMO), American Association for Cancer Research Meeting (AACR), Molecular Target and Cancer Therapeutics AACR-NCI-EORTC International Conference and Targeted Anticancer Therapies Meeting (TAT). Our purpose is to give an update in 2013's most important advances in new anticancer therapies. We will highlight recent advances in immunotherapy; combinations of targeted agents to overcome resistance; second and third generation of targeted agents against oncogene addiction and new antibody-drug conjugates against epithelial tumors. Future implications of this year's emerging therapies will probably lead to the approval of new immunotherapies for treatment of several tumor types and second-generation agents to overcome resistance in those tumors with oncogene addiction.

  10. Circadian clock: Time for novel anticancer strategies?

    PubMed

    Ercolani, Luisa; Ferrari, Alessio; De Mei, Claudia; Parodi, Chiara; Wade, Mark; Grimaldi, Benedetto

    2015-10-01

    Disruption of the circadian clock is associated with a variety of human pathologies, including cancer. Rather than being a mere consequence of a global changes associated with the cancer cell transcriptome, the aberrant clock gene expression observed in many tumors may serve for cancer cell survival. This scenario suggests the provocative hypothesis that pharmacological modulation of clock-related proteins may be suitable as an effective anticancer strategy. In this review, we focus on the functions of the druggable circadian nuclear receptors, REV-ERBα and REV-ERBβ, in cancer cell survival and describe the potential development of small molecule compounds that modulate REV-ERB activity as novel anticancer therapeutics. In addition, we debate the use of circadian rhythm-based synthetic lethal approaches to identify yet unexplored anticancer strategies.

  11. Pea, Pisum sativum, and Its Anticancer Activity

    PubMed Central

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment. PMID:28503053

  12. Pea, Pisum sativum, and Its Anticancer Activity.

    PubMed

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment.

  13. Development of anticancer agents: wizardry with osmium.

    PubMed

    Hanif, Muhammad; Babak, Maria V; Hartinger, Christian G

    2014-10-01

    Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action.

  14. Anticancer Properties of Phyllanthus emblica (Indian Gooseberry).

    PubMed

    Zhao, Tiejun; Sun, Qiang; Marques, Maud; Witcher, Michael

    2015-01-01

    There is a wealth of information emanating from both in vitro and in vivo studies indicating fruit extract of the Phyllanthus emblica tree, commonly referred to as Indian Gooseberries, has potent anticancer properties. The bioactivity in this extract is thought to be principally mediated by polyphenols, especially tannins and flavonoids. It remains unclear how polyphenols from Phyllanthus emblica can incorporate both cancer-preventative and antitumor properties. The antioxidant function of Phyllanthus emblica can account for some of the anticancer activity, but clearly other mechanisms are equally important. Herein, we provide a brief overview of the evidence supporting anticancer activity of Indian Gooseberry extracts, suggest possible mechanisms for these actions, and provide future directions that might be taken to translate these findings clinically.

  15. 'Smartening' anticancer therapeutic nanosystems using biomolecules.

    PubMed

    Núñez-Lozano, Rebeca; Cano, Manuel; Pimentel, Belén; de la Cueva-Méndez, Guillermo

    2015-12-01

    To be effective, anticancer agents must induce cell killing in a selective manner, something that is proving difficult to achieve. Drug delivery systems could help to solve problems associated with the lack of selectivity of classical chemotherapeutic agents. However, to realize this, such systems must overcome multiple physiological barriers. For instance, they must evade surveillance by the immune system, attach selectively to target cells, and gain access to their interior. Furthermore, there they must escape endosomal entrapment, and release their cargoes in a controlled manner, without affecting their functionality. Here we review recent efforts aiming at using biomolecules to confer these abilities to bare nanoparticles, to transform them into smart anticancer therapeutic nanosystems.

  16. New anticancer antibiotic acts through diradical rearrangement

    SciTech Connect

    Stinson, S. )

    1990-05-28

    This paper reports that chemists have found and characterized an anticancer antibiotic, dynemicin A, that may be the fouth of a series of antibiotics that act by metabolic rearrangement to a diradical. If true, diradical precursors may represent an antibiotic strategy that evolved widely in nature. And, there may be many more anticancer antibiotics awaiting discovery. Also, the unique internal trigger that seems to set off the dynemicin rearrangement gives chemists a new understanding of how these compounds work. If, indeed, the anthraquinone nucleus in dynemicin A binds by intercalation between strands of DNA as is now thought, chemists will learn more about how to deliver drugs to specific sites.

  17. Studies with Myrtus communis L.: Anticancer properties.

    PubMed

    Ogur, Recai

    2014-01-01

    Myrtus communis (MC) L. is a well-known Mediterranean plant with important cultural significance in this region. In ancient times, MC was accepted as a symbol of immortality. Maybe due to this belief, it is used during cemetery visits in some regions. Although it is a well-known plant in cosmetics, and there is a lot of studies about its different medical properties, anticancer studies performed using its different extracts or oils are not so much, but increasing. We collected these anticancer property-related studies in this review.

  18. Magnetic polymer nanospheres for anticancer drug targeting

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  19. Synthesis of (-)-arctigenin derivatives and their anticancer activity.

    PubMed

    Gui-Rong, Chen; Li-Ping, Cai; De-Qiang, Dou; Ting-Guo, Kang; Hong-Fu, Li; Fu-Rui, Li; Ning, Jiang

    2012-01-01

    The natural dibenzylbutyrolactone type lignanolide (-)-arctigenin, which was prepared from fructus arctii, showed obvious anticancer activity. The synthesis of four new (-)-arctigenin derivatives and their anticancer bioactivities were examined. The structures of the four new synthetic derivatives were elucidated.

  20. Aurora kinase inhibitors as anticancer molecules.

    PubMed

    Katayama, Hiroshi; Sen, Subrata

    2010-01-01

    Aurora kinase family of serine/threonine kinases are important regulators of mitosis that are frequently over expressed in human cancers and have been implicated in oncogenic transformation including development of chromosomal instability in cancer cells. In humans, among the three members of the kinase family, Aurora-A, -B and -C, only Aurora-A and -B are expressed at detectable levels in all somatic cells undergoing mitotic cell division and have been characterized in greater detail for their involvement in cellular pathways relevant to the development of cancer associated phenotypes. Aurora-A and -B are being investigated as potential targets for anticancer therapy. Development of inhibitors against Aurora kinases as anticancer molecules gained attention because of the facts that aberrant expression of these kinases leads to chromosomal instability and derangement of multiple tumor suppressor and oncoprotein regulated pathways. Preclinical studies and early phase I and II clinical trials of multiple Aurora kinase inhibitors as targeted anticancer drugs have provided encouraging results. This article discusses functional involvement of Aurora kinase-A and -B in the regulation of cancer relevant cellular phenotypes together with findings on some of the better characterized Aurora kinase inhibitors in modulating the functional interactions of Aurora kinases. Future possibilities about developing next generation Aurora kinase inhibitors and their clinical utility as anticancer therapeutic drugs are also discussed.

  1. Lead Phytochemicals for Anticancer Drug Development

    PubMed Central

    Singh, Sukhdev; Sharma, Bhupender; Kanwar, Shamsher S.; Kumar, Ashok

    2016-01-01

    Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function in vitro and in vivo. This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed. PMID:27877185

  2. Lead Phytochemicals for Anticancer Drug Development.

    PubMed

    Singh, Sukhdev; Sharma, Bhupender; Kanwar, Shamsher S; Kumar, Ashok

    2016-01-01

    Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function in vitro and in vivo. This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed.

  3. Anticancer Activity of Stilbene-based Derivatives.

    PubMed

    De Filippis, Barbara; Ammazzalorso, Alessandra; Fantacuzzi, Marialuigia; Giampietro, Letizia; Maccallini, Cristina; Amoroso, Rosa

    2017-03-07

    Anticancer Activity of Stilbene-based Derivatives Barbara De Filippis,* Alessandra Ammazzalorso, Marialuigia Fantacuzzi, Letizia Giampietro, Cristina Maccallini, Rosa Amoroso Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy; * E-mail: barbara.defilippis@unich.it Stilbene is a very present structural scaffold in nature and stilbene-based compounds are largely described for their biological activity such as cardioprotective, potent antioxidant, anti-inflammatory, and anticancer agents. Starting from their potent chemotherapeutic activity against a wide variety of cancers, stilbene scaffold of resveratrol has been subjected to synthetic manipulations with the aim to obtaining new resveratrol analogues with improved anticancer activity and better bioavailability. In the last decade, majority of new synthetic stilbenoids demonstrated significant anticancer activity against a large number of cancer cell lines employed, depending on the type and position of substituents on stilbene skeleton. Given the importance of this topic and the vast therapeutic potential, especially in the field of cancer research, in the last years, some reviews have been published focusing on general pharmacological activity or, more recently, on the usefulness of hybrid molecule containing stilbene scaffold. The present review article focuses on the pharmacological profile of the key compounds containing stilbene scaffold and classify them on the type of structural modifications in stilbene skeleton.

  4. Disulfiram's Anticancer Activity: Evidence and Mechanisms.

    PubMed

    Jiao, Yang; Hannafon, Bethany N; Ding, Wei-Qun

    2016-01-01

    Disulfiram (DSF), a derivative of thiuram, has been used in humans to treat alcoholism for more than 60 years. Over the past decade, however, increasing evidence indicates that DSF possesses a great potential for the treatment of human cancers. DSF's anticancer activity has been demonstrated in both in vitro and in vivo model systems, and has been tested in human clinical trials for various cancer types. It is also evident that DSF can sensitize tumor cells to radiotherapy and enhance the cytotoxicity of anticancer drugs, thus DSF may serve as an adjuvant therapy. The key to DSF's anticancer action relates to its ability to suppress cancer stem cells by targeting aldehyde dehydrogenase (ALDH), a marker of cancer stem cells, and inhibit proteasome activity in cancer cells by forming complexes with metal ions. In addition, DSF targets epigenetic mechanisms and modulates cellular signaling pathways to slow down tumor progression. DSF also induces apoptosis, inhibits cancer cell proliferation, and suppresses cancer cell metastasis. Considering that the pharmacokinetics of DSF are well-established and a safety profile has been recorded, this compound is an attractive "old" drug that has great potential for rapid development into a new cancer therapeutic. This article provides a brief review of the history of DSF use in humans, evidence for its anticancer activities, the molecular mechanisms of DSF action that have been illustrated by recent studies, and the potential for repurposing DSF as a new chemotherapeutic drug in the near future.

  5. Cell death signaling and anticancer therapy.

    PubMed

    Galluzzi, Lorenzo; Vitale, Ilio; Vacchelli, Erika; Kroemer, Guido

    2011-01-01

    For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G(1) phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents.

  6. Cell Death Signaling and Anticancer Therapy

    PubMed Central

    Galluzzi, Lorenzo; Vitale, Ilio; Vacchelli, Erika; Kroemer, Guido

    2011-01-01

    For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents. PMID:22655227

  7. Aurora Kinase inhibitors as Anticancer Molecules

    PubMed Central

    Katayama, Hiroshi; Sen, Subrata

    2015-01-01

    Aurora kinase family of serine/threonine kinases are important regulators of mitosis that are frequently over expressed in human cancers and have been implicated in oncogenic transformation including development of chromosomal instability in cancer cells. In humans, among the three members of the kinase family, Aurora-A, -B and -C, only Aurora-A and -B are expressed in detectable levels in somatic cells undergoing mitotic cell division and have been characterized in greater detail for their involvement in cellular pathways relevant to the development of cancer associated phenotypes. Aurora-A and -B are being investigated as potential targets for anticancer therapy. Development of inhibitors against Aurora kinases as anticancer molecules gained attention because of the facts that aberrant expression of these kinases lead to chromosomal instability and derangement of multiple tumor suppressor and oncoprotein regulated pathways. Pre-clinical studies and early phase I and II clinical trials of multiple Aurora kinase inhibitors as targeted anticancer drugs have provided encouraging results. This article discusses functional involvement of Aurora kinase-A and -B in the regulation of cancer relevant cellular phenotypes together with findings on some of the better characterized Aurora kinase inhibitors in modulating the functional interactions of Aurora kinases. Future possibilities about developing next generation Aurora kinase inhibitors and their clinical utility as anticancer therapeutic drugs are also discussed. PMID:20863917

  8. Acanthopanax senticosus: Photochemistry and Anticancer Potential.

    PubMed

    Li, Ting; Ferns, Kelsey; Yan, Zi-Qiao; Yin, Si-Yuan; Kou, Jun-Jie; Li, Dongsheng; Zeng, Zheng; Yin, Lin; Wang, Xiaoyu; Bao, Hong-Xia; Zhou, Yu-Jie; Li, Qing-Hai; Zhao, Zhan-Yi; Liu, Huidi; Liu, Shu-Lin

    2016-01-01

    Acanthopanax senticosus (previously classified as Eleutherococcus senticosus), commonly known as Ciwujia or Siberian Ginseng, is a traditional Chinese medicine (TCM), widely used for its high medicinal value, such as antifatigue, anti-inflammation, antistress, anti-ulcer and cardiovascular functions, in China, Korea, Japan and Russia. In the past decades, researchers worldwide have conducted systematic investigations on this herb, from chemistry to pharmacology, and a large number of chemical components have been characterized for their significant pharmacological effects. However, reports about the anticancer effects of this plant had been rare until recently, when considerable pharmacological experiments both in vitro and in vivo were conducted to study the anticancer effects of this herb. A. senticosus has been found to have inhibitory effects on malignant tumors, such as those in the lung and liver, suggesting that A. senticosus has potential to be developed as an effective anticancer drug. This paper reviews recent findings on the pharmacological properties of A. senticosus, with a focus on its anticancer effects.

  9. Synthesis and Anticancer Activity of Epipolythiodiketopiperazine Alkaloids

    PubMed Central

    Boyer, Nicolas; Morrison, Karen C.; Kim, Justin; Hergenrother, Paul J.; Movassaghi, Mohammad

    2013-01-01

    The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure–activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines, and kill cancer cellsviainduction of apoptosis. Several traits thatbode well for the translational potential of the ETP class of natural products includeconcise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sitesthat should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo. PMID:23914293

  10. Reengineered tricyclic anti-cancer agents.

    PubMed

    Kastrinsky, David B; Sangodkar, Jaya; Zaware, Nilesh; Izadmehr, Sudeh; Dhawan, Neil S; Narla, Goutham; Ohlmeyer, Michael

    2015-10-01

    The phenothiazine and dibenzazepine tricyclics are potent neurotropic drugs with a documented but underutilized anti-cancer side effect. Reengineering these agents (TFP, CPZ, CIP) by replacing the basic amine with a neutral polar functional group (e.g., RTC-1, RTC-2) abrogated their CNS effects as demonstrated by in vitro pharmacological assays and in vivo behavioral models. Further optimization generated several phenothiazines and dibenzazepines with improved anti-cancer potency, exemplified by RTC-5. This new lead demonstrated efficacy against a xenograft model of an EGFR driven cancer without the neurotropic effects exhibited by the parent molecules. Its effects were attributed to concomitant negative regulation of PI3K-AKT and RAS-ERK signaling.

  11. Bacterial inactivation of the anticancer drug doxorubicin.

    PubMed

    Westman, Erin L; Canova, Marc J; Radhi, Inas J; Koteva, Kalinka; Kireeva, Inga; Waglechner, Nicholas; Wright, Gerard D

    2012-10-26

    Microbes are exposed to compounds produced by members of their ecological niche, including molecules with antibiotic or antineoplastic activities. As a result, even bacteria that do not produce such compounds can harbor the genetic machinery to inactivate or degrade these molecules. Here, we investigated environmental actinomycetes for their ability to inactivate doxorubicin, an aminoglycosylated anthracycline anticancer drug. One strain, Streptomyces WAC04685, inactivates doxorubicin via a deglycosylation mechanism. Activity-based purification of the enzymes responsible for drug inactivation identified the NADH dehydrogenase component of respiratory electron transport complex I, which was confirmed by gene inactivation studies. A mechanism where reduction of the quinone ring of the anthracycline by NADH dehydrogenase leads to deglycosylation is proposed. This work adds anticancer drug inactivation to the enzymatic inactivation portfolio of actinomycetes and offers possibilities for novel applications in drug detoxification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Supramolecular Nanostructures Formed by Anticancer Drug Assembly

    PubMed Central

    Cheetham, Andrew G.; Zhang, Pengcheng; Lin, Yi-an; Lock, Lye Lin; Cui, Honggang

    2013-01-01

    We report here a supramolecular strategy to directly assemble the small molecular hydrophobic anticancer drug camptothecin (CPT) into discrete, stable, well-defined nanostructures with a high and quantitative drug loading. Depending on the number of CPTs in the molecular design, the resulting nanostructures can be either nanofibers or nanotubes, and have a fixed CPT loading content ranging from 23% to 38%. We found that formation of nanostructures provides protection for both the CPT drug and the biodegradable linker from the external environment and thus offers a mechanism for controlled release of CPT. Under tumor-relevant conditions, these drug nanostructures can release the bioactive form of CPT and show in vitro efficacy against a number of cancer cell lines. This strategy can be extended to construct nanostructures of other types of anticancer drugs, and thus presents new opportunities for the development of self-delivering drugs for cancer therapeutics. PMID:23379791

  13. Anticancer Effect of Lycopene in Gastric Carcinogenesis

    PubMed Central

    Kim, Mi Jung; Kim, Hyeyoung

    2015-01-01

    Gastric cancer ranks as the most common cancer and the second leading cause of cancer-related death in the world. Risk factors of gastric carcinogenesis include oxidative stress, DNA damage, Helicobacter pylori infection, bad eating habits, and smoking. Since oxidative stress is related to DNA damage, smoking, and H. pylori infection, scavenging of reactive oxygen species may be beneficial for prevention of gastric carcinogenesis. Lycopene, one of the naturally occurring carotenoids, has unique structural and chemical features that contributes to a potent antioxidant activity. It shows a potential anticancer activity and reduces gastric cancer incidence. This review will summarize anticancer effect and mechanism of lycopene on gastric carcinogenesis based on the recent experimental and clinical studies. PMID:26151041

  14. The use of cannabinoids as anticancer agents.

    PubMed

    Velasco, Guillermo; Hernández-Tiedra, Sonia; Dávila, David; Lorente, Mar

    2016-01-04

    It is well-established that cannabinoids exert palliative effects on some cancer-associated symptoms. In addition evidences obtained during the last fifteen years support that these compounds can reduce tumor growth in animal models of cancer. Cannabinoids have been shown to activate an ER-stress related pathway that leads to the stimulation of autophagy-mediated cancer cell death. In addition, cannabinoids inhibit tumor angiogenesis and decrease cancer cell migration. The mechanisms of resistance to cannabinoid anticancer action as well as the possible strategies to develop cannabinoid-based combinational therapies to fight cancer have also started to be explored. In this review we will summarize these observations (that have already helped to set the bases for the development of the first clinical studies to investigate the potential clinical benefit of using cannabinoids in anticancer therapies) and will discuss the possible future avenues of research in this area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Quinonaphthothiazines, syntheses, structures and anticancer activities

    NASA Astrophysics Data System (ADS)

    Jeleń, M.; Pluta, K.; Suwińska, K.; Morak-Młodawska, B.; Latocha, M.; Shkurenko, A.

    2015-11-01

    Two new types of pentacyclic azaphenothiazines being quinonaphthothiazines were obtaining from the reactions of dichlorodiquinolinyl disulfide with 1- and 2-naphthylamines. As the reactions could proceed in many ways, the proper structure elucidation was crucial. The structure determination was based on the 2D NMR spectra (NOESY, HSQC and HMBC) of the methyl derivatives. The final structure evidences came from X-ray analysis of the monocrystals. The new quinonaphthothiazines represent angularly fused pentacyclic ring systems which is folded along the N-S axis. The parent NH-compounds were transformed into the N-derivatives. Some quinonaphthothiazines exhibited promising anticancer activity against glioblastoma SNB-19, melanoma C-32 and human ductal breast epithelial tumor T47D cell lines. The anticancer activity dependent on the nature of the substituents and the ring fusion between the thiazine and naphthalene moieties. Two compounds were more active than the reference drug, cisplatin.

  16. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents

    PubMed Central

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  17. Anticancer activity of Carica papaya: a review.

    PubMed

    Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K

    2013-01-01

    Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mitochondria: a promising target for anticancer alkaloids.

    PubMed

    Urra, Félix A; Cordova-Delgado, Miguel; Pessoa-Mahana, Hernan; Ramírez-Rodríguez, Oney; Weiss-Lopez, Boris; Ferreira, Jorge; Araya-Maturana, Ramiro

    2013-01-01

    A great number of alkaloids exhibit high potential in cancer research. Some of them are anticancer drugs with well-defined clinical uses, exerting their action on microtubules dynamics or DNA replication and topology. On the other hand, mitochondria have been recognized as an essential organelle in the establishment of tumor characteristics, especially the resistance to cell death, high proliferative capacity and adaptation to unfavorable cellular environment. Interestingly, many alkaloids exert their anticancer activities affecting selectively some functions of the tumor mitochondria by 1) modulating OXPHOS and ADP/ATP transport, 2) increasing ROS levels and mitochondrial potential dissipation by crosstalk between endoplasmic reticulum (ER) and mitochondria, 3) inducing mitochondria-dependent apoptosis and autophagy, 4) inhibiting mitochondrial metabolic pathways and 5) by alteration of the morphology and biogenesis of this organelle. These antecedents show the relevance of developing research about the effects of alkaloids on functions controlled by tumor mitochondria, offering an attractive target for the design of new alkaloid derivatives, considering organelle- specific delivery strategies. This review describes mitochondria as a central component in the anticancer action of a set of alkaloids, in a way to illustrate the importance of this organelle in medicinal chemistry.

  19. Advances in cobalt complexes as anticancer agents.

    PubMed

    Munteanu, Catherine R; Suntharalingam, Kogularamanan

    2015-08-21

    The evolution of resistance to traditional platinum-based anticancer drugs has compelled researchers to investigate the cytostatic properties of alternative transition metal-based compounds. The anticancer potential of cobalt complexes has been extensively studied over the last three decades, and much time has been devoted to understanding their mechanisms of action. This perspective catalogues the development of antiproliferative cobalt complexes, and provides an in depth analysis of their mode of action. Early studies on simple cobalt coordination complexes, Schiff base complexes, and cobalt-carbonyl clusters will be documented. The physiologically relevant redox properties of cobalt will be highlighted and the role this plays in the preparation of hypoxia selective prodrugs and imaging agents will be discussed. The use of cobalt-containing cobalamin as a cancer specific delivery agent for cytotoxins will also be described. The work summarised in this perspective shows that the biochemical and biophysical properties of cobalt-containing compounds can be fine-tuned to produce new generations of anticancer agents with clinically relevant efficacies.

  20. Taxane anticancer agents: a patent perspective

    PubMed Central

    Ojima, Iwao; Lichtenthal, Brendan; Lee, Siyeon; Wang, Changwei; Wang, Xin

    2016-01-01

    Introduction Paclitaxel and docetaxel were two epoch-making anticancer drugs and have been successfully used in chemotherapy for a variety of cancer types. In 2010, a new taxane, cabazitaxel, was approved by FDA for use in combination with prednisone for the treatment of metastatic hormone-refractory prostate cancer. Albumin-bound paclitaxel (nab™-paclitaxel; abraxane) nanodroplet formulation was another notable invention (FDA approval 2005 for refractory, metastatic, or relapsed breast cancer). Abraxane in combination with gemcitabine for the treatment of pancreatic cancer was approved by FDA in 2013. Accordingly, there have been a huge number of patent applications dealing with taxane anticancer agents in the last five years. Thus, it is a good time to review the progress in this area and find the next wave for new developments. Area covered This review article covers the patent literature from 2010 to early 2015 on various aspects of taxane-based chemotherapies and drug developments. Expert opinion Three FDA-approved taxane anticancer drugs will continue to expand their therapeutic applications, especially through drug combinations and new formulations. Inspired by the success of abraxane, new nano-formulations are emerging. Highly potent new-generation taxanes will play a key role in the development of efficacious tumor-targeted drug delivery systems. PMID:26651178

  1. Anticancer Drugs from Marine Flora: An Overview

    PubMed Central

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease. PMID:21461373

  2. Anticancer lignans--from discovery to biotechnology.

    PubMed

    Ionkova, I

    2011-09-01

    Malignant diseases are the second mortality cause within the human population. Despite the serious progress in establishing and introduction of novel specifically targeted drugs the therapy of these diseases remains severe medical and social problem. Some of the most effective cancer treatments to date are natural products or compounds derived from plant products. Isolation of anticancer pharmaceuticals from plants is difficult due to their extremely low concentrations. The industry currently lacks sufficient methods for producing all of the desired plant-derived pharmaceutical molecules. Some substances can only be isolated from extremely rare plants. Plant cell cultures are an attractive alternative source to whole plant for the production of high-value secondary metabolites. The biotechnological method offers a quick and efficient method for producing these high-value medical compounds in cultivated cells. Due to the pharmaceutical importance and the low content in the plants the present review focuses on discovery and alternative production systems for anticancer lignans--aryltetralin and arylnaphthalene lignans. The aim is to focus on recent progress of in vitro production of anticancer lignans, together with structure elucidation, the methods of increasing the levels of desired substances in plant cell and tissue cultures in general. Experience of different authors, working worldwide on plant biotechnology, has been discussed to show positive results in experiments.

  3. Medicinal Plants: Their Use in Anticancer Treatment

    PubMed Central

    Greenwell, M.; Rahman, P.K.S.M.

    2015-01-01

    Globally cancer is a disease which severely effects the human population. There is a constant demand for new therapies to treat and prevent this life-threatening disease. Scientific and research interest is drawing its attention towards naturally-derived compounds as they are considered to have less toxic side effects compared to current treatments such as chemotherapy. The Plant Kingdom produces naturally occurring secondary metabolites which are being investigated for their anticancer activities leading to the development of new clinical drugs. With the success of these compounds that have been developed into staple drugs for cancer treatment new technologies are emerging to develop the area further. New technologies include nanoparticles for nano-medicines which aim to enhance anticancer activities of plant-derived drugs by controlling the release of the compound and investigating new methods for administration. This review discusses the demand for naturally-derived compounds from medicinal plants and their properties which make them targets for potential anticancer treatments. PMID:26594645

  4. Organoiridium Complexes: Anticancer Agents and Catalysts

    PubMed Central

    2014-01-01

    Conspectus Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar IrI complexes, such as Crabtree’s hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl IrIII complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d6 IrIII centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C∧C-chelating ligands can even stabilize IrIV and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar IrI complexes because of their structural and electronic similarity to PtII anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich IrIII anticancer complexes. These complexes with the formula [(Cpx)Ir(L∧L′)Z]0/n+ (with Cp* or extended Cp* and L∧L′ = chelated C∧N or N∧N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form IrIII-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium

  5. Organoiridium complexes: anticancer agents and catalysts.

    PubMed

    Liu, Zhe; Sadler, Peter J

    2014-04-15

    Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar Ir(I) complexes, such as Crabtree's hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl Ir(III) complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d(6) Ir(III) centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C^C-chelating ligands can even stabilize Ir(IV) and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar Ir(I) complexes because of their structural and electronic similarity to Pt(II) anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich Ir(III) anticancer complexes. These complexes with the formula [(Cp(x))Ir(L^L')Z](0/n+) (with Cp* or extended Cp* and L^L' = chelated C^N or N^N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form Ir(III)-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium

  6. Anticancer Efficacy of Polyphenols and Their Combinations

    PubMed Central

    Niedzwiecki, Aleksandra; Roomi, Mohd Waheed; Kalinovsky, Tatiana; Rath, Matthias

    2016-01-01

    Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB) demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP)-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract) with vitamin C, amino acids and other micronutrients (EPQ) demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM) also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion, angiogenesis

  7. A Systematic Review of Iran's Medicinal Plants With Anticancer Effects.

    PubMed

    Asadi-Samani, Majid; Kooti, Wesam; Aslani, Elahe; Shirzad, Hedayatollah

    2016-04-01

    Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants' anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs.

  8. Discovery and Development of Topoisomerase Inhibitors as Anticancer Agents.

    PubMed

    Kathiravan, Muthu K; Kale, Anuj N; Nilewar, Shrikant

    2016-01-01

    As one of the leading causes of deaths worldwide, cancer is posing threat despite efforts being taken to develop effective anticancer drugs. There is an increase in number of chemotherapy treatments due to growing number of manifestations causing increasing toxicities of cytotoxic agents. Almost all the anticancer agents available till date have one or the other side effects. Topoisomerases are the attractive targets to develop effective anticancer agents. There has been development of many topoisomerase inhibitors till date and has shown good anticancer activity but their side effects outnumber their anticancer potential. Hence, there is an urgent need to develop effective therapeutic agents with fewer side effects. This review deals with design and development aspect of topoisomerase inhibitors as exciting novel anticancer agents. The emphasis has been laid in particular on the new potential heterocyles as TOP inhibitors in the field of medicinal chemistry. The review discusses about the topoisomerase poisons, TOP1 suppressors, TOP inhibitors and Dual TOP 1/2 inhibitors.

  9. In Silico Models for Designing and Discovering Novel Anticancer Peptides

    NASA Astrophysics Data System (ADS)

    Tyagi, Atul; Kapoor, Pallavi; Kumar, Rahul; Chaudhary, Kumardeep; Gautam, Ankur; Raghava, G. P. S.

    2013-10-01

    Use of therapeutic peptides in cancer therapy has been receiving considerable attention in the recent years. Present study describes the development of computational models for predicting and discovering novel anticancer peptides. Preliminary analysis revealed that Cys, Gly, Ile, Lys, and Trp are dominated at various positions in anticancer peptides. Support vector machine models were developed using amino acid composition and binary profiles as input features on main dataset that contains experimentally validated anticancer peptides and random peptides derived from SwissProt database. In addition, models were developed on alternate dataset that contains antimicrobial peptides instead of random peptides. Binary profiles-based model achieved maximum accuracy 91.44% with MCC 0.83. We have developed a webserver, which would be helpful in: (i) predicting minimum mutations required for improving anticancer potency; (ii) virtual screening of peptides for discovering novel anticancer peptides, and (iii) scanning natural proteins for identification of anticancer peptides (http://crdd.osdd.net/raghava/anticp/).

  10. CancerHSP: anticancer herbs database of systems pharmacology.

    PubMed

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-15

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  11. Current situation and future usage of anticancer drug databases.

    PubMed

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  12. CancerHSP: anticancer herbs database of systems pharmacology

    PubMed Central

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-01-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php. PMID:26074488

  13. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  14. Oral anticancer agent medication adherence by outpatients.

    PubMed

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence.

  15. Oral anticancer agent medication adherence by outpatients

    PubMed Central

    KIMURA, MICHIO; USAMI, EISEKI; IWAI, MINA; NAKAO, TOSHIYA; YOSHIMURA, TOMOAKI; MORI, HIROMI; SUGIYAMA, TADASHI; TERAMACHI, HITOMI

    2014-01-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21–85 years) and 73 years (range, 30–90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3–3,585 days) and 219 days (24–3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4–5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence. PMID:25295117

  16. Anticancer potential of selected Fallopia Adans species

    PubMed Central

    OLARU, OCTAVIAN TUDOREL; VENABLES, LUANNE; VAN DE VENTER, MARYNA; NITULESCU, GEORGE MIHAI; MARGINA, DENISA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2015-01-01

    The aim of the present study was to determine the anticancer potential of three species belonging to the Fallopia genus (Polygonaceae): Fallopia convolvulus (F. convolvulus, Fallopia dumetorum (F. dumetorum) and Fallopia aubertii (F. aubertii). For this purpose, crude extracts were obtained and characterized for their phenolic and flavonoid total content and examined for their anticancer activity on three tumor cell lines: breast cancer (MCF7), colon carcinoma (Caco-2) and cervical cancer (HeLa) cells. The cytotoxic potential of the three species was assessed by MTT assay, cell cycle analysis and by the evaluation of mitochondrial membrane potential (MMP). The acute toxicity of the extracts was evaluated using one in vitro cell model (Vero cells, an African Green monkey kidney cell line) and two invertebrate in vivo models (Daphnia magna and Artemia salina). The highest total phenolic and flavonoid content was found in the F. aubertii flower extracts. The cytotoxic effects of the extracts from F. aubertii and F. convolvulus on all three cell lines were examined at concentrations ranging from 3 to 300 µg/ml. G2/M cell cycle arrest was induced by all the extracts, and a significant increase in the subG1 cell population was observed. The hydroethanolic extract from the flowers of F. aubertii induced cell apoptosis more rapidly than the other extracts. The MMP indicates the involvement of the mitochondria in the induction of apoptosis. A positive correlation between the total phenolic content of the extracts and the IC50 values against the HeLa cells was also noted. None of the extracts exhibited significantly toxic effects. Considering the antitumor potential of F. aubertii and F. convolvulus, these two species may represent a good source of plant extracts with anticancer properties. PMID:26622671

  17. Diving for drugs: tunicate anticancer compounds.

    PubMed

    Cooper, Edwin L; Yao, David

    2012-06-01

    The marine biosphere boasts tremendous biodiversity replete with structurally unique, active and selective secondary metabolites. Bioprospecting for antitumor compounds has been rewarding, and tunicates have been especially successful in yielding prospective cancer therapies. These compounds are now subjected to clinical trials in Europe and the USA. With the ongoing search for potent and specific anticancer drugs, in this article we discuss the unique perspectives, compounds and opportunities afforded by this rich source of potential pharmaceuticals. We discuss marine-derived antitumor drugs, their structures, and their various types and levels of antitumor activities in bench and bedside efforts.

  18. Recent development of anticancer therapeutics targeting Akt.

    PubMed

    Morrow, John K; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J; Mash, Eugene A; Powis, Garth; Zhang, Shuxing

    2011-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches.

  19. Anticancer Alkaloids from Trees: Development into Drugs

    PubMed Central

    Isah, Tasiu

    2016-01-01

    Trees have made an enormous phytochemical contribution in anticancer drugs' development more than any other life form. The contributions include alkaloids that are biosynthesized in various ways and yield. Lead alkaloids isolated from the trees are taxol and camptothecins that currently have annual sales in billion dollars. Other important alkaloids isolated from these life forms include rohitukine, harringtonine, acronycine, thalicarpine, usambarensine, ellipticine, and matrines. Studies on their mechanism of action and target on the DNA and protein of cancerous cells aided the development of potent hemisynthesized congeners. The molecules and their congeners passed/are passing a long period of historical development before approved as antineoplastic drugs for cancer chemotherapy. Some of them did not find the application as anticancer drugs due to ineffectiveness in clinical trials; others are generating research interest in the antineoplastic activity at the present and have reached clinical trial stages. Potentials in antineoplastic molecules from trees are high and are hoped to be commensurate with cancer types afflicting human society in the future. PMID:28082790

  20. ATP-triggered anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24 μM in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  1. Farnesyl transferase inhibitors as anticancer agents.

    PubMed

    Haluska, P; Dy, G K; Adjei, A A

    2002-09-01

    Protein farnesylation catalysed by the enzyme farnesyl protein transferase involves the addition of a 15-carbon farnesyl group to conserved amino acid residues at the carboxyl terminus of certain proteins. Protein substrates of farnesyl transferase include several G-proteins, which are critical intermediates of cell signalling and cytoskeletal organisation such as Ras, Rho, PxF and lamins A and B. Activated Ras proteins trigger a cascade of phosphorylation events through sequential activation of the PI3 kinase/AKT pathway, which is critical for cell survival, and the Raf/Mek/Erk kinase pathway that has been implicated in cell proliferation. Ras mutations which encode for constitutively activated proteins are found in 30% of human cancers. Because farnesylation of Ras is required for its transforming and proliferative activity, the farnesyl protein transferase inhibitors were designed as anticancer agents to abrogate Ras function. However, current evidence suggests that the anticancer activity of the farnesyl transferase inhibitors may not be simply due to Ras inhibition. This review will discuss available clinical data on three of these agents that are currently undergoing clinical trials.

  2. Peptides with Dual Antimicrobial and Anticancer Activities

    NASA Astrophysics Data System (ADS)

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-02-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting towards intracellular targets, which increases their success comparatively to specific one-target drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials.

  3. Recent Development of Anticancer Therapeutics Targeting Akt

    PubMed Central

    Morrow, John K.; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J.; Mash, Eugene A.; Powis, Garth; Zhang, Shuxing

    2013-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches. PMID:21110830

  4. Designed TPR Modules as Novel Anticancer Agents

    SciTech Connect

    Cortajarena,A.; Yi, F.; Regan, L.

    2008-01-01

    Molecules specifically designed to modulate protein-protein interactions have tremendous potential as novel therapeutic agents. One important anticancer target is the chaperone Hsp90, whose activity is essential for the folding of many oncogenic proteins, including HER2, IGFIR, AKT, RAF-1, and FLT-3. Here we report the design and characterization of new tetratricopeptide repeat modules, which bind to the C-terminus of Hsp90 with higher affinity and with greater specificity than natural Hsp90-binding co-chaperones. Thus, when these modules are introduced into the cell, they out-compete endogenous co-chaperones for binding, thereby inhibiting Hsp90 function. The effect of Hsp90 inhibition in this fashion is dramatic; HER2 levels are substantially decreased and BT474 HER2 positive breast cancer cells are killed. Our designs thus provide new tools with which to dissect the mechanism of Hsp90-mediated protein folding and also open the door to the development of an entirely new class of anticancer agents.

  5. Maximin H5 is an anticancer peptide.

    PubMed

    Dennison, Sarah R; Harris, Frederick; Phoenix, David A

    2017-02-26

    Here we report the first major example of anionic amphibian host defence peptides (HDPs) with anticancer activity. Maximin H5 is a C-terminally amidated, anionic host defence peptide (MH5N) from toads of the Bombina genus, which was shown to possess activity against the glioma cell line, T98G (EC50 = 125 μM). The peptide adopted high levels of α-helical structure (57.3%) in the presence of model cancer membranes (DMPC:DMPS in a molar ratio of 10:1). MH5N also showed a strong ability to penetrate these model membranes (Π = 10.5 mN m(-1)), which correlated with levels of DMPS (R(2) > 0.98). Taken with the high ability of the peptide to lyse these membranes (65.7%), it is proposed that maximin H5 kills cancer cells via membranolytic mechanisms that are promoted by anionic lipid. It was also found that C-terminally deaminated maximin H5 (MH5C) exhibited lower levels of α-helical structure in the presence of cancer membrane mimics (44.8%) along with a reduced ability to penetrate these membranes (Π = 8.1 mN m(-1)) and induce their lysis (56.6%). These data suggested that the two terminal amide groups of native maximin H5 are required for its optimal membranolytic and anticancer activity.

  6. Trial Watch: Peptide-based anticancer vaccines

    PubMed Central

    Pol, Jonathan; Bloy, Norma; Buqué, Aitziber; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Galon, Jérôme; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    Malignant cells express antigens that can be harnessed to elicit anticancer immune responses. One approach to achieve such goal consists in the administration of tumor-associated antigens (TAAs) or peptides thereof as recombinant proteins in the presence of adequate adjuvants. Throughout the past decade, peptide vaccines have been shown to mediate antineoplastic effects in various murine tumor models, especially when administered in the context of potent immunostimulatory regimens. In spite of multiple limitations, first of all the fact that anticancer vaccines are often employed as therapeutic (rather than prophylactic) agents, this immunotherapeutic paradigm has been intensively investigated in clinical scenarios, with promising results. Currently, both experimentalists and clinicians are focusing their efforts on the identification of so-called tumor rejection antigens, i.e., TAAs that can elicit an immune response leading to disease eradication, as well as to combinatorial immunostimulatory interventions with superior adjuvant activity in patients. Here, we summarize the latest advances in the development of peptide vaccines for cancer therapy. PMID:26137405

  7. Exploiting tumor cell senescence in anticancer therapy

    PubMed Central

    Lee, Minyoung; Lee, Jae-Seon

    2014-01-01

    Cellular senescence is a physiological process of irreversible cell-cycle arrest that contributes to various physiological and pathological processes of aging. Whereas replicative senescence is associated with telomere attrition after repeated cell division, stress-induced premature senescence occurs in response to aberrant oncogenic signaling, oxidative stress, and DNA damage which is independent of telomere dysfunction. Recent evidence indicates that cellular senescence provides a barrier to tumorigenesis and is a determinant of the outcome of cancer treatment. However, the senescence-associated secretory phenotype, which contributes to multiple facets of senescent cancer cells, may influence both cancer-inhibitory and cancer-promoting mechanisms of neighboring cells. Conventional treatments, such as chemo- and radiotherapies, preferentially induce premature senescence instead of apoptosis in the appropriate cellular context. In addition, treatment-induced premature senescence could compensate for resistance to apoptosis via alternative signaling pathways. Therefore, we believe that an intensive effort to understand cancer cell senescence could facilitate the development of novel therapeutic strategies for improving the efficacy of anticancer therapies. This review summarizes the current understanding of molecular mechanisms, functions, and clinical applications of cellular senescence for anticancer therapy. [BMB Reports 2014; 47(2): 51-59] PMID:24411464

  8. [Anticancer drugs use evaluation: limits of the approved labeling].

    PubMed

    Debrix, Isabelle; André, Thierry; Flahault, Antoine; Kalu, Ogbe; Gligorov, Joseph; Lotz, Jean-Pierre; Milleron, Bernard; Pene, Françoise; Boukari, Yasmine; Becker, Annie

    2004-05-01

    A practice survey was performed in Tenon hospital on 396 consecutive patients treated for solid tumors during 4 weeks in november 2002. 33% of anticancer drugs were off label used. The wording heterogeneity of the different anticancer drugs approved labeling and the lack of anticancer drugs in a number of cancers can explain those results. On one hand, randomised comparative clinical trial, considered as the best level of evidence to obtain a label used, is not always possible in cancerology, especially for rare tumors. One the other hand, pharmaceutical firm are not obliged to asked a label used for an anticancer drugs in spite of high level of evidence. So, label used can not be the own references for anticancer drugs prescribing, therapeutic advanced can be realised and disseminated before their taking into account in the label used.

  9. A review on anticancer potential of bioactive heterocycle quinoline.

    PubMed

    Afzal, Obaid; Kumar, Suresh; Haider, Md Rafi; Ali, Md Rahmat; Kumar, Rajiv; Jaggi, Manu; Bawa, Sandhya

    2015-06-05

    The advent of Camptothecin added a new dimension in the field anticancer drug development containing quinoline motif. Quinoline scaffold plays an important role in anticancer drug development as their derivatives have shown excellent results through different mechanism of action such as growth inhibitors by cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. The anti-cancer potential of several of these derivatives have been demonstrated on various cancer cell lines. In this review we have compiled and discussed specifically the anticancer potential of quinoline derivatives, which could provide a low-height flying bird's eye view of the quinoline derived compounds to a medicinal chemist for a comprehensive and target oriented information for development of clinically viable anticancer drugs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Synthesis of Dipyridyl Ketone Isonicotinoyl Hydrazone Copper(II) Complex: Structure, Anticancer Activity and Anticancer Mechanism.

    PubMed

    Deng, JunGang; Chen, Wei; Deng, Hang

    2016-11-01

    In an effort to better understand the biological efficacy of the tridentate aroyl hydrazone Cu(II) complexes, the Cu(II) complex of di-2-pyridyl ketone isonicotinoyl hydrazone ligand (HL), {[Cu(L)(H2O)]·H2O·NO3}n (C1) was synthesized and characterized. Single crystal X-ray study reveals that complex C1 forms 1D zigzag chains in solid state. In water, the hydrolysis of the 1D zigzag chains was observed, and finally formation of monomeric species. In vitro studies revealed that complex C1 showed significantly more anticancer activity than the ligand alone. Investigation of the anticancer mechanisms of C1, confirmed that the Cu(II) complex exhibit a strong capacity to promote productions of reactive oxygen species (ROS), leading to caspase-dependent apoptotic cell death.

  11. Kefir: a powerful probiotics with anticancer properties.

    PubMed

    Sharifi, Mohammadreza; Moridnia, Abbas; Mortazavi, Deniz; Salehi, Mahsa; Bagheri, Marzieh; Sheikhi, Abdolkarim

    2017-09-27

    Probiotics and fermented milk products have attracted the attention of scientists from various fields, such as health care, industry and pharmacy. In recent years, reports have shown that dietary probiotics such as kefir have a great potential for cancer prevention and treatment. Kefir is fermented milk with Caucasian and Tibet origin, made from the incubation of kefir grains with raw milk or water. Kefir grains are a mixture of yeast and bacteria, living in a symbiotic association. Antibacterial, antifungal, anti-allergic and anti-inflammatory effects are some of the health beneficial properties of kefir grains. Furthermore, it is suggested that some of the bioactive compounds of kefir such as polysaccharides and peptides have great potential for inhibition of proliferation and induction of apoptosis in tumor cells. Many studies revealed that kefir acts on different cancers such as colorectal cancer, malignant T lymphocytes, breast cancer and lung carcinoma. In this review, we have focused on anticancer properties of kefir.

  12. Anticancer Activity of Key Lime, Citrus aurantifolia

    PubMed Central

    Narang, Nithithep; Jiraungkoorskul, Wannee

    2016-01-01

    Citrus aurantifolia (family: Rutaceae) is mainly used in daily consumption, in many cultural cuisines, and in juice production. It is widely used because of its antibacterial, anticancer, antidiabetic, antifungal, anti-hypertensive, anti-inflammation, anti-lipidemia, and antioxidant properties; moreover, it can protect heart, liver, bone, and prevent urinary diseases. Its secondary metabolites are alkaloids, carotenoids, coumarins, essential oils, flavonoids, phenolic acids, and triterpenoids. The other important constituents are apigenin, hesperetin, kaempferol, limonoids, quercetin, naringenin, nobiletin, and rutin, all of these contribute to its remedial properties. The scientific searching platforms were used for publications from 1990 to present. The abstracts and titles were screened, and the full-text articles were selected. The present review is up-to-date of the phytochemical property of C. aurantifolia to provide a reference for further study. PMID:28082795

  13. Deubiquitinating enzymes as novel anticancer targets

    PubMed Central

    Nicholson, Benjamin; Marblestone, Jeffrey G; Butt, Tauseef R; Mattern, Michael R

    2008-01-01

    Tagging proteins with mono- or poly-ubiquitin is now recognized as a multifaceted and universal means of regulating cell growth and physiology. It does so by controlling the cellular lifetime of nearly all eukaryotic proteins and the cellular localization of many critical proteins. Enzymes of the ubiquitin pathway add (ligases) or remove (deubiquitinases [DUBs]) ubiquitin tags to or from their target proteins in a selective fashion. Similarly to the kinases and their corresponding phosphatases, ubiquitin ligases and DUBs have become actively studied molecular oncology targets for drug discovery. Approximately 79 functional DUBs exist in the human proteome, suggesting that selective intervention is a reasonable therapeutic objective, with the goal of downregulating or ablating oncogene products or, alternatively, upregulating or sparing tumor suppressors. In the following review, this fascinating class of regulatory enzymes will be described, and specific examples of DUBs that are viable targets for anticancer therapy will be considered. PMID:17381419

  14. Synthesis and anticancer evaluation of spermatinamine analogues.

    PubMed

    Moosa, Basem A; Sagar, Sunil; Li, Song; Esau, Luke; Kaur, Mandeep; Khashab, Niveen M

    2016-03-15

    Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcysteine carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines, that is, cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5-10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Genomic approach towards personalized anticancer drug therapy.

    PubMed

    Midorikawa, Yutaka; Tsuji, Shingo; Takayama, Tadatoshi; Aburatani, Hiroyuki

    2012-01-01

    Stratification of patients for multidrug response is a promising strategy for cancer treatment. Genome-based prediction models have great potential for this purpose because the extent of drug sensitivity may be attributed to the heterogeneity of the underlying genetic characteristics of cancer. However, microarray data is difficult to analyze and is not reproducible. Several machine-learning algorithms have therefore been developed in a repeatable manner. Random forests algorithm, which uses an ensemble approach based on classification and regression trees, appears to be superior for predicting multidrug sensitivity. This is because ensemble methods are more effective when there are much more predictors than samples. Here, we review recent advances in the development of classification algorithms using microarray technology for prediction of anticancer sensitivity, discuss the availability of ensemble methods for prediction models, and present data regarding the identification of potential responders to FOLFOX therapy using random forests algorithm.

  16. Adherence to targeted oral anticancer medications.

    PubMed

    Geynisman, Daniel M; Wickersham, Karen E

    2013-04-01

    The use of targeted oral anticancer medications (OAMs) is becoming increasingly prevalent in cancer care. Approximately 25-30% of the oncology drug pipeline involves oral agents and there are now over 50 OAMs approved by the Food and Drug Administration. This change represents a major shift in management of patients with cancer from directly observed, intermittent intravenous therapy to self-administered, oral chronic therapy. The increased prevalence of OAMs raises the issue of adherence in oncology, including understanding the challenges of adherence to OAMs. This review focuses on studies of adherence for patients taking molecularly targeted OAMs for breast cancer, chronic myelogenous leukemia (CML), gastrointestinal stromal tumors (GIST), non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC). We then discuss barriers to adherence and studies performed to date testing interventions for improving adherence. Finally, we discuss future areas of investigation needed to define and improve adherence to OAMs in targeted therapy for cancer.

  17. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    PubMed Central

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells can affect numerous cellular processes, including cell growth, proliferation, differentiation, and survival. The potential dependence of cancer cells on the deregulated lipid metabolism suggests that enzymes and regulating factors involved in this process are promising targets for cancer treatment. In this review, we focus on the features associated with the lipid metabolic pathways in cancer, and highlight recent advances on the therapeutic targets of specific lipid metabolic enzymes or regulating factors and target-directed small molecules that can be potentially used as anticancer drugs. PMID:28053954

  18. Mitochondrial dysfunction and potential anticancer therapy.

    PubMed

    Lleonart, Matilde E; Grodzicki, Robert; Graifer, Dmitri M; Lyakhovich, Alex

    2017-07-06

    Mitochondrial dysfunction (MDF) has been identified as an important factor in various diseases ranging from neurological disorders, to diseases of the cardiovascular system and metabolic syndromes. MDF was also found in cancer as well as in cancer predisposition syndromes with defective DNA damage response (DDR) machinery. Moreover, a recent highlight arises from the detection of MDF in eukaryotic cells upon treatment with antibiotics. In this review, we focus on recent studies of MDF in pathological conditions with a particular emphasis on the effects of various classes of antibiotics on mitochondria. Special attention is given to the role of autophagy/mitophagy in MDF and repurposing antibiotics as anticancer drugs. © 2017 Wiley Periodicals, Inc.

  19. Anticancer Activity of Key Lime, Citrus aurantifolia.

    PubMed

    Narang, Nithithep; Jiraungkoorskul, Wannee

    2016-01-01

    Citrus aurantifolia (family: Rutaceae) is mainly used in daily consumption, in many cultural cuisines, and in juice production. It is widely used because of its antibacterial, anticancer, antidiabetic, antifungal, anti-hypertensive, anti-inflammation, anti-lipidemia, and antioxidant properties; moreover, it can protect heart, liver, bone, and prevent urinary diseases. Its secondary metabolites are alkaloids, carotenoids, coumarins, essential oils, flavonoids, phenolic acids, and triterpenoids. The other important constituents are apigenin, hesperetin, kaempferol, limonoids, quercetin, naringenin, nobiletin, and rutin, all of these contribute to its remedial properties. The scientific searching platforms were used for publications from 1990 to present. The abstracts and titles were screened, and the full-text articles were selected. The present review is up-to-date of the phytochemical property of C. aurantifolia to provide a reference for further study.

  20. Nanocarriers for delivery of platinum anticancer drugs☆

    PubMed Central

    Oberoi, Hardeep S.; Nukolova, Natalia V.; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum–polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs. PMID:24113520

  1. Peptides with Dual Antimicrobial and Anticancer Activities

    PubMed Central

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-01-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting toward intracellular targets, which increases their success compartively to one-target specific drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials. PMID:28271058

  2. Novel anticancer alkene lactone from Persea americana.

    PubMed

    Falodun, Abiodun; Engel, Nadja; Kragl, Udo; Nebe, Barbara; Langer, Peter

    2013-06-01

    Persea americana Mill (Lauraceae) root bark is used in ethnomedicine for a variety of diseases including cancer. To isolate and characterize the chemical constituent in P. americana, and also to determine the anticancer property of a new alkene lactone from the root bark of P. americana. The MCF-7 cells were treated with different concentrations of the pure compound for 48 h. The percentage of cells in the various phases, online monitoring of metabolic changes and integrin receptor expression determined by flow cytometry. One novel alkene lactone (4-hydroxy-5-methylene-3-undecyclidenedihydrofuran-2 (3H)-one) (1) was isolated and characterized using 1D-NMR, 2D-NMR, infrared, UV and MS. At a concentration of 10 µg/mL, significant reduction of proliferation of MCF-7 was induced while MCF-12 A cell was significantly stimulated by 10 µg/mL. The IC50 value for MCF-7 cells is 20.48 µg/mL. Lower concentration of 1 harbor no significant effect on either MCF-7 or MCF-12A. The apoptotic rates of MCF-7 cells were increased significantly. At the final concentration 10 µg/mL, up to 80% of all breast cancer cells were dead. On the non-tumorigenic cell line MCF-12A, the same concentrations (1 and 10 µg/mL) of compound 1 caused significant enhanced apoptotic rates. A total of 1 µg/mL of 1 caused a decrease of α4-, α6-, β1- and β3-integrin expression. The compound caused a stimulatory effect on non-tumorigenic MCF-12A cells with respect to cell adhesion while tumorigenic MCF-7 cells detached continuously. This is the first report on the anticancer effects of this class of compound.

  3. Biodiversity as a source of anticancer drugs.

    PubMed

    Tan, G; Gyllenhaal, C; Soejarto, D D

    2006-03-01

    Natural Products have been the most significant source of drugs and drug leads in history. Their dominant role in cancer chemotherapeutics is clear with about 74% of anticancer compounds being either natural products, or natural product-derived. The biodiversity of the world provides a resource of unlimited structural diversity for bioprospecting by international drug discovery programs such as the ICBGs and NCDDGs, the latter focusing exclusively on anticancer compounds. However, many sources of natural products remain largely untapped. Technology is gradually overcoming the traditional difficulties encountered in natural products research by improving access to biodiverse resources, and ensuring the compatibility of samples with high throughput procedures. However, the acquisition of predictive biodiversity remains challenging. Plant and organism species may be selected on the basis of potentially useful phytochemical composition by consulting ethnopharmacological, chemosystematic, and ecological information. On the conservation/political front, the Convention on Biological Diversity (CBD) is allaying the anxiety surrounding the notion of biopiracy, which has defeated many attempts to discover and develop new natural products for human benefit. As it becomes increasingly evident and important, the CBD fosters cooperation and adaptation to new regulations and collaborative research agreements with source countries. Even as the past inadequacies of combinatorial chemistry are being analyzed, the intrinsic value of natural products as a source of drug leads is being increasingly appreciated. Their rich structural and stereochemical characteristics make them valuable as templates for exploring novel molecular diversity with the aim of synthesizing lead generation libraries with greater biological relevance. This will ensure an ample supply of starting materials for screening against the multitude of potentially "druggable" targets uncovered by genomics technologies

  4. Coumarin: a promising scaffold for anticancer agents.

    PubMed

    Kaur, Manjinder; Kohli, Swarandeep; Sandhu, Sonali; Bansal, Yogita; Bansal, Gulshan

    2015-01-01

    Coumarin enjoys an important place in drug discovery process due to its presence in diversity of biologically active compounds. Many compounds of plant origin are derivatives of coumarin. Taking these natural products as lead, research groups across the globe have designed and synthesized numerous coumarin analogues for treatment of varied diseases. Cancer is one of the dreadful chronic diseases, and many drugs are available for its treatment. However, due to heterogeneity of cancer, the search is still on to develop drugs for specific types of cancers. The present review is an attempt to study various coumarin derivatives of natural as well as synthetic origins, which are identified or developed for the treatment of different types of cancers. Herein, we have classified various anticancer coumarin derivatives on the basis of their origin as well as substitution around it. These are discussed under the headings of natural, semi-synthetic and synthetic coumarin derivatives. The synthetic coumarin derivatives are further classified as mono-, di- and poly-substituted and fused coumarin derivatives. Of the six positions available for substituents on coumarin nucleus, only three positions (C-3, C-4 and C-7) are exploited for the selection of functional groups appropriate for anticancer activity. The other positions (C-5, C-6 and C-8) are either unexplored or very less exploited. The present review is expected to provide the medicinal chemists a guide to choose new functional groups for substitution at different positions of coumarin nucleus for development of novel compounds for the treatment of a specific type of cancer.

  5. [Autophagy, new perspectives in anticancer therapy].

    PubMed

    Lisiak, Natalia; Totoń, Ewa; Rybczyńska, Maria

    2014-01-01

    Autophagy, the process of degradation of unwanted or damaged cell elements, is extremely important for a variety of human diseases, especially cancers. This process influences various stages of initiation and progression of cancer, which is caused by overlapping signaling pathways of autophagy and carcinogenesis. However, due to the complexity of cancer as a systemic disease, the fate of tumor cells is not determined by one signal pathway. Chronic autophagy inhibition leads to tumor promotion, due to instability of the genome, defective cell growth, also as a result of cellular stress. However, increased induction of autophagy may be a mechanism for tumor cell survival in the state of hypoxia, acidosis, as well as under the influence of chemotherapy. Therefore, in the context of cancer development, the process of autophagy should be considered in two directions. Determination of the molecular mechanisms underlying the process of autophagy and its role in the carcinogenesis is a key element of the anticancer strategy. The main objective of modern oncology, which should eventually lead to personalized therapy, is the possibility to predict the response of a particular type of cancer to the used drug. Results of in vitro and in vivo studies show the magnitude of the relationship between changes in the genome, and response to the therapy. This information indicates the mechanism and thereby the target point of the drugs. In this review we focus on the mechanism of autophagy and its role in cancer therapy, which can help to understand the autophagy-cancer relationship and indicate the direction for the design of new drugs with anticancer activity.

  6. Anticancer Properties of Distinct Antimalarial Drug Classes

    PubMed Central

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  7. Hyaluronic acid for anticancer drug and nucleic acid delivery.

    PubMed

    Dosio, Franco; Arpicco, Silvia; Stella, Barbara; Fattal, Elias

    2016-02-01

    Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.

  8. Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery

    PubMed Central

    Scott, Latanya. M.; Lawrence, Harshani. R.; Sebti, Saïd. M.; Lawrence, Nicholas. J.; Wu, Jie.

    2010-01-01

    Protein tyrosine phosphatases (PTPs) are a diverse family of enzymes encoded by 107 genes in the human genome. Together with protein tyrosine kinases (PTKs), PTPs regulate various cellular activities essential for the initiation and maintenance of malignant phenotypes. While PTK inhibitors are now used routinely for cancer treatment, the PTP inhibitor development field is still in the discovery phase. In this article, the suitability of targeting PTPs for novel anticancer drug discovery is discussed. Examples are presented for PTPs that have been targeted for anticancer drug discovery as well as potential new PTP targets for novel anticancer drug discovery. PMID:20337577

  9. Immune-mediated mechanisms influencing the efficacy of anticancer therapies.

    PubMed

    Coffelt, Seth B; de Visser, Karin E

    2015-04-01

    Conventional anticancer therapies, such as chemotherapy, radiotherapy, and targeted therapy, are designed to kill cancer cells. However, the efficacy of anticancer therapies is not only determined by their direct effects on cancer cells but also by off-target effects within the host immune system. Cytotoxic treatment regimens elicit several changes in immune-related parameters including the composition, phenotype, and function of immune cells. Here we discuss the impact of innate and adaptive immune cells on the success of anticancer therapy. In this context we examine the opportunities to exploit host immune responses to boost tumor clearing, and highlight the challenges facing the treatment of advanced metastatic disease.

  10. Anticancer Drug Combinations, How Far We can Go Through?

    PubMed

    Lu, Da-Yong; Chen, En-Hong; Wu, Hong-Ying; Lu, Ting-Ren; Xu, Bin; Ding, Jian

    2017-01-01

    Many clinical cancer therapies are less effective by using one anticancer drug only due to refractory properties of cancer pathogenesis and drug resistance property in advanced cancer patients. A general consensus among clinicians is that anticancer drug cocktail might better control cancer progresses and metastasis than single drug therapeutics in clinical trials. Despite great popularity, the anticancer drug combination dogma has not been established. The complexity of drug combination dogma discovery is more than we can expect now. This article speculates possible routes we can undertake in this matter. The background knowledge of drug combination therapy presently practiced and possible future landscapes and drawbacks of cancer drug combinative therapies are highlighted.

  11. Anticancer activity of Aristolochia ringens Vahl. (Aristolochiaceae)

    PubMed Central

    Akindele, Abidemi James; Wani, Zahoor; Mahajan, Girish; Sharma, Sadhana; Aigbe, Flora Ruth; Satti, Naresh; Adeyemi, Olufunmilayo Olaide; Mondhe, Dilip Manikrao

    2014-01-01

    Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs especially from plants. The sulforhodamine B (SRB) in vitro cytotoxicity assay, sarcoma-180 (S-180) ascites and solid tumor, and L1210 lymphoid leukemia in vivo models were used to investigate the anticancer activity of root extracts of Aristolochia ringens Vahl. (Aristolochiaceae; 馬兜鈴 mǎ dōu líng). AR-A001 (IC50 values of 20 μg/mL, 22 μg/mL, 3 μg/mL, and 24 μg/mL for A549, HCT-116, PC3, and THP-1 cell lines, respectively), and AR-A004 (IC50 values of 26 μg/mL, 19.5 μg/mL, 12 μg/mL, 28 μg/mL, 30 μg/mL, and 22 μg/mL for A549, HCT-116, PC3, A431, HeLa, and THP-1, respectively), were observed to be significantly active in vitro. Potency was highest with AR-A001 and AR-A004 for PC3 with IC50 values of 3 μg/mL and 12 μg/mL, respectively. AR-A001 and AR-A004 produced significant (p < 0.05–0.001) dose-dependent inhibition of tumor growth in the S-180 ascites model with peak effects produced at the highest dose of 120 mg/kg. Inhibition values were 79.51% and 89.98% for AR-A001 and AR-A004, respectively. In the S-180 solid tumor model, the inhibition of tumor growth was 29.45% and 50.50% for AR-A001 (120 mg/kg) and AR-A004 (110 mg/kg), respectively, compared to 50.18% for 5-fluorouracil (5-FU; 20 mg/kg). AR-A001 and AR-A004 were also significantly active in the leukemia model with 211.11% and 155.56% increase in mean survival time (MST) compared to a value of 211.11% for 5-FU. In conclusion, the ethanolic (AR-A001) and dichloromethane:methanol (AR-A004) root extracts of AR possess significant anticancer activities in vitro and in vivo. PMID:26151007

  12. Anticancer Drug Development: The Way Forward.

    PubMed

    Connors

    1996-01-01

    Cancer chemotherapy celebrated its fiftieth anniversary last year. It was in 1945 that wartime research on the nitrogen mustards, which uncovered their potential use in the treatment of leukaemias and other cancers, was first made public. Fifty years later, more than sixty drugs have been registered in the USA for the treatment of cancer, but there are still lessons to be learnt. One problem, paradoxically, is that many anticancer agents produce a response in several different classes of the disease. This means that once a new agent has been shown to be effective in one cancer, much effort is devoted to further investigations of the same drug in various combinations for different disorders. While this approach has led to advances in the treatment of many childhood cancers and some rare diseases, a plethora of studies on metastatic colon cancer, for example, has yielded little benefit. 5-fluorouracil continues to be used in trials, yet there is no evidence for an increase in survival. The lesson to be learnt is that many common cancers are not adequately treated by present-day chemotherapy, and most trials of this sort are a waste of time. Significant increases in survival will only occur if the selectivity of present-day anticancer agents can be increased or new classes of more selective agents can be discovered. There are two fundamental problems in drug development: a lack of suitable laboratory tests and the difficulty of conducting early clinical trials. Firstly, no existing laboratory method can accurately predict which chemical will be effective against a particular class of human cancer. At best, tests can demonstrate a general 'anticancer' property. This is well exemplified by the discovery of cisplatin. The fact that cisplatin caused regression in a number of transplanted rodent tumours created no great excitement amongst chemotherapists. It was only later when it was tested clinically against ovarian cancer that results were sufficiently positive to

  13. Anti-Cancer Potential of a Novel SERM Ormeloxifene

    PubMed Central

    Gara, Rishi Kumar; Sundram, Vasudha; Chauhan, Subhash C.; Jaggi, Meena

    2014-01-01

    Ormeloxifene is a non-steroidal Selective Estrogen Receptor Modulator (SERM) that is used as an oral contraceptive. Recent studies have shown its potent anti-cancer activities in breast, head and neck, and chronic myeloid leukemia cells. Several in vivo and clinical studies have reported that ormeloxifene possesses an excellent therapeutic index and has been well-tolerated, without any haematological, biochemical or histopathological toxicity, even with chronic administration. A reasonably long period of time and an enormous financial commitment are required to develop a lead compound into a clinically approved anti-cancer drug. For these reasons and to circumvent these obstacles, ormeloxifene is a promising candidate on a fast track for the development or repurposing established drugs as anti-cancer agents for cancer treatment. The current review summarizes recent findings on ormeloxifene as an anti-cancer agent and future prospects of this clinically safe pharmacophore. PMID:23895678

  14. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases

    PubMed Central

    Jain, Chetan Kumar; Majumder, Hemanta Kumar; Roychoudhury, Susanta

    2017-01-01

    DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs. PMID:28503091

  15. Targeting autophagy in cancer stem cells as an anticancer therapy.

    PubMed

    Lei, Yuanyuan; Zhang, Dan; Yu, Jin; Dong, Hui; Zhang, Jianwei; Yang, Shiming

    2017-05-01

    Cancer stem cells (CSCs), which comprise a small proportion of total cancer cells, have special capacities for self-renewal, differentiation and tumor formation. Currently, CSCs are regarded as the major cause of the failure in anticancer therapy, such as chemoresistance and/or radioresistance, tumor recurrence and metastasis. Autophagy, a process of cellular self-digestion and response to stress, has a role in tumor formation and progression, and it may play a dual role in CSCs-related resistance to anticancer therapy. Most researchers believe that autophagy contributes to stemness maintenance of CSCs and is responsible for the failure of anticancer therapy. Unexpectedly, several studies have also suggested that loss of stemness in CSCs could be mediated by autophagy. Here, we review the recent advances in CSCs and autophagy, especially analyze the complex relationship between them, and hope to apply this new knowledge to the strategies for anticancer therapy.

  16. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.

    PubMed

    Cai, Yanbin; Shen, Haosheng; Zhan, Jie; Lin, Mingliang; Dai, Liuhan; Ren, Chunhua; Shi, Yang; Liu, Jianfeng; Gao, Jie; Yang, Zhimou

    2017-03-01

    Nuclear delivery and accumulation are very important for many anticancer drugs that interact with DNA or its associated enzymes in the nucleus. However, it is very difficult for neutrally and negatively charged anticancer drugs such as 10-hydroxycamptothecine (HCPT). Here we report a simple strategy to construct supramolecular nanomedicines for nuclear delivery of dual synergistic anticancer drugs. Our strategy utilizes the coassembly of a negatively charged HCPT-peptide amphiphile and the positively charged cisplatin. The resulting nanomaterials behave as the "Trojan Horse" that transported soldiers (anticancer drugs) across the walls of the castle (cell and nucleus membranes). Therefore, they show improved inhibition capacity to cancer cells including the drug resistant cancer cell and promote the synergistic tumor suppression property in vivo. We envision that our strategy of constructing nanomaterials by metal chelation would offer new opportunities to develop nanomedicines for combination chemotherapy.

  17. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent.

  18. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  19. Ethnopharmacological and bioactivity guided investigation of five TCM anticancer herbs.

    PubMed

    Meng, Qiu-Xia; Roubin, Rebecca H; Hanrahan, Jane R

    2013-06-21

    Five herbs, Curcuma longa L. (CL), Scutellaria baicalensis Georgi (SBC), Scutellaria barbata D. Don (SBB), Hedyotis diffusa Willd. (HD) and Solanum nigrum L. (SN), are often prescribed in the polyherbal formulas for cancer treatment by traditional Chinese medicine (TCM) practitioners. The purpose of the present study was to identify important anticancer herbs used in TCM and carry out bioactivity-directed fractionation and isolation (BDFI) using six cancer cell lines as well as peripheral blood mononuclear cells (PBMCs), to identify constituents with anticancer activity but devoid of toxic effects against healthy immune cells. Of 243 document anticancer TCM treatments, 199 anticancer TCM herbs were ranked by the number of literature reports for each herb. Five herbs were identified from the top 50 ranked herbs by at least two out of three TCM practitioners as frequently used in the TCM treatment of cancer. BDFI using MTS assay was applied to determine the active anticancer extracts, fractions, and finally discrete compounds. Five herbs were selected for study of their anticancer activities. The extracts of Curcuma longa L., Scutellaria barbata D. Don, and Hedyotis diffusa showed antiproliferative activity to various extents, extracts of Scutellaria baicalensis Georgi and Solanum nigrum L. showed little anticancer activity. Seven out of the 21 fractions obtained from Hedyotis diffusa Willd. showed anticancer activity. One new compound, ethyl 13(2) (S)-hydroxy-chlorophyllide a(1), along with 10 known compounds, i.e. 2-methyl-3-methoxyanthraquinone (2), 2-hydroxymethylanthraquinone(3), 2-hydroxy-3-methylanthraquinone(4), 2-hydroxymethy-1-hydroxyanthraquinone(5), 1-methoxy-2-hydroxyanthraquinone(6), 2-hydroxy-3-methyl-1-methoxyanthraquinone (7), oleanolic acid (8), ursolic acid (9), stigmasterol (10) and docosanoic acid (11), were isolated and identified. Compounds 2-6, 8 and 9 dose-dependently inhibited the cell viability of cancer cells within a concentration range

  20. coral Software: QSAR for Anticancer Agents.

    PubMed

    Benfenati, Emilio; Toropov, Andrey A; Toropova, Alla P; Manganaro, Alberto; Gonella Diaza, Rodolfo

    2011-06-01

    CORrelations And Logic (coral at http://www.insilico.eu/coral) is freeware aimed at establishing a quantitative structure - property/activity relationships (QSPR/QSAR). Simplified molecular input line entry system (SMILES) is used to represent the molecular structure. In fact, symbols in SMILES nomenclatures are indicators of the presence of defined molecular fragments. By means of the calculation with Monte Carlo optimization of the so called correlation weights (contributions) for the above-mentioned molecular fragments, one can define optimal SMILES-based descriptors, which are correlated with an endpoint for the training set. The predictability of these descriptors for an external validation set can be estimated. A collection of SMILES-based models of anticancer activity of 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines for different splits into training and validation set which are calculated with the coral are examined and discussed. Good performance has been obtained for three splits: the r(2) ranged between 0.778 and 0.829 for the sub-training set, between 0.828 and 0.933 for the calibration set, and between 0.807 and 0.931 for the validation set. © 2011 John Wiley & Sons A/S.

  1. Theoretical studies of anticancer drugs, lexitropsins

    SciTech Connect

    Kabir, S.

    1992-01-01

    The purpose of this research study was to gather information about the structure and activity of some anticancer drugs, leading eventually to better drug designs. The following studies were undertaken: (1) The investigation via geometry optimization of the structure of one small lexitropsin, amidinomycin, which is an oligopeptide that binds to the minor groove of B-DNA. (2) Proton affinities of some hydrogen acceptor rings that are present in some lexitropsin were studied in order to estimate their capacities to bind to GC sequences of DNA. (3) Binding power of one of the DNA bases, thymine, to either guanidinium ion as present in netropsin or aminopyrrolidinium ion moiety as is present in anthelvencin was compared in order to determine how much these two groups contributed to the overall binding of netropsin and anthelvencin to the base sequences of DNA. It was found that ab initio calculations on amidinomycin agree well with the experimental results and the proton affinities of imidazole is much higher than the one of oxazole which in turn is much higher than the one of thiazole and a methyl group substitutent increases the proton of imidazole, while a peptidic group decreases it. Also, it was found that the binding of guanidinium and aminopyrrolidinium ions to uracil as a model for thymine is very similar.

  2. NSAIDs: Old Drugs Reveal New Anticancer Targets.

    PubMed

    Piazza, Gary A; Keeton, Adam B; Tinsley, Heather N; Whitt, Jason D; Gary, Bernard D; Mathew, Bini; Singh, Raj; Grizzle, William E; Reynolds, Robert C

    2010-05-25

    There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX) inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  3. Review of anticancer mechanisms of isoquercitin

    PubMed Central

    Orfali, Guilherme di Camillo; Duarte, Ana Carolina; Bonadio, Vivien; Martinez, Natalia Peres; de Araújo, Maria Elisa Melo Branco; Priviero, Fernanda Bruschi Marinho; Carvalho, Patricia Oliveira; Priolli, Denise Gonçalves

    2016-01-01

    This review was based on a literature search of PubMed and Scielo databases using the keywords “quercetin, rutin, isoquercitrin, isoquercitin (IQ), quercetin-3-glucoside, bioavailability, flavonols and favonoids, and cancer” and combinations of all the words. We collected relevant scientific publications from 1990 to 2015 about the absorption, bioavailability, chemoprevention activity, and treatment effects as well as the underlying anticancer mechanisms of isoquercitin. Flavonoids are a group of polyphenolic compounds widely distributed throughout the plant kingdom. The subclass of flavonols receives special attention owing to their health benefits. The main components of this class are quercetin, rutin, and IQ, which is a flavonoid and although mostly found as a glycoside, is an aglycone (lacks a glycoside side chain). This compound presents similar therapeutic profiles to quercetin but with superior bioavailability, resulting in increased efficacy compared to the aglycone form. IQ has therapeutic applications owing to its wide range of pharmacological effects including antioxidant, antiproliferative, anti-inflammatory, anti-hypertensive, and anti-diabetic. The protective effects of IQ in cancer may be due to actions on lipid peroxidation. In addition, the antitumor effect of IQ and its underlying mechanism are related to interactions with Wnt signaling pathway, mixed-lineage protein kinase 3, mitogen-activated protein kinase, apoptotic pathways, as well proinflammatory protein signaling. This review contributed to clarifying the mechanisms of absorption, metabolism, and actions of IQ and isoquercitrin in cancer. PMID:27081641

  4. Anticancer hybrids--a patent survey.

    PubMed

    Nepali, Kunal; Sharma, Sahil; Kumar, Dinesh; Budhiraja, Abhishek; Dhar, Kanaya L

    2014-01-01

    The molecular hybridization (MH) is a strategy of rational design of such ligands or prototypes based on the recognition of pharmacophoric sub-units in the molecular structure of two or more known bioactive derivatives which, through the adequate fusion of these sub-units, lead to the design of new hybrid architectures that maintain pre-selected characteristics of the original templates. The concept of molecular hybridization and the promises/challenges associated with these hybrid molecules along with recent advances on anticancer hybrids and critical discussions on the future aspects of the hybrid drugs have already been presented through a number of reports. However, this article presents the structures of potent hybrids reported during the last two decades along with a detailed account of the patent literature. Significant number of patents on the molecules designed through this valuable drug design technique clearly highlight the present focus of the researchers all around the globe towards hybrid molecules capable of amplifying the effect of individual functionalities through action on another bio target or to interact with multiple targets as one single molecule lowering the risk of drug-drug interactions and minimizing the drug resistance. This review article basically emphasizes the patent literature along with an overview of potent hybrid structures, their IC50 /GI50 values against the various cell lines employed. The present compilation can be utilized as a guide for the medicinal chemists focusing on this area of drug design.

  5. Antiangiogenic and anticancer molecules in cartilage.

    PubMed

    Patra, Debabrata; Sandell, Linda J

    2012-01-19

    Cartilage is one of the very few naturally occurring avascular tissues where lack of angiogenesis is the guiding principle for its structure and function. This has attracted investigators who have sought to understand the biochemical basis for its avascular nature, hypothesising that it could be used in designing therapies for treating cancer and related malignancies in humans through antiangiogenic applications. Cartilage encompasses primarily a specialised extracellular matrix synthesised by chondrocytes that is both complex and unique as a result of the myriad molecules of which it is composed. Of these components, a few such as thrombospondin-1, chondromodulin-1, the type XVIII-derived endostatin, SPARC (secreted protein acidic and rich in cysteine) and the type II collagen-derived N-terminal propeptide (PIIBNP) have demonstrated antiangiogenic or antitumour properties in vitro and in vivo preclinical trials that involve several complicated mechanisms that are not completely understood. Thrombospondin-1, endostatin and the shark-cartilage-derived Neovastat preparation have also been investigated in human clinical trials to treat several different kinds of cancers, where, despite the tremendous success seen in preclinical trials, these molecules are yet to show success as anticancer agents. This review summarises the current state-of-the-art antiangiogenic characterisation of these molecules, highlights their most promising aspects and evaluates the future of these molecules in antiangiogenic applications.

  6. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    PubMed Central

    Aminin, Dmitry L.; Menchinskaya, Ekaterina S.; Pisliagin, Evgeny A.; Silchenko, Alexandra S.; Avilov, Sergey A.; Kalinin, Vladimir I.

    2015-01-01

    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics. PMID:25756523

  7. Potential Anticancer Properties of Grape Antioxidants

    PubMed Central

    Zhou, Kequan; Raffoul, Julian J.

    2012-01-01

    Dietary intake of foods rich in antioxidant properties is suggested to be cancer protective. Foods rich in antioxidant properties include grape (Vitis vinifera), one of the world's largest fruit crops and most commonly consumed fruits in the world. The composition and cancer-protective effects of major phenolic antioxidants in grape skin and seed extracts are discussed in this review. Grape skin and seed extracts exert strong free radical scavenging and chelating activities and inhibit lipid oxidation in various food and cell models in vitro. The use of grape antioxidants are promising against a broad range of cancer cells by targeting epidermal growth factor receptor (EGFR) and its downstream pathways, inhibiting over-expression of COX-2 and prostaglandin E2 receptors, or modifying estrogen receptor pathways, resulting in cell cycle arrest and apoptosis. Interestingly, some of these activities were also demonstrated in animal models. However, in vivo studies have demonstrated inconsistent antioxidant efficacy. Nonetheless, a growing body of evidence from human clinical trials has demonstrated that consumption of grape, wine and grape juice exerts many health-promoting and possible anti-cancer effects. Thus, grape skin and seed extracts have great potential in cancer prevention and further investigation into this exciting field is warranted. PMID:22919383

  8. Anticancer activity of sea cucumber triterpene glycosides.

    PubMed

    Aminin, Dmitry L; Menchinskaya, Ekaterina S; Pisliagin, Evgeny A; Silchenko, Alexandra S; Avilov, Sergey A; Kalinin, Vladimir I

    2015-03-06

    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics.

  9. Biomarker method validation in anticancer drug development.

    PubMed

    Cummings, J; Ward, T H; Greystoke, A; Ranson, M; Dive, C

    2008-02-01

    Over recent years the role of biomarkers in anticancer drug development has expanded across a spectrum of applications ranging from research tool during early discovery to surrogate endpoint in the clinic. However, in Europe when biomarker measurements are performed on samples collected from subjects entered into clinical trials of new investigational agents, laboratories conducting these analyses become subject to the Clinical Trials Regulations. While these regulations are not specific in their requirements of research laboratories, quality assurance and in particular assay validation are essential. This review, therefore, focuses on a discussion of current thinking in biomarker assay validation. Five categories define the majority of biomarker assays from 'absolute quantitation' to 'categorical'. Validation must therefore take account of both the position of the biomarker in the spectrum towards clinical end point and the level of quantitation inherent in the methodology. Biomarker assay validation should be performed ideally in stages on 'a fit for purpose' basis avoiding unnecessarily dogmatic adherence to rigid guidelines but with careful monitoring of progress at the end of each stage. These principles are illustrated with two specific examples: (a) absolute quantitation of protein biomarkers by mass spectrometry and (b) the M30 and M65 ELISA assays as surrogate end points of cell death.

  10. Hyaluronan: towards novel anti-cancer therapeutics.

    PubMed

    Karbownik, Michał S; Nowak, Jerzy Z

    2013-01-01

    The understanding of the role of hyaluronan in physiology and various pathological conditions has changed since the complex nature of its synthesis, degradation and interactions with diverse binding proteins was revealed. Initially perceived only as an inert component of connective tissue, it is now known to be involved in multiple signaling pathways, including those involved in cancer pathogenesis and progression. Hyaluronan presents a mixture of various length polymer molecules from finely fragmented oligosaccharides, polymers intermediate in size, to huge aggregates of high molecular weight hyaluronan. While large molecules promote tissue integrity and quiescence, the generation of breakdown products enhances signaling transduction, contributing to the pro-oncogenic behavior of cancer cells. Low molecular weight hyaluronan has well-established angiogenic properties, while the smallest hyaluronan oligomers may counteract tumor development. These equivocal properties make the role of hyaluronan in cancer biology very complex. This review surveys recent data on hyaluronan biosynthesis, metabolism, and interactions with its binding proteins called hyaladherins (CD44, RHAMM), providing themolecular background underlying its differentiated biological activity. In particular, the article critically presents current ideas on actual role of hyaluronan in cancer. The paper additionally maps a path towards promising novel anti-cancer therapeutics which target hyaluronan metabolic enzymes and hyaladherins, and constitute hyaluronan-based drug delivery systems.

  11. Anticancer activity of selected Colocasia gigantia fractions.

    PubMed

    Pornprasertpol, Apichai; Sereemaspun, Amornpun; Sooklert, Kanidta; Satirapipatkul, Chutimon; Sukrong, Suchada

    2015-01-01

    The objective of this study is to investigate the anticancer potential of the extract of Colocasia gigantea C. gigantea), a plant member of the Araceae family. In the present study, we investigated the cytotoxic activity of C. gigantea extract on cervical cancer (Hela) and human white blood cells (WBC) in vitro. The authors then identified the bioactive ingredients that demonstrated cytotoxicity on tested cells and evaluated those bioactive ingredients using the bioassay-guided fractionation method. The results showed that not all parts of C. gigantea promote cytotoxic activity. The dichloromethane leaf fraction showed significant cell proliferation effect on Hela cells, but not on WBCs. Only the n-hexane tuber fraction (Fr. 1T) exhibited significant cytotoxicity on Hela cells (IC50 = 585 μg/ml) and encouraged WBC cell proliferation. From GC-Mass spectrometry, 4,22-Stigmastadiene-3-one, Diazoprogesterone, 9-Octadecenoic acid (Z)-, hexyl ester and Oleic Acid were the components of Fr 1T that demonstrated cytotoxic potential. In conclusion, C. gigantea's Fr 1T shows potential for cervical cancer treatment.

  12. Anticancer Activity of Polyether Ionophore-Salinomycin.

    PubMed

    Antoszczak, Michał; Huczyński, Adam

    2015-01-01

    Since the discovery of unusual anti-tumor activity of natural polyether antibiotic - Salinomycin, this compound, along with its derivatives, has been intensively studied against different human cancer cells, both in vivo and in vitro. Salinomycin has shown strong inhibition activity against the proliferation process of many different cancer cells, including multi-drug resistance (MDR) cancer cells, as well as cancer stem cells (CSCs), i.e. leukemic stem cells, colon carcinoma stem cells, prostate cancer stem cells and many others. Additionally, the application of Salinomycin has been proved to enhance the anti-cancer effect of radio- and chemotherapy. Preliminary clinical studies have shown tumor regression and only transient acute side effects after application of Salinomycin. Up to now, major efforts have been devoted to elucidate the biological mechanisms of anti-tumor activity of Salinomycin and it is expected that the results may provide new therapeutic strategies based on biological modulation of Salinomycin activity. This review is focused on and describes the possible role of Salinomycin in cancer therapy and gives an overview of its properties.

  13. Indigofera suffruticosa: An Alternative Anticancer Therapy

    PubMed Central

    Vieira, Jeymesson Raphael Cardoso; de Souza, Ivone Antônia; do Nascimento, Silene Carneiro

    2007-01-01

    Indigofera suffruticosa Mill (Fabeceae) occurs in the Northeast countryside and has intensive popular use in the treatment of infectious, inflammatory and other processes. The main aim of the present work was to investigate the cytotoxic and antitumor effects of aqueous extracts of leaves of I. suffruticosa obtained by infusion and maceration as well as to evaluate the toxicological properties. Aqueous extracts did not exhibit cytotoxicity against HEp-2 (human epidermoid cancer cell) cell lines by MTT method. From the aqueous extract by infusion, the toxicological assay showed low order of toxicity. The antitumor effect of aqueous extracts by infusion (64.53%) and maceration (62.62%) against sarcoma 180 in mice at a dose of 50 mg kg−1 (intraperitoneally), based on low order of toxicity was comparable to the control group, which showed 100% development. Considering the low order of toxicity and that it is highly effective in inhibiting growth of solid tumors, the aqueous extracts of leaves of I. suffruticosa may be used as an alternative anticancer agent. PMID:17965767

  14. Pharmacogenetics and Pharmacogenomics of Anticancer Agents

    PubMed Central

    Huang, R. Stephanie; Ratain, Mark J.

    2011-01-01

    Large interindividual variation is observed in both the response and toxicity associated with anticancer therapy. The etiology of this variation is multifactorial, but is due in part to host genetic variations. Pharmacogenetic and pharmacogenomic studies have successfully identified genetic variants that contribute to this variation in susceptibility to chemotherapy. This review provides an overview of the progress made in the field of pharmacogenetics and pharmacogenomics using a five-stage architecture, which includes 1) determining the role of genetics in drug response; 2) screening and identifying genetic markers; 3) validating genetic markers; 4) clinical utility assessment; and 5) pharmacoeconomic impact. Examples are provided to illustrate the identification, validation, utility, and challenges of these pharmacogenetic and pharmacogenomic markers, with the focus on the current application of this knowledge in cancer therapy. With the advance of technology, it becomes feasible to evaluate the human genome in a relatively inexpensive and efficient manner; however, extensive pharmacogenetic research and education are urgently needed to improve the translation of pharmacogenetic concepts from bench to bedside. PMID:19147868

  15. The anti-cancer activity of noscapine: a review.

    PubMed

    Mahmoudian, Massoud; Rahimi-Moghaddam, Parvaneh

    2009-01-01

    Noscapine is an isoqiunoline alkaloid found in opium latex. Unlike most other alkaloids obtained from opium latex, noscapine is not sedative and has been used as antitussive drug in various countries. Recently, it has been introduced as an anti-mitotic agent. This drug can be used orally. When the resistance to other anti-cancer drugs such as paclitaxel manifests, noscapine might be effective. Therefore, noscapine and its analogs have great potential as novel anti-cancer agents.

  16. Recent Researches in Metal Supramolecular Complexes as Anticancer Agents.

    PubMed

    Zhou, Cheng-He; Zhang, Yi-Yi; Yan, Cong-Yan; Wan, Kun; Gan, Lin-Ling; Shi, Yuan

    2010-04-12

    The research and development of metal supramolecular complexes as anticancer supramolecular drugs, which are aggregates mainly formed by one or more inorganic metal compounds with one or more either inorganic or organic molecules in general via coordination bonds, has been a quite rapidly developing, increasingly active and newly rising highlight interdisciplinary field. Numerous efforts have been directed toward metal supramolecular complexes as potential anticancer agents and the unprecedented progress has been made. This has opened up a wholly new and infinite space to create novel metal-based bioactive supermolecules. More importantly, metal-based complex supermolecules as potential anticancer agents with wide potential applications have become highlight topics in recent years, and are becoming increasingly useful and important in preventing and treating cancer diseases. In view of the rapid progress in metal complex anticancer supermolecules with rich variation of structural types, this work systematically reviewed the recent research and development of the whole range of metal-based supramolecular complexes as anticancer agents mainly in 2009. The perspectives of the foreseeable future and potential application of metal supramolecular complexes in cancer therapy were also presented. It is hoped that this review will serve as a stimulant for new thoughts in the quest for rational designs of more active and less toxic metal supramolecular complex anticancer drugs.

  17. Recent researches in metal supramolecular complexes as anticancer agents.

    PubMed

    Zhou, Cheng-He; Zhang, Yi-Yi; Yan, Cong-Yan; Wan, Kun; Gan, Lin-Ling; Shi, Yuan

    2010-06-01

    The research and development of metal supramolecular complexes as anticancer supramolecular drugs, which are aggregates mainly formed by one or more inorganic metal compounds with one or more either inorganic or organic molecules in general via coordination bonds, has been a quite rapidly developing, increasingly active and newly rising highlight interdisciplinary field. Numerous efforts have been directed toward metal supramolecular complexes as potential anticancer agents and the unprecedented progress has been made. This has opened up a wholly new and infinite space to create novel metal-based bioactive supermolecules. More importantly, metal-based complex supermolecules as potential anticancer agents with wide potential applications have become highlight topics in recent years, and are becoming increasingly useful and important in preventing and treating cancer diseases. In view of the rapid progress in metal complex anticancer supermolecules with rich variation of structural types, this work systematically reviewed the recent research and development of the whole range of metal-based supramolecular complexes as anticancer agents mainly in 2009. The perspectives of the foreseeable future and potential application of metal supramolecular complexes in cancer therapy were also presented. It is hoped that this review will serve as a stimulant for new thoughts in the quest for rational designs of more active and less toxic metal supramolecular complex anticancer drugs.

  18. Canonical and new generation anticancer drugs also target energy metabolism.

    PubMed

    Rodríguez-Enríquez, Sara; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Marín-Hernández, Alvaro; Pacheco-Velázquez, Silvia C; López-Ramírez, Sayra Y; Rumjanek, Franklin D; Moreno-Sánchez, Rafael

    2014-07-01

    Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.

  19. ING Proteins as Potential Anticancer Drug Targets

    PubMed Central

    Unoki, M.; Kumamoto, K.; Harris, C.C.

    2009-01-01

    Recent emerging evidence suggests that ING family proteins play roles in carcinogenesis both as oncogenes and tumor suppressor genes depending on the family members and on cell status. Previous results from non-physiologic overexpression experiments showed that all five family members induce apoptosis or cell cycle arrest, thus it had been thought until very recently that all of the family members function as tumor suppressor genes. Therefore restoration of ING family proteins in cancer cells has been proposed as a treatment for cancers. However, ING2 knockdown experiments showed unexpected results: ING2 knockdown led to senescence in normal human fibroblast cells and suppressed cancer cell growth. ING2 is also overexpressed in colorectal cancer, and promotes cancer cell invasion through an MMP13 dependent pathway. Additionally, it was reported that ING2 has two isoforms, ING2a and ING2b. Although expression of ING2a predominates compared with ING2b, both isoforms confer resistance against cell cycle arrest or apoptosis to cancer cells, thus knockdown of both isoforms is critical to remove this resistance. Taken together, these results suggest that ING2 can function as an oncogene in some specific types of cancer cells, indicating restoration of this gene in cancer cells could cause cancer progression. Because knockdown of ING2 suppresses cancer cell invasion and induces apoptosis or cell cycle arrest, ING2 may be an anticancer drug target. In this brief review, we discuss possible clinical applications of ING2 with the latest knowledge of molecular targeted therapies. PMID:19442116

  20. From antimicrobial to anticancer peptides. A review

    PubMed Central

    Gaspar, Diana; Veiga, A. Salomé; Castanho, Miguel A. R. B.

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective, and more efficient drugs is evident. Even though ACPs are expected to be selective toward tumor cells without impairing the normal body physiological functions, the development of a selective ACP has been a challenge. It is not yet possible to predict antitumor activity based on ACPs structures. ACPs are unique molecules when compared to the actual chemotherapeutic arsenal available for cancer treatment and display a variety of modes of action which in some types of cancer seem to co-exist. Regardless the debate surrounding the definition of structure-activity relationships for ACPs, great effort has been invested in ACP design and the challenge of improving effective killing of tumor cells remains. As detailed studies on ACPs mechanisms of action are crucial for optimizing drug development, in this review we provide an overview of the literature concerning peptides' structure, modes of action, selectivity, and efficacy and also summarize some of the many ACPs studied and/or developed for targeting different solid and hematologic malignancies with special emphasis on the first group. Strategies described for drug development and for increasing peptide selectivity toward specific cells while reducing toxicity are also discussed. PMID:24101917

  1. IAPs as a target for anticancer therapy.

    PubMed

    Danson, S; Dean, E; Dive, C; Ranson, M

    2007-12-01

    The avoidance of apoptosis is one of the hallmarks of cancer cells. In addition, failure to induce apoptosis by anticancer agents, either due to limitations of the drug or the tumour cell evading apoptosis, is a reason for chemotherapeutic failure. Two general pathways for apoptotic cell death have been characterised, the extrinsic and intrinsic pathways which merge in the final common pathway. X-linked inhibitor of apoptosis protein (XIAP) is an anti-apoptotic protein in the final common pathway that inhibits caspases and suppresses apoptosis. XIAP is over-expressed in many cancer cell lines and cancer tissues. High XIAP expression has been correlated with resistance to chemotherapy and radiotherapy and to poor clinical outcome by some investigators. Manipulation of apoptosis is an attractive therapeutic concept. Much effort has been spent on inhibiting the anti-apoptotic protein, B cell lymphoma gene 2 (Bcl-2) which is part of the intrinsic pathway. Now attention is turning to inhibition of XIAP as a cancer drug target. It has been argued that it is more effective to block the final common pathway rather than just the intrinsic arm. Inhibition of XIAP can be with either antisense oligonucleotides (ASO) or small molecule inhibitors. In vitro, XIAP antagonists produce XIAP knockdown and apoptosis which is associated with sensitisation of tumour cells to radiotherapy and cytotoxic drugs. In vivo, XIAP antagonists have antitumour effects and sensitise tumours to the effects of chemotherapy. This review will summarise the preclinical data for both ASO and small molecule inhibition of XIAP and discuss emerging Phase I data. Future strategies for manipulation of XIAP and the clinical development of XIAP inhibitors will be discussed.

  2. Anti-cancer vaccines - a one-hit wonder?

    PubMed

    Liu, Justin K H

    2014-12-01

    Immunization against common bacterial and viral diseases has helped prevent millions of deaths worldwide. More recently, the concept of vaccination has been developed into a potentially novel strategy to treat and prevent cancer formation, progression, and spread. Over the past few years, a handful of anti-cancer vaccines have been licensed and approved for use in clinical practice, thus providing a breakthrough in the field. However, the path has not always been easy, with many hurdles that have had to be overcome in order to reach this point. Nevertheless, with more anti-cancer vaccines currently in development, there is still hope that they can eventually become routine tools used in the treatment and prevention of cancer in the future. This review will discuss in detail both types of anti-cancer vaccine presently used in clinical practice - therapeutic and preventive - before considering some of the more promising anti-cancer vaccines that are currently in development. Finally, the issue of side effects and the debate surrounding the overall cost-effectiveness of anti-cancer vaccines will be examined.

  3. Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing.

    PubMed

    Zhang, Q I; Wang, Shanshan; Yang, Dexuan; Pan, Kevin; Li, Linna; Yuan, Shoujun

    2016-05-01

    The established urinary antibiotic nitroxoline has recently regained considerable attention, due to its potent activities in inhibiting angiogenesis, inducing apoptosis and blocking cancer cell invasion. These features make nitroxoline an excellent candidate for anticancer drug repurposing. To rapidly advance nitroxoline repurposing into clinical trials, the present study performed systemic preclinical pharmacodynamic evaluation of its anticancer activity, including a methyl thiazolyl tetrazolium assay in vitro and an orthotopic urological tumor assay in vivo. The current study determined that nitroxoline exhibits dose-dependent anti-cancer activity in vitro and in urological tumor orthotopic mouse models. In addition, it was demonstrated that the routine nitroxoline administration regimen used for urinary tract infections was effective and sufficient for urological cancer treatment, and 2 to 4-fold higher doses resulted in obvious enhancement of anticancer efficacy without corresponding increases in toxicity. Furthermore, nitroxoline sulfate, one of the most common metabolites of nitroxoline in the urine, effectively inhibited cancer cell proliferation. This finding increases the feasibility of nitroxoline repurposing for urological cancer treatment. Due to the excellent anticancer activity demonstrated in the present study, and its well-known safety profile and pharmacokinetic properties, nitroxoline has been approved to enter into a phase II clinical trial in China for non-muscle invasive bladder cancer treatment (registration no. CTR20131716).

  4. Teratogenic effects of five anticancer drugs on Xenopus laevis embryos.

    PubMed

    Isidori, Marina; Piscitelli, Concetta; Russo, Chiara; Smutná, Marie; Bláha, Luděk

    2016-11-01

    In recent years, the environmental presence of pharmaceuticals - including anticancer drugs - is an emerging issue. Because of the lack of appropriate critical studies about anticancer drug effects in frogs, the aim of the present study was to investigate lethal and teratogenic effects of five anticancer drugs widely used in large quantities, i.e. 5-flourouracil, capecitabine, cisplatin, etoposide, and imatinib, in the embryos of the South African clawed frog, Xenopus laevis, using FETAX - Frog Embryo Teratogenesis Assay in Xenopus. None of the studied anticancer drugs induced statistically significant mortality within the concentrations tested (0.01-50mg/L, depending on the studied compound), and no growth inhibition of embryos after a 96-h exposure was observed. Except for cisplatin, the other pharmaceuticals induced an increase of developmental malformations such as abdominal edema, axial flexure, head, eyes, gut and heart malformations with statistically significant effects observed at the highest concentrations tested (50mg/L for 5-flourouracil; 30mg/L for etoposide and 20mg/L for capecitabine and imatinib). The results indicate that anticancer drugs can affect embryogenesis mechanisms.

  5. Anticancer activity assessment of two novel binuclear platinum (II) complexes.

    PubMed

    Shahsavani, Mohammad Bagher; Ahmadi, Shamseddin; Aseman, Marzieh Dadkhah; Nabavizadeh, S Masoud; Rashidi, Mehdi; Asadi, Zahra; Erfani, Nasrollah; Ghasemi, Atiyeh; Saboury, Ali Akbar; Niazi, Ali; Bahaoddini, Aminollah; Yousefi, Reza

    2016-08-01

    In the current study, two binuclear Pt (II) complexes, containing cis, cis-[Me2Pt (μ-NN) (μ-dppm) PtMe2] (1), and cis,cis-[Me2Pt(μ-NN)(μ dppm) Pt((CH2)4)] (2) in which NN=phthalazine and dppm=bis (diphenylphosphino) methane were evaluated for their anticancer activities and DNA/purine nucleotide binding properties. These Pt (II) complexes, with the non-classical structures, demonstrated a significant anticancer activity against Jurkat and MCF-7 cancer cell lines. The results of ethidium bromide/acridine orange staining and Caspase-III activity suggest that these complexes were capable to stimulate an apoptotic mechanism of cell death in the cancer cells. Using different biophysical techniques and docking simulation analysis, we indicated that these complexes were also capable to interact efficiently with DNA via a non-intercalative mechanism. According to our results, substitution of cyclopentane (in complex 2) with two methyl groups (in complex 1) results in significant improvement of the complex ability to interact with DNA and subsequently to induce the anticancer activity. Overall, these binuclear Pt (II) complexes are promising group of the non-classical potential anticancer agents which can be considered as molecular templates in designing of highly efficient platinum anticancer drugs.

  6. A systematic review on ethnomedicines of anti-cancer plants.

    PubMed

    Tariq, Akash; Sadia, Sehrish; Pan, Kaiwen; Ullah, Ihteram; Mussarat, Sakina; Sun, Feng; Abiodun, Olatunji Olusanya; Batbaatar, Altanzagas; Li, Zilong; Song, Dagang; Xiong, Qinli; Ullah, Riaz; Khan, Suliman; Basnet, Buddha Bahadur; Kumar, Brawin; Islam, Rabiul; Adnan, Muhammad

    2017-02-01

    Cancer is a serious health problem and the second leading cause of death around the globe. Present review is an attempt to provide utmost information based on ethno-pharmacological and toxicological aspects of anti-cancer plants of the world. A total of 276 articles published in English journals and containing maximum ethnomedicinal information were reviewed using several data sources such as; Google scholar, Web of Science, Scopus, PubMed and floras of different countries. A total of 199 anti-cancer plants were recorded in present review and results indicated that traditional medicines are mostly being use in developing countries for cancer treatment. Traditionally and scientifically skin and breast cancer types gained more focus. Seventy plants were reportedly analyzed for in-vitro activities while 32 plants were having in-vivo reports. Twenty nine pure compounds (mostly phenolic) were reportedly isolated from anti-cancer plants and tested against different cancer cell lines. Inspite having better efficiency of ethnomedicines as compared to synthetic drugs, several plants have also shown toxic effects on living system. Therefore, we invite researchers attention to carry out detailed ethno-pharmacological and toxicological studies on un-explored anti-cancer plants in order to provide reliable knowledge to the patients and develop novel anti-cancer drugs. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds.

    PubMed

    Chen, Ling; Zhang, Qiao-Yan; Jia, Min; Ming, Qian-Liang; Yue, Wei; Rahman, Khalid; Qin, Lu-Ping; Han, Ting

    2016-05-01

    Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.

  8. CancerPPD: a database of anticancer peptides and proteins.

    PubMed

    Tyagi, Atul; Tuknait, Abhishek; Anand, Priya; Gupta, Sudheer; Sharma, Minakshi; Mathur, Deepika; Joshi, Anshika; Singh, Sandeep; Gautam, Ankur; Raghava, Gajendra P S

    2015-01-01

    CancerPPD (http://crdd.osdd.net/raghava/cancerppd/) is a repository of experimentally verified anticancer peptides (ACPs) and anticancer proteins. Data were manually collected from published research articles, patents and from other databases. The current release of CancerPPD consists of 3491 ACP and 121 anticancer protein entries. Each entry provides comprehensive information related to a peptide like its source of origin, nature of the peptide, anticancer activity, N- and C-terminal modifications, conformation, etc. Additionally, CancerPPD provides the information of around 249 types of cancer cell lines and 16 different assays used for testing the ACPs. In addition to natural peptides, CancerPPD contains peptides having non-natural, chemically modified residues and D-amino acids. Besides this primary information, CancerPPD stores predicted tertiary structures as well as peptide sequences in SMILES format. Tertiary structures of peptides were predicted using the state-of-art method, PEPstr and secondary structural states were assigned using DSSP. In order to assist users, a number of web-based tools have been integrated, these include keyword search, data browsing, sequence and structural similarity search. We believe that CancerPPD will be very useful in designing peptide-based anticancer therapeutics.

  9. Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing

    PubMed Central

    ZHANG, QI; WANG, SHANSHAN; YANG, DEXUAN; PAN, KEVIN; LI, LINNA; YUAN, SHOUJUN

    2016-01-01

    The established urinary antibiotic nitroxoline has recently regained considerable attention, due to its potent activities in inhibiting angiogenesis, inducing apoptosis and blocking cancer cell invasion. These features make nitroxoline an excellent candidate for anticancer drug repurposing. To rapidly advance nitroxoline repurposing into clinical trials, the present study performed systemic preclinical pharmacodynamic evaluation of its anticancer activity, including a methyl thiazolyl tetrazolium assay in vitro and an orthotopic urological tumor assay in vivo. The current study determined that nitroxoline exhibits dose-dependent anti-cancer activity in vitro and in urological tumor orthotopic mouse models. In addition, it was demonstrated that the routine nitroxoline administration regimen used for urinary tract infections was effective and sufficient for urological cancer treatment, and 2 to 4-fold higher doses resulted in obvious enhancement of anticancer efficacy without corresponding increases in toxicity. Furthermore, nitroxoline sulfate, one of the most common metabolites of nitroxoline in the urine, effectively inhibited cancer cell proliferation. This finding increases the feasibility of nitroxoline repurposing for urological cancer treatment. Due to the excellent anticancer activity demonstrated in the present study, and its well-known safety profile and pharmacokinetic properties, nitroxoline has been approved to enter into a phase II clinical trial in China for non-muscle invasive bladder cancer treatment (registration no. CTR20131716). PMID:27123101

  10. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  11. Nanoscale coordination polymers for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Phillips, Rachel Huxford

    This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)32+ (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. Finally, a Pt(IV) oxaliplatin prodrug was

  12. Molecular mechanisms of melatonin anticancer effects.

    PubMed

    Hill, Steven M; Frasch, Tripp; Xiang, Shulin; Yuan, Lin; Duplessis, Tamika; Mao, Lulu

    2009-12-01

    reduced terminal end bud formation during puberty and pregnancy. Lactating female MT1 transgenic mice show a dramatic reduction in the expression of beta-casein and whey acidic milk proteins. Further analyses showed significantly reduced ER alpha expression in mammary glands of MT1 transgenic mice. These results demonstrate that the MT1 receptor is a major transducer of melatonin's actions in the breast, suppressing mammary gland development and mediating the anticancer actions of melatonin through multiple pathways.

  13. Synthesis of four binuclear copper(II) complexes: Structure, anticancer properties and anticancer mechanism.

    PubMed

    Qi, Jinxu; Liang, Shichu; Gou, Yi; Zhang, Zhenlei; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-01-01

    Copper (Cu) compounds are a promising candidate for next generation metal anticancer drugs and have been extensively studied. Therefore, four binuclear copper(II) compounds derived from Schiff base thiosemicarbazones (L1-L4), namely [CuCl(L1)]2 (C1), [CuNO3(L2)]2 (C2), [Cu(NCS) (L3)]2 (C3) and [Cu(CH3COO) (L4)]2 (C4) were synthesized and characterized. Four of these compounds showed very high cytotoxicity to cancer cell lines in vitro. These Cu(II) compounds strongly promoted the apoptosis of BEL-7404 cells. The formation of reactive oxygen species (ROS), change in mitochondrial membrane potential and western blot analysis revealed that Cu compounds could induce cancer cell apoptosis through the intrinsic ROS-mediated mitochondrial pathway accompanied by the regulation of Bcl-2 family proteins.

  14. New Pt-NNSO core anticancer agents: Structural optimization and investigation of their anticancer activity.

    PubMed

    Chong, Shu Xian; Jin, Yinxue; Au-Yeung, Steve Chik Fun; To, Kenneth Kin Wah

    2017-02-12

    A series of new platinum Pt(II) compounds possessing a bidentate leaving ligand modified from oxaliplatin has been synthesized, with one of the oxygen ligating atom substituted for a sulphur atom (resulting in a Pt-NNSO coordination core structure). The general structures are R,R-diaminocyclohexane (DACH)-Pt-(methylthio)acetic acid (K4) and DACH-Pt-(thiophenylacetic acid) (K4 derivatives). Substitution of an electron donating or withdrawing group at the ortho or para position on the phenyl ring of K4 derivatives was found to affect the complexes' stability, reactivity with the biological molecules (5'-guanosine monophosphate (5'-GMP) and L-methionine (L-Met)) and anticancer activity. (1)H NMR experiments demonstrated that Pt-NNSO complexes formed a mixture of mono- and diadduct with 5'-GMP in various ratios, which are different from the classical Pt drugs (forming mainly diadduct). In addition, all of the K4 derivatives with improved lipophilicity are less deactivated by L-Met in comparison to cisplatin (CDDP) and oxaliplatin. Biological assessments showed that all Pt-NNSO complexes are less toxic than CDDP in normal porcine kidney cells and are minimally affected by drug resistance. Some of the new compounds also displayed comparable anticancer activity to CDDP or better than carboplatin in a few cancer cell lines. The lower reactivity of the Pt-NNSO compounds than CDDP towards thiol molecules, presumably leading to less efflux in resistant cancer cells, and the ability to inhibit autophagy were believed to allow the new compounds to be less affected by Pt resistance.

  15. Plant derived and dietary phenolic antioxidants: anticancer properties.

    PubMed

    Roleira, Fernanda M F; Tavares-da-Silva, Elisiário J; Varela, Carla L; Costa, Saul C; Silva, Tiago; Garrido, Jorge; Borges, Fernanda

    2015-09-15

    In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion.

  16. Anti-cancer natural products isolated from chinese medicinal herbs

    PubMed Central

    2011-01-01

    In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed. PMID:21777476

  17. The quinolone family: from antibacterial to anticancer agents.

    PubMed

    Sissi, Claudia; Palumbo, Manlio

    2003-11-01

    The present review focuses on the structural modifications responsible for the transformation of an antibacterial into an anticancer agent. Indeed, a distinctive feature of drugs based on the quinolone structure is their remarkable ability to target different type II topoisomerase enzymes. In particular, some congeners of this drug family display high activity not only against bacterial topoisomerases, but also against eukaryotic topoisomerases and are toxic to cultured mammalian cells and in vivo tumor models. Hence, these cytotoxic quinolones represent an exploitable source of new anticancer agents, which might also help addressing side-toxicity and resistance phenomena. Their ability to bind metal ion co-factors represents an additional means of modulating their pharmacological response(s). Moreover, quinolones link antibacterial and anticancer chemotherapy together and provide an opportunity to clarify drug mechanism across divergent species.

  18. Proteomic profiling predicts drug response to novel targeted anticancer therapeutics.

    PubMed

    Lin, Fan; Li, Zilin; Hua, Yunfen; Lim, Yoon Pin

    2016-01-01

    Most recently approved anti-cancer drugs by the US FDA are targeted therapeutic agents and this represents an important trend for future anticancer therapy. Unlike conventional chemotherapy that rarely considers individual differences, it is crucial for targeted therapies to identify the beneficial subgroup of patients for the treatment. Currently, genomics and transcriptomics are the major 'omic' analytics used in studies of drug response prediction. However, proteomic profiling excels both in its advantages of directly detecting an instantaneous dynamic of the whole proteome, which contains most current diagnostic markers and therapeutic targets. Moreover, proteomic profiling improves understanding of the mechanism for drug resistance and helps finding optimal combination therapy. This article reviews the recent success of applications of proteomic analytics in predicting the response to targeted anticancer therapeutics, and discusses the potential avenues and pitfalls of proteomic platforms and techniques used most in the field.

  19. Alkaloids Isolated from Natural Herbs as the Anticancer Agents

    PubMed Central

    Lu, Jin-Jian; Bao, Jiao-Lin; Chen, Xiu-Ping; Huang, Min; Wang, Yi-Tao

    2012-01-01

    Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made. PMID:22988474

  20. Biomarkers of occupational exposure do anticancer agents: a minireview.

    PubMed

    Suspiro, A; Prista, J

    2011-11-10

    The majority of anticancer agents has in common DNA-damaging properties and affects not only target-cells but also non-tumour cells. Its genotoxicity has been demonstrated in experimental models and in cancer patients treated with chemotherapy. Health care personnel involved in the preparation and administration of chemotherapy is therefore at risk for adverse health effects, since most environmental sampling studies demonstrated that there is widespread contamination of work surfaces and equipments with anticancer drugs. Adherence to safety guidelines and proper use of personal protective equipment are insufficient to prevent significant absorption, as evidenced by the presence of detectable amounts of drugs in urine samples and increased frequency of genotoxicity biomarkers. In this minireview, a critical appraisal of the most important biomarkers used for the evaluation of occupational exposure to anticancer agents as well as a summary of the key findings from several studies published in this field is performed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Chalcone-benzoxaborole hybrids as novel anticancer agents.

    PubMed

    Zhang, Jiong; Yang, Fei; Qiao, Zhitao; Zhu, Mingyan; Zhou, Huchen

    2016-12-01

    In this study, we report the synthesis of a series of chalcone-benzoxaborole hybrid molecules and the evaluation of their anticancer activity. Their anticancer potency and toxicity were tested on three human cancer cell lines and two normal cell lines. The 4-fluoro compound 15 was found to be the most potent compound with an IC50 value of 1.4μM on SKOV3 cells. The 4-iodo compound 18 and 3-methyloxy-4-amino compound 47 showed good potency on SKOV3 cells while exhibiting low toxicity on normal cells. This work extended the application of benzoxaboroles to the field of anticancer research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Autophagy modulation as a target for anticancer drug discovery

    PubMed Central

    Li, Xin; Xu, Huai-long; Liu, Yong-xi; An, Na; Zhao, Si; Bao, Jin-ku

    2013-01-01

    Autophagy, an evolutionarily conserved catabolic process involving the engulfment and degradation of non-essential or abnormal cellular organelles and proteins, is crucial for homeostatic maintenance in living cells. This highly regulated, multi-step process has been implicated in diverse diseases including cancer. Autophagy can function as either a promoter or a suppressor of cancer, which makes it a promising and challenging therapeutic target. Herein, we overview the regulatory mechanisms and dual roles of autophagy in cancer. We also describe some of the representative agents that exert their anticancer effects by regulating autophagy. Additionally, some emerging strategies aimed at modulating autophagy are discussed as having the potential for future anticancer drug discovery. In summary, these findings will provide valuable information to better utilize autophagy in the future development of anticancer therapeutics that meet clinical requirements. PMID:23564085

  3. A review of ceramide analogs as potential anticancer agents

    PubMed Central

    Liu, Jiawang; Beckman, Barbara S.; Foroozesh, Maryam

    2014-01-01

    Summary Ceramide serves as a central mediator in sphingolipid metabolism and signaling pathways, regulating many fundamental cellular responses. It is referred to as a “tumor suppressor lipid”, since it powerfully potentiates signaling events which drive apoptosis, cell cycle arrest, and autophagic responses. In the typical cancer cell, ceramide levels and signaling are usually suppressed by over-expression of ceramide-metabolizing enzymes or down-regulation of ceramide-generating enzymes. However, chemotherapeutic drugs as well as radiotherapy increase intracellular ceramide levels while exogenously treating cancer cells with short-chain ceramides leads to anti-cancer effects. All evidence currently points to the fact that the up-regulation of ceramide level is a promising anti-cancer target. In this review, we exhibited a full scroll of anti-cancer ceramide analogs as down-stream receptor agonists and ceramide metabolizing enzyme inhibitors. PMID:23919551

  4. Preclinical Evidence on the Anticancer Properties of Food Peptides.

    PubMed

    Rajendran, Subin R C K; Ejike, Chukwunonso E C C; Gong, Min; Hannah, William; Udenigwe, Chibuike C

    2017-01-01

    Natural, synthetic and analogues of peptides have shown prospects for application in cancer chemotherapy. Notably, some food protein-derived peptides are known to possess anticancer activities in cultured cancer cells, and also in animal cancer models via different mechanisms including induction of apoptosis, cell cycle arrest, cellular membrane disruption, inhibition of intracellular signalling, topoisomerases and proteases, and antiangiogenic activity. Although the mechanism of several anticancer food peptides is yet to be clearly elucidated, there is potential for practical applications of the peptides as functional food and nutraceutical ingredients, especially in adjuvant cancer therapy. This review describes the aetiological mechanisms of cancers and the production, structures, mechanisms of action, availability, and cellular and physiological anticancer activities of the food peptides.

  5. Classification of mitocans, anti-cancer drugs acting on mitochondria.

    PubMed

    Neuzil, Jiri; Dong, Lan-Feng; Rohlena, Jakub; Truksa, Jaroslav; Ralph, Stephen J

    2013-05-01

    Mitochondria have emerged as an intriguing target for anti-cancer drugs, inherent to vast majority if not all types of tumours. Drugs that target mitochondria and exert anti-cancer activity have become a focus of recent research due to their great clinical potential (which has not been harnessed thus far). The exceptional potential of mitochondria as a target for anti-cancer agents has been reinforced by the discouraging finding that even tumours of the same type from individual patients differ in a number of mutations. This is consistent with the idea of personalised therapy, an elusive goal at this stage, in line with the notion that tumours are unlikely to be treated by agents that target only a single gene or a single pathway. This endows mitochondria, an invariant target present in all tumours, with an exceptional momentum. This train of thoughts inspired us to define a class of anti-cancer drugs acting by way of mitochondrial 'destabilisation', termed 'mitocans'. In this communication, we define mitocans (many of which have been known for a long time) and classify them into several classes based on their molecular mode of action. We chose the targets that are of major importance from the point of view of their role in mitochondrial destabilisation by small compounds, some of which are now trialled as anti-cancer agents. The classification starts with targets at the surface of mitochondria and ending up with those in the mitochondrial matrix. The purpose of this review is to present in a concise manner the classification of compounds that hold a considerable promise as potential anti-cancer drugs.

  6. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    PubMed

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  7. Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation.

    PubMed

    Pili, Barbara; Reddy, L Harivardhan; Bourgaux, Claudie; Lepêtre-Mouelhi, Sinda; Desmaële, Didier; Couvreur, Patrick

    2010-08-01

    A new prodrug of gemcitabine, based on the covalent coupling of squalene to gemcitabine (GemSQ), has been designed to enhance the anticancer activity of gemcitabine, a nucleoside analogue active against a wide variety of tumors. In the present study, the feasibility of encapsulating GemSQ into liposomes either PEGylated or non-PEGylated has been investigated. The in vivo anticancer activity of these formulations has been tested on subcutaneous grafted L1210wt leukemia model and compared to that of free gemcitabine. The liposomal GemSQ appears to be a potential delivery system for the effective treatment of tumors.

  8. Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation

    NASA Astrophysics Data System (ADS)

    Pili, Barbara; ReddyCurrent Address: Sanofi-Aventis, 13 Quai Jules-Guesdes, 94403, Vitry-Sur-Seine, France., L. Harivardhan; Bourgaux, Claudie; Lepêtre-Mouelhi, Sinda; Desmaële, Didier; Couvreur, Patrick

    2010-08-01

    A new prodrug of gemcitabine, based on the covalent coupling of squalene to gemcitabine (GemSQ), has been designed to enhance the anticancer activity of gemcitabine, a nucleoside analogue active against a wide variety of tumors. In the present study, the feasibility of encapsulating GemSQ into liposomes either PEGylated or non-PEGylated has been investigated. The in vivo anticancer activity of these formulations has been tested on subcutaneous grafted L1210wt leukemia model and compared to that of free gemcitabine. The liposomal GemSQ appears to be a potential delivery system for the effective treatment of tumors.

  9. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs.

    PubMed

    Pommier, Yves; Leo, Elisabetta; Zhang, HongLiang; Marchand, Christophe

    2010-05-28

    DNA topoisomerases are the targets of important anticancer and antibacterial drugs. Camptothecins and novel noncamptothecins in clinical development (indenoisoquinolines and ARC-111) target eukaryotic type IB topoisomerases (Top1), whereas human type IIA topoisomerases (Top2alpha and Top2beta) are the targets of the widely used anticancer agents etoposide, anthracyclines (doxorubicin, daunorubicin), and mitoxantrone. Bacterial type II topoisomerases (gyrase and Topo IV) are the targets of quinolones and aminocoumarin antibiotics. This review focuses on the molecular and biochemical characteristics of topoisomerases and their inhibitors. We also discuss the common mechanism of action of topoisomerase poisons by interfacial inhibition and trapping of topoisomerase cleavage complexes.

  10. The Extraction, Anticancer Effect, Bioavailability, and Nanotechnology of Baicalin

    PubMed Central

    Moore, Ondrea A.; Gao, Ying; Chen, Allen Y.; Brittain, Ross; Chen, Yi Charlie

    2016-01-01

    The dried root of Baikal skullcap (Scutellaria baicalensis) has been historically and widely used in traditional Eastern medicine. Modern science proved that baicalin is the major bioactive responsible for the physiological activity of Baikal skullcap. Baicalin, a flavonoid found in several species in the genus Scutellaria, has been regarded as a potent anticancer agent. In this review, we present the main extraction methods, anticancer activity and bioavailability of baicalin. Besides, the utilization of nanotechnology to improve the bioavailability of baicalin is also mentioned. PMID:27790646

  11. Imaging of anticancer drug action in single cells.

    PubMed

    Miller, Miles A; Weissleder, Ralph

    2017-06-23

    Imaging is widely used in anticancer drug development, typically for whole-body tracking of labelled drugs to different organs or to assess drug efficacy through volumetric measurements. However, increasing attention has been drawn to pharmacology at the single-cell level. Diverse cell types, including cancer-associated immune cells, physicochemical features of the tumour microenvironment and heterogeneous cell behaviour all affect drug delivery, response and resistance. This Review summarizes developments in the imaging of in vivo anticancer drug action, with a focus on microscopy approaches at the single-cell level and translational lessons for the clinic.

  12. Anticancer activities of artemisinin and its bioactive derivatives.

    PubMed

    Firestone, Gary L; Sundar, Shyam N

    2009-10-30

    Artemisinin, a sesquiterpene lactone derived from the sweet wormwood plant Artemisia annua, and its bioactive derivatives exhibit potent anticancer effects in a variety of human cancer cell model systems. The pleiotropic response in cancer cells includes growth inhibition by cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. These effects of artemisinin and its derivatives result from perturbations of many cellular signalling pathways. This review provides a comprehensive discussion of these cellular responses, and considers the ramifications for the potential development of artemisinin-based compounds in anticancer therapeutic and preventative strategies.

  13. Small-molecule delivery by nanoparticles for anticancer therapy

    PubMed Central

    Chen, Zhuo (Georgia)

    2013-01-01

    Using nanoparticles for the delivery of small molecules in anticancer therapy is a rapidly growing area of research. The advantages of using nanoparticles for drug delivery include enhanced water solubility, tumor-specific accumulation and improved antitumor efficacy, while reducing nonspecific toxicity. Current research in this field focuses on understanding precisely how small molecules are released from nanoparticles and delivered to the targeted tumor tissues or cells, and how the unique biodistribution of the drug-carrying nanoparticles limits toxicity in major organs. Here, we discuss existing nanoparticles for the delivery of small-molecule anticancer agents and recent advances in this field. PMID:20846905

  14. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    microgravitation of an HFB do not need to maintain the same surface forces as in normal Earth gravitation, they can divert more energy sources to growth and differentiation and, perhaps, to biosynthesis of greater quantities of desired medicinal compounds. Because one can adjust the HFB to vary effective gravitation, one can also test the effects of intermediate levels of gravitation on biosynthesis of various products. The potential utility of this methodology for producing drugs was demonstrated in experiments in which sandalwood and Madagascar periwinkle cells were grown in an HFB. The conditions in the HFB were chosen to induce the cells to form into aggregate cultures that produced anti-cancer indole alkaloids in amounts greater than do comparable numbers of cells of the same species cultured according to previously known methodologies. The observations made in these experiments were interpreted as suggesting that the aggregation of the cells might be responsible for the enhancement of production of alkaloids.

  15. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    PubMed Central

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  16. Anti-cancer activities of ω-6 polyunsaturated fatty acids.

    PubMed

    Xu, Yi; Qian, Steven Y

    2014-01-01

    The ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are two major families of PUFAs present as essential cellular components which possess diverse bioactivities. The ω-3s, mainly found in seafood, are associated with many beneficial effects on human health, while the ω-6s are more abundant in our daily diet and could be implicated in many pathological processes including cancer development. Increasing evidence suggests that the adverse effects of ω-6s may be largely attributed to arachidonic acid (AA, a downstream ω-6) and the metabolite prostaglandin E2 (PGE2) that stems from its cyclooxygenase (COX)-catalyzed lipid peroxidation. On the other hand, two of AA's upstream ω-6s, γ-linolenic acid (GLA) and dihomo-γ-linolenic acid (DGLA), are shown to possess certain anti-cancer activities, including inducing cell apoptosis and inhibiting cell proliferation. In this paper, we review the documented anti-cancer activities of ω-6 PUFAs, including the recent findings regarding the anti-cancer effects of free radical-mediated DGLA peroxidation. The possible mechanisms and applications of DGLA (and other ω-6s) in inducing anti-cancer activity are also discussed. Considering the wide availability of ω-6s in our daily diet, the study of the potential beneficial effect of ω-6 PUFAs may guide us to develop an ω-6-based diet care strategy for cancer prevention and treatment.

  17. Phytochemical composition and anticancer activity of germinated wheat

    USDA-ARS?s Scientific Manuscript database

    Seed germination is a natural method to increase bioactive components that have beneficial effects on human health. Germinated wheat flour samples of a hard red wheat cultivar (Rampart) were prepared after germination of three and five days and investigated for phytochemical composition and anticanc...

  18. Mitochondrial chaperones may be targets for anti-cancer drugs

    Cancer.gov

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  19. CNS Anticancer Drug Discovery and Development Conference White Paper

    PubMed Central

    Levin, Victor A.; Tonge, Peter J.; Gallo, James M.; Birtwistle, Marc R.; Dar, Arvin C.; Iavarone, Antonio; Paddison, Patrick J.; Heffron, Timothy P.; Elmquist, William F.; Lachowicz, Jean E.; Johnson, Ted W.; White, Forest M.; Sul, Joohee; Smith, Quentin R.; Shen, Wang; Sarkaria, Jann N.; Samala, Ramakrishna; Wen, Patrick Y.; Berry, Donald A.; Petter, Russell C.

    2015-01-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric “Accelerating Drug Discovery and Development for Brain Tumors,” further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167

  20. Inhibitors of carbohydrate processing: A new class of anticancer agents.

    PubMed

    Goss, P E; Baker, M A; Carver, J P; Dennis, J W

    1995-09-01

    There is a need for anticancer agents with novel mechanisms of action. Recently identified molecular targets for new anticancer agents include inducers of cell differentiation, cell cycle arrest, and apoptosis, as well as signaling pathways for growth factors and cytokines. Another unexplored opportunity is presented by the ubiquitous intracellular glycoprotein glycosylation pathway. This complex process, concerned with the addition of sugars onto newly synthesized proteins, occurs in the lumen of the rough endoplasmic reticulum and in the Golgi. There are estimates of over 200 glycosyltransferase enzymes in this pathway, which results in considerable structural diversity of carbohydrates found on secreted and transmembrane glycoproteins. The specificity of glycosyltransferases for acceptors and sugar-nucleotide donors dictates linkage positions between sugars, anomeric configuration of linkages, and monosaccharide composition. Specific carbohydrate structures participate in cell-cell and cell-substratum interactions affecting processes such as lymphocyte trafficking, immune cell stimulation, embryogenesis, and cancer metastasis. Of the carbohydrate-processing inhibitors presently available, the alkaloid swainsonine, a Golgi alpha-mannosidase II inhibitor, is the first to have been selected for clinical testing based on its anticancer activity, p.o. availability, and low toxicity in mice. Herein, we review the rationale for targeting Golgi carbohydrate processing pathways in the treatment of cancer, and summarize the preclinical and clinical results with swainsonine. Prospects for the development of second generation inhibitors with improved specificity for Golgi-processing enzymes are discussed. Potential clinical applications of this new class of anticancer agents are emphasized.

  1. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities

    PubMed Central

    Zhang, Yong; Jiang, Peixin; Ye, Min; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2012-01-01

    Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones. PMID:23202971

  2. Anticancer activities of bovine and human lactoferricin-derived peptides.

    PubMed

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  3. Increase of Candida cell virulence by anticancer drugs and irradiation.

    PubMed

    Ueta, E; Tanida, T; Yoneda, K; Yamamoto, T; Osaki, T

    2001-08-01

    The influence of anticancer drugs and irradiation on Candida cell proliferation, adherence to HeLa cells and susceptibility to antifungal drugs (amphotericin B and miconazole) and neutrophils were examined using two Candida albicans strains. After treatment with 5-fluorouracil (25 microg/ml to 250 microg/ml), cis-diammine-dichloroplatinum (10 microg/ml to 100 microg/ml), peplomycin (0.5 microg/ml to 5 microg/ml) or 137Cs (20 Gy to 40 Gy) for 3 days or more, surviving Candida cells proliferated more rapidly than did untreated control cells. Anticancer agent-pretreated Candida cells revealed an increased adhesion to HeLa cells corresponding to an increase of binding to the lectins. The concentration of half limited colony formation (IC50) of amphotericin B and miconazole was increased to near two-fold that of the control by pretreatment of Candida cells with the anticancer agents, except peplomycin, which only weakly increased IC50. In addition, the enolase and Candida acid proteinase activities in the culture supernatants were increased by pretreatment with the drugs and irradiation. Correspondingly, surviving Candida cells after these treatments were resistant to neutrophils, with a reduction to half of the killing. These results indicate that anti-cancer drugs and irradiation potentiate the virulence of Candida cells, or they eliminate Candida cells with low virulence, thereby enhancing the risk of oral and systemic candidiasis.

  4. Synthesis and anticancer activity of (E)-2-benzothiazole hydrazones.

    PubMed

    Lindgren, Eric B; de Brito, Monique A; Vasconcelos, Thatyana R A; de Moraes, Manuel O; Montenegro, Raquel C; Yoneda, Julliane D; Leal, Kátia Z

    2014-10-30

    Benzothiazole hydrazones have been synthesized and evaluated for their in vitro antiproliferative activity against three human cancer cell lines: HL-60 (leukemia), MDAMB-435 (breast) and HCT-8 (colon). The good cytotoxicity for the three cancer cell lines and theoretical profile of compounds 3o and 3p pointed them as promising lead molecules for anticancer drug design.

  5. Poly-L-asparagine nanocapsules as anticancer drug delivery vehicles.

    PubMed

    Rivera-Rodríguez, G R; Alonso, M J; Torres, D

    2013-11-01

    This work presents for the first time the development of novel poly-L-asparagine (PASN) nanocapsules and the in vitro evaluation of their potential as anticancer drug delivery systems. The design of PASN nanocapsules was inspired by the well-known avidity of cancer cells for the amino acid L-asparagine together with the expected ability of this hydrophilic polymer to escape to the mononuclear phagocytic system. Besides, these nanocapsules have an oily reservoir, which enables the efficient encapsulation of lipophilic drugs. PASN nanocapsules were obtained by an emulsification-polymer layer deposition process, which involves using a cationic surfactant as a bridge for the interaction of PASN with the lipid core. PASN nanocapsules showed sizes of around 170-200 nm and negative zeta potential values (around -20 mV to -40 mV). The model anticancer drug docetaxel was efficiently encapsulated (around 75%) and retained within the nanocapsule's structure upon dilution in a simulated physiological medium. Moreover, these nanocapsules exhibited the ability to interact with the NCI-H460 human cancer cells and to enhance the cellular toxicity of the anticancer drug. All these features together with their adequate stability profile render these nanocapsules a new attractive platform for anticancer intracellular drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Synthesis and anticancer evaluation of furfurylidene 4-piperidone analogs.

    PubMed

    Jadhav, Rahul L; Magdum, Chandrakant S; Patil, Manisha V

    2014-06-01

    Recently different series of compounds have been designed that utilize the 1,5-diaryl-3-oxo-1,4-pentadinenyl pharmacophore for the development of novel cytotoxic and anticancer agents. These compounds interact with cellular thiols and thiols are not part of nucleic acids. Hence, these compounds are free from the problem of mutagenicity and carcinogenicity. The Claisen-Schmidt reaction is used for synthesizing furfurylidene analogs in a basic medium. The title compounds were prepared by reacting furfurylidenes with aryl sulfonyl, benzoyl, acroylyl, or acetyl chloride. The resulting synthesized compounds were screened for their in vitro cytotoxic properties by MTT and SRB assays against leukemic and colon cancer cell lines. Acute toxicity was determined by OECD-423 guidelines. The in vivo anticancer activities were evaluated against Ehrlich ascites carcinoma (EAC)-bearing Swiss albino mice. The MTT assay showed that compounds 2d and 3d have significant cytotoxicity against the Molt-4 human cell line as compared to the standard, 5-fluorouracil. In addition, the SRB assay indicated that the compounds 2, 2a, 2d, and 3d showed equipotent cytotoxicity against human leukemia cell lines as compared to the standard, doxorubicin. Compounds 2a and 2d showed significant anticancer activity against EAC in Swiss albino mice. This study revealed the potential of these molecules for further development as anticancer agents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves.

    PubMed

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro.

  8. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells

    PubMed Central

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon

    2016-01-01

    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs. PMID:27376325

  9. Insight into the reactive form of the anticancer agent iproplatin.

    PubMed

    Volckova, Erika; Weaver, Evelyne; Bose, Rathindra N

    2008-05-01

    The reaction of iproplatin with reduced glutathione at different mole ratios yielded cis-di(isopropylamine)chloro-glutathionatoplatinum(II), not the expected cis-dichloro- species, indicating a mode of action of this anticancer agent that is different from that of cis-diamminedichloroplatinum(II).

  10. Berberine hydrochloride: anticancer activity and nanoparticulate delivery system.

    PubMed

    Tan, Wen; Li, Yingbo; Chen, Meiwan; Wang, Yitao

    2011-01-01

    Berberine hydrochloride is a conventional component in Chinese medicine, and is characterized by a diversity of pharmacological effects. However, due to its hydrophobic properties, along with poor stability and bioavailability, the application of berberine hydrochloride was hampered for a long time. In recent years, the pharmaceutical preparation of berberine hydrochloride has improved to achieve good prospects for clinical application, especially for novel nanoparticulate delivery systems. Moreover, anticancer activity and novel mechanisms have been explored, the chance of regulating glucose and lipid metabolism in cancer cells showing more potential than ever. Therefore, it is expected that appropriate pharmaceutical procedures could be applied to the enormous potential for anticancer efficacy, to give some new insights into anticancer drug preparation in Chinese medicine. We accessed conventional databases, such as PubMed, Scope, and Web of Science, using "berberine hydrochloride", "anti-cancer mechanism", and "nanoparticulate delivery system" as search words, then summarized the progress in research, illustrating the need to explore reprogramming of cancer cell metabolism using nanoparticulate drug delivery systems. With increasing research on regulation of cancer cell metabolism by berberine hydrochloride and troubleshooting of issues concerning nanoparticulate delivery preparation, berberine hydrochloride is likely to become a natural component of the nanoparticulate delivery systems used for cancer therapy. Meanwhile, the known mechanisms of berberine hydrochloride, such as decreased multidrug resistance and enhanced sensitivity of chemotherapeutic drugs, along with improvement in patient quality of life, could also provide new insights into cancer cell metabolism and nanoparticulate delivery preparation.

  11. Anticancer effects of Chinese herbal medicine, science or myth?*

    PubMed Central

    Ruan, Wen-jing; Lai, Mao-de; Zhou, Jian-guang

    2006-01-01

    Currently there is considerable interest among oncologists to find anticancer drugs in Chinese herbal medicine (CHM). In the past, clinical data showed that some herbs possessed anticancer properties, but western scientists have doubted the scientific validity of CHM due to the lack of scientific evidence from their perspective. Recently there have been encouraging results, from a western perspective, in the cancer research field regarding the anticancer effects of CHM. Experiments showed that CHM played its anticancer role by inducing apoptosis and differentiation, enhancing the immune system, inhibiting angiogenesis, reversing multidrug resistance (MDR), etc. Clinical trials demonstrated that CHM could improve survival, increase tumor response, improve quality of life, or reduce chemotherapy toxicity, although much remained to be determined regarding the objective effects of CHM in human in the context of clinical trials. Interestingly, both laboratory experiments and clinical trials have demonstrated that when combined with chemotherapy, CHM could raise the efficacy level and lower toxic reactions. These facts raised the feasibility of the combination of herbal medicines and chemotherapy, although much remained to be investigated in this area. PMID:17111471

  12. Exploring the immunomodulatory and anticancer properties of zerumbone.

    PubMed

    Haque, Md Areeful; Jantan, Ibrahim; Arshad, Laiba; Bukhari, Syed Nasir Abbas

    2017-07-17

    Plant-derived immunomodulators and anti-cancer agents have attracted a lot of interest from natural product scientists for their efficacy and safety and their significant contribution towards understanding targeted drug action and drug delivery mechanisms. Zerumbone, the main constituent of Zingiber zerumbet rhizomes, has been investigated for its wide-spectrum role in treating multitargeted diseases. The rhizomes have been used as food flavoring agents in various cuisines and in herbal medicine. Many in vivo and in vitro studies have provided evidence of zerumbone as a potent immunomodulator as well as a potential anti-cancer agent. This review is an interesting compilation of all those significant outcomes from investigations carried out to date to explore the immunomodulatory and anticancer properties of zerumbone. The ultimate objective of this comprehensive review is to provide updated information and a critical assessment on zerumbone including its chemistry and immunomodulating and anticancer properties, which may be of paramount importance to provide a new path for ensuing research to discover new agents to treat cancers and immune-related diseases. In addition, updated information on the toxicology of zerumbone has also been summarized to provide its safety profile.

  13. Anticancer biology of Azadirachta indica L (neem): a mini review.

    PubMed

    Paul, Rajkumar; Prasad, Murari; Sah, Nand K

    2011-09-15

    Neem (Azadirachta indica), a member of the Meliaceae family, is a fast growing tropical evergreen tree with a highly branched and stout, solid stem. Because of its tremendous therapeutic, domestic, agricultural and ethnomedicinal significance, and its proximity with human culture and civilization, neem has been called "the wonder tree" and "nature's drug store." All parts of this tree, particularly the leaves, bark, seed-oil and their purified products are widely used for treatment of cancer. Over 60 different types of biochemicals including terpenoids and steroids have been purified from this plant. Pre-clinical research work done during the last decade has fine-tuned our understanding of the anticancer properties of the crude and purified products from this plant. The anticancer properties of the plant have been studied largely in terms of its preventive, protective, tumor-suppressive, immunomodulatory and apoptotic effects against various types of cancer and their molecular mechanisms. This review aims at scanning scattered literature on "the anticancer biology of A. indica," related toxicity problems and future perspectives. The cogent data on the anticancer biology of products from A. indica deserve multi-institutional clinical trials as early as possible. The prospects of relatively cheaper cancer drugs could then be brighter, particularly for the under-privileged cancer patients of the world.

  14. CNS Anticancer Drug Discovery and Development Conference White Paper.

    PubMed

    Levin, Victor A; Tonge, Peter J; Gallo, James M; Birtwistle, Marc R; Dar, Arvin C; Iavarone, Antonio; Paddison, Patrick J; Heffron, Timothy P; Elmquist, William F; Lachowicz, Jean E; Johnson, Ted W; White, Forest M; Sul, Joohee; Smith, Quentin R; Shen, Wang; Sarkaria, Jann N; Samala, Ramakrishna; Wen, Patrick Y; Berry, Donald A; Petter, Russell C

    2015-11-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.

  15. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-05

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  16. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869

  17. 21 CFR 70.51 - Advisory committee on the applicability of the anticancer clause.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... anticancer clause. 70.51 Section 70.51 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... of the anticancer clause. All requests for and procedures governing any advisory committee on the anticancer clause shall be subject to the provisions of part 14 of this chapter, and particularly subpart...

  18. 21 CFR 70.51 - Advisory committee on the applicability of the anticancer clause.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... anticancer clause. 70.51 Section 70.51 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... of the anticancer clause. All requests for and procedures governing any advisory committee on the anticancer clause shall be subject to the provisions of part 14 of this chapter, and particularly subpart...

  19. 21 CFR 70.51 - Advisory committee on the applicability of the anticancer clause.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... anticancer clause. 70.51 Section 70.51 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... of the anticancer clause. All requests for and procedures governing any advisory committee on the anticancer clause shall be subject to the provisions of part 14 of this chapter, and particularly subpart...

  20. 21 CFR 70.51 - Advisory committee on the applicability of the anticancer clause.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... anticancer clause. 70.51 Section 70.51 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... of the anticancer clause. All requests for and procedures governing any advisory committee on the anticancer clause shall be subject to the provisions of part 14 of this chapter, and particularly subpart...

  1. 21 CFR 70.51 - Advisory committee on the applicability of the anticancer clause.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... anticancer clause. 70.51 Section 70.51 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... of the anticancer clause. All requests for and procedures governing any advisory committee on the anticancer clause shall be subject to the provisions of part 14 of this chapter, and particularly subpart...

  2. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    NASA Astrophysics Data System (ADS)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  3. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities

    PubMed Central

    Shanab, Sanaa MM; Mostafa, Soha SM; Shalaby, Emad A; Mahmoud, Ghada I

    2012-01-01

    Objective To investigate the antioxidant and anticancer activities of aqueous extracts of nine microalgal species. Methods Variable percentages of major secondary metabolites (total phenolic content, terpenoids and alkaloids) as well as phycobiliprotein pigments (phycocyanin, allophycocyanin and phycoerythrin) in the aqueous algal extracts were recorded. Antioxidant activity of the algal extracts was performed using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) test and 2,2′- azino-bis (ethylbenzthiazoline-6-sulfonic acid (ABTS.+) radical cation assay. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma cell (EACC) and Human hepatocellular cancer cell line (HepG2). Results Antioxidant activity of the algal extracts was performed using DPPH test and ABTS.+ radical cation assays which revealed 30.1-72.4% and 32.0-75.9% respectively. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma Cell (EACC) and Human Hepatocellular cancer cell line (HepG2) with an activity ranged 87.25% and 89.4% respectively. Culturing the promising cyanobacteria species; Nostoc muscorum and Oscillatoria sp. under nitrogen stress conditions (increasing and decreasing nitrate content of the normal BG11 medium, 1.5 g/L), increased nitrate concentration (3, 6 and 9 g/L) led to a remarkable increase in phycobilin pigments followed by an increase in both antioxidant and anticancer activities in both cyanobacterial species. While the decreased nitrate concentration (0.75, 0.37 and 0.0 g/L) induced an obvious decrease in phycobilin pigments with complete absence of allophycocyanin in case of Oscillatoria sp. Conclusions Nitrogen starvation (0.00 g/L nitrate) induced an increase and comparable antioxidant and anticancer activities to those cultured in the highest nitrate content. PMID:23569980

  4. Antioxidant, antimicrobial, and anticancer activity of 3 Umbilicaria species.

    PubMed

    Kosanić, Marijana; Ranković, Branislav; Stanojković, Tatjana

    2012-01-01

    The aim of this study is to investigate in vitro antioxidant, antimicrobial, and anticancer activity of the acetone extracts of the lichens Umbilicaria crustulosa, U. cylindrica, and U. polyphylla. Antioxidant activity was evaluated by 5 separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds, and determination of total flavonoid content. Of the lichens tested, U. polyphylla had largest free radical scavenging activity (72.79% inhibition at a concentration of 1 mg/mL), which was similar as standard antioxidants in the same concentration. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. Total content of phenol and flavonoid in extracts was determined as pyrocatechol equivalent, and as rutin equivalent, respectively. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was extract of U. polyphylla with minimum inhibitory concentration values ranging from 1.56 to 12.5 mg/mL. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. All extracts were found to be strong anticancer activity toward both cell lines with IC₅₀ values ranging from 28.45 to 97.82 μg/mL. The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial, and anticancer effects. That suggests that lichens may be used as possible natural antioxidant, antimicrobial, and anticancer agents.

  5. Unraveling the Anticancer Effect of Curcumin and Resveratrol

    PubMed Central

    Pavan, Aline Renata; da Silva, Gabriel Dalio Bernardes; Jornada, Daniela Hartmann; Chiba, Diego Eidy; Fernandes, Guilherme Felipe dos Santos; Man Chin, Chung; dos Santos, Jean Leandro

    2016-01-01

    Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs. PMID:27834913

  6. Nanomicellar carriers for targeted delivery of anticancer agents

    PubMed Central

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10–100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors’ recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  7. An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction.

    PubMed

    Berlow, Noah; Haider, Saad; Wan, Qian; Geltzeiler, Mathew; Davis, Lara E; Keller, Charles; Pal, Ranadip

    2014-01-01

    A framework for design of personalized cancer therapy requires the ability to predict the sensitivity of a tumor to anticancer drugs. The predictive modeling of tumor sensitivity to anti-cancer drugs has primarily focused on generating functions that map gene expressions and genetic mutation profiles to drug sensitivity. In this paper, we present a new approach for drug sensitivity prediction and combination therapy design based on integrated functional and genomic characterizations. The modeling approach when applied to data from the Cancer Cell Line Encyclopedia shows a significant gain in prediction accuracy as compared to elastic net and random forest techniques based on genomic characterizations. Utilizing a Mouse Embryonal Rhabdomyosarcoma cell culture and a drug screen of 60 targeted drugs, we show that predictive modeling based on functional data alone can also produce high accuracy predictions. The framework also allows us to generate personalized tumor proliferation circuits to gain further insights on the individualized biological pathway.

  8. The anticancer and antiobesity effects of Mediterranean diet.

    PubMed

    Kwan, Hiu Yee; Chao, Xiaojuan; Su, Tao; Fu, Xiuqiong; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2017-01-02

    Cancers have been the leading cause of death worldwide and the prevalence of obesity is also increasing in these few decades. Interestingly, there is a direct association between cancer and obesity. Each year, more than 90,000 cancer deaths are caused by obesity or overweight. The dietary pattern in Crete, referred as the traditional Mediterranean diet, is believed to confer Crete people the low mortality rates from cancers. Nevertheless, the antiobesity effect of the Mediterranean diet is less studied. Given the causal relationship between obesity and cancer, the antiobesity effect of traditional Mediterranean diet might contribute to its anticancer effects. In this regard, we will critically review the anticancer and antiobesity effects of this diet and its dietary factors. The possible mechanisms underlying these effects will also be discussed.

  9. CEST theranostics: label-free MR imaging of anticancer drugs

    PubMed Central

    Xu, Jiadi; Yadav, Nirbhay N.; Chan, Kannie W. Y.; Luo, Liangping; McMahon, Michael T.; Vogelstein, Bert; van Zijl, Peter C.M.; Zhou, Shibin; Liu, Guanshu

    2016-01-01

    Image-guided drug delivery is of great clinical interest. Here, we explored a direct way, namely CEST theranostics, to detect diamagnetic anticancer drugs simply through their inherent Chemical Exchange Saturation Transfer (CEST) MRI signal, and demonstrated its application in image-guided drug delivery of nanoparticulate chemotherapeutics. We first screened 22 chemotherapeutic agents and characterized the CEST properties of representative agents and natural analogs in three major categories, i.e., pyrimidine analogs, purine analogs, and antifolates, with respect to chemical structures. Utilizing the inherent CEST MRI signal of gemcitabine, a widely used anticancer drug, the tumor uptake of the i.v.-injected, drug-loaded liposomes was successfully detected in CT26 mouse tumors. Such label-free CEST MRI theranostics provides a new imaging means, potentially with an immediate clinical impact, to monitor the drug delivery in cancer. PMID:26837220

  10. Unraveling the Anticancer Effect of Curcumin and Resveratrol.

    PubMed

    Pavan, Aline Renata; Silva, Gabriel Dalio Bernardes da; Jornada, Daniela Hartmann; Chiba, Diego Eidy; Fernandes, Guilherme Felipe Dos Santos; Man Chin, Chung; Dos Santos, Jean Leandro

    2016-11-10

    Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs.

  11. Botanical, Phytochemical, and Anticancer Properties of the Eucalyptus Species.

    PubMed

    Vuong, Quan V; Chalmers, Anita C; Jyoti Bhuyan, Deep; Bowyer, Michael C; Scarlett, Christopher J

    2015-06-01

    The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies.

  12. Targeting the Hippo Pathway for Anti-cancer Therapies.

    PubMed

    Gong, Rui; Yu, Fa-Xing

    2015-01-01

    The Hippo signaling pathway is critical in regulating tissue homeostasis, organ size, and tumorigenesis. YAP and TAZ, two major effectors of the Hippo pathway, function as transcriptional co-activators and promote target gene expression mainly through interaction with TEAD family transcription factors. As oncoproteins, YAP and TAZ are frequently activated or highly expressed in various cancer specimens. Moreover, their activity has been linked to resistance to a few widely used anti-cancer drugs, and YAP activation contributes to cancer relapse. Thus, the Hippo pathway, especially YAP/TAZ-TEAD interaction, represents an attractive target for anti-cancer therapies. Here, we will discuss potential approaches to inhibit YAP/TAZ activity, and also review currently available small molecules targeting the Hippo pathway.

  13. Anticancer platinum (IV) prodrugs with novel modes of activity.

    PubMed

    Chin, Chee Fei; Wong, Daniel Yuan Qiang; Jothibasu, Ramasamy; Ang, Wee Han

    2011-01-01

    Over the past four decades, the search for improved platinum drugs based on the classical platinum (II)-diam(m)ine pharmacophore has yielded only a handful of successful candidates. New methodologies centred on platinum (IV) complexes, with better stability and expanded coordination spheres, offer the possibility of overcoming limitations inherent to platinum (II) drugs. In this review, novel strategies of targeting and killing cancer cells using platinum (IV) constructs are discussed. These approaches exploit the unique electrochemical characteristics and structural attributes of platinum (IV) complexes as a means of developing anticancer prodrugs that can target and selectively destroy cancer cells. Anticancer platinum (IV) prodrugs represent promising new strategies as targeted chemotherapeutic agents in the ongoing battle against cancer.

  14. Diterpenes and Their Derivatives as Potential Anticancer Agents.

    PubMed

    Islam, Muhammad Torequl

    2017-05-01

    As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  16. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    PubMed Central

    Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.

    2010-01-01

    ABSTRACT Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward. PMID:20725771

  17. Resveratrol as an anti-cancer agent: A review.

    PubMed

    Rauf, Abdur; Imran, Muhammad; Butt, Masood Sadiq; Nadeem, Muhammad; Peters, Dennis G; Mubarak, Mohammad S

    2016-12-21

    Owing to their antimicrobial, antioxidant, and anti-inflammatory activity, grapes (Vitis vinifera L.) are the archetypal paradigms of fruits used not only for nutritional purposes, but also for exclusive therapeutics. Grapes are a prominent and promising source of phytochemicals, especially resveratrol, a phytoalexin antioxidant found in red grapes which has both chemopreventive and therapeutic effects against various ailments. Resveratrol's role in reducing different human cancers, including breast, cervical, uterine, blood, kidney, liver, eye, bladder, thyroid, esophageal, prostate, brain, lung, skin, gastric, colon, head and neck, bone, ovarian, and cervical, has been reviewed. This review covers the literature that deals with the anti-cancer mechanism of resveratrol with special reference to antioxidant potential. Furthermore, this article summarizes the literature pertaining to resveratrol as an anti-cancer agent.

  18. Screen anticancer drug in vitro using resonance light scattering technique.

    PubMed

    Chen, Zhanguang; Liu, Guoliang; Chen, Meizhen; Xu, Benjie; Peng, Yurui; Chen, Maohuai; Wu, Mingyao

    2009-02-15

    An in vitro screening model using resonance light scattering (RLS) technique with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reagent as the reactive probe to target cancer cell was firstly developed. In this model, MTT was reduced by viable cancer cells to produce a purple formazan. Cell viability was proportional to the number of formazan induced strong light scattering signal. The inhibition rate of anticancer drug was found to vary inversely with the H(22)-MTT system RLS intensity. So it was intuitive to see the sequence of the tumor suppressive activity of six anticancer drugs without data processing by RLS/MTT screening spectra. Compared with the traditional MTT method, this method has high sensitivity, low detection limit and quite intuitive screening results which were identical to those obtained from the MTT colorimetric assay.

  19. Anticancer activity of Nigella sativa (black seed) - a review.

    PubMed

    Randhawa, Mohammad Akram; Alghamdi, Mastour Safar

    2011-01-01

    Nigella sativa (N. sativa) seed has been an important nutritional flavoring agent and natural remedy for many ailments for centuries in ancient systems of medicine, e.g. Unani, Ayurveda, Chinese and Arabic Medicines. Many active components have been isolated from N. sativa, including thymoquinone, thymohydroquinone, dithymoquinone, thymol, carvacrol, nigellimine-N-oxide, nigellicine, nigellidine and alpha-hederin. In addition, quite a few pharmacological effects of N. sativa seed, its oil, various extracts and active components have been identified to include immune stimulation, anti-inflammation, hypoglycemic, antihypertensive, antiasthmatic, antimicrobial, antiparasitic, antioxidant and anticancer effects. Only a few authors have reviewed the medicinal properties of N. sativa and given some description of the anticancer effects. A literature search has revealed that a lot more studies have been recently carried out related to the anticancer activities of N. sativa and some of its active compounds, such as thymoquinone and alpha-hederin. Acute and chronic toxicity studies have recently confirmed the safety of N. sativa oil and its most abundant active component, thymoquinone, particularly when given orally. The present work is aimed at summarizing the extremely valuable work done by various investigators on the effects of N. sativa seed, its extracts and active principles against cancer. Those related to the underlying mechanism of action, derivatives of thymoquinone, nano thymoquinone and combinations of thymoquinone with the currently used cytotoxic drugs are of particular interest. We hope this review will encourage interested researchers to conduct further preclinical and clinical studies to evaluate the anticancer activities of N. sativa, its active constituents and their derivatives.

  20. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition.

    PubMed

    Kosic, Milica; Arsikin-Csordas, Katarina; Paunovic, Verica; Firestone, Raymond A; Ristic, Biljana; Mircic, Aleksandar; Petricevic, Sasa; Bosnjak, Mihajlo; Zogovic, Nevena; Mandic, Milos; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2016-10-28

    We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Anticancer activity of flavane gallates isolated from Plicosepalus curviflorus

    PubMed Central

    Fawzy, Ghada Ahmed; Al-Taweel, Areej Mohammad; Perveen, Shagufta

    2014-01-01

    Background: Previous investigation of the methanol extract of Plicosepalus curviflorus leaves led to the isolation of two new flavane gallates (1, 2), together with other compounds including quercetin (3). The stems of P. curviflorus are used traditionally for the treatment of cancer in Yemen. Objective: The aim of this study was to evaluate the anticancer activity of the plant methanol extract as well as isolated compounds (1-3). Materials and Methods: The human cancer cell lines used were; MCF-7, HepG-2, HCT-116, Hep-2, HeLa and normal, Vero cell line using the Crystal Violet Staining method (CVS). Results: Quercetin (3) possessed the highest anticancer effect against all five cell lines (IC50 ranging from 3.6 to 16.2 μg/ml). It was followed by 2S, 3R-3, 3′, 4′, 5, 7-pentahydroxyflavane-5-O-gallate (1), with IC50 ranging from 11.6 to 38.8 μg/ml. The weakest anticancer activity was given by 2S, 3R-3,3′,4′,5,5′,7-hexahydroxyflavane-3′,5-di-O-gallate (2) with IC50 ranging from 39.8 to above 50 μg/ml, compared to vinblastine sulphate as reference drug. Colon, liver and breast cell lines seemed to be more sensitive to the tested compounds than the cervical and laryngeal cell lines. Concerning the cytotoxic effect on Vero cell line, the pentahydroxyflavane-5-O-gallate (1) showed the highest IC50 ( 138.2 μg/ml), while quercetin exhibited the lowest IC50 to Vero cells (30.5 μg/ml), compared to vinblastine sulphate as reference drug (IC50: 39.7 μg/ml). Conclusion: The results suggest the possible use of compounds 1 and 3 as anticancer drugs especially against colon and liver cancers. PMID:25298669

  2. Intercalative DNA binding of the marine anticancer drug variolin B

    PubMed Central

    Canals, Albert; Arribas-Bosacoma, Raquel; Albericio, Fernando; Álvarez, Mercedes; Aymamí, Joan; Coll, Miquel

    2017-01-01

    Variolin B is a rare marine alkaloid that showed promising anti-cancer activity soon after its isolation. It acts as a cyclin-dependent kinase inhibitor, although the precise mechanism through which it exerts the cytotoxic effects is still unknown. The crystal structure of a variolin B bound to a DNA forming a pseudo-Holliday junction shows that this compound can also contribute, through intercalative binding, to either the formation or stabilization of multi-stranded DNA forms. PMID:28051169

  3. Lectins with potential for anti-cancer therapy.

    PubMed

    Yau, Tammy; Dan, Xiuli; Ng, Charlene Cheuk Wing; Ng, Tzi Bun

    2015-02-26

    This article reviews lectins of animal and plant origin that induce apoptosis and autophagy of cancer cells and hence possess the potential of being developed into anticancer drugs. Apoptosis-inducing lectins encompass galectins, C-type lectins, annexins, Haliotis discus discus lectin, Polygonatum odoratum lectin, mistletoe lectin, and concanavalin A, fucose-binding Dicentrarchus labrax lectin, and Strongylocentrotus purpuratus lectin, Polygonatum odoratum lectin, and mistletoe lectin, Polygonatum odoratum lectin, autophagy inducing lectins include annexins and Polygonatum odoratum lectin.

  4. Metabolic monosaccharides altered cell responses to anticancer drugs.

    PubMed

    Chen, Long; Liang, Jun F

    2012-06-01

    Metabolic glycoengineering has been used to manipulate the glycochemistry of cell surfaces and thus the cell/cell interaction, cell adhesion, and cell migration. However, potential application of glycoengineering in pharmaceutical sciences has not been studied until recently. Here, we reported that Ac(4)ManNAc, an analog of N-acetyl-D-mannosamine (ManNAc), could affect cell responses to anticancer drugs. Although cells from different tissues and organs responded to Ac(4)ManNAc treatment differently, treated cells with increased sialic acid contents showed dramatically reduced sensitivity (up to 130 times) to anti-cancer drugs as tested on various drugs with distinct chemical structures and acting mechanisms. Neither increased P-glycoprotein activity nor decreased drug uptake was observed during the course of Ac(4)ManNAc treatment. However, greatly altered intracellular drug distributions were observed. Most intracellular daunorubicin was found in the perinuclear region, but not the expected nuclei in the Ac(4)ManNAc treated cells. Since sialoglycoproteins and gangliosides were synthesized in the Golgi, intracellular glycans affected intracellular signal transduction and drug distributions seem to be the main reason for Ac(4)ManNAc affected cell sensitivity to anticancer drugs. It was interesting to find that although Ac(4)ManNAc treated breast cancer cells (MDA-MB-231) maintained the same sensitivity to 5-Fluorouracil, the IC(50) value of 5-Fluorouracil to the same Ac(4)ManNAc treated normal cells (MCF-10A) was increased by more than 20 times. Thus, this Ac(4)ManNAc treatment enlarged drug response difference between normal and tumor cells provides a unique opportunity to further improve the selectivity and therapeutic efficiency of anticancer drugs.

  5. Anticancer Inhibitors of AR-Mediated Gene Expression

    DTIC Science & Technology

    2006-11-01

    hormone receptor superfamily, and do not achieve complete androgen blockade. As an alternative, mifepristone (RU486) is under investigation as a...antiglucocorticoid (IC50 = 2.2 nM) and antiandrogen (IC50 = 10 nM) activities. Although mifepristone is effective against prostate cancer cells in vivo, the...anticancer agents structurally related to mifepristone but that are designed to lack the antiglucocorticoid activity associated with this drug. Some

  6. Lung cancer and renal insufficiency: prevalence and anticancer drug issues.

    PubMed

    Launay-Vacher, Vincent; Etessami, Reza; Janus, Nicolas; Spano, Jean-Philippe; Ray-Coquard, Isabelle; Oudard, Stéphane; Gligorov, Joseph; Pourrat, Xavier; Beuzeboc, Philippe; Deray, Gilbert; Morere, Jean-François

    2009-01-01

    The Renal Insufficiency and Anticancer Medications (IRMA) study reported the high prevalence of renal insufficiency in cancer patients. In this special report, we focused on patients with lung cancer, emphasizing some specific findings in this population of patients. Data on patients with lung cancer who were in the IRMA study were analyzed. Renal function was calculated using Cockcroft-Gault and abbreviated Modification of Diet in Renal Disease (aMDRD) formulas to estimate the prevalence of renal insufficiency (RI) according to the KDOQI-KDIGO definition. Anticancer drugs were studied with regard to their potential renal toxicity and need for dosage adjustment. Of the 445 IRMA lung cancer patients, 14.4% had a serum creatinine (SCR) level > or =110 micromol/L. However, when they were assessed using the formulas, 62.1 and 55.9% had abnormal renal function. Of the 644 anticancer drug prescriptions, 67.5% required dose adjustments for RI or were drugs with no available data, and 78.3% of the patients received at least one such drug. Furthermore, 71.6% received potentially nephrotoxic drugs. Seventy percent of the patients had anemia but prevalence was not significantly associated with the existence of associated renal insufficiency. In the 445 IRMA patients with lung cancer, the prevalence of RI was high in spite of a normal SCR in most cases. Some anticancer drugs such as platinum salts may be nephrotoxic and need dosage adjustment. However, other important drugs such as gemcitabine do not require dose reduction and do not present with a high potential for nephrotoxicity. Lung cancer patients often present with anemia, which was not associated with the presence of RI.

  7. Recent advances in the field of anti-cancer immunotherapy

    PubMed Central

    Neves, Henrique; Kwok, Hang Fai

    2015-01-01

    Background The main goal of anti-cancer therapy is to specifically inhibit the malignant activity of cancer cells, while leaving healthy cells unaffected. As such, for every proposed therapy, it is important to keep in mind the therapeutic index — the ratio of the toxic dose over the therapeutic dose. The use of immunotherapy has allowed a means to both specifically block protein–protein interaction and deliver cytotoxic events to a tumor-specific antigen. Review scope It is the objective of this review to give an overview on current immunotherapy treatment for cancers using monoclonal antibodies. We demonstrate three exciting targets for immunotherapy, TNF-α Converting Enzyme (TACE), Cathepsin S and Urokinase Plasmogen Activator and go over the advances made with one of the most used monoclonal antibodies in cancer therapy, Rituximab; as well as Herceptin, which is used for breast cancer therapy. Furthermore, we touch on other venues of immunotherapy, such as adaptive cell transfer, the use of nucleic acids and the use of dendritic cells. Finally, we summarize some ongoing studies that spell tentative advancements for anti-cancer immunotherapy. General significance Immunotherapy is at the forefront of anti-cancer therapies, allying both a high degree of specificity to general high effectiveness and fewer side-effects. PMID:26673349

  8. Dihydromyricetin prevents cardiotoxicity and enhances anticancer activity induced by adriamycin

    PubMed Central

    Fu, Yingying; Wang, Jincheng; Dai, Jiabin; Shao, Jinjin; Yang, Xiaochun; Chang, Linlin; Weng, Qinjie; Yang, Bo; He, Qiaojun

    2015-01-01

    Adriamycin, a widely used anthracycline antibiotic in multiple chemotherapy regimens, has been challenged by the cardiotoxicity leading to fatal congestive heart failure in the worst condition. The present study demonstrated that Dihydromyricetin, a natural product extracted from ampelopsis grossedentat, exerted cardioprotective effect against the injury in Adriamycin-administrated ICR mice. Dihydromyricetin decreased ALT, LDH and CKMB levels in mice serum, causing a significant reduction in the toxic death triggered by Adriamycin. The protective effects were also indicated by the alleviation of abnormal electrocardiographic changes, the abrogation of proliferation arrest and apoptotic cell death in primary myocardial cells. Further study revealed that Dihydromyricetin-rescued loss of anti-apoptosis protein ARC provoked by Adriamycin was involved in the cardioprotection. Intriguingly, the anticancer activity of Adriamycin was not compromised upon the combination with Dihydromyricetin, as demonstrated by the enhanced anticancer effect achieved by Adriamycin plus Dihydromyricetin in human leukemia U937 cells and xenograft models, in a p53-dependent manner. These results collectively promised the potential value of Dihydromyricetin as a rational cardioprotective agent of Adriamycin, by protecting myocardial cells from apoptosis, while potentiating anticancer activities of Adriamycin, thus further increasing the therapeutic window of the latter one. PMID:25226612

  9. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    PubMed

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  10. Green tea and anticancer perspectives: updates from last decade.

    PubMed

    Butt, Masood Sadiq; Ahmad, Rabia Shabir; Sultan, M Tauseef; Qayyum, Mir M Nasir; Naz, Ambreen

    2015-01-01

    Green tea is the most widely consumed beverage besides water and has attained significant attention owing to health benefits against array of maladies, e.g., obesity, diabetes mellitus, cardiovascular disorders, and cancer insurgence. The major bioactive molecules are epigallocatechin-3-gallate, epicatechin, epicatechin-3-gallate, epigallocatechin, etc. The anticarcinogenic and antimutagenic activities of green tea were highlighted some years ago. Several cohort studies and controlled randomized trials suggested the inverse association of green tea consumption and cancer prevalence. Cell culture and animal studies depicted the mechanisms of green tea to control cancer insurgence, i.e., induction of apoptosis to control cell growth arrest, altered expression of cell-cycle regulatory proteins, activation of killer caspases, and suppression of nuclear factor kappa-B activation. It acts as carcinoma blocker by modulating the signal transduction pathways involved in cell proliferation, transformation, inflammation, and metastasis. However, results generated from some research interventions conducted in different groups like smokers and nonsmokers, etc. contradicted with aforementioned anticancer perspectives. In this review paper, anticancer perspectives of green tea and its components have been described. Recent findings and literature have been surfed and arguments are presented to clarify the ambiguities regarding anticancer perspectives of green tea and its component especially against colon, skin, lung, prostate, and breast cancer. The heading of discussion and future trends is limelight of the manuscript. The compiled manuscript provides new avenues for researchers to be explored in relation to green tea and its bioactive components.

  11. The high price of anticancer drugs: origins, implications, barriers, solutions.

    PubMed

    Prasad, Vinay; De Jesús, Kevin; Mailankody, Sham

    2017-06-01

    Globally, annual spending on anticancer drugs is around US$100 billion, and is predicted to rise to $150 billion by 2020. In the USA, a novel anticancer drug routinely costs more than $100,000 per year of treatment. When adjusted for per capita spending power, however, drugs are most unaffordable in economically developing nations, such as India and China. Not only are launch prices high and rising, but individual drug prices are often escalated during exclusivity periods. High drug prices harm patients - often directly through increased out-of-pocket expenses, which reduce levels of patient compliance and lead to unfavourable outcomes - and harms society - by imposing cumulative price burdens that are unsustainable. Moreover, high drug prices are not readily explained by rational factors, including the extent of benefit patients are likely to derive, the novelty of the agents, or spending on research and development. Herein, we summarize the available empirical evidence on the costs of anticancer drugs, probe the origins and implications of these high costs, and discuss proposed solutions.

  12. An overview of anticancer activity of Garcinia and Hypericum.

    PubMed

    Brito, Lavínia de C; Rangel Berenger, Ana Luiza; Figueiredo, Maria Raquel

    2017-03-28

    Cancer is one of the leading causes of death worldwide (approximately 8.2 million cases/year) and, over the next two decades, a 70% increase in new cancer cases is expected. Through analysis of the available drugs between the years of 1930 and 2014, it was found that 48% were either natural products or their derivatives. This proportion increased to 66% when semi-synthetic products were included. The family Clusiaceae Juss. (Malpighiales) includes approximately 1000 species distributed throughout all tropical and temperate regions. The phytochemical profile of this family includes many chemicals with interesting pharmacological activities, including anticancer activities. This study includes an overview of the in vitro and in vivo anticancer activity of secondary metabolites from Garcinia and Hypericum and the mechanisms involved in this activity. Hypericum no longer belong to Clusiaceae family, but was considered in the past by taxonomists, due to similarities with this family. Research in the area has shown that several compounds belonging to different chemical classes exhibit activity in several tumor cell lines in different experimental models. This review shows the significant antineoplasic activity of these compounds, in particular of these two genera and validates the importance of natural products in the search for anticancer drugs.

  13. Antifungal and Anticancer Potential of Argemone mexicana L.

    PubMed Central

    More, Nilesh V.; Kharat, Arun S.

    2016-01-01

    Background: Medicinal plants are widely used to treat infectious diseases, metabolic disorders and cancer. Argemone mexicana L. (A. mexicana), commonly found on desolate land of Marathwada (Maharashtra, India) has been used to treat oral cavity infections. Methods: In this study, cold aqueous and methanolic extracts were prepared from A. mexicana stem and leaves. These extracts were tested for their antifungal and anticancer activities. The antifungal activity was tested using the agar well diffusion method, while the anticancer activity against immortalized cell lines was assessed by trypan blue assay. Results: It was observed that both cold aqueous and methanolic extracts of A. mexicana stem and leaves inhibited the growth of Mucor indicus, Aspergillus flavus, Aspergillus niger and Penicillum notatum. Antifungal activity of the extract was comparable to that of Amphoterecin-B. A. mexicana extracts had a cytotoxic effect on A549, SiHa and KB immortalized cell lines that were similar to that of berberine. Conclusion: The A. mexicana leaf and stems exhibit strong antifungal and anticancer potential.

  14. Histone Methylation by Temozolomide; A Classic DNA Methylating Anticancer Drug.

    PubMed

    Wang, Tieli; Pickard, Amanda J; Gallo, James M

    2016-07-01

    The alkylating agent, temozolomide (TMZ), is considered the standard-of-care for high-grade astrocytomas -known as glioblastoma multiforme (GBM)- an aggressive type of tumor with poor prognosis. The therapeutic benefit of TMZ is attributed to formation of DNA adducts involving the methylation of purine bases in DNA. We investigated the effects of TMZ on arginine and lysine amino acids, histone H3 peptides and histone H3 proteins. Chemical modification of amino acids, histone H3 peptide and protein by TMZ was performed in phosphate buffer at physiological pH. The reaction products were examined by mass spectrometry and western blot analysis. Our results showed that TMZ following conversion to a methylating cation, can methylate histone H3 peptide and histone H3 protein, suggesting that TMZ exerts its anticancer activity not only through its interaction with DNA, but also through alterations of protein post-translational modifications. The possibility that TMZ can methylate histones involved with epigenetic regulation of protein indicates a potentially unique mechanism of action. The study will contribute to the understanding the anticancer activity of TMZ in order to develop novel targeted molecular strategies to advance the cancer treatment. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Recent Trends in Targeted Anticancer Prodrug and Conjugate Design

    PubMed Central

    Singh, Yashveer; Palombo, Matthew; Sinko, Patrick J.

    2009-01-01

    Anticancer drugs are often nonselective antiproliferative agents (cytotoxins) that preferentially kill dividing cells by attacking their DNA at some level. The lack of selectivity results in significant toxicity to noncancerous proliferating cells. These toxicities along with drug resistance exhibited by the solid tumors are major therapy limiting factors that results into poor prognosis for patients. Prodrug and conjugate design involves the synthesis of inactive drug derivatives that are converted to an active form inside the body and preferably at the site of action. Classical prodrug and conjugate design has focused on the development of prodrugs that can overcome physicochemical (e.g., solubility, chemical instability) or biopharmaceutical problems (e.g., bioavailability, toxicity) associated with common anticancer drugs. The recent targeted prodrug and conjugate design, on the other hand, hinges on the selective delivery of anticancer agents to tumor tissues thereby avoiding their cytotoxic effects on noncancerous cells. Targeting strategies have attempted to take advantage of low extracellular pH, elevated enzymes in tumor tissues, the hypoxic environment inside the tumor core, and tumor-specific antigens expressed on tumor cell surfaces. The present review highlights recent trends in prodrug and conjugate rationale and design for cancer treatment. The various approaches that are currently being explored are critically analyzed and a comparative account of the advantages and disadvantages associated with each approach is presented. PMID:18691040

  16. Peptide-based proteasome inhibitors in anticancer drug design.

    PubMed

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents.

  17. Insights into cardiovascular side-effects of modern anticancer therapeutics.

    PubMed

    Stortecky, Stefan; Suter, Thomas M

    2010-07-01

    Modern anticancer therapeutics can be associated with significant cardiovascular side-effects. Detection, risk assessment, and treatment of these unwanted effects are an important task for treating physicians. The purpose of this review is to focus on approved novel cancer therapeutics and discuss the most important cardiovascular side-effects, prognosis, and potential treatment. We will contrast these effects to those of conventional cardiotoxic chemotherapeutics. Modern anticancer therapeutics can cause cardiovascular ischemia, arrhythmias, cardiac dysfunction, heart failure, and arterial hypertension. Anti-HER2 drugs, or more specifically trastuzumab, can induce cardiac dysfunction and heart failure. Newer data show that these effects occur predominantly during treatment and patients who experience the side-effects often have a good cardiovascular prognosis. Antiangiogenic agents can induce arterial hypertension, arterial and venous thromboembolism, and less frequently QTc prolongation. Recent findings indicate that a high rate of patients treated with antivascular endothelial growth factor drugs develop arterial hypertension and may experience related complications. Preventive strategies or optimal treatment have been tested but controlled studies are missing. Cardiovascular side-effects of modern anticancer drugs can be a serious problem and need careful attention, prevention, or treatment.

  18. Anticancer activity of Arkeshwara Rasa - A herbo-metallic preparation

    PubMed Central

    Nafiujjaman, Md; Nurunnabi, Md; Saha, Samir Kumar; Jahan, Rownak; Lee, Yong-kyu; Rahmatullah, Mohammed

    2015-01-01

    Introduction: Though metal based drugs have been prescribed in Ayurveda for centuries to treat various diseases, such as rheumatoid arthritis and cancer, toxicity of these drugs containing heavy metal is a great drawback for practical application. So, proper scientific validation of herbo-metallic drugs like Arkeshwara Rasa (AR) have become one of the focused research arena of new drugs against cancers. Aim: To investigate the in vitro anticancer effects of AR. Materials and Methods: Anticancer activity of AR was investigated on two human cancer cell lines, which represent two different tissues (pancreas and skin). Lactate dehydrogenase (LDH) assay for enzyme activity and trypan blue assay for cell morphology were performed for further confirmation. Results: AR showed potent activity against pancreatic cancer cells (MIA-PaCa-2). LDH activity confirmed that AR was active against pancreatic cancer cells. Finally, it was observed that AR exhibited significant effects on cancer cells due to synergistic effects of different compounds of AR. Conclusion: The study strongly suggests that AR has the potential to be an anticancer drug against pancreatic cancer. PMID:27313425

  19. Adherence enhancing interventions for oral anticancer agents: a systematic review.

    PubMed

    Mathes, Tim; Antoine, Sunya-Lee; Pieper, Dawid; Eikermann, Michaela

    2014-02-01

    The use of oral anticancer agents has increased in the last decades. Adherence is a crucial factor for the success of oral anticancer agent therapy. However, many patients are non-adherent. The objective was to evaluate the effectiveness of adherence interventions in patients taking oral anticancer agents. A systematic literature search was performed in Medline and Embase. Titles and abstracts and in case of potential relevance, full-texts were assessed for eligibility according to the predefined inclusion criteria. The study quality was evaluated. Both process steps were carried out independently by two reviewers. Relevant data on study design, patients, interventions and results were extracted in standardized tables by one reviewer and checked by a second reviewer. Six controlled studies were included. Only one study was randomized. The study quality was moderate to low. One study showed statistically significant results in favor of the adherence intervention, two studies showed a tendency in favor of the intervention, one study showed an inconsistent result depending on the adherence definition and one study showed almost identical adherence rates in both groups. One study showed a tendency in favor of the control group. Although most of the interventions are not very effective, it appears that certain adherence enhancing interventions could have a promising effect. One crucial point is the consideration of the baseline adherence when choosing patients to avoid ceiling effects. The evidence is limited due to lack of sufficient studies and partly inconsistent results. Further high quality studies are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Microfluidics: Emerging prospects for anti-cancer drug screening.

    PubMed

    Wlodkowic, Donald; Darzynkiewicz, Zbigniew

    2010-11-10

    Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity. Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature. To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy, new analytical screening technologies are needed. The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics, opening new avenues for systems oncology and high-throughput real-time drug screening routines. The up-and-coming microfluidic Lab-on-a-Chip (LOC) technology and micro-total analysis systems (μTAS) are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level. The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample. Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and, as such, they enable next generation high-throughput and high-content screening of anti-cancer drugs on patient-derived specimens. Herein we highlight the selected advancements in this emerging field of bioengineering, and provide a snapshot of developments with relevance to anti-cancer drug screening routines.

  1. Part 3: Pharmacogenetic Variability in Phase II Anticancer Drug Metabolism

    PubMed Central

    Deenen, Maarten J.; Cats, Annemieke; Beijnen, Jos H.

    2011-01-01

    Equivalent drug doses may lead to wide interpatient variability in drug response to anticancer therapy. Known determinants that may affect the pharmacological response to a drug are, among others, nongenetic factors, including age, gender, use of comedication, and liver and renal function. Nonetheless, these covariates do not explain all the observed interpatient variability. Differences in genetic constitution among patients have been identified to be important factors that contribute to differences in drug response. Because genetic polymorphism may affect the expression and activity of proteins encoded, it is a key covariate that is responsible for variability in drug metabolism, drug transport, and pharmacodynamic drug effects. We present a series of four reviews about pharmacogenetic variability. This third part in the series of reviews is focused on genetic variability in phase II drug-metabolizing enzymes (glutathione S-transferases, uridine diphosphoglucuronosyl transferases, methyltransferases, sulfotransferases, and N-acetyltransferases) and discusses the effects of genetic polymorphism within the genes encoding these enzymes on anticancer drug therapy outcome. Based on the literature reviewed, opportunities for patient-tailored anticancer therapy are proposed. PMID:21659608

  2. Microfluidics: Emerging prospects for anti-cancer drug screening

    PubMed Central

    Wlodkowic, Donald; Darzynkiewicz, Zbigniew

    2010-01-01

    Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity. Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature. To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy, new analytical screening technologies are needed. The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics, opening new avenues for systems oncology and high-throughput real-time drug screening routines. The up-and-coming microfluidic Lab-on-a-Chip (LOC) technology and micro-total analysis systems (μTAS) are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level. The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample. Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and, as such, they enable next generation high-throughput and high-content screening of anti-cancer drugs on patient-derived specimens. Herein we highlight the selected advancements in this emerging field of bioengineering, and provide a snapshot of developments with relevance to anti-cancer drug screening routines. PMID:21603306

  3. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    PubMed

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Validating Aurora B as an anti-cancer drug target.

    PubMed

    Girdler, Fiona; Gascoigne, Karen E; Eyers, Patrick A; Hartmuth, Sonya; Crafter, Claire; Foote, Kevin M; Keen, Nicholas J; Taylor, Stephen S

    2006-09-01

    The Aurora kinases, a family of mitotic regulators, have received much attention as potential targets for novel anti-cancer therapeutics. Several Aurora kinase inhibitors have been described including ZM447439, which prevents chromosome alignment, spindle checkpoint function and cytokinesis. Subsequently, ZM447439-treated cells exit mitosis without dividing and lose viability. Because ZM447439 inhibits both Aurora A and B, we set out to determine which phenotypes are due to inhibition of which kinase. Using molecular genetic approaches, we show that inhibition of Aurora B kinase activity phenocopies ZM447439. Furthermore, a novel ZM compound, which is 100 times more selective for Aurora B over Aurora A in vitro, induces identical phenotypes. Importantly, inhibition of Aurora B kinase activity induces a penetrant anti-proliferative phenotype, indicating that Aurora B is an attractive anti-cancer drug target. Using molecular genetic and chemical-genetic approaches, we also probe the role of Aurora A kinase activity. We show that simultaneous repression of Aurora A plus induction of a catalytic mutant induces a monopolar phenotype. Consistently, another novel ZM-related inhibitor, which is 20 times as potent against Aurora A compared with ZM447439, induces a monopolar phenotype. Expression of a drug-resistant Aurora A mutant reverts this phenotype, demonstrating that Aurora A kinase activity is required for spindle bipolarity in human cells. Because small molecule-mediated inhibition of Aurora A and Aurora B yields distinct phenotypes, our observations indicate that the Auroras may present two avenues for anti-cancer drug discovery.

  5. Anticancer Gold(III) Porphyrins Target Mitochondrial Chaperone Hsp60.

    PubMed

    Hu, Di; Liu, Yungen; Lai, Yau-Tsz; Tong, Ka-Chung; Fung, Yi-Man; Lok, Chun-Nam; Che, Chi-Ming

    2016-01-22

    Identification of the molecular target(s) of anticancer metal complexes is a formidable challenge since most of them are unstable toward ligand exchange reaction(s) or biological reduction under physiological conditions. Gold(III) meso-tetraphenylporphyrin (gold-1 a) is notable for its high stability in biological milieux and potent in vitro and in vivo anticancer activities. Herein, extensive chemical biology approaches employing photo-affinity labeling, click chemistry, chemical proteomics, cellular thermal shift, saturation-transfer difference NMR, protein fluorescence quenching, and protein chaperone assays were used to provide compelling evidence that heat-shock protein 60 (Hsp60), a mitochondrial chaperone and potential anticancer target, is a direct target of gold-1 a in vitro and in cells. Structure-activity studies with a panel of non-porphyrin gold(III) complexes and other metalloporphyrins revealed that Hsp60 inhibition is specifically dependent on both the gold(III) ion and the porphyrin ligand.

  6. Novel walnut peptide–selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity

    PubMed Central

    Liao, Wenzhen; Zhang, Rong; Dong, Chenbo; Yu, Zhiqiang; Ren, Jiaoyan

    2016-01-01

    This contribution reports a facile synthesis of degreased walnut peptides (WP1)-functionalized selenium nanoparticles (SeNPs) hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7) was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly effective method to achieve anticancer synergism. Moreover, the great potential exhibited by WP1-SeNPs could make them an ideal candidate as a chemotherapeutic agent for human cancers, especially for breast cancer. PMID:27143875

  7. Tryptophan as a probe to study the anticancer mechanism of action and specificity of α-helical anticancer peptides.

    PubMed

    Li, Guirong; Huang, Yibing; Feng, Qi; Chen, Yuxin

    2014-08-13

    In the present study, a single tryptophan, as a fluorescence probe, was shifted from the N-terminus to the middle and to the C-terminus of a 26-residue α-helical anticancer peptide sequence to study the mechanism of action and specificity. The hydrophobicity of peptides, as well as peptide helicity and self-associating ability, were slightly influenced by the position change of tryptophan in the peptide sequence, while the hemolytic activity and anticancer activity of the peptide analogs remained the same. The tryptophan fluorescence experiment demonstrated that peptide analogs were more selective against LUVs mimicking cancer cell membranes than LUVs mimicking normal cell membranes. During the interaction with target membranes, the N-terminus of an anticancer peptide may be inserted vertically or tilted into the hydrophobic components of the phospholipid bilayer first. The thermodynamic parameters of the peptides PNW and PCW, when interacting with zwitterionic DMPC or negatively charged DMPS, were determined by ITC. DSC experiments showed that peptide analogs significantly altered the phase transition profiles of DMPC, but did not dramatically modify the phase transition of DMPS. It is demonstrated that hydrophobic interactions are the main driving force for peptides interacting with normal cell membranes, whilst, electrostatic interactions dominate the interactions between peptides and cancer cell membranes. Utilizing tryptophan as a fluorescence probe molecule appears to be a practicable approach to determine the interaction of peptides with phospholipid bilayers.

  8. The interactions of anticancer agents with tea catechins: current evidence from preclinical studies.

    PubMed

    Shang, Weihu; Lu, Weidong; Han, Mei; Qiao, Jinping

    2014-01-01

    Tea catechins exhibit a broad range of pharmacological activities that impart beneficial effects on human health. Epigallocatechin-3-gallate (EGCG), one of the major tea catechins, has been widely associated with cancer prevention and treatment. In addition, tea catechins in combination with anticancer drugs are being evaluated as a new cancer treatment strategy. However, the interactions of anticancer drugs with tea catechins are largely unknown. Accumulated data indicate significant interactions between anticancer drugs and tea catechins, such as synergistic tumor inhibition or antagonist activity. Therefore, it is critical to understand comprehensively the effects of tea catechins on anticancer drugs. Focusing on evidence from preclinical studies, this paper will review the interactions between anticancer drugs and tea catechins, including pharmacodynamics and pharmacokinetics effects. We hope that by detailing the interactions between anticancer drugs and tea catechins, more attention will be directed to this important therapeutic combination in the future.

  9. Developing Exposure/Response Models for Anticancer Drug Treatment: Special Considerations

    PubMed Central

    Mould, DR; Walz, A-C; Lave, T; Gibbs, JP; Frame, B

    2015-01-01

    Anticancer agents often have a narrow therapeutic index (TI), requiring precise dosing to ensure sufficient exposure for clinical activity while minimizing toxicity. These agents frequently have complex pharmacology, and combination therapy may cause schedule-specific effects and interactions. We review anticancer drug development, showing how integration of modeling and simulation throughout development can inform anticancer dose selection, potentially improving the late-phase success rate. This article has a companion article in Clinical Pharmacology & Therapeutics with practical examples. PMID:26225225

  10. Non-covalent carriage of anticancer agents by humanized antibody trastuzumab.

    PubMed

    Yadav, Arpita; Sharma, Sweta; Yadav, Veejendra Kumar

    2016-05-01

    This article explores the internalization and non-covalent carriage of small molecule anticancer agents like vinca alkaloids by humanized monoclonal antibody trastuzumab. Such carriage is marked by significant reduction in side effects and increased therapeutic value of these anticancer agents. This study is coherent with few clinical observations of enhanced efficiency of these anticancer agents when co-administered with therapeutic antibodies. This study will also serve as the foundation for screening a database of anticancer agents for possible compounds that may be co-delivered alongwith the antibody. Based on this study vincristine conformation inside antibody and its charge environment may be used as descriptors for screening purposes.

  11. Nano anti-cancer drugs: pros and cons and future perspectives.

    PubMed

    Ali, Imran

    2011-02-01

    For last one decade, scientists are working for developing nano anti-cancer drugs with claim of ideal ones due to their targeted chemotherapic nature. These drugs have many beneficial properties such as targeted drug delivery and gene therapy modalities with minimum side effects. This article describes pros and cons and future perspectives of nano anti-cancer drugs. Efforts have been made to address importance, special features, toxicities (general, blood identities, immune system and environmental) and future perspectives of nano anti-cancer drugs. It was concluded that nano anti-cancer drugs may be magic bullet drugs for cancer treatment leading to bright future of the whole world.

  12. Determinants and associated factors influencing medication adherence and persistence to oral anticancer drugs: a systematic review.

    PubMed

    Verbrugghe, M; Verhaeghe, S; Lauwaert, K; Beeckman, D; Van Hecke, A

    2013-10-01

    The use of oral anticancer drugs has increased in modern oncology treatment. The move from intravenous treatments towards oral anticancer drugs has increased the patients' own responsibility to take oral anticancer drugs as being prescribed. High rates of non-adherence to oral anticancer drugs have been reported. A systematic literature review was conducted to gain insight into determinants and associated factors of non-adherence and non-persistence in patients taking oral anticancer therapy. PubMed, Cochrane, Web of Science and Cinahl were systematically searched for studies focusing on determinants and associated factors of medication non-adherence and non-persistence to oral anticancer drugs. The methodological quality of the included studies was assessed by two independent reviewers. No studies were excluded based on the quality assessment. Twenty-five studies were included and systematically reviewed. The quality of the studies was moderate. Associated factors influencing medication non-adherence and non-persistence to oral anticancer drugs are multifactorial and interrelated. Older and younger age, and the influence of therapy related side effects were found to be predominant factors. Non-adherence and non-persistence to oral anticancer drug therapy are complex phenomena. More qualitative research is needed to facilitate the development of patient tailored complex interventions by exploring patients' needs and underlying processes influencing medication non-adherence and non-persistence to oral anticancer drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Naturally occurring isothiocyanates exert anticancer effects by inhibiting deubiquitinating enzymes

    PubMed Central

    Coffey, Rory T.; Qian, Yu; Weerapana, Eranthie; El Oualid, Farid; Hedstrom, Lizbeth

    2015-01-01

    The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates (ITCs) such as benzyl ITC (BITC) and phenethyl ITC (PEITC). While many potential targets of ITCs have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUBs), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the anti-apoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These ITCs increased Mcl-1 ubiquitination and either ITC treatment or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of ITC activity. These ITCs also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low ITC concentrations and aggregation under high ITC concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by ITC treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well established anticancer activity of ITC. We propose that the ITC-induced inhibition of DUB may also explain how ITCs affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of ITCs to treat cancer as well as a variety of other pathological conditions. PMID:26542215

  14. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles

    NASA Astrophysics Data System (ADS)

    Fan, Jianquan; Fang, Gang; Wang, Xiaodan; Zeng, Fang; Xiang, Yufei; Wu, Shuizhu

    2011-11-01

    A targeted anticancer prodrug system was fabricated with 180 nm mesoporous silica nanoparticles (MSNs) as carriers. The anticancer drug doxorubicin (DOX) was conjugated to the particles through an acid-sensitive carboxylic hydrazone linker which is cleavable under acidic conditions. Moreover, folic acid (FA) was covalently conjugated to the particle surface as the targeting ligand for folate receptors (FRs) overexpressed in some cancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systems showed a strong dependence on the environmental pH values. The fluorescent dye FITC was incorporated in the MSNs so as to trace the cellular uptake on a fluorescence microscope. Cellular uptakes by HeLa, A549 and L929 cell lines were tested for FA-conjugated MSNs and plain MSNs respectively, and a much more efficient uptake by FR-positive cancer cells (HeLa) can be achieved by conjugation of folic acid onto the particles because of the folate-receptor-mediated endocytosis. The cytotoxicities for the FA-conjugated MSN prodrug, the plain MSN prodrug and free DOX against three cell lines were determined, and the result indicates that the FA-conjugated MSN prodrug exhibits higher cytotoxicity to FR-positive cells, and reduced cytotoxicity to FR-negative cells. Thus, with 180 nm MSNs as the carriers for the prodrug system, good drug loading, selective targeting and sustained release of drug molecules within targeted cancer cells can be realized. This study may provide useful insights for designing and improving the applicability of MSNs in targeted anticancer prodrug systems.

  15. Berberine hydrochloride: anticancer activity and nanoparticulate delivery system

    PubMed Central

    Tan, Wen; Li, Yingbo; Chen, Meiwan; Wang, Yitao

    2011-01-01

    Background Berberine hydrochloride is a conventional component in Chinese medicine, and is characterized by a diversity of pharmacological effects. However, due to its hydrophobic properties, along with poor stability and bioavailability, the application of berberine hydrochloride was hampered for a long time. In recent years, the pharmaceutical preparation of berberine hydrochloride has improved to achieve good prospects for clinical application, especially for novel nanoparticulate delivery systems. Moreover, anticancer activity and novel mechanisms have been explored, the chance of regulating glucose and lipid metabolism in cancer cells showing more potential than ever. Therefore, it is expected that appropriate pharmaceutical procedures could be applied to the enormous potential for anticancer efficacy, to give some new insights into anticancer drug preparation in Chinese medicine. Methods and results We accessed conventional databases, such as PubMed, Scope, and Web of Science, using “berberine hydrochloride”, “anti-cancer mechanism”, and “nanoparticulate delivery system” as search words, then summarized the progress in research, illustrating the need to explore reprogramming of cancer cell metabolism using nanoparticulate drug delivery systems. Conclusion With increasing research on regulation of cancer cell metabolism by berberine hydrochloride and troubleshooting of issues concerning nanoparticulate delivery preparation, berberine hydrochloride is likely to become a natural component of the nanoparticulate delivery systems used for cancer therapy. Meanwhile, the known mechanisms of berberine hydrochloride, such as decreased multidrug resistance and enhanced sensitivity of chemotherapeutic drugs, along with improvement in patient quality of life, could also provide new insights into cancer cell metabolism and nanoparticulate delivery preparation. PMID:21931477

  16. Identification of anti-cancer chemical compounds using Xenopus embryos.

    PubMed

    Tanaka, Masamitsu; Kuriyama, Sei; Itoh, Go; Kohyama, Aki; Iwabuchi, Yoshiharu; Shibata, Hiroyuki; Yashiro, Masakazu; Aiba, Namiko

    2016-06-01

    Cancer tissues have biological characteristics similar to those observed in embryos during development. Many types of cancer cells acquire pro-invasive ability through epithelial-mesenchymal transition (EMT). Similar processes (gastrulation and migration of cranial neural crest cells [CNCC]) are observed in the early stages of embryonic development in Xenopus during which cells that originate from epithelial sheets through EMT migrate to their final destinations. The present study examined Xenopus embryonic tissues to identify anti-cancer compounds that prevent cancer invasion. From the initial test of known anti-cancer drugs, AMD3100 (an inhibitor of CXCR4) and paclitaxel (a cytoskeletal drug targeting microtubules) effectively prevented migration during gastrulation or CNCC development. Blind-screening of 100 synthesized chemical compounds was performed, and nine candidates that inhibited migration of these embryonic tissues without embryonic lethality were selected. Of these, C-157 (an analog of podophyllotoxin) and D-572 (which is an indole alkaroid) prevented cancer cell invasion through disruption of interphase microtubules. In addition, these compounds affected progression of mitotic phase and induced apoptosis of SAS oral cancer cells. SAS tumors were reduced in size after intratumoral injection of C-157, and peritoneal dissemination of melanoma cells and intracranial invasion of glioma cells were inhibited by C-157 and D-572. When the other analogues of these chemicals were compared, those with subtle effect on embryos were not tumor suppressive. These results suggest that a novel chemical-screening approach based on Xenopus embryos is an effective method for isolating anti-cancer drugs and, in particular, targeting cancer cell invasion and proliferation.

  17. DNA helicases as targets for anti-cancer drugs.

    PubMed

    Sharma, Sudha; Doherty, Kevin M; Brosh, Robert M

    2005-05-01

    DNA helicases have essential roles in nucleic acid metabolism by facilitating cellular processes including replication, recombination, DNA repair, and transcription. The vital roles of helicases in these pathways are reflected by their emerging importance in the maintenance of genomic stability. Recently, a number of human diseases with cancer predisposition have been shown to be genetically linked to a specific helicase defect. This has led researchers to further investigate the roles of helicases in cancer biology, and to study the efficacy of targeting human DNA helicases for anti-cancer drug treatment. Helicase-specific inhibition in malignant cells may compromise the high proliferation rates of cancerous tissues. The role of RecQ helicases in response to replicational stress suggests a molecular target for selectively eliminating malignant tumor cells by a cancer chemotherapeutic agent. Alternate DNA secondary structures such as G-quadruplexes that may form in regulatory regions of oncogenes or G-rich telomere sequences are potential targets for cancer therapy since these sequence-specific structures are proposed to affect gene expression and telomerase activation, respectively. Small molecule inhibitors of G-quadruplex helicases may be used to regulate cell cycle progression by modulating promotor activation or disrupting telomere maintenance, important processes of cellular transformation. The design of small molecules which deter helicase function at telomeres may provide a molecular target since telomerase activity is necessary for the proliferation of numerous immortal cells. Although evidence suggests that helicases are specifically inhibited by certain DNA binding compounds, another area of promise in anti-cancer therapy is siRNA technology. Specific knockdown of helicase expression can be utilized as a means to sensitize oncogenic proliferating cell lines. This review will address these topics in detail and summarize the current avenues of research in

  18. Discovery of Anticancer Agents of Diverse Natural Origin

    PubMed Central

    KINGHORN, A. DOUGLAS; CARCACHE DE BLANCO, ESPERANZA J.; LUCAS, DAVID M.; RAKOTONDRAIBE, H. LIVA; ORJALA, JIMMY; SOEJARTO, D. DOEL; OBERLIES, NICHOLAS H.; PEARCE, CEDRIC J.; WANI, MANSUKH C.; STOCKWELL, BRENT R.; BURDETTE, JOANNA E.; SWANSON, STEVEN M.; FUCHS, JAMES R.; PHELPS, MITCHELL A.; XU, LIHUI; ZHANG, XIAOLI; SHEN, YOUNG YONGCHUN

    2016-01-01

    Recent progress is described in an ongoing collaborative multidisciplinary research project directed towards the purification, structural characterization, chemical modification, and biological evaluation of new potential natural product anticancer agents obtained from a diverse group of organisms, comprising tropical plants, aquatic and terrestrial cyanobacteria, and filamentous fungi. Information is provided on how these organisms are collected and processed. The types of bioassays are indicated in which initial extracts, chromatographic fractions, and purified isolated compounds of these acquisitions are tested. Several promising biologically active lead compounds from each major organism major class investigated are described, and these may be seen to be representative of very wide chemical diversity. PMID:27793884

  19. The interaction of anticancer therapies with tumor-associated macrophages

    PubMed Central

    2015-01-01

    Macrophages are essential components of the inflammatory microenvironment of tumors. Conventional treatment modalities (chemotherapy and radiotherapy), targeted drugs, antiangiogenic agents, and immunotherapy, including checkpoint blockade, all profoundly influence or depend on the function of tumor-associated macrophages (TAMs). Chemotherapy and radiotherapy can have dual influences on TAMs in that a misdirected macrophage-orchestrated tissue repair response can result in chemoresistance, but in other circumstances, TAMs are essential for effective therapy. A better understanding of the interaction of anticancer therapies with innate immunity, and TAMs in particular, may pave the way to better patient selection and innovative combinations of conventional approaches with immunotherapy. PMID:25753580

  20. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs.

    PubMed

    Sánchez-Martínez, Concepción; Gelbert, Lawrence M; Lallena, María José; de Dios, Alfonso

    2015-09-01

    Sustained proliferative capacity is a hallmark of cancer. In mammalian cells proliferation is controlled by the cell cycle, where cyclin-dependent kinases (CDKs) regulate critical checkpoints. CDK4 and CDK6 are considered highly validated anticancer drug targets due to their essential role regulating cell cycle progression at the G1 restriction point. This review provides an overview of recent advances on cyclin dependent kinase inhibitors in general with special emphasis on CDK4 and CDK6 inhibitors and compounds under clinical evaluation. Chemical structures, structure activity relationships, and relevant preclinical properties will be described. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Synthesis and biophysical characterization of chlorambucil anticancer ether lipid prodrugs.

    PubMed

    Pedersen, Palle J; Christensen, Mikkel S; Ruysschaert, Tristan; Linderoth, Lars; Andresen, Thomas L; Melander, Fredrik; Mouritsen, Ole G; Madsen, Robert; Clausen, Mads H

    2009-05-28

    The synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability to form unilamellar liposomes (86-125 nm) and are hydrolyzed by phospholipase A(2), resulting in chlorambucil release. Liposomal formulations of prodrug lipids displayed cytotoxicity toward HT-29, MT-3, and ES-2 cancer cell lines in the presence of phospholipase A(2), with IC(50) values in the 8-36 microM range.

  2. Biomaterials and Emerging Anticancer Therapeutics: Engineering the Microenvironment

    PubMed Central

    Gu, Luo; Mooney, David J

    2016-01-01

    The microenvironment is increasingly recognized to play key roles in cancer, and biomaterials provide a means to engineer microenvironments both in vitro and in vivo to study and manipulate cancer. In vitro cancer models using 3D matrices recapitulate key elements of the tumor microenvironment and have revealed new aspects of cancer biology. Cancer vaccines based on some of the same biomaterials have, in parallel, allowed for the engineering of durable prophylactic and therapeutic anticancer activity in preclinical studies, and some of these vaccines have moved to clinical trials. The impact of biomaterials engineering on cancer treatment is expected to further increase in importance in the years to come. PMID:26694936

  3. Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent.

    PubMed

    Dell'Antone, Paolo

    2009-11-01

    3-bromopyruvate (3-BrPA), a pyruvate analog recently proposed as a possible anticancer drug, was investigated in relation to its capacity to inhibit energy production in fractions obtained from normal cells (rat hepatocytes) and in isolated rat thymocytes . Findings were that main targets of the drug were glyceraldehyde 3-phosphate dehydrogenase, and not hexokinase as suggested for hepatoma cells, and succinate -driven ATP synthesis. Consistently with the above findings, in the normal cells studied (thymocytes ) the drug elicited an important fall in ATP levels. The significance of the present findings in concern with a possible therapeutic usefulness of the drug is discussed.

  4. Quinolones in the Search for New Anticancer Agents.

    PubMed

    Batalha, Pedro Netto; Vieira de Souza, Maria Cecília Bastos; Peña-Cabrera, Eduardo; Cruz, David Cruz; da Costa Santos Boechat, Fernanda

    2016-01-01

    Quinolones have a large bio-dynamicity. Although they are well known as antibacterials, another important activity has been investigated - quinolones are able to inhibit cancer cell proliferation. In view of the great versatility associated with the synthesis of quinolones, many researchers have spent time and resources on the development of new structurally diversified quinolone derivatives with the purpose of finding new possibilities for cancer treatment. In this review some of the most recent advances in the search for new quinolone anticancer agents are highlighted, with focus on naturally occurring substances, bioactive metal complexes, molecular hybrids, photosensitizers and heterocycle condensed quinolones.

  5. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    PubMed

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Thalidomide–A Notorious Sedative to a Wonder Anticancer Drug

    PubMed Central

    Zhou, Shuang; Wang, Fengfei; Hsieh, Tze-Chen; Wu, Joseph M.; Wu, Erxi

    2014-01-01

    In the past 50 years, thalidomide has undergone a remarkable metamorphosis from a notorious drug inducing birth defects into a highly effective therapy for treating leprosy and multiple myeloma. Today, most notably, thalidomide and its analogs have shown efficacy against a wide variety of diseases, including inflammation and cancer. The mechanism underlying its teratogenicity as well as its anticancer activities has been intensively studied. This review summarizes the biological effects and therapeutic uses of thalidomide and its analogs, and the underlying mechanisms of thalidomide’s action with a focus on its suppression of tumor growth. PMID:23931282

  7. Cell Targeting in Anti-Cancer Gene Therapy

    PubMed Central

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene therapy research and its application in relation to anti-cancer treatment. PMID:22977356

  8. Anti-cancer drug delivery using carbohydrate-based polymers.

    PubMed

    Ranjbari, Javad; Mokhtarzadeh, Ahad; Alibakhshi, Abbas; Tabarzad, Maryam; Hejazi, Maryam; Ramezani, Mohammad

    2017-05-05

    Polymeric drug delivery systems in the form of nanocarriers are the most interesting vehicles in anti-cancer therapy. Among different types of biocompatible polymers, carbohydrate-based polymers or polysaccharides are the most common natural polymers with complex structures consisting of long chains of monosaccharide or disaccharide units bound by glycosidic linkages. Their appealing properties such as availability, biocompatibility, biodegradability, low toxicity, high chemical reactivity, facile chemical modification and low cost led to their extensive applications in biomedical and pharmaceutical fields including development of nano-vehicles for delivery of anti-cancer therapeutic agents. Generally, reducing systemic toxicity, increasing short half-lives and tumor localization of agents are the top priorities for a successful cancer therapy. Polysaccharide-based or -coated nanosystems with respect to their advantageous features as well as accumulation in tumor tissue due to enhanced permeation and retention (EPR) effect can provide promising carrier systems for the delivery of noblest impressive agents. Most challenging factor in cancer therapy was the toxicity of anti-cancer therapeutic agents for normal cells and therefore, targeted delivery of these drugs to the site of action can be considered as an interesting therapeutic strategy. In this regard, several polysaccharides exhibited selective affinity for specific cell types, and so they can act as a targeting agent in drug delivery systems. Accordingly, different aspects of polysaccharide applications in cancer treatment or diagnosis were reviewed in this paper. In this regard, after a brief introduction of polysaccharide structure and their importance, the pharmaceutical usage of carbohydrate-based polymers was considered according to the identity of accompanying active pharmaceutical agents. It was also presented that the carbohydrate based polymers have been extensively considered as promising materials

  9. The Valley of Death in anticancer drug development: a reassessment.

    PubMed

    Adams, David J

    2012-04-01

    The past decade has seen an explosion in our understanding of cancer biology and with it many new potential disease targets. Nonetheless, our ability to translate these advances into therapies is poor, with a failure rate approaching 90%. Much discussion has been devoted to this so-called 'Valley of Death' in anticancer drug development, but the problem persists. Could we have overlooked some straightforward explanations to this highly complex problem? Important aspects of tumor physiology, drug pharmacokinetics, preclinical models, drug delivery, and clinical translation are not often emphasized, but could be crucial. This perspective summarizes current views on the problem and suggests feasible alternatives.

  10. Organofluorine Isoselenocyanate Analogues of Sulforaphane: Synthesis and Anticancer Activity.

    PubMed

    Cierpiał, Tomasz; Łuczak, Jerzy; Kwiatkowska, Małgorzata; Kiełbasiński, Piotr; Mielczarek, Lidia; Wiktorska, Katarzyna; Chilmonczyk, Zdzisław; Milczarek, Małgorzata; Karwowska, Katarzyna

    2016-10-07

    A series of previously unknown sulforaphane analogues with organofluorine substituents bonded to the sulfinyl sulfur atom, an isoselenocyanate moiety in place of the isothiocyanate group, the central sulfur atom in various oxidation states, and different numbers of methylene groups in the central alkyl chain were synthesized and fully characterized. All new compounds were tested for their biological properties in vitro and demonstrated much higher anticancer activity against two breast cancer cell lines than that shown by native sulforaphane; at the same time, the compounds were less toxic for normal cells. The influence of the particular structural changes in the molecules on the cytotoxicity is discussed.

  11. Cell-penetrating peptides: strategies for anticancer treatment.

    PubMed

    Raucher, Drazen; Ryu, Jung Su

    2015-09-01

    Cell-penetrating peptides (CPP) provide an efficient strategy for the intracellular delivery of bioactive molecules in various biomedical applications. This review focuses on recent advances in the use of CPPs to deliver anticancer therapeutics and imaging reagents to cancer cells, along with CPP contributions to novel tumor-targeting techniques. CPPs are now used extensively to deliver a variety of therapeutics, despite lacking cell specificity and having a short duration of action. Resolution of these shortcomings to enable increased cancer cell and/or tumor specificity could improve CPP-based drug delivery strategies, expand combined drug delivery possibilities, and strengthen future clinical applications of these peptides.

  12. (-)-Arctigenin as a lead compound for anticancer agent.

    PubMed

    Chen, Gui-Rong; Li, Hong-Fu; Dou, De-Qiang; Xu, Yu-Bin; Jiang, Hong-Shuai; Li, Fu-Rui; Kang, Ting-Guo

    2013-01-01

    (-)-Arctigenin, an important active constituent of the traditional Chinese herb Fructus Arctii, was found to exhibit various bioactivities, so it can be used as a good lead compound for further structure modification in order to find a safer and more potent medicine. (-)-Arctigenin derivatives 1-5 of (-)-arctingen were obtained by modifying with ammonolysis at the lactone ring and sulphonylation at C (6') and C (6″) and O-demethylation at CH3O-C (3'), CH3O-C (3″) and CH3O-C (4″), and their anticancer bioactivities were examined.

  13. p53 family interactions and yeast: together in anticancer therapy.

    PubMed

    Gomes, Sara; Leão, Mariana; Raimundo, Liliana; Ramos, Helena; Soares, Joana; Saraiva, Lucília

    2016-04-01

    The p53 family proteins are among the most appealing targets for cancer therapy. A deeper understanding of the complex interplay that these proteins establish with murine double minute (MDM)2, MDMX, and mutant p53 could reveal new exciting therapeutic opportunities in cancer treatment. Here, we summarize the most relevant advances in the biology of p53 family protein-protein interactions (PPIs), and the latest pharmacological developments achieved from targeting these interactions. We also highlight the remarkable contributions of yeast-based assays to this research. Collectively, we emphasize promising strategies, based on the inhibition of p53 family PPIs, which have expedited anticancer drug development.

  14. Significance of Cancer Stem Cells in Anti-Cancer Therapies

    PubMed Central

    Botelho, Mónica; Alves, Helena

    2017-01-01

    Stem cells are the focus of cutting edge research interest because of their competence both to self-renew and proliferate, and to differentiate into a variety of tissues, offering enticing prospects of growing replacement organs in vitro, among other possible therapeutic implications. It is conceivable that cancer stem cells share a number of biological hallmarks that are different from their normal-tissue counterparts and that these might be taken advantage of for therapeutic benefits. In this review we discuss the significance of cancer stem cells in diagnosis and prognosis of cancer as well as in the development of new strategies for anti-cancer drug design. PMID:28191547

  15. Curcumin AntiCancer Studies in Pancreatic Cancer.

    PubMed

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-07-16

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC.

  16. Genetic Interactions of STAT3 and Anticancer Drug Development

    PubMed Central

    Fang, Bingliang

    2014-01-01

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors. PMID:24662938

  17. New substituted 4H-chromenes as anticancer agents.

    PubMed

    Patil, Shivaputra A; Wang, Jin; Li, Xiaochen S; Chen, Jianjun; Jones, Terreia S; Hosni-Ahmed, Amira; Patil, Renukadevi; Seibel, William L; Li, Wei; Miller, Duane D

    2012-07-01

    As a continuation of our efforts to discover and develop small molecules as anticancer agents, we identified GRI-394837 as an initial hit from similarity search on RGD and its analogs. Based on GRI-394837, we designed and synthesized a focused set of novel chromenes (4a-e) in a single step using microwave method. All five compounds showed activity in the nanomolar range (IC(50): 7.4-640 nM) in two melanoma, three prostate and four glioma cancer cell lines. The chromene 4e is active against all the cell lines and particularly against the A172 human glioma cell line (IC(50): 7.4 nM). Interestingly, in vitro tubulin polymerization assay shows 4e to be a weak tubulin polymerization inhibitor but it shows very strong cytotoxicity in cellular assays, therefore there must be additional unknown mechanism(s) for the anticancer activity. Additionally, the strong antiproliferative activity was verified by one of the selected chromene (4a) by the NCI 60 cell line screen. These results strongly suggest that the novel chromenes could be further developed as a potential therapeutic agent for a variety of aggressive cancers. Copyright © 2012. Published by Elsevier Ltd.

  18. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    PubMed Central

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz; Sęczyk, Łukasz; Złotek, Urszula; Różyło, Renata; Kaszuba, Kinga; Ryszawy, Damian; Czyż, Jarosław

    2014-01-01

    This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention. PMID:25050366

  19. The promising alliance of anti-cancer electrochemotherapy with immunotherapy.

    PubMed

    Calvet, Christophe Y; Mir, Lluis M

    2016-06-01

    Anti-tumor electrochemotherapy, which consists in increasing anti-cancer drug uptake by means of electroporation, is now implanted in about 140 cancer treatment centers in Europe. Its use is supported by the English National Institute for Health and Care Excellence for the palliative treatment of skin metastases, and about 13,000 cancer patients were treated by this technology by the end of 2015. Efforts are now focused on turning this local anti-tumor treatment into a systemic one. Electrogenetherapy, that is the electroporation-mediated transfer of therapeutic genes, is currently under clinical evaluation and has brought excitement to enlarge the anti-cancer armamentarium. Among the promising electrogenetherapy strategies, DNA vaccination and cytokine-based immunotherapy aim at stimulating anti-tumor immunity. We review here the interests and state of development of both electrochemotherapy and electrogenetherapy. We then emphasize the potent beneficial outcome of the combination of electrochemotherapy with immunotherapy, such as immune checkpoint inhibitors or strategies based on electrogenetherapy, to simultaneously achieve excellent local debulking anti-tumor responses and systemic anti-metastatic effects.

  20. Naturally occurring anti-cancer agents targeting EZH2.

    PubMed

    Shahabipour, Fahimeh; Caraglia, Michele; Majeed, Muhammed; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-03-18

    Natural products are considered as promising tools for the prevention and treatment of cancer. The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase unit of polycomb repressor complexes such as PRC2 complex that has oncogenic roles through interference with growth and metastatic potential. Several agents targeting EZH2 has been discovered but they often induce side effects in clinical trials. Recently, EZH2 has emerged as a potential target of natural products with documented anti-cancer effects and this discloses a new scenario for the development of EZH2 inhibitory strategies with agents with low cytotoxic detrimental effects. In fact, several natural products such as curcumin, triptolide, ursolic acid, sulforaphane, davidiin, tanshindiols, gambogic acid, berberine and Alcea rosea have been shown to serve as EZH2 modulators. Mechanisms like inhibition of histone H3K4, H3K27 and H3K36 trimethylation, down-regulation of matrix metalloproteinase expression, competitive binding to the S-adenosylmethionine binding site of EZH2 and modulation of tumor-suppressive microRNAs have been demonstrated to mediate the EZH2-inhibitory activity of the mentioned natural products. This review summarizes the pathways that are regulated by various natural products resulting in the suppression of EZH2, and provides a plausible molecular mechanism for the putative anti-cancer effects of these compounds.

  1. pH-Dependent anticancer drug release from silk nanoparticles

    PubMed Central

    Seib, F. Philipp; Jones, Gregory T.; Rnjak-Kovacina, Jelena; Lin, Yinan; Kaplan, David L.

    2013-01-01

    Silk has traditionally been used as a suture material because of its excellent mechanical properties and biocompatibility. These properties have led to the development of different silk-based material formats for tissue engineering and regenerative medicine. Although there have been a small number of studies about the use of silk particles for drug delivery, none of these studies have assessed the potential of silk to act as a stimulus-responsive anticancer nanomedicine. This report demonstrates that an acetone precipitation of silk allowed the formation of uniform silk nanoparticles (98 nm diameter, polydispersity index 0.109), with an overall negative surface charge (-33.6 ±5.8 mV), in a single step. Silk nanoparticles were readily loaded with doxorubicin (40 ng doxorubicin/μg silk) and showed pH-dependent release (pH 4.5>> 6.0 > 7.4). In vitro studies with human breast cancer cell lines demonstrated that the silk nanoparticles were not cytotoxic (IC50 >120/μ/ml) and that doxorubicin-loaded silk nanoparticles were able to overcome drug resistance mechanisms. Live cell fluorescence microscopy studies showed endocytic uptake and lysosomal accumulation of silk nanoparticles. In summary, the pH-dependent drug release and lysosomal accumulation of silk nanoparticles demonstrated the ability of drug-loaded silk nanoparticles to serve as a lysosomotropic anticancer nanomedicine. PMID:23625825

  2. Comprehensive Review on Betulin as a Potent Anticancer Agent

    PubMed Central

    Kiełbus, Michał; Stepulak, Andrzej

    2015-01-01

    Numerous plant-derived substances, and their derivatives, are effective antitumour and chemopreventive agents. Yet, there are also a plethora of tumour types that do not respond, or become resistant, to these natural substances. This requires the discovery of new active compounds. Betulin (BE) is a pentacyclic triterpene and secondary metabolite of plants abundantly found in the outer bark of the birch tree Betulaceae sp. BE displays a broad spectrum of biological and pharmacological properties, among which the anticancer and chemopreventive activity attract most of the attention. In this vein, BE and its natural and synthetic derivatives act specifically on cancer cells with low cytotoxicity towards normal cells. Although the antineoplastic mechanism of action of BE is not well understood yet, several interesting aspects of BE's interactions are coming to light. This review will summarize the anticancer and chemopreventive potential of BE in vitro and in vivo by carefully dissecting and comparing the doses and tumour lines used in previous studies, as well as focusing on mechanisms underlying its activity at cellular and molecular level, and discuss future prospects. PMID:25866796

  3. Anticancer effects of eleven triterpenoids derived from Antrodia camphorata.

    PubMed

    Lee, Yi-Pang; Tsai, Wan-Chi; Ko, Chih-Jan; Rao, Yerra Koteswara; Yang, Chiung-Ru; Chen, Dar-Ren; Yang, Ming-Hui; Yang, Chi-Chiang; Tzeng, Yew-Min

    2012-07-01

    Eleven derivatives from Antrodia camphorata were isolated in order to evaluate their selective cytotoxicity toward 14 types of human cancer cell and two non-transformed cell types. Among these triterpenoids, methyl antcinate A (MAA) exhibited the most potent spectrum of anticancer effects in KB cells, four different oral cancer cell lines (TSCCa, GNM, OC-2, and OEC-M1), Panc-1, BT474, PC-3, OVCAR-3, HeLa, and U2OS cells with high selectivity indices (CC(50)/IC(50)). The expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and poly(ADP-ribose) polymerase (PARP) of PC-3 cells tested by western blotting suggested that MAA exerts cell death through the caspase-dependent cascade and the Bax-mediated mitochondrial apoptotic pathway, not only on liver and oral cancer cells but on other types as well, including prostate cancer, in a dose-dependent manner. In addition to MAA, methyl antcinate B, dehydroeburicoic acid, and 15α-acetyl-dehydrosulfurenic acid also exhibited significant selective cytotoxic effects to respective cancer cells. Modifications of these triterpenoids may lead to the development of more potent anticancer drugs.

  4. New substituted 4H-chromenes as anticancer agents ☆

    PubMed Central

    Patil, Shivaputra A.; Wang, Jin; Li, Xiaochen S.; Chen, Jianjun; Jones, Terreia S.; Hosni-Ahmed, Amira; Patil, Renukadevi; Seibel, William L.; Li, Wei; Miller, Duane D.

    2013-01-01

    As a continuation of our efforts to discover and develop small molecules as anticancer agents, we identified GRI-394837 as an initial hit from similarity search on RGD and its analogs. Based on GRI-394837, we designed and synthesized a focused set of novel chromenes (4a–e) in a single step using microwave method. All five compounds showed activity in the nanomolar range (IC50: 7.4–640 nM) in two melanoma, three prostate and four glioma cancer cell lines. The chromene 4e is active against all the cell lines and particularly against the A172 human glioma cell line (IC50: 7.4 nM). Interestingly, in vitro tubulin polymerization assay shows 4e to be a weak tubulin polymerization inhibitor but it shows very strong cytotoxicity in cellular assays, therefore there must be additional unknown mechanism(s) for the anticancer activity. Additionally, the strong antiproliferative activity was verified by one of the selected chromene (4a) by the NCI 60 cell line screen. These results strongly suggest that the novel chromenes could be further developed as a potential therapeutic agent for a variety of aggressive cancers. PMID:22608389

  5. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents.

    PubMed

    Ciardiello, F

    2000-01-01

    The epidermal growth factor receptor (EGFR)-driven autocrine growth pathway has been implicated in the development and progression of the majority of the most common human epithelial cancers, making the blockade of this growth pathway a promising anticancer therapeutic strategy. Different approaches have been developed to block EGFR activation and/or function in cancer cells. In the past 15 years, various anti-EGFR blocking monoclonal antibodies (MAb), recombinant proteins containing transforming growth factor-alpha (TGFalpha) or EGF fused to toxins, and tyrosine kinase inhibitors (TKIs) have been generated and their biological and potentially therapeutic properties characterised. One of these agents, MAb IMC-C225, a chimeric human-mouse IgG1 MAb, is the first anti-EGFR agent to enter phase II to III clinical trials in patients with cancer. Several small compounds that block the ligand-induced activation of the EGFR tyrosine kinase have been developed. Among these EGFR-TKIs, various quinazoline-derived agents have been synthesised and have shown promising activity as anticancer agents in preclinical models. ZD1839 ('Iressa'), an anilinoquinazoline, is an orally active, selective EGFR-TKI which is currently under clinical evaluation in phase II to III clinical trials in patients with cancer. Preclinical data for ZD1839 strongly support the possibility of potentiating the antitumour activity of conventional chemotherapy with agents that selectively block the EGFR.

  6. Anticancer activities of selected species of North American lichen extracts.

    PubMed

    Shrestha, Gajendra; El-Naggar, Atif M; St Clair, Larry L; O'Neill, Kim L

    2015-01-01

    Cancer is the second leading cause of human deaths in the USA. Despite continuous efforts to treat cancer over the past 50 years, human mortality rates have not decreased significantly. Natural products, such as lichens, have been good sources of anticancer drugs. This study reports the cytotoxic activity of crude extracts of 17 lichen species against Burkitt's lymphoma (Raji) cells. Out of the 17 lichen species, extracts from 14 species showed cytotoxicity against Raji cells. On the basis of IC50 values, we selected Xanthoparmelia chlorochroa and Tuckermannopsis ciliaris to study the mechanism of cell death. Viability of normal lymphocytes was not affected by the extracts of X. chlorochroa and T. ciliaris. We found that extracts from both lichens decreased proliferation, accumulated cells at the G0 /G1 stage, and caused apoptosis in a dose-dependent manner. Both lichen extracts also caused upregulation of p53. The T. ciliaris extract upregulated the expression of TK1 but X. chlorochroa did not. We also found that usnic, salazinic, constictic, and norstictic acids were present in the extract of X. chlorochroa, whereas protolichesterinic acid in T. ciliaris extracts. Our data demonstrate that lichen extracts merit further research as a potential source of anticancer drugs.

  7. The anticancer effects of Resina Draconis extract on cholangiocarcinoma.

    PubMed

    Wen, Feng; Zhao, Xiangxuan; Zhao, Yun; Lu, Zaiming; Guo, Qiyong

    2016-11-01

    Cholangiocarcinoma (CCA) is a relatively rare, heterogeneous malignant tumor with poor clinical outcomes. Because of high insensitivity to chemotherapy and radiotherapy, there are no effective treatment options. Efforts to identify and develop new agents for prevention and treatment of this deadly disease are urgent. Here, we assessed the apoptotic cytotoxicity of Resina Draconis extract (RDE) using in vitro and in vivo assays and identified the mechanisms underlying antitumor effects of RDE. RDE was obtained via vacuum distillation of Resina Draconis with 75 % ethanol. The ethanol extract could inhibit CCA cell proliferation and trigger apoptotic cell death in both QBC939 and HCCC9810 cell lines in a time- and concentration-dependent manner. RDE treatment resulted in intracellular caspase-8 and poly (ADP-ribose) polymerase protease activation. RDE significantly downregulated antiapoptotic protein survivin expression and upregulated proapoptotic protein Bak expression. RDE also inhibited CCA tumor growth in vivo. We observed that human CCA tissues had much higher survivin expression than did paired adjacent normal tissue. Taken together, the current data suggested that RDE has anticancer effects on CCA, and that RDE could function as a novel anticancer agent to benefit patients with CCA.

  8. Anti-cancer chalcones: Structural and molecular target perspectives.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek

    2015-06-15

    Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.

  9. PET in anti-cancer drug development and therapy.

    PubMed

    Kumar, Rakesh; Lal, Neena

    2007-11-01

    Anti-cancer drug development is a major area of research. Monitoring of response to newer anti-cancer drugs has undergone an evolution from structural imaging modalities to targeting functional metabolic activity at cellular level to better define responsive and non-responsive cancerous tissue. This review article highlights the contribution of Positron Emission Tomography (PET) in this field. PET holds a promising role in the future by providing us information pertaining to the drugs effectiveness early in the course of therapy, so that side effects and expenses can be reduced substantially. PET has been used to measure changes in drug induced metabolism, cellular proliferation and tissue perfusion. Also changes induced by immuno-modulating drugs such as apoptosis, telomere activity, growth factor levels and many more can be studied using specific radiolabelled PET tracers whereas conventional imaging modalities which detect changes in tumor size and residual tissue histopathology may not prove useful in such scenario. In future, most PET scanners will be replaced by Hybrid PET-CT scanners, which provide functional and structural information in the same setting. In addition, PET-CT improves characterization of equivocal lesions and decreases interobserver variability. The most important recent patents concerning role of PET in drug development have been presented.

  10. Reporter nanoparticle that monitors its anticancer efficacy in real time

    PubMed Central

    Kulkarni, Ashish; Rao, Poornima; Natarajan, Siva; Goldman, Aaron; Sabbisetti, Venkata S.; Khater, Yashika; Korimerla, Navya; Chandrasekar, Vineethkrishna; Mashelkar, Raghunath A.; Sengupta, Shiladitya

    2016-01-01

    The ability to monitor the efficacy of an anticancer treatment in real time can have a critical effect on the outcome. Currently, clinical readouts of efficacy rely on indirect or anatomic measurements, which occur over prolonged time scales postchemotherapy or postimmunotherapy and may not be concordant with the actual effect. Here we describe the biology-inspired engineering of a simple 2-in-1 reporter nanoparticle that not only delivers a cytotoxic or an immunotherapy payload to the tumor but also reports back on the efficacy in real time. The reporter nanoparticles are engineered from a novel two-staged stimuli-responsive polymeric material with an optimal ratio of an enzyme-cleavable drug or immunotherapy (effector elements) and a drug function-activatable reporter element. The spatiotemporally constrained delivery of the effector and the reporter elements in a single nanoparticle produces maximum signal enhancement due to the availability of the reporter element in the same cell as the drug, thereby effectively capturing the temporal apoptosis process. Using chemotherapy-sensitive and chemotherapy-resistant tumors in vivo, we show that the reporter nanoparticles can provide a real-time noninvasive readout of tumor response to chemotherapy. The reporter nanoparticle can also monitor the efficacy of immune checkpoint inhibition in melanoma. The self-reporting capability, for the first time to our knowledge, captures an anticancer nanoparticle in action in vivo. PMID:27036008

  11. Protocols for Studying Antimicrobial Peptides (AMPs) as Anticancer Agents.

    PubMed

    Madera, Laurence; Hoskin, David W

    2017-01-01

    Antimicrobial peptides (AMPs) are a class of small cationic peptides that are important for host defense. In a manner that is similar to AMP-mediated destruction of microbial pathogens, certain AMPs can physically associate with the anionic lipid membrane components of cancer cells, resulting in destabilization of the lipid membrane and subsequent peptide binding to intracellular targets, which ultimately leads to the death of the cancer cell. In comparison, normal healthy cells possess a neutral membrane charge and are therefore less affected by AMPs. Based on the selective cytotoxicity of certain AMPs for cancer cells, these peptides represent a potential reservoir of novel anticancer therapeutic agents. The development and improvement of AMPs as anticancer agents requires appropriate methods for determining the effects of these peptides on the viability and function of cancer cells. In this chapter, we describe methods to assess the ability of AMPs to cause cell membrane damage (measured by propidium iodide uptake), apoptosis and/or necrosis (measured by annexin V-FLUOS/propidium iodide staining), and mitochondrial membrane destabilization (measured by 3,3'-dihexyloxacarbocyanine iodide staining), as well as reduced motility (measured by a migration and invasion assay) of cancer cells growing in suspension or as monolayers. We also describe a tubule-forming assay that can be used to assess the effect of AMPs on angiogenesis.

  12. A pharmacological approach for the selection of potential anticancer agents.

    PubMed

    Double, John A

    2004-09-01

    Historically, the process of developing new anticancer agents was largely empirical. Today, because of improvements in our knowledge of the molecular processes involved in the development of cancer, the process of developing new agents is becoming more rational. Researchers from Cancer Research UK, the European Organisation for Research and Treatment of Cancer and the National Cancer Institute have shown that, by undertaking a pharmacological approach to the selection of potential anticancer agents, both meaningful antitumour data and an 80% reduction in animal usage can be obtained. It has also been demonstrated that a new pharmacological tool, the "hollow fibre system", in which tumour cells are grown in biocompatible fibres which are implanted into mice, can be used to produce meaningful antitumour data with pharmacodynamic endpoints. By increasing the amount of data that can be obtained from a single animal and opening up the possibility of eliminating the need for untreated control animals, the hollow fibre system has the potential to make a significant contribution to both reduction and refinement.

  13. Curcumin AntiCancer Studies in Pancreatic Cancer

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  14. Pharmaceutical nanotechnology for oral delivery of anticancer drugs.

    PubMed

    Mei, Lin; Zhang, Zhiping; Zhao, Lingyun; Huang, Laiqiang; Yang, Xiang-Liang; Tang, Jintian; Feng, Si-Shen

    2013-06-15

    Oral chemotherapy is an important topic in the 21st century medicine, which may radically change the current regimen of chemotherapy and greatly improve the quality of life of the patients. Unfortunately, most anticancer drugs, especially those of high therapeutic efficacy such as paclitaxel and docetaxel, are not orally bioavailable due to the gastrointestinal (GI) drug barrier. The molecular basis of the GI barrier has been found mainly due to the multidrug efflux proteins, i.e. P-type glycoproteins (P-gp), which are rich in the epithelial cell membranes in the GI tract. Medical solution for oral chemotherapy is to apply P-gp inhibitors such as cyclosporine A, which, however, suppress the body's immune system either, thus causing medical complication. Pharmaceutical nanotechnology, which is to apply and further develop nanotechnology to solve the problems in drug delivery, may provide a better solution and thus change the way we make drug and the way we take drug. This review is focused on the problems encountered in oral chemotherapy and the pharmaceutical nanotechnology solutions such as prodrugs, nanoemulsions, dendrimers, micelles, liposomes, solid lipid nanoparticles and nanoparticles of biodegradable polymers. Proof-of-concept in vitro and in vivo results for oral delivery of anticancer drugs by the various nanocarriers, which can be found so far from the literature, are provided.

  15. The Potent Oxidant Anticancer Activity of Organoiridium Catalysts**

    PubMed Central

    Liu, Zhe; Romero-Canelón, Isolda; Qamar, Bushra; Hearn, Jessica M; Habtemariam, Abraha; Barry, Nicolas P E; Pizarro, Ana M; Clarkson, Guy J; Sadler, Peter J

    2014-01-01

    Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5-Cpxbiph)Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C∧N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5-Cpxbiph)Ir(phpy)(py)]+ (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy. PMID:24616129

  16. Electronic structural investigations of ruthenium compounds and anticancer prodrugs.

    PubMed

    Harris, Travis V; Szilagyi, Robert K; McFarlane Holman, Karen L

    2009-08-01

    Several Ru(III) compounds are propitious anticancer agents although the precise mechanisms of action remain unknown. With this paper we start to establish an experimental library of X-ray absorption spectroscopy (XAS) data for ten Ru compounds wherein the ligands [Cl(-), dimethyl sulfoxide, imidazole, and indazole] were varied systematically to provide electronic structural information for future use in correlating spectroscopic signatures with chemical properties. Despite the considerable difference in the coordination environments of the complexes studied, the overall differences in spectral features and electronic structures calculated using density functional theory are unexpectedly small. However, the differences in the electronic structure of the Ru(III) prodrugs KP1019 ([IndH][trans-RuCl(4)(Ind)(2)], Ind is indazole) and ICR ([ImH][trans-RuCl(4)(Im)(2)], Im is imidazole) observed in the XAS data show correlation with known chemical and biological activities in addition to the donor abilities of imidazole compared with indazole and reduction potentials of the complexes. These semiquantitative results lay the groundwork for future biochemical studies into the structure-function relationships of Ru-based anticancer drugs.

  17. Monofunctional and Higher-Valent Platinum Anticancer Agents

    PubMed Central

    Johnstone, Timothy C.; Wilson, Justin J.

    2013-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called “non-traditional” platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with an historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo. PMID:23738524

  18. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles.

    PubMed

    Lin, Jun; Huang, Zhihai; Wu, Hao; Zhou, Wei; Jin, Peipei; Wei, Pengfei; Zhang, Yunjiao; Zheng, Fang; Zhang, Jiqian; Xu, Jing; Hu, Yi; Wang, Yanhong; Li, Yajuan; Gu, Ning; Wen, Longping

    2014-01-01

    Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy.

  19. Photoacoustic "nanobombs" fight against undesirable vesicular compartmentalization of anticancer drugs.

    PubMed

    Chen, Aiping; Xu, Chun; Li, Min; Zhang, Hailin; Wang, Diancheng; Xia, Mao; Meng, Gang; Kang, Bin; Chen, Hongyuan; Wei, Jiwu

    2015-10-20

    Undesirable intracellular vesicular compartmentalization of anticancer drugs in cancer cells is a common cause of chemoresistance. Strategies aimed at circumventing this problem may improve chemotherapeutic efficacy. We report a novel photophysical strategy for controlled-disruption of vesicular sequestration of the anticancer drug doxorubicin (DOX). Single-walled carbon nanotubes (SWCNTs), modified with folate, were trapped in acidic vesicles after entering lung cancer cells. Upon irradiation by near-infrared pulsed laser, these vesicles were massively broken by the resulting photoacoustic shockwave, and the vesicle-sequestered contents were released, leading to redistribution of DOX from cytoplasm to the target-containing nucleus. Redistribution resulted in 12-fold decrease of the EC50 of DOX in lung cancer cells, and enhanced antitumor efficacy of low-dose DOX in tumor-bearing mice. Side effects were not observed. These findings provide insights of using nanotechnology to improve cancer chemotherapy, i.e. not only for drug delivery, but also for overcoming intracellular drug-transport hurdles.

  20. Comprehensive review on betulin as a potent anticancer agent.

    PubMed

    Król, Sylwia Katarzyna; Kiełbus, Michał; Rivero-Müller, Adolfo; Stepulak, Andrzej

    2015-01-01

    Numerous plant-derived substances, and their derivatives, are effective antitumour and chemopreventive agents. Yet, there are also a plethora of tumour types that do not respond, or become resistant, to these natural substances. This requires the discovery of new active compounds. Betulin (BE) is a pentacyclic triterpene and secondary metabolite of plants abundantly found in the outer bark of the birch tree Betulaceae sp. BE displays a broad spectrum of biological and pharmacological properties, among which the anticancer and chemopreventive activity attract most of the attention. In this vein, BE and its natural and synthetic derivatives act specifically on cancer cells with low cytotoxicity towards normal cells. Although the antineoplastic mechanism of action of BE is not well understood yet, several interesting aspects of BE's interactions are coming to light. This review will summarize the anticancer and chemopreventive potential of BE in vitro and in vivo by carefully dissecting and comparing the doses and tumour lines used in previous studies, as well as focusing on mechanisms underlying its activity at cellular and molecular level, and discuss future prospects.

  1. Paraptosis in the anti-cancer arsenal of natural products.

    PubMed

    Lee, Dongjoo; Kim, In Young; Saha, Sharmistha; Choi, Kyeong Sook

    2016-06-01

    Given the problems with malignant cancer cells showing innate and acquired resistance to apoptosis, we need alternative means to induce cell death in cancer. Paraptosis is a type of programmed cell death that is characterized by dilation of the endoplasmic reticulum (ER) and/or mitochondria. Although relatively little is known regarding the molecular basis of paraptosis, the underlying mechanism clearly differs from that of apoptosis. Recent studies have shown that various natural products, including curcumin, celastrol, 15d-PGJ2, ophiobolin A, and paclitaxel, demonstrate anti-cancer effects by inducing the paraptosis-associated cell death, which was commonly characterized by vacuolation derived from the ER. Perturbation of cellular proteostasis due to proteasomal inhibition and disruption of sulfhydryl homeostasis, generation of reactive oxygen species, and/or imbalanced homeostasis of ions (e.g., Ca(2+) and K(+)) appear to contribute to the accumulation of misfolded protein and proteotoxicity in this process. Given the pathophysiological importance of paraptosis and the debate regarding the importance of apoptosis in solid tumor, we need to collect the available knowledge regarding paraptosis and suggest future directions in the field. Here, we review the morphological and biochemical features of paraptosis, the natural products that induce paraptosis-associated cell death, their proposed mechanisms, and the significance of paraptosis as a potential anti-cancer strategy. Such work and future clarifications should enable the development of new strategies for preventing cancer and/or combating malignant cancer.

  2. Ascorbic acid does not reduce the anticancer effect of radiotherapy

    PubMed Central

    Hosokawa, Yoichiro; Saga, Ryo; Monzen, Satoru; Terashima, Shingo; Tsuruga, Eichi

    2017-01-01

    The present study hypothesized that the therapeutic use of ascorbic acid (AsA) in combination with radiation may reduce therapy-related side effects and increase the antitumor effects. The aim of the study was to examine the association between the scavenged activity of AsA and the biological anticancer effect of hydroxyl (OH) radicals generated by X-ray irradiation. Cell survival, DNA fragmentation of human leukemia HL60 cells and the amount of OH radicals were investigated following X-ray irradiation and AsA treatment. The number of living cells decreased, and DNA fragmentation increased at AsA concentrations >1 mM. Electron spin resonance spectra revealed that X-ray irradiation generated OH radicals, which were scavenged by AsA at concentrations >75 µM. The AsA concentration inside the cell was 75 µM when cells underwent extracellular treatment with 5 mM AsA, which significantly induced HL60 cell death even without irradiation. No increase in the number of viable HL60 cells was observed following AsA treatment with irradiation when compared to irradiation alone. In conclusion, the disappearance of the radiation anticancer effects with AsA treatment in combination with radiotherapy for cancer treatment is not a cause for concern. PMID:28123717

  3. "Ziziphus jujuba": A red fruit with promising anticancer activities.

    PubMed

    Tahergorabi, Zoya; Abedini, Mohammad Reza; Mitra, Moodi; Fard, Mohammad Hassanpour; Beydokhti, Hossein

    2015-01-01

    Ziziphus jujuba Mill. (Z. jujuba) is a traditional herb with a long history of use for nutrition and the treatment of a broad spectrum of diseases. It grows mostly in South and East Asia, as well as in Australia and Europe. Mounting evidence shows the health benefits of Z. jujuba, including anticancer, anti-inflammation, antiobesity, antioxidant, and hepato- and gastrointestinal protective properties, which are due to its bioactive compounds. Chemotherapy, such as with cis-diamminedichloroplatinium (CDDP, cisplatin) and its derivatives, is widely used in cancer treatment. It is an effective treatment for human cancers, including ovarian cancer; however, drug resistance is a major obstacle to successful treatment. A better understanding of the mechanisms and strategies for overcoming chemoresistance can greatly improve therapeutic outcomes for patients. In this review article, the bioactive compounds present in Z. jujuba are explained. The high prevalence of many different cancers worldwide has recently attracted the attention of many researchers. This is why our research group focused on studying the anticancer activity of Z. jujuba as well as its impact on chemoresistance both in vivo and in vitro. We hope that these studies can lead to a promising future for cancer patients.

  4. Phytochemicals as Anticancer and Chemopreventive Topoisomerase II Poisons

    PubMed Central

    Ketron, Adam C.

    2013-01-01

    Phytochemicals are a rich source of anticancer drugs and chemopreventive agents. Several of these chemicals appear to exert at least some of their effects through interactions with topoisomerase II, an essential enzyme that regulates DNA supercoiling and removes knots and tangles from the genome. Topoisomerase II-active phytochemicals function by stabilizing covalent protein-cleaved DNA complexes that are intermediates in the catalytic cycle of the enzyme. As a result, these compounds convert topoisomerase II to a cellular toxin that fragments the genome. Because of their mode of action, they are referred to as topoisomerase II poisons as opposed to catalytic inhibitors. The first sections of this article discuss DNA topology, the catalytic cycle of topoisomerase II, and the two mechanisms (interfacial vs. covalent) by which different classes of topoisomerase II poisons alter enzyme activity. Subsequent sections discuss the effects of several phytochemicals on the type II enzyme, including demethyl-epipodophyllotoxins (semisynthetic anticancer drugs) as well as flavones, flavonols, isoflavones, catechins, isothiocyanates, and curcumin (dietary chemopreventive agents). Finally, the leukemogenic potential of topoisomerase II-targeted phytochemicals is described. PMID:24678287

  5. Histone Methylation by Temozolomide; A Classic DNA Methylating Anticancer Drug

    PubMed Central

    Pickard, Amanda J.; Diaz, Anthony Joseph; Mura, Hugo; Nyuwen, Lila; Coello, Daniel; Sheva, Saif; Maria, Nava; Gallo, James M.; Wang, Tieli

    2017-01-01

    Background/Aim The alkylating agent, temozolomide (TMZ), is considered the standard-of-care for high-grade astrocytomas –known as glioblastoma multiforme (GBM)– an aggressive type of tumor with poor prognosis. The therapeutic benefit of TMZ is attributed to formation of DNA adducts involving the methylation of purine bases in DNA. We investigated the effects of TMZ on arginine and lysine amino acids, histone H3 peptides and histone H3 proteins. Materials and Methods Chemical modification of amino acids, histone H3 peptide and protein by TMZ was performed in phosphate buffer at physiological pH. The reaction products were examined by mass spectrometry and western blot analysis. Results Our results showed that TMZ following conversion to a methylating cation, can methylate histone H3 peptide and histone H3 protein, suggesting that TMZ exerts its anticancer activity not only through its interaction with DNA, but also through alterations of protein post-translational modifications. Conclusion The possibility that TMZ can methylate histones involved with epigenetic regulation of protein indicates a potentially unique mechanism of action. The study will contribute to the understanding the anticancer activity of TMZ in order to develop novel targeted molecular strategies to advance the cancer treatment. PMID:27354585

  6. Photodynamic Therapy and Its Role in Combined Modality Anticancer Treatment.

    PubMed

    Brodin, N Patrik; Guha, Chandan; Tomé, Wolfgang A

    2015-08-01

    Photodynamic therapy (PDT) is a relatively new modality for anticancer treatment and although the interest has increased greatly in the recent years, it is still far from clinical routine. As PDT consists of administering a nontoxic photosensitizing chemical and subsequently illuminating the tumor with visible light, the treatment is not subject to dose-limiting toxicity, which is the case for established anticancer treatments like radiation therapy or chemotherapy. This makes PDT an attractive adjuvant therapy in a combined modality treatment regimen, as PDT provides an antitumor immune response through its ability to elicit the release of damage-associated molecular patterns and tumor antigens, thus providing an increased antitumor efficacy, potentially without increasing the risk of treatment-related toxicity. There is great interest in the elicited immune response after PDT and the potential of combining PDT with other forms of treatment to provide potent antitumor vaccines. This review summarizes recent studies investigating PDT as part of combined modality treatment, hopefully providing an accessible overview of the current knowledge that may act as a basis for new ideas or systematic evaluations of already promising results. © The Author(s) 2014.

  7. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs.

    PubMed

    Fu, CuiXiang; Lin, XiaoXiao; Wang, Jun; Zheng, XiaoQun; Li, XingYi; Lin, ZhengFeng; Lin, GuangYong

    2016-04-01

    In this paper, an injectable micellar supramolecular hydrogel composed of α-cyclodextrin (α-CD) and monomethoxy poly(ethylene glycol)-b-poly(ε-caplactone) (MPEG5000-PCL5000) micelles was developed by a simple method for hydrophobic anticancer drug delivery. By mixing α-CD aqueous solution and MPEG5000-PCL5000 micelles, an injectable micellar supramolecular hydrogel could be formed under mild condition due to the inclusion complexation between α-CD and MPEG segment of MPEG5000-PCL5000 micelles. The resultant supramolecular hydrogel was thereafter characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of α-CD amount on the gelation time, mechanical strength and thixotropic property was studied by a rheometer. Payload of hydrophobic paclitaxel (PTX) to supramolecular hydrogel was achieved by encapsulation of PTX into MPEG5000-PCL5000 micelles prior mixing with α-CD aqueous solution. In vitro release study showed that the release behavior of PTX from hydrogel could be modulated by change the α-CD amount in hydrogel. Furthermore, such supramolecular hydrogel could enhance the biological activity of encapsulated PTX compared to free PTX, as indicated by in vitro cytotoxicity assay. All these results indicated that the developed micellar supramolecular hydrogel might be a promising injectable drug delivery system for anticancer therapy.

  8. Trial watch: Dendritic cell-based anticancer therapy

    PubMed Central

    Bloy, Norma; Pol, Jonathan; Aranda, Fernando; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fučíková, Jitka; Galon, Jérôme; Tartour, Eric; Spisek, Radek; Dhodapkar, Madhav V.; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics. PMID:25941593

  9. Anti-cancer therapies that utilize cell penetrating peptides.

    PubMed

    Bitler, Benjamin G; Schroeder, Joyce A

    2010-06-01

    Cell penetrating peptides (CPPs) are 9-35mer cationic and/or amphipathic peptides that are rapidly internalized across cell membranes. Importantly, they can be linked to a variety of cargo, including anti-cancer therapeutics, making CPPs an efficient, effective and non-toxic mechanism for drug delivery. In this review, we discuss a number of CPP conjugated therapies (CTTs) that are either patented are in the progress of patenting, and show strong promise for clinical efficacy. The CTTs discussed here target a number of different processes specific to cancer progression, including proliferation, survival and migration. In addition, many of these CTTs also increase sensitivity to current anti-cancer therapy modalities, including radiation and other DNA damaging chemotherapies, thereby decreasing the toxic dosage required for effective treatment. Mechanistically, these CTTs function in a dominant-negative manner by blocking tumor-specific protein-protein interactions with the CPP-conjugated peptide or protein. The treatment of both cell lines and mouse models demonstrates that this method of molecular targeting results in equal if not greater efficacy than current standards of care, including DNA damaging agents and topoisomerase inhibitors. For the treatment of invasive carcinoma, these CTTs have significant clinical potential to deliver highly targeted therapies without sacrificing the patient's quality of life.

  10. New anticancer agents: role of clinical pharmacy services.

    PubMed

    Leveque, Dominique; Delpeuch, Amina; Gourieux, Benedicte

    2014-04-01

    Clinical pharmacy (or clinical pharmacy services) aims to contribute to safe medication use by providing comprehensive management to patients and medical staff, both in the community and the hospital. In oncology, these services include comprehensive medication reviews integrating chemotherapy, supportive care and ambulatory treatment for co-morbidities, medication information for the medical staff and patients, therapeutic drug monitoring (anticancer agents, anti-infective agents, immunosuppressive drugs in recipients of allogeneic stem cell transplantation), supportive care counseling (nutritional support, pain management, chemotherapy side-effects prophylaxis and treatment), elaboration of therapeutic guidelines, optimal use of economic resources. With regard to new anticancer agents, pharmacists both in the community and in hospitals are faced with a growing body of complex information as well as the development of ambulatory treatment (oral agents, subcutaneous administration). Clinical pharmacists with oncology training have the potential to optimize drug use both in the hospital and the community. With the understanding and recognition of drug interactions and side-effects, pharmacists can provide timely interventions and information to health providers, as well as counseling to patients.

  11. Targeting protein-protein interactions as an anticancer strategy.

    PubMed

    Ivanov, Andrei A; Khuri, Fadlo R; Fu, Haian

    2013-07-01

    The emergence and convergence of cancer genomics, targeted therapies, and network oncology have significantly expanded the landscape of protein-protein interaction (PPI) networks in cancer for therapeutic discovery. Extensive biological and clinical investigations have led to the identification of protein interaction hubs and nodes that are critical for the acquisition and maintenance of characteristics of cancer essential for cell transformation. Such cancer-enabling PPIs have become promising therapeutic targets. With technological advances in PPI modulator discovery and validation of PPI-targeting agents in clinical settings, targeting of PPI interfaces as an anticancer strategy has become a reality. Future research directed at genomics-based PPI target discovery, PPI interface characterization, PPI-focused chemical library design, and patient-genomic subpopulation-driven clinical studies is expected to accelerate the development of the next generation of PPI-based anticancer agents for personalized precision medicine. Here we briefly review prominent PPIs that mediate cancer-acquired properties, highlight recognized challenges and promising clinical results in targeting PPIs, and outline emerging opportunities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Semisynthesis and in vitro anticancer activities of andrographolide analogues.

    PubMed

    Jada, Srinivasa Rao; Subur, Genevieve Suseno; Matthews, Charlie; Hamzah, Ahmad Sazali; Lajis, Nordin Haji; Saad, Mohammad Said; Stevens, Malcolm F G; Stanslas, Johnson

    2007-03-01

    The plant Andrographis paniculata found throughout Southeast Asia contains Andrographolide 1, a diterpenoid lactone, which has antitumour activities against in vitro and in vivo breast cancer models. In the present study, we report on the synthesis of andrographolide derivatives, 3,19-isopropylideneandrographolide (2), 14-acetyl-3,19-isopropylideneandrographolide (3) and 14-acetylandrographolide (4), and their in vitro antitumour activities against a 2-cell line panel consisting of MCF-7 (breast cancer cell line) and HCT-116 (colon cancer cell line). Compounds 2 and 4 were also screened at the US National Cancer Institute (NCI) for their activities against a panel of 60 human cancer cell lines derived from nine cancer types. Compound 2 was found to be selective towards leukaemia and colon cancer cells, and compound 4 was selective towards leukaemia, ovarian and renal cancer cells at all the dose-response parameters. Compounds 2 and 4 showed non-specific phase of the cell cycle arrest in MCF-7 cells treated at different intervals with different concentrations. NCI's COMPARE and SOM mechanistic analyses indicated that the anticancer activities of these new class of compounds were not similar to that of standard anticancer agents, suggesting novel mechanism(s) of action.

  13. Reporter nanoparticle that monitors its anticancer efficacy in real time.

    PubMed

    Kulkarni, Ashish; Rao, Poornima; Natarajan, Siva; Goldman, Aaron; Sabbisetti, Venkata S; Khater, Yashika; Korimerla, Navya; Chandrasekar, Vineethkrishna; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2016-04-12

    The ability to monitor the efficacy of an anticancer treatment in real time can have a critical effect on the outcome. Currently, clinical readouts of efficacy rely on indirect or anatomic measurements, which occur over prolonged time scales postchemotherapy or postimmunotherapy and may not be concordant with the actual effect. Here we describe the biology-inspired engineering of a simple 2-in-1 reporter nanoparticle that not only delivers a cytotoxic or an immunotherapy payload to the tumor but also reports back on the efficacy in real time. The reporter nanoparticles are engineered from a novel two-staged stimuli-responsive polymeric material with an optimal ratio of an enzyme-cleavable drug or immunotherapy (effector elements) and a drug function-activatable reporter element. The spatiotemporally constrained delivery of the effector and the reporter elements in a single nanoparticle produces maximum signal enhancement due to the availability of the reporter element in the same cell as the drug, thereby effectively capturing the temporal apoptosis process. Using chemotherapy-sensitive and chemotherapy-resistant tumors in vivo, we show that the reporter nanoparticles can provide a real-time noninvasive readout of tumor response to chemotherapy. The reporter nanoparticle can also monitor the efficacy of immune checkpoint inhibition in melanoma. The self-reporting capability, for the first time to our knowledge, captures an anticancer nanoparticle in action in vivo.

  14. Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds.

    PubMed

    Fujiki, Hirota; Sueoka, Eisaburo; Watanabe, Tatsuro; Suganuma, Masami

    2015-09-01

    In 2008, we reported that 10 Japanese-size cups of green tea daily, supplemented with tablets of green tea extract (GTE), reduced the recurrence of colorectal adenoma by 51.6% in patients after polypectomy. Based on these results, we paid special attention to Japanese cancer patients, who consume green tea every day and are administered anticancer drugs. This encouraged us to study whether the combination of green tea catechins and anticancer drugs has the potential to enhance the efficacy of the drugs. The combination of GTE and NSAIDs synergistically inhibited tumor development in rodents through the activation of the GADD153-DR5-TRAIL apoptotic pathway. Since then, this study was further extended by various investigators to the combinations of EGCG and other green tea catechins with anticancer compounds, the latter of which include NSAIDs, phytochemicals, and anticancer drugs. In order to demonstrate whether diversity of the combinations would generally induce synergistic anticancer effects on numerous human cancer cell lines, we studied the results of 42 in vitro combination experiments and the synergistic inhibition of tumor volume of 13 combination experiments using xenograft mouse models, which were previously reported by other investigators. The various combinations of EGCG and anticancer compounds induced similar synergistic anticancer effects for both in vitro and in vivo experiments, and showed an average reduction in tumor volume by 70.3%. Considering the evidence showing that treatment with EGCG inhibited self-renewal of cancer stem cells, the combination shows a great advantage. Green tea is a cancer preventive for humans, showing a new trend of green tea catechins as synergists with anticancer compounds.

  15. [An attempt to degradation of anticancer drug and odor in the medical environment by photocatalyst].

    PubMed

    Sato, Junya; Kudo, Kenzo; Hirano, Takahiro; Kuwashima, Takayuki; Yamada, Sonpei; Kijihana, Ichiro; Sato, Kazuhiko; Takahashi, Katsuo

    2012-01-01

    Currently, there is a need to reduce the occupational exposure of health care workers to anticancer drugs. Environmental contamination by anticancer drugs and subsequent exposure of health care workers are associated with vaporization of anticancer drugs. Furthermore, carcinomatous unpleasant odor is an additional problem to vaporized anticancer drugs in the field of clinical cancer therapy. We attempted to degrade vaporized anticancer drug and unpleasant odor using a photocatalyst. Cyclophosphamide or unpleasant odors (ammonia, formaldehyde, isovaleric acid, and butyric acid) were vaporized by heating in a closed chamber. Plates of photocatalyst coated with titanium dioxide were placed into the chamber and irradiated by light source. Vaporized cyclophosphamide in the chamber was recovered by bubbling the internal air through acetone and derivatized by trifluoroacetic anhydride for analysis by gas chromatographic-mass spectrometric assay. Vaporized odors were determined using a gas-detector tube, which changed color depending on the concentration. Following activation of the photocatalyst by a light source, the residual amounts of anticancer drug and unpleasant odor components were significantly decreased compared with when the photocatalyst was not activated without a light source. These results indicate that the photocatalysts can accelerate the degradation of vaporized anticancer drugs and odor components. Air-cleaning equipment using a photocatalyst is expected to be useful in improving the QOL of cancer patients experiencing carcinomatous unpleasant odor, and in reducing occupational exposure of health care workers to anticancer drugs.

  16. Feasibility study of a web application for self-report of anticancer treatment toxicities.

    PubMed

    Della Mea, Vincenzo; De Momi, Ivan; Aprile, Giuseppe; Puglisi, Fabio; Menis, Jessica; Casetta, Anica; Bolzonello, Silvia; Fasola, Gianpiero

    2009-01-01

    Collection of collateral effects related to toxicities suffered by patients being exposed to anticancer treatments is of crucial importance in clinical practice but also in oncological research. The present paper describes a web application called PaTOS for self-report of anticancer therapy toxicities, and its evaluation in a preliminary interface analysis and then in a feasibility study.

  17. Synthesis and anticancer activity of bile acid dendrimers with triazole as bridging unit through click chemistry.

    PubMed

    Anandkumar, Devaraj; Rajakumar, Perumal

    2017-09-01

    Triazole-based novel dendrimers with bile acid surface groups have been synthesized through click chemistry by divergent approach and characterized by spectral data. All the dendrimers exhibit excellent anticancer activity. Higher-generation dendrimers exhibit better anticancer activity than the lower-generation dendrimers. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Design, synthesis, and anticancer activity of novel berberine derivatives prepared via CuAAC "click" chemistry as potential anticancer agents.

    PubMed

    Jin, Xin; Yan, Tian-Hua; Yan, Lan; Li, Qian; Wang, Rui-Lian; Hu, Zhen-Lin; Jiang, Yuan-Ying; Sun, Qing-Yan; Cao, Yong-Bing

    2014-01-01

    A series of novel derivatives of phenyl-substituted berberine triazolyls has been designed and synthesized via copper-catalyzed azide-alkyne cycloaddition click chemistry in an attempt to develop antitumor agents. All of the compounds were evaluated for anticancer activity against a panel of three human cancer cell lines, including MCF-7 (breast), SW-1990 (pancreatic), and SMMC-7721 (liver) and the noncancerous human umbilical vein endothelial cell (HUVEC) cell lines. The results indicated that most of the compounds displayed notable anticancer activities against the MCF-7 cells compared with berberine. Among these derivatives, compound 16 showed the most potent inhibitory activity against the SW-1990 and SMMC-7721 cell lines, with half-maximal inhibitory concentration (IC50) values of 8.54±1.97 μM and 11.87±1.83 μM, respectively. Compound 36 exhibited the most potent inhibitory activity against the MCF-7 cell line, with an IC50 value of 12.57±1.96 μM. Compound 16 and compound 36 exhibited low cytotoxicity in the HUVEC cell line, with IC50 values of 25.49±3.24 μM and 30.47±3.47 μM. Furthermore, compounds 14, 15, 16, 17, 18, 32, and 36 exhibited much better selectivity than berberine toward the normal cell line HUVEC.

  19. In vitro evaluation of anticancer effect and neurotoxicity of Styrylpyrone derivative (SPD)

    NASA Astrophysics Data System (ADS)

    Yip, Chee-Wai; Nagaoka, Yasuo; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2016-11-01

    The increasing number of death due to cancer emphasizes the need of novel anticancer agents. Styrylpyrone derivative (SPD) was previously found to have potential anticancer action towards many types of cancer. Some of the SPD-anticancer mechanisms were elucidated as induction of cancer cell apoptosis. However, more understanding on cancer cell type specific action of SPD-anticancer effects needs to be evaluated. HCT-116 cell line, a type of human colon carcinoma, was used to study SPD-anticancer effect. It was found that SPD concentration as low as 0.25 µM was able to inhibit 80% growth of cancer cells. IC50 value of SPD for HCT-116 was found to be 0.038 µM. Neurotoxicity test, carried out to determine the adverse effect of SPD towards nerve cells, gives CC50 value as 4.88 µM, thus concluded it to be a neurotoxic compound.

  20. Current developments of coumarin-based anti-cancer agents in medicinal chemistry.

    PubMed

    Emami, Saeed; Dadashpour, Sakineh

    2015-09-18

    Cancer is one of the leading health hazards and the prominent cause of death in the world. A number of anticancer agents are currently in clinical practice and used for treatment of various kinds of cancers. There is no doubt that the existing arsenal of anticancer agents is insufficient due to the high incidence of side effects and multidrug resistance. In the efforts to develop suitable anticancer drugs, medicinal chemists have focused on coumarin derivatives. Coumarin is a naturally occurring compound and a versatile synthetic scaffold possessing wide spectrum of biological effects including potential anticancer activity. This review article covers the current developments of coumarin-based anticancer agents and also discusses the structure-activity relationship of the most potent compounds.

  1. Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test.

    PubMed

    Hajisharifi, Zohre; Piryaiee, Moien; Mohammad Beigi, Majid; Behbahani, Mandana; Mohabatkar, Hassan

    2014-01-21

    Cancer is an important reason of death worldwide. Traditional cytotoxic therapies, such as radiation and chemotherapy, are expensive and cause severe side effects. Currently, design of anticancer peptides is a more effective way for cancer treatment. So there is a need to develop a computational method for predicting the anticancer peptides. In the present study, two methods have been developed to predict these peptides using support vector machine (SVM) as a powerful machine learning algorithm. Classifiers have been applied based on the concept of Chou's pseudo-amino acid composition (PseAAC) and local alignment kernel. Since a number of HIV-1 proteins have cytotoxic effect, therefore we predicted the anticancer effect of HIV-1 p24 protein with these methods. After the prediction, mutagenicity of 2 anticancer peptides and 2 non-anticancer peptides was investigated by Ames test. Our results show that, the accuracy and the specificity of local alignment kernel based method are 89.7% and 92.68%, respectively. The accuracy and specificity of PseAAC-based method are 83.82% and 85.36%, respectively. By computational analysis, out of 22 peptides of p24 protein, 4 peptides are anticancer and 18 are non-anticancer. In the Ames test results, it is clear that anticancer peptides (ARP788.8 and ARP788.21) are not mutagenic. Therefore the results demonstrate that the described computation methods are useful to identify potential anticancer peptides, which are worthy of further experimental validation and 2 peptides (ARP788.8 and ARP788.21) of HIV-1 p24 protein can be used as new anticancer candidates without mutagenicity.

  2. [Degrading anticancer drugs in the medical environment using a visible light-driven photocatalyst].

    PubMed

    Sato, Junya; Kikuchi, Satomi; Kudo, Kenzo

    2014-01-01

      Occupational exposure to anticancer drugs is recognized as a risk for healthcare workers. Reducing anticancer drugs in the environment is important to prevent the exposure of individuals to anticancer drugs. However, there are currently no effective degrading agents for all anticancer drugs used in clinical settings. We previously reported the resolution of an anticancer drug with the use of a photocatalyst (TiO2), which acts by absorbing ultraviolet light to degrade organic compounds. In this study, we evaluated anticancer drug degradation using a visible light-driven photocatalyst (Cu/WO3). Anticancer drugs [cyclophosphamide (CPA), paclitaxel (PTX), methotrexate (MTX), irinotecan (CPT-11), cytarabine (Ara-C), and 5-fluorouracil (5-FU)], were experimentally deposited on a stainless steel plate. The visible light-driven photocatalytic agent (0.075% Cu/WO3 solution) was sprayed onto the plate, and the plate was then left under a fluorescent lamp for 12 h. The anticancer drugs remaining on the plate were assayed by high-performance liquid chromatography (HPLC). CPA, PTX, MTX, CPT-11, Ara-C, and 5-FU were found to be degraded by up to 37.7%, >99.0%, 57.1%, 54.6%, 69.5%, and 36.3%, respectively. The visible light-driven photocatalyst was therefore confirmed to degrade anticancer drugs under a fluorescent lamp. The ability of the visible light-driven photocatalyst to degrade multiple chemotherapeutic agents without the need for altering the light source could make it a useful tool for reducing anticancer drug pollution in clinical settings.

  3. Biological and therapeutic activities, and anticancer properties of curcumin

    PubMed Central

    PERRONE, DONATELLA; ARDITO, FATIMA; GIANNATEMPO, GIOVANNI; DIOGUARDI, MARIO; TROIANO, GIUSEPPE; LO RUSSO, LUCIO; DE LILLO, ALFREDO; LAINO, LUIGI; LO MUZIO, LORENZO

    2015-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis. PMID:26640527

  4. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    PubMed Central

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  5. Recent advances in oral anticancer agents for colon cancer.

    PubMed

    Shukla, Raj Kumar

    2013-12-01

    To provide therapeutic alternatives to intravenous colon chemotherapy major recent research is focusing on the development of oral chemotherapeutic agents with the intention to improve the quality of life of patients. Initially 5-fluorouracil was most commonly used for the treatment of colorectal cancer but currently oxaliplatin and irinotecan are also available. The majority of these new drugs are pyrimidines and their analogs. The rationale for using oral anticancer agents is discussed and new drugs, such as farnesyl protein transferase inhibitor S-1, rubitecan, ZD9331, MMI-166, eflornithine, sulindac, and oral camptothecin analogs, among others, are presented with the results of their preclinical and clinical developments. This article focuses on the advancement of clinical development and also discusses the relative merits and demerits of these agents. The accelerated approval of these agents by regulatory authorities is supported by survival benefit, response rate and time to progression.

  6. Delivery of anticancer drugs and antibodies into cells using ultrasound

    NASA Astrophysics Data System (ADS)

    Wu, Junru; Pepe, Jason; Rincon, Mercedes

    2005-04-01

    It has been shown experimentally in cell suspensions that pulsed ultrasound (2.0 MHz) could be used to deliver an anti-cancer drug (Adriamycin hydrochloride) into Jurkat lymphocytes and antibodies (goat anti rabbit IgG and anti mouse IgD) into human peripheral blood mononuclear (PBMC) cells and Jurkat lymphocytes assisted by encapsulated microbubbles (Optison). When Adriamycin hydrochloride (ADR) was delivered, the delivery efficiency reached 4.80% and control baseline (no ultrasound and no ADR) was 0.17%. When anti-rabbit IgD was delivered, the efficiencies were 34.90% (control baseline was 1.33%) and 32.50% (control baseline was 1.66%) respectively for Jurkat cells and PBMC. When goat anti rabbit IgG was delivered, the efficiencies were 78.60% (control baseline was 1.60%) and 57.50% (control baseline was 11.30%) respectively for Jurkat cells and PBMC.

  7. Anti-Cancer Activity of Maize Bioactive Peptides

    PubMed Central

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-01-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derivative food products has been associated with a reduced risk of various types of cancer. The main biomolecules in cereals include proteins, peptides, and amino acids, all of which are present in different quantities within the grain. Some of these peptides possess nutraceutical properties and exert biological effects that promote health and prevent cancer. In this review, we report the current status and advances in knowledge regarding the bioactive properties of maize peptides, such as antioxidant, antihypertensive, hepatoprotective, and anti-tumor activities. We also highlight the potential biological mechanisms through which maize bioactive peptides exert anti-cancer activity. Finally, we analyze and emphasize the potential applications of maize peptides. PMID:28680876

  8. Anti-Cancer Activity of Maize Bioactive Peptides.

    PubMed

    Díaz-Gómez, Jorge L; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E; García-Lara, Silverio

    2017-01-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derivative food products has been associated with a reduced risk of various types of cancer. The main biomolecules in cereals include proteins, peptides, and amino acids, all of which are present in different quantities within the grain. Some of these peptides possess nutraceutical properties and exert biological effects that promote health and prevent cancer. In this review, we report the current status and advances in knowledge regarding the bioactive properties of maize peptides, such as antioxidant, antihypertensive, hepatoprotective, and anti-tumor activities. We also highlight the potential biological mechanisms through which maize bioactive peptides exert anti-cancer activity. Finally, we analyze and emphasize the potential applications of maize peptides.

  9. Cardenolides from the Apocynaceae family and their anticancer activity.

    PubMed

    Wen, Shiyuan; Chen, Yanyan; Lu, Yunfang; Wang, Yuefei; Ding, Liqin; Jiang, Miaomiao

    2016-07-01

    Cardenolides, as a group of natural products that can bind to Na(+)/K(+)-ATPase with an inhibiting activity, are traditionally used to treat congestive heart failure. Recent studies have demonstrated that the strong tumor cytotoxicities of cardenolides are mainly due to inducing the tumor cells apoptosis through different expression and cellular location of Na(+)/K(+)-ATPase α-subunits. The leaves, flesh, seeds and juices of numerous plants from the genera of Nerium, Thevetia, Cerbera, Apocynum and Strophanthus in Apocynaceae family, are the major sources of natural cardenolides. So far, 109 cardenolides have been isolated and identified from this family, and about a quarter of them are reported to exhibit the capability to regulate cancer cell survival and death through multiple signaling pathways. In this review, we compile the phytochemical characteristics and anticancer activity of the cardenolides from this family.

  10. A review of economic impact of targeted oral anticancer medications.

    PubMed

    Shen, Chan; Chien, Chun-Ru; Geynisman, Daniel M; Smieliauskas, Fabrice; Shih, Ya-Chen T

    2014-02-01

    There has been a rapid increase in the use of targeted oral anticancer medications (OAMs) in the past decade. As OAMs are often expensive, economic consideration play a significant role in the decision to prescribe, receive or cover them. This paper performs a systematic review of costs or budgetary impact of targeted OAMs to better understand their economic impact on the healthcare system, patients as well as payers. We present our review in a summary table that describes the method and main findings, take into account multiple factors, such as country, analytical approach, cost type, study perspective, timeframe, data sources, study population and care setting when we interpret the results from different papers, and discuss the policy and clinical implications. Our review raises a concern regarding the role of sponsorship on findings of economic analyses as the vast majority of pharmaceutical company-sponsored studies reported cost advantages toward the sponsor's drugs.

  11. Characterization of Anticancer Principles of Celosia argentea (Amaranthaceae)

    PubMed Central

    Rub, Rukhsana A.; Pati, Manohar J.; Siddiqui, Areej A.; Moghe, Alpana S.; Shaikh, Nasreen N.

    2016-01-01

    Background: An Indian origin, Celosia argentea is a weed growing during rainy season traditionally claimed for treating several ailments. Early researches on C. argentea were focused on the anti-cancer screening of seeds, with few reports on aerial parts. Objective: To isolate and characterize bioactive compounds of aerial parts of C. argentea and evaluate their anticancer potential. Materials and Methods: The methanolic aerial part extract was fractionated on column chromatography using chloroform: methanol mixture. The fractions; 80:20 and 95:5 were purified on MCI-HP20 HPLC column. Chromatographically pure compounds were pooled, concentrated and characterized spectroscopically. The compounds were further screened for anti-oxidant and cytotoxic potential. Results: Isolated compounds were confirmed as: (1) Luteolin-7-O-glucoside and (2) phenolic, 1-(4-hydroxy-2-methoxybenzofuran-5-yl)-3-phenylpropane-1,3-dione. Both exhibited significant antioxidant potential with IC50 values of 20.80 and 21.30 μg/ml for 2,2-diphenyl-1-picrylhydrazyl assay (***P < 0.001) and significant Trolox equivalent antioxidant capacity (TEAC) values for 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (*P < 0.05) and ferric reducing antioxidant potential assay (****P < 0.0001). In 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide assay, Compound 1 and 2 showed potent cytotoxicity against SiHa, HCT, MCF-7 cancer cell lines at 20 μg/ml (****P < 0.0001) and 18 μg/ml (**P < 0.01), respectively, without affecting the normal Vero cells. Both compounds enabled maximum reduction in cell viability at 50 μg/ml against HT-29 (***P < 0.001) and MCF-7 cell lines (**P < 0.01) in try pan blue viability assay. Apoptosis occurred at concentrations of 47.33 ± 0.8 μg/ml and 56.28 ± 1.2 μg/ml for Compound 1 and 35.15 ± 0.4 μg/ml and 28.05 ± 0.3 μg/ml for Compound 2 for HT-29 and MCF-7 respectively. Conclusion: A novel anticancer phenolic compound; (1-(4-hydroxy-2-methoxybenzofuran

  12. Characterization of Anticancer Principles of Celosia argentea (Amaranthaceae).

    PubMed

    Rub, Rukhsana A; Pati, Manohar J; Siddiqui, Areej A; Moghe, Alpana S; Shaikh, Nasreen N

    2016-01-01

    An Indian origin, Celosia argentea is a weed growing during rainy season traditionally claimed for treating several ailments. Early researches on C. argentea were focused on the anti-cancer screening of seeds, with few reports on aerial parts. To isolate and characterize bioactive compounds of aerial parts of C. argentea and evaluate their anticancer potential. The methanolic aerial part extract was fractionated on column chromatography using chloroform: methanol mixture. The fractions; 80:20 and 95:5 were purified on MCI-HP20 HPLC column. Chromatographically pure compounds were pooled, concentrated and characterized spectroscopically. The compounds were further screened for anti-oxidant and cytotoxic potential. Isolated compounds were confirmed as: (1) Luteolin-7-O-glucoside and (2) phenolic, 1-(4-hydroxy-2-methoxybenzofuran-5-yl)-3-phenylpropane-1,3-dione. Both exhibited significant antioxidant potential with IC50 values of 20.80 and 21.30 μg/ml for 2,2-diphenyl-1-picrylhydrazyl assay (***P < 0.001) and significant Trolox equivalent antioxidant capacity (TEAC) values for 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (*P < 0.05) and ferric reducing antioxidant potential assay (****P < 0.0001). In 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide assay, Compound 1 and 2 showed potent cytotoxicity against SiHa, HCT, MCF-7 cancer cell lines at 20 μg/ml (****P < 0.0001) and 18 μg/ml (**P < 0.01), respectively, without affecting the normal Vero cells. Both compounds enabled maximum reduction in cell viability at 50 μg/ml against HT-29 (***P < 0.001) and MCF-7 cell lines (**P < 0.01) in try pan blue viability assay. Apoptosis occurred at concentrations of 47.33 ± 0.8 μg/ml and 56.28 ± 1.2 μg/ml for Compound 1 and 35.15 ± 0.4 μg/ml and 28.05 ± 0.3 μg/ml for Compound 2 for HT-29 and MCF-7 respectively. A novel anticancer phenolic compound; (1-(4-hydroxy-2-methoxybenzofuran-5-yl)-3-phenylpropane-1,3-dione), isolated from aerial parts of C

  13. Anticancer Organometallic Osmium(II)-p-cymene Complexes.

    PubMed

    Păunescu, Emilia; Nowak-Sliwinska, Patrycja; Clavel, Catherine M; Scopelliti, Rosario; Griffioen, Arjan W; Dyson, Paul J

    2015-09-01

    Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications.

  14. Anticancer potential of aloes: antioxidant, antiproliferative, and immunostimulatory attributes.

    PubMed

    Harlev, Eli; Nevo, Eviatar; Lansky, Ephraim P; Ofir, Rivka; Bishayee, Anupam

    2012-06-01

    Aloe is a genus of medicinal plants with a notable history of medical use. Basic research over the past couple of decades has begun to reveal the extent of Aloe's pharmaceutical potential, particularly against neoplastic disease. This review looks at Aloe, both the genus and the folk medicine, often being called informally "aloes", and delineates their chemistry and anticancer pharmacognosy. Structures of key compounds are provided, and their pharmacological activities reviewed. Particular attention is given to their free radical scavenging, antiproliferative, and immunostimulatory properties. This review highlights major research directions on aloes, reflecting the enormous potential of natural sources, and of the genus Aloe in particular, in preventing and treating cancer. Georg Thieme Verlag KG Stuttgart · New York.

  15. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    PubMed

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

  16. Pegylated arginine deiminase: a novel anticancer enzyme agent

    PubMed Central

    Feun, Lynn; Savaraj, Niramol

    2011-01-01

    Pegylated arginine deiminase (ADI-PEG20) is a novel anticancer enzyme that produces depletion of arginine, which is a nonessential amino acid in humans. Certain tumours, such as malignant melanoma and hepatocellular carcinoma, are auxotrophic for arginine. These tumours that are sensitive to arginine depletion do not express argininosuccinate synthetase, a key enzyme in the synthesis of arginine from citrulline. ADI-PEG20 inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Phase I – II trials in patients with melanoma and hepatocellular carcinomas have shown the drug to have antitumour activity and tolerable side effects. Large Phase II trials and randomised, controlled Phase III trials are needed to determine its overall efficacy in the treatment of these malignancies and others. PMID:16787144

  17. Anticancer activity of botanical compounds in ancient fermented beverages (review).

    PubMed

    McGovern, P E; Christofidou-Solomidou, M; Wang, W; Dukes, F; Davidson, T; El-Deiry, W S

    2010-07-01

    Humans around the globe probably discovered natural remedies against disease and cancer by trial and error over the millennia. Biomolecular archaeological analyses of ancient organics, especially plants dissolved or decocted as fermented beverages, have begun to reveal the preliterate histories of traditional pharmacopeias, which often date back thousands of years earlier than ancient textual, ethnohistorical, and ethnological evidence. In this new approach to drug discovery, two case studies from ancient Egypt and China illustrate how ancient medicines can be reconstructed from chemical and archaeological data and their active compounds delimited for testing their anticancer and other medicinal effects. Specifically, isoscopoletin from Artemisia argyi, artemisinin from Artemisia annua, and the latter's more easily assimilated semi-synthetic derivative, artesunate, showed the greatest activity in vitro against lung and colon cancers. In vivo tests of these compounds previously unscreened against lung and pancreatic cancers are planned for the future.

  18. Medication adherence to oral anticancer drugs: systematic review.

    PubMed

    Huang, Wen-Chuan; Chen, Chung-Yu; Lin, Shun-Jin; Chang, Chao-Sung

    2016-01-01

    Many studies have demonstrated that non-adherence to oral anticancer drugs (OACDs) has challenged treatment efficacy. Otherwise, few validated tools exist to measure patients' adherence to medication regimen in clinical practice. To synthesize previous studies on adherence by cancer patients taking OACDs, especially in targeted therapy, a systematic search of several electronic databases was conducted. We analyzed existing scales' contents for various cancer patients and outcomes of studies assessing adherence. However, a well-validated scale designed particularly for OACD adherence is still lacking. Most adherence scales used in the studies reviewed contain items focused on measuring patients' medication-taking behavior more than their barriers to medication compliance and beliefs. However, non-adherence to OACDs is a complex phenomenon, and drug-taking barriers and patient beliefs significantly affect patients' non-adherence. To understand the key drivers and predisposing factors for non-adherence, we need to develop a well-validated, multidimensional scale.

  19. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells.

    PubMed

    Torquato, Heron F V; Goettert, Márcia I; Justo, Giselle Z; Paredes-Gamero, Edgar J

    2017-04-01

    Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.

  20. CNIO cancer conference: targeted search for anticancer drugs.

    PubMed

    Fischer, Peter M

    2003-06-01

    The topics discussed at the conference covered many aspects of cancer research, from the genetic search for new targets, target validation and drug discovery, all the way to preclinical and clinical development of oncology drugs. Here the presentations on new metabolic, angiogenic, cell cycle and other molecular targets, as well as recent developments with experimental drugs with action on some of these targets, are summarised. Particular emphasis is placed on the emerging realisation that changes in the metabolic phenotype lie at the heart of cellular transformation. New insights into the biological links between cancer cell metabolism and the balance between survival and death signalling are likely to lead to the identification of a new category of anticancer targets.

  1. [A novel anticancer drug delivery system -DAC-70/CDDP].

    PubMed

    Sugitachi, Akio; Otsuka, Koki; Fujisawa, Kentaro; Itabashi, Tetsuya; Akiyama, Yuji; Sasaki, Akira; Ikeda, Kenichiro; Yoshida, Yasuo; Takamori, Yoshimori; Kurozumi, Seiji; Mori, Takatoshi; Wakabayashi, Go

    2007-11-01

    We devised a muco-adhesive anticancer drug delivery system using 70% deacetylated chitin (DAC-70) and cisplatin (CDDP) and 5-fluorouracil (5-FU). The adhesive force between the system and human colonic mucosa was measured ex vivo, and a release profile of each drug was examined in vitro. Each system demonstrated a stronger muco-adhesive force at 37 degrees C than that of 25 degrees C. The CDDP-loaded system showed a sustained release of the drug while the 5-FU-loaded system exhibited an initial bursting of the agent. We presume that the release profile of CDDP and 5-FU is closely related to both degradability of the chitin and interactions between the chitin and each drug. The DAC-70/CDDP system would be clinically promising in loco-regional cancer chemotherapy.

  2. Photodynamic therapy influence on anti-cancer immunity

    NASA Astrophysics Data System (ADS)

    Isaeva, O. G.; Osipov, V. A.

    2009-10-01

    The system of partial differential equations describing tumor-immune dynamics with angiogenesis taken into account is presented. For spatially homogeneous case, the steady state analysis of the model is carried out. The effects of single photodynamic impact are numerically simulated. In the case of strong immune response we found that the photodynamic therapy (PDT) gives rise to the substantial shrinkage of tumor size which is accompanied by the increase of IL-2 concentration. On the contrary, the photodynamic stimulation of weak immune response is shown to be insufficient to reduce the tumor. These findings indicate the important role of anti-cancer immune response in the long-term tumor control after PDT.

  3. Photodynamic therapy influence on anti-cancer immunity

    NASA Astrophysics Data System (ADS)

    Isaeva, O. G.; Osipov, V. A.

    2010-02-01

    The system of partial differential equations describing tumor-immune dynamics with angiogenesis taken into account is presented. For spatially homogeneous case, the steady state analysis of the model is carried out. The effects of single photodynamic impact are numerically simulated. In the case of strong immune response we found that the photodynamic therapy (PDT) gives rise to the substantial shrinkage of tumor size which is accompanied by the increase of IL-2 concentration. On the contrary, the photodynamic stimulation of weak immune response is shown to be insufficient to reduce the tumor. These findings indicate the important role of anti-cancer immune response in the long-term tumor control after PDT.

  4. In silico evaluation of TERT inhibition by anticancer drugs.

    PubMed

    Mahendar, Porika; Sirisha, Kalam; Kulandaivelu, Umasankar; Shankar, Prakhya Laxmi Jaya; Radhika, Tippani; Sadanandam, Abbagani

    2012-10-01

    The activation of telomerase represents an early step in carcinogenesis. Increased telomerase expression in malignant tumors suggests that telomerase inactivation may represent a potential chemotherapeutic target. In this work, existing anticancer drugs were docked against telomerase reverse transcriptase (TERT) using a Lamarckian genetic algorithm (LGA). Autodock's scoring function was applied to each of the molecules in order to identify the inhibitor with the strongest pharmacological action. The structural insights provided by this study regarding binding poses and possible interactions, free energies of binding, and drug scores aided in the identification of potential inhibitory compounds. The ranks of the various ligands investigated were based on the final docked energy values. Among nine selected compounds, vindesine, temsirolimus, and cyclosporine were found to be more potent TERT inhibitors than the standard inhibitor, curcumin.

  5. Anticancer Properties of Psidium guajava - a Mini-Review.

    PubMed

    Correa, Mariana Goncalves; Couto, Jessica Soldani; Teodoro, Anderson Junger

    2016-01-01

    Cancer is a complex disease caused by a progressive accumulation of multiple genetic mutations. Consumption of fruits is associated with lower risk of several cancers, which is mainly associated to their phytochemical content. The use of functional foods and chemopreventive compounds seems to contribute in this process, acting by mechanisms of antioxidant, anti-inflammatory, anti-angiogenic and hormonal. The Psidium Guajava has high potential functional related to pigments who are involved in the process of cancer prevention by having antioxidant activity. The aim of the present review is to expose some chemical compounds from P. Guajava fractions and their association with anti-carcinogenic function. The evidences supports the theory of anticancer properties of P. Guajava, although the mechanisms are still not fully elucidated, but may include scavenging free radicals, regulation of gene expression, modulation of cellular signalling pathways including those involved in DNA damage repair, cell proliferation and apoptosis.

  6. Topoisomerase as target for antibacterial and anticancer drug discovery.

    PubMed

    Kathiravan, Muthu K; Khilare, Madhavi M; Nikoomanesh, Kiana; Chothe, Aparna S; Jain, Kishor S

    2013-06-01

    DNA topoisomerases comprise a major aspect of basic cellular biology and are molecular targets for a variety of drugs like antibiotics, antibacterials and anticancer drugs. They act by inhibiting the topoisomerase molecule from relegating DNA strands after cleavage and convert the topoisomerases molecule into a DNA damaging agent. Though drugs of various categories acting through different mechanisms are available for the treatment, there are still problems associated with the currently available drugs. Therefore, Structural biologists, Structural chemists and Medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase and drug treating each class along with their structural requirement and activity. The emphasis has been laid in particular on the new potential heterocyles and the possible treatments as well as the current ongoing research status in the field of topoisomerase as dual targeting.

  7. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast

    PubMed Central

    Li, Yanran; Smolke, Christina D.

    2016-01-01

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4′-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery. PMID:27378283

  8. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery.

    PubMed

    Sharma, Ashok Kumar; Gothwal, Avinash; Kesharwani, Prashant; Alsaab, Hashem; Iyer, Arun K; Gupta, Umesh

    2017-02-01

    Dendrimers are novel nanoarchitectures with unique properties including a globular 3D shape, a monodispersed unimicellar nature and a nanometric size range. The availability of multiple peripheral functional groups and tunable surface engineering enable the facile modification of the dendrimer surface with different therapeutic drugs, diagnostic agents and targeting ligands. Drug encapsulation, and solubilizing and passive targeting also equally contribute to the therapeutic use of dendrimers. In this review, we highlight recent advances in the delivery of anticancer drugs using dendrimers, as well as other biomedical and diagnostic applications. Taken together, the immense potential and utility of dendrimers are envisaged to have a significant positive impact on the growing arena of drug delivery and targeting.

  9. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast.

    PubMed

    Li, Yanran; Smolke, Christina D

    2016-07-05

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4'-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery.

  10. Increased Oxidative Stress as a Selective Anticancer Therapy

    PubMed Central

    2015-01-01

    Reactive oxygen species (ROS) are closely related to tumorgenesis. Under hypoxic environment, increased levels of ROS induce the expression of hypoxia inducible factors (HIFs) in cancer stem cells (CSCs), resulting in the promotion of the upregulation of CSC markers, and the reduction of intracellular ROS level, thus facilitating CSCs survival and proliferation. Although the ROS level is regulated by powerful antioxidant defense mechanisms in cancer cells, it is observed to remain higher than that in normal cells. Cancer cells may be more sensitive than normal cells to the accumulation of ROS; consequently, it is supposed that increased oxidative stress by exogenous ROS generation therapy has an effect on selectively killing cancer cells without affecting normal cells. This paper reviews the mechanisms of redox regulation in CSCs and the pivotal role of ROS in anticancer treatment. PMID:26273420

  11. New gold carbene complexes as candidate anticancer agents.

    PubMed

    Pratesi, Alessandro; Cirri, Damiano; Đurović, Mirjana D; Pillozzi, Serena; Petroni, Giulia; Bugarčić, Živadin D; Messori, Luigi

    2016-10-01

    Three structurally related gold(I) carbene complexes with bulky hydrophobic ligands i.e. 1-3 were investigated in solution for further consideration as candidate anticancer agents. Cytotoxic assays were subsequently conducted on bone marrow-derived preosteoclast cell line of human origin (FLG 29.1) and human colon cancer cells (HCT-116). A far greater cytotoxic activity was measured for compound 1 against HCT-116 cells compared to 2 and 3; conversely, all compounds were highly and similarly active against FLG 29.1 cells. Results obtained for the reaction of complexes 1 and 2 with RNase A documented the occurrence of a weak interaction with this model protein and the formation of a tiny amount of the corresponding adduct. Moreover, a certain reactivity of the complex 2 was also detected toward GSH. The general implications of the obtained results are discussed.

  12. Isoflavones from Calpurnia Aurea subsp. aurea and their anticancer activity.

    PubMed

    Korir, Erick; Kiplimo, Joyce J; Crouch, Neil R; Moodley, Nivan; Koorbanally, Neil A

    2014-01-01

    Calpurnia aurea is an African medicinal plant used in many countries in Africa to treat a range of medical conditions or disorders. Extracts of the plant were shown to be active in antibacterial and antioxidant assays as well as against lice, ticks and maggots. The aim of the study was to isolate the phytochemical constituents from the plant and to test them in appropriate bioassays dependent on the compounds isolated in order to provide a rationale for the use of the plant in ethno-medicine or to provide some information on its constituents. The stem and bark of the plant was extracted with organic solvents of varying polarity and the extracts separated and purified using column chromatography. The isolated compounds were identified by NMR spectroscopy and the compounds were tested for their in vitro anticancer activity against breast (MCF7), renal (TK10) and melanoma (UACC62) human cell lines using an in house method developed at the CSIR, South Africa. The isoflavones, 4',5,7-trihydroxyisoflavone (1), 7,3'-dihydroxy-5'-methoxyisoflavone (2), 7-hydroxy-4',8-dimethoxyisoflavone (3), 7-acetoxy-4',8-dimethoxyisoflavone (4) and 3',7-dihydroxy-4',8-dimethoxyisoflavone (5), a pterocarpan (3-acetoxy-9-methoxypterocarpan) and a quinolizidine alkaloid (calpurnine) were isolated from the stem and bark of Calpurnia aurea. The tetrasubstituted isoflavone 5 was found to be the most active in the three cell lines amongst all the compounds tested. This was followed by trisubstituted isoflavone 2. The isoflavones showed moderate activity against the renal, melanoma and breast cancer cell lines tested against, with the isoflavones 2 and 5 showing the best activity of the compounds tested. These isoflavones may have a synergistic effect with other anticancer drugs.

  13. Screening of anticancer activity from agarwood essential oil.

    PubMed

    Hashim, Yumi Zuhanis Has-Yun; Phirdaous, Abbas; Azura, Amid

    2014-07-01

    Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved. The aim of this current study was therefore to investigate the potential anticancer properties of agarwood essential oil obtained from distillation of agarwood (resin) towards MCF-7 breast cancer cells. The essential oil was subjected to screening assays namely cell viability, cell attachment and sulforhodamine B (SRB)-based cytotoxicity assay to determine the IC50 value. The agarwood essential oil caused reduction of the cell number in both the cell viability and attachment assay suggesting a cumulative effect of the cell killing, inhibition of the cell attachment and or causing cells to detach. The agarwood essential oil showed IC50 value of 900 μg/ml towards the cancer cells. The agarwood essential oil exhibited anticancer activity which supports the traditional use against the inflammatory-associated diseases. This warrants further investigation towards the development of alternative remedy towards cancer.

  14. Cullin-RING Ligases as Attractive Anti-cancer Targets

    PubMed Central

    Zhao, Yongchao; Sun, Yi

    2014-01-01

    The ubiquitin-proteasome system (UPS) promotes the timely degradation of short-lived proteins with key regulatory roles in a vast array of biological processes, such as cell cycle progression, oncogenesis and genome integrity. Thus, abnormal regulation of UPS disrupts the protein homeostasis and causes many human diseases, particularly cancer. Indeed, the FDA approval of bortezomib, the first class of general proteasome inhibitor, for the treatment of multiple myeloma, demonstrated that the UPS can be an attractive anti-cancer target. However, normal cell toxicity associated with bortezomib, resulting from global inhibition of protein degradation, promotes the focus of drug discovery efforts on targeting enzymes upstream of the proteasome for better specificity. E3 ubiquitin ligases, particularly those known to be activated in human cancer, become an attractive choice. Cullin-RING Ligases (CRLs) with multiple components are the largest family of E3 ubiquitin ligases and are responsible for ubiquitination of ~20% of cellular proteins degraded through UPS. Activity of CRLs is dynamically regulated and requires the RING component and cullin neddylation. In this review, we will introduce the UPS and CRL E3s and discuss the biological processes regulated by each of eight CRLs through substrate degradation. We will further discuss how cullin neddylation controls CRL activity, and how CRLs are being validated as the attractive cancer targets by abrogating the RING component through genetic means and by inhibiting cullin neddylation via MLN4924, a small molecule indirect inhibitor of CRLs, currently in several Phase I clinical trials. Finally, we will discuss current efforts and future perspectives on the development of additional inhibitors of CRLs by targeting E2 and/or E3 of cullin neddylation and CRL-mediated ubiquitination as potential anti-cancer agents. PMID:23151137

  15. Acute Hyperglycemia Associated with Anti-Cancer Medication

    PubMed Central

    Hwangbo, Yul

    2017-01-01

    Hyperglycemia during chemotherapy occurs in approximately 10% to 30% of patients. Glucocorticoids and L-asparaginase are well known to cause acute hyperglycemia during chemotherapy. Long-term hyperglycemia is also frequently observed, especially in patients with hematologic malignancies treated with L-asparaginase-based regimens and total body irradiation. Glucocorticoid-induced hyperglycemia often develops because of increased insulin resistance, diminished insulin secretion, and exaggerated hepatic glucose output. Screening strategies for this condition include random glucose testing, hemoglobin A1c testing, oral glucose loading, and fasting plasma glucose screens. The management of hyperglycemia starts with insulin or sulfonylurea, depending on the type, dose, and delivery of the glucocorticoid formulation. Mammalian target of rapamycin (mTOR) inhibitors are associated with a high incidence of hyperglycemia, ranging from 13% to 50%. Immunotherapy, such as anti-programmed death 1 (PD-1) antibody treatment, induces hyperglycemia with a prevalence of 0.1%. The proposed mechanism of immunotherapy-induced hyperglycemia is an autoimmune process (insulitis). Withdrawal of the PD-1 inhibitor is the primary treatment for severe hyperglycemia. The efficacy of glucocorticoid therapy is not fully established and the decision to resume PD-1 inhibitor therapy depends on the severity of the hyperglycemia. Diabetic patients should achieve optimized glycemic control before initiating treatment, and glucose levels should be monitored periodically in patients initiating mTOR inhibitor or PD-1 inhibitor therapy. With regard to hyperglycemia caused by anti-cancer therapy, frequent monitoring and proper management are important for promoting the efficacy of anti-cancer therapy and improving patients' quality of life. PMID:28345313

  16. Screening of anticancer activity from agarwood essential oil

    PubMed Central

    Hashim, Yumi Zuhanis Has-Yun; Phirdaous, Abbas; Azura, Amid

    2014-01-01

    Background: Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved. Objective: The aim of this current study was therefore to investigate the potential anticancer properties of agarwood essential oil obtained from distillation of agarwood (resin) towards MCF-7 breast cancer cells. Materials and Methods: The essential oil was subjected to screening assays namely cell viability, cell attachment and sulforhodamine B (SRB)-based cytotoxicity assay to determine the IC50 value. Results: The agarwood essential oil caused reduction of the cell number in both the cell viability and attachment assay suggesting a cumulative effect of the cell killing, inhibition of the cell attachment and or causing cells to detach. The agarwood essential oil showed IC50 value of 900 μg/ml towards the cancer cells. Conclusion: The agarwood essential oil exhibited anticancer activity which supports the traditional use against the inflammatory-associated diseases. This warrants further investigation towards the development of alternative remedy towards cancer. PMID:25002797

  17. T-oligo as an anticancer agent in colorectal cancer

    SciTech Connect

    Wojdyla, Luke; Stone, Amanda L.; Sethakorn, Nan; Uppada, Srijayaprakash B.; Devito, Joseph T.; Bissonnette, Marc; Puri, Neelu

    2014-04-04

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.

  18. Evolutionarily stable anti-cancer therapies by autologous cell defection.

    PubMed

    Archetti, Marco

    2013-01-01

    Game theory suggests an anti-cancer treatment based on the use of modified cancer cells that disrupt cooperation within the tumor. Cancer cells are harvested from the patient, the genes for the production of essential growth factors are knocked out in vitro and the cells are then reinserted in the tumor, where they lead to its collapse. Current anti-cancer drugs and treatments based on gene therapy are prone to the evolution of resistance, because cancer is a process of clonal selection: resistant cell lines have a selective advantage and therefore increase in frequency, eventually conferring resistance to the whole tumor and leading to relapse. An effective treatment must be evolutionarily stable, that is, immune to the invasion of resistant mutant cells. This study shows how such a treatment can be achieved by autologous cell therapy using modified cancer cells, knocked out for genes coding for diffusible factors like growth factors. The evolutionary dynamics of a population of cells producing diffusible factors are analyzed using a nonlinear public goods game in a structured population in which the interaction neighborhood and the update neighborhood are decoupled. The analysis of the dynamics of the system reveals what interventions can drive the population to a stable equilibrium in which no diffusible factors are produced. A treatment based on autologous knockout cell therapy can be designed to lead to the spontaneous collapse of a tumor, without targeting directly the cancer cells, their growth factors or their receptors. Critical parameters that can make the therapy effective are identified. Concepts from evolutionary game theory and mechanism design, some of which are counterintuitive, can be adopted to optimize the treatment. Although it shares similarities with other approaches based on gene therapy and RNA interference, the method suggested here is evolutionarily stable under certain conditions. This method, named autologous cell defection, can be

  19. Evolutionarily stable anti-cancer therapies by autologous cell defection

    PubMed Central

    Archetti, Marco

    2013-01-01

    Game theory suggests an anti-cancer treatment based on the use of modified cancer cells that disrupt cooperation within the tumor. Cancer cells are harvested from the patient, the genes for the production of essential growth factors are knocked out in vitro and the cells are then reinserted in the tumor, where they lead to its collapse. Background and objectives: Current anti-cancer drugs and treatments based on gene therapy are prone to the evolution of resistance, because cancer is a process of clonal selection: resistant cell lines have a selective advantage and therefore increase in frequency, eventually conferring resistance to the whole tumor and leading to relapse. An effective treatment must be evolutionarily stable, that is, immune to the invasion of resistant mutant cells. This study shows how such a treatment can be achieved by autologous cell therapy using modified cancer cells, knocked out for genes coding for diffusible factors like growth factors. Methodology: The evolutionary dynamics of a population of cells producing diffusible factors are analyzed using a nonlinear public goods game in a structured population in which the interaction neighborhood and the update neighborhood are decoupled. The analysis of the dynamics of the system reveals what interventions can drive the population to a stable equilibrium in which no diffusible factors are produced. Results: A treatment based on autologous knockout cell therapy can be designed to lead to the spontaneous collapse of a tumor, without targeting directly the cancer cells, their growth factors or their receptors. Critical parameters that can make the therapy effective are identified. Concepts from evolutionary game theory and mechanism design, some of which are counterintuitive, can be adopted to optimize the treatment. Conclusions and implications: Although it shares similarities with other approaches based on gene therapy and RNA interference, the method suggested here is evolutionarily stable under

  20. Chrysin-benzothiazole conjugates as antioxidant and anticancer agents.

    PubMed

    Mistry, Bhupendra M; Patel, Rahul V; Keum, Young-Soo; Kim, Doo Hwan

    2015-12-01

    7-(4-Bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one, obtained from chrysin with 1,4-dibromobutane, was combined with a wide range of 6-substituted 2-aminobenzthiazoles, which had been prepared from the corresponding anilines with potassium thiocyanate. Free radical scavenging efficacies of newer analogues were measured using DPPH and ABTS assays, in addition to the assessment of their anticancer activity against cervical cancer cell lines (HeLa and CaSki) and ovarian cancer cell line (SK-OV-3) implementing the SRB assay. Cytotoxicity of titled compounds was checked using Madin-Darby canine kidney (MDCK) non-cancer cell line. Overall, 6a-r indicated remarkable antioxidant power as DPPH and ABTS(+) scavengers; particularly the presence of halogen(s) (6g, 6h, 6j-6l) was favourable with IC50 values comparable to the control ascorbic acid. Unsubstituted benzothiazole ring favored the activity of resultant compounds (6a and 6r) against HeLa cell line, whereas presence of chlorine (6g) or a di-fluoro group (6k) was a key to exert strong action against CaSki. Moreover, a mono-fluoro (6j) and a ketonic functionality (6o) were beneficial to display anticipated anticancer effects against ovarian cancer cell line SK-OV-3. The structural assignments of the new products were done on the basis of IR, (1)H NMR, (13)C NMR spectroscopy and elemental analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Anticancer activity of structurally related ruthenium(II) cyclopentadienyl complexes.

    PubMed

    Côrte-Real, Leonor; Mendes, Filipa; Coimbra, Joana; Morais, Tânia S; Tomaz, Ana Isabel; Valente, Andreia; Garcia, M Helena; Santos, Isabel; Bicho, Manuel; Marques, Fernanda

    2014-08-01

    A set of structurally related Ru(η(5)-C5H5) complexes with bidentate N,N'-heteroaromatic ligands have been evaluated as prospective metallodrugs, with focus on exploring the uptake and cell death mechanisms and potential cellular targets. We have extended these studies to examine the potential of these complexes to target cancer cell metabolism, the energetic-related phenotype of cancer cells. The observations that these complexes can enter cells, probably facilitated by binding to plasma transferrin, and can be retained preferentially at the membranes prompted us to explore possible membrane targets involved in cancer cell metabolism. Most malignant tumors present the Warburg effect, which consists in increasing glycolytic rates with production of lactate, even in the presence of oxygen. The reliance of glycolytic cancer cells on trans-plasma-membrane electron transport (TPMET) systems for their continued survival raises the question of their appropriateness as a target for anticancer drug development strategies. Considering the interesting findings that some anticancer drugs in clinical use are cytotoxic even without entering cells and can inhibit TPMET activity, we investigated whether redox enzyme modulation could be a potential mechanism of action of antitumor ruthenium complexes. The results from this study indicated that ruthenium complexes can inhibit lactate production and TPMET activity in a way dependent on the cancer cell aggressiveness and the concentration of the complex. Combination approaches that target cell metabolism (glycolytic inhibitors) as well as proliferation are needed to successfully cure cancer. This study supports the potential use of some of these ruthenium complexes as adjuvants of glycolytic inhibitors in the treatment of aggressive cancers.

  2. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.

    PubMed

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV-vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Aurora kinase family: a new target for anticancer drug.

    PubMed

    Macarulla, Teresa; Ramos, Francisco Javier; Tabernero, Josep

    2008-06-01

    Aurora kinases (AK) are the name given to a family of Serine/threonine (Ser/Thr) protein kinases. These proteins represent a novel family of kinases crucial for cell cycle control. The cell division process is one of the hallmarks of every living organism. Within the complete cell-cycle process, mitosis constitutes one of the most critical steps. The main purpose of mitosis is to segregate sister chromatics into two daughters cells. It is a complex biologic process, and errors in this mechanism can lead to genomic instability, a condition associated with tumorigenesis. This process is tightly regulated by several proteins, some of them acting as check-points that ultimately ensure the correct temporal and spatial coordination of this critical biologic process. Among this network of mitotic regulators, AK play a critical role in cellular division by controlling chromatid segregation. Three AK family members have been identified in mammalian cells: A, B, and C. These proteins are implicated in several vital events in mitosis. In experimental models, overexpression of AK can induce spindle defects, chromosome mis-segregation, and malignant transformation. Conversely, downregulation of AK expression cause mitotic arrest and apoptosis in tumor cell lines. The expression levels of human AK are increased in certain types of cancer including breast, colon, pancreatic, ovarian, and gastric tumors. This observation has lent an interest to this family of kinases as potential drug targets for development of new anticancer therapies. This review focuses in recent progress in the role of AK in tumorogenesis and the development of new anticancer drug against AK proteins. This manuscript also includes some relevant patents as well.

  4. Anticancer activity of an essential oil from Cymbopogon flexuosus.

    PubMed

    Sharma, Parduman R; Mondhe, Dilip M; Muthiah, Shanmugavel; Pal, Harish C; Shahi, Ashok K; Saxena, Ajit K; Qazi, Ghulam N

    2009-05-15

    The essential oil from a lemon grass variety of Cymbopogon flexuosus was studied for its in vitro cytotoxicity against twelve human cancer cell lines. The in vivo anticancer activity of the oil was also studied using both solid and ascitic Ehrlich and Sarcoma-180 tumor models in mice. In addition, the morphological changes in tumor cells were studied to ascertain the mechanism of cell death. The in vitro cytotoxicity studies showed dose-dependent effects against various human cancer cell lines. The IC(50) values of oil ranged from 4.2 to 79 microg/ml depending upon the cell line. In 502713 (colon) and IMR-32 (neuroblastoma) cell lines, the oil showed highest cytotoxicity with IC(50) value of 4.2 and 4.7 microg/ml, respectively. Intra-peritoneal administration of the oil significantly inhibited both ascitic and solid forms of Ehrlich and Sarcoma-180 tumors in a dose-dependent manner. The tumor growth inhibition at 200 mg/kg (i.p.) of the oil observed with both ascitic and solid tumor forms of Ehrlich Ascites carcinoma was 97.34 and 57.83 respectively. In case of Sarcoma-180, the growth inhibition at similar dose of oil was 94.07 and 36.97% in ascitic and solid forms respectively. Morphological studies of the oil treated HL-60 cells revealed loss of surface projections, chromatin condensation and apoptosis. The mitochondria showed apparent loss of cristae in the cells undergoing apoptosis. The morphological studies of Sarcoma-180 solid tumor cells from animals treated with the oil revealed condensation and fragmentation of nuclei typical of apoptosis. Morphological studies of ascites cells from animals treated with the oil too revealed the changes typical of apoptosis. Our results indicate that the oil has a promising anticancer activity and causes loss in tumor cell viability by activating the apoptotic process as identified by electron microscopy.

  5. Anticancer activity of tolfenamic acid in medulloblastoma: a preclinical study.

    PubMed

    Eslin, Don; Lee, Chris; Sankpal, Umesh T; Maliakal, Pius; Sutphin, Robert M; Abraham, Liz; Basha, Riyaz

    2013-10-01

    Medulloblastoma (MB) is the most common malignancy in children arising in the brain. Morbidities associated with intensive therapy are serious concerns in treating MB. Our aim was to identify novel targets and agents with less toxicity for treating MB. Specificity protein 1 (Sp1) transcription factor regulates several genes involved in cell proliferation and cell survival including survivin, an inhibitor of apoptosis protein. We previously showed that tolfenamic acid (TA), a nonsteroidal anti-inflammatory drug, inhibits neuroblastoma cell growth by targeting Sp1. We investigated the anticancer activity of TA using human MB cell lines and a mouse xenograft model. DAOY and D283 cells were treated with vehicle (dimethyl sulfoxide) or TA (5-50 μg/ml), and cell viability was measured at 1-3 days posttreatment. TA inhibited MB cell growth in a time- and dose-dependent manner. MB cells were treated with vehicle or TA (10 μg/ml), and the effect on cell apoptosis was measured. Apoptosis was analyzed by flow cytometry (annexin V staining), and caspase 3/7 activity was determined using Caspase-Glo kit. The expression of Sp1, cleaved poly(ADP-ribose) polymerase (c-PARP), and survivin was determined by Western blot analysis. TA inhibited the expression of Sp1 and survivin and upregulated c-PARP. Athymic nude mice were subcutaneously injected with D283 cells and treated with TA (50 mg/kg, three times per week) for 4 weeks. TA caused a decrease of ~40 % in tumor weight and volume. The tumor growth inhibition was accompanied by a decrease in Sp1 and survivin expression in tumor tissue. These preclinical data demonstrate that TA acts as an anticancer agent in MB potentially targeting Sp1 and survivin.

  6. Update on cardiotoxicity of anti-cancer treatments.

    PubMed

    Rosa, Gian Marco; Gigli, Lorenzo; Tagliasacchi, Maria Isabella; Di Iorio, Cecilia; Carbone, Federico; Nencioni, Alessio; Montecucco, Fabrizio; Brunelli, Claudio

    2016-03-01

    Anti-cancer treatments markedly improved the prognosis of patients, but unfortunately might be hampered by cardiotoxicity. Both symptomatic and asymptomatic clinical forms of heart failure have been reported, which may be reversible or irreversible. The aim of this review is to provide an overview of the antineoplastic agents associated with cardiac toxicity and of the available diagnostic techniques. This narrative review is based on material from MEDLINE and PUBMED up to November 2015. We looked at the terms antineoplastic drugs and cardiac toxicity in combination with echocardiography, troponins, cardiac magnetic resonance, and positron emission tomography. Anthracyclines, monoclonal antibodies, fluoropyrimidines, taxanes, alkylating agents, vinka alkaloids were reported to induce different clinical manifestations of cardioxicity. Chest radiotherapy is also associated with various forms of cardiac damage, which are indistinguishable from those found in patients with heart disease of other aetiologies and that may even appear several years after administration. Among diagnostic techniques, echocardiography is a noninvasive, cost-effective, and widely available imaging tool. Nuclear imaging and cardiac magnetic resonance may be used but are not so widely available and are more difficult to perform. Finally, some biomarkers, such as troponins, may be used to evaluate cardiac damage, but establishing the optimal timing of troponin assessment remains unclear and defining the cut-off point for positivity is still an important goal. Cardiotoxicity of anti-cancer treatments is associated with development of heart failure. Novel diagnostic tools might be relevant to early recognize irreversible forms cardiac diseases. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  7. Anti-cancer activity of bromelain nanoparticles by oral administration.

    PubMed

    Bhatnagar, Priyanka; Patnaik, Soma; Srivastava, Amit K; Mudiam, Mohan K R; Shukla, Yogeshwer; Panda, Amulya K; Pant, Aditya B; Kumar, Pradeep; Gupta, Kailash C

    2014-12-01

    Oral administration of anti-cancer drugs is an effective alternative to improve their efficacy and reduce undesired toxicity. Bromelain (BL) is known as an effective anti-cancer phyto-therapeutic agent, however, its activity is reduced upon oral administration. In addressing the issue, BL was encapsulated in Poly(lactic-co-glycolic acid) (PLGA) to formulate nanoparticles (NPs). Further, the NPs were coated with Eudragit L30D polymer to introduce stability against the gastric acidic conditions. The resultant coated NPs were characterized for BL entrapment, proteolytic activity and mean particle size. The stability and release pattern of NPs were evaluated under simulated gastrointestinal tract (GIT) pH conditions. Cytotoxicity studies carried out in human cell lines of diverse origin have shown significant dose advantage (-7-10 folds) with NPs in reducing the IC50 values compared with free BL. The cellular uptake of NPs in MCF-7, HeLa and Caco-2 cells monolayer was significantly enhanced several folds as compared to free BL. Altered expression of marker proteins associated with apoptosis and cell death (P53, P21, Bcl2, Bax) also confirmed the enhanced anti-carcinogenic potential of formulated NPs. Oral administration of NPs reduced the tumor burden of Ehrlich ascites carcinoma (EAC) in Swiss albino mice and also increased their life-span (160.0 ± 5.8%) when compared with free BL (24 ± 3.2%). The generation of reactive oxygen species, induction of apoptosis and impaired mitochondrial membrane potential in EAC cells treated with NPs confirmed the suitability of Eudragit coated BL-NPs as a promising candidate for oral chemotherapy.

  8. Effects of anticancer drugs on the metabolism of the anticancer drug 5,6-dimethylxanthenone-4-acetic (DMXAA) by human liver microsomes

    PubMed Central

    Zhou, Shufeng; Chin, Rebecca; Kestell, Philip; Tingle, Malcolm D; Paxton, James W

    2001-01-01

    Aims To investigate the effects of various anticancer drugs on the major metabolic pathways (glucuronidation and 6-methylhydroxylation) of DMXAA in human liver microsomes. Methods The effects of various anticancer drugs at 100 and 500 µm on the formation of DMXAA acyl glucuronide (DMXAA-G) and 6-hydroxymethyl-5-methylxanthenone-4-acetic acid (6-OH-MXAA) in human liver microsomes were determined by high performance liquid chromatography (h.p.l.c.). For those anticancer drugs showing significant inhibition of DMXAA metabolism, the inhibition constants (Ki) were determined. The resulting in vitro data were extrapolated to predict in vivo changes in DMXAA pharmacokinetics. Results Vinblastine, vincristine and amsacrine at 500 µm significantly (P < 0.05) inhibited DMXAA glucuronidation (Ki = 319, 350 and 230 µm, respectively), but not 6-methylhydroxylation in human liver microsomes. Daunorubicin and N-[2-(dimethylamino)-ethyl]acridine-4-carboxamide (DACA) at 100 and 500 µm showed significant (P < 0.05) inhibition of DMXAA 6-methylhydroxylation (Ki = 131 and 0.59 µm, respectively), but not glucuronidation. Other drugs such as 5-fluoroucacil, paclitaxel, tirapazamine and methotrexate exhibited little or negligible inhibition of the metabolism of DMXAA. Pre-incubation of microsomes with the anticancer drugs (100 and 500 µm) did not enhance their inhibitory effects on DMXAA metabolism. Prediction of DMXAA–drug interactions in vivo based on these in vitro data indicated that all the anticancer drugs investigated except DACA appear unlikely to alter the pharmacokinetics of DMXAA, whereas DACA may increase the plasma AUC of DMXAA by 6%. Conclusions These results indicate that alteration of the pharmacokinetics of DMXAA appears unlikely when used in combination with other common anticancer drugs. However, this does not rule out the possibility of pharmacokinetic interactions with other drugs used concurrently with this combination of anticancer drugs. PMID:11488768

  9. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    PubMed

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PECb> 10 ng L(-1) and/or PECc> 1 ng L(-1)). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature.

    PubMed

    Negi, Beena; Kumar, Deepak; Rawat, Diwan S

    2017-01-01

    In the search of bioactive molecules, nature has always been an important source and most of the drugs in clinic are either natural products or derived from natural products. The ocean has played significant role as thousands of molecules and their metabolites with different types of biological activity such as antimicrobial, anti-inflammatory, anti-malarial, antioxidant, anti HIV and anticancer activity have been isolated from marine organisms. In particular, marine peptides have attracted much attention due to their high specificity against cancer cell lines that may be attributed to the various unusual amino acid residues and their sequences in the peptide chain. This review aims to identify the various anticancer agents isolated from the marine system and their anticancer potential. We did literature search for the anticancer peptides isolated from the different types of microorganism found in the marine system. Total one eighty eight papers were reviewed concisely and most of the important information from these papers were extracted and kept in the present manuscript. This review gives details about the isolation, anticancer potential and mechanism of action of the anticancer peptides of the marine origin. Many of these molecules such as aplidine, dolastatin 10, didemnin B, kahalalide F, elisidepsin (PM02734) are in clinical trials for the treatment of various cancers. With the interdisciplinary and collaborative research and technical advancements we can search more promising and affordable anticancer drugs in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Molecular dynamics study on DNA nanotubes as drug delivery vehicle for anticancer drugs.

    PubMed

    Liang, Lijun; Shen, Jia-Wei; Wang, Qi

    2017-05-01

    In recent years, self-assembled DNA nanotubes have emerged as a type of nano-biomaterials with great potential for biomedical applications. To develop universal nanocarriers for smart and targeted drug delivery from DNA nanotubes, the understanding of interaction mechanism between DNA nanotubes and drugs is essential. In this study, the interactions between anti-cancer drugs and DNA nanotubes were investigated via molecular dynamics simulation. Our simulation results demonstrated that the DNA nanotubes could serve as a good drug delivery material by absorption of anti-cancer drugs with π-π interactions. At high concentration of anti-cancer drugs, most of the drugs could be absorbed by DNA nanotubes. Therefore, it could greatly decrease the aggregation of anti-cancer drugs in aqueous solution. In addition, the stability of DNA nanotubes could be improved with the absorption of anti-cancer drugs. These findings greatly enhance the understanding of the interaction mechanism of DNA nanotubes and anti-cancer drugs. Our study suggests that DNA nanotubes are promising delivery vehicles by strong absorption of anti-cancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Macromolecular Drug Targets in Cancer Treatment and Thiosemicarbazides as Anticancer Agents.

    PubMed

    Küçükgüzel, Ş Güniz; Coşkun, Göknil P

    2016-01-01

    Cancer is known as abnormal cell division and consisting of a group of diseases on various organ tissues. Many therapies are available in cancer treatment such as chemotherapy, radiotherapy etc. Without damaging normal tissue, there is a huge need for specified anticancer drugs which have effect only on abnormal cancer cells. Therefore, advances in anticancer drug discovery in treating cancer in the recent years, directed towards to the macromolecular targets. Heterocyclic molecules, such as fluconazole, acetazolamide, etc., have a significant role in health care and pharmaceutical drug design. Thiosemicarbazides (NH2-NH-CSNH2) are the simplest hydrazine derivatives of thiocarbamic acid and are not only transition compounds, but they are also very effective organic compounds. Thiosemicarbazides possess an amide and amine protons, carbonyl and thione carbons. These structures have attracted the attention of the researchers in the development of novel compounds with anticonvulsant, antiviral, anti-inflammatory, antibacterial, antimycobacterial, antifungal, antioxidant and anticancer activities. Recently, a number of thiosemicarbazides are available commercially as anticancer drugs for novel anticancer drug discovery. Antineoplastic or anticancer drugs prevent or inhibit the maturation and proliferation of neoplasms. These observations have been guiding the researchers for the development of new thiosemicarbazides that possess anticancer activity.

  13. Design, synthesis and biological evaluation of novel diphenylthiazole-based cyclooxygenase inhibitors as potential anticancer agents.

    PubMed

    Abdelazeem, Ahmed H; Gouda, Ahmed M; Omar, Hany A; Tolba, Mai F

    2014-12-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications as analgesics and antipyretics. Currently, there is a growing interest in their antitumor activity and their ability to reduce the risk and mortality of several cancers. While several studies revealed the ability of NSAIDs to induce apoptosis and inhibit angiogenesis in cancer cells, their exact anticancer mechanism is not fully understood. However, both cyclooxygenase (COX)-dependent and -independent pathways were reported to have a role. In an attempt to develop new anticancer agents, a series of diphenylthiazole substituted thiazolidinone derivatives was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. Additionally, the inhibitory activity of the synthesized derivatives against COX enzymes was investigated as a potential mechanism for the anticancer activity. Cytotoxicity assay results showed that compounds 15b and 16b were the most potent anticancer agents with half maximal inhibitory concentrations (IC50) between 8.88 and 19.25μM against five different human cancer cell lines. Interestingly, COX inhibition assay results were in agreement with that of the cytotoxicity assays where the most potent anticancer compounds showed good COX-2 inhibition comparable to that of celecoxib. Further support to our results were gained by the docking studies which suggested the ability of compound 15b to bind into COX-2 enzyme with low energy scores. Collectively, these results demonstrated the promising activity of the newly designed compounds as leads for subsequent development into potential anticancer agents.

  14. Involvement of anticancer drugs in the relief system for adverse drug reactions in Japan.

    PubMed

    Maeda, Hideki; Kurokawa, Tatsuo

    2013-12-01

    The compensation scheme for adverse drug reactions in Japan was implemented more than three decades ago as relief system by regulatory agencies. Because of the high frequency of adverse drug reactions, anticancer drugs have been excluded from coverage by the relief system since its implementation. Requests have recently been made by some patient advocates for the expansion of relief coverage to include anticancer drugs. In response to these requests, the Ministry of Health, Labor and Welfare of Japan established a committee to discuss relief from anticancer drug-induced health damages in June 2011. We conducted comprehensive research into the compensation scheme for adverse drug reactions in the world. We also investigated the situation of compensation and the committee for discussing inclusion of anticancer drugs into the relief system in Japan. Many countries including the United States and UK do not have relief or compensation schemes for no-fault compensation. We investigated whether a no-fault compensation system exists in Nordic countries (Sweden, Denmark, Norway and Finland), France, Germany, New Zealand and Taiwan in the world, although they offer different services from Japan. We also reviewed current situation and the fundamental difficulties associated with including anticancer drugs in the systems in Japan. The present study investigated the current situation and the fundamental difficulties associated with including anticancer drugs in the systems in Japan and pointed out part of the reason why the committee could not conclude involvement of anticancer drugs in the relief system.

  15. Nanovectors for anti-cancer drug delivery in the treatment of advanced pancreatic adenocarcinoma

    PubMed Central

    Hsueh, Chung-Tzu; Selim, Julie H; Tsai, James Y; Hsueh, Chung-Tsen

    2016-01-01

    Liposome, albumin and polymer polyethylene glycol are nanovector formulations successfully developed for anti-cancer drug delivery. There are significant differences in pharmacokinetics, efficacy and toxicity between pre- and post-nanovector modification. The alteration in clinical pharmacology is instrumental for the future development of nanovector-based anticancer therapeutics. We have reviewed the results of clinical studies and translational research in nanovector-based anti-cancer therapeutics in advanced pancreatic adenocarcinoma, including nanoparticle albumin-bound paclitaxel and nanoliposomal irinotecan. Furthermore, we have appraised the ongoing studies incorporating novel agents with nanomedicines in the treatment of pancreatic adenocarcinoma. PMID:27610018

  16. Design, synthesis and biological evaluation of estradiol-chlorambucil hybrids as anticancer agents.

    PubMed

    Gupta, Atul; Saha, Pijus; Descôteaux, Caroline; Leblanc, Valérie; Asselin, Eric; Bérubé, Gervais

    2010-03-01

    A series of estradiol-chlorambucil hybrids was synthesized as anticancer drugs for site-directed chemotherapy of breast cancer. The novel compounds were synthesized in good yields through efficient modifications of estrone at position 16alpha of the steroid nucleus. The newly synthesized compounds were evaluated for their anticancer efficacy in different hormone-dependent and hormone-independent breast cancer cell lines. The novel hybrids showed significant in vitro anticancer activity when compared to chlorambucil. Structure-activity relationship (SAR) reveals the influence of the length of the spacer chain between carrier and drug molecule. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Testing therapeutic potency of anticancer drugs in animal studies: a commentary.

    PubMed

    Den Otter, Willem; Steerenberg, Peter A; Van der Laan, Jan Willem

    2002-04-01

    Regulatory authorities for medicines in European countries deal with many applications for admission to the market of anticancer drugs. Each application must be supported by preclinical and clinical data, among which testing of the therapeutic activity of drugs in animals is important. Recently, the Committee for Proprietary Medicinal Products (CPMP) has released a note for guidance on the preclinical evaluation of anticancer medicinal products. This note provides only general statements regarding tests of anticancer drugs in rodents. This stimulates considerations on how to organize and how to evaluate these tests. In this article we describe our considerations regarding these items based on our experience with applications in The Netherlands since 1993.

  18. Recent Advances in chemistry and pharmacology of 2-methoxyestradiol: An anticancer investigational drug.

    PubMed

    Kumar, B Sathish; Raghuvanshi, Dushyant Singh; Hasanain, Mohammad; Alam, Sarfaraz; Sarkar, Jayanta; Mitra, Kalyan; Khan, Feroz; Negi, Arvind S

    2016-06-01

    2-Methoxyestradiol (2ME2), an estrogen hormone metabolite is a potential cancer chemotherapeutic agent. Presently, it is an investigational drug under various phases of clinical trials alone or in combination therapy. Its anticancer activity has been attributed to its antitubulin, antiangiogenic, pro-apoptotic and ROS induction properties. This anticancer drug candidate has been explored extensively in last twenty years for its detailed chemistry and pharmacology. Present review is an update of its chemistry and biological activity. It also extends an assessment of potential of 2ME2 and its analogues as possible anticancer drug in future. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Synthesis, biological evaluation and molecular docking of aryl hydrazines and hydrazides for anticancer activity.

    PubMed

    Gohil, Vikrantsinh M; Agrawal, Satyam K; Saxena, Ajit K; Garg, Divita; Gopimohan, C; Bhutani, Kamlesh K

    2010-03-01

    Aryl hydrazine and hydrazide analogues were synthesized based on p-tolyl hydrazine, isolated as a breakdown product of a secondary metabolite from the mushroom, Agaricus bisporus, and tested to be highly active molecule than 5-fluorouracil in in vitro anticancer studies. The synthesized analogues were tested for anticancer activity using NCI protocol. Anolgues 12 and 15 emerged as molecules with significant in vitro anticancer activity. Molecular docking study revealed the binding orientations of aryl hydrazines and hydrazides analogues in the active sites of thymidylate synthase.

  20. Design and synthesis of 1,4-dihydropyridine derivatives as anti-cancer agent.

    PubMed

    Viradiya, Denish; Mirza, Sheefa; Shaikh, Faraz; Kakadiya, Rajesh; Rathod, Anand; Jain, Nayan; Rawal, Rakesh; Shah, Anamik

    2016-12-06

    A series of 1,4-dihydropyridine based compounds bearing benzylpyridinium moiety have been designed and evaluated for in vitro anticancer activity against glioblastoma U87MG, lung cancer A549 and colorectal adenocarcinoma Caco-2 cell lines using the MTT assay. Among these compounds, 7b, 7d, 7e, and 7f exhibited potent anticancer activity against the cell lines tested. The cytotoxicity of the synthesized derivatives was compared to standard drugs (carboplatin, gemcitabine, and daunorubicin). Thus, synthesized 1,4-dihydropyridines can be considered as the encouraging molecules for further drug development as anticancer agents.

  1. Anticancer therapeutic potential of Mn porphyrin/ascorbate system.

    PubMed

    Tovmasyan, Artak; Sampaio, Romulo S; Boss, Mary-Keara; Bueno-Janice, Jacqueline C; Bader, Bader H; Thomas, Milini; Reboucas, Julio S; Orr, Michael; Chandler, Joshua D; Go, Young-Mi; Jones, Dean P; Venkatraman, Talaignair N; Haberle, Sinisa; Kyui, Natalia; Lascola, Christopher D; Dewhirst, Mark W; Spasojevic, Ivan; Benov, Ludmil; Batinic-Haberle, Ines

    2015-12-01

    Ascorbate (Asc) as a single agent suppressed growth of several tumor cell lines in a mouse model. It has been tested in a Phase I Clinical Trial on pancreatic cancer patients where it exhibited no toxicity to normal tissue yet was of only marginal efficacy. The mechanism of its anticancer effect was attributed to the production of tumoricidal hydrogen peroxide (H2O2) during ascorbate oxidation catalyzed by endogenous metalloproteins. The amount of H2O2 could be maximized with exogenous catalyst that has optimized properties for such function and is localized within tumor. Herein we studied 14 Mn porphyrins (MnPs) which differ vastly with regards to their redox properties, charge, size/bulkiness and lipophilicity. Such properties affect the in vitro and in vivo ability of MnPs (i) to catalyze ascorbate oxidation resulting in the production of H2O2; (ii) to subsequently employ H2O2 in the catalysis of signaling proteins oxidations affecting cellular survival pathways; and (iii) to accumulate at site(s) of interest. The metal-centered reduction potential of MnPs studied, E1/2 of Mn(III)P/Mn(II)P redox couple, ranged from -200 to +350 mV vs NHE. Anionic and cationic, hydrophilic and lipophilic as well as short- and long-chained and bulky compounds were explored. Their ability to catalyze ascorbate oxidation, and in turn cytotoxic H2O2 production, was explored via spectrophotometric and electrochemical means. Bell-shape structure-activity relationship (SAR) was found between the initial rate for the catalysis of ascorbate oxidation, vo(Asc)ox and E1/2, identifying cationic Mn(III) N-substituted pyridylporphyrins with E1/2>0 mV vs NHE as efficient catalysts for ascorbate oxidation. The anticancer potential of MnPs/Asc system was subsequently tested in cellular (human MCF-7, MDA-MB-231 and mouse 4T1) and animal models of breast cancer. At the concentrations where ascorbate (1mM) and MnPs (1 or 5 µM) alone did not trigger any alteration in cell viability, combined

  2. Anticancer activity of Morinda citrifolia (Noni) fruit: a review.

    PubMed

    Brown, Amy C

    2012-10-01

    This review investigated the relationship of noni juice, or its extract (fruit, leaves or root), to anticancer and/or immunostimulant properties. A Medline search was conducted using the key search words 'Morinda citrifolia' and 'Morinda citrifolia and cancer' (1964 to October, 2011) along with cross-referencing. Botanical and chemical indexes were not included. A total of 304 and 29 (10%) articles, respectively, were found under these key terms. Of the 19 studies actually related to cancer, seven publications were in vitro cancer studies, nine were in vivo animal cancer studies, and three were in vivo human cancer studies. Among the in vitro studies, a 'concentrated component' in noni juice and not pure noni juice may (1) stimulate the immune system to 'possibly' assist the body fight the cancer, and (2) kill a small percentage (0-36%) of cancer cells depending on the type. The nine animal studies suggest that a concentrated component in noni juice may stimulate the immune system; but only slightly increases the number (about 1/3; 25-45%) of surviving mice. Other than two case studies, only two human clinical studies existed. The first consisted of testing freeze-dried noni fruit, which reduced pain perception, but did not reverse advanced cancer. The second was on smokers ingesting an unknown concentration of noni juice who experienced decreased aromatic DNA adducts, and decreased levels of plasma superoxide anion radicals and lipid hydroperoxide. Factors to consider in the future are clearly defining the substance being tested, and whether or not the juice is pasteurized. Some reports of hepatotoxicity exist, although there were confounding factors in most of the case reports. More importantly, noni juice is high in potassium and needs to be monitored by patients with kidney, liver or heart problems. In conclusion, a few in vitro and in vivo animal studies suggest a possible unidentified substance in unpasteurized noni fruit juice that may have a small degree of

  3. In vitro anticancer properties of selected Eucalyptus species.

    PubMed

    Bhuyan, Deep Jyoti; Sakoff, Jennette; Bond, Danielle R; Predebon, Melanie; Vuong, Quan V; Chalmers, Anita C; van Altena, Ian A; Bowyer, Michael C; Scarlett, Christopher J

    2017-08-01

    In spite of the recent advancements in oncology, the overall survival rate for pancreatic cancer has not improved over the last five decades. Eucalypts have been linked with cytotoxic and anticancer properties in various studies; however, there is very little scientific evidence that supports the direct role of eucalypts in the treatment of pancreatic cancer. This study assessed the anticancer properties of aqueous and ethanolic extracts of four Eucalyptus species using an MTT assay. The most promising extracts were further evaluated using a CCK-8 assay. Apoptotic studies were performed using a caspase 3/7 assay in MIA PaCa-2 cells. The aqueous extract of Eucalyptus microcorys leaf and the ethanolic extract of Eucalyptus microcorys fruit inhibited the growth of glioblastoma, neuroblastoma, lung and pancreatic cancer cells by more than 80% at 100 μg/mL. The E. microcorys and Eucalyptus saligna extracts showed lower GI50 values than the ethanolic Eucalyptus robusta extract in MIA PaCa-2 cells. Aqueous E. microcorys leaf and fruit extracts at 100 μg/mL exerted significantly higher cell growth inhibition in MIA PaCa-2 cells than other extracts (p < 0.05). Statistically similar IC50 values (p > 0.05) were observed in aqueous E. microcorys leaf (86.05 ± 4.75 μg/mL) and fruit (64.66 ± 15.97 μg/mL) and ethanolic E. microcorys leaf (79.30 ± 29.45 μg/mL) extracts in MIA PaCa-2 cells using the CCK-8 assay. Caspase 3/7-mediated apoptosis and morphological changes of cells were also witnessed in MIA PaCa-2 cells after 24 h of treatment with the extracts. This study highlighted the significance of E. microcorys as an important source of phytochemicals with efficacy against pancreatic cancer cells. Further studies are warranted to purify and structurally identify individual compounds and elucidate their mechanisms of action for the development of more potent and specific chemotherapeutic agents for pancreatic cancer.

  4. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles.

    PubMed

    Adahoun, Mo'ath Ahmad; Al-Akhras, Mohammed-Ali Hassan; Jaafar, Mohamad Suhaimi; Bououdina, Mohamed

    2017-02-01

    curcumin and nanocurcumin. In conclusion, all these findings not only indicate that nanocurcumin safe compound has a potent ability as anti-cancer and antimicrobial activities, but also well justify the avail of using nanocurcumin as prostate cells PC3 anti-cancer, and antimicrobial agent for nanocurcumin are markedly improved by decreasing particle size to the nano-scale regime.

  5. Anticancer activities of sesquiterpene lactones from Cyathocline purpurea in vitro.

    PubMed

    Ma, Guoyi; Chong, Li; Li, Zuqiang; Cheung, Andrew H T; Tattersall, Martin H N

    2009-06-01

    Cyathocline purpurea has been traditionally used to treat various diseases including cancers for many years. However, these applications of C. purpurea have not been supported by pharmacological investigation. The objective of this study is to investigate the anticancer activities of three main constituents such as santamarine, 9beta-acetoxycostunolide and 9beta-acetoxyparthenolide isolated from C. purpurea in vitro. Cell viability was determined by trypan blue exclusion and methylene blue assays. Colony formation was assessed by microtitration cloning assay. DNA synthesis was determined by tritiated thymidine incorporation assay. Cell cycle analysis was carried out by flow cytometry. Apoptosis was observed by DAPI staining assay and Caspase 3/7 activities was measured using Caspase-Glo 3/7 assay kit. Santamarine, 9beta-acetoxycostunolide and 9beta-acetoxyparthenolide inhibited the growth of L1210 murine leukaemia, CCRF-CEM human leukaemia, KB human nasopharyngeal carcinoma, LS174T human colon adenocarcinoma and MCF 7 human breast adenocarcinoma cells in vitro, with IC(50) in the range of 0.16-1.3 microg/mL. In L1210 model, santamarine and 9beta-acetoxycostunolide inhibited L1210 cell growth, colony formation and [(3)H]-thymidine incorporation in time- and concentration-dependent manners. Flow cytometry studies showed that santamarine and 9beta-acetoxycostunolide blocked L1210 cells in the G(2)/M phase of the cell cycle. DAPI staining and caspase activity assays showed santamarine and 9beta-acetoxycostunolide induced apoptosis and activated caspase 3 in L1210 cells. These results indicated that santamarine, 9beta-acetoxycostunolide and 9beta-acetoxyparthenolide exhibit significant anticancer activities in vitro. The inhibitory effects of santamarine and 9beta-acetoxycostunolide on L1210 cells are cytotoxic rather than just cytostatic. They block mitosis and reduce uptake of thymidine. The mechanism of the cytotoxicity of santamarine and 9beta-acetoxycostunolide to

  6. Human-derived normal mesenchymal stem/stromal cells in anticancer therapies

    PubMed Central

    Zhang, Cheng; Yang, Shi-Jie; Wen, Qin; Zhong, Jiang F; Chen, Xue-Lian; Stucky, Andres; Press, Michael F; Zhang, Xi

    2017-01-01

    The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis, but also has profound effects on therapeutic efficacy. Stromal cells of the TME are increasingly becoming a key consideration in the development of active anticancer therapeutics. However, dispute concerning the role of stromal cells to fight cancer continues because the use of mesenchymal stem/stromal cells (MSCs) as an anticancer agent is dependent on the specific MSCs subtype, in vitro or in vivo conditions, factors secreted by MSCs, types of cancer cell lines and interactions between MSCs, cancer cells and host immune cells. In this review, we mainly focus on the role of human-derived normal MSCs in anticancer therapies. We first discuss the use of different MSCs in the therapies for various cancers. We then focus on their anticancer mechanism and clinical application. PMID:28123601

  7. OLIGODEOXYNUCLEOTIDES AS ANTI-CANCER THERAPEUTICS AND DIAGNOSTICS | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute Laboratory of Experimental Immunology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize anti-cancer oligodeoxynucleotides.  

  8. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class

    PubMed Central

    Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known. PMID:23788896

  9. Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone.

    PubMed

    Lin, Xuejing; Peng, Zhangxiao; Su, Changqing

    2015-05-13

    Costunolide (CE) and dehydrocostuslactone (DE) are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application.

  10. Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone

    PubMed Central

    Lin, Xuejing; Peng, Zhangxiao; Su, Changqing

    2015-01-01

    Costunolide (CE) and dehydrocostuslactone (DE) are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application. PMID:25984608

  11. Cold atmospheric plasma, a novel promising anti-cancer treatment modality

    PubMed Central

    Yan, Dayun; Sherman, Jonathan H.; Keidar, Michael

    2017-01-01

    Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists. PMID:27845910

  12. Recent Advances in Drug Repositioning for the Discovery of New Anticancer Drugs

    PubMed Central

    Shim, Joong Sup; Liu, Jun O.

    2014-01-01

    Drug repositioning (also referred to as drug repurposing), the process of finding new uses of existing drugs, has been gaining popularity in recent years. The availability of several established clinical drug libraries and rapid advances in disease biology, genomics and bioinformatics has accelerated the pace of both activity-based and in silico drug repositioning. Drug repositioning has attracted particular attention from the communities engaged in anticancer drug discovery due to the combination of great demand for new anticancer drugs and the availability of a wide variety of cell- and target-based screening assays. With the successful clinical introduction of a number of non-cancer drugs for cancer treatment, drug repositioning now became a powerful alternative strategy to discover and develop novel anticancer drug candidates from the existing drug space. In this review, recent successful examples of drug repositioning for anticancer drug discovery from non-cancer drugs will be discussed. PMID:25013375

  13. Recent advances in drug repositioning for the discovery of new anticancer drugs.

    PubMed

    Shim, Joong Sup; Liu, Jun O

    2014-01-01

    Drug repositioning (also referred to as drug repurposing), the process of finding new uses of existing drugs, has been gaining popularity in recent years. The availability of several established clinical drug libraries and rapid advances in disease biology, genomics and bioinformatics has accelerated the pace of both activity-based and in silico drug repositioning. Drug repositioning has attracted particular attention from the communities engaged in anticancer drug discovery due to the combination of great demand for new anticancer drugs and the availability of a wide variety of cell- and target-based screening assays. With the successful clinical introduction of a number of non-cancer drugs for cancer treatment, drug repositioning now became a powerful alternative strategy to discover and develop novel anticancer drug candidates from the existing drug space. In this review, recent successful examples of drug repositioning for anticancer drug discovery from non-cancer drugs will be discussed.

  14. [Microbial model Halobacterium salinarum in screening of synthetic analogues of antibiotic turbomycin A with anticancer activity].

    PubMed

    Trenin, A S; Tsvigun, E A; Bychkova, O P; Lavrenov, S N

    2013-01-01

    The microbial test-system based on cultivation of Halobacterium salinarum developed earlier for screening inhibitors of sterol biosynthesis and proposed for screening anticancer antibiotics, proved to be efficient in revealing anticancer compounds among derivatives of tris(1-alkylindol-3-yl)methylium, synthetic analogues of antibiotic turbomycin A. Most of the methane sulfonate and chloride salts of such compounds, investigated with the help of the H. salinarum test-system, showed no activity (MIC>32 mcM), while several derivatives, containing N-butyl or N-pentyl substituents were rather active against the bacterial strain. The MICs of them against H. salinarum were 8 mcM for total and 1 mcM for partial inhibition of the bacterial growth. The results of the study correlated with the results of other investigations that revealed anticancer activity of such compounds in tumor cell cultures. Therefore, the H. salinarum test-system demonstrated its availability for screening compounds with anticancer activity.

  15. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities.

    PubMed

    Zhou, Shuang; Wang, Fengfei; Wong, Eric T; Fonkem, Ekokobe; Hsieh, Tze-Chen; Wu, Joseph M; Wu, Erxi

    2013-01-01

    Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed.

  16. Lifestyle habits as a contributor to anti-cancer treatment failure.

    PubMed

    de Jong, Floris A; Sparreboom, Alex; Verweij, Jaap; Mathijssen, Ron H J

    2008-02-01

    Lifestyle may have serious consequences for cancer treatment outcome, which is a fact that both physicians and patients are often not explicitly aware of, thereby unwillingly exposing the patient to possible danger. In certain cases, patient behaviour can lead to potentially life-threatening adverse events, whilst in other cases the clinical benefit of anti-cancer therapy can be diminished. In this review, we focus on the role of certain habits (like cigarette smoking, alcohol use and the use of complementary and alternative medicine) and discuss the effects they may have on anti-cancer medication. Also patient compliance to prescribed anti-cancer drugs is a factor frequently overlooked if treatment does not follow the expectations, which gains importance with the increasingly frequent prescription of oral anti-cancer agents.

  17. Anticancer, Anti-Inflammatory, and Analgesic Activities of Synthesized 2-(Substituted phenoxy) Acetamide Derivatives

    PubMed Central

    Pal, Dilipkumar; Hegde, Rahul Rama; Hashim, Syed Riaz

    2014-01-01

    The aphorism was to develop new chemical entities as potential anticancer, anti-inflammatory, and analgesic agents. The Leuckart synthetic pathway was utilized in development of novel series of 2-(substituted phenoxy)-N-(1-phenylethyl)acetamide derivatives. The compounds containing 1-phenylethylamine as basic moiety attached to substituted phenols were assessed for their anticancer activity against MCF-7 (breast cancer), SK-N-SH (neuroblastoma), anti-inflammatory activity, and analgesic activity. These investigations revealed that synthesized products 3a–j with halogens on the aromatic ring favors as the anticancer and anti-inflammatory activity. Among all, compound 3c N-(1-(4-chlorophenyl)ethyl)-2-(4-nitrophenoxy)acetamide exhibited anticancer, anti-inflammatory, and analgesic activities. In conclusion, 3c may have potential to be developed into a therapeutic agent. PMID:25197642

  18. Cold atmospheric plasma, a novel promising anti-cancer treatment modality.

    PubMed

    Yan, Dayun; Sherman, Jonathan H; Keidar, Michael

    2016-11-11

    Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.

  19. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    PubMed Central

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  20. Proteomic Approaches in Understanding Action Mechanisms of Metal-Based Anticancer Drugs

    PubMed Central

    Wang, Ying; Chiu, Jen-Fu

    2008-01-01

    Medicinal inorganic chemistry has been stimulating largely by the success of the anticancer drug, cisplatin. Various metal complexes are currently used as therapeutic agents (e.g., Pt, Au, and Ru) in the treatment of malignant diseases, including several types of cancers. Understanding the mechanism of action of these metal-based drugs is for the design of more effective drugs. Proteomic approaches combined with other biochemical methods can provide comprehensive understanding of responses that are involved in metal-based anticancer drugs-induced cell death, including insights into cytotoxic effects of metal-based anticancer drugs, correlation of protein alterations to drug targets, and prediction of drug resistance and toxicity. This information, when coupled with clinical data, can provide rational basses for the future design and modification of present used metal-based anticancer drugs. PMID:18670610

  1. Are bisphosphonates the suitable anticancer drugs for the elderly?

    PubMed

    Santini, Daniele; Fratto, Maria Elisabetta; Galluzzo, Sara; Vincenzi, Bruno; Tonini, Giuseppe

    2009-01-01

    Bone metastases represent an important problem in the elderly. These patients are exposed to a higher risk of developing skeletal-related events (SREs) with a subsequent decrease in quality of life and survival. Bisphosphonates have demonstrated to reduce and delay the appearance of SREs and to improve the quality of life also in elderly bone metastatic patients. Moreover, in vitro and in vivo preclinical studies suggest that bisphosphonates exert direct as well as indirect antitumor effect. Interestingly, recent clinical data confirm these results in bone metastatic cancer patients. However, randomized trials restricted to elderly patients with metastatic bone disease and focused to evaluate survival benefits have not yet been planned even if elderly patients, especially multiple myeloma, prostate and lung cancer patients, have been often included in trials. This review will examine in detail the preclinical rationale for using bisphosphonates as anticancer agents in elderly patients and will critically explore the first retrospective and prospective clinical evidences of an increased survival in patients treated with bisphosphonates. Moreover, we will analyze the safety of bisphosphonates in elderly population and discuss the clinical recommendations expressed by the SIOG Society for the use of bisphosphonates in elderly patients. Randomized clinical trials to assess the role of bisphosphonate therapy in the adjuvant setting are currently in progress and will be described in this review. If the results of these ongoing clinical trials will be positive, the indications for bisphosphonates could increase, including also elderly patients.

  2. Human recombinant RNASET2: A potential anti-cancer drug.

    PubMed

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate.

  3. Cell cycle regulatory E3 ubiquitin ligases as anticancer targets.

    PubMed

    Pray, Todd R; Parlati, Francesco; Huang, Jianing; Wong, Brian R; Payan, Donald G; Bennett, Mark K; Issakani, Sarkiz Daniel; Molineaux, Susan; Demo, Susan D

    2002-12-01

    Disregulation of the cell cycle and proliferation play key roles in cellular transformation and tumorigenesis. Such processes are intimately tied to the concentration, localization and activity of enzymes, adapters, receptors, and structural proteins in cells. Ubiquitination of these cellular regulatory proteins, governed by specific enzymes in the ubiquitin (Ub) conjugation cascade, has profound effects on their various functions, most commonly through proteasome targeting and degradation. This review will focus on a variety of E3 Ub ligases as potential oncology drug targets, with particular emphasis on the role of these molecules in the regulation of stability, localization, and activity of key proteins such as tumor suppressors and oncoproteins. E3 ubiquitin ligases that have established roles in cell cycle and apoptosis, such as the anaphase-promoting complex (APC), the Skp-1-Cul1-F-box class, and the murine double minute 2 (MDM2) protein, in addition to more recently discovered E3 ubiquitin ligases which may be similarly important in tumorigenesis, (e.g. Smurf family, CHFR, and Efp), will be discussed. We will present evidence to support E3 ligases as good biological targets in the development of anticancer therapeutics and address challenges in drug discovery for these targets.

  4. Tricking the balance: NK cells in anti-cancer immunity.

    PubMed

    Pahl, Jens; Cerwenka, Adelheid

    2017-01-01

    Natural Killer (NK) cells are classically considered innate immune effector cells involved in the first line of defense against infected and malignant cells. More recently, NK cells have emerged to acquire properties of adaptive immunity in response to certain viral infections such as expansion of specific NK cell subsets and long-lasting virus-specific responses to secondary challenges. NK cells distinguish healthy cells from abnormal cells by measuring the net input of activating and inhibitory signals perceived from target cells through NK cell surface receptors. Acquisition of activating ligands in combination with reduced expression of MHC class I molecules on virus-infected and cancer cells activates NK cell cytotoxicity and release of immunostimulatory cytokines like IFN-γ. In the cancer microenvironment however, NK cells become functionally impaired by inhibitory factors produced by immunosuppressive immune cells and cancer cells. Here we review recent progress on the role of NK cells in cancer immunity. We describe regulatory factors of the tumor microenvironment on NK cell function which determine cancer cell destruction or escape from immune recognition. Finally, recent strategies that focus on exploiting NK cell anti-cancer responses for immunotherapeutic approaches are outlined. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  6. ‘New Trends for Metal Complexes with Anticancer Activity’

    PubMed Central

    Bruijnincx, Pieter C. A.; Sadler, Peter J.

    2010-01-01

    Summary Medicinal inorganic chemistry can exploit the unique properties of metal ions for the design of new drugs. This has, for instance, led to the clinical application of chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin is, however, severely limited by its toxic side effects. This has spurred chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. Recent trends in the field are discussed in this review. These include the more selected delivery and/or activation of cisplatin-related prodrugs and the discovery of new non-covalent interactions with the classical target, DNA. The use of the metal as scaffold rather than reactive centre and the departure from the cisplatin paradigm of activity towards a more targeted, cancer cell-specific approach, a major trend, are discussed as well. All this, together with the observation that some of the new drugs are organometallic complexes, illustrates that exciting times lie ahead for those interested in ‘metals in medicine’. PMID:18155674

  7. Interactions of the anticancer drug tamoxifen with lipid membranes

    DOE PAGES

    Khadka, Nawal K.; Cheng, Xiaolin; Ho, Chian Sing; ...

    2015-05-19

    Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band’s magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer areamore » compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Lastly, our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.« less

  8. Synthesis and anticancer activity of all known (-)-agelastatin alkaloids.

    PubMed

    Han, Sunkyu; Siegel, Dustin S; Morrison, Karen C; Hergenrother, Paul J; Movassaghi, Mohammad

    2013-12-06

    The full details of our enantioselective total syntheses of (-)-agelastatins A-F (1-6), the evolution of a new methodology for synthesis of substituted azaheterocycles, and the first side-by-side evaluation of all known (-)-agelastatin alkaloids against nine human cancer cell lines are described. Our concise synthesis of these alkaloids exploits the intrinsic chemistry of plausible biosynthetic precursors and capitalizes on a late-stage synthesis of the C-ring. The critical copper-mediated cross-coupling reaction was expanded to include guanidine-based systems, offering a versatile preparation of substituted imidazoles. The direct comparison of the anticancer activity of all naturally occurring (-)-agelastatins in addition to eight advanced synthetic intermediates enabled a systematic analysis of the structure-activity relationship within the natural series. Significantly, (-)-agelastatin A (1) is highly potent against six blood cancer cell lines (20-190 nM) without affecting normal red blood cells (>333 μM). (-)-Agelastatin A (1) and (-)-agelastatin D (4), the two most potent members of this family, induce dose-dependent apoptosis and arrest cells in the G2/M-phase of the cell cycle; however, using confocal microscopy, we have determined that neither alkaloid affects tubulin dynamics within cells.

  9. Hurdles in anticancer drug development from a regulatory perspective.

    PubMed

    Jonsson, Bertil; Bergh, Jonas

    2012-02-21

    Between January 2001 and January 2012, 48 new medicinal products for cancer treatment were licensed within the EU, and 77 new indications were granted for products already licensed. In some cases, a major improvement to existing therapies was achieved, for example, trastuzumab in breast cancer. In other cases, new fields for effective drug therapy opened up, such as in chronic myeloid leukemia, and renal-cell carcinoma. In most cases, however, the benefit-risk balance was considered to be only borderline favorable. Based on our assessment of advice procedures for marketing authorization, 'need for speed' seems to be the guiding principle in anticancer drug development. Although, for drugs that make a difference, early licensure is of obvious importance to patients, this is less evident in the case of borderline drugs. Without proper incentives and with hurdles inside and outside companies, a change in drug development cannot be expected; drugs improving benefit-risk modestly over available therapies will be brought forward towards licensure. In this Perspectives article, we discuss some hurdles to biomarker-driven drug development and provide some suggestions to overcome them.

  10. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    NASA Astrophysics Data System (ADS)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  11. [Carboxyl nanodiamond as intracellular transporters of anticancer drug--podophyllotoxin].

    PubMed

    Sun, Tao-Li; Wang, Bin; Peng, Yan; Ni, Jing-Man

    2013-01-01

    The purpose of this study is to investigate the intracellular transporters effect and the cytotoxicity of carboxyl nanodiamond (CND) - podophyllotoxin (PPT). Nanodiamond (ND) was treated with mixed carboxylic acid and finally got 64 nm CND by centrifugation, and then it was reacted with PPT to form CND-PPT. UV spectrophotometry was used to calculate the content of PPT in CND-PPT, the particle size distribution and zeta potential were measured by Dynamic laser scattering instrument. CND, PPT, CND-PPT and CND + PPT (physical mixture of CND and PPT) were characterized by Fourier transform infrared spectroscopy, at the same time, thermal analysis and element analysis were used to estimate the content of the PPT in CND-PPT. The affect of CND, PPT, CND-PPT on HeLa cell was measured with MTT assay. The results showed that content of PPT combined with CND accounted for about 10%. MTT assay showed that CND has low cytotoxicity and CND-PPT can increase the water soluble of PPT. As a conclusion, CND as a hydrophilic pharmaceutical carrier combined with PPT is able to increase the water solubility of PPT, at low concentration, CND-PPT can enhance the antitumor activity in comparison with PPT, so CND can be used as a potential anticancer drug carrier.

  12. From T cell "exhaustion" to anti-cancer immunity.

    PubMed

    Verdeil, Grégory; Fuertes Marraco, Silvia A; Murray, Timothy; Speiser, Daniel E

    2016-01-01

    The immune system has the potential to protect from malignant diseases for extended periods of time. Unfortunately, spontaneous immune responses are often inefficient. Significant effort is required to develop reliable, broadly applicable immunotherapies for cancer patients. A major innovation was transplantation with hematopoietic stem cells from genetically distinct donors for patients with hematologic malignancies. In this setting, donor T cells induce long-term remission by keeping cancer cells in check through powerful allogeneic graft-versus-leukemia effects. More recently, a long awaited breakthrough for patients with solid tissue cancers was achieved, by means of therapeutic blockade of T cell inhibitory receptors. In untreated cancer patients, T cells are dysfunctional and remain in a state of T cell "exhaustion". Nonetheless, they often retain a high potential for successful defense against cancer, indicating that many T cells are not entirely and irreversibly exhausted but can be mobilized to become highly functional. Novel antibody therapies that block inhibitory receptors can lead to strong activation of anti-tumor T cells, mediating clinically significant anti-cancer immunity for many years. Here we review these new treatments and the current knowledge on tumor antigen-specific T cells.

  13. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics.

    PubMed

    Law, Mary E; Corsino, Patrick E; Narayan, Satya; Law, Brian K

    2015-11-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics

    PubMed Central

    Corsino, Patrick E.; Narayan, Satya

    2015-01-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non–ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non–ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. PMID:26018905

  15. Optical Interferometric Response of Living Tissue to Cytoskeletal Anticancer Drugs

    NASA Astrophysics Data System (ADS)

    Nolte, David; Jeong, Kwan; Turek, John

    2007-03-01

    Living tissue illuminated by short-coherence light can be optically sectioned in three dimensions using coherent detection such as interferometry. We have developed full-field coherence-gated imaging of tissue using digital holography. Two-dimensional image sections from a fixed depth are recorded as interference fringes with a CCD camera located at the optical Fourier plane. Fast Fourier transform of the digital hologram yields the depth-selected image. When the tissue is living, highly dynamic speckle is observed as fluctuating pixel intensities. The temporal autocorrelation functions are directly related to the degree of motility at depth. We have applied the cytoskeletal drugs nocodazole and colchicine to osteogenic sarcoma multicellular spheroids and observed the response holographically. Colchicine is an anticancer drug that inhibits microtubule polymerization and hence prevents spindle formation during mitosis. Nocodazole, on the other hand, depolymerizes microtubules. Both drugs preferentially inhibit rapidly-dividing cancer cells. We observe dose-response using motility as an effective contrast agent. This work opens the possibility for studies of three-dimensional motility as a multiplexed assay for drug discovery.

  16. A drug-specific nanocarrier design for efficient anticancer therapy

    PubMed Central

    Shi, Changying; Guo, Dandan; Xiao, Kai; Wang, Xu; Wang, Lili; Luo, Juntao

    2015-01-01

    The drug-loading properties of nanocarriers depend on the chemical structures and properties of their building blocks. Here, we customize telodendrimers (linear-dendritic copolymer) to design a nanocarrier with improved in vivo drug delivery characteristics. We do a virtual screen of a library of small molecules to identify the optimal building blocks for precise telodendrimer synthesis using peptide chemistry. With rationally designed telodendrimer architectures, we then optimize the drug binding affinity of a nanocarrier by introducing an optimal drug-binding molecule (DBM) without sacrificing the stability of the nanocarrier. To validate the computational predictions, we synthesize a series of nanocarriers and evaluate systematically for doxorubicin delivery. Rhein-containing nanocarriers have sustained drug release, prolonged circulation, increased tolerated dose, reduced toxicity, effective tumor targeting and superior anticancer effects owing to favourable doxorubicin-binding affinity and improved nanoparticle stability. This study demonstrates the feasibility and versatility of the de novo design of telodendrimer nanocarriers for specific drug molecules, which is a promising approach to transform nanocarrier development for drug delivery. PMID:26158623

  17. Dynamic Rendering of the Heterogeneous Cell Response to Anticancer Treatments

    PubMed Central

    Falcetta, Francesca; Lupi, Monica; Colombo, Valentina; Ubezio, Paolo

    2013-01-01

    The antiproliferative response to anticancer treatment is the result of concurrent responses in all cell cycle phases, extending over several cell generations, whose complexity is not captured by current methods. In the proposed experimental/computational approach, the contemporary use of time-lapse live cell microscopy and flow cytometric data supported the computer rendering of the proliferative process through the cell cycle and subsequent generations during/after treatment. The effects of treatments were modelled with modules describing the functional activity of the main pathways causing arrest, repair and cell death in each phase. A framework modelling environment was created, enabling us to apply different types of modules in each phase and test models at the complexity level justified by the available data. We challenged the method with time-course measures taken in parallel with flow cytometry and time-lapse live cell microscopy in X-ray-treated human ovarian cancer cells, spanning a wide range of doses. The most suitable model of the treatment, including the dose-response of each effect, was progressively built, combining modules with a rational strategy and fitting simultaneously all data of different doses and platforms. The final model gave for the first time the complete rendering in silico of the cycling process following X-ray exposure, providing separate and quantitative measures of the dose-dependence of G1, S and G2M checkpoint activities in subsequent generations, reconciling known effects of ionizing radiations and new insights in a unique scenario. PMID:24146610

  18. Anti-cancer activity of carbamate derivatives of melampomagnolide B.

    PubMed

    Janganati, Venumadhav; Penthala, Narsimha Reddy; Madadi, Nikhil Reddy; Chen, Zheng; Crooks, Peter A

    2014-08-01

    Melampomagnolide B (MMB) is a natural sesquiterpene structurally related to parthenolide (PTL). We have shown that MMB exhibits anti-leukemic properties similar to PTL. Unlike PTL, the presence of a primary hydroxyl group in the MMB molecule allows the opportunity for examining the biological activity of a variety of conjugated analogs of MMB. We have now synthesized a series of carbamate analogs of MMB and evaluated these derivatives for anti-cancer activity against a panel of sixty human cancer cell lines. Analogs 6a and 6e exhibited promising anti-leukemic activity against human leukemia cell line CCRF-CEM with GI50 values of 680 and 620 nM, respectively. Analog 6a also showed GI50 values of 1.98 and 1.38 μM respectively, against RPMI-8226 and SR leukemia cell lines and GI50 values of 460 and 570 nM against MDA-MB-435 melanoma and MDA-MB-468 breast cancer cell lines, respectively. Analog 6e had GI50 values of 650 and 900 nM against HOP-92 non-small cell lung and RXF 393 renal cancer cell lines. Copyright © 2014. Published by Elsevier Ltd.

  19. Anticancer and anti-inflammatory activities of some dietary cucurbits.

    PubMed

    Sharma, Dhara; Rawat, Indu; Goel, H C

    2015-04-01

    In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine.

  20. Site-specific anticancer effects of dietary flavonoid quercetin.

    PubMed

    Sak, Katrin

    2014-01-01

    Food-derived flavonoid quercetin, widely distributed in onions, apples, and tea, is able to inhibit growth of various cancer cells indicating that this compound can be considered as a good candidate for anticancer therapy. Although the exact mechanism of this action is not thoroughly understood, behaving as antioxidant and/or prooxidant as well as modulating different intracellular signalling cascades may all play a certain role. Such inhibitory activity of quercetin has been shown to depend first of all on cell lines and cancer types; however, no comprehensive site-specific analysis of this effect has been published. In this review article, cytotoxicity constants of quercetin measured in various human malignant cell lines of different origin were compiled from literature and a clear cancer selective action was demonstrated. The most sensitive malignant sites for quercetin revealed to be cancers of blood, brain, lung, uterine, and salivary gland as well as melanoma whereas cytotoxic activity was higher in more aggressive cells compared to the slowly growing cells showing that the most harmful cells for the organism are probably targeted. More research is needed to overcome the issues of poor water solubility and relatively low bioavailability of quercetin as the major obstacles limiting its clinical use.

  1. Carfilzomib is an effective anticancer agent in anaplastic thyroid cancer.

    PubMed

    Mehta, Amit; Zhang, Lisa; Boufraqech, Myriem; Zhang, Yaqin; Patel, Dhaval; Shen, Min; Kebebew, Electron

    2015-06-01

    Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies. Currently, there is no standard or effective therapy for ATC. Drug repurposing for cancer treatment is an emerging approach for identifying compounds that may have antineoplastic effects. The aim of this study was to use high-throughput drug library screening to identify and subsequently validate novel therapeutic agents with anticancer effects in ATC. We performed quantitative high-throughput screening (qHTS) in ATC cell lines (SW-1736, 8505C, and C-643), using a compound library of 3282 drugs. qHTS identified 100 compounds that were active in all three ATC cell lines. Proteasome inhibitors were one of the most active drug categories according to enrichment analysis. Of the three proteasome inhibitors screened, a second-generation proteasome inhibitor, carfilzomib, was the most active. Treatment of ATC cells with carfilzomib significantly inhibited cellular proliferation and induced G2/M cell cycle arrest and caspase-dependent apoptosis. Mechanistically, carfilzomib increased expression of p27 (CDKN1B) and decreased expression of the anti-apoptotic protein ATF4. Pretreatment with carfilzomib reduced in vivo metastases (lung, bone, liver, and kidney) and disease progression, and decreased N-cadherin expression. Carfilzomib treatment of mice with established, widely metastatic disease significantly increased their survival, without significant toxicity. Our findings support the use or clinical study of carfilzomib as a therapeutic option in patients with advanced and metastatic ATC.

  2. Cucurmin; Anticancer and Antitumor Perspectives - A Comprehensive Review.

    PubMed

    Imran, Muhammad; Saeed, Farhan; Nadeem, Muhammad; Arshad, Muhammad Umair; Ullah, Azmat; Suleria, Hafiz Ansar Rasul

    2016-11-22

    Cucurmin, a naturally yellow component isolated from turmeric, ability to prevent various life-style related disorders. The current review article mainly emphasizes on different anticancer perspectives of cucurmin i.e. colon, cervical, uterine, ovarian, prostate head and neck, breast, pulmonary, stomach and gastric, pancreatic, bladder oral, oesophageal and bone cancer. It holds a mixture of strong bioactive molecule known as cucurminoids that has ability to reduce cancer/tumor at initial, promotion and progression stages of tumor development. In particular, these compounds block several enzymes required for the growth of tumors and may therefore involve in tumor treatments. Moreover, it modulates an array of cellular progressions i.e. nitric oxide synthetase activity, protein kinase C activity, epidermal growth factor (EGF) receptor intrinsic kinase activity, nuclear factor kappa (NF-kB) activity, inhibiting lipid peroxidation and production of reactive oxygen species. However, current manuscript summarizes most of the recent investigations of cucurmin but still further research should be conducted to explore the role of curcumin to mitigate various cancers.

  3. Current Status of Epigenetics and Anticancer Drug Discovery.

    PubMed

    Jin, Ping; Chen, Xiaofei

    2016-01-01

    In recent years, there has been an expansion of the understanding of how epigenetic dysregulation plays a role in tumorigenesis, progression, metastasis and treatment resistance. Evidence has focused on two common and well-studied "epigenetic codes", i.e., DNA methylation and histone posttranslational modification, which regulate the transcriptional status in various types of cancer and the corresponding target agents. Aside from "writers" and "erasers", which refer to enzymes that catalyze and remove posttranslational modifications, respectively, "readers" bind to target proteins and recruit "writers" and "erasers" for regulating gene expression. A number of selective and potent anticancer compounds have been reported, some of which are in preclinical or clinical trials that have shown promising results, primarily against malignant neoplasms such as hematologic malignancies, with the subsequent emerging development of both monotherapy and co-administration with traditional cytotoxic medicines against solid tumors. Second-generation epigenetic agents such as EZH2 and BET inhibitors have greatly progressed. Epigenetic dysregulation has also provided feasibility for the diagnosis and treatment of cancer. In this review, we summarize the progress in epigenetics and drug discovery for cancer and certain clinical trials that may provide a perspective for future development.

  4. Role of Distinct Natural Killer Cell Subsets in Anticancer Response

    PubMed Central

    Stabile, Helena; Fionda, Cinzia; Gismondi, Angela; Santoni, Angela

    2017-01-01

    Natural killer (NK) cells, the prototypic member of innate lymphoid cells, are important effectors of anticancer immune response. These cells can survey and control tumor initiation due to their capability to recognize and kill malignant cells and to regulate the adaptive immune response via cytokines and chemokines release. However, several studies have shown that tumor-infiltrating NK cells associated with advanced disease can have profound functional defects and display protumor activity. This evidence indicates that NK cell behavior undergoes crucial alterations during cancer progression. Moreover, a further level of complexity is due to the extensive heterogeneity and plasticity of these lymphocytes, implying that different NK cell subsets, endowed with specific phenotypic and functional features, may be involved and play distinct roles in the tumor context. Accordingly, many studies reported the enrichment of selective NK cell subsets within tumor tissue, whereas the underlying mechanisms are not fully elucidated. A malignant microenvironment can significantly impact NK cell activity, by recruiting specific subpopulations and/or influencing their developmental programming or the acquisition of a mature phenotype; in particular, neoplastic, stroma and immune cells, or tumor-derived factors take part in these processes. In this review, we will summarize and discuss the recently acquired knowledge on the possible contribution of distinct NK cell subsets in the control and/or progression of solid and hematological malignancies. Moreover, we will address emerging evidence regarding the role of different components of tumor microenvironment on shaping NK cell response. PMID:28360915

  5. Anticancer and antioxidant properties of terpinolene in rat brain cells.

    PubMed

    Aydin, Elanur; Türkez, Hasan; Taşdemir, Sener

    2013-09-01

    Terpinolene (TPO) is a natural monoterpene present in essential oils of many aromatic plant species. Although various biological activities of TPO have been demonstrated, its neurotoxicity has never been explored. In this in vitro study we investigated TPO's antiproliferative and/or cytotoxic properties using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) test, genotoxic damage potential using the single-cell gel electrophoresis (SCGE), and oxidative effects through total antioxidant capacity (TAC) and total oxidative stress (TOS) in cultured primary rat neurons and N2a neuroblastoma cells. Dose-dependent effects of TPO (at 10 mg L(-1), 25 mg L(-1), 50 mg L(-1), 100 mg L(-1), 200 mg L(-1), and 400 mg L(-1)) were tested in both cell types. Significant (P<0.05) decrease in cell proliferation were observed in cultured primary rat neurons starting with the dose of 100 mg L(-1) and in N2a neuroblastoma cells starting with 50 mg L(-1). TPO was not genotoxic in either cell type. In addition, TPO treatment at 10 mg L(-1), 25 mg L(-1), and 50 mg L(-1) increased TAC in primary rat neurons, but not in N2a cells. However, at concentrations above 50 mg L(-1) it increased TOS in both cell types. Our findings clearly demonstrate that TPO is a potent antiproliferative agent for brain tumour cells and may have potential as an anticancer agent, which needs to be further studied.

  6. Study of anticancer activities of muscadine grape phenolics in vitro.

    PubMed

    Yi, Weiguang; Fischer, Joan; Akoh, Casimir C

    2005-11-02

    Muscadine grapes have unique aroma and flavor characteristics. Although a few studies reported high polyphenols content of muscadine grapes, little research has been conducted to evaluate the phenolic compounds bioactivities in any muscadine grape cultivar. The objective of this study was to evaluate the effect of phenolic compounds in muscadine grapes on cancer cell viability and apoptosis. Four cultivars of muscadine (Carlos, Ison, Noble, and Supreme) were assessed in this study. Phenolic compounds were extracted from muscadine skins and further separated into phenolic acids, tannins, flavonols, and anthocyanins using HLB cartridge and LH20 column. Some individual phenolic acids and flavonoids were identified by HPLC. Anthocyanin fractions were more than 90% pure. The effect of different fractions on the viability and apoptosis of two colon cancer cell lines (HT-29 and Caco-2) was evaluated. A 50% inhibition of cancer cell population growth for the two cell lines was observed at concentrations of 1-7 mg/mL for crude extracts. The phenolic acid fractions showed a 50% inhibition at the level of 0.5-3 mg/mL. The greatest inhibitory activity was found in the anthocyanin fraction, with a 50% inhibition at concentrations of approximately 200 microg/mL in HT-29 and 100-300 microg/mL in Caco-2. Anthocyanin fractions also resulted in 2-4 times increase in DNA fragmentation, indicating the induction of apoptosis. These findings suggest that polyphenols from muscadine grapes may have anticancer properties.

  7. Metabolism, toxicity and anticancer activities of arsenic compounds

    PubMed Central

    Khairul, Islam; Wang, Qian Qian; Jiang, Yu Han; Wang, Chao; Naranmandura, Hua

    2017-01-01

    A variety of studies indicated that inorganic arsenic and its methylated metabolites have paradoxical effects, namely, carcinogenic and anticancer effects. Epidemiological studies have shown that long term exposure to arsenic can increase the risk of cancers of lung, skin or bladder in man, which is probably associated with the arsenic metabolism. In fact, the enzymatic conversion of inorganic arsenic by Arsenic (+3 oxidation state) methyltransferase (AS3MT) to mono- and dimethylated arsenic species has long been considered as a major route for detoxification. However, several studies have also indicated that biomethylation of inorganic arsenic, particularly the production of trivalent methylated metabolites, is a process that activates arsenic as a toxin and a carcinogen. On the other hand, arsenic trioxide (As2O3) has recently been recognized as one of the most effective drugs for the treatment of APL. However, elaboration of the cytotoxic mechanisms of arsenic and its methylated metabolites in eradicating cancer is sorely lacking. To provide a deeper understanding of the toxicity and carcinogenicity along with them use of arsenic in chemotherapy, caution is required considering the poor understanding of its various mechanisms of exerting toxicity. Thereby, in this review, we have focused on arsenic metabolic pathway, the roles of the methylated arsenic metabolites in toxicity and in the therapeutic efficacy for the treatments of solid tumors, APL and/or non-APL malignancies. PMID:28108741

  8. Toward better quality of anticancer generics in India.

    PubMed

    Gota, V S; Patial, P

    2014-01-01

    Treatment of cancer is limited by affordability of patients in the many developing countries including India. Generic drug manufacturers have responded to this scenario by making drugs available at affordable costs, often at less than 10% the cost of the original brand. In our practice, it is found that there is a three-fold higher prescription of generic brands compared to innovator, accompanied by cost savings of up to 80% per prescription. Unfortunately, the regulatory environment prevailing in India is not geared to ensure satisfactory quality of generic products. The standards set by the regulatory agencies for establishing equivalence of generics vis-ΰ-vis the innovator product allow anticancer generics to enter markets without undergoing clinical evaluation. Many drug manufacturing units in India flout good manufacturing practice norms, which was evident during the center for drug evaluation and research classifications inspection in the year 2006. Inferior drugs have therefore, made their way into the Indian markets, compromising the quality of care. The system of drug manufacturing and marketing approval needs a major overhaul, including regular inspection of manufacturing facilities. Bioequivalence should be made mandatory for all oral formulations. Unless these measures are rigidly implemented, the benefits of generic substitution would be seriously undermined.

  9. Synthesis and anticancer properties of water-soluble zinc ionophores.

    PubMed

    Magda, Darren; Lecane, Philip; Wang, Zhong; Hu, Weilin; Thiemann, Patricia; Ma, Xuan; Dranchak, Patricia K; Wang, Xiaoming; Lynch, Vincent; Wei, Wenhao; Csokai, Viktor; Hacia, Joseph G; Sessler, Jonathan L

    2008-07-01

    Several water-solubilized versions of the zinc ionophore 1-hydroxypyridine-2-thione (ZnHPT), synthesized as part of the present study, have been found both to increase the intracellular concentrations of free zinc and to produce an antiproliferative activity in exponential phase A549 human lung cancer cultures. Gene expression profiles of A549 cultures treated with one of these water-soluble zinc ionophores, PCI-5002, reveal the activation of stress response pathways under the control of metal-responsive transcription factor 1 (MTF-1), hypoxia-inducible transcription factor 1 (HIF-1), and heat shock transcription factors. Additional oxidative stress response and apoptotic pathways were activated in cultures grown in zinc-supplemented media. We also show that these water-soluble zinc ionophores can be given to mice at 100 micromol/kg (300 micromol/m(2)) with no observable toxicity and inhibit the growth of A549 lung and PC3 prostate cancer cells grown in xenograft models. Gene expression profiles of tumor specimens harvested from mice 4 h after treatment confirmed the in vivo activation of MTF-1-responsive genes. Overall, we propose that water-solubilized zinc ionophores represent a potential new class of anticancer agents.

  10. Evaluation of anticancer activity of dehydrocostuslactone in vitro.

    PubMed

    Choi, Eun J; Kim, Gun-Hee

    2010-01-01

    Dehydrocostuslactone is a sesquiterpene lactone derived from Saussurea lappa, a plant used in traditional herbal medicines. The anti-proliferative activity of dehydrocostuslactone was investigated in human breast cancer (MDA-MB-231, MDA-MB-453 and SK-BR-3) and ovarian cancer (SK-OV-3 and OVCAR3) cell lines using the methyl thiazolyl tetrazolium assay. In the cells, exposure to dehydrocostuslactone resulted in a dose-dependent decline in cell proliferation. The IC50 value was found to be 21.5, 43.2, 25.6, 15.9 and 10.8 µM in MDA-MB-231, MDA-MB-453, SK-BR-3, SK-OV-3 and OVCAR3 cells, respectively. Dehydrocostuslactone exerted its antiproliferative effects by inducing cell cycle arrest and apoptosis. Cell cycle distribution and apoptosis were analyzed using flow cytometry in cell lines exposed to 10 µM dehydrocostuslactone for 48 h. Compared to the controls, exposure to dehydrocostuslactone resulted in accumulation in the G2/M phase and a marked increase in the apoptotic cell population. These results suggest that dehydrocostuslactone has potential anticancer properties.

  11. Mitosis-targeted anti-cancer therapies: where they stand

    PubMed Central

    Chan, K-S; Koh, C-G; Li, H-Y

    2012-01-01

    The strategy of clinically targeting cancerous cells at their most vulnerable state during mitosis has instigated numerous studies into the mitotic cell death (MCD) pathway. As the hallmark of cancer revolves around cell-cycle deregulation, it is not surprising that antimitotic therapies are effective against the abnormal proliferation of transformed cells. Moreover, these antimitotic drugs are also highly selective and sensitive. Despite the robust rate of discovery and the development of mitosis-selective inhibitors, the unpredictable complexities of the human body's response to these drugs still herald the biggest challenge towards clinical success. Undoubtedly, the need to bridge the gap between promising preclinical trials and effective translational bedside treatment prompts further investigations towards mapping out the mechanistic pathways of MCD, understanding how these drugs work as medicine in the body and more comprehensive target validations. In this review, current antimitotic agents are summarized with particular emphasis on the evaluation of their clinical efficacy as well as their limitations. In addition, we discuss the basis behind the lack of activity of these inhibitors in human trials and the potential and future directions of mitotic anticancer strategies. PMID:23076219

  12. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-08-29

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed.

  13. Selective anti-cancer agents as anti-aging drugs.

    PubMed

    Blagosklonny, Mikhail V

    2013-12-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.

  14. Human recombinant RNASET2: A potential anti-cancer drug

    PubMed Central

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  15. Hydroxamic acid – A novel molecule for anticancer therapy

    PubMed Central

    Pal, Dilipkumar; Saha, Supriyo

    2012-01-01

    Hydroxamic acid is a potent moiety not only in the field of cancer therapy but also as a mutagenic agent. Among the various derivatives of hydroxamic acid, SAHA (Suberoylanilide Hydroxamic Acid) is considered as a potent anticancer agent. Scientists from the different corner synthesized different hydroxamic acid moieties with some straight chain oxazole, thiadiazole, biphenyl moieties in the terminal position. Acetylation and deacetylation of histones of the core proteins of nucleosomes in chromatin play an important role in the regulation of gene expression. The level of acetylation of histones is established and maintained by two classes of enzymes, histone acetyltransferase and histone deacetylases, which have been identified as transcriptional coactivators and transcriptional corepressors, respectively. There is increasing evidence that aberrant histone acetylation has been linked to various malignant diseases. Great efforts are currently underway for the design of more potent and less toxic candidates for the treatment of cancer. In recent years, hydroxamic acid derivatives have attracted increasing attention for their potential as highly efficacious in combating various etiological factors associated with cancer. Our main intention to draw an attention is that this single functional moiety has not only fit in the receptor but also create a diversified activity. PMID:22837956

  16. Trigger-Responsive Gene Transporters for Anticancer Therapy

    PubMed Central

    Rajendrakumar, Santhosh Kalash; Uthaman, Saji; Cho, Chong Su; Park, In-Kyu

    2017-01-01

    In the current era of gene delivery, trigger-responsive nanoparticles for the delivery of exogenous nucleic acids, such as plasmid DNA (pDNA), mRNA, siRNAs, and miRNAs, to cancer cells have attracted considerable interest. The cationic gene transporters commonly used are typically in the form of polyplexes, lipoplexes or mixtures of both, and their gene transfer efficiency in cancer cells depends on several factors, such as cell binding, intracellular trafficking, buffering capacity for endosomal escape, DNA unpacking, nuclear transportation, cell viability, and DNA protection against nucleases. Some of these factors influence other factors adversely, and therefore, it is of critical importance that these factors are balanced. Recently, with the advancements in contemporary tools and techniques, trigger-responsive nanoparticles with the potential to overcome their intrinsic drawbacks have been developed. This review summarizes the mechanisms and limitations of cationic gene transporters. In addition, it covers various triggers, such as light, enzymes, magnetic fields, and ultrasound (US), used to enhance the gene transfer efficiency of trigger-responsive gene transporters in cancer cells. Furthermore, the challenges associated with and future directions in developing trigger-responsive gene transporters for anticancer therapy are discussed briefly. PMID:28587119

  17. Geranylgeranyltransferase I as a target for anti-cancer drugs

    PubMed Central

    Philips, Mark R.; Cox, Adrienne D.

    2007-01-01

    Posttranslational modification is critical for the function of the gene products of ras oncogenes, which are frequently mutated in cancer. Ras proteins are modified by farnesyltransferase (FTase), but many related small GTPases that also end in a CAAX motif (where C is cysteine, A is often an aliphatic amino acid, and X is any amino acid) are modified by a closely related enzyme known as geranylgeranyltransferase type I (GGTase-I). Accordingly, inhibitors for both of these enzymes have been developed, and those active against FTase are in clinical trials. In this issue of the JCI, Sjogren et al. report the development of a mouse strain homozygous for a conditional allele of the gene that encodes GGTase-I (see the related article beginning on page 1294). They found that ablation of the GGTase-I–encoding gene in cells destined to produce lung tumors driven by oncogenic K-Ras resulted in delayed onset and decreased severity of disease, validating in a genetic model the theory that GGTase-I is a good target for anti-cancer drug development. PMID:17476354

  18. Unusual DNA binding modes for metal anticancer complexes

    PubMed Central

    Pizarro, Ana M.; Sadler, Peter J.

    2010-01-01

    DNA is believed to be the primary target for many metal-based drugs. For example, platinum-based anticancer drugs can form specific lesions on DNA that induce apoptosis. New platinum drugs can be designed that have novel modes of interaction with DNA, such as the trinuclear platinum complex BBR3464. Also it is possible to design inert platinum(IV) pro-drugs which are non-toxic in the dark, but lethal when irradiated with certain wavelengths of light. This gives rise to novel DNA lesions which are not as readily repaired as those induced by cisplatin, and provides the basis for a new type of photoactivated chemotherapy. Finally, newly emerging ruthenium(II) organometallic complexes not only bind to DNA coordinatively, but also by H-bonding and hydrophibic interactions triggered by the introduction of extended arene rings into their versatile structures. Intriguingly osmium (the heavier congener of ruthenium) reacts differently with DNA but can also give rise to highly cytotoxic organometallic complexes. PMID:19344743

  19. Personalized anticancer therapy selection using molecular landscape topology and thermodynamics.

    PubMed

    Rietman, Edward A; Scott, Jacob G; Tuszynski, Jack A; Klement, Giannoula Lakka

    2017-03-21

    Personalized anticancer therapy requires continuous consolidation of emerging bioinformatics data into meaningful and accurate information streams. The use of novel mathematical and physical approaches, namely topology and thermodynamics can enable merging differing data types for improved accuracy in selecting therapeutic targets. We describe a method that uses chemical thermodynamics and two topology measures to link RNA-seq data from individual patients with academically curated protein-protein interaction networks to select clinically relevant targets for treatment of low-grade glioma (LGG). We show that while these three histologically distinct tumor types (astrocytoma, oligoastrocytoma, and oligodendroglioma) may share potential therapeutic targets, the majority of patients would benefit from more individualized therapies. The method involves computing Gibbs free energy of the protein-protein interaction network and applying a topological filtration on the energy landscape to produce a subnetwork known as persistent homology. We then determine the most likely best target for therapeutic intervention using a topological measure of the network known as Betti number. We describe the algorithm and discuss its application to several patients.

  20. Metabolism, toxicity and anticancer activities of arsenic compounds.

    PubMed

    Khairul, Islam; Wang, Qian Qian; Jiang, Yu Han; Wang, Chao; Naranmandura, Hua

    2017-01-18

    A variety of studies indicated that inorganic arsenic and its methylated metabolites have paradoxical effects, namely, carcinogenic and anticancer effects. Epidemiological studies have shown that long term exposure to arsenic can increase the risk of cancers of lung, skin or bladder in man, which is probably associated with the arsenic metabolism. In fact, the enzymatic conversion of inorganic arsenic by Arsenic (+3 oxidation state) methyltransferase (AS3MT) to mono- and dimethylated arsenic species has long been considered as a major route for detoxification. However, several studies have also indicated that biomethylation of inorganic arsenic, particularly the production of trivalent methylated metabolites, is a process that activates arsenic as a toxin and a carcinogen. On the other hand, arsenic trioxide (As2O3) has recently been recognized as one of the most effective drugs for the treatment of APL. However, elaboration of the cytotoxic mechanisms of arsenic and its methylated metabolites in eradicating cancer is sorely lacking. To provide a deeper understanding of the toxicity and carcinogenicity along with them use of arsenic in chemotherapy, caution is required considering the poor understanding of its various mechanisms of exerting toxicity. Thereby, in this review, we have focused on arsenic metabolic pathway, the roles of the methylated arsenic metabolites in toxicity and in the therapeutic efficacy for the treatments of solid tumors, APL and/or non-APL malignancies.

  1. PEPTIDE TARGETING OF PLATINUM ANTI-CANCER DRUGS

    PubMed Central

    Ndinguri, Margaret W.; Solipuram, Rajasree; Gambrell, Robert P.; Aggarwal, Sita; Hansel, William; Hammer, Robert P.

    2009-01-01

    Besides various side effects caused by platinum anticancer drugs, they are not efficiently absorbed by the tumor cells. Two Pt-peptide conjugates; cyclic mPeg-CNGRC-Pt (7) and cyclic mPeg-CNGRC-Pten (8) bearing the Asn-Gly-Arg (NGR) targeting sequence, a malonoyl linker and low molecular weight miniPEG groups have been synthesized. The platinum ligand was attached to the peptide via the carboxylic end of the malonate group at the end of the peptide. The pegylated peptide is non toxic and highly soluble in water. Platinum conjugates synthesized using the pegylated peptides are also water soluble with reduced or eliminated peptide immunogenicity. The choice of carboplatin as our untargeted platinum complex was due to the fact that malonate linker chelates platinum in a manner similar to carboplatin. Cell toxicity assay and competition assay on the PC-3 cells (CD13 positive receptors) revealed selective delivery and destruction of PC-3 cells using targeted Pt-peptide conjugates 7 and 8 significantly more than untargeted carboplatin. Platinum uptake on PC-3 cells was 12-fold more for conjugate 7 and 3-fold more for conjugate 8 compared to the untargeted carboplatin indicating selectively activation of the CD13 receptors and delivery of the conjugates to CD13 positive cells. Further analysis on effects of conjugates 7 and 8 on PC-3 cells using caspase-3/7, fluorescence microscopy and DNA fragmentation confirmed that the cells were dying by apoptosis. PMID:19775102

  2. Diaryl Urea: A Privileged Structure in Anticancer Agents.

    PubMed

    Garuti, Laura; Roberti, Marinella; Bottegoni, Giovanni; Ferraro, Mariarosaria

    2016-01-01

    The diaryl urea is an important fragment/pharmacophore in constructing anticancer molecules due to its near-perfect binding with certain acceptors. The urea NH moiety is a favorable hydrogen bond donor, while the urea oxygen atom is regarded as an excellent acceptor. Many novel compounds have been synthesized and evaluated for their antitumor activity with the successful development of sorafenib. Moreover, this structure is used to link alkylating pharmacophores with high affinity DNA binders. In addition, the diaryl urea is present in several kinase inhibitors, such as RAF, KDR and Aurora kinases. Above all, this moiety is used in the type II inhibitors: it usually forms one or two hydrogen bonds with a conserved glutamic acid and one with the backbone amide of the aspartic acid in the DFG motif. In addition, some diaryl urea derivatives act as Hedgehog (Hh) ligands, binding and inhibiting proteins involved in the homonymous Hh signaling pathway. In this review we provide some of the methodologies adopted for the synthesis of diaryl ureas and a description of the most representative antitumor agents bearing the diaryl urea moiety, focusing on their mechanisms bound to the receptors and structure-activity relationships (SAR). An increased knowledge of these derivatives could prompt the search to find new and more potent compounds.

  3. Emerging Anticancer Potentials of Goniothalamin and Its Molecular Mechanisms

    PubMed Central

    Bukhari, Syed Nasir Abbas

    2014-01-01

    The treatment of most cancers is still inadequate, despite tremendous steady progress in drug discovery and effective prevention. Nature is an attractive source of new therapeutics. Several medicinal plants and their biomarkers have been widely used for the treatment of cancer with less known scientific basis of their functioning. Although a wide array of plant derived active metabolites play a role in the prevention and treatment of cancer, more extensive scientific evaluation of their mechanisms is still required. Styryl-lactones are a group of secondary metabolites ubiquitous in the genus Goniothalamus that have demonstrated to possess antiproliferative activity against cancer cells. A large body of evidence suggests that this activity is associated with the induction of apoptosis in target cells. In an effort to promote further research on the genus Goniothalamus, this review offers a broad analysis of the current knowledge on Goniothalamin (GTN) or 5, 6, dihydro-6-styryl-2-pyronone (C13H12O2), a natural occurring styryl-lactone. Therefore, it includes (i) the source of GTN and other metabolites; (ii) isolation, purification, and (iii) the molecular mechanisms of actions of GTN, especially the anticancer properties, and summarizes the role of GTN which is crucial for drug design, development, and application in future for well-being of humans. PMID:25247178

  4. Interactions of the Anticancer Drug Tamoxifen with Lipid Membranes

    PubMed Central

    Khadka, Nawal K.; Cheng, Xiaolin; Ho, Chian Sing; Katsaras, John; Pan, Jianjun

    2015-01-01

    Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band’s magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer area compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM. PMID:25992727

  5. SWCNT-Polymer Nanocomplexes for Anti-Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Withey, Paul; Momin, Zoya; Bommoju, Anvesh; Hoang, Trung; Rashid, Bazlur

    2015-03-01

    Utilization of single-walled carbon nanotubes (SWCNTs) as more effective drug-delivery agents are being considered due to their ability to easily cross cell membranes, while their high aspect ratio and large surface area provide multiple attachment sites for biocompatible drug complexes. However, excessive bundling of pristine SWCNTs caused by strong attractive Van der Walls forces between CNT sidewalls is a major obstacle. We have successfully dispersed SWCNTs with both polyvinyl alcohol and Pluronic biocompatible polymers, and attached anti-cancer drugs Camptothecin (CPT) and Doxorubicin to form non-covalent CNT-polymer-drug conjugates in aqueous solution. Polymeric dispersion of SWCNTs by both polymers is confirmed by clearly identifiable near-infrared (NIR) fluorescence emission peaks of individual (7,5) and (7,6) nanotubes, and drug attachment to form complete complexes verified by UV-Vis spectroscopy. These complexes, with varying SWCNT and drug concentrations, were tested for effectiveness by exposing them to a line of human embryonic kidney cancer cells and analyzed for cell viability. Preliminary results indicate significant improvement in drug effectiveness on the cancer cells, with more successful internalization due to unaltered SWCNTs as the drug carriers. Supported by the UHCL Faculty Research Support Fund.

  6. BET Inhibitors as Anticancer Agents: A Patent Review.

    PubMed

    Ali, Imran; Choi, Gildon; Lee, Kwangho

    2017-08-08

    Bromodomain and extra terminal (BET) family of bromodomain proteins (BRDs), comprised of four members in humans (BRD2, BRD3, BRD4, and BRDT), has emerged as a promising new cancer target class for small-molecule drug discovery. This review discusses the patent literature of BET inhibitors (2010-2017) for the treatment of cancer and other related diseases. BET proteins act as 'epigenetic readers' and bind to acetylated lysine residues on the tails of histones H3 and H4. Inhibition of BET proteins for a wide array of therapeutic applications has led to the discovery and development of various BET inhibitors. The increasing significance of BET inhibitors as a potential anticancer therapeutic has led to an extensive patent activity both from academia and pharmaceutical industry. Several of the BET inhibitors are under clinical development for the treatment of various kinds of cancers. The unmet needs and challenges associated with BET inhibition for cancer treatment have been portrayed in this review. An insight into the current developments and future prospects has been described as well. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    PubMed

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  8. Inhibition of STAT3 by Anticancer Drug Bendamustine

    PubMed Central

    Iwamoto, Kazunori; Uehara, Yutaka; Inoue, Yukie; Taguchi, Kyoko; Muraoka, Daisuke; Ogo, Naohisa; Matsuno, Kenji; Asai, Akira

    2017-01-01

    Bendamustine (BENDA), which bears the bis(2-chloroethyl)amino moiety, is an alkylating agent that stops the growth of cancer cells by binding to DNA and interfering with its replication. However, the mechanism of action underlying its excellent clinical efficacy remains unclear. In this work, we report that BENDA inhibits signal transducer and activator of transcription 3 (STAT3). In an AlphaScreen-based biochemical assay using recombinant human STAT3, binding of STAT3–Src homology 2 (SH2) to the phosphotyrosine (pTyr, pY) peptide was inhibited by BENDA but not by the inactive metabolite dihydroxy bendamustine (HP2). When a single point mutation of C550A or C712A was introduced into recombinant human STAT3, its sensitivity to BENDA was substantially reduced, suggesting that these cysteine residues are important for BENDA to inhibit STAT3. Furthermore, BENDA suppressed the function of cellular STAT3 as a transcriptional activator in a human breast cancer cell line, MDA-MB-468, with constitutively activated STAT3. A competitive pull-down assay using biotinylated BENDA (Bio-BENDA) revealed that BENDA bound tightly to cellular STAT3, presumably through covalent bonds. Therefore, our results suggest that the anticancer effects of BENDA may be associated, at least in part, with its inhibitory effect on the SH2 domain of STAT3. PMID:28125678

  9. Natural zeolite clinoptilolite: new adjuvant in anticancer therapy.

    PubMed

    Pavelić, K; Hadzija, M; Bedrica, L; Pavelić, J; Dikić, I; Katić, M; Kralj, M; Bosnar, M H; Kapitanović, S; Poljak-Blazi, M; Krizanac, S; Stojković, R; Jurin, M; Subotić, B; Colić, M

    2001-01-01

    Natural silicate materials, including zeolite clinoptilolite, have been shown to exhibit diverse biological activities and have been used successfully as a vaccine adjuvant and for the treatment of diarrhea. We report a novel use of finely ground clinoptilolite as a potential adjuvant in anticancer therapy. Clinoptilolite treatment of mice and dogs suffering from a variety of tumor types led to improvement in the overall health status, prolongation of life-span, and decrease in tumors size. Local application of clinoptilolite to skin cancers of dogs effectively reduced tumor formation and growth. In addition, toxicology studies on mice and rats demonstrated that the treatment does not have negative effects. In vitro tissue culture studies showed that finely ground clinoptilolite inhibits protein kinase B (c-Akt), induces expression of p21WAF1/CIP1 and p27KIP1 tumor suppressor proteins, and blocks cell growth in several cancer cell lines. These data indicate that clinoptilolite treatment might affect cancer growth by attenuating survival signals and inducing tumor suppressor genes in treated cells.

  10. Proteomic Analysis of Anticancer TCMs Targeted at Mitochondria

    PubMed Central

    Wang, Yang; Yu, Ru-Yuan; He, Qing-Yu

    2015-01-01

    Traditional Chinese medicine (TCM) is a rich resource of anticancer drugs. Increasing bioactive natural compounds extracted from TCMs are known to exert significant antitumor effects, but the action mechanisms of TCMs are far from clear. Proteomics, a powerful platform to comprehensively profile drug-regulated proteins, has been widely applied to the mechanistic investigation of TCMs and the identification of drug targets. In this paper, we discuss several bioactive TCM products including terpenoids, flavonoids, and glycosides that were extensively investigated by proteomics to illustrate their antitumor mechanisms in various cancers. Interestingly, many of these natural compounds isolated from TCMs mostly exert their tumor-suppressing functions by specifically targeting mitochondria in cancer cells. These TCM components induce the loss of mitochondrial membrane potential, the release of cytochrome c, and the accumulation of ROS, initiating apoptosis cascade signaling. Proteomics provides systematic views that help to understand the molecular mechanisms of the TCM in tumor cells; it bears the inherent limitations in uncovering the drug-protein interactions, however. Subcellular fractionation may be coupled with proteomics to capture and identify target proteins in mitochondria-enriched lysates. Furthermore, translating mRNA analysis, a new technology profiling the drug-regulated genes in translatome level, may be integrated into the systematic investigation, revealing global information valuable for understanding the action mechanism of TCMs. PMID:26568766

  11. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives.

    PubMed

    Nasr, Tamer; Bondock, Samir; Youns, Mahmoud

    2014-04-09

    Drug resistance is a major impediment for cancer treatment, to overcome it we designed and synthesized sixteen coumarins bearing hydrazide-hydrazone moiety and evaluated them against human drug-resistant pancreatic carcinoma (Panc-1) cells and drug-sensitive (hepatic carcinoma; Hep-G2 and leukemia; CCRF) cell lines in vitro. The 6-brominated coumarin hydrazide-hydrazone derivatives (BCHHD) 7c, 8c and 10c were more potent than doxorubicin (DOX) against resistant Panc-1 cells. BCHHD 7c showed significant cytotoxicity against all tested cells (IC50: 3.60-6.50 μM) on comparison with all other coumarin hydrazide-hydrazone derivatives (CHHD), whereas BCHHD's 8c and 10c showed significant antiproliferative activity only against resistant Panc-1 cells with IC50 of 2.02 μM and 2.15 μM, respectively. All the investigated BCHHD's were able to activate caspases 3/7 and they could induce apoptosis in resistant Panc-1 cells. Microarray analysis showed that BCHHD 7c induced the expression of apoptotic- and cell cycle arrest (G2/M)- genes in resistant Panc-1 cells. Moreover, BCHHD 7c induced the up-regulation of CDKN1A, DDIT4, GDF-15 and down-regulation of CDC2, CDC20, CDK2 genes. Based on our results, we conclude that 7c could be a potent anticancer drug to overcome drug resistance in cancer and it could be highly beneficial for patients in the clinic.

  12. Transition Metal Intercalators as Anticancer Agents—Recent Advances

    PubMed Central

    Deo, Krishant M.; Pages, Benjamin J.; Ang, Dale L.; Gordon, Christopher P.; Aldrich-Wright, Janice R.

    2016-01-01

    The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number. This has prompted the search for metal-based complexes with distinctly different structural motifs and non-covalent modes of binding with a primary aim of circumventing current clinical limitations. This review discusses recent advances in platinum and other transition metal-based complexes with mechanisms of action involving intercalation. This mode of DNA binding is distinct from cisplatin and its derivatives. The metals focused on in this review include Pt, Ru and Cu along with examples of Au, Ni, Zn and Fe complexes; these complexes are capable of DNA intercalation and are highly biologically active. PMID:27809241

  13. Anticancer drug bortezomib increases interleukin-8 expression in human monocytes.

    PubMed

    Sanacora, Shannon; Urdinez, Joaquin; Chang, Tzu-Pei; Vancurova, Ivana

    2015-05-01

    Bortezomib (BZ) is the first clinically approved proteasome inhibitor that has shown remarkable anticancer activity in patients with hematological malignancies. However, many patients relapse and develop resistance; yet, the molecular mechanisms of BZ resistance are not fully understood. We have recently shown that in solid tumors, BZ unexpectedly increases expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8), while it inhibits expression of other NFκB-regulated genes. Since monocytes and macrophages are major producers of IL-8, the goal of this study was to test the hypothesis that BZ increases the IL-8 expression in human monocytes and macrophages. Here, we show that BZ dramatically increases the IL-8 expression in lipopolysaccharide (LPS)-stimulated U937 macrophages as well as in unstimulated U937 monocytes and peripheral blood mononuclear cells, while it inhibits expression of IL-6, IL-1 and tumor necrosis factor-α. In addition, our results show that the underlying mechanisms involve p38 mitogen-activated protein kinase, which is required for the BZ-induced IL-8 expression. Together, these data suggest that the BZ-increased IL-8 expression in monocytes and macrophages may represent one of the mechanisms responsible for the BZ resistance and indicate that targeting the p38-mediated IL-8 expression could enhance the BZ effectiveness in cancer treatment.

  14. Death receptors as targets for anti-cancer therapy

    PubMed Central

    Papenfuss, Kerstin; Cordier, Stefanie M; Walczak, Henning

    2008-01-01

    Human tumour cells are characterized by their ability to avoid the normal regulatory mechanisms of cell growth, division and death. The classical chemotherapy aims to kill tumour cells by causing DNA damage-induced apoptosis. However, as many tumour cells posses mutations in intracellular apoptosis-sensing molecules like p53, they are not capable of inducing apoptosis on their own and are therefore resistant to chemotherapy. With the discovery of the death receptors the opportunity arose to directly trigger apoptosis from the outside of tumour cells, thereby circumventing chemotherapeutic resistance. Death receptors belong to the tumour necrosis factor receptor superfamily, with tumour necrosis factor (TNF) receptor-1, CD95 and TNF-related apoptosis-inducing ligand-R1 and -R2 being the most prominent members. This review covers the current knowledge about these four death receptors, summarizes pre-clinical approaches engaging these death receptors in anti-cancer therapy and also gives an overview about their application in clinical trials conducted to date. PMID:19210756

  15. A drug-specific nanocarrier design for efficient anticancer therapy

    NASA Astrophysics Data System (ADS)

    Shi, Changying; Guo, Dandan; Xiao, Kai; Wang, Xu; Wang, Lili; Luo, Juntao

    2015-07-01

    The drug-loading properties of nanocarriers depend on the chemical structures and properties of their building blocks. Here we customize telodendrimers (linear dendritic copolymer) to design a nanocarrier with improved in vivo drug delivery characteristics. We do a virtual screen of a library of small molecules to identify the optimal building blocks for precise telodendrimer synthesis using peptide chemistry. With rationally designed telodendrimer architectures, we then optimize the drug-binding affinity of a nanocarrier by introducing an optimal drug-binding molecule (DBM) without sacrificing the stability of the nanocarrier. To validate the computational predictions, we synthesize a series of nanocarriers and evaluate systematically for doxorubicin delivery. Rhein-containing nanocarriers have sustained drug release, prolonged circulation, increased tolerated dose, reduced toxicity, effective tumour targeting and superior anticancer effects owing to favourable doxorubicin-binding affinity and improved nanoparticle stability. This study demonstrates the feasibility and versatility of the de novo design of telodendrimer nanocarriers for specific drug molecules, which is a promising approach to transform nanocarrier development for drug delivery.

  16. Anticancer and cancer preventive compounds from edible marine organisms.

    PubMed

    Correia-da-Silva, Marta; Sousa, Emília; Pinto, Madalena M M; Kijjoa, Anake

    2017-04-06

    A direct impact of food on health, which demonstrates that dietary habit is one of the most important determinants of chronic diseases such as cancers, has led to an increased interest of the consumers toward natural bioactive compounds as functional ingredients or nutraceuticals. Epidemiological studies revealed that the populations of many Asian countries with high consumption of fish and seafood have low prevalence of particular type of cancers such as lung, breast, colorectal and prostate cancers. This observation has led to extensive investigations of the benefits of compounds present in edible marine organisms such as fish, marine invertebrates (mollusks, echinoderms) and marine algae as cancer chemopreventive agents. Interestingly, many of these marine organisms not only constitute as seafood delicacy but also as ingredients used in folk medicine of some East and Southeast Asian countries. The results of the investigations on extracts and compounds from fish (cods, anchovy, eel and also fish protein hydrolysates), mollusks (mussel, oyster, clams and abalone), as well as from sea cucumbers on the in vivo/in vitro anticancer/antitumor activities can, in part, support the health benefits of these edible marine organisms.

  17. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update

    PubMed Central

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C.; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods—including fruits, vegetables, tea, wine, as well as other dietary supplements—and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  18. Crosslinked Multilamellar Liposomes for Controlled Delivery of Anticancer Drugs

    PubMed Central

    Joo, Kye-Il; Xiao, Liang; Liu, Shuanglong; Liu, Yarong; Lee, Chi-Lin; Conti, Peter S.; Wong, Michael K.; Li, Zibo; Wang, Pin

    2014-01-01

    Liposomes constitute one of the most popular nanocarriers for the delivery of cancer therapeutics. However, since their potency is limited by incomplete drug release and inherent instability in the presence of serum components, their poor delivery occurs in certain circumstances. In this study, we address these shortcomings and demonstrate an alternative liposomal formulation, termed crosslinked multilamellar liposome (CML). With its properties of improved sustainable drug release kinetics and enhanced vesicle stability, CML can achieve controlled delivery of cancer therapeutics. CML stably encapsulated the anticancer drug doxorubicin (Dox) in the vesicle and exhibited a remarkably controlled rate of release compared to that of the unilamellar liposome (UL) with the same lipid composition or Doxil-like liposome (DLL). Our imaging study demonstrated that the CMLs were mainly internalized through a caveolin-dependent pathway and were further trafficked through the endosome-lysosome compartments. Furthermore, in vivo experiments showed that the CML-Dox formulation reduced systemic toxicity and significantly improved therapeutic activity in inhibiting tumor growth compared to that of UL-Dox or DLL-Dox. This drug packaging technology may therefore provide a new treatment option to better manage cancer and other diseases. PMID:23375392

  19. Investigational trials of anticancer drugs: establishing safeguards for experimentation.

    PubMed Central

    Chabner, B A; Wittes, R; Hoth, D; Hubbard, S

    1984-01-01

    The National Cancer Institute since 1955 has been charged with responsibility for discovering new anti-cancer agents and bringing them to clinical trial. These activities are carried out by NCI's Developmental Therapeutics Program, which has established systems for discovery, experimental testing, bulk synthesis, formulation, and toxicological testing of candidate drugs, and by the Cancer Therapy Evaluation Program, which conducts initial trials to establish safe doses of new agents and to determine their utility in treating specific forms of cancer. These clinical trials are conducted both at NCI in Bethesda, Md., and at selected cancer centers throughout the United States. This paper describes the safeguards that NCI has built into the clinical trials system in the past decade-safeguards that ensure the safety of patients and the accuracy of data collected and at the same time allow efficient testing of each promising new agent in the fight against cancer. Recent improvements in cancer survival leave little doubt that patients are indeed benefiting from extensive efforts to discover and develop new drugs for cancer treatment. PMID:6431482

  20. Using DNA devices to track anticancer drug activity.

    PubMed

    Kahanda, Dimithree; Chakrabarti, Gaurab; Mcwilliams, Marc A; Boothman, David A; Slinker, Jason D

    2016-06-15

    It is beneficial to develop systems that reproduce complex reactions of biological systems while maintaining control over specific factors involved in such processes. We demonstrated a DNA device for following the repair of DNA damage produced by a redox-cycling anticancer drug, beta-lapachone (β-lap). These chips supported ß-lap-induced biological redox cycle and tracked subsequent DNA damage repair activity with redox-modified DNA monolayers on gold. We observed drug-specific changes in square wave voltammetry from these chips at therapeutic ß-lap concentrations of high statistical significance over drug-free control. We also demonstrated a high correlation of this change with the specific ß-lap-induced redox cycle using rational controls. The concentration dependence of ß-lap revealed significant signal changes at levels of high clinical significance as well as sensitivity to sub-lethal levels of ß-lap. Catalase, an enzyme decomposing peroxide, was found to suppress DNA damage at a NQO1/catalase ratio found in healthy cells, but was clearly overcome at a higher NQO1/catalase ratio consistent with cancer cells. We found that it was necessary to reproduce key features of the cellular environment to observe this activity. Thus, this chip-based platform enabled tracking of ß-lap-induced DNA damage repair when biological criteria were met, providing a unique synthetic platform for uncovering activity normally confined to inside cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects.

    PubMed

    Fedorov, Sergey N; Ermakova, Svetlana P; Zvyagintseva, Tatyana N; Stonik, Valentin A

    2013-12-02

    Many marine-derived polysaccharides and their analogues have been reported as showing anticancer and cancer preventive properties. These compounds demonstrate interesting activities and special modes of action, differing from each other in both structure and toxicity profile. Herein, literature data concerning anticancer and cancer preventive marine polysaccharides are reviewed. The structural diversity, the biological activities, and the molecular mechanisms of their action are discussed.

  2. Anticancer and Cancer Preventive Properties of Marine Polysaccharides: Some Results and Prospects

    PubMed Central

    Fedorov, Sergey N.; Ermakova, Svetlana P.; Zvyagintseva, Tatyana N.; Stonik, Valentin A.

    2013-01-01

    Many marine-derived polysaccharides and their analogues have been reported as showing anticancer and cancer preventive properties. These compounds demonstrate interesting activities and special modes of action, differing from each other in both structure and toxicity profile. Herein, literature data concerning anticancer and cancer preventive marine polysaccharides are reviewed. The structural diversity, the biological activities, and the molecular mechanisms of their action are discussed. PMID:24317475

  3. Anticancer activity and anti-inflammatory studies of 5-aryl-1,4-benzodiazepine derivatives.

    PubMed

    Sandra, Cortez-Maya; Eduardo, Cortes Cortes; Simon, Hernandez-Ortega; Teresa, Ramirez Apan; Antonio, Nieto Camacho; Lijanova, Irina V; Marcos, Martinez-Garcia

    2012-07-01

    A series of 5-aryl-1,4-benzodiazepines with chloro- or fluoro-substituents in the second ring have been synthesized and their anti-inflammatory, myeloperoxidase and anticancer properties studied. The synthesized compounds showed potential anti-inflammatory and anticancer activities, which were enhanced in the presence of a chloro-substituent in the second ring of the 5-aryl-1,4- benzodiazepine.

  4. Hyperglycaemia Induced by Novel Anticancer Agents: An Undesirable Complication or a Potential Therapeutic Opportunity?

    PubMed

    Shah, Rashmi R

    2017-03-01

    Signalling pathways involving protein kinase, insulin-like growth factor 1, insulin receptors and the phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) system are critical in promoting oncogenesis. The use of anticancer agents that inhibit these pathways frequently results in hyperglycaemia, an on-target effect of these drugs. Hyperglycaemia induced by these agents denotes optimal inhibition of the desired pharmacological target. As hyperglycaemia can be treated successfully and effectively with metformin, managing this complication by reducing the dose of or discontinuing the anticancer drug may be counterproductive, especially if it is otherwise effective and clinically tolerated. The use of metformin to treat hyperglycaemia induced by anticancer drugs provides a valuable therapeutic opportunity of potentiating their clinical anticancer effects. Although evidence from randomised controlled trials is awaited, extensive preclinical evidence and clinical observational studies suggest that metformin has anticancer properties that improve overall survival in patients with diabetes and a variety of cancers. Metformin has also been reported to reverse resistance to epidermal growth factor receptor (EGFR)-inhibiting tyrosine kinase inhibitors. This review summarises briefly the role of the above signalling pathways in oncogenesis, the causal association between inhibition of these pathways and hyperglycaemia, and the effect of metformin on clinical outcomes resulting from its anticancer properties. The evidence reviewed herein, albeit almost exclusively from observational studies, provides support for a greater use of metformin not only in patients with cancer and diabetes or drug-induced hyperglycaemia but also potentially as an anticancer drug. However, prospective randomised controlled studies are needed in all these settings to better assess the effect on clinical outcomes of adding metformin to ongoing anticancer therapy.

  5. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

    PubMed

    Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella

    2013-12-01

    Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications.

  6. Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer

    PubMed Central

    Crombag, Marie-Rose B.S.; Joerger, Markus; Thürlimann, Beat; Schellens, Jan H.M.; Beijnen, Jos H.; Huitema, Alwin D.R.

    2016-01-01

    Background: Elderly patients receiving anticancer drugs may have an increased risk to develop treatment-related toxicities compared to their younger peers. However, a potential pharmacokinetic (PK) basis for this increased risk has not consistently been established yet. Therefore, the objective of this study was to systematically review the influence of age on the PK of anticancer agents frequently administered to elderly breast cancer patients. Methods: A literature search was performed using the PubMed electronic database, Summary of Product Characteristics (SmPC) and available drug approval reviews, as published by EMA and FDA. Publications that describe age-related PK profiles of selected anticancer drugs against breast cancer, excluding endocrine compounds, were selected and included. Results: This review presents an overview of the available data that describe the influence of increasing age on the PK of selected anticancer drugs used for the treatment of breast cancer. Conclusions: Selected published data revealed differences in the effect and magnitude of increasing age on the PK of several anticancer drugs. There may be clinically-relevant, age-related PK differences for anthracyclines and platina agents. In the majority of cases, age is not a good surrogate marker for anticancer drug PK, and the physiological state of the individual patient may better be approached by looking at organ function, Charlson Comorbidity Score or geriatric functional assessment. PMID:26729170

  7. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    PubMed

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  8. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs.

    PubMed

    Kim, Kyoung-Ran; Kim, Hyo Young; Lee, Yong-Deok; Ha, Jong Seong; Kang, Ji Hee; Jeong, Hansaem; Bang, Duhee; Ko, Young Tag; Kim, Sehoon; Lee, Hyukjin; Ahn, Dae-Ro

    2016-12-10

    Nanoparticle delivery systems have been extensively investigated for targeted delivery of anticancer drugs over the past decades. However, it is still a great challenge to overcome the drawbacks of conventional nanoparticle systems such as liposomes and micelles. Various novel nanomaterials consist of natural polymers are proposed to enhance the therapeutic efficacy of anticancer drugs. Among them, deoxyribonucleic acid (DNA) has received much attention as an emerging material for preparation of self-assembled nanostructures with precise control of size and shape for tailored uses. In this study, self-assembled mirror DNA tetrahedron nanostructures is developed for tumor-specific delivery of anticancer drugs. l-DNA, a mirror form of natural d-DNA, is utilized for resolving a poor serum stability of natural d-DNA. The mirror DNA nanostructures show identical thermodynamic properties to that of natural d-DNA, while possessing far enhanced serum stability. This unique characteristic results in a significant effect on the pharmacokinetics and biodistribution of DNA nanostructures. It is demonstrated that the mirror DNA nanostructures can deliver anticancer drugs selectively to tumors with enhanced cellular and tissue penetration. Furthermore, the mirror DNA nanostructures show greater anticancer effects as compared to that of conventional PEGylated liposomes. Our new approach provides an alternative strategy for tumor-specific delivery of anticancer drugs and highlights the promising potential of the mirror DNA nanostructures as a novel drug delivery platform.

  9. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications.

    PubMed

    Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary

    2016-01-01

    This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects.

  10. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis.

    PubMed

    Nakamura, Kazuki; Shinozuka, Kazumasa; Yoshikawa, Noriko

    2015-01-01

    Cordyceps sinensis, a fungus that parasitizes on the larva of Lepidoptera, has been used as a valued traditional Chinese medicine. We investigated the effects of water extracts of Cordyceps sinensis (WECS), and particularly focused on its anticancer and antimetastatic actions. Based on in vitro studies, we report that WECS showed an anticancer action, and this action was antagonized by an adenosine A3 receptor antagonist. Moreover, this anticancer action of WECS was promoted by an adenosine deaminase inhibitor. These results suggest that one of the components of WECS with an anticancer action might be an adenosine or its derivatives. Therefore, we focused on cordycepin (3'-deoxyadenosine) as one of the active ingredients of WECS. According to our experiments, cordycepin showed an anticancer effect through the stimulation of adenosine A3 receptor, followed by glycogen synthase kinase (GSK)-3β activation and cyclin D1 suppression. Cordycepin also showed an antimetastatic action through inhibiting platelet aggregation induced by cancer cells and suppressing the invasiveness of cancer cells via inhibiting the activity of matrix metalloproteinase (MMP)-2 and MMP-9, and accelerating the secretion of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 from cancer cells. In conclusion, cordycepin, an active component of WECS, might be a candidate anticancer and antimetastatic agent.

  11. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes.

  12. Anti-cancer pyrimidines in diverse scaffolds: a review of patent literature.

    PubMed

    Kaur, Ramandeep; Kaur, Prabhkirat; Sharma, Sahil; Singh, Gurpreet; Mehndiratta, Samir; Bedi, Preet M S; Nepali, Kunal

    2015-01-01

    Pyrimidine ring is the building unit of DNA and RNA and thus pyrimidine based chemical architectures exhibit diverse pharmacological activities. Among the reported medicinal attributes of pyrimidines, anticancer activity is the most extensively reported. The anticancer potential of pyrimidines in fused scaffolds has also been evidenced through number of research article and patent literature. The pyrimidines based scaffolds have exerted their cell killing effects through varied mechanisms which indicate their potential to interact with diverse enzymes/ targets/receptors. This review article strictly focuses on the patent literature from 2009 onwards. The structure of the potent compounds, their IC50 values, models/assays used for the anticancer evaluation and the enzymes/ receptors/ targets involved have been presented in this compilation. Significant number of patents i.e. 59 have been published on pyrimidine based anticancer agents from 2009-2014 (from 2009 through the present date) which clearly indicate that this heterocycle is an area of focus at present for researchers all over the globe. Moreover, out of the 59 patents published during this period, 32 have been published from 2012 onwards which further highlights the present interest of the researcher towards pyrimidine based anticancer agents. The promising activity displayed by these pyrimidine based scaffolds clearly places them in forefront as potential future drug candidates. The present compilation can be extremely beneficial for the medicinal chemists working on design and synthesis of anticancer drugs.

  13. Biological rationale for the design of polymeric anti-cancer nanomedicines

    PubMed Central

    Zhou, Yan; Kopeček, Jindřich

    2015-01-01

    Understanding the biological features of cancer is the basis for designing efficient anti-cancer nanomedicines. On one hand, important therapeutic targets for anti-cancer nanomedicines need to be identified based on cancer biology, to address the unmet medical needs. On the other hand, the unique pathophysiological properties of cancer affect the delivery and interactions of anti-cancer nanomedicines with their therapeutic targets. This review discusses several critical cancer biological properties that challenge the currently available anti-cancer treatments, including cancer heterogeneity and cancer stem cells, the complexcity of tumor microenvironment, and the inevitable cancer metastases. In addition, the biological bases of the enhanced permeability and retention (EPR) effect and tumor-specific active targeting, as well as the physiological barriers for passive and active targeting of anti-cancer nanomedicines are covered in this review. Correspondingly, possible nanomedicine strategies to target cancer heterogeneity, cancer stem cells and metastases, to overcome the challenges related to tumor passive targeting and tumor penetration, and to improve the interactions of therapeutic payloads with the therapeutic targets are discussed. The focus is mainly on the designs of polymeric anti-cancer nanomedicines. PMID:23009337

  14. Prediction of anticancer molecules using hybrid model developed on molecules screened against NCI-60 cancer cell lines.

    PubMed

    Singh, Harinder; Kumar, Rahul; Singh, Sandeep; Chaudhary, Kumardeep; Gautam, Ankur; Raghava, Gajendra P S

    2016-02-09

    In past, numerous quantitative structure-activity relationship (QSAR) based models have been developed for predicting anticancer activity for a specific class of molecules against different cancer drug targets. In contrast, limited attempt have been made to predict the anticancer activity of a diverse class of chemicals against a wide variety of cancer cell lines. In this study, we described a hybrid method developed on thousands of anticancer and non-anticancer molecules tested against National Cancer Institute (NCI) 60 cancer cell lines. Our analysis of anticancer molecules revealed that majority of anticancer molecules contains 18-24 carbon atoms and are dominated by functional groups like R2NH, R3N, ROH, RCOR, and ROR. It was also observed that certain substructures (e.g., 1-methoxy-4-methylbenzene, 1-methoxy benzene, Nitrobenzene, Indole, Propenyl benzene) are more abundant in anticancer molecules. Next, we developed anticancer molecule prediction models using various machine-learning techniques and achieved maximum matthews correlation coefficient (MCC) of 0.81 with 90.40% accuracy using support vector machine (SVM) based models. In another approach, a novel similarity or potency score based method has been developed using selected fragments/fingerprints and achieved maximum MCC of 0.82 with 90.65% accuracy. Finally, we combined the strength of above methods and developed a hybrid method with maximum MCC of 0.85 with 92.47% accuracy. We developed a hybrid method utilizing the best of machine learning and potency score based method. The highly accurate hybrid method can be used for classification of anticancer and non-anticancer molecules. In order to facilitate scientific community working in the field of anticancer drug discovery, we integrate hybrid and potency method in a web server CancerIN. This server provides various facilities that includes; virtual screening of anticancer molecules, analog based drug design, and similarity with known anticancer

  15. Anticancer Inhibitors of Hsp90 Function: Beyond the Usual Suspects.

    PubMed

    Garg, Gaurav; Khandelwal, Anuj; Blagg, Brian S J

    2016-01-01

    The 90-kDa heat-shock protein (Hsp90) is a molecular chaperone responsible for the stability and function of a wide variety of client proteins that are critical for cell growth and survival. Many of these client proteins are frequently mutated and/or overexpressed in cancer cells and are therefore being actively pursued as individual therapeutic targets. Consequently, Hsp90 inhibition offers a promising strategy for simultaneous degradation of several anticancer targets. Currently, most Hsp90 inhibitors under clinical evaluation act by blocking the binding of ATP to the Hsp90 N-terminal domain and thereby, induce the degradation of many Hsp90-dependent oncoproteins. Although, they have shown some promising initial results, clinical challenges such as induction of the heat-shock response, retinopathy, and gastrointestinal tract toxicity are emerging from human trials, which constantly raise concerns about the future development of these inhibitors. Novobiocin derivatives, which do not bind the chaperone's N-terminal ATPase pocket, have emerged over the past decade as an alternative strategy to inhibit Hsp90, but to date, no derivative has been investigated in the clinical setting. In recent years, a number of natural or synthetic compounds have been identified that modulate Hsp90 function via various mechanisms. These compounds not only offer new chemotypes for the development of future Hsp90 inhibitors but can also serve as chemical probes to unravel the biology of Hsp90. This chapter presents a synopsis of inhibitors that directly, allosterically, or even indirectly alters Hsp90 function, and highlights their proposed mechanisms of action. © 2016 Elsevier Inc. All rights reserved.

  16. Tetrazolylmethyl quinolines: Design, docking studies, synthesis, anticancer and antifungal analyses.

    PubMed

    Shaikh, Saba Kauser J; Kamble, Ravindra R; Somagond, Shilpa M; Devarajegowda, H C; Dixit, Sheshagiri R; Joshi, Shrinivas D

    2017-03-10

    A new series of 2,5 and 1,5-regioisomers of the tetrazolyl group viz., 3-[(5-benzyl/benzylthio-2H-tetrazol-2-yl) methyl]-2-chloro-6-substituted quinoline 6h-q and 3-[(5-benzyl/benzylthio-1H-tetrazol-1-yl) methyl]-2-chloro-6-substituted quinolines 7h-q were synthesized. Docking studies of all these compounds with DNA as target using PDB: 1AU5 and 453D revealed that the compounds 6h and 6i act as covalent cross linker on the DNA helix of the former and intercalate the latter both with higher C score values. Another set of docking studies in the active pocket of dihydrofolate reductase and N-myristoyl transferase as targets to assess antifungal activity revealed that compounds 6k, 6l, 6p and 7q (with bromo and fluro substituents) showcases different binding modes and hydrogen bonding. Further, the compounds were screened for anticancer activity (primary cytotoxicity) against NCI-60 Human tumor cell line at a single high dose (10(-5) M) concentration assay. Among the tested compounds, 6h has shown 99.28% of GI against Melanoma (SK-MEL-5) and compound 6i has shown 97.56% of GI against Breast Cancer (T-47D). Further, in vitro antifungal assay against A. fumigatus and C. albicans for these compounds 6h-q and 7h-q revealed potential to moderate activities as compared to the standard.

  17. Potential anticancer properties and mechanisms of action of curcumin.

    PubMed

    Vallianou, Natalia G; Evangelopoulos, Angelos; Schizas, Nikos; Kazazis, Christos

    2015-02-01

    Curcumin, a yellow substance belonging to the polyphenols superfamily, is the active component of turmeric, a common Indian spice, which is derived from the dried rhizome of the Curcuma longa plant. Numerous studies have demonstrated that curcumin possesses anti-oxidant, anti-inflammatory and anticancerous properties. The purpose of this review is to focus on the anti-tumor effects of curcumin. Curcumin inhibits the STAT3 and NF-κB signaling pathways, which play key-roles in cancer development and progression. Also, inhibition of Sp-1 and its housekeeping gene expressions may serve as an important hypothesis to prevent cancer formation, migration, and invasion. Recent data have suggested that curcumin may act by suppressing the Sp-1 activation and its downstream genes, including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in a concentration-dependent manner in colorectal cancer cell lines; these results are consistent with other studies, which have reported that curcumin could suppress the Sp-1 activity in bladder cancer and could decrease DNA binding activity of Sp-1 in non-small cell lung carcinoma cells. Recent data advocate that ER stress and autophagy may as well play a role in the apoptosis process, which is induced by the curcumin analogue B19 in an epithelial ovarian tumor cell line and that autophagy inhibition could increase curcumin analogue-induced apoptosis by inducing severe ER stress. The ability of curcumin to induce apoptosis in tumor cells and its anti-angiogenic potential will be discussed in this review. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Antibody–drug conjugates as novel anti-cancer chemotherapeutics

    PubMed Central

    Peters, Christina; Brown, Stuart

    2015-01-01

    Over the past couple of decades, antibody–drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics. PMID:26182432

  19. Alopecia in patients treated with molecularly targeted anticancer therapies.

    PubMed

    Belum, V R; Marulanda, K; Ensslin, C; Gorcey, L; Parikh, T; Wu, S; Busam, K J; Gerber, P A; Lacouture, M E

    2015-12-01

    The introduction of molecularly targeted anticancer therapies presents new challenges, among which dermatologic adverse events are noteworthy. Alopecia in particular is frequently reported, but the true incidence is not known. We sought to ascertain the incidence and risk of developing alopecia during treatment with approved inhibitors of oncogenic pathways and molecules [anaplastic lymphoma kinase, breakpoint cluster region-abelson, B-rapidly accelerated fibrosarcoma, Bruton's tyrosine kinase, cytotoxic T-lymphocyte antigen-4, epidermal growth factor receptor, human epidermal growth factor receptor-2, Janus kinase, MAPK/ERK (extracellular signal-regulated kinase) Kinase, mammalian target of rapamycin, smoothened, vascular endothelial growth factor, vascular endothelial growth factor receptor, platelet derived growth factor receptor; proteasomes; CD20, CD30, CD52]. Electronic database (PubMed, Web of Science) and ASCO meeting abstract searches were conducted to identify clinical trials reporting alopecia. Meta-analysis was conducted utilizing fixed- or random-effects models. The calculated overall incidence of all-grade alopecia was 14.7% [95% confidence interval (CI) 12.6% to 17.2%]-lowest with bortezomib, 2.2% (95% CI 0.4% to 10.9%), and highest with vismodegib, 56.9% (95% CI 50.5% to 63.1%). There was an increased risk of all-grade alopecia [relative risk (RR), 7.9 (95% CI 6.2-10.09, P ≤ 0.01)] compared with placebo, but when compared with chemotherapy, the risk was lower [RR, 0.32 (95% CI 0.2-0.55, P ≤ 0.01)]. Targeted therapies are associated with an increased risk of alopecia. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Alopecia in patients treated with molecularly targeted anticancer therapies

    PubMed Central

    Belum, V. R.; Marulanda, K.; Ensslin, C.; Gorcey, L.; Parikh, T.; Wu, S.; Busam, K. J.; Gerber, P. A.; Lacouture, M. E.

    2015-01-01

    Background The introduction of molecularly targeted anticancer therapies presents new challenges, among which dermatologic adverse events are noteworthy. Alopecia in particular is frequently reported, but the true incidence is not known. Patients and methods We sought to ascertain the incidence and risk of developing alopecia during treatment with approved inhibitors of oncogenic pathways and molecules [anaplastic lymphoma kinase, breakpoint cluster region-abelson, B-rapidly accelerated fibrosarcoma, Bruton's tyrosine kinase, cytotoxic T-lymphocyte antigen-4, epidermal growth factor receptor, human epidermal growth factor receptor-2, Janus kinase, MAPK/ERK (extracellular signal-regulated kinase) Kinase, mammalian target of rapamycin, smoothened, vascular endothelial growth factor, vascular endothelial growth factor receptor, platelet derived growth factor receptor; proteasomes; CD20, CD30, CD52]. Electronic database (PubMed, Web of Science) and ASCO meeting abstract searches were conducted to identify clinical trials reporting alopecia. Meta-analysis was conducted utilizing fixed- or random-effects models. Results The calculated overall incidence of all-grade alopecia was 14.7% [95% confidence interval (CI) 12.6% to 17.2%]—lowest with bortezomib, 2.2% (95% CI 0.4% to 10.9%), and highest with vismodegib, 56.9% (95% CI 50.5% to 63.1%). There was an increased risk of all-grade alopecia [relative risk (RR), 7.9 (95% CI 6.2–10.09, P ≤ 0.01)] compared with placebo, but when compared with chemotherapy, the risk was lower [RR, 0.32 (95% CI 0.2–0.55, P ≤ 0.01)]. Conclusions Targeted therapies are associated with an increased risk of alopecia. PMID:26387145