Synthesis and Anticancer Mechanism Investigation of Dual Hsp27 and Tubulin Inhibitors
Zhong, Bo; Chennamaneni, Snigdha; Lama, Rati; Yi, Xin; Geldenhuys, Werner J.; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin
2013-01-01
Heat shock protein 27 (Hsp27) is a chaperone protein, and its expression is increased in response to various stress stimuli including anticancer chemotherapy, which allows the cells to survive and causes drug resistance. We previously identified lead compounds that bound to Hsp27 and tubulin via proteomic approaches. Systematic ligand based optimization in the current study significantly increased the cell growth inhibition and apoptosis inducing activities of the compounds. Compared to the lead compounds, one of the new derivatives exhibited much better potency to inhibit tubulin polymerization but a decreased activity to inhibit Hsp27 chaperone function, suggesting that the structural modification dissected the dual targeting effects of the compound. The most potent compounds 20 and 22 exhibited strong cell proliferation inhibitory activities at subnanomolar concentration against 60 human cancer cell lines conducted by Developmental Therapeutic Program at the National Cancer Institute and represented promising candidates for anticancer drug development. PMID:23767669
Review of procedures used for the extraction of anti-cancer compounds from tropical plants.
Pandey, Saurabh; Shaw, Paul N; Hewavitharana, Amitha K
2015-01-01
Tropical plants are important sources of anti-cancer lead molecules. According to the US National Cancer Institute, out of the 3000 plants identified as active against cancer using in vitro studies, 70% are of tropical origin. The extraction of bioactive compounds from the plant materials is a fundamental step whose efficiency is critical for the success of drug discovery efforts. There has been no review published of the extraction procedures of anti-cancer compounds from tropical plants and hence the following is a critical evaluation of such procedures undertaken prior to the use of these compounds in cancer cell line studies, during the last five years. It presents a comprehensive analysis of all approaches taken to extract anti-cancer compounds from various tropical plants. (Databases searched were PubMed, SciFinder, Web of Knowledge, Scopus, Embase and Google Scholar).
Wang, Chong-Zhi; Qi, Lian-Wen; Yuan, Chun-Su
2015-01-01
Ginger is a commonly used spice and herbal medicine worldwide. Besides its extensive use as a condiment, ginger has been used in traditional Chinese medicine for the management of various medical conditions. In recent years, ginger has received wide attention due to its observed antiemetic and anticancer activities. This paper reviews the potential role of ginger and its active constituents in cancer chemoprevention. The phytochemistry, bioactivity, and molecular targets of ginger constituents, especially 6-shogaol, are discussed. The content of 6-shogaol is very low in fresh ginger, but significantly higher after steaming. With reported anti-cancer activities, 6-shogaol can be served as a lead compound for new drug discovery. The lead compound derivative synthesis, bioactivity evaluation, and computational docking provide a promising opportunity to identify novel anticancer compounds originating from ginger.
Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.
Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata
2018-01-01
A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.
Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates
Xiao, Zhiyan; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung
2015-01-01
Natural products have made significant contribution to cancer chemotherapy over the past decades and remain an indispensable source of molecular and mechanistic diversity for anticancer drug discovery. More often than not, natural products may serve as leads for further drug development rather than as effective anticancer drugs by themselves. Generally, optimization of natural leads into anticancer drugs or drug candidates should not only address drug efficacy, but also improve ADMET profiles and chemical accessibility associated with the natural leads. Optimization strategies involve direct chemical manipulation of functional groups, structure-activity relationship-directed optimization and pharmacophore-oriented molecular design based on the natural templates. Both fundamental medicinal chemistry principles (e.g., bio-isosterism) and state-of-the-art computer-aided drug design techniques (e.g., structure-based design) can be applied to facilitate optimization efforts. In this review, the strategies to optimize natural leads to anticancer drugs or drug candidates are illustrated with examples and described according to their purposes. Furthermore, successful case studies on lead optimization of bioactive compounds performed in the Natural Products Research Laboratories at UNC are highlighted. PMID:26359649
Identifying Novel Molecular Structures for Advanced Melanoma by Ligand-Based Virtual Screening
Wang, Zhao; Lu, Yan; Seibel, William; Miller, Duane D.; Li, Wei
2009-01-01
We recently discovered a new class of thiazole analogs that are highly potent against melanoma cells. To expand the structure-activity relationship study and to explore potential new molecular scaffolds, we performed extensive ligand-based virtual screening against a compound library containing 342,910 small molecules. Two different approaches of virtual screening were carried out using the structure of our lead molecule: 1) connectivity-based search using Scitegic Pipeline Pilot from Accelerys and 2) molecular shape similarity search using Schrodinger software. Using a testing compound library, both approaches can rank similar compounds very high and rank dissimilar compounds very low, thus validating our screening methods. Structures identified from these searches were analyzed, and selected compounds were tested in vitro to assess their activity against melanoma cancer cell lines. Several molecules showed good anticancer activity. While none of the identified compounds showed better activity than our lead compound, they provided important insight into structural modifications for our lead compound and also provided novel platforms on which we can optimize new classes of anticancer compounds. One of the newly synthesized analogs based on this virtual screening has improved potency and selectivity against melanoma. PMID:19445498
Abdelsalam, Mohamed A; AboulWafa, Omaima M; M Badawey, El-Sayed A; El-Shoukrofy, Mai S; El-Miligy, Mostafa M; Gouda, Noha; Elaasser, Mahmoud M
2018-05-22
Medicinal interest has focused on β-carbolines as anticancer agents. Several β-carbolines were designed, synthesized and evaluated for their cytotoxic activity against MCF-7 and A-549 cancer cell lines using MTT assay. Compounds 13a, 13c, 13d and 20a were the most promising showing high selectivity indices. Compounds 13c and 20a showed potent inhibition of topoisomerase (topo-I) and kinesin spindle protein (KSP/Eg5 ATPase) which was confirmed by their docking results into the active site of both enzymes. In silico physicochemical calculations predicted that compounds 13a, 13d and 20a obeyed Lipinski's rule of five. Compounds 13c and 20a are multitarget anticancer leads that act as potent inhibitors for both topo-I and/or KSP ATPase.
Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression
Ratovitski, Edward A.
2017-01-01
Abstract: Accumulating evidence shows that hallmarks of cancer include: “genetic and epigenetic alterations leading to inactivation of cancer suppressors, overexpression of oncogenes, deregulation of intracellular signaling cascades, alterations of cancer cell metabolism, failure to undergo cancer cell death, induction of epithelial to mesenchymal transition, invasiveness, metastasis, deregulation of immune response and changes in cancer microenvironment, which underpin cancer development”. Natural compounds as bioactive ingredients isolated from natural sources (plants, fungi, marine life forms) have revolutionized the field of anticancer therapeutics and rapid developments in preclinical studies are encouraging. Natural compounds could affect the epigenetic molecular mechanisms that modulate gene expression, as well as DNA damage and repair mechanisms. The current review will describe the latest achievements in using naturally produced compounds targeting epigenetic regulators and modulators of gene transcription in vitro and in vivo to generate novel anticancer therapeutics. PMID:28367075
Srinivasan, Balasubramanian; Johnson, Thomas E; Lad, Rahul; Xing, Chengguo
2009-11-26
Chalcone is a privileged structure, demonstrating promising anti-inflammatory and anticancer activities. One potential mechanism is to suppress nuclear factor kappa B (NF-kappaB) activation. The structures of chalcone-based NF-kappaB inhibitors vary significantly that there is minimum information about their structure-activity relationships (SAR). This study aims to establish SAR of chalcone-based compounds to NF-kappaB inhibition, to explore the feasibility of developing simple chalcone-based potent NF-kappaB inhibitors, and to evaluate their anticancer activities. Three series of chalcones were synthesized in one to three steps with the key step being aldol condensation. These candidates demonstrated a wide range of NF-kappaB inhibitory activities, some of low micromolar potency, establishing that structural complexity is not required for NF-kappaB inhibition. Lead compounds also demonstrate potent cytotoxicity against lung cancer cells. Their cytotoxicities correlate moderately well with their NF-kappaB inhibitory activities, suggesting that suppressing NF-kappaB activation is likely responsible for at least some of the cytotoxicities. One lead compound effectively inhibits lung tumor growth with no signs of adverse side effects.
Chalcones as Promising Lead Compounds on Cancer Therapy.
León-González, Antonio J; Acero, Nuria; Muñoz-Mingarro, Dolores; Navarro, Inmaculada; Martín-Cordero, Carmen
2015-01-01
Chalcones constitute a group of phenolic compounds that command an increasing interest on cancer research. Natural chalcones are widespread through the plant kingdom. The most abundant and investigated chalcones are isoliquiritigenin, flavokawain and xanthohumol, which are present in the Fabaceae, Piperaceae, Cannabaceae, and Moraceae families. These chalcones have been shown to be promising lead antitumor-chemopreventive drugs by three different activities: antioxidants, cytotoxic and apoptosis inducers. In the recent years, SAR (structure-activity relationship) has contributed towards the improvement of anticancer properties of chalcones by substituting aryl rings and introducing heterocyclic moieties. This review summarizes the anticancer activities shown by natural chalcones and the SAR and describes how different chemical moiety modifications could lead them to be therapeutically useful in the treatment of cancer.
Marine Microalgae with Anti-Cancer Properties.
Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna
2018-05-15
Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.
Effects of Plants and Isolates of Celastraceae Family on Cancer Pathways.
Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Seyed, Mohamed Ali
2015-01-01
The evaluation of crude drugs of natural origin as sources of new effective anticancer agents continues to be important due to the lack of effective anticancer drugs currently used in practice which are generally accompanied with adverse effects at different levels of severity. The aim of this concise review is to gather existing literature on anticancer potential of extracts and compounds isolated from Celastraceae species. This review covers six genera (Maytenus, Tripterygium, Hippocratea, Gymnosporia, Celastrus and Austroplenckia) belonging to this family and their 33 isolates. Studies carried out by using different cell lines have shown remarkable indication of anticancer activity, however, only a restricted number of studies have been reported using in vivo tumor models. Some of the compounds, such as triptolide, celastrol and demethylzeylasteral from T. wilfordii, have been extensively studied on their mechanisms of action due to their potent activity on various cancer cell lines. Such promising lead compounds should generate considerable interest among scientists to improve their therapeutic potential with fewer side effects by molecular modification.
Bhat, Mahima; Poojary, Boja; Kalal, Bhuvanesh Sukhlal; Gurubasavaraja Swamy, Purawarga Matada; Kabilan, Senthamaraikannan; Kumar, Vasantha; Shruthi, Nooji; Alias Anand, Selvam Athavan; Pai, Vinitha Ramanath
2018-05-01
To synthesize a series of new thiazolidinone-pyrazole hybrids (5a-o) and assess their anticancer (in vitro and in vivo) and antimicrobial activities. The compounds 5h (against Ehrlich ascites carcinoma cells), 5e and 5i (against the human breast cancer [MDA-MB231] cell line) exhibited potent anticancer activity. All the compounds except 5g and 5e found to be less toxic for the human dermal fibroblast cells. The effective interactions of the compounds in silico with MDM2 exemplified their inhibitory potency. The derivatives also showed moderate antimicrobial activity. The halogen atoms on various positions of the N-arylamino ring played an advantageous role in elevating the potency of the molecules. Thus, these conjugates could be used as a lead for further optimization to achieve promising therapeutics.
Chiang, Yi-Kun; Kuo, Ching-Chuan; Wu, Yu-Shan; Chen, Chung-Tong; Coumar, Mohane Selvaraj; Wu, Jian-Sung; Hsieh, Hsing-Pang; Chang, Chi-Yen; Jseng, Huan-Yi; Wu, Ming-Hsine; Leou, Jiun-Shyang; Song, Jen-Shin; Chang, Jang-Yang; Lyu, Ping-Chiang; Chao, Yu-Sheng; Wu, Su-Ying
2009-07-23
A pharmacophore model, Hypo1, was built on the basis of 21 training-set indole compounds with varying levels of antiproliferative activity. Hypo1 possessed important chemical features required for the inhibitors and demonstrated good predictive ability for biological activity, with high correlation coefficients of 0.96 and 0.89 for the training-set and test-set compounds, respectively. Further utilization of the Hypo1 pharmacophore model to screen chemical database in silico led to the identification of four compounds with antiproliferative activity. Among these four compounds, 43 showed potent antiproliferative activity against various cancer cell lines with the strongest inhibition on the proliferation of KB cells (IC(50) = 187 nM). Further biological characterization revealed that 43 effectively inhibited tubulin polymerization and significantly induced cell cycle arrest in G(2)-M phase. In addition, 43 also showed the in vivo-like anticancer effects. To our knowledge, 43 is the most potent antiproliferative compound with antitubulin activity discovered by computer-aided drug design. The chemical novelty of 43 and its anticancer activities make this compound worthy of further lead optimization.
A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging
Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko; ...
2015-03-17
New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)] 2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)] 2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)] 2O to melanoma tissues transplanted into themore » tails of mice using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)] 2O was visualized by MRI. Thus, [Fe(salen)] 2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.« less
A ferromagnetic compound with anti-cancer proeprties for controlled drug delivery and imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eguchi, Haruki; Hirata, Kunio; Kurotani, Reiko
New anticancer agents and modalities for their use are of great interest. Recent studies have demonstrated the presence of anti-cancer properties in salen derivatives. We found that an iron salen derivative, i.e., [Fe(salen)] 2O, displays ferromagnetic order above room temperature and shows spontaneous field-dependent magnetization and hysteresis. Understanding of this magnetic property is provided by first-principles calculations based on structures obtained by X-ray crystallography. [Fe(salen)] 2O exhibited potent anti-cancer properties against various cancer cell types and was readily attracted by even moderate-strength permanent magnets in vitro. We demonstrated that the delivery of [Fe(salen)] 2O to melanoma tissues transplanted into themore » tails of mice using a permanent magnet leads to a robust decrease in tumor size. The local accumulation of [Fe(salen)] 2O was visualized by MRI. Thus, [Fe(salen)] 2O acted as an anti-cancer and MRI contrast compound that has a pharmacological effect that is delivered in a controlled manner, suggesting new strategies for anti-cancer drug development.« less
Wu, Lichuan; Wang, Guizhen; Liu, Shuaibing; Wei, Jinrui; Zhang, Sen; Li, Ming; Zhou, Guangbiao; Wang, Lisheng
2016-01-01
Matrine, an active component of root extracts from Sophora flavescens Ait, is the main chemical ingredient of Fufang Kushen injection which was approved by Chinese FDA (CFDA) in 1995 as an anticancer drug to treat non-small cell lung cancer and liver cancer in combination with other anticancer drugs. Owning to its druggable potential, matrine is considered as an ideal lead compound for modification. We delineate herein the synthesis and anticancer effects of 17 matrine derivatives bearing benzo-α-pyrone structures. The results of cell viability assays indicated that most of the target compounds showed improved anticancer effects. Further studies showed that compound 5i could potently inhibit lung cancer cell proliferation in vitro and in vivo with no obvious side effects. Moreover, compound 5i could induce G1 cell cycle arrest and autophagy in lung cancer cells through up-regulating P27, down-regulating CDK4 and cyclinD1 and attenuating PI3K/Akt/mTOR pathway. Suppression of autophagy attenuated 5i induced proliferation inhibition. Collectively, our results infer that matrine derivative 5i bears therapeutic potentials for lung cancer. PMID:27786281
Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies
Bailon-Moscoso, Natalia; Cevallos-Solorzano, Gabriela; Romero-Benavides, Juan Carlos; Orellana, Maria Isabel Ramirez
2017-01-01
Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation. PMID:28367072
Solomon, V Raja; Almnayan, Danah; Lee, Hoyun
2017-09-08
Both quinacrine, which contains a 9-aminoacridine scaffold, and thiazolidin-4-one are promising anticancer leads. In an attempt to develop effective and potentially safe anticancer agents, we synthesized 23 novel hybrid compounds by linking the main structural unit of the 9-aminoacridine ring with the thiazolidin-4-one ring system, followed by examination of their anticancer effects against three human breast tumor cell lines and matching non-cancer cells. Most of the hybrid compounds showed good activities, and many of them possessed the preferential killing property against cancer over non-cancer cells. In particular, 3-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-2-(2,6-difluoro-phenyl)-thiazolidin-4-one (11; VR118) effectively killed/inhibited proliferation of cancer cells at IC 50 values in the range of 1.2-2.4 μM. Furthermore, unlike quinacrine or cisplatin, compound 11 showed strong selectivity for cancer cell killing, as it could kill cancer cells 7.6-fold (MDA-MB231 vs MCF10A) to 14.7-fold (MCF7 vs MCF10A) more effectively than matching non-cancer cells. Data from flow cytometry, TUNEL and Western blot assays showed that compound 11 kills cancer cells by apoptosis through the down-regulation of Bcl-2 (but not Bcl-X L ) survival protein and up-regulation of Bad and Bax pro-apoptotic proteins. Thus, compound 11 is a highly promising lead for an effective and potentially anticancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ushijima, Masaru; Mashima, Tetsuo; Tomida, Akihiro; Dan, Shingo; Saito, Sakae; Furuno, Aki; Tsukahara, Satomi; Seimiya, Hiroyuki; Yamori, Takao; Matsuura, Masaaki
2013-03-01
Genome-wide transcriptional expression analysis is a powerful strategy for characterizing the biological activity of anticancer compounds. It is often instructive to identify gene sets involved in the activity of a given drug compound for comparison with different compounds. Currently, however, there is no comprehensive gene expression database and related application system that is; (i) specialized in anticancer agents; (ii) easy to use; and (iii) open to the public. To develop a public gene expression database of antitumor agents, we first examined gene expression profiles in human cancer cells after exposure to 35 compounds including 25 clinically used anticancer agents. Gene signatures were extracted that were classified as upregulated or downregulated after exposure to the drug. Hierarchical clustering showed that drugs with similar mechanisms of action, such as genotoxic drugs, were clustered. Connectivity map analysis further revealed that our gene signature data reflected modes of action of the respective agents. Together with the database, we developed analysis programs that calculate scores for ranking changes in gene expression and for searching statistically significant pathways from the Kyoto Encyclopedia of Genes and Genomes database in order to analyze the datasets more easily. Our database and the analysis programs are available online at our website (http://scads.jfcr.or.jp/db/cs/). Using these systems, we successfully showed that proteasome inhibitors are selectively classified as endoplasmic reticulum stress inducers and induce atypical endoplasmic reticulum stress. Thus, our public access database and related analysis programs constitute a set of efficient tools to evaluate the mode of action of novel compounds and identify promising anticancer lead compounds. © 2012 Japanese Cancer Association.
Na, Younghwa; Nam, Jung-Min
2011-01-01
In order to find potential anticancer drug candidate targeting topoisomerases enzyme, we have designed and synthesized oxiranylmethoxy- and thiiranylmethoxy-retrochalcone derivatives and evaluated their pharmacological activity including topoisomerases inhibitory and cytotoxic activity. Of the compounds prepared compound 25 showed comparable or better cytotoxic activity against cancer cell lines tested. Compound 25 inhibited MCF7 (IC(50): 0.49 ± 0.21 μM) and HCT15 (IC(50): 0.23 ± 0.02 μM) carcinoma cell growth more efficiently than references. In the topoisomerases inhibition test, all the compounds were inactive to topoisomerase I but moderate inhibitors to topoisomerase II enzyme. Especially, compound 25 inhibited topoisomerase II activity with comparable extent to etoposide at 100 μM concentrations. Correlation between cytotoxicity and topoisomerase II inhibitory activity implies that compound 25 can be a possible lead compound for anticancer drug impeding the topoisomerase II function. Copyright © 2010 Elsevier Ltd. All rights reserved.
Propolis Diterpenes as a Remarkable Bio-Source for Drug Discovery Development: A Review.
Aminimoghadamfarouj, Noushin; Nematollahi, Alireza
2017-06-17
Propolis is one of the complex, but valuable, bio-sources for discovering therapeutic compounds. Diterpenes are organic compounds composed of four isoprene units and are known for their biological and pharmacological characteristics, such as antibacterial, anticancer, and anti-inflammatory activities. Recently, advancements have been made in the development of antibacterial and anticancer leads from propolis-isolated diterpenes, and scrutiny of these compounds is being pursued. Thus, this review covers the progress in this arena, with a focus on the chemistry and biological activities of propolis diterpenes. It is anticipated that important information, in a comprehensive and concise manner, will be delivered here for better understanding of natural product drug discovery research.
Propolis Diterpenes as a Remarkable Bio-Source for Drug Discovery Development: A Review
Aminimoghadamfarouj, Noushin; Nematollahi, Alireza
2017-01-01
Propolis is one of the complex, but valuable, bio-sources for discovering therapeutic compounds. Diterpenes are organic compounds composed of four isoprene units and are known for their biological and pharmacological characteristics, such as antibacterial, anticancer, and anti-inflammatory activities. Recently, advancements have been made in the development of antibacterial and anticancer leads from propolis-isolated diterpenes, and scrutiny of these compounds is being pursued. Thus, this review covers the progress in this arena, with a focus on the chemistry and biological activities of propolis diterpenes. It is anticipated that important information, in a comprehensive and concise manner, will be delivered here for better understanding of natural product drug discovery research. PMID:28629133
NASA Astrophysics Data System (ADS)
Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei
2016-05-01
There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.
Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei
2016-05-05
There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.
Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei
2016-01-01
There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents. PMID:27145869
Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.
Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon
2018-01-01
Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Tyagi, Amit Kumar; Prasad, Sahdeo; Yuan, Wei; Li, Shiyou; Aggarwal, Bharat B
2015-12-01
Considering that as many as 80% of the anticancer drugs have their roots in natural products derived from traditional medicine, we examined compounds other than curcumin from turmeric (Curcuma longa) that could exhibit anticancer potential. Present study describes the isolation and characterization of another turmeric-derived compound, β-sesquiphellandrene (SQP) that exhibits anticancer potential comparable to that of curcumin. We isolated several compounds from turmeric, including SQP, α-curcumene, ar-turmerone, α-turmerone, β-turmerone, and γ-turmerone, only SQP was found to have antiproliferative effects comparable to those of curcumin in human leukemia, multiple myeloma, and colorectal cancer cells. While lack of the NF-κB-p65 protein had no effect on the activity of SQP, lung cancer cells that expressed p53 were more susceptible to the cytotoxic effect of SQP than were cells that lacked p53 expression. SQP was also found to be highly effective in suppressing cancer cell colony formation and inducing apoptosis, as shown by assays of intracellular esterase activity, plasma membrane integrity, and cell-cycle phase. SQP was found to induce cytochrome c release and activate caspases that lead to poly ADP ribose polymerase cleavage. SQP exposure was associated with downregulation of cell survival proteins such cFLIP, Bcl-xL, Bcl-2, c-IAP1, and survivin. Furthermore, SQP was found to be synergistic with the chemotherapeutic agents velcade, thalidomide and capecitabine. Overall, our results indicate that SQP has anticancer potential comparable to that of curcumin.
Diet Therapy for Cancer Prevention and Treatment Based on Traditional Persian Medicine.
Javadi, Behjat
2018-04-01
Cancer is the second leading cause of death with profound socio-economic consequences worldwide. Growing evidence suggests the crucial role of diet on cancer prevention and treatment. In Traditional Persian Medicine (TPM) there is a major focus on contribution of special diet and foods to cancer management. In the present article, the cytotoxic and antitumor activities of several food items including plants and animal products recommended by TPM as anticancer agents are discussed. Strong evidence supports the anticancer effects of beetroot (Beta vulgris) and its major compound betanin, cinnamon and cinnamaldehyde, barley (H. vulgare) and its products, extra-virgin olive oil, black pepper (P. nigrum) and its piperine, grapes (V. vinifera) and its compound resveratrol, ginger and its compound 6-gingerol, whey protein, fish, and honey. However, additional pharmacological studies and clinical trials are needed to elucidate their molecular and cellular mechanisms of actions, frequency, and amount of consumption, possible adverse effects, and optimum preparation methods. Moreover, studying mechanisms of actions of the bioactive compounds present in the discussed food items can be helpful in identifying and development of new anticancer agents.
Anticancer agents derived from natural cinnamic acids.
Su, Ping; Shi, Yaling; Wang, Jinfeng; Shen, Xiuxiu; Zhang, Jie
2015-01-01
Cancer is the most dangerous disease that causes deaths all over the world. Natural products have afforded a rich source of drugs in a number of therapeutic fields including anticancer agents. Many significant drugs have been derived from natural sources by structural optimization of natural products. Cinnamic acid has gained great interest due to its antiproliferative, antioxidant, antiangiogenic and antitumorigenic potency. Currently it has been observed that cinnamic acid and its analogs such as caffeic acid, sinapic acid, ferulic acid, and isoferulic acid display various pharmacological activities, such as immunomodulation, anti-inflammation, anticancer and antioxidant. They have served to be the major sources of potential leading anticancer compounds. In this review, we focus on the anticancer potency of cinnamic acid derivatives and novel strategies to design these derivatives. We hope this review will be useful for researchers who are interested in developing anticancer agents.
Chennamaneni, Snigdha; Yi, Xin; Liu, lili; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin
2014-01-01
Cyclooxygenase-2 (COX-2) inhibitor nimesulide inhibits the proliferation of various types of cancer cells mainly via COX-2 independent mechanisms, which makes it a good lead compound for anti-cancer drug development. In the presented study, a series of new nimesulide analogs were synthesized based on the structure–function analysis generated previously. Some of them displayed very potent anti-cancer activity with IC50s around 100nM to 200nM to inhibit SKBR-3 breast cancer cell growth. CSUOH0901 (NSC751382) from the compound library also inhibits the growth of the 60 cancer cell lines used at National Cancer Institute Developmental therapeutics Program (NCIDTP) with IC50s around 100nM to 500nM. Intraperitoneal injection with a dosage of 5mg/kg/d of CSUOH0901 to nude mice suppresses HT29 colorectal xenograft growth. Pharmacokinetic studies demonstrate the good bioavailability of the compound. PMID:22119125
Marine Fungi: A Source of Potential Anticancer Compounds
Deshmukh, Sunil K.; Prakash, Ved; Ranjan, Nihar
2018-01-01
Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines. PMID:29354097
Bhosale, Sachin K; Deshpande, Shreenivas R; Wagh, Rajendra D
2017-03-01
The title compound, 3-(4-chlorophenyl)-4-formyl-[1, 2, 3] oxadiazol-3-ium-5-olate 5 was synthesized under ultrasonication by formylation of 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate 4 and characterized by spectral studies. The ultrasonic method of synthesis was found to be simple, ecofriendly, economical, reduces reaction time and gave good yield when compared with traditional methods of synthesis. Anticancer activity of the compounds were tested against 60 human tumor cell lines and compared with standard drug vincristine sulphate. Compound 5 was found to be active against CNS (SNB-75, %GI=46.71), renal (UO-31, %GI=31.52), non small cell lung (NCI-H522, %GI=25.65), leukemia (MOLT-4, %GI=23.02) human tumor cell lines whereas, compound 4 against breast (MDA-MB-231/ATCC, %GI=19.90, T-47D %GI=16.50, MCF-7 15.10) and ovarian (IGROV1 %GI=19.30, OVCAR-4 %GI=17.90) human tumor cell lines. Compound 5 showed higher cytotoxicity against NCI-H23 cells (non small lung cancer cell panel) as compared to standard drug vincristine sulphate. Further structural modification of these compounds may lead to potent anticancer activity.
Chaves, Joana Darc S; Tunes, Luiza Guimarães; de J Franco, Chris Hebert; Francisco, Thiago Martins; Corrêa, Charlane Cimini; Murta, Silvane M F; Monte-Neto, Rubens Lima; Silva, Heveline; Fontes, Ana Paula S; de Almeida, Mauro V
2017-02-15
The current anticancer and antileishmanial drug arsenal presents several limitations concerning their specificity, efficacy, costs and the emergence of drug-resistant cells lines, which encourages the urgent need to search for new alternatives. Inspired by the fact that gold(I)-based compounds are promising antitumoral and antileishmanial drug candidates, we synthesized novel gold(I) complexes containing phosphine and 5-phenyl-1,3,4-oxadiazole-2-thione and evaluated their anticancer and antileishmanial activities. Synthesis was performed by reacting 5-phenyl-1,3,4-oxadiazole-2-thione derivatives with chloro(triphenylphosphine)gold(I) and chloro(triethylphosphine)gold(I). The novel compounds were characterized by infrared, Raman, 1 H, 13 C nuclear magnetic resonance, high-resolution mass spectra, and x-ray crystallography. The coordination of the ligands to gold(I) occurred through the exocyclic sulfur atom. All gold(I) complexes were active at low micromolar or nanomolar range with IC 50 values ranging from <0.10 to 1.66 μM against cancer cell lines and from 0.9 to 4.2 μM for Leishmania infantum intracellular amastigotes. Compound (6-A) was very selective against murine melanoma B16F10, colon cancer CT26.WT cell lines and L. infantum intracellular amastigotes. Compound (7-B) presented the highest anticancer activity against both cancer cell lines while the promising antileishmanial lead was compound (6-A). Tiethylphosphine gold(I) complexes were more active than the conterparts triphenylphosphine derivatives for both anticancer and antileishmanial activities. Triethylphosphine gold(I) derivatives presented antimony cross-resistance in L. guyanensis demonstrating their potential to be used as chemical tools to better understand mechanisms of drug resistance and action. These findings revealed the anticancer and antileishmanial potential of gold(I) oxadiazole phosphine derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Sianipar, N. F.; Purnamaningsih, R.; Rosaria
2016-08-01
Rodent tuber (Typhonium flagelliforme Lodd.) is an Indonesian anticancer medicinal plant. The natural genetic diversity of rodent tuber is low due to vegetative propagation. Plant's genetic diversity has to be increased for obtaining clones which contain a high amount of anticancer compounds. In vitro calli were irradiated with 6 Gy of gamma ray to produce in vitro mutant plantlets. Mutant plantlets were acclimated and propagated in a greenhouse. This research was aimed to identify the chemical compounds in the leaves and tubers ofthe fourth generation of rodent tuber's vegetative mutant clones (MV4) and control plantsby using GC- MS method. Leaves and tubers of MV4 each contained 2 and 5 anticancer compounds which quantities were higher compared to control plants. MV4 leaves contained 5 new anticancer compounds while its tubers contained 3 new anticancer compounds which were not found in control. The new anticancer compounds in leaves were hexadecanoic acid, stigmast-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer a, and oleic acid while the new anticancer compounds in tubers were alpha tocopherol, ergost-5-en-3-ol, and beta-elemene. Rodent tuber mutant clones are very potential to be developed into anticancer drugs.
Bacterial inactivation of the anticancer drug doxorubicin.
Westman, Erin L; Canova, Marc J; Radhi, Inas J; Koteva, Kalinka; Kireeva, Inga; Waglechner, Nicholas; Wright, Gerard D
2012-10-26
Microbes are exposed to compounds produced by members of their ecological niche, including molecules with antibiotic or antineoplastic activities. As a result, even bacteria that do not produce such compounds can harbor the genetic machinery to inactivate or degrade these molecules. Here, we investigated environmental actinomycetes for their ability to inactivate doxorubicin, an aminoglycosylated anthracycline anticancer drug. One strain, Streptomyces WAC04685, inactivates doxorubicin via a deglycosylation mechanism. Activity-based purification of the enzymes responsible for drug inactivation identified the NADH dehydrogenase component of respiratory electron transport complex I, which was confirmed by gene inactivation studies. A mechanism where reduction of the quinone ring of the anthracycline by NADH dehydrogenase leads to deglycosylation is proposed. This work adds anticancer drug inactivation to the enzymatic inactivation portfolio of actinomycetes and offers possibilities for novel applications in drug detoxification. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi
2015-01-01
Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459
Witte, Anne-Barbara; Anestål, Karin; Jerremalm, Elin; Ehrsson, Hans; Arnér, Elias S J
2005-09-01
Mammalian thioredoxin reductase (TrxR) is important for cell proliferation, antioxidant defense, and redox signaling. Together with glutathione reductase (GR) it is the main enzyme providing reducing equivalents to many cellular processes. GR and TrxR are flavoproteins of the same enzyme family, but only the latter is a selenoprotein. With the active site containing selenocysteine, TrxR may catalyze reduction of a wide range of substrates, but can at the same time easily be targeted by electrophilic compounds due to the extraordinarily high reactivity of a selenolate moiety. Here we addressed the inhibition of the enzyme by major anticancer alkylating agents and platinum-containing compounds and we compared it to that of GR. We confirmed prior studies suggesting that the nitrosourea carmustine can inhibit both GR and TrxR. We next found, however, that nitrogen mustards (chlorambucil and melphalan) and alkyl sulfonates (busulfan) efficiently inhibited TrxR while these compounds, surprisingly, did not inhibit GR. Inhibitions were concentration and time dependent and apparently irreversible. Anticancer anthracyclines (daunorubicin and doxorubicin) were, in contrast to the alkylating agents, not inhibitors but poor substrates of TrxR. We also found that TrxR, but not GR, was efficiently inhibited by both cisplatin, its monohydrated complex, and oxaliplatin. Carboplatin, in contrast, could not inhibit any of the two enzymes. These findings lead us to conclude that representative compounds of the major classes of clinically used anticancer alkylating agents and most platinum compounds may easily target TrxR, but not GR. The TrxR inhibition should thereby be considered as a factor that may contribute to the cytotoxicity seen upon clinical use of these drugs.
A Systematic Review of Iran's Medicinal Plants With Anticancer Effects.
Asadi-Samani, Majid; Kooti, Wesam; Aslani, Elahe; Shirzad, Hedayatollah
2016-04-01
Increase in cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. This study is a review of medicinal plants in Iran with already investigated anticancer effects on various cell lines. Thirty-six medicinal plants alongside their products with anticancer effects as well as the most important plant compounds responsible for the plants' anticancer effect were introduced. Phenolic and alkaloid compounds were demonstrated to have anticancer effects on various cancers in most studies. The plants and their active compounds exerted anticancer effects by removing free radicals and antioxidant effects, cell cycle arrest, induction of apoptosis, and inhibition of angiogenesis. The investigated plants in Iran contain the compounds that are able to contribute effectively to fighting cancer cells. Therefore, the extract and active compounds of the medicinal plants introduced in this review article could open a way to conduct clinical trials on cancer and greatly help researchers and pharmacists develop new anticancer drugs. © The Author(s) 2015.
In Vivo Activity and Pharmacokinetics of Nemorosone on Pancreatic Cancer Xenografts
Wolf, Robert J.; Hilger, Ralf A.; Hoheisel, Jörg D.; Werner, Jens; Holtrup, Frank
2013-01-01
Pancreatic cancer is one of the leading cancer-related causes of death in the western world with an urgent need for new treatment strategies. Recently, hyperforin and nemorosone have been described as promising anti-cancer lead compounds. While hyperforin has been thoroughly investigated in vitro and in vivo, in vivo data for nemorosone are still missing. Thus, we investigated the growth-inhibitory potential of nemorosone on pancreatic cancer xenografts in NMRI nu/nu mice and determined basic pharmacokinetic parameters. Xenograft tumors were treated with nemorosone and gemcitabine, the current standard of care. Tumor sections were subjected to H&E as well as caspase 3 and Ki-67 staining. Nemorosone plasma kinetics were determined by HPLC and mass spectrometry. Induction of CYP3A4 and other metabolizing enzymes by nemorosone and hyperforin was tested on primary hepatocytes using qRT-PCR. At a dose of 50 mg/kg nemorosone per day, a significant growth-inhibitory effect was observed in pancreatic cancer xenografts. The compound was well tolerated and rapidly absorbed into the bloodstream with a half-life of approximately 30 min. Different metabolites were detected, possibly resembling CYP3A4-independent oxidation products. It is concluded that nemorosone is a potential anti-cancer lead compound with good bioavailability, little side-effects and promising growth-inhibitory effects, thus representing a valuable compound for a combination therapy approach. PMID:24040280
Chidley, Christopher; Trauger, Sunia A; Birsoy, Kıvanç; O'Shea, Erin K
2016-07-12
Phenotypic screens allow the identification of small molecules with promising anticancer activity, but the difficulty in characterizing the mechanism of action of these compounds in human cells often undermines their value as drug leads. Here, we used a loss-of-function genetic screen in human haploid KBM7 cells to discover the mechanism of action of the anticancer natural product ophiobolin A (OPA). We found that genetic inactivation of de novo synthesis of phosphatidylethanolamine (PE) mitigates OPA cytotoxicity by reducing cellular PE levels. OPA reacts with the ethanolamine head group of PE in human cells to form pyrrole-containing covalent cytotoxic adducts and these adducts lead to lipid bilayer destabilization. Our characterization of this unusual cytotoxicity mechanism, made possible by unbiased genetic screening in human cells, suggests that the selective antitumor activity displayed by OPA may be due to altered membrane PE levels in cancer cells.
Kassab, Asmaa E; Gedawy, Ehab M
2018-04-25
As we are interested in synthetizing biologically active leads with dual anticancer and antibacterial activity, we adopted biology oriented drug synthesis (BIODS) strategy to synthesize a series of novel ciprofloxacin (CP) hybrids. The National Cancer Institute (USA) selected seventeen newly synthesized compounds for anticancer evaluation against 59 different human tumor cell lines. Five compounds 3e, 3f, 3h, 3o and 3p were further studied through determination of IC 50 values against the most sensitive cancer cell lines. In vitro results showed that the five compounds exhibited potent anticancer activity against test cell lines in nanomolar to micromolar range, with IC 50 values between 0.72 and 4.92 μM, which was 9 to1.5 folds more potent than doxorubicin. In this study, two promising potent anticancer CP hybrids, 3f and 3o, were identified. The anti-proliferative activity of these compounds appears to correlate well with their ability to inhibit Topo II (IC 50 = 0.58 and 0.86 μM). It is worth mentioning that compound 3f was 6 folds more potent than doxorubicin, 5 folds more potent than amsacrine and 1.5 folds more potent than etoposide. At the same time, compound 3o showed 4 folds more inhibitory activity against Topo II than doxorubicin, 3 folds more potent than amsacrine and almost equipotent activity to etoposide. Activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining, indicating that cell death proceeds through an apoptotic mechanism. Moreover, compounds 3f and 3o showed potent pro-apoptotic effect through induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was confirmed by a significant increase in the level of active caspase-3 compared to control. This observation may indicate that both CP hybrids can chelate with zinc, a powerful inhibitor of procaspase-3 enzymatic activity, so procaspase-3 may process itself to the active form. The synthesized CP derivatives were tested for their in vitro antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa strains. The results proved that all of the test compounds have shown good to excellent antibacterial activity, as compared to its parent molecule ciprofloxacin. Compounds 2, 3b, 3k, 3l, 3m, 3p, 5a, 5b, 5d and 5e exhibited equipotent or comparable activity to ciprofloxacin against the test strains. Compounds 3p and 5a were more potent than ciprofloxacin against Pseudomonas aeruginosa, a common organism causing infections in granulocytopenic cancer patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Aremu, Oluwole S; Gopaul, Kaalin; Kadam, Pramod; Singh, Moganavelli; Mocktar, Chunderika; Singh, Parvesh; Koorbanally, Neil A
2017-01-01
Pyrimidines have widespread activity and have shown potent antibacterial and anticancer activity. To synthesise a range of pyrimidine diones and test them for their antibacterial and anticancer activity. The pyranopyrimidin-2,4-dione derivatives (1-7) were synthesized in a one-pot reaction by reacting malononitrile and barbituric acid with several aromatic aldehydes in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) in aqueous medium. The compounds were tested for their antibacterial activity using the broth microdilution method and for their cytotoxicity against three cell lines, HeLa (cervical cancer), Caco-2 (human colon adenocarcinoma) and HEK 293 (human embryonic kidney cells) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. Compounds 1-7 were successfully synthesized in yields of >90%. The 3,4-dihydroxyaryl (3) and the 2,5- dimethoxyaryl (7) derivatives were novel. Compounds 3, 5 (4'-methoxy derivative) and 6 (2',3'-dimethoxy derivative) showed antibacterial activity comparable to or better than the standard ampicillin. All the test compounds 1-7 showed good anticancer activity. The IC50 values ranged from 3.46 to 37.13 μM (HeLa); 136.78 to 297.05 μM (Caco-2) and 137.84 to 333.81 μM (HEK293). The best activity was seen in the HeLa cell line when compared to the standard 5FU (5-Fluorouracil IC50 of 41.85 μM), with 1, 2, 5 and 7 having IC50 values of 10.64, 3.46, 4.36 and 4.44 μM respectively. Additionally, two representative compounds (1 and 7) found to be potent against the two cell lines (HeLa and HEK 293) were docked into the binding site of human kinesin Eg5 with the aim of predicting their binding propensities and to establish their mechanism of action. The Lipinski parameters of these compounds were also computed and analysed for their drug-likeness. Compound 6 is an excellent candidate for a broad spectrum antibiotic with MBCs of 45.6-365.2 μM, while both 3 and 6 have the potential to be developed into an antibiotic against MRSA, with MBCs of 183-199 μM. Since all synthesized compounds showed IC50 values of 10 μM or less especially against the HeLa cells, they can be considered good lead compounds for anticancer agents. Additionally, the docking simulations suggested a good binding affinity of the compounds with Eg5 and indicated their anti-cancer action, at least partially, through its inhibition. The predicted Lipinski descriptors also indicated the potential of these compounds as an orally active drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Saeed, Aamer; Mahesar, Parvez Ali; Zaib, Sumera; Khan, Muhammad Siraj; Matin, Abdul; Shahid, Mohammad; Iqbal, Jamshed
2014-05-06
The present study reports the synthesis of cinnamide derivatives and their biological activity as inhibitors of both cholinesterases and anticancer agents. Controlled inhibition of brain acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) may slow neurodegeneration in Alzheimer's diseases (AD). The anticholinesterase activity of phenylcinnamide derivatives was determined against Electric Eel acetylcholinesterase (EeAChE) and horse serum butyrylcholinesterase (hBChE) and some of the compounds appeared as moderately potent inhibitors of EeAChE and hBChE. The compound 3-(2-(Benzyloxy)phenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3i) showed maximum activity against EeAChE with an IC50 0.29 ± 0.21 μM whereas 3-(2-chloro-6-nitrophenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3k) was proved to be the most potent inhibitor of hBChE having IC50 1.18 ± 1.31 μM. To better understand the enzyme-inhibitor interaction of the most active compounds toward cholinesterases, molecular modelling studies were carried out on high-resolution crystallographic structures. The anticancer effects of synthesized compounds were also evaluated against cancer cell line (lung carcinoma). The compounds may be useful leads for the design of a new class of anticancer drugs for the treatment of cancer and cholinesterase inhibitors for Alzheimer's disease (AD). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Crous-Masó, Joan; Palomeras, Sònia; Relat, Joana; Camó, Cristina; Martínez-Garza, Úrsula; Planas, Marta; Feliu, Lidia; Puig, Teresa
2018-05-11
(-)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.
Chazin, Eliza de Lucas; Sanches, Paola de Souza; Lindgren, Eric Brazil; Vellasco Júnior, Walcimar Trindade; Pinto, Laine Celestino; Burbano, Rommel Mario Rodríguez; Yoneda, Julliane Diniz; Leal, Kátia Zaccur; Gomes, Claudia Regina Brandão; Wardell, James Lewis; Wardell, Solange Maria Silva Veloso; Montenegro, Raquel Carvalho; Vasconcelos, Thatyana Rocha Alves
2015-01-27
With the aim of discovering new anticancer agents, we have designed and synthesized novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases. The synthesis started with the selective nitration at 5-position of 6-hydroxybenzo[d][1,3]oxathiol-2-one (1) leading to the nitro derivative 2. The nitro group of 2 was reduced to give the amino intermediate 3. Schiff bases 4a-r were obtained from coupling reactions between 3 and various benzaldehydes and heteroaromatic aldehydes. All the new compounds were fully identified and characterized by NMR (1H and 13C) and specifically for 4q by X-ray crystallography. The in vitro cytotoxicity of the compounds was evaluated against cancer cell lines (ACP-03, SKMEL-19 and HCT-116) by using MTT assay. Schiff bases 4b and 4o exhibited promising cytotoxicity against ACP-03 and SKMEL-19, respectively, with IC50 values lower than 5 μM. This class of compounds can be considered as a good starting point for the development of new lead molecules in the fight against cancer.
Recent Progress of Marine Polypeptides as Anticancer Agents
Zheng, Lanhong; Xua, Yixin; Lin, Xiukun; Yuan, Zhixin; Liu, Minghua; Cao, Shousong; Zhang, Fuming; Linhardt, Robert J
2018-04-29
Marine environment constitutes an almost infinite resource for novel anticancer drugs discovery. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer peptides in the treatment of human cancer. Marine peptides represent a new opportunity to obtain lead compounds in biomedical field, particularly for cancer therapy. Providing an insight of the recent progress of patented marine peptides and presenting information about the structures and mechanistic mode of anticancer activities of these marine peptides. We reviewed recent progress on the patented anticancer peptides from marine organisms according to their targets on different signal pathways. This work focuses on relevant recent patents (2010-2018) that entail the anticancer activity with associated mechanism and related molecular diversity of marine peptides. The related cellular signaling pathways for novel peptides that induce apoptosis and affect tubulin-microtubule equilibrium, angiogenesis and kinase activity that are related to the anticancer and related pharmacological properties are also discussed. The recent patents (2010-2018) of marine peptides with anticancer activity were reviewed, and the anticancer activity of marine peptides with associated mechanism and related molecular diversity of marine peptides were also discussed. Marine peptides possess chemical diversity and displays potent anticancer activity via targeting different signal pathways. Some of the marine peptides are promising to be developed as novel anticancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.
Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng
2014-01-01
Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.
Multimodal HDAC Inhibitors with Improved Anticancer Activity.
Schobert, Rainer; Biersack, Bernhard
2018-01-01
Histone deacetylases (HDACs) play a significant role in the proliferation and dissemination of cancer and represent promising epigenetic drug targets. The HDAC inhibitor vorinostat featuring a zinc-binding hydroxamate fragment was already clinically approved. However, HDAC inhibitors containing hydroxamic acids are often hampered by acquired or intrinsic drug resistance and may lead to enhanced tumor aggressiveness. In order to overcome these drawbacks of hydroxamate HDAC inhibitors, a series of multimodal derivatives of this compound class, including such with different zinc-binding groups, was recently developed and showed promising anticancer activity. This review provides an overview of the chemistry and pleiotropic anticancer modes of action of these conceptually new HDAC inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
CancerHSP: anticancer herbs database of systems pharmacology
NASA Astrophysics Data System (ADS)
Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua
2015-06-01
The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.
[Review in the studies on tannins activity of cancer prevention and anticancer].
Li, Haixia; Wang, Zhao; Liu, Yanze
2003-06-01
This paper reviewed the biological activities of tannins in cancer prevention and anticancer, and mainly discussed related mechanisms. The results suggest that tannins, whether total tannins or pure tannin compound, have remarkable activity in cancer prevention and anticancer. It has wealthy foreground for developing new cancer prevention agents and/or new anticancer drugs screening among tannin compounds.
Dara, Ajay; Sangamwar, Abhay T.
2014-01-01
Background In a search for an effective anticancer therapy the R&D units from leading universities and institutes reveal numerous technologies in the form of patent documents. The article addressed comparative anticancer patent landscape and technology assessment of Council of Scientific and Industrial Research (CSIR): India’s largest R&D organisation with top twenty international public funded universities and institutes from eight different countries. Methodology/Principal Findings The methodology include quantitative and qualitative assessment based on the bibliometric parameters and manual technology categorisation to understand the changing patent trends and recent novel technologies. The research finding analysed 25,254 patent documents from the year 1993 to 2013 and reported the insights of latest anticancer technologies and targets through categorisation studies at the level of drug discovery, development and treatment & diagnosis. The article has reported the technology correlation matrix of twelve secondary class technologies with 34 tertiary sub-class research area to identify the leading technologies and scope of future research through whitespaces analysis. In addition, the results have also addressed the target analysis, leading inventor, assignee, collaboration network, geographical distribution, patent trend analysis, citation maps and technology assessment with respect to international patent classification systems such as CPC, IPC and CPI codes. Conclusions/Significance The result suggested peptide technology as the dominating research area next to gene therapy, vaccine and medical preparation containing organic compounds. The Indian CSIR has ranked itself at seventh position among the top 20 universities. Globally, the anticancer research was focused in the area of genetics and immunology, whereas Indian CSIR reported more patents related to plant extract and organic preparation. The article provided a glimpse of two decade anticancer scenario with respect to top public funded universities worldwide. PMID:25083710
Dara, Ajay; Sangamwar, Abhay T
2014-01-01
In a search for an effective anticancer therapy the R&D units from leading universities and institutes reveal numerous technologies in the form of patent documents. The article addressed comparative anticancer patent landscape and technology assessment of Council of Scientific and Industrial Research (CSIR): India's largest R&D organisation with top twenty international public funded universities and institutes from eight different countries. The methodology include quantitative and qualitative assessment based on the bibliometric parameters and manual technology categorisation to understand the changing patent trends and recent novel technologies. The research finding analysed 25,254 patent documents from the year 1993 to 2013 and reported the insights of latest anticancer technologies and targets through categorisation studies at the level of drug discovery, development and treatment & diagnosis. The article has reported the technology correlation matrix of twelve secondary class technologies with 34 tertiary sub-class research area to identify the leading technologies and scope of future research through whitespaces analysis. In addition, the results have also addressed the target analysis, leading inventor, assignee, collaboration network, geographical distribution, patent trend analysis, citation maps and technology assessment with respect to international patent classification systems such as CPC, IPC and CPI codes. The result suggested peptide technology as the dominating research area next to gene therapy, vaccine and medical preparation containing organic compounds. The Indian CSIR has ranked itself at seventh position among the top 20 universities. Globally, the anticancer research was focused in the area of genetics and immunology, whereas Indian CSIR reported more patents related to plant extract and organic preparation. The article provided a glimpse of two decade anticancer scenario with respect to top public funded universities worldwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zask, Arie; Verheijen, Jeroen C.; Curran, Kevin
The mammalian target of rapamycin (mTOR), a central regulator of growth, survival, and metabolism, is a validated target for cancer therapy. Rapamycin and its analogues, allosteric inhibitors of mTOR, only partially inhibit one mTOR protein complex. ATP-competitive, global inhibitors of mTOR that have the potential for enhanced anticancer efficacy are described. Structural features leading to potency and selectivity were identified and refined leading to compounds with in vivo efficacy in tumor xenograft models.
Maalej, Amina; Bouallagui, Zouhaier; Hadrich, Fatma; Isoda, Hiroko; Sayadi, Sami
2017-06-01
Olea europaea L. has been widely used as an advantageous rich source of bioactive compounds of high economic value leading to its use in pharmaceutical, cosmetic, and agriculture industries. Ethanolic extracts of olive fruits from three different cultivars (OFE) were studied for their phytochemical contents and were investigated for antioxidant activities and anticancer potential. Major polyphenols detected in these extracts were tyrosol, hydroxytyrosol, oleuropein, rutin, quercetin and glucoside forms of luteolin and apigenin. All these compounds have shown to significantly contribute to the antioxidant activity of OFE, which was evaluated by DPPH and ABTS assays. Proliferation of hepatic and colon cancer cells, HepG2 and Caco-2, were shown to be sensitive to OFE with IC 50 less than 1.6mg/ml for all tested extracts. Moreover, flow cytometry analysis showed that OFE induced cell cycle arrest in the S-phase within both HepG2 and Caco-2 cells. This has triggered a cell death mechanism as shown by DNA fragmentation, expression of p53 and phosphorylation level of Akt and Erk proteins. Interestingly, these extracts could be further used as a potential source of natural compounds with both antioxidant and anticancer effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
African medicinal plants and their derivatives: Current efforts towards potential anti-cancer drugs.
Mbele, Mzwandile; Hull, Rodney; Dlamini, Zodwa
2017-10-01
Cancer is a leading cause of mortality and morbidity worldwide and second only to cardiovascular diseases. Cancer is a challenge in African countries because generally there is limited funding available to deal with the cancer epidemic and awareness and this should be prioritised and all possible resources should be utilized to prevent and treat cancer. The current review reports on the role of African medicinal plants in the treatment of cancer, and also outlines methodologies that can also be used to achieve better outcomes for cancer treatment. This review outlines African medicinal plants, isolated compounds and technologies that can be used to advance cancer research. Chemical structures of isolated compounds have an important role in anti-cancer treatments; new technologies and methods may assist to identify more properties of African medicinal plants and the treatment of cancer. In conclusion, African medicinal plants have shown their potential as enormous resources for novel cytotoxicity compounds. Finally it has been noted that the cytotoxicity depends on the chemical structural arrangements of African medicinal plants compounds. Copyright © 2017 Elsevier Inc. All rights reserved.
A Benzothiazole Derivative (5g) Induces DNA Damage And Potent G2/M Arrest In Cancer Cells.
Hegde, Mahesh; Vartak, Supriya V; Kavitha, Chandagirikoppal V; Ananda, Hanumappa; Prasanna, Doddakunche S; Gopalakrishnan, Vidya; Choudhary, Bibha; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C
2017-05-31
Chemically synthesized small molecules play important role in anticancer therapy. Several chemical compounds have been reported to damage the DNA, either directly or indirectly slowing down the cancer cell progression by causing a cell cycle arrest. Direct or indirect reactive oxygen species formation causes DNA damage leading to cell cycle arrest and subsequent cell death. Therefore, identification of chemically synthesized compounds with anticancer potential is important. Here we investigate the effect of benzothiazole derivative (5g) for its ability to inhibit cell proliferation in different cancer models. Interestingly, 5g interfered with cell proliferation in both, cell lines and tumor cells leading to significant G2/M arrest. 5g treatment resulted in elevated levels of ROS and subsequently, DNA double-strand breaks (DSBs) explaining observed G2/M arrest. Consistently, we observed deregulation of many cell cycle associated proteins such as CDK1, BCL2 and their phosphorylated form, CyclinB1, CDC25c etc. Besides, 5g treatment led to decreased levels of mitochondrial membrane potential and activation of apoptosis. Interestingly, 5g administration inhibited tumor growth in mice without significant side effects. Thus, our study identifies 5g as a potent biochemical inhibitor to induce G2/M phase arrest of the cell cycle, and demonstrates its anticancer properties both ex vivo and in vivo.
Acyl derivatives of boswellic acids as inhibitors of NF-κB and STATs.
Kumar, Ajay; Shah, Bhahwal A; Singh, Samar; Hamid, Abid; Singh, Shashank K; Sethi, Vijay K; Saxena, Ajit K; Singh, Jaswant; Taneja, Subhash C
2012-01-01
Boswellic acid acylates including their epimers were synthesized and screened against a panel of human cancer cell lines. They exhibited a range of cytotoxicity against various human cancer cell lines thereby leading to the development of a possible SAR. One of the identified lead compounds was found to be an inhibitor of the NF-κB and STAT proteins, warranting further investigations to be developed into a potential anticancer lead. Copyright © 2011 Elsevier Ltd. All rights reserved.
Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds
Nabekura, Tomohiro
2010-01-01
Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC) transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (-)-epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized. PMID:22069634
Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin
2016-01-01
Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680
Aung, Thazin Nwe; Qu, Zhipeng; Kortschak, R. Daniel; Adelson, David L.
2017-01-01
Many approaches to cancer management are often ineffective due to adverse reactions, drug resistance, or inadequate target specificity of single anti-cancer agents. In contrast, a combinatorial approach with the application of two or more anti-cancer agents at their respective effective dosages can achieve a synergistic effect that boosts cytotoxicity to cancer cells. In cancer, aberrant apoptotic pathways allow cells that should be killed to survive with genetic abnormalities, leading to cancer progression. Mutations in apoptotic mechanism arising during the treatment of cancer through cancer progression can consequently lead to chemoresistance. Natural compound mixtures that are believed to have multiple specific targets with minimal acceptable side-effects are now of interest to many researchers due to their cytotoxic and chemosensitizing activities. Synergistic interactions within a drug mixture enhance the search for potential molecular targets in cancer cells. Nonetheless, biased/flawed scientific evidence from natural products can suggest false positive therapeutic benefits during drug screening. In this review, we have taken these factors into consideration when discussing the evidence for these compounds and their synergistic therapeutic benefits in cancer. While there is limited evidence for clinical efficacy for these mixtures, in vitro data suggest that these preparations merit further investigation, both in vitro and in vivo. PMID:28304343
Aung, Thazin Nwe; Qu, Zhipeng; Kortschak, R Daniel; Adelson, David L
2017-03-17
Many approaches to cancer management are often ineffective due to adverse reactions, drug resistance, or inadequate target specificity of single anti-cancer agents. In contrast, a combinatorial approach with the application of two or more anti-cancer agents at their respective effective dosages can achieve a synergistic effect that boosts cytotoxicity to cancer cells. In cancer, aberrant apoptotic pathways allow cells that should be killed to survive with genetic abnormalities, leading to cancer progression. Mutations in apoptotic mechanism arising during the treatment of cancer through cancer progression can consequently lead to chemoresistance. Natural compound mixtures that are believed to have multiple specific targets with minimal acceptable side-effects are now of interest to many researchers due to their cytotoxic and chemosensitizing activities. Synergistic interactions within a drug mixture enhance the search for potential molecular targets in cancer cells. Nonetheless, biased/flawed scientific evidence from natural products can suggest false positive therapeutic benefits during drug screening. In this review, we have taken these factors into consideration when discussing the evidence for these compounds and their synergistic therapeutic benefits in cancer. While there is limited evidence for clinical efficacy for these mixtures, in vitro data suggest that these preparations merit further investigation, both in vitro and in vivo.
Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan
2016-06-01
Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oyewumi, Moses O; Alazizi, Adnan; Liva, Sophia; Lin, Li; Geldenhuys, Werner J
2014-09-15
The clinical application of gallium compounds as anticancer agents is hampered by development of resistance. As a potential strategy to overcome the limitation, eight series of compounds were identified through virtual screening of AXL kinase homology model. Anti-proliferative studies were carried using gallium-sensitive (S) and gallium-resistant (R) human lung adenocarcinoma (A549) cells. Compounds 5476423 and 7919469 were identified as leads. The IC50 values from treating R-cells showed compounds 5476423 and 7919469 had 80 fold and 13 fold increased potency, respectively, compared to gallium acetylacetonate (GaAcAc). The efficacy of GaAcAc against R-cells was increased 2 fold and 1.2 fold when combined with compounds 5476423 and 7919469, respectively. Compared with S-cells, R-cells showed elevated expression of AXL protein, which was significantly suppressed through treatments with the lead compounds. It is anticipated that the lead compounds could be applied in virtual screening programs to identify novel scaffolds for new therapeutic agents as well as combinatorial therapy agents in gallium resistant lung cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ee, Gwendoline Cheng Lian; Lim, Chyi Meei; Rahmani, Mawardi; Shaari, Khozirah; Bong, Choon Fah Joseph
2010-04-05
Pellitorine (1), which was isolated from the roots of Piper nigrum, showed strong cytotoxic activities against HL60 and MCT-7 cell lines. Microbial transformation of piperine (2) gave a new compound 5-[3,4-(methylenedioxy)phenyl]-pent-2-ene piperidine (3). Two other alkaloids were also found from Piper nigrum. They are (E)-1-[3',4'-(methylenedioxy)cinnamoyl]piperidine (4) and 2,4-tetradecadienoic acid isobutyl amide (5). These compounds were isolated using chromatographic methods and their structures were elucidated using MS, IR and NMR techniques.
Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda
2013-08-01
As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.
Anticancer Drugs from Marine Flora: An Overview
Sithranga Boopathy, N.; Kathiresan, K.
2010-01-01
Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease. PMID:21461373
Anticancer drugs from marine flora: an overview.
Sithranga Boopathy, N; Kathiresan, K
2010-01-01
Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.
Optimization of gefitinib analogues with potent anticancer activity.
Yin, Kai-Hao; Hsieh, Yi-Han; Sulake, Rohidas S; Wang, Su-Pei; Chao, Jui-I; Chen, Chinpiao
2014-11-15
The interactions of gefitinib (Iressa) in EGFR are hydrogen bonding and van der Waals forces through quinazoline and aniline rings. However the morpholino group of gefitinib is poorly ordered due to its weak electron density. A series of novel piperazino analogues of gefitinib where morpholino group substituted with various piperazino groups were designed and synthesized. Most of them indicated significant anti-cancer activities against human cancer cell lines. In particular, compounds 52-54 showed excellent potency against cancer cells. Convergent synthetic approach has been developed for the synthesis of gefitinib intermediate which can lead to gefitinib as well as numerous analogues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Ning; Feng, Yibin
2015-01-01
Autophagy is a homeostatic process that is highly conserved across different types of mammalian cells. Autophagy is able to relieve tumor cell from nutrient and oxidative stress during the rapid expansion of cancer. Excessive and sustained autophagy may lead to cell death and tumor shrinkage. It was shown in literature that many anticancer natural compounds and extracts could initiate autophagy in tumor cells. As summarized in this review, the tumor suppressive action of natural products-induced autophagy may lead to cell senescence, provoke apoptosis-independent cell death, and complement apoptotic cell death by robust or target-specific mechanisms. In some cases, natural products-induced autophagy could protect tumor cells from apoptotic death. Technical variations in detecting autophagy affect data quality, and study focus should be made on elaborating the role of autophagy in deciding cell fate. In vivo study monitoring of autophagy in cancer treatment is expected to be the future direction. The clinical-relevant action of autophagy-inducing natural products should be highlighted in future study. As natural products are an important resource in discovery of lead compound of anticancer drug, study on the role of autophagy in tumor suppressive effect of natural products continues to be necessary and emerging.
Azad, Iqbal; Nasibullah, Malik; Khan, Tahmeena; Hassan, Firoj; Akhter, Yusuf
2018-05-01
This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect. Molecular docking was performed with vascular endothelial growth factor receptor-2(VEGFR2) and glutathione S-transferase-1 (GSTP1) because both are common cancer causing proteins. Sunitinib and Doxorubicin possess great affinity to inhibit these cancers causing protein. Self-organizing map (SOM) was used to depict data in a simple 2D presentation. Our studies justify that good oral bioavailability and therapeutic efficacy of 10, 12-19 and 22-27 compounds can be considered as potential anticancer agents. Copyright © 2018 Elsevier Inc. All rights reserved.
Sanjeewa, K K Asanka; Lee, Jung-Suck; Kim, Won-Suck; Jeon, You-Jin
2017-12-01
In recent decades, attention to cancer-preventive treatments and studies on the development of anticancer drugs have sharply increased owing to the increase in cancer-related death rates in every region of the world. However, due to the adverse effects of synthetic drugs, much attention has been given to the development of anticancer drugs from natural sources because of fewer side effects of natural compounds than those of synthetic drugs. Recent studies on compounds and crude extracts from marine algae have shown promising anticancer properties. Among those compounds, polysaccharides extracted from brown seaweeds play a principal role as anticancer agents. Especially, a number of studies have revealed that polysaccharides isolated from brown seaweeds, such as fucoidan and laminaran, have promising effects against different cancer cell types in vitro and in vivo. Herein, we reviewed in vitro and in vivo anticancer properties reported for fucoidan and laminaran toward various cancer cells from 2013 to 2016. Copyright © 2017 Elsevier Ltd. All rights reserved.
Taiwo, Bamigboye J; Fatokun, Amos A; Olubiyi, Olujide O; Bamigboye-Taiwo, Olukemi T; van Heerden, Fanie R; Wright, Colin W
2017-04-15
Cancer is now the second-leading cause of mortality and morbidity, behind only heart disease, necessitating urgent development of (chemo)therapeutic interventions to stem the growing burden of cancer cases and cancer death. Plants represent a credible source of promising drug leads in this regard, with a long history of proven use in the indigenous treatment of cancer. This study therefore investigated Anacardium occidentale, one of the plants in a Nigerian Traditional Medicine formulation commonly used to manage cancerous diseases, for cytotoxic activity. Bioassay-guided fractionation, spectroscopy, Alamar blue fluorescence-based viability assay in cultured HeLa cells and microscopy were used. Four compounds, zoapatanolide A (1), agathisflavone (2), 1,2-bis(2,6-dimethoxy-4-methoxycarbonylphenyl)ethane (anacardicin, 3) and methyl gallate (4), were isolated, with the most potent being zoapatanolide A with an IC 50 value of 36.2±9.8µM in the viability assay. To gain an insight into the likely molecular basis of their observed cytotoxic effects, Autodock Vina binding free energies of each of the isolated compounds with seven molecular targets implicated in cancer development (MAPK8, MAPK10, MAP3K12, MAPK3, MAPK1, MAPK7 and VEGF), were calculated. Pearson correlation coefficients were obtained with experimentally-determined IC 50 in the Alamar blue viability assay. While these compounds were not as potent as a standard anticancer compound, doxorubicin, the results provide reasonable evidence that the plant species contains compounds with cytotoxic activity. This study provides some evidence of why this plant is used ethnobotanically in anticancer herbal formulations and justifies investigating Nigerian medicinal plants highlighted in recent ethnobotanical surveys. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biodiversity as a source of anticancer drugs.
Tan, G; Gyllenhaal, C; Soejarto, D D
2006-03-01
Natural Products have been the most significant source of drugs and drug leads in history. Their dominant role in cancer chemotherapeutics is clear with about 74% of anticancer compounds being either natural products, or natural product-derived. The biodiversity of the world provides a resource of unlimited structural diversity for bioprospecting by international drug discovery programs such as the ICBGs and NCDDGs, the latter focusing exclusively on anticancer compounds. However, many sources of natural products remain largely untapped. Technology is gradually overcoming the traditional difficulties encountered in natural products research by improving access to biodiverse resources, and ensuring the compatibility of samples with high throughput procedures. However, the acquisition of predictive biodiversity remains challenging. Plant and organism species may be selected on the basis of potentially useful phytochemical composition by consulting ethnopharmacological, chemosystematic, and ecological information. On the conservation/political front, the Convention on Biological Diversity (CBD) is allaying the anxiety surrounding the notion of biopiracy, which has defeated many attempts to discover and develop new natural products for human benefit. As it becomes increasingly evident and important, the CBD fosters cooperation and adaptation to new regulations and collaborative research agreements with source countries. Even as the past inadequacies of combinatorial chemistry are being analyzed, the intrinsic value of natural products as a source of drug leads is being increasingly appreciated. Their rich structural and stereochemical characteristics make them valuable as templates for exploring novel molecular diversity with the aim of synthesizing lead generation libraries with greater biological relevance. This will ensure an ample supply of starting materials for screening against the multitude of potentially "druggable" targets uncovered by genomics technologies. Far from being mutually exclusive, biodiversity and genomics should be the driving force of drug discovery in the 21st century.
Combination cancer chemotherapy with one compound: pluripotent bradykinin antagonists.
Stewart, John M; Gera, Lajos; Chan, Daniel C; York, Eunice J; Simkeviciene, Vitalija; Bunn, Paul A; Taraseviciene-Stewart, Laimute
2005-08-01
Lung and prostate cancers are major health problems worldwide. Treatments with standard chemotherapy agents are relatively ineffective. Combination chemotherapy gives better treatment than a single agent because the drugs can inhibit the cancer in different pathways, but new therapeutic agents are needed for the treatment of both tumor types. Bradykinin (BK) antagonists offer advantages of combination therapy in one compound. These promising multitargeted anti-cancer compounds selectively stimulate apoptosis in cancers and also inhibit both angiogenesis and matrix metalloprotease (MMP) action in treated lung and prostate tumors in nude mice. The highly potent, metabolism-resistant bradykinin antagonist peptide dimer, B-9870 [SUIM-(DArg-Arg-Pro-Hyp-Gly-Igl-Ser-DIgl-Oic-Arg)2] (SUIM=suberimidyl; Hyp=4-hydroxyproline; Igl=alpha-(2-indanyl)glycine; Oic=octahydroindole-2-carboxylic acid) and its non-peptide mimetic, BKM-570 [2,3,4,5,6-pentafluorocinnamoyl-(o-2,6-dichlorobenzyl)-L-tyrosine-N-(4-amino-2,2,6,6-tetramethylpiperidyl)amide] are superior to the widely used but toxic chemotherapeutic drugs cisplatin and taxotere. In certain combinations, they act synergistically with standard anti-cancer drugs. Due to its structure and biological activity, BKM-570 is an attractive lead compound for derivatization and evaluation for lung and prostate cancer drugs.
Yamali, Cem; Gul, Halise Inci; Sakagami, Hiroshi; Supuran, Claudiu T
2016-01-01
Phenolic bis Mannich bases having the chemical structure of 1-[3,5-bis-aminomethyl-4-hydroxyphenyl]-3-(4-halogenophenyl)-2-propen-1-ones (1a-c, 2a-c, 3a-c) were synthesized (Numbers 1, 2, and 3 represent fluorine, chlorine, and bromine bearing compounds, respectively, while a, b, and c letters represent the compounds having piperidine, morpholine, and N-methyl piperazine) and their cytotoxic and carbonic anhydrase (CA, EC 4.2.1.1) enzyme inhibitory effects were evaluated. Lead compounds should possess both marked cytotoxic potencies and selective toxicity for tumors. To reflect this potency, PSE values of the compounds were calculated. According to PSE values, the compounds 2b and 3b may serve as lead molecules for further anticancer drug candidate developments. Although the compounds showed a low inhibition potency toward hCA I (25-43%) and hCA II (6-25%) isoforms at 10 μM concentration of inhibitor, the compounds were more selective (1.5-5.2 times) toward hCA I isoenzyme. It seems that the compounds need molecular modifications for the development of better CA inhibitors.
Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G
2000-04-01
An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.
Synthesis, antitubercular and anticancer activities of substituted furyl-quinazolin-3(4H)-ones.
Raghavendra, Nulgulmnalli M; Thampi, Parameshwaran; Gurubasavarajaswamy, Purvarga M; Sriram, Dharmarajan
2007-12-01
Some novel substituted-3-{[(1E)-(substituted-2-furyl)-methylene]amino}quinazolin-4(3H)-one (5, 6, 7) a-f were synthesized by a multi-step process. These synthesized compounds are characterized by various spectroscopic techniques and evaluated for their antitubercular and anticancer activities. Biological activity indicated that some of the title compounds are potent antitubercular and anticancer agents.
Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis
Costa, Margarida; Costa-Rodrigues, João; Fernandes, Maria Helena; Barros, Piedade; Vasconcelos, Vitor; Martins, Rosário
2012-01-01
Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed. PMID:23170077
USDA-ARS?s Scientific Manuscript database
Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se ...
Zhan, Xiao-Ping; Lan, Lan; Wang, Shuai; Zhao, Kai; Xin, Yu-Xuan; Qi, Qi; Wang, Yao-Lin; Mao, Zhen-Min
2017-02-01
A series of 3-(substituted aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT-26, HeLa, MGC80-3, NCI-H460 and SGC-7901 cells (IC 50 = 8.2 - 31.7 μm); 3g, 3n and 3a were the most potent compounds against CHO (IC 50 = 8.2 μm), HCT-15 (IC 50 = 21 μm) and MCF-7 cells (IC 50 = 18.7 μm), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC 50 > 100 μm). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity
Venugopala, K. N.; Rashmi, V.; Odhav, B.
2013-01-01
Coumarin (2H-1-benzopyran-2-one) is a plant-derived natural product known for its pharmacological properties such as anti-inflammatory, anticoagulant, antibacterial, antifungal, antiviral, anticancer, antihypertensive, antitubercular, anticonvulsant, antiadipogenic, antihyperglycemic, antioxidant, and neuroprotective properties. Dietary exposure to benzopyrones is significant as these compounds are found in vegetables, fruits, seeds, nuts, coffee, tea, and wine. In view of the established low toxicity, relative cheapness, presence in the diet, and occurrence in various herbal remedies of coumarins, it appears prudent to evaluate their properties and applications further. PMID:23586066
Fatahala, Samar Said; Shalaby, Emad Ahmed; Kassab, Shaymaa Emam; Mohamed, Mossad Said
2015-01-01
A series of N-aryl derivatives of pyrrole and its related derivatives of fused form (namely; tetrahydroindole and dihydroindenopyrroles) were prepared in fair to good yields. The newly synthesized compounds were confirmed using IR, (1)H NMR, Mass spectral and elemental analysis. Tetrahydrobenzo[b] pyrroles Ia-d, 1,4-dihydroindeno[1,2-b]pyrroles IIa,b and pyrroles IIIa-c,e were evaluated for anticancer activity, coinciding with the antioxidant activity; using Di-Phenyl Picryl Hydrazyl (DPPH) tests. The cytotoxicity of the tested compounds (at a concentration of 100 and 200 μg /mL) was performed against HepG-2 and EACC cell lines. Compounds Ib, d and IIa showed promising antioxidant activity beside their anticancer activity. Docking studies were employed to justify the promising anticancer activity of Ib,d and IIa. Protein kinase (PKase)-PDB entry 1FCQ was chosen as target enzyme for this purpose using the MOLSOFT ICM 3.4-8C program. The docking results of the tested compounds went aligned with the respective anticancer assay results.
Screening for Anti-Cancer Compounds in Marine Organisms in Oman
Dobretsov, Sergey; Tamimi, Yahya; Al-Kindi, Mohamed A.; Burney, Ikram
2016-01-01
Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF)-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies. PMID:27226907
Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin
2017-01-01
Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Diverse amide analogs of sulindac for cancer treatment and prevention.
Mathew, Bini; Hobrath, Judith V; Connelly, Michele C; Kiplin Guy, R; Reynolds, Robert C
2017-10-15
Sulindac is a non-steroidal anti-inflammatory drug (NSAID) that has shown significant anticancer activity. Sulindac sulfide amide (1) possessing greatly reduced COX-related inhibition relative to sulindac displayed in vivo antitumor activity that was comparable to sulindac in a human colon tumor xenograft model. Inspired by these observations, a panel of diverse sulindac amide derivatives have been synthesized and their activity probed against three cancer cell lines (prostate, colon and breast). A neutral analog, compound 79 was identified with comparable potency relative to lead 1 and activity against a panel of lymphoblastic leukemia cell lines. Several new series also show good activity relative to the parent (1), including five analogs that also possess nanomolar inhibitory potencies against acute lymphoblastic leukemia cells. Several new analogs identified may serve as anticancer lead candidates for further development. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash
2010-06-01
In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies.
Marino, T; Parise, A; Russo, N
2017-01-04
Platinum(ii)-based molecules are the most commonly used anticancer drugs in the chemotherapeutic treatment of tumours but possess serious side effects and some cancer types exhibit resistance with respect to these compounds (e.g. cisplatin). For these reasons, the research of new compounds that can bypass this limitation is in continuous development. Recently, mixed Pt(ii)-As(iii) systems have been synthesized and tested as potential anticancer agents. The mechanism of action of these kinds of drugs is unclear. Since in other platinum(ii) containing drugs, hydrolysis plays an important role in the activation of the compound before it reaches DNA, we have explored the aquation process using density functional theory (DFT), focusing our attention on the arsenoplatin complex, [Pt(μ-NHC(CH 3 )O) 2 ClAs(OH) 2 ]. As DNA is believed to be the cellular target for Pt anticancer drugs, the metalation mechanism of DNA purine bases has been also investigated. Also for this new drug it appears that guanine is the preferred site with respect to adenine as with other platinum-containing compounds. A comparison with cisplatin is performed in order to highlight the contribution of arsenic in the anticancer activity of this new proposed anticancer agent.
Sarkar, Fazlul H.; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash
2011-01-01
In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents for solid tumors. Therefore, the development of synthetic analogs of isoflavone and curcumin based on the structure-activity assay, and the encapsulation of isoflavone and curcumin with liposome or nanoparticle for enhancing the anti-tumor activity of these natural agents, is an exciting area of research. Emerging in vitro and in vivo studies clearly suggest that these analogs and formulations of natural compounds could be much more potent for the prevention and/or treatment of various cancers. In this review article, we will summarize the current knowledge regarding the anti-cancer effect of natural compounds and their analogs, the regulation of cell signaling by these agents, and the structure-activity relationship for better design of novel anti-cancer agents, which could open newer avenues for the prevention of tumor progression and/or treatment of human malignancies. PMID:20345353
Al-Mudarris, Ban A.; Chen, Shih-Hsun; Liang, Po-Huang; Osman, Hasnah; Jamal Din, Shah Kamal Khan; Abdul Majid, Amin M. S.
2013-01-01
Benzyl-o-vanillin and benzimidazole nucleus serve as important pharmacophore in drug discovery. The benzyl vanillin (2-(benzyloxy)-3-methoxybenzaldehyde) compound shows anti-proliferative activity in HL60 leukemia cancer cells and can effect cell cycle progression at G2/M phase. Its apoptosis activity was due to disruption of mitochondrial functioning. In this study, we have studied a series of compounds consisting of benzyl vanillin and benzimidazole structures. We hypothesize that by fusing these two structures we can produce compounds that have better anticancer activity with improved specificity particularly towards the leukemia cell line. Here we explored the anticancer activity of three compounds namely 2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2MP, N-1-(2-benzyloxy-3-methoxybenzyl)-2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2XP, and (R) and (S)-1-(2-benzyloxy-3-methoxyphenyl)-2, 2, 2-trichloroethyl benzenesulfonate, 3BS and compared their activity to 2-benzyloxy-3-methoxybenzaldehyde, (Bn1), the parent compound. 2XP and 3BS induces cell death of U937 leukemic cell line through DNA fragmentation that lead to the intrinsic caspase 9 activation. DNA binding study primarily by the equilibrium binding titration assay followed by the Viscosity study reveal the DNA binding through groove region with intrinsic binding constant 7.39 µM/bp and 6.86 µM/bp for 3BS and 2XP respectively. 2XP and 3BS showed strong DNA binding activity by the UV titration method with the computational drug modeling showed that both 2XP and 3BS failed to form any electrostatic linkages except via hydrophobic interaction through the minor groove region of the nucleic acid. The benzylvanillin alone (Bn1) has weak anticancer activity even after it was combined with the benzimidazole (2MP), but after addition of another benzylvanillin structure (2XP), stronger activity was observed. Also, the combination of benzylvanillin with benzenesulfonate (3BS) significantly improved the anticancer activity of Bn1. The present study provides a new insight of benzyl vanillin derivatives as potential anti-leukemic agent. PMID:24260527
Mathew, Bini; Snowden, Timothy S; Connelly, Michele C; Guy, R Kiplin; Reynolds, Robert C
2018-05-10
Non-steroidal anti-inflammatory drugs (NSAIDs) have a variety of potential indications that include management of pain and inflammation as well as chemoprevention and/or treatment of cancer. Furthermore, a specific form of ibuprofen, dexibuprofen or the S-(+) form, shows interesting neurological activities and has been proposed for the treatment of Alzheimer's disease. In a continuation of our work probing the anticancer activity of small sulindac libraries, we have prepared and screened a small diversity library of α-methyl substituted sulindac amides in the profen class. Several compounds of this series displayed promising activity compared with a lead sulindac analog. Copyright © 2018. Published by Elsevier Ltd.
Anticancer activity of seaweeds.
Gutiérrez-Rodríguez, Anllely G; Juárez-Portilla, Claudia; Olivares-Bañuelos, Tatiana; Zepeda, Rossana C
2018-02-01
Cancer is a major health problem worldwide and still lacks fully effective treatments. Therefore, alternative therapies, using natural products, have been proposed. Marine algae are an important component of the marine environment, with high biodiversity, and contain a huge number of functional compounds, including terpenes, polyphenols, phlorotannins, and polysaccharides, among others. These compounds have complex structures that have shown several biological activities, including anticancer activity, using in vitro and in vivo models. Moreover, seaweed-derived compounds target important molecules that regulate cancer processes. Here, we review our current understanding of the anticancer activity of seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Facile synthesis and biological evaluation of novel symmetrical biphenyls as antitumor agents.
Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Chen; Hu, Zhigang; Wang, Sicen; He, Langchong
2012-03-01
As a continuation to our previous work in developing anticancer agents, eighteen symmetrical biphenyl derivatives structurally related to taspine were synthesized and evaluated in vitro and in vivo. All the compounds were prepared with varied substitutions in the phenyl ring of aniline moiety. The cytotoxicity and anticancer activity of biphenyls was evaluated against various human tumor and normal cell line. Antiproliferative assays indicated that some of them exhibited potent anticancer activity. The potent antiproliferative activity of these compounds against ECV304 suggested that these biphenyls could be served as antiangiogenic agents. The highly active compound (2) also exhibited potent growth inhibition against cancer cell lines in vivo. Our findings demonstrated that these symmetrical biphenyl derivatives would be a promising candidate as novel anticancer agents.
Ahsan, Mohamed Jawed; Khalilullah, Habibullah; Yasmin, Sabina; Jadav, Surender Singh; Govindasamy, Jeyabalan
2013-01-01
In search of potential therapeutics for cancer, we described herein the synthesis, characterization, and in vitro anticancer activity of a novel series of curcumin analogues. The anticancer effects were evaluated on a panel of 60 cell lines, according to the National Cancer Institute (NCI) screening protocol. There were 10 tested compounds among 14 synthesized compounds, which showed potent anticancer activity in both one-dose and 5-dose assays. The most active compound of the series was 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-yl(phenyl)methanone which showed mean growth percent of -28.71 in one-dose assay and GI₅₀ values between 0.0079 and 1.86 µM in 5-dose assay.
The protein kinase promiscuities in the cancer-preventive mechanisms of NSAIDs
Norvaisas, Povilas; Chan, Diana; Yokoi, Kenji; Dave, Bhuvanesh
2016-01-01
NSAIDs have been observed to have cancer-preventive properties, but the actual mechanism is elusive. We hypothesize that NSAIDs might have an effect through common pathways and targets of anticancer drugs by exploiting promiscuities of anticancer drug targets. Here, we have explored NSAIDs by their structural and pharmacophoric similarities with small anticancer molecules. In-silico analyses have shown a strong similarity between NSAIDs and protein kinase (PK) inhibitors. The calculated affinities of NSAIDs were found to be lower than the affinities of anticancer drugs, but higher than the affinities of compounds that are not specific to PKs. The competitive inhibition model suggests that PK might be inhibited by around 10%, which was confirmed by biochemical screening of some NSAIDs against PKs. NSAIDs did not affect all PKs universally, but had specificities for certain sets of PKs, which differed according to the NSAID. The study revealed potentially new features and mechanisms of NSAIDs that are useful in explaining their role in cancer prevention, which might lead to clinically significant breakthroughs in the future. PMID:25714784
Design and Synthesis of Curcumin-Like Diarylpentanoid Analogues as Potential Anticancer Agents.
Qudjani, Elahe; Iman, Maryam; Davood, Asghar; Ramandi, Mahdi F; Shafiee, Abbas
2016-01-01
Curcumin is a polyphenolic natural compound with multiple targets that used for the prophylaxis and treatment of some type of cancers like cervical and pancreatic cancers. Some recent patent for curcumin for cancer has also been reviewed. In this study, ten new curcumin derivatives were designed and synthesized and their cytostatic activity evaluated against the Hela and Panc cell lines that some of them showed more activity than curcumin. In the present study, a series of mono-carbonyl derivatives of curcumin were designed and prepared. The details of the synthesis and chemical characterization of the synthesized compounds are described. The cytostatic activities of the designed compounds are assessed in two different tumor cell lines using MTT test. In vitro screening for human cervix carcinoma cell lines (Hela) and pancreatic cell lines (Panc-1) at 24 and 48 hour showed that all the analogs possessed good activity against these tumor cell lines and compounds 5a, 5c and 6 with high potency can be used as a new lead compounds for the designing and finding new and potent cytostatic agents. Docking studies indicated that compound 5c readily binds the active site of human glyoxalase I protein via two strong hydrogen bonds engaging residues of Glu-99 and Lys-156. Our results are useful in guiding a design of optimized ligands with improved pharmacokinetic properties and increased of anti-cancer activity vs. the prototype curcumin compound.
The Natural cAMP Elevating Compound Forskolin in Cancer Therapy: Is It Time?
Sapio, Luigi; Gallo, Monica; Illiano, Michela; Chiosi, Emilio; Naviglio, Daniele; Spina, Annamaria; Naviglio, Silvio
2017-05-01
Cancer is a major public health problem and the second leading cause of mortality around the world. Although continuous advances in the science of oncology and cancer research are now leading to improved outcomes for many cancer patients, novel cancer treatment options are strongly demanded. Naturally occurring compounds from a variety of vegetables, fruits, and medicinal plants have been shown to exhibit various anticancer properties in a number of in vitro and in vivo studies and represent an attractive research area for the development of new therapeutic strategies to fight cancer. Forskolin is a diterpene produced by the roots of the Indian plant Coleus forskohlii. The natural compound forskolin has been used for centuries in traditional medicine and its safety has also been documented in conventional modern medicine. Forskolin directly activates the adenylate cyclase enzyme, that generates cAMP from ATP, thus, raising intracellular cAMP levels. Notably, cAMP signaling, through the PKA-dependent and/or -independent pathways, is very relevant to cancer and its targeting has shown a number of antitumor effects, including the induction of mesenchymal-to-epithelial transition, inhibition of cell growth and migration and enhancement of sensitivity to conventional antitumor drugs in cancer cells. Here, we describe some features of cAMP signaling that are relevant to cancer biology and address the state of the art concerning the natural cAMP elevating compound forskolin and its perspectives as an effective anticancer agent. J. Cell. Physiol. 232: 922-927, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... marine invertebrates for possible anti-cancer compounds. DATES: Comments must be received no later than 5... screen marine invertebrates for possible anti-cancer compounds. The research is part of a contract (No...
Zhang, Lei; Shi, Lei; Soars, Shafer; Kamps, Joshua; Yin, Hang Hubert
2018-06-05
Excessive NF-κB activation contributes to the pathogenesis of numerous diseases. Small-molecule inhibitors of NF-κB signaling have significant therapeutic potential especially in treating inflammatory diseases and cancers. In this study, we performed a cell-based high-throughput screening to discover novel agents capable of inhibiting NF-κB signaling. Based on two hit scaffolds from the screening, we synthesized 69 derivatives to optimize the potency for inhibition of NF-κB activation, leading to successful discovery of the most potent compound Z9j with over 170-fold enhancement of inhibitory activity. Preliminary mechanistic studies revealed that Z9j inhibited NF-κB signaling via suppression of Src/Syk, PI3K/Akt and IKK/IκB pathways. This novel compound also demonstrated anti-inflammatory and anti-cancer activities, warranting its further development as a potential multifunctional agent to treat inflammatory diseases and cancers.
Parida, Pravat Kumar; Sau, Abhijit; Ghosh, Tamashree; Jana, Kuladip; Biswas, Kaushik; Raha, Sanghamitra; Misra, Anup Kumar
2014-08-15
A series of glycosyl triazol linked 18β-glycyrrhetinic acid (GA) derivatives have been synthesized using 1,3-dipolar cycloaddition reaction of per-O-acetylated glycosyl azide derivatives (4a-h) with propargyl ester of 18β-glycyrrhetinic acid (GA) (2 and 3) following the concept of 'Click chemistry'. The synthesized triazole derivatives were de-O-acetylated to furnish compounds (7a-h and 8a-c) with free hydroxyl groups in the carbohydrate moieties, which were evaluated for their anticancer potential against human cervical cancer cells (HeLa) and normal kidney epithelial (NKE) cells. GA (1), compound 7d, compound 7g and compound 8c showed promising anticancer activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Umbaugh, Charles Samuel; Diaz-Quiñones, Adriana; Neto, Manoel Figueiredo; Shearer, Joseph J; Figueiredo, Marxa L
2018-01-19
Laminin receptor (67 LR) is a 67 kDa protein derived from a 37 kDa precursor (37 LR). 37/67 LR is a strong clinical correlate for progression, aggression, and chemotherapeutic relapse of several cancers including breast, prostate, and colon. The ability of 37/67 LR to promote cancer cell aggressiveness is further increased by its ability to transduce physiochemical and mechanosensing signals in endothelial cells and modulate angiogenesis. Recently, it was demonstrated that 37/67 LR modulates the anti-angiogenic potential of the secreted glycoprotein pigment epithelium-derived factor (PEDF). Restoration of PEDF balance is a desirable therapeutic outcome, and we sought to identify a small molecule that could recapitulate known signaling properties of PEDF but without the additional complications of peptide formulation or gene delivery safety validation. We used an in silico drug discovery approach to target the interaction interface between PEDF and 37 LR. Following cell based counter screening and binding validation, we characterized a hit compound's anti-viability, activation of PEDF signaling-related genes, anti-wound healing, and anti-cancer signaling properties. This hit compound has potential for future development as a lead compound for treating tumor growth and inhibiting angiogenesis.
Jose, Asha; Chaitanya, Motamari V. N. L.; Kannan, Elango; Madhunapantula, SubbaRao V.
2018-01-01
While anticancer properties of Simarouba glauca (SG, commonly known as Paradise tree) are well documented in ancient literature, the underlying mechanisms leading to cancer cell death begin to emerge very recently. The leaves of SG have been used as potential source of anticancer agents in traditional medicine. Recently attempts have been made to isolate anticancer agents from the leaves of SG using solvent extraction, which identified quassinoids as the molecules with tumoricidal activity. However, it is not known whether the anti-cancer potential of SG leaves is just because of quassinoids alone or any other phytochemicals also contribute for the potency of SG leaf extracts. Therefore, SG leaves were first extracted with hexane, chloroform, ethyl acetate, 70% ethanol, water and anti-cancer potential (for inhibiting colorectal cancer (CRC) cells HCT-116 and HCT-15 proliferation) determined using Sulforhodamine-B (SRB) assay. The chloroform fraction with maximal anticancer activity was further fractionated by activity-guided isolation procedure and structure of the most potent compound determined using spectral analysis. Analysis of the structural characterization data showed the presence of tricaproin (TCN). TCN inhibited CRC cells growth in a time- and dose dependent manner but not the normal cell line BEAS-2B. Mechanistically, TCN reduced oncogenic Class-I Histone deacetylases (HDACs) activity, followed by inducing apoptosis in cells. In conclusion, the anti-cancer potential of SG is in part due to the presence of TCN in the leaves. PMID:29593526
Mantu, Dorina; Antoci, Vasilichia; Moldoveanu, Costel; Zbancioc, Gheorghita; Mangalagiu, Ionel I
2016-01-01
The design, synthesis, structure, and in vitro anticancer and antimycobacterial activity of new hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives are described. The strategy adopted for synthesis is straight and efficient, involving a three-step setup procedure: N-acylation, N-alkylation, and quaternization of nitrogen heterocycle. The solubility in microbiological medium and anticancer and antimycobacterial activity of a selection of new synthesized compounds were evaluated. The hybrid derivatives have an excellent solubility in microbiological medium, which make them promising from the pharmacological properties point of view. One of the hybrid compounds, 9 (with a benzimidazole and 8-aminoquinoline skeleton), exhibits a very good and selective antitumor activity against Renal Cancer A498 and Breast Cancer MDA-MB-468. Moreover, the anticancer assay suggests that the hybrid Imz (Bimz)/2-AP (8-AQ) compounds present a specific affinity to Renal Cancer A498. Concerning the antimycobacterial activity, only the hybrid compound, 9, has a significant activity. SAR correlations have been performed.
Arun, Ashutosh; Patel, Om P S; Saini, Deepika; Yadav, Prem P; Konwar, Rituraj
2017-09-01
In recent years, many alkaloids of plant origin have attracted great attention due to their diverse range of biological properties including anti-hyperglycemic, anti-oxidant, anti-inflammatory, anti-diabetic and anti-tumor activity. Herein, the pyranocarbazole alkaloids were isolated from leaves of Murraya koenigii and their anti-cancer potential was investigated in different cancer cell lines. Among all tested compounds, murrayazoline and O-methylmurrayamine A demonstrated potent anti-cancer activity against DLD-1 colon cancer cells with the IC 50 values of 5.7μM and 17.9μM, respectively, without any non-specific cytotoxicity against non-cancer HEK-293 and HaCaT cells. Further, studies of pure compounds revealed that the anti-cancer activity of compounds corresponds with altered cellular morphology, cell cycle arrest in G2/M phase, reactive oxygen species level and mitochondrial membrane depolarization of colon cancer cells. In addition, these compounds activated caspase-3 protein and upregulated Bax/Bcl-2 protein expression ratio leading to induction of caspase-dependent apoptosis in DLD-1 cells. These event induced by carbazole alkaloids also coincides with downregulation of Akt/mTOR suggesting downstream targeting of cell survival pathway. Thus, our in vitro studies not only provided scientific basis of the use of M. koenigii leaves in the traditional Indian Ayurveda medicines, but also expands possibilities of medicinal uses of M. koenigii leaves against colon cancer. Particularly, these findings will help in further investigating murrayazoline and O-methylmurrayamine A or their improvised derivatives as new therapeutics for the treatment of colon cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Hafez, Hend N; El-Gazzar, Abdel-Rhman B A; Al-Hussain, Sami A
2016-05-15
A series of [4-amino-3-(4-chlorophenyl)-1H-pyrazol-5-yl](3,5-dimethyl-1H-pyrazol-1-yl)-methanone and 6-amino-3-(4-chlorophenyl)-5-methyl-1,6-dihydro-7H-pyrazolo[4,3-d]-pyrimidin-7-one have been synthesized from ethyl 4-amino-3-(4-chlorophenyl)-pyrazol-5-carboxylate. The newly synthesized compounds were characterized by IR, (1)H NMR, (13)CNMR, Mass spectra and Elemental analysis. The compounds were evaluated for their in vitro antimicrobial and anticancer activity. Among the synthesized compounds, compounds 7a,b and 15 exhibited higher anticancer activity than the doxorubicin as reference drug. Most of the newly synthesized compounds have good to excellent antimicrobial activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lovejoy, Katherine S; Lippard, Stephen J
2009-12-28
The five platinum anticancer compounds currently in clinical use conform to structure-activity relationships formulated (M. J. Cleare and J. D. Hoeschele, Bioinorg. Chem., 1973, 2, 187-210) shortly after the discovery that cis-diamminedichloroplatinum(II), cisplatin, has antitumor activity in mice. These compounds are neutral platinum(II) species with two am(m)ine ligands or one bidentate chelating diamine and two additional ligands that can be replaced by water through aquation reactions. The resulting cations ultimately form bifunctional adducts on DNA. Information about the chemistry of these platinum compounds and correlations of their structures with anticancer activity have provided guidance for the design of novel anticancer drug candidates based on the proposed mechanisms of action. This article discusses advances in the synthesis and evaluation of such non-traditional platinum compounds, including cationic and tumor-targeting constructs.
NASA Astrophysics Data System (ADS)
Asati, Vivek; Bharti, Sanjay Kumar
2018-02-01
A series of novel thiazolidine-2,4-dione derivatives 4a-x have been designed, synthesized and evaluated for potential anti-cancer activity. The anti-cancer activity of synthesized compounds 4a-x were evaluated against selected human cancer cell line of breast (MCF-7) using sulforhodamine B (SRB) method. Among the synthesized compounds, 4x having 2-cyano phenyl group showed significant cytotoxic activity which is comparable to that of adriamycin as standard anti-cancer drug. The SAR study revealed that the substituted phenyl group on oxadiazole ring attached to thiazolidine-2,4-dione moiety showed significant growth inhibitory activity against MCF-7 cell line. The result of molecular modeling studies showed that compounds 4f, 4o and 4x having similar structural alignment as crystal ligand of protein.
Penicillium spp.: prolific producer for harnessing cytotoxic secondary metabolites.
Koul, Mytre; Singh, Shashank
2017-01-01
Secondary metabolites from fungal endophytes have become an interesting, attractive, and alternative source for novel pharmaceuticals. Several novel compounds with diversified chemical structures have been isolated from endophytic fungi. The genus Penicillium has been exploited worldwide for its biosynthetic potential for producing highly versatile cytotoxic secondary metabolites. Many of the compounds isolated from various species of the genus Penicillium have shown promising in-vitro as well as in-vivo growth-inhibitory properties against different human cancers. Thus, in relation to this genus, Penicillium represents the most dependable source of cytotoxic compounds with potential applications as leads for anticancer drugs. This review outlines endophytic secondary metabolites from the genus Penicillium with a relevant role as cytotoxic agents.
Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S.
2015-01-01
Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine. PMID:26536350
NASA Astrophysics Data System (ADS)
Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.
Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.
Marine drugs: A hidden wealth and a new epoch for cancer management.
Shakeel, Eram; Arora, Deepika; Jamal, Qazi Mohammad Sajid; Akhtar, Salman; Khan, Mohd Kalim Ahmad; Kamal, Mohammad A; Siddiqui, Mohd Haris; Lohani, Mohtashim; Arif, Jamal M
2017-02-20
Malignant tumors are the leading cause of death in humans. Due to tedious efforts and investigation made in the field of marine drug discovery, there is now a scientific bridge between marine and pharmaceutical sciences. However, at present only few marine drugs have been paved towards anticancer management, yet many more to be established. Marine organisms are profuse manufacturer of structurally inimitable bioactive metabolites that have unusual mechanisms of action and diverse biosynthetic pathways. Some of the compounds derived from marine organisms have antioxidant property and anticancer activities, but they are largely unexplored. The present review is summarising various source of marine chemicals and their exploration of anticancerous potential. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Jeong, Hyungmin; Phan, Ai N. H.; Choi, Jong-Whan
2017-01-01
Background: Polyphenolic phytochemicals are natural compounds, easily found in fruits and vegetables. Importantly, polyphenols have been intensively studied as excellent antioxidant activity which contributes to anticancer function of the natural compounds. Lung cancer has been reported to mainly account for cancer-related deaths in the world. Moreover, epidermal growth factor receptor tyrosine kinase inhibitor (TKI) resistance is one of the biggest issues in cancer treatment, especially in nonsmall cell lung cancer (NSCLC). Even though several studies both in preclinical and clinical trials have showed promising therapeutic effects of polyphenolic compounds in anticancer therapy, the function of the natural compounds in TKI-resistant (TKIR) lung cancer remains poorly studied. Objective: The aim of this study is to screen polyphenolic compounds as potential anticancer adjuvants which suppress TKIR lung cancer. Materials and Methods: Colony formation and thiazolyl blue tetrazolium blue assay were performed in the pair-matched TKI-sensitive (TKIS) versus TKIR tumor cell lines to investigate the therapeutic effect of polyphenolic compounds in TKIR NSCLC. Results: Our data show that equol, kaempferol, resveratrol, and ellagic acid exhibit strong anticancer effect in HCC827 panel. Moreover, the inhibitory effect of most of tested polyphenolic compounds was highly selective for TKIR lung cancer cell line H1993 while sparing the TKIS one H2073. Conclusion: This study provides an important screening of potential polyphenolic compounds for drug development to overcome TKI resistance in advanced lung cancer. SUMMARY The study provides an important screening of potential polyphenolic compounds for drug development to overcome tyrosine kinase inhibitor (TKI) resistance in advance lung cancerEquol, kaempferol, resveratrol, and ellagic acid show strong anticancer effect in HCC827 panel, including TKI-sensitive (TKIS) and TKI-resistant clonesThe inhibitory effect of polyphenolic compounds such as equol, kaempferol, resveratrol, ellagic acid, gallic acid, p-Coumaric, and hesperidin is highly selective for TKI-resistant lung cancer cell line H1993 while sparing the TKIS one H2073. Abbreviations used: EGFR: Epidermal growth factor receptor, EMT: Epithelial-to-mesenchymal transition, GTP: Green tea polyphenols, IGF1R: Insulin-like growth factor 1 receptor, MET: Met proto-oncogene, MTT: Thiazolyl blue tetrazolium blue, NSCLC: Non-small cell lung cancer, ROS: Reactive oxygen species, RTK: Receptor tyrosine kinase, STAT3: Signal transducer and activator of transcription 3, TKIR: TKI-resistant, TKIs: Tyrosine kinase inhibitors, TKIS: TKI-sensitive. PMID:29200719
Development of Personalized Cancer Therapy for Men with Advanced Prostate Cancer
2015-10-01
BGJ398; Novartis Pharmaceuticals ), is the lead compound being tested as anticancer therapy by Novartis. In addition, in an agreement with Janssen... Pharmaceutical Companies of Johnson & Johnson we obtained a pan-FGFR inhibitor from (JNJS 42756493) to test in a preclinical setting. For this...10ml/kg x BID) according to Janssen Pharmaceutical instructions. Treatment started 10 days after cell injection. After 3 weeks of treatment, we
Design and synthesis of aminocoumarin derivatives as DPP-IV inhibitors and anticancer agents.
Soni, Rina; Soman, Shubhangi S
2018-09-01
DPP-IV "a moonlighting protein" has immerged as promising pathway to control Type 2 diabetes as well as found to play key role in earlier stages of cancer. Here we have reported design, synthesis and applications of aminocoumarin derivatives as DPP-IV inhibitors. Compounds have been synthesized and studied for their DPP-IV inhibition activity. Three compounds have shown moderate inhibition at 100 µM concentration. All compounds were also screened for their anticancer activity against A549 (Lung cancer cell line), MCF-7 (Breast cancer cell line) using MTT assay. One of the compounds has shown very good anticancer activity with IC 50 value 24 ± 0.1 nM against A549 cell line. Copyright © 2018 Elsevier Inc. All rights reserved.
Anticancer effects of different seaweeds on human colon and breast cancers.
Moussavou, Ghislain; Kwak, Dong Hoon; Obiang-Obonou, Brice Wilfried; Maranguy, Cyr Abel Ogandaga; Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Dae Hoon; Pissibanganga, Ordelia Gwenaelle Manvoudou; Ko, Kisung; Seo, Jae In; Choo, Young Kug
2014-09-24
Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.
Sirisha, Kalam; Achaiah, Garlapati; Reddy, Vanga Malla
2010-06-01
A series of twenty new 4-substituted-2,6-dimethyl-3,5-bis-N-(heteroaryl)-carbamoyl-1,4-dihydropyridines have been prepared from a three-component one-pot condensation reaction of N-heteroaryl acetoacetamide, an aromatic/heteroaromatic aldehyde, and ammonium acetate under four different experimental conditions. Except for the conventional method, all the experimental conditions were simple, eco-friendly, economical, and the reactions were rapid and high-yielding. The methods employed have been compared in terms of yields, cost, and simplicity. The synthesized compounds were characterized by different spectroscopic techniques and evaluated for their in-vitro anticancer, antibacterial, and antitubercular activities. Amongst the compounds tested, compound 25 exhibited the highest anticancer activity while compounds 14 and 18 exhibited significant antibacterial and antitubercular activities.
Al-Dosari, Mohammed Salem; Ghorab, Mostafa Mohamed; Al-Said, Mansour Sulaiman; Nissan, Yassin Mohammed
2013-01-01
Based on the reported anticancer activity of quinolines, a new series of 7-chloroquinoline derivatives bearing the biologically active benzenesulfonamide moiety 2-17 and 19-25 were synthesized starting with 4,7-dichloroquinolne 1. Compound 17 was the most active compound with IC(50) value 64.41, 75.05 and 30.71 µM compared with Doxorubicin as reference drug with IC(50) values 82.53, 88.32 and 73.72 µM on breast cancer cells, skin cancer cells and neuroblastoma, respectively. All the synthesized compounds were evaluated for their in vitro anticancer activity on breast cancer cells, skin cancer cells and neuroblastoma cells. Most of the synthesized compounds showed moderate activity. In order to suggest the mechanism of action for their cytotoxic activity, molecular docking for all synthesized compounds was done on the active site of phosphoinositide kinase (PI3K) and good results were obtained.
Synthesis and cytotoxic evaluation of novel symmetrical taspine derivatives as anticancer agents.
Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Sicen; He, Langchon
2011-07-01
It has been demonstrated that taspine derivatives act as anticancer agents, thus we designed and synthesized a novel class of symmetrical biphenyl derivatives. We evaluated the cytotoxicity and antitumor activity of biphenyls against five human tumor and normal cell lines. The results indicated that the majority of the compounds exhibited anticancer activity equivalent to or greater than the positive control. Compounds (11) and (12) demonstrated the most potent cytotoxic activity with IC₅₀ values between 19.41 µM and 29.27 µM. The potent antiproliferative capabilities of these compounds against ECV304 human transformed endothelial cells indicated that these biphenyls could potentially serve as antiangiogenic agents. We also reviewed the relationship between structure and activity based on the experimental results. Our findings provide a good starting point for further development of symmetrical biphenyl derivatives as potential novel anticancer agents.
Exploring Marine Cyanobacteria for Lead Compounds of Pharmaceutical Importance
Uzair, Bushra; Tabassum, Sobia; Rasheed, Madiha; Rehman, Saima Firdous
2012-01-01
The Ocean, which is called the “mother of origin of life,” is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria. PMID:22545008
Sittaramane, Vinoth; Padgett, Jihan; Salter, Philip; Williams, Ashley; Luke, Shauntelle; McCall, Rebecca; Arambula, Jonathan F; Graves, Vincent B; Blocker, Mark; Van Leuven, David; Bowe, Keturah; Heimberger, Julia; Cade, Hannah C; Immaneni, Supriya; Shaikh, Abid
2015-11-01
In this study the rational design, synthesis, and anticancer activity of quinoline-derived trifluoromethyl alcohols were evaluated. Members of this novel class of trifluoromethyl alcohols were identified as potent growth inhibitors in a zebrafish embryo model. Synthesis of these compounds was carried out with an sp(3) -C-H functionalization strategy of methyl quinolines with trifluoromethyl ketones. A zebrafish embryo model was also used to explore the toxicity of ethyl 4,4,4-trifluoro-3-hydroxy-3-(quinolin-2-ylmethyl)butanoate (1), 2-benzyl-1,1,1-trifluoro-3-(quinolin-2-yl)propan-2-ol (2), and trifluoro-3-(isoquinolin-1-yl)-2-(thiophen-2-yl)propan-2-ol (3). Compounds 2 and 3 were found to be more toxic than compound 1; apoptotic staining assays indicated that compound 3 causes increased cell death. In vitro cell proliferation assays showed that compound 2, with an LC50 value of 14.14 μm, has more potent anticancer activity than cisplatin. This novel class of inhibitors provides a new direction in the discovery of effective anticancer agents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formagio, Anelise S Nazari; Tonin, Lilian T Düsman; Foglio, Mary Ann; Madjarof, Christiana; de Carvalho, João Ernesto; da Costa, Willian Ferreira; Cardoso, Flávia P; Sarragiotto, Maria Helena
2008-11-15
Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.
Effects of Animal Venoms and Toxins on Hallmarks of Cancer
Chaisakul, Janeyuth; Hodgson, Wayne C.; Kuruppu, Sanjaya; Prasongsook, Naiyarat
2016-01-01
Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components. PMID:27471574
Mandalapu, Dhanaraju; Saini, Karan S; Gupta, Sonal; Sharma, Vikas; Yaseen Malik, Mohd; Chaturvedi, Swati; Bala, Veenu; Hamidullah; Thakur, Subhadra; Maikhuri, Jagdamba P; Wahajuddin, Muhammad; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu Lal
2016-09-01
The anti-cancer property of curcumin, an active component of turmeric, is limited due to its poor solubility, stability and bioavailability. To enhance its efficacy, we designed a novel series of twenty-four monocarbonyl curcumin analogue-1,2,3-triazole conjugates and evaluated their anti-cancer activity towards endocrine related cancers. The new compounds (17-40) were synthesized through CuAAC click reaction and SAR analysis carried out. Out of these all, compound 17 showed most significant anti-cancer activity against prostate cancer cells with IC50 values of 8.8μM and 9.5μM in PC-3 and DU-145 cells, respectively. Another compound 26 showed significant anti-cancer activity against breast cancer cells with IC50 of 6μM, 10μM and 6.4μM in MCF-7, MDA-MB-231 and 4T1 cells, respectively while maintaining low toxicity towards non-cancer originated cell line, HEK-293. Compounds 17 and 26 arrested cell cycle and induced mitochondria-mediated apoptosis in cancer cells. Further, both of these compounds significantly down-regulated cell proliferation marker (PCNA), inhibited activation of cell survival protein (Akt phosphorylation), upregulated pro-apoptotic protein (Bax) and down-regulated anti-apoptotic protein (Bcl-2) in their respective cell lines. In addition, in vitro stability, solubility and plasma binding studies of the compounds 17 and 26 showed them to be metabolically stable. Thus, this study identified two new curcumin monocarbonyl-1,2,3-triazole conjugate compounds with more potent activity than curcumin against breast and prostate cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Afzal, Obaid; Akhtar, Md Sayeed; Kumar, Suresh; Ali, Md Rahmat; Jaggi, Manu; Bawa, Sandhya
2016-10-04
A total of thirty five new N-[4-(1,3-benzothiazol-2-yl)phenyl]acetamide derivatives were synthesized and structures of all the compounds were confirmed on the basis of elemental analysis and collective use of IR, (1)H NMR, (13)C NMR and mass spectral data. Compounds were tested for their ability to inhibit human monoacylglycerol lipase (hMAGL) enzyme. Eight compounds 4, 19-21, 24-26, and 34 reduced the hMAGL activity less than 50% at 100 nM concentrations. The halogen substituted aniline derivatives 20, 21 and 24-26 were found to be most active among all the synthesized compounds having IC50 value in the range of 6.5-9 nM. Twenty five compounds were selected by NCI, USA for one dose anticancer screening. Compound 21 (NSC: 780167) and 24 (NSC: 780168) fulfilled prearranged doorstep growth inhibition criteria and further selected for NCI full panel five dose assay at 10-fold dilutions of five different concentrations (0.01, 0.1, 1, 10 and 100 μM). Both the compounds 21 and 24 were found to be most active against MCF7 and MDA-MB-468 breast cancer cell lines. The GI50 value of 32.5 nM (MCF7) and 23.8 nM (MDA-MB-468) was observed for compound 21. Compound 24 showed GI50 values of 37.1 nM against MCF7 breast cancer cell line and 25.1 nM against MDA-MB-468 breast cancer cell line. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors.
Liu, Tong-Chao; Peng, Xia; Ma, Yu-Chi; Ji, Yin-Chun; Chen, Dan-Qi; Zheng, Ming-Yue; Zhao, Dong-Mei; Cheng, Mao-Sheng; Geng, Mei-Yu; Shen, Jing-Kang; Ai, Jing; Xiong, Bing
2016-05-01
Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.
Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?
Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert
2015-01-01
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846
Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?
Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert
2015-06-19
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.
A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging
Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro
2015-01-01
Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357
Anticancer Activity of Bacterial Proteins and Peptides.
Karpiński, Tomasz M; Adamczak, Artur
2018-04-30
Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.
Abdelhaleem, Eman F; Abdelhameid, Mohammed K; Kassab, Asmaa E; Kandeel, Manal M
2018-01-01
A series of novel tetrahydrobenzothieno[2,3-d]pyrimidine urea derivatives was synthesized according to fragment-based design strategy. They were evaluated for their anticancer activity against MCF-7 cell line. Three compounds 9c, 9d and 11b showed 1.5-1.03 folds more potent anticancer activity than doxorubicin. In this study, a promising multi-sited enzyme small molecule inhibitor 9c, which showed the most potent anti-proliferative activity, was identified. The anti-proliferative activity of this compound appears to correlate well with its ability to inhibit topoisomerase II (IC 50 = 9.29 μM). Moreover, compound 9c showed excellent VEGFR-2 inhibitory activity, at the sub-micromolar level with IC 50 value 0.2 μM, which is 2.1 folds more potent than sorafenib. Moreover, activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining, indicating that cell death proceeds through an apoptotic mechanism. Compound 9c showed potent pro-apoptotic effect through induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was confirmed by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio and a significant increase in the level of active caspase-3. Quantitative structure-activity relationship (QSAR) studies delivered equations of five 3D descriptors with R 2 = 0.814. This QSAR model provides an effective technique for understanding the observed antitumor properties and thus could be adopted for developing effective lead structures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
El-Faham, Ayman; Farooq, Muhammad; Khattab, Sherine N; Abutaha, Nael; Wadaan, Mohammad A; Ghabbour, Hazem A; Fun, Hoong-Kun
2015-08-13
Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.
[Quod medicina aliis, aliis est acre venenum**--venoms as a source of anticancer agents].
Kucińska, Małgorzata; Ruciński, Piotr; Murias, Marek
2013-01-01
Natural product derived from plants and animals were used in folk medicine for centuries. The venoms produced by animals for hunting of self-defence are rich in bioactive compounds with broad spectrum of biological activity. The papers presents the most promising compounds isolated from venoms of snakes, scorpions and toads. For these compounds both: mechanism of anticancer activity as well as possibilities of clinical use are presented.
Riaz, Muhammad; Bilal, Aishah; Ali, Muhammad Shaiq; Fatima, Itrat; Faisal, Amir; Sherkheli, Muhammad Azhar; Asghar, Adnan
2017-03-01
Parasitic Cuscuta reflexa Roxb. possesses many medicinal properties and is a rich source of a variety of biologically relevant natural products. Natural products are the prime source of leads, drugs, and drug templates, and many of the anticancer and antiviral drugs are either based on natural product or derived from them. Cancer is a devastating disease and one of the leading causes of death worldwide despite improvements in patient survival during the past 50 years; new and improved treatments for cancer are therefore actively sought. Colorectal cancer is the fourth most prevalent cancer worldwide and is responsible for nearly 9% of all cancer deaths. Our search for anticancer natural products from C. reflexa has yielded four natural products: Scoparone (1), p-coumaric acid (2), stigmasta-3,5-diene (3) and 1-O-p-hydroxycinnamoylglucose (4) and among them 1-O-p-hydroxycinnamoyldlucose (4) showed promising antiproliferative activities in HCT116 colorectal cell lines, whereas compounds 1-3 showed moderate activities.
Al Matarneh, Cristina M; Mangalagiu, Ionel I; Shova, Sergiu; Danac, Ramona
2016-01-01
A study concerning design, synthesis, structure and in vitro antimycobacterial and anticancer evaluation of new fused derivatives with pyrrolo[2,1-c][4,7]phenanthroline skeleton is described. The strategy adopted for synthesis involves a [3 + 2] dipolar cycloaddition of several in situ generated 4,7-phenanthrolin-4-ium ylides to different substituted alkynes and alkenes. Stereo- and regiochemistry of cycloaddition reactions were discussed. The structure of the new compounds was proven unambiguously, single-crystal X-ray diffraction studies including. The antimycobacterial and anticancer activity of a selection of new synthesized compounds was evaluated against Mycobacterium tuberculosis H37Rv under aerobic conditions and 60 human tumour cell line panel, respectively. Five of the tested compounds possess a moderate antimycobacterial activity, while two of the compounds have a significant antitumor activity against renal cancer and breast cancer.
Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives.
Li, Yang; Feng, Ling; Song, Zhi-Fang; Li, Hai-Bei; Huai, Qi-Yong
2016-02-06
A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent.
Synthesis and Cytotoxic Activities of Difluoro-Dimethoxy Chalcones.
Yamali, Cem; Gul, Halise Inci; Ozgun, Dilan Ozmen; Sakagam, Hiroshi; Umemura, Naoki; Kazaz, Cavit; Gul, Mustafa
2017-01-01
Although anticancer chemotherapeutics are available in markets, side effects related to the drugs in clinical use lead to researchers to investigate new drug candidates which are more safe, potent and selective than others. Chalcones are popular with their anticancer activities with the several reported mechanisms including inhibition of angiogenesis, inhibition of tubulin polymerization, and induction of apoptosis etc. This study was focused on to synthesize of 1-(2,4/2,6-difluorophenyl)-3-(2,3/2,4/2,5/3,4- dimethoxyphenyl)-2-propen-1-ones (1-8) and investigate their cytotoxic properties with possible mechanism of action. The compounds were synthesized by Claisen-Schmidt condensation. The chemical structures were confirmed by 1H NMR, 13C NMR, DEPT, COSY, HMQC, HMBC, 19F NMR and HRMS. In vitro cytotoxic effects of the compounds against human tumour cell lines [gingival carcinoma (Ca9-22), oral squamous cell carcinoma (HSC-2)] and human normal oral cells [gingival fibroblasts (HGF), periodontal ligament fibroblasts (HPLF)] were evaluated via MTT test. All compounds had higher cytotoxicity than reference compound 5-Fluorouracil (5-FU). The compounds 3-7 had higher potency selectivity expression values (PSE) than 5-FU and PSE values of the compounds were over 100. All chalcone derivatives seem good candidates for further studies according to very remarkable and high PSE values. It was clearly demonstrated that compound 7 can induce early apoptosis at a concentration of 10 µM and dose-dependent late apoptosis starting at 10 µM. Compound 7 induced cleavage of the apoptosis marker PARP. The results indicate that new chalcones reported here can promote apoptosis in human tumour cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
El-Elimat, Tamam; Figueroa, Mario; Raja, Huzefa A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Day, Cynthia S; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H
2013-03-22
Three bioactive compounds were isolated from an organic extract of an ascomycete fungus of the order Chaetothyriales (MSX 47445) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, two were benzoquinones [betulinan A (1) and betulinan C (3)], and the third was a terphenyl compound, BTH-II0204-207:A (2). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the structure of the new compound (3) was confirmed via single-crystal X-ray diffraction. Compounds 1-3 were evaluated for cytotoxicity against a human cancer cell panel, for antimicrobial activity against Staphylococcus aureus and Candida albicans, and for phosphodiesterase (PDE4B2) inhibitory activities. The putative binding mode of 1-3 with PDE4B2 was examined using a validated docking protocol, and the binding and enzyme inhibitory activities were correlated.
New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors.
Gul, Halise Inci; Yamali, Cem; Sakagami, Hiroshi; Angeli, Andrea; Leitans, Janis; Kazaks, Andris; Tars, Kaspars; Ozgun, Dilan Ozmen; Supuran, Claudiu T
2018-04-01
In this study, new 4-[3-(aryl)-5-substitutedphenyl-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamides (19-36) were synthesized and evaluated their cytotoxic/anticancer and CA inhibitory effects. According to results obtained, the compounds 34 (4-[5-(2,3,4-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl] benzensulfonamide, Potency-Selectivity Expression (PSE) = 141) and 36 (4-[5-(3,4,5-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamide, PSE = 54.5) were found the leader anticancer compounds with the highest PSE values. In CA inhibitory studies, the compounds 36 and 24 (4-[5-(3,4,5-trimethoxyphenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamide) were found the leader CA inhibitors depending on selectivity ratios. The compound 36 was a selective inhibitor of hCA XII isoenzyme (hCA I/hCA XII = 1250 and hCA II/hCA XII = 224) while the compound 24 was a selective inhibitor of hCA IX isoenzyme (hCA I/hCA IX = 161 and hCA II/hCA IX = 177). The compounds 24, 34, and 36 can be considered to develop new anticancer drug candidates. Copyright © 2018 Elsevier Inc. All rights reserved.
Weng, Qiaoyou; Fu, Lili; Chen, Gaozhi; Hui, Junguo; Song, Jingjing; Feng, Jianpeng; Shi, Dengjian; Cai, Yuepiao; Ji, Jiansong; Liang, Guang
2015-10-20
Curcumin is a nontoxic phenolic compound that modulates the activity of several cellular targets that have been linked with cancers and other chronic diseases. However, the efficacy of curcumin in the clinic has been limited by its poor bioavailability and rapid metabolism in vivo. We have previously reported the design and discovery of series of 5-carbon linker-containing mono-carbonyl analogues of curcumin (MACs) as anti-cancer agents. In continuation of our ongoing research, we designed and synthesized 37 novel long-chain alkoxylated MACs for anti-cancer evaluation here. The MTS assay was used to determine the cytotoxicity of compounds in gastrointestinal cancer cells. Compounds 5, 28, and 29 showed strongest inhibition against gastric cancer cell proliferation and were subjected to further analysis. The effects of 5, 28, and 29 on cell apoptosis were measured by flow cytometry. Expression levels of Bcl-2, cleaved poly ADP-ribose polymerase (PARP), and pro-caspase-3 were detected by western blotting. Compounds 5, 28, and 29 induced apoptosis in human gastric carcinoma cells, increased PARP cleavage, and decreased expression of Bcl-2 and pro-caspase-3 protein. We then showed that compound 28, which possessed the strongest activity among the test compounds in vitro, exhibited significant tumor inhibition in SGC7901-driven xenograft mouse model. Taken together, the novel compound 28 could be further explored as an effective anticancer agent for the treatment of human gastric cancer. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs
2013-01-01
A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP–NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy. PMID:23663277
NASA Astrophysics Data System (ADS)
Artanti, A. N.; Astirin, O. P.; Prayito, A.; Fisma, R.; Prihapsara, F.
2018-03-01
Nasopharynx cancer is one of the most deadly cancer. The main priority of nasopharynx cancer treatment is the use of chemotherapeutic agents, especially doxorubicin. However, doxorubicin might also lead to diverse side effect. An approach recently develop to overcome side effect of doxorubicin is to used of combined chemotherapeutic agent. One of the compounds found effication as an anticancer agent on nasopharynx cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on raji cell line. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). Data analysis showed that combination of polyketide derivative from Annona muricata L. (14,4 µg/ml) and doxorubicin with all of concentration performed synergistic effect on raji cell line with CI value from 0.13 – 0.65.
Pan, Honghui; Han, Yuanyuan; Huang, Jiguo; Yu, Xiongtao; Jiao, Chunwei; Yang, Xiaobing; Dhaliwal, Preet; Xie, Yizhen; Yang, Burton B
2015-07-10
Medicinal mushrooms in recent years have been the subject of many experiments searching for anticancer properties. We previously screened thirteen mushrooms for their potential in inhibiting tumor growth, and found that the water extract of Amauroderma rude exerted the highest activity. Previous studies have shown that the polysaccharides contained in the water extract were responsible for the anticancer properties. This study was designed to explore the potential effects of the polysaccharides on immune regulation and tumor growth. Using the crude Amauroderma rude extract, in vitro experiments showed that the capacities of spleen lymphocytes, macrophages, and natural killer cells were all increased. In vivo experiments showed that the extract increased macrophage metabolism, lymphocyte proliferation, and antibody production. In addition, the partially purified product stimulated the secretion of cytokines in vitro, and in vivo. Overall, the extract decreased tumor growth rates. Lastly, the active compound was purified and identified as polysaccharide F212. Most importantly, the purified polysaccharide had the highest activity in increasing lymphocyte proliferation. In summary, this molecule may serve as a lead compound for drug development.
Dandawate, Prasad R; Vyas, Alok; Ahmad, Aamir; Banerjee, Sanjeev; Deshpande, Jyoti; Swamy, K Venkateswara; Jamadar, Abeda; Dumhe-Klaire, Anne Catherine; Padhye, Subhash; Sarkar, Fazlul H
2012-07-01
Several formulations have been proposed to improve the systemic delivery of novel cancer therapeutic compounds, including cyclodextrin derivatives. We aimed to synthesize and characterize of CDF-β-cyclodextrin inclusion complex (1:2) (CDFCD). The compound was characterized by Fourier transform infrared, differential scanning calorimetry, powder X-ray diffraction studies, H1 & C13 NMR studies and scanning electron microscopic analysis. Its activity was tested against multiple cancer cell lines, and in vivo bioavailability was checked. CDF-β-cyclodextrin was found to lower IC(50) value by half when tested against multiple cancer cell lines. It preferentially accumulated in the pancreas, where levels of CDF-β-cyclodextrin in mice were 10 times higher than in serum, following intravenous administration of an aqueous CDF-β-cyclodextrin preparation. Novel curcumin analog CDF preferentially accumulates in the pancreas, leading to its potent anticancer activity against pancreatic cancer cells. Synthesis of such CDF-β-cyclodextrin self-assembly is an effective strategy to enhance its bioavailability and tissue distribution, warranting further evaluation for CDF delivery in clinical settings for treatment of human malignancies.
Himakoun, Lakana; Tuchinda, Patoomratana; Puchadapirom, Pranom; Tammasakchai, Ratigon; Leardkamolkarn, Vijittra
2011-01-01
Cleistanthin A (CleinA) and cleistanthoside A (CleisA) isolated from plant Phyllanthus taxodiifolius Beille have previously shown potent anticancer effects. To promote their medicinal benefits, CleisA was modified to cleistanthoside A tetraacetate (CleisTA) and evaluated for genotoxic and anti-mutagenic properties in comparison with CleinA. Both compounds showed no significant mutagenic activity to S. typhimulium bacteria and no cytotoxic effect to normal mammalian cells. The non genotoxic effect of CleinA was further confirmed by un-alteration of cytokinesis-block proliferation index (CBPI) and micronucleus (MN) frequency assays in Chinese hamster lung fibroblast (V79) cells, and of CleisTA was confirmed by un-changes of human peripheral blood lymphocytes (HPBL) chromosomal structure assay. Moreover, the metabolic form of CleinA efficiently demonstrated cytostasis effect to V79 cell and prevented mutagen induced Salmonella TA98 and TA100 reversion, whereas both metabolic and non-metabolic forms of CleisTA reduced HPBL mitotic index (%M.I) in a concentration-dependent relationship. The results support CleinA and CleisTA as the new lead compounds for anti-cancer drug development.
Mahernia, Shabnam; Hassanzadeh, Malihe; Sharifi, Niusha; Mehravi, Bita; Paytam, Fariba; Adib, Mehdi; Amanlou, Massoud
2018-02-01
Cancer cells are described with features of uncontrolled growth, invasion and metastasis. The epidermal growth factor receptor subfamily of tyrosine kinases (EGFR-TK) plays a crucial regulatory role in the control of cellular proliferation and progression of various cancers. Therefore, its inhibition might lead to the discovery of a new generation of anticancer drugs. In the present study, structure-based pharmacophore modeling, molecular docking and molecular dynamics simulations were applied to identify potential hits, which exhibited good inhibition on the proliferation of MCF-7 breast cancer cell line and favorable binding interactions on EGFR-TK. Selected compounds were examined for their anticancer activity against the Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line which overexpresses EGFR using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay. Compounds 1 and 2, with an isoindoline-1-one core, induced significant inhibition of breast cancer cells proliferation with IC[Formula: see text] values 327 and 370 nM, respectively.
Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium.
Nair, P K Raveedran; Melnick, Steven J; Wnuk, Stanislaw F; Rapp, Magdalena; Escalon, Enrique; Ramachandran, Cheppail
2009-04-21
The fruits and seeds of Semecarpus anacardium are used widely for the treatment of human cancers and other diseases in the Ayurvedic and Sidda systems of medicine in India. The principal aim of this investigation was to isolate and characterize the anticancer compound from the kernel of Semecarpus anacardium nut. The bioactivity-tailored isolation and detailed chemical characterization were used to identify the active compound. Cytotoxicity, apoptosis, cell cycle arrest as well as synergism between the identified anticancer compound and doxorubicin in human tumor cell lines were analyzed. GC/MS, IR, proton NMR, carbon NMR and collisionally induced dissociation (CID) spectra analysis showed that the isolated active compound is 3-(8'(Z),11'(Z)-pentadecadienyl) catechol (SA-3C). SA-3C is cytotoxic to tumor cell lines with IC(50) values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. SA-3C induced apoptosis in human leukemia cell lines in a dose-dependent manner and showed synergistic cytotoxicity with doxorubicin. The cell cycle arrest induced by SA-3C at S- and G(2)/M-phases correlated with inhibition of checkpoint kinases. SA-3C isolated from the kernel of Semecarpus anacardium can be developed as an important anticancer agent for single agent and/or multiagent cancer therapy.
Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus.
Ahsan, Mohamed Jawed; Ahsan, Mohamed Jawed
2016-01-01
We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration 10 μM) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and 100 μM) and three dose related parameters GI50, TGI and LC50 were calculated for each (3a-g) in micro molar drug concentrations (μM). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a GI50 of 0.03 μM. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with GI50 values between 0.23 and 2.67 μM.
Satpathy, Raghunath; Guru, R K; Behera, R; Nayak, B
2015-01-01
Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound.
Wang, Beilei; Wang, Zhigang; Ai, Fujin; Tang, Wai Kin; Zhu, Guangyu
2015-01-01
Cationic monofunctional platinum(II)-based anticancer agents with a general formula of cis-[Pt(NH3)2(N-donor)Cl](+) have recently drawn significant attention due to their unique mode of action, distinctive anticancer spectrum, and promising antitumor activity both in vitro and in vivo. Understanding the mechanism of action of novel monofunctional platinum compounds through rational drug design will aid in the further development of active agents. In this study, we synthesized and evaluated a monofunctional platinum-based anticancer agent SA-Pt containing a bulky salicylanilide moiety. The antiproliferative activity of SA-Pt was close to that of cisplatin. Mechanism studies revealed that SA-Pt entered HeLa cells more efficiently than cisplatin, blocked the cell cycle at the S-phase, and induced apoptosis. The compound bound to DNA as effectively as cisplatin, but did not block RNA polymerase II-mediated transcription as strongly as cisplatin, indicating that once the compound formed Pt-DNA lesions, the salicylanilide group was more easily recognized and removed. This study not only enriches the family of monofunctional platinum-based anticancer agents but also guides the design of more potent monofunctional platinum complexes. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Haijun; Yang, Zhengduo; Ding, Chunyong; Chu, Lili; Zhang, Yusong; Terry, Kristin; Liu, Huiling; Shen, Qiang; Zhou, Jia
2013-01-01
Fragment-based drug design (FBDD) is a promising approach for the generation of lead molecules with enhanced activity and especially drug-like properties against therapeutic targets. Herein, we report the fragment-based drug design, systematic chemical synthesis and pharmacological evaluation of novel scaffolds as potent anticancer agents by utilizing six privileged fragments from known STAT3 inhibitors. Several new molecules such as compounds 5, 12, and 19 that may act as advanced chemical leads have been identified. The most potent compound 5 (HJC0123) has demonstrated to inhibit STAT3 promoter activity, downregulate phosphorylation of STAT3, increase the expression of cleaved caspase-3, inhibit cell cycle progression and promote apoptosis in breast and pancreatic cancer cells with low micromolar to nanomolar IC50 values. Furthermore, compound 5 significantly suppressed estrogen receptor (ER)-negative breast cancer MDA-MB-231 xenograft tumor growth in vivo (p.o.), indicating its great potential as an efficacious and orally bioavailable drug candidate for human cancer therapy. PMID:23416191
Bhoj, Priyanka S; Ingle, Rahul G; Goswami, Kalyan; Jena, Lingaraj; Wadher, Shailesh
2018-05-01
Human lymphatic filariasis although not fatal but poses serious socioeconomic burden due to associated disability. This is reflected by the huge magnitude of the estimated disability-adjusted life years of about 5.09 million. Therefore, following WHO mandate, our earlier studies on antifilarial drug development revealed the significance of apoptosis. Apoptotic impact has been implicated in anticancer rationale of several drugs. In this study, we explored the antifilarial potential of sulphonamido-quinoxaline compounds, shown to be specific inhibitor for c-Met kinase in human cancer cells. Out of studied compounds, Q4, showing favorable drug-likeness and medicinal chemistry properties on bioinformatics platform along with subsequently recorded lowest IC 100 value, was considered as a suitable antifilarial candidate. Significant apoptosis due to mitochondrial involvement was recorded in drug-treated parasite unlike untreated control. In spite of homology between human c-Met kinase and Brugia malayi counterpart, comparative docking result of this compound showed more favorable binding parameters with the parasitic target. The wide gap between IC 100 and LD 50 values further confirmed the therapeutic safety. We propose sulphonamido-quinoxaline derivative as a lead candidate for antifilarial drug development. Further study is warranted to authenticate parasitic c-Met kinase as a novel therapeutic target reminiscent of anticancer rationale implicating inhibition of proliferation.
NASA Astrophysics Data System (ADS)
Singh, Ashok K.; Saxena, Gunjan; Dixit, Shivani; Hamidullah; Singh, Sachin K.; Singh, Sudheer K.; Arshad, M.; Konwar, Rituraj
2016-05-01
Four new Ru(II) DMSO complexes with substituted chalcone ligands viz. (E)-1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (HL1), (E)-1-(2-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HL2), (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (HL3) and (E)-1-(2-hydroxyphenyl)-3-(4-Chlorophenyl)prop-2-en-1-one (HL4) have been synthesized, and characterized by micro-analyses, IR, 1H NMR, UV-Vis and ESI-MS and screened for anti-cancer activity against breast cancer cell lines (MCF-7 and MDA MB-231). Compounds HL4 and [Ru(HL1) (O-DMSO)3(S-DMSO)]Cl (M1R) showed significant anti-breast cancer activity as evident from cytotoxicity, morphological and nuclear changes, DNA fragmentation and cell cycle arrest in breast cancer cells. UV-Vis and CD-spectra analysis showed HL4 and M1R interfered with DNA absorption spectra possibly due to DNA binding whereas these compounds were devoid of DNA topoisomerase inhibiting activity. Thus, these Ru(II) compounds have been established as new leads for future optimization by improving anti-cancer potency and safety.
NASA Astrophysics Data System (ADS)
Esakkirajan, M.; Prabhu, N. M.; Manikandan, R.; Beulaja, M.; Prabhu, D.; Govindaraju, K.; Thiagarajan, R.; Arulvasu, C.; Dhanasekaran, G.; Dinesh, D.; Babu, G.
2014-06-01
A compound was isolated from Cassia auriculata leaves and characterized by high-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LC-MS), UV-vis spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). The in vitro anticancer effect of the compound isolated from C. auriculata was evaluated in human colon cancer cells HCT 15 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cytotoxicity, nuclear morphology analysis and measurement of lactate dehydrogenase. The isolated compound 4-(2,5 dichlorobenzyl)-2,3,4,5,6,7 hexahydro7(4 methoxyphenyl)benzo[h][1,4,7] triazecin8(1H)-one showed 50% inhibition of HCT 15 cells when tested at 20 μg/ml after 24 h incubation. Cytotoxicity, nuclear morphology and lactate dehydrogenase assays clearly show potent anticancer activity of the isolated compound against colon cancer. Thus, the in vitro findings suggest that the compound isolated from C. auriculata leaves have potent anti-cancer properties with possible clinical applications.
Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors
Liu, Tong-chao; Peng, Xia; Ma, Yu-chi; Ji, Yin-chun; Chen, Dan-qi; Zheng, Ming-yue; Zhao, Dong-mei; Cheng, Mao-sheng; Geng, Mei-yu; Shen, Jing-kang; Ai, Jing; Xiong, Bing
2016-01-01
Aim: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Methods: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. Results: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. Conclusion: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs. PMID:27041462
Anticancer activity of ferrocenylthiosemicarbazones.
Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García
2014-03-01
Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity.
Development of Personalized Cancer Therapy for Men with Advanced Prostate Cancer
2015-10-01
withdrawn and a pan-FGFR kinase inhibitor, which is currently in a clinical phase I trial (NVP-BGJ398; Novartis Pharmaceuticals ), is the lead...compound being tested as anticancer therapy by Novartis. In addition, in an agreement with Janssen Pharmaceutical Companies of Johnson & Johnson we...We used 1 control group (n=10) (vehicle 10ml/kg x BID) and a treatment group (n=13) (JNJS 10ml/kg x BID) according to Janssen Pharmaceutical
NASA Astrophysics Data System (ADS)
Firdaus; Soekamto, N. H.; Seniwati; Islam, M. F.; Sultan
2018-03-01
Bioactivity of a compound is closely related to the molecular structure of the compound concerned, its strength being the quantitative relation of the strength of the activity of the group it possesses. The combining of moieties of the active compounds will produce more active compounds. Most phenolic compounds as well as compounds containing moiety phenethyl groups have potential activity as anticancer. Combining phenolic groups and phenethyl groups in a compound will result in compounds having strong anticancer bioactivity. This study aims to combine the feruloyl and phenethyl groups to form esters and amides by synthesize of phenethyl trans-3-(4-hydroxy-3-methoxyphenyl)acrylate (5) and trans-3-(4- hydroxy-3-methoxyphenyl)-N-phenethylacrylamide (6) from ferulic acid with phenethyl alcohol and phenethylamine, and to study their bioactivity as anticancer. The synthesis of both compounds was conducted via indirect reaction, including acetylation, chlorination, esterfication/amidation, and deacetylation. Structures of products were characterized by FTIR and NMR data, and their bioactivity assay of the compounds against P388 Leukemia Murine Cells was conducted by an MTT method. Results showed that the compound 5 was obtained as a yellow gel with the IC50 of 10.79 μg/mL (36.21 μΜ), and the compound 6 was a yellowish solid with a melting point of 118-120°C and the IC50 of 29.14 μg/mL (97.79 μΜ). These compounds were more active than the analog compounds.
Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group.
González, Miguel A; Clark, Julie; Connelly, Michele; Rivas, Fatima
2014-11-15
The abietane-type diterpenoid (+)-ferruginol, a bioactive compound isolated from New Zealand's Miro tree (Podocarpus ferruginea), displays relevant pharmacological properties, including antimicrobial, cardioprotective, anti-oxidative, anti-plasmodial, leishmanicidal, anti-ulcerogenic, anti-inflammatory and anticancer. Herein, we demonstrate that ferruginol (1) and some phthalimide containing analogues 2-12 have potential antimalarial activity. The compounds were evaluated against malaria strains 3D7 and K1, and cytotoxicity was measured against a mammalian cell line panel. A promising lead, compound 3, showed potent activity with an EC50 = 86 nM (3D7 strain), 201 nM (K1 strain) and low cytotoxicity in mammalian cells (SI>290). Some structure-activity relationships have been identified for the antimalarial activity in these abietane analogues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives
Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Lee, Learn-Han; Goh, Bey-Hing
2016-01-01
Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs. PMID:27445824
Lefranc, Florence; Carbone, Marianna; Mollo, Ernesto; Gavagnin, Margherita; Betancourt, Tania; Dasari, Ramesh
2016-01-01
Abstract The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as “chemotaxonomic markers” for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk‐derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen‐containing compounds. The “promise” of a mollusk‐derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk‐derived anticancer agents and solutions to their procurement in quantity. PMID:27925266
Lam, Masha S H
2011-02-01
Oncology pharmacists face a constant challenge with patients who cannot swallow oral anticancer drugs, making extemporaneous oral liquid preparation a requirement. Improper extemporaneous preparation of these agents, especially with the traditional chemotherapy with a narrow therapeutic index, may increase the risk of over- or underdosing. In community pharmacies, multiple barriers exist that prevent these pharmacies from preparing extemporaneous oral anticancer drug formulations for a patient's use at home. In a home setting, patients or caregivers without proper counseling and education on how to safely handle chemotherapy are at increased risk for exposure to these drugs. Based on a review of the literature, compounding recipes are available for 46% of oral anticancer agents. A paucity of data exists on dose uniformity, bioequivalence, and stability of extemporaneous oral liquid formulations of anticancer drugs. Pharmacists must have an understanding of the basic scientific principles that are an essential foundation for the proper preparation of extemporaneous oral anticancer liquid formulations. The collaborative effort of a multidisciplinary team can also help identify different barriers in the community setting, especially in areas where community pharmacies may lack resources for the extemporaneous compounding of oral chemotherapy, and to find ways to coordinate better pharmaceutical care. There are great opportunities for oncology pharmacists, as well as community pharmacists, as a resource for educating and monitoring patients receiving oral chemotherapy to ensure dosing accuracy, safe administration, and proper disposal of hazardous drugs. Development of national guidelines to promote standards of practice in the community and/or home setting is urgently needed to help improve the safety of dispensing and handling oral chemotherapeutic agents, including extemporaneously compounded oral liquid formulations of these drugs.
Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M
2015-01-01
Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.
Liu, Jie; Zhang, Cao; Wang, Huailing; Zhang, Lei; Jiang, Zhenlei; Zhang, Jianrun; Liu, Zhijun; Chen, Heru
2018-05-10
Fifty 1,3-dioxyxanthone nitrates (4a ∼ i-n, n = 1-6) were designed and synthesized based on molecular similarity strategy. Incorporation of nitrate into 1,3-dioxyxanthones with electron-donating groups at 6-8 position brought about synergistic anticancer effect. Among them, compound 4g-4 was confirmed the most active agent against HepG-2 cells growth with an IC 50 of 0.33 ± 0.06 μM. It dose-dependently increased intramolecular NO levels. This activity was attenuated by either NO scavenger PTIO or mitochondrial aldehyde dehydrogenase (mtADH) inhibitor PCDA. Apoptosis analysis indicated different contributions of early/late apoptosis and necrosis to cell death for different dose of 4g-4. 4g-4 arrested more cells on S phase. Results from Western Blot implied that 4g-4 regulated p53/MDM2 to promote cancer cell apoptosis. All the evidences support that 4g-4 is a promising anti-cancer agent. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products.
Grossman, Elizabeth A; Ward, Carl C; Spradlin, Jessica N; Bateman, Leslie A; Huffman, Tucker R; Miyamoto, David K; Kleinman, Jordan I; Nomura, Daniel K
2017-11-16
Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proteomic and metallomic strategies for understanding the mode of action of anticancer metallodrugs.
Gabbiani, Chiara; Magherini, Francesca; Modesti, Alessandra; Messori, Luigi
2010-05-01
Since the discovery of cisplatin and its introduction in the clinics, metal compounds have been intensely investigated in view of their possible application in cancer therapy. In this frame, a deeper understanding of their mode of action, still rather obscure, might turn crucial for the design and the obtainment of new and better anticancer agents. Due to the extreme complexity of the biological systems, it is now widely accepted that innovative and information-rich methods are absolutely needed to afford such a goal. Recently, both proteomic and metallomic strategies were successfully implemented for the elucidation of specific mechanistic features of anticancer metallodrugs within an innovative "Systems Biology" perspective. Particular attention was paid to the following issues: i) proteomic studies of the molecular basis of platinum resistance; ii) proteomic analysis of cellular responses to cytotoxic metallodrugs; iii) metallomic studies of the transformation and fate of metallodrugs in cellular systems. Notably, those pioneering studies, that are reviewed here, allowed a significant progress in the understanding of the molecular mechanisms of metal based drugs at the cellular level. A further extension of those studies and a closer integration of proteomic and metallomic strategies and technologies might realistically lead to rapid and significant advancements in the mechanistic knowledge of anticancer metallodrugs.
Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret
2015-01-01
The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Bolelli, K; Musdal, Y; Aki-Yalcin, E; Mannervik, B; Yalcin, I
2017-11-01
Human GSTP1-1 is one of the most important proteins, which overexpresses in a large number of human tumours and is involved in the development of resistance to several anticancer drugs. So, it has become an important target in cancer treatment. In this study, 12 benzothiazole derivatives were synthesized and screened for their in vitro inhibitory activity for hGSTP1-1. Among these compounds, two of them (compounds #2 and #5) have been found to be the leads when compared with the reference drug etoposide. In order to analyse the structure-activity relationships (SARs) and to investigate the binding side interactions of the observed lead compounds, a HipHop pharmacophore model was generated and the molecular docking studies were performed by using CDocker method. In conclusion, it is observed that the lead compounds #2 and #5 possessed inhibitory activity on the hGSTP1-1 by binding to the H-site as a substrate in which the para position of the phenyl ring of the benzamide moiety on the benzothiazole ring is important. Substitution at this position with a hydrophobic group that reduces the electron density at the phenyl ring is required for the interaction with the H side active residue Tyr108.
Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells
Guamán-Ortiz, Luis Miguel; Orellana, Maria Isabel Ramirez; Ratovitski, Edward A.
2017-01-01
Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis. PMID:28367073
Isolation and Characterization of the Anticancer Compound Piceatannol from Sophora Interrupta Bedd
Mathi, Pardhasaradhi; Das, Snehasish; Nikhil, Kumar; Roy, Partha; Yerra, Srikanth; Ravada, Suryachandra Rao; Bokka, Venkata Raman; Botlagunta, Mahendran
2015-01-01
Background: Sophora belongs to the family of Fabaceae and the species in this genus are currently used as a folklore medicine for preventing a variety of ailments including cancer. Our aim was to identify and validate an anticancer compound from Sophora interrupta using multi-spectroscopic, anticancer screening, and molecular docking approach. Methods: The cytotoxicity of the various solvent extracts, petroleum ether, n-butanol, and ethyl acetate (EtOAc) of the S. interrupta root powder was evaluated in a breast cancer cell lines (MCF-7). The extract that had anticancer activity was subjected to column chromatography based on the polarity of the solvents. The anticancer activity of the elution fractions was validated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The isolated metabolite fraction with anticancer activity was run through a C18 column isocratic and gradient high-performance liquid chromatography (HPLC). The structure of the isolated compound was characterized using 1H nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometer methods. Results: The crude EtAOc extract effectively inhibited the proliferation of MCF-7 cells. The column eluted chloroform and EtOAc (4:6) fraction of the EtOAc extract showed significant anticancer activity in the MCF-7 cells compared with normal mesenchymal stem cells. This fraction showed three major peaks in the HPLC chromatogram and the first major peak with a retention time (RT) of 7.153 was purified using preparative-HPLC. The structure of the compound is a piceatannol, which is a metabolic product of resveratrol. Piceatannol formed direct two hydrogen bond interactions between Cys912 (2H), and Glu878 of vascular endothelial growth factor receptor 1 (VEGFR1) with a glide-score (G-score) of −10.193, and two hydrogen bond interactions between Cys919, and Asp1046 of VEGFR2, with a G-score of −8.359. The structure is similar to that of the crystallized protein for VEGFR1 and R2. Conclusions: Piceatannol is a secondary metabolite of S. interrupta that has anticancer activity. Moreover, piceatannol has been isolated for the first time from S. interrupta. PMID:26605022
Mulakayala, Naveen; Rambabu, D; Raja, Mohan Rao; M, Chaitanya; Kumar, Chitta Suresh; Kalle, Arunasree M; Rama Krishna, G; Malla Reddy, C; Basaveswara Rao, M V; Pal, Manojit
2012-01-15
A facile and catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones has been accomplished via the reaction of 4-chloro-2-oxo-2H-chromene-3-carbaldehyde with various aromatic amines in the presence of ultrasound. Some of these compounds were converted to the corresponding 2-(3-(hydroxymethyl)quinolin-2-yl)phenols and further structure elaboration of a representative quinoline derivative is presented. Molecular structure of two representative compounds was confirmed by single crystal X-ray diffraction study. Many of these compounds were evaluated for their anti-proliferative properties in vitro against four cancer cell lines and several compounds were found to be active. Further in vitro studies indicated that inhibition of sirtuins could be the possible mechanism of action of these molecules. Copyright © 2011 Elsevier Ltd. All rights reserved.
Magalhaes, Luma G.; Marques, Fernando B.; da Fonseca, Marina B.; Rogério, Kamilla R.; Graebin, Cedric S.; Andricopulo, Adriano D.
2016-01-01
Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497
Dihydroresveratrol Type Dihydrostilbenoids: Chemical Diversity, Chemosystematics, and Bioactivity.
Vitalini, Sara; Cicek, Serhat S; Granica, Sebastian; Zidorn, Christian
2018-01-01
Dihydrostilbenoids, a diverse class of natural products differing from stilbenoids by the missing double bond in the ethylene chain linking the aromatic moieties, have been reported from fungi, mosses, ferns, and flowering plants. Occurrence, structure, and bioactivity of naturally occurring dihydroresveratrol type dihydrostilbenoids are discussed in this review. A Reaxys database search for dihydroresveratrol derivatives with possible substitutions on all atoms, but excluding non-natural products and compounds featuring additional rings involving the ethyl connecting chain, was performed. Structures include simple dihydroresveratrol derivatives, compounds substituted with complex side chains composed of acyl moieties and sugars, and compounds containing polycyclic cores attached to dihydrostilbenoid units. Dihydrostilbenoids have a wide spectrum of bioactivities ranging from expectable antioxidant and anti-inflammatory activities to interesting neuroprotective and anticancer activity. The anticancer activity in particular is very pronounced for some plant-derived dihydrostilbenoids and makes them interesting lead compounds for drug development. Apart from some reports on dihydroresveratrol derivatives as phytoalexins against plant-pathogenic fungi, only very limited information is available on the ecological role of these compounds for the organisms producing them. Dihydrostilbenoids are a class of natural products possessing significant biological activities; their scattered but not ubiquitous occurrence throughout the kingdoms of plants and fungi is not easily explained. We are convinced that future studies will identify new sources of dihydrostilbenoids, and we hope that the present review will inspire such studies and will help in directing such efforts to suitable source organisms and towards promising bioactivities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yan, Jun; Pang, Yanqing; Sheng, Jianfeng; Wang, Yali; Chen, Jie; Hu, Jinhui; Huang, Ling; Li, Xingshu
2015-09-01
Microtubules are critical elements that are involved in a wide range of cellular processes, and thus, they have become an attractive target for many anticancer drugs. A novel synthesised compound, 12P, was identified as new microtubule inhibitor. This compound inhibits tubulin polymerisation through binding to the colchicine-binding site of tubulin. 12P exhibits excellent anti-proliferative activities against a panel of human cancer cell lines, with IC₅₀ values range from 9 to 55nM. Interestingly, compound 12P also displayed equally potent cytotoxicity against several drug-resistant cell lines, and it showed high selectivity for active human umbilical vein endothelial cells (HUVECs). Further flow cytometric analysis showed that 12P induces G₂/M phase arrest and apoptosis in A549 cells. Cellular studies have revealed that the induction of apoptosis by 12P was associated with a collapse of mitochondrial membrane potential (MMP), accumulation of reactive oxygen species (ROS), alterations in the expression of some cell cycle-related proteins (e.g. Cyclin B1, Cdc25c, Cdc2) and some apoptosis-related proteins (e.g. Bax, Bad, Bcl-2, Bcl-xl). Importantly, 12P significantly reduced the growth of xenograft tumours of A549 cells in vivo (tumour inhibitory rate of 12P: 84.2%), without any loss of body weight. Taken together, these in vitro and in vivo results suggested that 12P may become a promising lead compound for the development of new anticancer drugs. Copyright © 2015 Elsevier Inc. All rights reserved.
The Relevance of Higher Plants in Lead Compound Discovery Programs⊥
Kinghorn, A. Douglas; Pan, Li; Fletcher, Joshua N.; Chai, Heebyung
2011-01-01
Along with compounds from terrestrial microorganisms, the constituents of higher plants have provided a substantial number of the natural product-derived drugs used currently in western medicine. Interest in the elucidation of new structures of the secondary metabolite constituents of plants has remained high among the natural products community over the first decade of the 21st century, particularly of species that are used in systems of traditional medicine or are utilized as botanical dietary supplements. In this review, progress made in the senior author’s laboratory in research work on naturally occurring sweeteners and other taste-modifying substances and on potential anticancer agents from tropical plants will be described. PMID:21650152
Rizzo, L Y; Longato, G B; Ruiz, A Lt G; Tinti, S V; Possenti, A; Vendramini-Costa, D B; Sartoratto, A; Figueira, G M; Silva, F L N; Eberlin, M N; Souza, T A C B; Murakami, M T; Rizzo, E; Foglio, M A; Kiessling, F; Lammers, T; Carvalho, J E
2014-01-01
Anticancer drug research based on natural compounds enabled the discovery of many drugs currently used in cancer therapy. Here, we report the in vitro, in vivo and in silico anticancer and estrogen-like activity of Psidium guajava L. (guava) extracts and enriched mixture containing the meroterpenes guajadial, psidial A and psiguadial A and B. All samples were evaluated in vitro for anticancer activity against nine human cancer lines: K562 (leukemia), MCF7 (breast), NCI/ADR-RES (resistant ovarian cancer), NCI-H460 (lung), UACC-62 (melanoma), PC-3 (prostate), HT-29 (colon), OVCAR-3 (ovarian) and 786-0 (kidney). Psidium guajava's active compounds displayed similar physicochemical properties to estradiol and tamoxifen, as in silico molecular docking studies demonstrated that they fit into the estrogen receptors (ERs). The meroterpene-enriched fraction was also evaluated in vivo in a Solid Ehrlich murine breast adenocarcinoma model, and showed to be highly effective in inhibiting tumor growth, also demonstrating uterus increase in comparison to negative controls. The ability of guajadial, psidial A and psiguadials A and B to reduce tumor growth and stimulate uterus proliferation, as well as their in silico docking similarity to tamoxifen, suggest that these compounds may act as Selective Estrogen Receptors Modulators (SERMs), therefore holding significant potential for anticancer therapy.
Lin, Ying-Chi; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng; Tung, Chun-Wei
2013-01-01
The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs.
Lin, Ying-Chi; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng; Tung, Chun-Wei
2013-01-01
The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs. PMID:23766708
2017-01-01
Camptothecin (CPT) selectively traps topoisomerase 1-DNA cleavable complexes (Top1cc) to promote anticancer activity. Here, we report the design and synthesis of a new class of neutral porphyrin derivative 5,10-bis(4-carboxyphenyl)-15, 20-bis(4-dimethylaminophenyl)porphyrin (compound 8) as a potent catalytic inhibitor of human Top1. In contrast to CPT, compound 8 reversibly binds with the free enzyme and inhibits the formation of Top1cc and promotes reversal of the preformed Top1cc with CPT. Compound 8 induced inhibition of Top1cc formation in live cells was substantiated by fluorescence recovery after photobleaching (FRAP) assays. We established that MCF7 cells treated with compound 8 trigger proteasome-mediated Top1 degradation, accumulate higher levels of reactive oxygen species (ROS), PARP1 cleavage, oxidative DNA fragmentation, and stimulate apoptotic cell death without stabilizing apoptotic Top1-DNA cleavage complexes. Finally, compound 8 shows anticancer activity by targeting cellular Top1 and preventing the enzyme from directly participating in the apoptotic process. PMID:29290109
Ali, Imran; Haque, Ashanul; Saleem, Kishwar; Hsieh, Ming Fa
2013-07-01
Pyrazolealdehydes (4a-d), Knoevenagel's condensates (5a-d) and Schiff's bases (6a-d) of curcumin-I were synthesized, purified and characterized. Hemolysis assays, cell line activities, DNA bindings and docking studies were carried out. These compounds were lesser hemolytic than standard drug doxorubicin. Minimum cell viability (MCF-7; wild) observed was 59% (1.0 μg/mL) whereas the DNA binding constants ranged from 1.4×10(3) to 8.1×10(5) M(-1). The docking energies varied from -7.30 to -13.4 kcal/mol. It has been observed that DNA-compound adducts were stabilized by three governing forces (Van der Wall's, H-bonding and electrostatic attractions). It has also been observed that compounds 4a-d preferred to enter minor groove while 5a-d and 6a-d interacted with major grooves of DNA. The anticancer activities of the reported compounds might be due to their interactions with DNA. These results indicated the bright future of the reported compounds as anticancer agents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents.
Qin, Hua-Li; Leng, Jing; Youssif, Bahaa G M; Amjad, Muhammad Wahab; Raja, Maria Abdul Ghafoor; Hussain, Muhammad Ajaz; Hussain, Zahid; Kazmi, Syeda Naveed; Bukhari, Syed Nasir Abbas
2017-09-01
The incidence of cancer can be decreased by chemoprevention using either natural or synthetic agents. Apart from synthetic compounds, numerous natural products have exhibited promising potential to inhibit carcinogenesis in vivo. In this study, α, β-unsaturated carbonyl-based anticancer compounds were used as starting materials to synthesize new oxime analogs. The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship. The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines. The mechanistic effects of compounds on EGFR-TK kinases and tubulin polymerization and BRAF V 600E were investigated. In addition, the efficacy of compounds in reversing the efflux-mediated resistance developed by cancer cells was also studied. The compounds 5a and 6a displayed potent activity on various targets such as BRAF V 600E and EGFR-TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents. © 2017 John Wiley & Sons A/S.
Structure-based design of novel quinoxaline-2-carboxylic acids and analogues as Pim-1 inhibitors.
Oyallon, Bruno; Brachet-Botineau, Marie; Logé, Cédric; Bonnet, Pascal; Souab, Mohamed; Robert, Thomas; Ruchaud, Sandrine; Bach, Stéphane; Berthelot, Pascal; Gouilleux, Fabrice; Viaud-Massuard, Marie-Claude; Denevault-Sabourin, Caroline
2018-05-11
We identified a new series of quinoxaline-2-carboxylic acid derivatives, targeting the human proviral integration site for Moloney murine leukemia virus-1 (HsPim-1) kinase. Seventeen analogues were synthesized providing useful insight into structure-activity relationships studied. Docking studies realized in the ATP pocket of HsPim-1 are consistent with an unclassical binding mode of these inhibitors. The lead compound 1 was able to block HsPim-1 enzymatic activity at nanomolar concentrations (IC 50 of 74 nM), with a good selectivity profile against a panel of mammalian protein kinases. In vitro studies on the human chronic myeloid leukemia cell line KU812 showed an antitumor activity at micromolar concentrations. As a result, compound 1 represents a promising lead for the design of novel anticancer targeted therapies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Botanical, Phytochemical, and Anticancer Properties of the Eucalyptus Species.
Vuong, Quan V; Chalmers, Anita C; Jyoti Bhuyan, Deep; Bowyer, Michael C; Scarlett, Christopher J
2015-06-01
The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Boik, John C; Newman, Robert A
2008-01-01
Background Quantitative structure-activity relationship (QSAR) models have become popular tools to help identify promising lead compounds in anticancer drug development. Few QSAR studies have investigated multitask learning, however. Multitask learning is an approach that allows distinct but related data sets to be used in training. In this paper, a suite of three QSAR models is developed to identify compounds that are likely to (a) exhibit cytotoxic behavior against cancer cells, (b) exhibit high rat LD50 values (low systemic toxicity), and (c) exhibit low to modest human oral clearance (favorable pharmacokinetic characteristics). Models were constructed using Kernel Multitask Latent Analysis (KMLA), an approach that can effectively handle a large number of correlated data features, nonlinear relationships between features and responses, and multitask learning. Multitask learning is particularly useful when the number of available training records is small relative to the number of features, as was the case with the oral clearance data. Results Multitask learning modestly but significantly improved the classification precision for the oral clearance model. For the cytotoxicity model, which was constructed using a large number of records, multitask learning did not affect precision but did reduce computation time. The models developed here were used to predict activities for 115,000 natural compounds. Hundreds of natural compounds, particularly in the anthraquinone and flavonoids groups, were predicted to be cytotoxic, have high LD50 values, and have low to moderate oral clearance. Conclusion Multitask learning can be useful in some QSAR models. A suite of QSAR models was constructed and used to screen a large drug library for compounds likely to be cytotoxic to multiple cancer cell lines in vitro, have low systemic toxicity in rats, and have favorable pharmacokinetic properties in humans. PMID:18554402
Boik, John C; Newman, Robert A
2008-06-13
Quantitative structure-activity relationship (QSAR) models have become popular tools to help identify promising lead compounds in anticancer drug development. Few QSAR studies have investigated multitask learning, however. Multitask learning is an approach that allows distinct but related data sets to be used in training. In this paper, a suite of three QSAR models is developed to identify compounds that are likely to (a) exhibit cytotoxic behavior against cancer cells, (b) exhibit high rat LD50 values (low systemic toxicity), and (c) exhibit low to modest human oral clearance (favorable pharmacokinetic characteristics). Models were constructed using Kernel Multitask Latent Analysis (KMLA), an approach that can effectively handle a large number of correlated data features, nonlinear relationships between features and responses, and multitask learning. Multitask learning is particularly useful when the number of available training records is small relative to the number of features, as was the case with the oral clearance data. Multitask learning modestly but significantly improved the classification precision for the oral clearance model. For the cytotoxicity model, which was constructed using a large number of records, multitask learning did not affect precision but did reduce computation time. The models developed here were used to predict activities for 115,000 natural compounds. Hundreds of natural compounds, particularly in the anthraquinone and flavonoids groups, were predicted to be cytotoxic, have high LD50 values, and have low to moderate oral clearance. Multitask learning can be useful in some QSAR models. A suite of QSAR models was constructed and used to screen a large drug library for compounds likely to be cytotoxic to multiple cancer cell lines in vitro, have low systemic toxicity in rats, and have favorable pharmacokinetic properties in humans.
Mok, Simon Wing Fai; Liu, Hauwei; Zeng, Wu; Han, Yu; Gordillo-Martinez, Flora; Chan, Wai-Kit; Wong, Keith Man-Chung; Wong, Vincent Kam Wai
2017-01-01
Platinating compounds including cisplatin, carboplatin, and oxaliplatin are common chemotherapeutic agents, however, patients developed resistance to these clinical agents after initial therapeutic treatments. Therefore, different approaches have been applied to identify novel therapeutic agents, molecular mechanisms, and targets for overcoming drug resistance. In this study, we have identified a panel of cobalt complexes that were able to specifically induce collateral sensitivity in taxol-resistant and p53-deficient cancer cells. Consistently, our reported anti-cancer functions of cobalt complexes 1–6 towards multidrug-resistant cancers have suggested the protective and non-toxic properties of cobalt metal-ions based compounds in anti-cancer therapies. As demonstrated in xenograft mouse model, our results also confirmed the identified cobalt complex 2 was able to suppress tumor growth in vivo. The anti-cancer effect of the cobalt complex 2 was further demonstrated to be exerted via the induction of autophagy, cell cycle arrest, and inhibition of cell invasion and P-glycoprotein (P-gp) activity. These data have provided alternative metal ion compounds for targeting drug resistance cancers in chemotherapies. PMID:28903398
Seeking new anti-cancer agents from autophagy-regulating natural products.
Hua, Fang; Shang, Shuang; Hu, Zhuo-Wei
2017-04-01
Natural products are an important original source of many widely used drugs, including anti-cancer drugs. Early research efforts for seeking anti-cancer therapy from the natural products are mainly focused on the compounds with cytotoxicity capability. The good examples include vinblastine, vincristine, the camptothecin derivatives; topotecan, irinotecan, epipodophyllotoxin derivatives and paclitaxel. In a recent decade, the fundamental progression has been made in the understanding of molecular and cellular mechanisms regarding tumor initiation, metastasis, therapeutic resistance, immune escape, and relapse, which provide a great opportunity for the development of new mechanism-based anticancer drugs, especially drugs against new molecular and cellular targets. Autophagy, a critical cell homeostasis mechanism and promising drug target involved in a verity of human diseases including cancer, can be modulated by many compounds derived from natural products. In this review, we'll give a short introduction of autophagy and discuss the roles of autophagy in the tumorigenesis and progression. And then, we summarize the accumulated evidences to show the anti-tumor effects of several compounds derived from natural products through modulation of autophagy activity.
Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?
Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T
2018-06-11
A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.
[Study on the constituents of petroleum ether fraction of Buxus microphylla].
Dai, Zhi-Kai; Liang, Jun; Su, Xiao-Jian; Xu, Qing; Zhang, Hui-Qin
2009-07-01
To study the chemical constituents from the petroleum ether fraction of Buxus microphylla. The petroleum ether fraction of Buxus microphylla was isolated and identified by silica gel column chromatography. And the anticancer activity of different chemical constituents was measured by MTT reduction test. Eight compounds were isolated and identified as lupeol (1), butulin (3), beta-sitosterol (4), stigmasterol (5), dibutyl phthalate (6), 3beta, 30-dihydroxy-lup-20 (29) ene (7), daucosterol (8). Compound 7 inhibited KB cells' proliferation in a dose-dependent manner. Compounds 2 - 5, 7, 8 are isolated from this genus for the first time. Compound 7 has certainly anticancer effects.
Novel non-trimethoxylphenyl piperlongumine derivatives selectively kill cancer cells.
Zhang, Youjun; Ma, Hao; Wu, Yuelin; Wu, Zhongli; Yao, Zhengguang; Zhang, Wannian; Zhuang, Chunlin; Miao, Zhenyuan
2017-06-01
Piperlongumine (PL) is a natural alkaloid with broad biological activities. Twelve analogues have been designed and synthesized with non-substituted benzyl rings or heterocycles in this work. Most of the compounds showed better anticancer activities than the parent PL without apparent toxicity in normal cells. Elevation of cellular ROS levels was one of the main anticancer mechanisms of these compounds. Cell apoptosis and cell cycle arrest for the best compound ZM90 were evaluated and similar mechanism of action with PL was demonstrated. The SAR was also characterized, providing worthy directions for further optimization of PL compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, Bhupinder; Sharma, Praveen; Gupta, Vivek Prakash; Khullar, Madhu; Singh, Sandeep; Dogra, Nilambra; Kumar, Vinod
2018-08-01
A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC 50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC 50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket. Copyright © 2018 Elsevier Inc. All rights reserved.
Polkam, Naveen; Rayam, Parsharamulu; Anireddy, Jaya Shree; Yennam, Satyanarayana; Anantaraju, Hasitha Shilpa; Dharmarajan, Sriram; Perumal, Yogeeswari; Kotapalli, Sudha Sravanti; Ummanni, Ramesh; Balasubramanian, Sridhar
2015-04-01
A series of 2,5-disubstituted-1,3,4-thiadiazole derivatives 5a-5l, 7a-7e and 9 have been synthesised and screened for in vitro antimycobacterial activity against Mycobacterium smegmatis MC-155. In addition these compounds have also been screened for cytotoxic activity against cancer cell lines HT-29, MDA-MB-231 by MTT colorimetric assay. The compounds are well characterized by spectral analysis viz. (1)H NMR, (13)C NMR, FT-IR, mass and HRMS. Screening results indicate that compounds 5g, 7a possess good antitubercular activity with MIC value 65.74 and 40.86, respectively, compounds 5g, 7a, 7b, 7d, 7e and 9 displayed promising cytotoxic activity against the cell lines tested. 5g and 7a stand out to be potent antimycobacterial and anticancer agents among the tested series. Further the title compounds were also tested on human normal cells HEK293T and are found to be safer with lesser cytotoxicity. It is interesting to observe that compound 5g has come out to be safer, potent anticancer and antimycobacterial agent. Copyright © 2015 Elsevier Ltd. All rights reserved.
New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.
Yadav, Dharmendra K; Rai, Reeta; Kumar, Naresh; Singh, Surjeet; Misra, Sanjeev; Sharma, Praveen; Shaw, Priyanka; Pérez-Sánchez, Horacio; Mancera, Ricardo L; Choi, Eun Ha; Kim, Mi-Hyun; Pratap, Ramendra
2016-12-06
The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.
Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu
2016-11-15
A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC 50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC 50 <1.56μM) and 6l (IC 50 =2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC 50 values of 1.10 and 1.16μmol/L respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hua, Duy (Inventor); Perchellet, Jean-Pierre (Inventor)
2004-01-01
This invention provides analogs of triptycene which are useful as anticancer drugs, as well as for other uses. The potency of these compounds is in a similar magnitude as daunomycin, a currently used anticancer drug. Each compound of the invention produces one or more desired effects (blocking nucleoside transport, inhibiting nucleic acid or protein syntheses, decreasing the proliferation and viability of cancer cells, inducing DNA fragmentation or retaining their effectiveness against multidrug-resistant tumor cells).
NASA Astrophysics Data System (ADS)
Ghanbarimasir, Zahra; Bekhradnia, Ahmadreza; Morteza-Semnani, Katayoun; Rafiei, Alireza; Razzaghi-Asl, Nima; Kardan, Mostafa
2018-04-01
In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24 h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.
Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M
2015-01-01
Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802
Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds
Fan, Meiqi; Nath, Amit Kumar; Tang, Yujiao; Choi, Young-Jin; Debnath, Trishna; Choi, Eun-Ju
2018-01-01
This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment. PMID:29757237
Ali, Rania S; Saad, Hosam A
2018-03-19
Our current goal is the synthesis of polyheterocyclic compounds starting from 3-amino-[1,2,4]triazino[5,6- b ]indole 1 and studying their anticancer activity to determine whether increasing of the size of the molecules increases the anticancer activity or not. 1-Amino[1,2,4]triazino[3',4':3,4]-[1,2,4]triazino[5,6- b ]indole-2-carbonitrile ( 4 ) was prepared by the diazotization of 3-amino[1,2,4]-triazino[5,6- b ]indole 1 followed by coupling with malononitrile in basic medium then cyclization under reflux to get 4 . Also, new fused pyrimido[4″,5″:5',6'][1,2,4]triazino-[3',4':3,4][1,2,4]triazino[5,6- b ]indole derivative 6 was prepared and used to obtain polycyclic heterocyclic systems. Confirmation of the synthesized compounds' structures was carried out using elemental analyses and spectral data (IR, ¹H-NMR and 13 C-NMR and mass spectra). The anticancer activity of some of the synthesized compounds was tested against HepG2, HCT-116 and MCF-7 cell lines. The anticancer screening results showed that some derivatives display good activity which was more potent than that of the reference drug used. Molecular docking was used to predict the binding between some of the synthesized compounds and the prostate cancer 2q7k hormone and breast cancer 3hb5 receptors.
Synthetic and Medicinal Prospective of Structurally Modified Curcumins.
Kumar, Bhupinder; Singh, Virender; Shankar, Ravi; Kumar, Kapil; Rawal, Ravindra K
2017-01-01
Curcumin, a natural yellow phenolic compound, is present in various types of herbs, particularly in Turmeric, Curcuma longa Linn. (Zingiberaceae family) rhizomes. Curcumin is a polyphenolic natural compound with diverse and attractive biological activities. In the last decade curcumine and its various synthetic analogues have been prepared and evaluated for various pharmacological activities that prove it as a lead molecule against several biological targets. It is a natural antioxidant and exhibited many pharmacological activities such as anti-inflammatory, anti-microbial, anticancer, anti-Alzheimer in both preclinical and clinical studies. Moreover, Curcumin and its analogues have anti-tubercular, cardioprotective, anti-diabetic, hepatoprotective, neuroprotective, nephroprotective, antirheumatic and anti-viral activities. The substitutions of 1,6-heptadiene linkage moiety via carbonyl group sustituion and addition of heterocyclic linker; isoxazole, 1H-pyrazole, cyclopentanone, piperidin-4-one, N-methylpiperidin-4-one enhance biological activities. The structure activity relationship of various curcumin analogues is studied for medicinal purposes and it reveals that monocarbonyl linkage analogues have anticancer properties. The current review gives an insight of the history, chemistry, analogues and most interesting in vitro and in vivo studies on the biological effects of Curcumin and its analogues.
Adnan, Mohd; Patel, Mitesh; Reddy, Mandadi Narsimha; Alshammari, Eyad
2018-01-29
In recent years, fungi have been shown to produce a plethora of new bioactive secondary metabolites of interest, as new lead structures for medicinal and other pharmacological applications. The present investigation was carried out to study the pharmacological properties of a potent and major bioactive compound: xylaranic acid, which was obtained from Xylaria primorskensis (X. primorskensis) terpenoids in terms of antibacterial activity, antioxidant potential against DPPH & H 2 O 2 radicals and anticancer activity against human lung cancer cells. Due to terpenoid nature, low water solubility and wretched bioavailability, its pharmacological use is limited. To overcome these drawbacks, a novel xylaranic acid silver nanoparticle system (AgNPs) is developed. In addition to improving its solubility and bioavailability, other advantageous pharmacological properties has been evaluated. Furthermore, enhanced anticancer activity of xylaranic acid and its AgNPs due to induced apoptosis were also confirmed by determining the expression levels of apoptosis regulatory genes p53, bcl-2 and caspase-3 via qRT PCR method. This is the first study developing the novel xylaranic acid silver nanoparticle system and enlightening its therapeutic significance with its improved physico-chemical properties and augmented bioactive potential.
Effects of Tobacco Smoking & Nicotine on Cancer Treatment
Petros, William P.; Younis, Islam R.; Ford, James N.; Weed, Scott A.
2012-01-01
A substantial number of the world's population continues to smoke tobacco, even in the setting of a cancer diagnosis. Studies have shown that cancer patients with a history of smoking have a worse prognosis. Modulation of several physiologic processes involved in drug disposition has been associated with chronic exposure to tobacco smoke. The most common of these can be categorized into effects on cytochrome P450 mediated metabolism, glucuronidation, and protein binding. Perturbation in the pharmacokinetics of anticancer drugs could result in clinically significant consequences, given they are amongst the most toxic, but potentially beneficial, pharmaceuticals prescribed. Unfortunately, the effect of tobacco smoking on drug disposition has only been explored for a few marketed anticancer drugs, thus very little prescribing information is available to guide clinicians on the vast majority of compounds. The carcinogenic properties of multiple compounds found in tobacco smoke have been well studied, however relatively little attention has been given to the effects of nicotine itself on cancer growth. Emerging data are available which identify nicotine's effects on cancer cell apoptosis, tumor angiogenesis, invasion, and metastasis. The implications of such are unclear, but may lead to important questions to be addressed regarding approaches to smoking cessation in cancer patients. PMID:23033231
Wang, Yibin; Fan, Heli; Balakrishnan, Kumudha; Lin, Zechao; Cao, Sheng; Chen, Wenbing; Fan, Yukai; Guthrie, Quibria A.; Sun, Huabing; Teske, Kelly A.; Gandhi, Varsha; Arnold, Leggy A.; Peng, Xiaohua
2017-01-01
Quinone methide (QM) formation induced by endogenously generated H2O2 is attractive for biological and biomedical applications. To overcome current limitations due to low biological activity of H2O2-activated QM precursors, we are introducing herein several new arylboronates with electron donating substituents at different positions of benzene ring and/or different neutral leaving groups. The reaction rate of the arylboronate esters with H2O2 and subsequent bisquinone methides formation and DNA cross-linking was accelerated with the application of Br as a leaving group instead of acetoxy groups. Additionally, a donating group placed meta to the nascent exo-methylene group of the quinone methide greatly improves H2O2-induced DNA interstrand cross-link formation as well as enhances the cellular activity. Multiple donating groups decrease the stability and DNA cross-linking capability, which lead to low cellular activity. A cell-based screen demonstrated that compounds 2a and 5a with a OMe or OH group dramatically inhibited the growth of various tissue-derived cancer cells while normal cells were less affected. Induction of H2AX phosphorylation by these compounds in CLL lymphocytes provide evidence for a correlation between cell death and DNA damage. The compounds presented herein showed potent anticancer activities and selectivity, which represent a novel scaffold for anticancer drug development. PMID:28388522
NASA Astrophysics Data System (ADS)
Suresh Kumar, S.; Athimoolam, S.; Sridhar, B.
2015-10-01
6-Mercaptopurine (an anti cancer drug), is coming under the class II Biopharmaceutics Classification System (BCS). In order to enhance the solubility with retained physiochemical/pharmaceutical properties, the present work was attempted with its salt form. The single crystals of 6-mercaptopurinium chloride (6MPCl) were successfully grown by slow evaporation technique under ambient temperature. The X-ray diffraction study shows that the crystal packing is dominated by N-H⋯Cl classical hydrogen bonds leading to corrugated laminar network. The hydrogen bonds present in the lamina can be dismantled as three chain C21(6), C21(7) and C21(8) motifs running along ab-diagonal of the unit cell. These primary chain motifs are interlinked to each other forming ring R63(21) motifs. These chain and ring motifs are aggregated like a dendrimer structure leading to the above said corrugated lamina. This low dimensional molecular architecture differs from the ladder like arrays in pure drug though it possess lattice water molecule in lieu of the chloride anion in the present compound. Geometrical optimizations of 6MPCl were done by Density Functional Theory (DFT) using B3LYP function with two different basis sets. The optimized molecular geometries and computed vibrational spectra are compared with their experimental counterparts. The Natural Bond Orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and Intramolecular Charge Transfer (ICT). The chemical hardness, electronegativity, chemical potential and electrophilicity index of 6MPCl were found along with the HOMO-LUMO plot. The lower band gap value obtained from the Frontier Molecular Orbital (FMO) analysis reiterates the pharmaceutical activity of the compound. The anticancer studies show that 6MPCl retains its activity against human cervical cancer cell line (HeLa). Hence, this anticancer efficacy and improved solubility demands 6MPCl towards the further pharmaceutical applications.
Anticancer Principles from Medicinal Piper (胡椒 Hú Jiāo) Plants
Wang, Yue-Hu; Morris-Natschke, Susan L.; Yang, Jun; Niu, Hong-Mei; Long, Chun-Lin; Lee, Kuo-Hsiung
2014-01-01
The ethnomedical uses of Piper (胡椒 Hú Jiāo) plants as anticancer agents, in vitro cytotoxic activity of both extracts and compounds from Piper plants, and in vivo antitumor activity and mechanism of action of selected compounds are reviewed in the present paper. The genus Piper (Piperaceae) contains approximately 2000 species, of which 10 species have been used in traditional medicines to treat cancer or cancer-like symptoms. Studies have shown that 35 extracts from 24 Piper species and 32 compounds from Piper plants possess cytotoxic activity. Amide alkaloids account for 53% of the major active principles. Among them, piplartine (piperlongumine) shows the most promise, being toxic to dozens of cancer cell lines and having excellent in vivo activity. It is worthwhile to conduct further anticancer studies both in vitro and in vivo on Piper plants and their active principles. PMID:24872928
Tao, Li-yang; Zhang, Jian-ye; Liang, Yong-ju; Chen, Li-ming; Zhen, Li-sheng; Wang, Fang; Mi, Yan-jun; She, Zhi-gang; To, Kenneth Kin Wah; Lin, Yong-cheng; Fu, Li-wu
2010-04-01
Marine-derived fungi provide plenty of structurally unique and biologically active secondary metabolites. We screened 87 marine products from mangrove fungi in the South China Sea for anticancer activity by MTT assay. 14% of the compounds (11/86) exhibited a potent activity against cancer in vitro. Importantly, some compounds such as compounds 78 and 81 appeared to be promising for treating cancer patients with multidrug resistance, which should encourage more efforts to isolate promising candidates for further development as clinically useful chemotherapeutic drugs. Furthermore, DNA intercalation was not involved in their anticancer activities, as determined by DNA binding assay. On the other hand, the structure-activity analysis indicated that the hydroxyl group was important for their cytotoxic activity and that bulky functional groups such as phenyl rings could result in a loss of biological activity, which will direct the further development of marine product-based derivatives.
Cyanobacteria as a Source for Novel Anti-Leukemic Compounds.
Humisto, Anu; Herfindal, Lars; Jokela, Jouni; Karkman, Antti; Bjørnstad, Ronja; Choudhury, Romi R; Sivonen, Kaarina
2016-01-01
Cyanobacteria are an inspiring source of bioactive secondary metabolites. These bioactive agents are a diverse group of compounds which are varying in their bioactive targets, the mechanisms of action, and chemical structures. Cyanobacteria from various environments, especially marine benthic cyanobacteria, are found to be rich sources for the search for novel bioactive compounds. Several compounds with anticancer activities have been discovered from cyanobacteria and some of these have succeeded to enter the clinical trials. Varying anticancer agents are needed to overcome increasing challenges in cancer treatments. Different search methods are used to reveal anticancer compounds from natural products, but cell based methods are the most common. Cyanobacterial bioactive compounds as agents against acute myeloid leukemia are not well studied. Here we examined our new results combined with previous studies of anti-leukemic compounds from cyanobacteria with emphasis to reveal common features in strains producing such activity. We report that cyanobacteria harbor specific anti-leukemic compounds since several studied strains induced apoptosis against AML cells but were inactive against non-malignant cells like hepatocytes. We noted that particularly benthic strains from the Baltic Sea, such as Anabaena sp., were especially potential AML apoptosis inducers. Taken together, this review and re-analysis of data demonstrates the power of maintaining large culture collections for the search for novel bioactivities, and also how anti-AML activity in cyanobacteria can be revealed by relatively simple and low-cost assays.
Hendriks, Hans R; Govaerts, Anne-Sophie; Fichtner, Iduna; Burtles, Sally; Westwell, Andrew D; Peters, Godefridus J
2017-07-11
The European NCI compounds programme, a joint initiative of the EORTC Research Branch, Cancer Research Campaign and the US National Cancer Institute, was initiated in 1993. The objective was to help the NCI in reducing the backlog of in vivo testing of potential anticancer compounds, synthesised in Europe that emerged from the NCI in vitro 60-cell screen. Over a period of more than twenty years the EORTC-Cancer Research Campaign panel reviewed ∼2000 compounds of which 95 were selected for further evaluation. Selected compounds were stepwise developed with clear go/no go decision points using a pharmacologically directed programme. This approach eliminated quickly compounds with unsuitable pharmacological properties. A few compounds went into Phase I clinical evaluation. The lessons learned and many of the principles outlined in the paper can easily be applied to current and future drug discovery and development programmes. Changes in the review panel, restrictions regarding numbers and types of compounds tested in the NCI in vitro screen and the appearance of targeted agents led to the discontinuation of the European NCI programme in 2017 and its transformation into an academic platform of excellence for anticancer drug discovery and development within the EORTC-PAMM group. This group remains open for advice and collaboration with interested parties in the field of cancer pharmacology.
Al-Said, Mansour S; Ghorab, Mostafa M; Nissan, Yassin M
2012-07-02
Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3-19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7) comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.
Anti-cancer activity of compounds from Bauhinia strychnifolia stem.
Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya
2013-11-25
The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.
Ellagitannins in Cancer Chemoprevention and Therapy
Ismail, Tariq; Calcabrini, Cinzia; Diaz, Anna Rita; Fimognari, Carmela; Turrini, Eleonora; Catanzaro, Elena; Akhtar, Saeed; Sestili, Piero
2016-01-01
It is universally accepted that diets rich in fruit and vegetables lead to reduction in the risk of common forms of cancer and are useful in cancer prevention. Indeed edible vegetables and fruits contain a wide variety of phytochemicals with proven antioxidant, anti-carcinogenic, and chemopreventive activity; moreover, some of these phytochemicals also display direct antiproliferative activity towards tumor cells, with the additional advantage of high tolerability and low toxicity. The most important dietary phytochemicals are isothiocyanates, ellagitannins (ET), polyphenols, indoles, flavonoids, retinoids, tocopherols. Among this very wide panel of compounds, ET represent an important class of phytochemicals which are being increasingly investigated for their chemopreventive and anticancer activities. This article reviews the chemistry, the dietary sources, the pharmacokinetics, the evidence on chemopreventive efficacy and the anticancer activity of ET with regard to the most sensitive tumors, as well as the mechanisms underlying their clinically-valuable properties. PMID:27187472
Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents
Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua
2016-01-01
Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273
Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean
2016-09-01
The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.
Landis-Piwowar, Kristin; Chen, Di; Foldes, Robert; Chan, Tak-Hang; Dou, Qing Ping
2013-01-01
Introduction Over the past three years numerous patents and patent applications have been published relating to scientific advances in the use of the green tea polyphenol epigallocatechin gallate (EGCG) (the most abundant, and bioactive compound in green tea) and its analogs as anticancer agents. EGCG affects multiple molecular targets involved in cancer cell proliferation and survival; however, polyphenolic catechins, such as EGCG, generally exhibit poor oral bioavailability. Since the anticancer activity of polyphenols largely depends on their susceptibility to biotransformation reactions, numerous EGCG derivatives, analogs and prodrugs have been designed to improve the stability, bioavailability and anticancer potency of the native compound. Areas covered This review focuses on the applications of EGCG and its analogs, derivatives and prodrugs in the prevention and treatment of human cancers. A comprehensive description of patents related to EGCG and its derivatives, analogs and prodrugs and their uses as anticancer agents is included. Expert opinion EGCG targets multiple essential survival proteins and pathways in human cancer cells. Because it is unstable physiologically, numerous alterations to the EGCG molecule have been patented, either to improve the integrity of the native compound or to generate a more stable yet similarly efficacious molecule. EGCG and its derivatives, analogs and prodrugs could be developed into future drugs for chemoprevention, chemosensitization, radiosensitization and/or cancer interception. PMID:23230990
Manikandan, R; Beulaja, M; Arulvasu, C; Sellamuthu, S; Dinesh, D; Prabhu, D; Babu, G; Vaseeharan, B; Prabhu, N M
2012-02-01
The most practical approach to reduce morbidity and mortality of cancer is to delay the process of carcinogenesis by usage of anticancer agents. This necessitates that safer compounds are to be critically examined for anticancer activity especially, those derived from natural sources. A spice commonly found in India and the surrounding regions, is turmeric, derived from the rhizome of Curcuma longa and the major active component is a phytochemical termed curcumin. Green tea is one of the most popular beverages used worldwide, produced from the leaves of evergreen plant Camellia sinensis and the major active ingredients are polyphenolic compounds known as catechins. In this study, synergistic anticancer activity of curcumin and catechin was evaluated in human colon adenocarcinoma HCT 15, HCT 116, and human larynx carcinoma Hep G-2 cell lines. Although, both curcumin or catechin inhibited the growth of above cell lines, interestingly, in combination of both these compounds highest level of growth control was observed. The anticancer activity shown is due to cytotoxicity, nuclear fragmentation as well as condensation, and DNA fragmentation associated with the appearance of apoptosis. These results suggest that curcumin and catechin in combination can inhibit the proliferation of HCT 15, HCT 116, as well as Hep G-2 cells efficiently through induction of apoptosis. Copyright © 2011 Wiley Periodicals, Inc.
Anticancer activity and anti-inflammatory studies of 5-aryl-1,4-benzodiazepine derivatives.
Sandra, Cortez-Maya; Eduardo, Cortes Cortes; Simon, Hernandez-Ortega; Teresa, Ramirez Apan; Antonio, Nieto Camacho; Lijanova, Irina V; Marcos, Martinez-Garcia
2012-07-01
A series of 5-aryl-1,4-benzodiazepines with chloro- or fluoro-substituents in the second ring have been synthesized and their anti-inflammatory, myeloperoxidase and anticancer properties studied. The synthesized compounds showed potential anti-inflammatory and anticancer activities, which were enhanced in the presence of a chloro-substituent in the second ring of the 5-aryl-1,4- benzodiazepine.
Synthesis and Evaluation of Cytotoxic Activity of Some Pyrroles and Fused Pyrroles.
Fatahala, Samar S; Mohamed, Mosaad S; Youns, Mahmoud; Abd-El Hameed, Rania H
2017-01-01
Pyrrole derivatives represent a very interesting class as biologically active compounds. The objective of our study was to investigate the cytotoxic and apoptotic effects and antioxidant activity of the newly synthesized pyrrole derivatives. A series of novel pyrroles and fused pyrroles (tetrahydroindoles, pyrrolopyrimidines, pyrrolopyridines and pyrrolotriazines) were synthesized and characterized using IR, 1H NMR, 13C NMR, MS and elemental analysis techniques. The antiproliferative activity of our synthesized compounds and their modulatory effect apoptotic pathway were investigated. The effect on cellular proliferation and viability was monitored by resazurin assay. Apoptotic effect was evaluated by caspase glo 3/7 assay. Synthesized compounds are then tested for their anticancer activities against three different cell lines representing three different tumor types, namely; the HepG-2 (Human hepatocellular liver carcinoma cell line), the human MCF-7 cell line (breast cancer) and the pancreatic resistant Panc-1 cells. Compounds Ia-e, IIe, and IXc, d showed a promising anti-cancer activity on all tested cell lines. Antioxidant and wound healing invasion assays were examined for promising anticancer candidate compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ramana Reddy, M. V.; Mallireddigari, Muralidhar R.; Pallela, Venkat R.; Cosenza, Stephen C.; Billa, Vinay K.; Akula, Balaiah; Venkata Subbaiah, D. R. C.; Bharathi, E. Vijaya; Padgaonkar, Amol; Lv, Hua; Gallo, James M.; Reddy, E. Premkumar
2013-01-01
A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-Amino-4-methoxyphenyl)-2-(2′,4′,6′-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used anti-mitotic agents. Mechanistic studies indicate that 6t and some other analogs disrupted microtubule formation, formation of mitotic spindles and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin indicating its binding site on tubulin. PMID:23750455
Upadhyay, Kuldip D; Dodia, Narsinh M; Khunt, Rupesh C; Chaniara, Ravi S; Shah, Anamik K
2018-03-08
A series of pyrano[3,2- c ]quinoline based structural analogues was synthesized using one-pot multicomponent condensation between 2,4-dihydroxy-1-methylquinoline, malononitrile, and diverse un(substituted) aromatic aldehydes. The synthesized compounds were evaluated for their anti-inflammatory and cytotoxicity activity. Initially, all the compounds were evaluated for the percent inhibition of cytokine release, and cytotoxicity activity and 50% inhibitory concentrations (IC 50 ) were also determined. Based on the primary results, it was further studied for their ability to inhibit TNF-α production in the human peripheral blood mononuclear cells (hPBMC) assay. The screening results revealed that compound 4c , 4f , 4i , and 4j were found most active candidates of the series against both anti-inflammatory and anticancer activity. The structure-activity relationship is discussed and suggested that 3-substitution on the aryl ring at C4 position of the pyrano[3,2- c ]quinolone structural motif seems to be an important position for both TNF-α and IL-6 inhibition and anticancer activity as well. However, structural diversity with electron withdrawing, electron donating, sterically hindered, and heteroaryl substitution sincerely affected both the inflammation and anticancer activities.
Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy?
Callaghan, Richard; Luk, Frederick; Bebawy, Mary
2014-04-01
P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.
Ayers, Sloan; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Shen, Qi; Swanson, Steven M; Matthew, Susan; Carcache de Blanco, Esperanza J; Wani, Mansukh C; Darveaux, Blaise A; Pearce, Cedric J; Oberlies, Nicholas H
2012-01-01
Two new xanthone-anthraquinone heterodimers, acremoxanthone C (5) and acremoxanthone D (2), have been isolated from an extract of an unidentified fungus of the order Hypocreales (MSX 17022) by bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Two known related compounds, acremonidin A (4) and acremonidin C (3) were also isolated, as was a known benzophenone, moniliphenone (1). The structures of these isolates were determined via extensive use of spectroscopic and spectrometric tools in conjunction with comparisons to the literature. All compounds (1-5) were evaluated against a suite of biological assays, including those for cytotoxicity, inhibition of the 20S proteasome, mitochondrial transmembrane potential and nuclear factor-κB.
2014-04-01
conjugating enzymes . J. Biol. Chem. 270, 30408-30414. [66] Bertone-Johnson, E. R. (2009) Vitamin D and breast cancer . Ann. Epidemiol. 19, 462-467... cancer growth in a murine model of bone metastasis. Cancer Res. 70, 1835- 1844. 22 [68] Ohyama, Y., and Yamasaki, T. (2004) Eight cytochrome ...0697 TITLE: Enhancement of the efficacy of conventional anticancer compounds through the repression of SNAI proteins in aggressive breast cancer
Ihmaid, Saleh; Ahmed, Hany E. A.; Zayed, Mohamed F.
2018-01-01
Some novel anthranilate diamides derivatives 4a–e, 6a–c and 9a–d were designed and synthesized to be evaluated for their in vitro anticancer activity. Structures of all newly synthesized compounds were confirmed by infra-red (IR), high-resolution mass (HR-MS) spectra, 1H nuclear magnetic resonance (NMR) and 13C nuclear magnetic resonance (NMR) analyses. Cytotoxic screening was performed according to (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT) assay method using erlotinib as a reference drug against two different types of breast cancer cells. The molecular docking study was performed for representative compounds against two targets, epidermal growth factor receptor (EGFR) and tubulin in colchicine binding site to assess their binding affinities in order to rationalize their anticancer activity in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticancer activity for these newly synthesized compounds. Biological data for most of the anthranilate diamide showed excellent activity with nanomolar or sub nanomolar half maximal inhibitory concentration (IC50) values against tumor cells. EGFR tyrosine kinase (TK) inhibition assay, tubulin inhibition assay and apoptosis analysis were performed for selected compounds to get more details about their mechanism of action. Extensive structure activity relationship (SAR) analyses were also carried out. PMID:29385728
Potential Anticancer Properties of Osthol: A Comprehensive Mechanistic Review
Shokoohinia, Yalda; Jafari, Fataneh; Mohammadi, Zeynab; Bazvandi, Leili; Hosseinzadeh, Leila; Chow, Nicholas; Bhattacharyya, Piyali; Farzaei, Mohammad Hosein; Farooqi, Ammad Ahmad; Nabavi, Seyed Mohammad; Bishayee, Anupam
2018-01-01
Cancer is caused by uncontrolled cell proliferation which has the potential to occur in different tissues and spread into surrounding and distant tissues. Despite the current advances in the field of anticancer agents, rapidly developing resistance against different chemotherapeutic drugs and significantly higher off-target effects cause millions of deaths every year. Osthol is a natural coumarin isolated from Apiaceaous plants which has demonstrated several pharmacological effects, such as antineoplastic, anti-inflammatory and antioxidant properties. We have attempted to summarize up-to-date information related to pharmacological effects and molecular mechanisms of osthol as a lead compound in managing malignancies. Electronic databases, including PubMed, Cochrane library, ScienceDirect and Scopus were searched for in vitro, in vivo and clinical studies on anticancer effects of osthol. Osthol exerts remarkable anticancer properties by suppressing cancer cell growth and induction of apoptosis. Osthol’s protective and therapeutic effects have been observed in different cancers, including ovarian, cervical, colon and prostate cancers as well as chronic myeloid leukemia, lung adenocarcinoma, glioma, hepatocellular, glioblastoma, renal and invasive mammary carcinoma. A large body of evidence demonstrates that osthol regulates apoptosis, proliferation and invasion in different types of malignant cells which are mediated by multiple signal transduction cascades. In this review, we set spotlights on various pathways which are targeted by osthol in different cancers to inhibit cancer development and progression. PMID:29301373
Dara, Ajay; Sangamwar, Abhay T
2015-01-01
The article reported an in-depth comparative technology analysis of 1708 Anti-cancer patents from top 20 international universities and leading 10 Indian public funded organization and research institutes. The study segregated pioneer universities vs. technologies used in the field of Anticancer research at a level of drug discovery, development, diagnosis and treatment, which are illustrated in the form of novel substantive patent landscape maps. The reported competitive intelligent maps identified genetics, composition and synthetic compounds as dominating technologies; followed by natural extracts, combination and drug delivery systems as upcoming technologies. The least number of patents were reported by surgical apparatus, targeted therapy and animal models. In addition, the study analysed the key technologies followed by Indian universities in comparison to the international universities, to identify the overlooked technologies by the Indian public funded institutes. In an ever changing competitive world, it is essential for every university to have their own research plan and thrust areas; but at the same time, it is equally important for any organisation to have an idea of their competitor's research plan as well. So, the article suggested Indian institutes to focus on the latest emerging Anti-cancer technology trends, which are in practice by the international universities. Concurrently, this study may be a landmark indication for Indian public funded universities and institutes, calling for a U-turn from their traditional approaches.
Chetan, Bhadaliya; Bunha, Mahesh; Jagrat, Monika; Sinha, Barij Nayan; Saiko, Philipp; Graser, Geraldine; Szekeres, Thomas; Raman, Ganapathy; Rajendran, Praveen; Moorthy, Dhatchana; Basu, Arijit; Jayaprakash, Venkatesan
2010-07-01
Six compounds were synthesized with piperazine in linker region and hydroxamate as Zinc Binding Group (ZBG). They were screened against three cancer cell-lines (NCIH460; HCT116; U251). Compounds 5c and 5f with GI(50) value of 9.33+/-1.3 microM and 12.03+/-4 microM, respectively, were tested for their inhibitory potential on hHDAC8. Compound 5c had IC(50) of 33.67 microM. Compounds were also screened for their anticancer activity against HL60 human promyelocytic leukemia cell line due to the presence of pharmacophoric features of RR inhibitors in them. Compound 5c had IC(50) of 0.6 microM at 48h. 2010 Elsevier Ltd. All rights reserved.
Wright, Elise P.; Padula, Matthew P.; Higgins, Vincent J.; Aldrich-Wright, Janice R.; Coorssen, Jens R.
2014-01-01
Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures. Studies have shown that 56MESS is a novel compound which, unlike cisplatin, does not covalently bind to DNA, but is more toxic to many cell lines and active against cisplatin-resistant cells. Furthermore, a transcriptional study of 56MESS in yeast has implicated iron and copper metabolism as well as the general yeast stress response following challenge with 56MESS. Beyond this, the cytotoxicity of 56MESS remains largely uncharacterised. Here, yeast was used as a model system to facilitate a systems-level comparison between 56MESS and cisplatin. Preliminary experiments indicated that higher concentrations than seen in similar studies be used. Although a DNA interaction with 56MESS had been theorized, this work indicated that an effect on protein synthesis/ degradation was also implicated in the mechanism(s) of action of this novel anticancer compound. In contrast to cisplatin, the different mechanisms of action that are indicated for 56MESS suggest that this compound could overcome cisplatin resistance either as a stand-alone treatment or a synergistic component of therapeutics. PMID:28250393
A phenotypic screening approach to identify anticancer compounds derived from marine fungi.
Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F
2014-04-01
This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner.
Mansoor, Tayyab A; Borralho, Pedro M; Dewanjee, Saikat; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U
2013-09-16
Tabernaemontana elegans is a medicinal plant used in African traditional medicine to treat several ailments including cancer. The aims of the present study were to identify anti-cancer compounds, namely apoptosis inducers, from Tabernaemontana elegans, and hence to validate its usage in traditional medicine. Six alkaloids, including four monomeric indole (1-3, and 6) and two bisindole (4 and 5) alkaloids, were isolated from the methanolic extract of Tabernaemontana elegans roots. The structures of these compounds were characterized by 1D and 2D NMR spectroscopic and mass spectrometric data. Compounds 1-6 along with compound 7, previously isolated from the leaves of the same species, were evaluated for in vitro cytotoxicity against HCT116 human colon carcinoma cells by the MTS metabolism assay. The cytotoxicity of the most promising compounds was corroborated by Guava-ViaCount flow cytometry assays. Selected compounds were next studied for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. Among the tested compounds (1-7), the bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were found to be cytotoxic to HCT116 cells at 20 µM, with compound 5 being more cytotoxic than the positive control 5-Fluorouracil (5-FU), at a similar dose. In fact, even at 0.5 µM, compound 5 was more potent than 5-FU. Compounds 4 and 5 induced characteristic patterns of apoptosis in HCT116 cancer cells including, cell shrinkage, condensation, fragmentation of the nucleus, blebbing of the plasma membrane and chromatin condensation. Further, general caspase-3-like activity was increased in cells exposed to compounds 4 and 5, corroborating the nuclear morphology evaluation assays. Bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were characterized as potent apoptosis inducers in HCT116 human colon carcinoma cells and as possible lead/scaffolds for the development of anti-cancer drugs. This study substantiates the usage of Tabernaemontana elegans in traditional medicine to treat cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.
Kamal, Ahmed; Reddy, Vangala Santhosh; Karnewar, Santosh; Chourasiya, Sumit S; Shaik, Anver Basha; Kumar, G Bharath; Kishor, Chandan; Reddy, M Kashi; Narasimha Rao, M P; Nagabhushana, Ananthamurthy; Ramakrishna, Kallaganti V S; Addlagatta, Anthony; Kotamraju, Srigiridhar
2013-12-01
A library of imidazopyridine-oxindole conjugates was synthesised and investigated for anticancer activity against various human cancer cell lines. Some of the tested compounds, such as 10 a, 10 e, 10 f, and 10 k, exhibited promising antiproliferative activity with GI50 values ranging from 0.17 to 9.31 μM. Flow cytometric analysis showed that MCF-7 cells treated by these compounds arrested in the G2 /M phase of the cell cycle in a concentration-dependent manner. More particularly, compound 10 f displayed a remarkable inhibitory effect on tubulin polymerisation. All the compounds depolarised mitochondrial membrane potential and caused apoptosis. These results are further supported by the decreased phosphorylation of Akt at Ser473. Studies on embryonic development revealed that the lead compounds 10 f and 10 k caused delay in the development of zebra fish embryos. Docking of compound 10 f with tubulin protein suggested that the imidazo[1,2-a]pyridine moiety occupies the colchicine binding site of tubulin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morin, Pier; St-Coeur, Patrick-Denis; Doiron, Jérémie A; Cormier, Marc; Poitras, Julie J; Surette, Marc E; Touaibia, Mohamed
2017-07-06
Glioblastoma multiforme (GBM) is an aggressive brain tumor that correlates with short patient survival and for which therapeutic options are limited. Polyphenolic compounds, including caffeic acid phenethyl ester (CAPE, 1a ), have been investigated for their anticancer properties in several types of cancer. To further explore these properties in brain cancer cells, a series of caffeic and ferulic acid esters bearing additional oxygens moieties (OH or OCH₃) were designed and synthesized. (CAPE, 1a ), but not ferulic acid phenethyl ester (FAPE, 1b ), displayed substantial cytotoxicity against two glioma cell lines. Some but not all selected compounds derived from both (CAPE, 1a ) and (FAPE, 1b ) also displayed cytotoxicity. All CAPE-derived compounds were able to significantly inhibit 5-lipoxygenase (5-LO), however FAPE-derived compounds were largely ineffective 5-LO inhibitors. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds in cancer models and provides additional leads in the development of novel therapeutic strategies in gliomas.
Hung, Hsin-Yi; Ohkoshi, Emika; Goto, Masuo; Bastow, Kenneth F.; Nakagawa-Goto, Kyoko; Lee, Kuo-Hsiung
2012-01-01
Novel dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) analogs were designed and synthesized to improve their chemosensitizing action on KBvin (vincristine resistant nasopharyngeal carcinoma) cells, a multi-drug resistant cell line over-expressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic and bulky aliphatic side chains at the 2,2′-positions effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as paclitaxel (TAX), vincristine (VCR), and doxorubicin (DOX). DDB derivatives 16 and 23 showed 5–10 times more effective reversal ability than verapamil (VRP) for TAX and VCR. Analog 6 also exhibited five times greater chemosensitizing effect against DOX than VRP. Importantly, no cytotoxicity was observed by the active DDB analogs against both non-MDR and MDR cells, suggesting that DDB analogs serve as the novel lead compounds for the development of chemosensitizers to overcome MDR phenotype. The mechanism of action studies demonstrated that effective inhibition of P-glycoprotein by DDB analogs dramatically elevated cellular concentration of anticancer drugs. PMID:22612652
Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions.
Narvekar, Mayuri; Xue, Hui Yi; Eoh, June Young; Wong, Ho Lun
2014-08-01
Many existing chemotherapeutic drugs, repurposed drugs and newly developed small-molecule anticancer compounds have high lipophilicity and low water-solubility. Currently, these poorly water-soluble anticancer drugs (PWSAD) are generally solubilized using high concentrations of surfactants and co-solvents, which frequently lead to adverse side effects. In recent years, researchers have been actively exploring the use of nanotechnology as an alternative to the solvent-based drug solubilization approach. Several classes of nanocarrier systems (lipid-based, polymer-based and albumin-based) are widely studied for encapsulation and delivery of the existing and new PWSAD. These nanocarriers were also shown to offer several additional advantages such as enhanced tumour accumulation, reduced systemic toxicity and improved therapeutic effectiveness. In this article, the recent nanotechnological advances in PWSAD delivery will be reviewed. The barriers commonly encountered in the development of PWSAD nanoformulations (e.g. formulation issues and nanotoxicity issues) and the strategies to overcome these barriers will also be discussed. It is our goal to provide the pharmaceutical scientists and clinicians with more in-depth information about the nanodelivery approach, thus, more efficacious and safe PWSAD nanoformulations can be developed with improved translational success.
NASA Astrophysics Data System (ADS)
Andrew, Fartisincha P.; Ajibade, Peter A.
2018-03-01
Dithiocarbamates are versatile ligands able to stabilize wide range of metal ions in their various oxidation states with the partial double bond character of Csbnd N and Csbnd S of thioureide moiety. Variation of the substituents attached to the nitrogen atom of dithiocarbamate moiety generates various intermolecular interactions, which lead to different structural arrangement in the solid state. The presence of bulky substituents on the N atom obviates the supramolecular aggregation via secondary Msbnd S interactions whereas smaller substituents encourage such aggregation that results in their wide properties and applications. Over the past decades, the synthesis and structural studies of metal complexes of dithiocarbamates have received considerable attention as potential anticancer agents with various degree of DNA binding affinity and cytotoxicity and as single molecule precursors for the preparation of semiconductor nanocrystals. In this paper, we review the synthesis, structural studies, anticancer potency and the use of alkyl-phenyl dithiocarbamate complexes as precursors for the preparation of semiconductor nanocrystals. The properties of these compounds and activities are ascribed to be due to either the dithiocarbamate moieties, the nature or type of the substituents around the dithiocarbamate backbone and the central metal ions or combination of these factors.
Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang
2017-08-18
The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhang, Lin; Shan, Yuanyuan; Ji, Xingyue; Zhu, Mengyuan; Li, Chuansheng; Sun, Ying; Si, Ru; Pan, Xiaoyan; Wang, Jinfeng; Ma, Weina; Dai, Bingling; Wang, Binghe; Zhang, Jie
2017-01-01
Receptor tyrosine kinases (RTKs), especially VEGFR-2, TIE-2, and EphB4, play a crucial role in both angiogenesis and tumorigenesis. Moreover, complexity and heterogeneity of angiogenesis make it difficult to treat such pathological traits with single-target agents. Herein, we developed two classes of multi-target RTK inhibitors (RTKIs) based on the highly conserved ATP-binding pocket of VEGFR-2/TIE-2/EphB4, using previously reported BPS-7 as a lead compound. These multi-target RTKIs exhibited considerable potential as novel anti-angiogenic and anticancer agents. Among them, QDAU5 displayed the most promising potency and selectivity. It significantly suppressed viability of EA.hy926 and proliferation of several cancer cells. Further investigations indicated that QDAU5 showed high affinity to VEGFR-2 and reduced the phosphorylation of VEGFR-2. We identified QDAU5 as a potent multiple RTKs inhibitor exhibiting prominent anti-angiogenic and anticancer potency both in vitro and in vivo. Moreover, quinazolin-4(3H)-one has been identified as an excellent hinge binding moiety for multi-target inhibitors of angiogenic VEGFR-2, Tie-2, and EphB4. PMID:29285210
Kalyanaraman, Balaraman; Cheng, Gang; Hardy, Micael; Ouari, Olivier; Sikora, Adam; Zielonka, Jacek; Dwinell, Michael B
2017-12-01
Metformin, one of the most widely prescribed antidiabetic drugs in the world, is being repurposed as a potential drug in cancer treatment. Epidemiological studies suggest that metformin exerts anticancer effects in diabetic patients with pancreatic cancer. However, at typical antidiabetic doses the bioavailability of metformin is presumably too low to exert antitumor effects. Thus, more potent analogs of metformin are needed in order to increase its anticancer efficacy. To this end, a new class of mitochondria-targeted metformin analogs (or mito-metformins) containing a positively-charged lipophilic triphenylphosphonium group was synthesized and tested for their antitumor efficacy in pancreatic cancer cells. Results indicate that the lead compound, mito-metformin 10 , was nearly 1000-fold more potent than metformin in inhibiting mitochondrial complex I activity, inducing reactive oxygen species (superoxide and hydrogen peroxide) that stimulate redox signaling mechanisms, including the activation of adenosinemonophosphate kinase and inhibition of proliferation of pancreatic cancer cells. The potential use of the low-temperature electron paramagnetic resonance technique in assessing the role of mitochondrial complexes including complex I in tumor regression in response to metformin and mito-metformins in the in vivo setting is discussed.
Transportan 10 improves the anticancer activity of cisplatin.
Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić
2016-05-01
The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a complex. Additionally, the complex was relatively safe for non-cancer cells. What is more, TP10 also produced an anticancer effect on HeLa and OS143B cell lines.
Li, Xiu-Mei; Luo, Xue-Gang; He, Jun-Fang; Wang, Nan; Zhou, Hao; Yang, Pei-Long; Zhang, Tong-Cun
2018-03-01
Hypericum ascyron L. (Great St. Johnswort), which belongs to the Hypericaceae family, has been used for the treatment of hematemesis, metrorrhagia, rheumatism, swelling, stomach ache, abscesses, dysentery and irregular menstruation for >2,000 years in China. The aim of the present study was to clarify the anticancer activity compounds from H. ascyron L. and the underlying molecular mechanism. Anticancer activity of H. ascyron L. extract was evaluated using an MTT assay. To confirm the anticancer mechanism of activity compounds, Hoechst 33258, Annexin V-fluorescein isothiocyanate/propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate, rhodamine 123 staining and caspase-3 activity analysis were performed. The results demonstrated that the anti-proliferative action of the mixture of kaempferol 3-O-β-(2″-acetyl) galactopyranoside (K) and quercetin (Q) (molar ratio, 1:1) was significantly increased compared with either of these two compounds separately, and the active fraction of the H. ascyron L. extract |(HALE). HALE, indicating that the anti-proliferative function of H. ascyron L. may be a synergic effect of K and Q. Furthermore, the inhibitory effect of KQ on the growth of HeLa cells was mediated by the induction of apoptosis. To the best of our knowledge, the present study is the first to identify that KQ exhibits significant anti-proliferation activity on HeLa cells via the apoptotic pathway, and is also the first to evaluate the anticancer potential of H. ascyron L. The results of the present study may provide a rational base for the use of H. ascyron L. in the clinic, and shed light on the development of novel anticancer drugs.
Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2017-06-01
Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.
NASA Astrophysics Data System (ADS)
Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed
2015-03-01
This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.
Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.
Barbero, Margherita; Artuso, Emma; Prandi, Cristina
2018-01-01
Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Taira, Nozomi; Nguyen, Binh Cao Quan; Tawata, Shinkichi
2017-01-14
PAK1 (p21-activated kinase 1) is an emerging target for the treatment of hair loss (alopecia) and cancer; therefore, the search for PAK1 blockers to treat these PAK1-dependent disorders has received much attention. In this study, we evaluated the anti-alopecia and anticancer effects of PAK1 inhibitors isolated from Alpinia zerumbet (alpinia) in cell culture. The bioactive compounds isolated from alpinia were found to markedly promote hair cell growth. Kaempferol-3- O -β-d-glucuronide (KOG) and labdadiene, two of the isolated compounds, increased the proliferation of human follicle dermal papilla cells by approximately 117%-180% and 132%-226%, respectively, at 10-100 μM. MTD (2,5-bis(1 E ,3 E ,5 E )-6-methoxyhexa-1,3,5-trien-1-yl)-2,5-dihydrofuran) and TMOQ (( E )-2,2,3,3-tetramethyl-8-methylene-7-(oct-6-en-1-yl)octahydro-1 H -quinolizine) showed growth-promoting activity around 164% and 139% at 10 μM, respectively. The hair cell proliferation induced by these compounds was significantly higher than that of minoxidil, a commercially available treatment for hair loss. Furthermore, the isolated compounds from alpinia exhibited anticancer activity against A549 lung cancer cells with IC 50 in the range of 67-99 μM. Regarding the mechanism underlying their action, we hypothesized that the anti-alopecia and anticancer activities of these compounds could be attributed to the inhibition of the oncogenic/aging kinase PAK1.
Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects.
Fedorov, Sergey N; Ermakova, Svetlana P; Zvyagintseva, Tatyana N; Stonik, Valentin A
2013-12-02
Many marine-derived polysaccharides and their analogues have been reported as showing anticancer and cancer preventive properties. These compounds demonstrate interesting activities and special modes of action, differing from each other in both structure and toxicity profile. Herein, literature data concerning anticancer and cancer preventive marine polysaccharides are reviewed. The structural diversity, the biological activities, and the molecular mechanisms of their action are discussed.
NASA Astrophysics Data System (ADS)
Hanif, Muhammad; Meier, Samuel; Nazarov, Alexey; Risse, Julie; Legin, Anton; Casini, Angela; Jakupec, Michael; Keppler, Bernhard; Hartinger, Christian
2013-10-01
The synthesis and in vitro cytotoxicity of a series of RuII(arene) complexes with carbohydrate-derived phosphite ligands and various arene co-ligands is described. The arene ligand has a strong influence on the in vitro anticancer activity of this series of compounds, which correlates fairly well with cellular accumulation. The most lipophilic compound bearing a biphenyl moiety and a cyclohexylidene-protected carbohydrate is the most cytotoxic with unprecedented IC50 values for the compound class in three human cancer cell lines. This compound shows reactivity to the DNA model nucleobase 9-ethylguanine, but does not alter the secondary structure of plasmid DNA indicating that other biological targets are responsible for its cytotoxic effect.
Novel platinum compounds and nanoparticles as anticancer agents.
Sarkar, Arindam
2018-01-01
Since the approval of cisplatin in 1979, platinum-based drugs have been regularly used in cancer chemotherapy as a first-line treatment or with the combination of other nonplatinum drugs. Subsequent approval of second- and third-generation drugs such as carboplatin and oxaliplatin respectively, has widened the therapeutic achievement of platinum compounds. There are few other platinum drugs approved recently and many other new drugs as well as the formulations of the old ones are going through clinical trials now. Considering the astonishing achievement of these drugs, analyses on the overall scenario of the patent applications on platinum compounds have become the priority to the scientific community. This review summarizes the published patent applications on the novel platinum anticancer compounds from 2012 to 2017 (August).
NASA Astrophysics Data System (ADS)
Banuppriya, Govindharasu; Sribalan, Rajendran; Padmini, Vediappen
2018-03-01
Curcumin-sulfonamide hybrids (4a-e) were synthesized and their in vitro antioxidant, anti-inflammatory and anticancer activities were studied. The synthesized compounds showed a very good potent activity towards antioxidant and anti-inflammatory studies rather than its parent as well as standard. These compounds have exhibited an excellent toxicity effect to the cancer cell lines such as A549 and AGS. The compounds 4a and 4c have showed good anticancer activity than curcumin. The molecular docking studies were also performed against various Epidermal Growth Factor Receptor (EGFR) enzymes. The DFT calculations were also done in order to support the docking results.
Gakh, Andrei A.; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A.; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V.
2013-01-29
The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. ##STR00001## In particular, the invention relates N-substituted derivatives of 4-(hetero)aryl-1,2,5-oxadiazol-3-yl amines having the structural Formula (I) and (II), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. Meaning of R1 and R2 in the Formula (I) and (II) are defined in claim 1. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.
Alam, Sarfaraz; Khan, Feroz
2014-01-01
Due to the high mortality rate in India, the identification of novel molecules is important in the development of novel and potent anticancer drugs. Xanthones are natural constituents of plants in the families Bonnetiaceae and Clusiaceae, and comprise oxygenated heterocycles with a variety of biological activities along with an anticancer effect. To explore the anticancer compounds from xanthone derivatives, a quantitative structure activity relationship (QSAR) model was developed by the multiple linear regression method. The structure–activity relationship represented by the QSAR model yielded a high activity–descriptors relationship accuracy (84%) referred by regression coefficient (r2=0.84) and a high activity prediction accuracy (82%). Five molecular descriptors – dielectric energy, group count (hydroxyl), LogP (the logarithm of the partition coefficient between n-octanol and water), shape index basic (order 3), and the solvent-accessible surface area – were significantly correlated with anticancer activity. Using this QSAR model, a set of virtually designed xanthone derivatives was screened out. A molecular docking study was also carried out to predict the molecular interaction between proposed compounds and deoxyribonucleic acid (DNA) topoisomerase IIα. The pharmacokinetics parameters, such as absorption, distribution, metabolism, excretion, and toxicity, were also calculated, and later an appraisal of synthetic accessibility of organic compounds was carried out. The strategy used in this study may provide understanding in designing novel DNA topoisomerase IIα inhibitors, as well as for other cancer targets. PMID:24516330
Li, Sen; Lei, Yu; Jia, Yingjie; Li, Na; Wink, Michael; Ma, Yonggang
2011-12-15
Over-expression of P-gp, MRP1 and BCRP in tumor cells is one of the important mechanisms leading to multidrug resistance (MDR), which impairs the efficacy of chemotherapy. P-gp, MRP1 and BCRP are ABC (ATP-Binding Cassette) transporters, which can expel a variety of lipophilic anti-cancer drugs and protect tumor cells. During a screening of MDR reversal agents among alkaloids of various structural types, a piperidine alkaloid, piperine (a main piperidine alkaloid in Piper nigurm) was identified as an inhibitor. Piperine can potentiate the cytotoxicity of anti-cancer drugs in resistant sublines, such as MCF-7/DOX and A-549/DDP, which were derived from MCF-7 and A-549 cell lines. At a concentration of 50 μM piperine could reverse the resistance to doxorubicin 32.16 and 14.14 folds, respectively. It also re-sensitized cells to mitoxantrone 6.98 folds. In addition, long-term treatment of cells by piperine inhibits transcription of the corresponding ABC transporter genes. These results suggest that piperine can reverse MDR by multiple mechanisms and it may be a promising lead compound for future studies. Copyright © 2011 Elsevier GmbH. All rights reserved.
Anticancer Vitamin K3 Analogs: A Review.
Badave, Kirti D; Khan, Ayesha A; Rane, Sandhya Y
2016-01-01
Menadione (Vitamin K3) comprises of 1,4-naphthoquinone (NQ) moiety that can form redox isomers such as napthosemiquinone (NSQ) and catechol by accepting one or two electrons, respectively. The quinone redox cycling ability leads to the generation of "reactive oxygen species" (ROS) as well as arylation reactions, which are of biological relevance. This ability can be modulated with the help of suitable derivatization. A pharmacophore can be appended at suitable position of Vitamin K3 to have a synergistic or additive effect. In the present review, an attempt has been made to accrue such derivatives modified at 1 or 2 position and evaluated for their cytotoxicity activity on different series of human cancer cell lines such as HeLa, HL-60 and MCF- 7 etc. Production of reactive oxygen species (ROS) and mitochondrial dysfunction caused by Vitamin K3 derivatives leads to apoptosis and tumor inhibition. Recently, the CR-108 compound has shown to exhibit oxidative path together with non-oxidative phosphorylation of p38 MAP kinase in human breast cancer cells. Thus the chemical-biological interactions have been discussed which can be further extrapolated for the development of a potent anticancer drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Preclinical Models for Investigation of Herbal Medicines in Liver Diseases: Update and Perspective
Tan, Hor-Yue; San-Marina, Serban; Wang, Ning; Hong, Ming; Li, Sha; Li, Lei; Cheung, Fan; Wen, Xiao-Yan; Feng, Yibin
2016-01-01
Liver disease results from a dynamic pathological process associated with cellular and genetic alterations, which may progress stepwise to liver dysfunction. Commonly, liver disease begins with hepatocyte injury, followed by persistent episodes of cellular regeneration, inflammation, and hepatocyte death that may ultimately lead to nonreversible liver failure. For centuries, herbal remedies have been used for a variety of liver diseases and recent studies have identified the active compounds that may interact with liver disease-associated targets. Further study on the herbal remedies may lead to the formulation of next generation medicines with hepatoprotective, antifibrotic, and anticancer properties. Still, the pharmacological actions of vast majority of herbal remedies remain unknown; thus, extensive preclinical studies are important. In this review, we summarize progress made over the last five years of the most commonly used preclinical models of liver diseases that are used to screen for curative herbal medicines for nonalcoholic fatty liver disease, liver fibrosis/cirrhosis, and liver. We also summarize the proposed mechanisms associated with the observed liver-protective, antifibrotic, and anticancer actions of several promising herbal medicines and discuss the challenges faced in this research field. PMID:26941826
Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A
2015-11-03
In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.
Anticancer activity of Carica papaya: a review.
Nguyen, Thao T T; Shaw, Paul N; Parat, Marie-Odile; Hewavitharana, Amitha K
2013-01-01
Carica papaya is widely cultivated in tropical and subtropical countries and is used as food as well as traditional medicine to treat a range of diseases. Increasing anecdotal reports of its effects in cancer treatment and prevention, with many successful cases, have warranted that these pharmacological properties be scientifically validated. A bibliographic search was conducted using the key words "papaya", "anticancer", and "antitumor" along with cross-referencing. No clinical or animal cancer studies were identified and only seven in vitro cell-culture-based studies were reported; these indicate that C. papaya extracts may alter the growth of several types of cancer cell lines. However, many studies focused on specific compounds in papaya and reported bioactivity including anticancer effects. This review summarizes the results of extract-based or specific compound-based investigations and emphasizes the aspects that warrant future research to explore the bioactives in C. papaya for their anticancer activities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.
Lemieszek, Marta; Rzeski, Wojciech
2012-01-01
Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known.
Synthesis and evaluation of curcumin-related compounds for anticancer activity.
Wei, Xingchuan; Du, Zhi-Yun; Zheng, Xi; Cui, Xiao-Xing; Conney, Allan H; Zhang, Kun
2012-07-01
Sixty-one curcumin-related compounds were synthesized and evaluated for their anticancer activity toward cultured prostate cancer PC-3 cells, pancreas cancer Panc-1 cells and colon cancer HT-29 cells. Inhibitory effects of these compounds on the growth of PC-3, Panc-1 and HT-29 cells were determined by the MTT assay. Compounds E10, F10, FN1 and FN2 exhibited exceptionally potent inhibitory effects on the growth of cultured PC-3, Panc-1 and HT-29 cells. The IC(50) for these compounds was lower than 1 μM in all three cell lines. E10 was 72-, 46- and 117-fold more active than curcumin for inhibiting the growth of PC-3, Panc-1 and HT-29 cells, respectively. F10 was 69-, 34- and 72-fold more active than curcumin for inhibiting the growth of PC-3, Panc-1 and HT-29 cells, respectively. FN1 and FN2 had about the same inhibitory effect as E10 and F10 toward Panc-1 cells but were less active than E10 and F10 toward PC-3 and HT-29 cells. The active compounds were potent stimulators of apoptosis. The present study indicates that E10, F10, FN1 and FN2 may have useful anticancer activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Ferreira, Elthon G; Torres, Maria da Conceição M; da Silva, Alison B; Colares, Larissa L F; Pires, Karine; Lotufo, Tito M C; Silveira, Edilberto R; Pessoa, Otília D L; Costa-Lotufo, Leticia V; Jimenez, Paula C
2016-09-01
Saint Peter and Saint Paul's Archipelago is a collection of 15 islets and rocks remotely located in the equatorial Atlantic Ocean. In this particular site, the present project intended to assess the biodiversity and biotechnological potential of bacteria from the actinomycete group. This study presents the first results of this assessment. From 21 sediment samples, 268 strains were isolated and codified as BRA followed by three numbers. Of those, 94 strains were grown in liquid media and submitted to chemical extractions with AcOEt (A), BuOH (B), and MeOH (M). A total of 224 extracts were screened for their cytotoxic activity and 41 were significantly active against HCT-116 cancer cells. The obtained IC 50 values ranged from 0.04 to 31.55 μg/ml. The HR-LC/MS dereplication analysis of the active extracts showed the occurrence of several known anticancer compounds. Individual compounds, identified using HR-MS combined with analysis of the AntiMarin database, included saliniketals A and B, piericidins A and C and glucopiericidin A, staurosporine, N-methylstaurosporine, hydroxydimethyl-staurosporine and N-carbamoylstaurosporine, salinisporamycin A, and rifamycins S and B. BRA-199, identified as Streptomyces sp., was submitted to bioassay-guided fractionation, leading to isolation of the bioactive piericidins A and C, glucopiericidin, and three known diketopiperazines, cyclo(l-Phe-trans-4-OH-l-Pro), cyclo(l-Phe-l-Pro), and cyclo(l-Trp-l-Pro). © 2016 Wiley-VHCA AG, Zürich.
Phytochemicals - A Novel and Prominent Source of Anti-cancer Drugs Against Colorectal Cancer.
Mahadevappa, Ravikiran; Kwok, Hang Fai
2017-01-01
Colorectal cancer (CRC) is a malignant disease whose incidence and mortality rates are greatly influenced by environmental factors. Under-treatment of CRC such as a poor diagnostic evaluation, less aggressive surgery, less intensive chemotherapy results in metastasizing of the primary tumor cells and recurrence of cancer. Prolonged chemotherapy treatment against cancer is hazardous to the patients, which also limits its use in cancer therapy. Current research in developing a novel anti-cancer agent, direct towards finding a better antimetastatic and an anti-invasive drug with reduced side effects. In this direction, plant derived chemical compounds or phytochemical act as a prominent source of new compounds for drug development. Phytochemicals have a multi-action and a multi-target capacity, and has gained attention among the research communities from last two decades. Epidemiological study shows a direct relationship between a diet and CRC development. A diet rich in plant based products such as vegetables, fruits and cereals is known to prevent CRC development. This review is an effort to explore more about the potential phytochemicals in CRC prevention and also in CRC treatment. Here, we have discussed few phytochemicals actively used in CRC research and are in clinical trials against CRC. We have explored more on some of these phytochemicals which can act as a source for new drug or can act as a lead compound for further modifications during the drug development against cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Elmegeed, Gamal A; Yahya, Shaymaa M M; Abd-Elhalim, Mervat M; Mohamed, Mervat S; Mohareb, Rafat M; Elsayed, Ghada H
2016-11-01
Anticancer agents consisting of hybrid molecules are used to improve effectiveness and diminish drug resistance. The current study aimed to introduce newly synthesized hetero-steroids of promising anticancer effects. Besides, the pro-apoptotic effects of new compounds were investigated extensively. Several pyrimidino-, triazolopyrimidino-, pyridazino-, and curcumin-steroid derivatives were synthesized, elucidated and confirmed using the spectral and analytical data. The synthesized hetero-steroids, compounds 9, 10, 11, 12, 13, 14, 15, 18, 20, 21, 22 and 24, were tested for their cytotoxic effects versus human breast cancer cells (MCF-7) using neutral red supravital dye uptake assay. Compound 24 (IC50=18μM) showed more inhibitory influence on MCF-7 growth. Using QRT-PCR (Quantitative real time-polymerase chain reaction), CCND1, Survivin, BCL-2, CDC2, P21 and P53, genes expression levels were investigated. The study results disclose that compounds 4, 7, 18, 24 knocked down the expression levels of CCND1, Survivin, BCL-2 and CDC2. However, P21 and P53 were up-regulated by compounds 21, 22. This study introduced promising pro-apoptotic anticancer agents acting through the modulation of key regulators of apoptosis and cell cycle genes. Copyright © 2016 Elsevier Inc. All rights reserved.
A review of molecular mechanisms of the anti-leukemic effects of phenolic compounds in honey.
Abubakar, Murtala B; Abdullah, Wan Zaidah; Sulaiman, Siti Amrah; Suen, Ang Boon
2012-11-15
Hematologic malignancies constitute about 9% of all new cases of cancers as reported via the GLOBOCAN series by International Agency for Research on Cancer (IARC) in 2008. So far, the conventional therapeutic and surgical approaches to cancer therapy have not been able to curtail the rising incidence of cancers, including hematological malignancies, worldwide. The last decade has witnessed great research interest in biological activities of phenolic compounds that include anticancer, anti-oxidation and anti-inflammation, among other things. A large number of anticancer agents combat cancer through cell cycle arrest, induction of apoptosis and differentiation, as well as through inhibition of cell growth and proliferation, or a combination of two or more of these mechanisms. Various phenolic compounds from different sources have been reported to be promising anticancer agents by acting through one of these mechanisms. Honey, which has a long history of human consumption both for medicinal and nutritional uses, contains a variety of phenolic compounds such as flavonoids, phenolic acids, coumarins and tannins. This paper presents a review on the molecular mechanisms of the anti-leukemic activity of various phenolic compounds on cell cycle, cell growth and proliferation and apoptosis, and it advocates that more studies should be conducted to determine the potential role of honey in both chemoprevention and chemotherapy in leukemia.
Discovery of new anticancer agents from higher plants
Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas
2012-01-01
1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049
Anticancer Pyrroloquinazoline LBL1 Targets Nuclear Lamins.
Li, Bingbing X; Chen, Jingjin; Chao, Bo; David, Larry L; Xiao, Xiangshu
2018-05-18
Target identification of bioactive compounds is critical for understanding their mechanism of action. We previously discovered a novel pyrroloquinazoline compound LBL1 with significant anticancer activity. However, its molecular targets remain to be established. Herein, we developed a clickable photoaffinity probe based on LBL1. Using extensive chemical, biochemical, and cellular studies with this probe and LBL1, we found that LBL1 targets nuclear lamins, which are type V intermediate filament (IF) proteins. Further studies showed that LBL1 binds to the coiled-coil domain of lamin A. These results revealed that IF proteins can also be targeted with appropriate small molecules besides two other cytoskeletal proteins actin filaments and microtubules, providing a novel avenue to investigate lamin biology and a novel strategy to develop distinct anticancer therapies.
Quinazoline derivatives as potential anticancer agents: a patent review (2007 - 2010).
Marzaro, Giovanni; Guiotto, Adriano; Chilin, Adriana
2012-03-01
Due to the increase in knowledge about cancer pathways, there is a growing interest in finding novel potential drugs. Quinazoline is one of the most widespread scaffolds amongst bioactive compounds. A number of patents and papers appear in the literature regarding the discovery and development of novel promising quinazoline compounds for cancer chemotherapy. Although there is a progressive decrease in the number of patents filed, there is an increasing number of biochemical targets for quinazoline compounds. This paper provides a comprehensive review of the quinazolines patented in 2007 - 2010 as potential anticancer agents. Information from articles published in international peer-reviewed journals was also included, to give a more exhaustive overview. From about 1995 to 2006, the anticancer quinazolines panorama has been dominated by the 4-anilinoquinazolines as tyrosine kinase inhibitors. The extensive researches conducted in this period could have caused the progressive reduction in the ability to file novel patents as shown in the 2007 - 2010 period. However, the growing knowledge of cancer-related pathways has recently highlighted some novel potential targets for therapy, with quinazolines receiving increasing attention. This is well demonstrated by the number of different targets of the patents considered in this review. The structural heterogeneity in the patented compounds makes it difficult to derive general pharmacophores and make comparisons among claimed compounds. On the other hand, the identification of multi-target compounds seems a reliable goal. Thus, it is reasonable that quinazoline compounds will be studied and developed for multi-target therapies.
Ur Rehman, Tanzeel; Khan, Arif-Ullah; Abbas, Azar; Hussain, Javid; Khan, Farman Ullah; Stieglitz, Kimberly; Ali, Shamsher
2018-03-01
In the present study, we describe various pharmacological effects and computational analysis of nepetolide, a tricyclic clerodane-type diterpene, isolated from Nepeta suavis . Nepetolide concentration-dependently (1.0-1000 µg/mL) exhibited 1,1-diphenyl,2-picrylhydrazyl free radical scavenging activity with maximum effect of 87.01 ± 1.85%, indicating its antioxidant potential, as shown by standard drug, ascorbic acid. It was moderately active against bacterial strain of Staphylococcus aureus . In brine shrimp's lethality model, nepetolide potently showed cytotoxic effect, with LC 50 value of 8.7 µg/mL. When evaluated for antitumor activity in potato disc tumor assay, nepetolide exerted tumor inhibitory effect of 56.5 ± 1.5% at maximum tested concentration of 1000 µg/mL. Nepetolide at 20 mg/kg reduced carrageenan-induced inflammation (P < .001 vs. saline group) in rat paw. Nepetolide dose-dependently (100-500 mg/kg) decreased acetic acid evoked writhes, as exhibited by diclofenac sodium. In-silico investigation of nepetolide was carried out against cyclooxygenase-2, epidermal growth factor receptor and lipoxygenase-2 targets. Virtual screening through Patchdock online docking server identified primarily hydrophobic interactions between ligand nepetolide and receptors proteins. Enhanced hydrogen bonding was predicted with Autodock showing 6-8 hydrogen bonds per target. These results indicate that nepetolide exhibits antioxidant, antibacterial, cytotoxic, anticancer, anti-inflammatory and analgesic activities and should be considered as a lead compound for developing drugs for the remedy of oxidative stress-induced disorders, microbial infections, cancers, inflammations and pain.
Kumar, Varun; Hong, Sam Y.; Maciag, Anna E.; Saavedra, Joseph E.; Adamson, Douglas H.; Prud'homme, Robert K.; Keefer, Larry K.; Chakrapani, Harinath
2009-01-01
Here we report the stabilization of the nitric oxide (NO) prodrugs and anti-cancer lead compounds, PABA/NO (O2-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and “Double JS-K” (1,5-bis{[1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato]-2,4-dinitrobenzene), through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione. Too rapid activation and NO release has been a major barrier to effective administration of this class of compounds. The nanoparticle stabilized PABA/NO from attack by glutathione as evidenced by a significant increase in time taken for 50% decomposition from 15 min (unformulated) to 5 h (formulated); in the case of Double JS-K, the 50% decomposition time was extended from 4.5 min (unformulated) to 40 min (formulated). The more hydrophobic PABA/NO produced more stable nanoparticles and correspondingly more extended release times in comparison with Double JS-K. The hydrophobic blocks of the polymer were either polystyrene or polylactide. Both blocks produced nanoparticles of approximately the same size and release kinetics. This combination of PEG-protected nanoparticles with sizes appropriate for cancer targeting by enhanced permeation and retention (EPR) and delayed release of NO may afford enhanced therapeutic benefit. PMID:20000791
Kumar, Varun; Hong, Sam Y; Maciag, Anna E; Saavedra, Joseph E; Adamson, Douglas H; Prud'homme, Robert K; Keefer, Larry K; Chakrapani, Harinath
2010-02-01
We report the stabilization of the nitric oxide (NO) prodrugs and anticancer lead compounds, PABA/NO (O(2)-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and "Double JS-K" 1,5-bis-{1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato}-2,4-dinitrobenzene, through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione. Too rapid activation and NO release has been a major barrier to effective administration of this class of compounds. The nanoparticle stabilized PABA/NO are protected from attack by glutathione as evidenced by a significant increase in time taken for 50% decomposition from 15 min (unformulated) to 5 h (formulated); in the case of Double JS-K, the 50% decomposition time was extended from 4.5 min (unformulated) to 40 min (formulated). The more hydrophobic PABA/NO produced more stable nanoparticles and correspondingly more extended release times in comparison with Double JS-K. The hydrophobic blocks of the polymer were either polystyrene or polylactide. Both blocks produced nanoparticles of approximately the same size and release kinetics. This combination of PEG-protected nanoparticles with sizes appropriate for cancer targeting by enhanced permeation and retention (EPR) and delayed release of NO may afford enhanced therapeutic benefit.
Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.
2017-01-01
Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates. PMID:28165013
NASA Astrophysics Data System (ADS)
Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.
2017-02-01
Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.
den Brok, Monique W J; Nuijen, Bastiaan; Hillebrand, Michel J X; Grieshaber, Charles K; Harvey, Michael D; Beijnen, Jos H
2005-09-01
C1311 (5-[[2-(diethylamino)ethyl]amino]-8-hydroxyimidazo [4,5,1-de]-acridin-6-one-dihydrochloride trihydrate) is the lead compound from the group of imidazoacridinones, a novel group of rationally designed anticancer agents. The pharmaceutical development of C1311 necessitated the availability of an assay for the quantification and purity determination of C1311 active pharmaceutical ingredient (API) and its pharmaceutical dosage form. A reversed-phase liquid chromatographic method (RP-LC) with ultraviolet (UV) detection was developed, consisting of separation on a C18 column with phosphate buffer (60 mM; pH 3 with 1 M citric acid)-acetonitrile-triethylamine (83:17:0.05, v/v/v) as the mobile phase and UV-detection at 280 nm. The method was found to be linear over a concentration range of 2.50-100 microg/mL, precise and accurate. Accelerated stress testing showed degradation products, which were well separated from the parent compound, confirming its stability-indicating capacity. Moreover, the use of LC-MS and on-line photo diode array detection enabled us to propose structures for four degradation products. Two of these products were also found as impurities in the API and more abundantly in an impure lot of API.
NASA Astrophysics Data System (ADS)
Kurşun Aktar, Bedriye Seda; Oruç-Emre, Emine Elçin; Demirtaş, Ibrahim; Yaglioglu, Ayse Sahin; Guler, Caglar; Adem, Sevki; Karaküçük Iyidoğan, Ayşegül
2017-12-01
The fluorinated chalcones were synthesized by Claisen-Schmidt condensation between 4‧-morpholineacetophenone and various fluorinated benzaldehydes in the presence of NaOH in methanol. The synthesized compounds [1-7] were evaluated their antiproliferative activity against HeLa and C6 cell lines. Among them, compounds 4 and 5 were determined to have anticancer activity against HeLa cells line (IC50 values of 7.74 and 6.10 μg/mL, respectively). The anticancer activity results were shown that compounds 3, and 6 had inhibitory against C6 cells (IC50 values of 12.80 and 4.16 μg/mL, respectively). The compounds 1 and 2 had high antiproliferative activity with non-cytotoxicity. All of the new compounds, except for compound 4 showed inhibition against the human isozyme hCA I with IC50 in the range of 0.5-1,16 mM. Pyruvate kinase M2 (PKM2) was effectively inhibited by compound 4 with IC50 = 26 μM.
Theoclitou, Maria-Elena; Aquila, Brian; Block, Michael H; Brassil, Patrick J; Castriotta, Lillian; Code, Erin; Collins, Michael P; Davies, Audrey M; Deegan, Tracy; Ezhuthachan, Jayachandran; Filla, Sandra; Freed, Ellen; Hu, Haiqing; Huszar, Dennis; Jayaraman, Muthusamy; Lawson, Deborah; Lewis, Paula M; Nadella, Murali V P; Oza, Vibha; Padmanilayam, Maniyan; Pontz, Timothy; Ronco, Lucienne; Russell, Daniel; Whitston, David; Zheng, Xiaolan
2011-10-13
Structure-activity relationship analysis identified (+)-N-(3-aminopropyl)-N-[1-(5-benzyl-3-methyl-4-oxo-[1,2]thiazolo[5,4-d]pyrimidin-6-yl)-2-methylpropyl]-4-methylbenzamide (AZD4877), from a series of novel kinesin spindle protein (KSP) inhibitors, as exhibiting both excellent biochemical potency and pharmaceutical properties suitable for clinical development. The selected compound arrested cells in mitosis leading to the formation of the monopolar spindle phenotype characteristic of KSP inhibition and induction of cellular death. A favorable pharmacokinetic profile and notable in vivo efficacy supported the selection of this compound as a clinical candidate for the treatment of cancer.
Preliminary in vitro evaluation of the anti-proliferative activity of guanylhydrazone derivatives.
França, Paulo H B; Da Silva-Júnior, Edeildo F; Aquino, Pedro G V; Santana, Antônio E G; Ferro, Jamylle N S; De Oliveira Barreto, Emiliano; Do Ó Pessoa, Cláudia; Meira, Assuero Silva; De Aquino, Thiago M; Alexandre-Moreira, Magna S; Schmitt, Martine; De Araújo-Júnior, João X
2016-03-01
Guanylhydrazones have shown promising antitumor activity in preclinical tumor models in several studies. In this study, we aimed at evaluating the cytotoxic effect of a series of synthetic guanylhydrazones. Different human tumor cell lines, by including HCT-8 (colon carcinoma), MDA-MB-435 (melanoma) and SF-295 (glioblastoma) were continuous exposed to guanylhydrazone derivatives for 72 hours and growth inhibition of tumor cell lines and macrophages J774 was measured using tetrazolium salt (MTT) assay. Compounds 7, 11, 16 and 17 showed strong cytotoxic activity with IC50 values lower than 10 μmol L(-1) against four tumor cell lines. Among them, 7 was less toxic to non-tumor cells. Finally, obtained data suggest that guanylhydrazones may be regarded as potential lead compounds for the design of novel anticancer agents.
Ma, Yi-ming; Zhou, Yu-bo; Xie, Chuan-ming; Chen, Dong-mei; Li, Jia
2012-01-01
Aim: To identify a novel coumarin analogue with the highest anticancer activity and to further investigate its anticancer mechanisms. Methods: The viability of cancer cells was investigated using the MTT assay. The cell cycle progression was evaluated using both flow cytometric and Western blotting analysis. Microtubule depolymerization was observed with immunocytochemistry in vivo and a tubulin depolymerization assay in vitro. Apoptosis was demonstrated using Annexin V/Propidium Iodide (PI) double-staining and sub-G1 analysis. Results: Among 36 analogues of coumarin, 6-chloro-4-(methoxyphenyl) coumarin showed the best anticancer activity (IC50 value about 200 nmol/L) in HCT116 cells. The compound had a broad spectrum of anticancer activity against 9 cancer cell lines derived from colon cancer, breast cancer, liver cancer, cervical cancer, leukemia, epidermoid cancer with IC50 value of 75 nmol/L–1.57 μmol/L but with low cytotocitity against WI-38 human lung fibroblasts (IC50 value of 12.128 μmol/L). The compound (0.04–10 μmol/L) induced G2-M phase arrest in HeLa cells in a dose-dependent manner, which was reversible after the compound was removed. The compound (10–300 μmol/L) induced the depolymerization of purified porcine tubulin in vitro. Finally, the compound (0.04–2.5 μmol/L) induced apoptosis of HeLa cells in dose- and time-dependent manners. Conclusion: 6-Chloro-4-(methoxyphenyl) coumarin is a novel microtubule-targeting agent that induces G2–M arrest and apoptosis in HeLa cells. PMID:22266726
Naik, Pradeep K; Santoshi, Seneha; Joshi, Harish C
2012-01-01
We have identified a new class of microtubule-binding compounds-noscapinoids-that alter microtubule dynamics at stoichiometric concentrations without affecting tubulin polymer mass. Noscapinoids show great promise as chemotherapeutic agents for the treatment of human cancers. To investigate the structural determinants of noscapinoids responsible for anti-cancer activity, we tested 36 structurally diverse noscapinoids in human acute lymphoblastic leukemia cells (CEM). The IC(50) values of these noscapinoids vary from 1.2 to 56.0 μM. Pharmacophore models of anti-cancer activity were generated that identify two hydrogen bond acceptors, two aromatic rings, two hydrophobic groups, and one positively charged group as essential structural features. Additionally, an atom-based quantitative structure-activity relationship (QSAR) model was developed that gave a statistically satisfying result (R(2) = 0.912, Q(2) = 0.908, Pearson R = 0.951) and effectively predicts the anti-cancer activity of training and test set compounds. The pharmacophore model presented here is well supported by electronic property analysis using density functional theory at B3LYP/3-21*G level. Molecular electrostatic potential, particularly localization of negative potential near oxygen atoms of the dimethoxy isobenzofuranone ring of active compounds, matched the hydrogen bond acceptor feature of the generated pharmacophore. Our results further reveal that all active compounds have smaller lowest unoccupied molecular orbital (LUMO) energies concentrated over the dimethoxy isobenzofuranone ring, azido group, and nitro group, which is indicative of the electron acceptor capacity of the compounds. Results obtained from this study will be useful in the efficient design and development of more active noscapinoids.
Yahya, Shaymaa M M; Abdelhamid, Abdou O; Abd-Elhalim, Mervat M; Elsayed, Ghada H; Eskander, Emad F
2017-10-01
Due to its high potency and selectivity, anticancer agents consisting of combined molecules have gained great interests. The current study introduces newly synthesized progesterone derivatives of promising anticancer effect. Moreover, the pro-apoptotic and anti-angiogenic effects of these compounds were studied extensively. Several thiazole, pyridine, pyrazole, thiazolopyridine and pyrazolopyridine progesterone derivatives were synthesized. The structure of the novel progesterone derivatives was elucidated and confirmed using the analytical and spectral data. This novel derivatives were tested for their cytotoxic effect against human breast cancer cells (MCF-7) using neutral red uptake assay. Tested compounds showed anticancer activity against MCF-7 cancer cell line in the descending order of 7>2>3>8>6>9>4. The expression levels of Bcl-2, survivin, CCND1, CDC2, P53 and P21, VEGF, Hif-1α, MMP-2, MMP-9, Ang-1, Ang-2, and FGF-1 genes were investigated using QRT-PCR (Quantitative real time-polymerase chain reaction). The study clarified that compounds 2, 3, 4, 6, 7, 8 and 9 showed significant pro-apoptotic effect through the down regulation of Bcl-2., besides, survivin and CCND1 expression levels were down regulated by compounds 3, 4, 6, 7, 8, 9. However, Compound 4 may exert this pro-apoptotic effect through the up-regulation of P53 gene expression. On the other hand, the anti-angiogenic effect of these newly synthesized derivatives was due to their down regulation of VEGF, Ang-2, MMP-9 and FGF-1; and the up-regulation of HIF-1α and ang-1. This study recommended promising pro-apoptotic and anti-angiogenic anticancer agents acting through the regulation of key regulators of apoptosis, cell cycle genes, and pro-angiogenic genes. Copyright © 2017 Elsevier Inc. All rights reserved.
Maiore, Laura; Cinellu, Maria Agostina; Nobili, Stefania; Landini, Ida; Mini, Enrico; Gabbiani, Chiara; Messori, Luigi
2012-03-01
Gold(III) compounds form a family of promising cytotoxic and potentially anticancer agents that are currently undergoing intense preclinical investigations. Four recently synthesized and characterized gold(III) derivatives of 2-substituted pyridines are evaluated here for their biological and pharmacological behavior. These include two cationic adducts with 2-pyridinyl-oxazolines, [Au(pyox(R))Cl(2)][PF(6)], [pyox(R)=(S)-4-benzyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, I; (S)-4-iso-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, II] and two neutral complexes [Au(N,N'OH)Cl(2)], III, and [Au(N,N',O)Cl], IV, containing the deprotonated ligand N-(1-hydroxy-3-iso-propyl-2-yl)pyridine-2-carboxamide, N,N'H,OH, resulting from ring opening of bound pyox(R) ligand of complex II by hydroxide ions. The solution behavior of these compounds was analyzed. These behave as classical prodrugs: activation of the metal center typically takes place through release of the labile chloride ligands while the rest of the molecule is not altered; alternatively, activation may occur through gold(III) reduction. All compounds react eagerly with the model protein cyt c leading to extensive protein metalation. ESI MS experiments revealed details of gold-cyt c interactions and allowed us to establish the nature of protein bound metal containing fragments. The different behavior displayed by I and II compared to III and IV is highlighted. Remarkable cytotoxic properties, against the reference human ovarian carcinoma cell lines A2780/S and A2780/R were disclosed for all tested compounds with IC(50) values ranging from 1.43 to 6.18 μM in the sensitive cell line and from 1.59 to 10.86 μM in the resistant one. The common ability of these compounds to overcome cisplatin resistance is highlighted. The obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold compounds. Copyright © 2011 Elsevier Inc. All rights reserved.
Molecular Mechanisms of Breast Cancer Metastasis and Potential Anti-metastatic Compounds.
Tungsukruthai, Sucharat; Petpiroon, Nalinrat; Chanvorachote, Pithi
2018-05-01
Throughout the world, breast cancer is among the major causes of cancer-related death and is the most common cancer found in women. The development of cancer molecular knowledge has surpassed the novel concept of cancer biology and unraveled principle targets for anticancer drug developments and treatment strategies. Metastatic breast cancer cells acquire their aggressive features through several mechanisms, including augmentation of survival, proliferation, tumorigenicity, and motility-related cellular pathways. Clearly, natural product-derived compounds have since long been recognized as an important source for anticancer drugs, several of which have been shown to have promising anti-metastasis activities by suppressing key molecular features supporting such cell aggressiveness. This review provides the essential details of breast cancer, the molecular-based insights into metastasis, as well as the effects and mechanisms of potential compounds for breast cancer therapeutic approaches. As the abilities of cancer cells to invade and metastasize are addressed as the hallmarks of cancer, compounds possessing anti-metastatic effects, together with their defined molecular drug action could benefit the development of new drugs as well as treatment strategies. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Yang, Xuewei; Yang, Shuang; Chai, Hongyu; Yang, Zhaogang; Lee, Robert J.; Liao, Weiwei; Teng, Lesheng
2015-01-01
We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation. PMID:26309138
Bhat, Bilal A; Reddy, P Bhaskar; Agrawal, Satyam Kumar; Saxena, A K; Kumar, H M Sampath; Qazi, G N
2008-10-01
A series of 4beta-[(4-substituted)-1,2,3-triazol-1-yl] podophyllotoxin congeners have been designed and synthesized with significant regioselectivity by employing Cu(I) catalyzed 1,3-dipolar cycloaddition reaction of C4beta-azido podophyllotoxin and C4beta-azido-4'-O-demethyl podophyllotoxin with N-prop-2-yn-1-ylanilines. These compounds were evaluated for anticancer activity against a panel of seven human cancer cell lines. It was interesting to note that all the compounds exhibited promising activity especially against SF-295 (CNS), HCT-15 (colon) and 502713 (colon) cell lines. Compound 11e was found to be the most promising in this study.
Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah
2017-11-14
Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanue, Andrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto-te-Nyiwa, Ngbolua
2013-01-01
Objective To validate scientifically the traditional use of Salacia leptoclada Tul. (Celastraceae) (S. leptoclada) and to isolate and elucidate the structure of the biologically active compound. Methods Bioassay-guided fractionation of the acetonic extract of the stem barks of S. leptoclada was carried out by a combination of chromatography technique and biological experiments in viro using Plasmodium falciparum and P388 leukemia cell lines as models. The structure of the biologically active pure compound was elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Results Biological screening of S. leptoclada extracts resulted in the isolation of a pentacyclic triterpenic quinone methide. The pure compound exhibited both in vitro a cytotoxic effect on murine P388 leukemia cells with IC50 value of (0.041±0.020) µg/mL and an antiplasmodial activity against the chloroquine-resistant strain FC29 of Plasmodium falciparum with an IC50 value of (0.052±0.030) µg/mL. Despite this interesting anti-malarial property of the lead compound, the therapeutic index was weak (0.788). In the best of our knowledge, the quinone methide pentacyclic triterpenoid derivative compound is reported for the first time in S. leptoclada. Conclusions The results suggest that furthers studies involving antineoplastic activity is needed for the development of this lead compound as anticancer drug. PMID:24075342
Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanue, Andrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto-te-Nyiwa, Ngbolua
2013-10-01
To validate scientifically the traditional use of Salacia leptoclada Tul. (Celastraceae) (S. leptoclada) and to isolate and elucidate the structure of the biologically active compound. Bioassay-guided fractionation of the acetonic extract of the stem barks of S. leptoclada was carried out by a combination of chromatography technique and biological experiments in viro using Plasmodium falciparum and P388 leukemia cell lines as models. The structure of the biologically active pure compound was elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Biological screening of S. leptoclada extracts resulted in the isolation of a pentacyclic triterpenic quinone methide. The pure compound exhibited both in vitro a cytotoxic effect on murine P388 leukemia cells with IC50 value of (0.041±0.020) μg/mL and an antiplasmodial activity against the chloroquine-resistant strain FC29 of Plasmodium falciparum with an IC50 value of (0.052±0.030) μg/mL. Despite this interesting anti-malarial property of the lead compound, the therapeutic index was weak (0.788). In the best of our knowledge, the quinone methide pentacyclic triterpenoid derivative compound is reported for the first time in S. leptoclada. The results suggest that furthers studies involving antineoplastic activity is needed for the development of this lead compound as anticancer drug. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fei, Rong
Purpose: Lung cancer is one of the most common cancers and non-small cell lung cancer (NSCLC) accounts for 80-85% of lung cancers. 70% of individuals with NSCLC harboring somatic mutations in exons of the epidermal growth factor receptor (EGFR) gene that encode tyrosine kinase domain. EGFR tyrosine kinase inhibitors (TKIs) are promising molecular targeted therapy for NSCLC with sensitizing EGFR mutations. However, secondary mutation of EGFR after treatment of TKIs develops resistance. Vandetanib is introduced to overcome erlotinib resistance as a multi-targeted TKI. However, its anticancer effect is still compromised by EGFR T790M mutation. Therefore, new molecular anticancer strategies are necessarily needed. In this study, vandetanib is incorporated with Pt-based anticancer agents as hybrid compounds, aiming to circumvent TKI resistance. Furthermore, hybrid compounds are investigated in cisplatin resistant problem to expect to overcome resistance by introduction of vandetanib. Methods: Three novel Pt-vandetanib hybrid compounds were synthesized and its physicochemical properties were characterized. Anticancer activity and cytotoxicity were evaluated by sulforhodamine B assay and lactate dehydrogenase release. Docking simulation was performed to investigate the interaction of compounds with EGFR harboring different mutations. Inhibition efficacy of hybrids to kinases was evaluated by kinase inhibition profiling service and cell-free kinase inhibition assay. Mechanistic studies on cytotoxicity activity of the hybrid compounds were carried out. DNA damage response of hybrid compounds was further investigated in KB cells. The cytotoxicity of hybrids was tested in cisplatin resistant KB CP20 cells. Mechanistic of anticancer activity was studied to test inhibition on oncoprotein CIP2Aand DNA damage. Results: Platinum-vandetanib hybrid compounds were synthesized and test to be stable under extracellular condition. Hybrids reacted with 5'-GMP2- and glutathione, and both of them formed mono-dentate adducts. Moreover, hybrid compounds exhibited low toxicity in human normal kidney cells. Compounds maintained the inhibition selectivity towards EGFR from the results of kinase inhibition profiling and cell-free kinase inhibition assay. Hybrids formed strong H-bond at D800 on EGFR. Pt-vandetanib hybrids were highly effective against HCC827 cells harboring sensitizing EGFR mutation. Importantly, relative resistant rate of hybrids were much smaller than vandetanib in H1975 cells. Western blot analysis results revealed that the hybrid compounds could efficiently inhibit EGFR phosphorylation in a dose dependent manner in HCC827. While, inhibition of p-EGFR was not as good as the original TKI in H1975 cells. However, the hybrid compounds induced DNA damage and caused apoptosis of the NSCLC cells. Both of the two pathways were contributed to cancer cell death and overcome vandetanib resistance. Pt-vandetanib hybrids showed little resistance in cisplatin resistant cell line KB-CP20. Drug accumulation evaluation revealed that cisplatin accumulation in CP20 cells decreased to one eighth of that in the parental KB3.1 cells. While hybrids maintained similar drug accumulation extent in both cells lines. Mechanistic study showed that hybrid compounds could induce DNA damage and cause apoptosis, whereas cisplatin failed to cause DNA damage in KB-CP20 cells. Oncoprotein CIP2A was overexpressed in CP20 cell and was ascribed to CDDP resistance. The hybrids inhibited CIP2A expression and downstream AKT phosphorylation. It was hypothesized that downregulation of CIP2A contributed to circumvention platinum resistance. Conclusion: Novel Pt-vandetanib hybrid compounds were able to overcome vandetanib resistance in H1975 cells by maintaining inhibition to the EGFR and inducing DNA damage and apoptosis. Moreover, Pt-vandetanib hybrid compounds behaved low toxicity and overcome cisplatin resistance by being "non-substrate" to efflux transporter and successfully causing DNA damage. Hybrids were found to downregulate oncogene CIP2A expression level. The novel Pt-vandetanib hybrid compounds are potent for further development.
Warin, Renaud F; Chen, Huadong; Soroka, Dominique N; Zhu, Yingdong; Sang, Shengmin
2014-02-12
Dietary chemoprevention of cancer offers the possibility to suppress or inhibit cancer growth before it develops into more advanced and lethal stages. To this end, identification of novel compounds and their mechanisms of action is constantly needed. In this study, we describe that a major component of dry ginger (Zingiber officinalis), [6]-shogaol (6S), can be quickly metabolized in A549 human lung cancer cell line. One of the resulting metabolites, the cysteine-conjugated 6S (M2), exhibits toxicity to cancer cells similar to the parent compound 6S, but is relatively less toxic toward normal cells than 6S. We further demonstrate that both compounds can cause cancer cell death by activating the mitochondrial apoptotic pathway. Our results show that the cancer cell toxicity is initiated by early modulation of glutathione (GSH) intracellular content. The subsequently generated oxidative stress activates a p53 pathway that ultimately leads to the release of mitochondria-associated apoptotic molecules such as cytochrome C, and cleaved caspases 3 and 9. In a xenograft nude mouse model, a dose of 30 mg/kg of 6S or M2 was able to significantly decrease tumor burden, without any associated toxicity to the animals. This effect was correlated with an induction of apoptosis and reduction of cell proliferation in the tumor tissues. Taken together, our results show that 6S metabolism is an integral part of its anticancer activities in vitro and in vivo. This allows us to characterize M2 as a novel compound with superior in vivo chemopreventive properties that targets similar anticancer mechanisms as 6S.
Zablotskaya, Alla; Segal, Izolda; Geronikaki, Athina; Shestakova, Irina; Nikolajeva, Vizma; Makarenkova, Galina
2017-06-01
Pharmacological effects of biologically active "small molecules" can be improved by their targeted modification, which affects drug delivery and interaction with tumor cells and microorganisms. We aimed to evaluate anticancer and antimicrobial activity of lipid-like choline derivatives modified via simultaneous introduction of tetrahydro(iso)quinoline based pharmacophore system at nitrogen atom and long chain alkyl substituent at oxygen atom. Target compounds were synthesized under phase-transfer catalysis conditions followed by quaternization, and evaluated for cytotoxicity and NO-generation ability on HT-1080 and MG-22A tumor cell lines and NIH 3T3 normal mouse fibroblasts, and screened for antimicrobial activity against gram-positive (Staphylococcus aureus and Bacillus cereus) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis) and fungi (Candida albicans and Aspergillus niger). Inhibitory action of active compounds towards E. coli DNA gyrase was investigated. Target compounds exhibit high selective cytotoxicity (LC 50 <1μg/mL) and NO-induction ability, and reveal strong antimicrobial activity with MIC and MBC/MFC values of 0.5-32μg/mL, predominantly vs. gram-positive bacteria and fungi. Tested substances displayed inhibitory effect towards E. coli DNA gyrase, though less than ciprofloxacin. Tetrahydroisoquinoline derivatives and compounds possessing substituents with chain length of 10 and 11 carbon atoms have highest indices of activities. Lipid-like N-heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold, possessing very high cytotoxicity with attendant strong antimicrobial activity are the leads for developing effective dual action therapeutics. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Musumeci, Domenica; Amato, Jussara; Zizza, Pasquale; Platella, Chiara; Cosconati, Sandro; Cingolani, Chiara; Biroccio, Annamaria; Novellino, Ettore; Randazzo, Antonio; Giancola, Concetta; Pagano, Bruno; Montesarchio, Daniela
2017-05-01
G-quadruplex (G4) structures are key elements in the regulation of cancer cell proliferation and their targeting is deemed to be a promising strategy in anticancer therapy. A tandem application of ligand-based virtual screening (VS) calculations together with the experimental G-quadruplex on Oligo Affinity Support (G4-OAS) assay was employed to discover novel G4-targeting compounds. The interaction of the selected compounds with the investigated G4 in solution was analysed through a series of biophysical techniques and their biological activity investigated by immunofluorescence and MTT assays. A focused library of 60 small molecules, designed as putative G4 groove binders, was identified through the VS. The G4-OAS experimental screening led to the selection of 7 ligands effectively interacting with the G4-forming human telomeric DNA. Evaluation of the biological activity of the selected compounds showed that 3 ligands of this sub-library induced a marked telomere-localized DNA damage response in human tumour cells. The combined application of virtual and experimental screening tools proved to be a successful strategy to identify new bioactive chemotypes able to target the telomeric G4 DNA. These compounds may represent useful leads for the development of more potent and selective G4 ligands. Expanding the repertoire of the available G4-targeting chemotypes with improved physico-chemical features, in particular aiming at the discovery of novel, selective G4 telomeric ligands, can help in developing effective anti-cancer drugs with fewer side effects. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-01-01
Dietary chemoprevention of cancer offers the possibility to suppress or inhibit cancer growth before it develops into more advanced and lethal stages. To this end, identification of novel compounds and their mechanisms of action is constantly needed. In this study, we describe that a major component of dry ginger (Zingiber officinalis), [6]-shogaol (6S), can be quickly metabolized in A549 human lung cancer cell line. One of the resulting metabolites, the cysteine-conjugated 6S (M2), exhibits toxicity to cancer cells similar to the parent compound 6S, but is relatively less toxic toward normal cells than 6S. We further demonstrate that both compounds can cause cancer cell death by activating the mitochondrial apoptotic pathway. Our results show that the cancer cell toxicity is initiated by early modulation of glutathione (GSH) intracellular content. The subsequently generated oxidative stress activates a p53 pathway that ultimately leads to the release of mitochondria-associated apoptotic molecules such as cytochrome C, and cleaved caspases 3 and 9. In a xenograft nude mouse model, a dose of 30 mg/kg of 6S or M2 was able to significantly decrease tumor burden, without any associated toxicity to the animals. This effect was correlated with an induction of apoptosis and reduction of cell proliferation in the tumor tissues. Taken together, our results show that 6S metabolism is an integral part of its anticancer activities in vitro and in vivo. This allows us to characterize M2 as a novel compound with superior in vivo chemopreventive properties that targets similar anticancer mechanisms as 6S. PMID:24446736
Pastorek, Michal; Simko, Veronika; Takacova, Martina; Barathova, Monika; Bartosova, Maria; Hunakova, Luba; Sedlakova, Olga; Hudecova, Sona; Krizanova, Olga; Dequiedt, Franck; Pastorekova, Silvia; Sedlak, Jan
2015-07-01
One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.
Dai, Fang; Liu, Guo-Yun; Li, Yan; Yan, Wen-Jing; Wang, Qi; Yang, Jie; Lu, Dong-Liang; Ding, De-Jun; Lin, Dong; Zhou, Bo
2015-08-01
Developing anticancer agents by a prooxidant strategy has attracted increasing attention in recent years, although it is not conventional in medicinal chemistry and is completely opposite to antioxidant therapy. In this work, a panel of diarylpentanoids as the curcumin mono-carbonyl analogs were designed and synthesized, and their cytotoxic and proapoptotic mechanisms against human lung cancer A549 cells were investigated at the frontiers of chemistry and biology. It was found that compared with curcumin, the compounds (A1, B1, and C1) bearing two ortho substituents on the aromatic rings, especially A1, exhibit significantly increased cytotoxic and proapoptotic activities through a Michael acceptor unit-dependent prooxidant-mediated mechanism. The prooxidative ability is governed not only by their electrophilicity but also by their geometry, cellular uptake and metabolic stability, and TrxR-inhibitory activity. Mechanistic investigation reveals that the compound A1 could effectively and irreversibly modify the TrxR by virtue of the above optimal biochemical parameters, and convert this antioxidant enzyme into a reactive oxygen species (ROS) promoter, resulting in a burst of the intracellular ROS including H2O2 and O2(-)•. The ROS generation is associated with falling apart in the redox buffering system, and subsequently induces increases in Ca(2+) influx and oxidative stress, collapse of mitochondrial membrane potential, and activation of caspase-9 and caspase-3, ultimately leading to cell apoptosis. This work highlights the feasibility in designing curcumin-inspired anticancer agents by a prooxidant strategy, and gives us useful information on how to design them. Copyright © 2015 Elsevier Inc. All rights reserved.
Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong
2016-06-01
Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lead Phytochemicals for Anticancer Drug Development
Singh, Sukhdev; Sharma, Bhupender; Kanwar, Shamsher S.; Kumar, Ashok
2016-01-01
Cancer is a serious concern at present. A large number of patients die each year due to cancer illnesses in spite of several interventions available. Development of an effective and side effects lacking anticancer therapy is the trending research direction in healthcare pharmacy. Chemical entities present in plants proved to be very potential in this regard. Bioactive phytochemicals are preferential as they pretend differentially on cancer cells only, without altering normal cells. Carcinogenesis is a complex process and includes multiple signaling events. Phytochemicals are pleiotropic in their function and target these events in multiple manners; hence they are most suitable candidate for anticancer drug development. Efforts are in progress to develop lead candidates from phytochemicals those can block or retard the growth of cancer without any side effect. Several phytochemicals manifest anticancer function in vitro and in vivo. This article deals with these lead phytomolecules with their action mechanisms on nuclear and cellular factors involved in carcinogenesis. Additionally, druggability parameters and clinical development of anticancer phytomolecules have also been discussed. PMID:27877185
Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong
2013-07-15
Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ali, Ahmed Atef Ahmed; Lee, Yu-Ru; Chen, Tsung-Chih; Chen, Chun-Liang; Lee, Chia-Chung; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Huang, Hsu-Shan
2016-01-01
The novel compounds NSC745885 and NSC757963 developed at our laboratory were tested against a panel of 60 cancer cell lines at the National Cancer Institute, USA, and a panel of 39 cancer cell lines at the Japanese Foundation of Cancer Research. Both compounds demonstrated selective unique multi-log differential patterns of activity, with GI50 values in the sub-micro molar range against cancer cells rather than normal cardiac cells. NSC757963 showed high selectivity towards the leukemia subpanel. Activities of both compounds strongly correlated to expression of NFKB1 and CSNK2B genes, implying that they may inhibit the NF-κB pathway. Immunocytochemical microscopy of OVCAR-3 cells showed clear cytosolic accumulation of the NF-κB p65 subunit following treatment. Western blotting showed dose dependent inhibition of the nuclear expression of the NF-κB p65 subunit with subsequent accumulation in the cytosol following treatment. Docking experiments showed binding of both compounds to the NF-κB activator IKKβ subunit preventing its translocation to the nucleus. Collectively, these results confirm the ability of our compounds to inhibit the constitutively active NF-κB pathway of OVCAR-3 cells. Furthermore, COMPARE analysis indicated that the activity of NSC757963 is similar to the antituberculosis agent rifamycin SV, this was confirmed by testing the antimycobacterial activity of NSC757963 against Mycobacterium tuberculosis, results revealed potent activity suitable for use in clinical practice. Molecular properties and Lipinski's parameters predicted acceptable bioavailability properties with no indication of mutagenicity, tumorigenicity, irritability and reproductive effects. Oral absorption experiments using the human Caco-2 model showed high intestinal absorption of NSC745885 by passive transport mechanism with no intestinal efflux or active transport mechanisms. The unique molecular characterization as well as the illustrated anticancer spectra of activity and bioavailability properties warrant further development of our compounds and present a foundation brick in the pre-clinical investigations to implement such compounds in clinical practice.
Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Unsal Tan, Oya; Sher, Muhammad; Naeem-Ul-Hassan, M; Qin, Hua-Li
2014-06-18
Hyperpigmentation in human skin and enzymatic browning in fruits, which are caused by tyrosinase enzyme, are not desirable. Investigations in the discovery of tyrosinase enzyme inhibitors and search for improved cytotoxic agents continue to be an important line in drug discovery and development. In present work, a new series of 30 compounds bearing α,β-unsaturated carbonyl moiety was designed and synthesized following curcumin as model. All compounds were evaluated for their effects on human cancer cell lines and mushroom tyrosinase enzyme. Moreover, the structure-activity relationships of these compounds are also explained. Molecular modeling studies of these new compounds were carried out to explore interactions with tyrosinase enzyme. Synthetic curcumin-like compounds (2a-b) were identified as potent anticancer agents with 81-82% cytotoxicity. Five of these newly synthesized compounds (1a, 8a-b, 10a-b) emerged to be the potent inhibitors of mushroom tyrosinase, providing further insight into designing compounds useful in fields of food, health, and agriculture.
Pancreatic Cancer Chemoprevention by Phytochemicals
Boreddy, Srinivas Reddy; Srivastava, Sanjay K.
2012-01-01
Pancreatic cancer is fourth leading cause of cancer-related deaths in the United States of America. In spite of recent advances in the current therapeutic modalities such as surgery, radiation and chemotherapy patients, the average five year survival rate remains still less than 5%. Recently, compounds from natural sources receive ample of attention as anti-cancer agents. Many epidemiological studies published over the past few decades provide a strong correlation between consumption of vegetables, fruits or plant derived products and reduced incidence of cancer. The present review focuses on the potential antitumor effects of various natural products. PMID:23111102
Yoshimura, Aya; Nishimura, Shinichi; Otsuka, Saori; Hattori, Akira; Kakeya, Hideaki
2015-11-06
The transcriptional factor, hypoxia inducible factor-1 (HIF-1), is a promising target for cancer chemotherapy. From an actinomycete, verucopeptin (1) was identified as a HIF-1 signaling inhibitor. By a combination of chemical degradation and spectroscopic analyses, the absolute stereochemistry of metabolite 1 was determined to be 10R, 15S, 16S, 23S, 27S, 28R, 31S, 33S, 35R. Moreover, metabolite 1 was revealed to attenuate the HIF-1α and mTORC1 pathway, indicating that verucopeptin (1) would be a potent lead compound for anticancer chemotherapy.
Anticancer effects of garlic and garlic-derived compounds for breast cancer control.
Tsubura, Airo; Lai, Yen-Chang; Kuwata, Maki; Uehara, Norihisa; Yoshizawa, Katsuhiko
2011-03-01
Garlic and garlic-derived compounds reduce the development of mammary cancer in animals and suppress the growth of human breast cancer cells in culture. Oil-soluble compounds derived from garlic, such as diallyl disulfide (DADS), are more effective than water-soluble compounds in suppressing breast cancer. Mechanisms of action include the activation of metabolizing enzymes that detoxify carcinogens, the suppression of DNA adduct formation, the inhibition of the production of reactive oxygen species, the regulation of cell-cycle arrest and the induction of apoptosis. Selenium-enriched garlic or organoselenium compounds provide more potent protection against mammary carcinogenesis in rats and greater inhibition of breast cancer cells in culture than natural garlic or the respective organosulfur analogues. DADS synergizes the effect of eicosapentaenoic acid, a breast cancer suppressor, and antagonizes the effect of linoleic acid, a breast cancer enhancer. Moreover, garlic extract reduces the side effects caused by anti-cancer agents. Thus, garlic and garlic-derived compounds are promising candidates for breast cancer control.
Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B; Abdul Majid, A M S
2014-05-05
New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency. Copyright © 2014 Elsevier B.V. All rights reserved.
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-06-06
In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-01-01
Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328
Shing, Jennifer C; Choi, Jae Won; Chapman, Robert; Schroeder, Mark A; Sarkaria, Jann N; Fauq, Abdul; Bram, Richard J
2014-01-01
Microtubules are essential cytoskeletal components with a central role in mitosis and have been particularly useful as a cancer chemotherapy target. We synthesized a small molecule derivative of a symmetrical 1,3-phenyl bis-thiourea, (1,1'-[1,3-phenylene]bis[3-(3,5-dimethylphenyl)thiourea], named “41J”), and identified a potent effect of the compound on cancer cell survival. 41J is cytotoxic to multiple cancer cell lines at nanomolar concentrations. Cell death occurred by apoptosis and was preceded by mitotic arrest in prometaphase. Prometaphase arrest induced by 41J treatment was accompanied by dissociation of cyclin B1 levels from the apparent mitotic stage and by major spindle abnormalities. Polymerization of purified tubulin in vitro was directly inhibited by 41J, suggesting that the compound works by directly interfering with microtubule function. Compound 41J arrested the growth of glioblastoma multiforme xenografts in nude mice at doses that were well-tolerated, demonstrating a relatively specific antitumor effect. Importantly, 41J overcame drug resistance due to β-tubulin mutation and P-glycoprotein overexpression. Compound 41J may serve as a useful new lead compound for anticancer therapy development. PMID:24755487
Doucette, Kaitlin A; Hassell, Kelly N; Crans, Debbie C
2016-12-01
Improving efficacy and lowering resistance to metal-based drugs can be addressed by consideration of the coordination complex speciation and key reactions important to vanadium antidiabetic drugs or platinum anticancer drugs under biological conditions. The methods of analyses vary depending on the specific metal ion chemistry. The vanadium compounds interconvert readily, whereas the reactions of the platinum compounds are much slower and thus much easier to study. However, the vanadium species are readily differentiated due to vanadium complexes differing in color. For both vanadium and platinum systems, understanding the processes as the compounds, Lipoplatin and Satraplatin, enter cells is needed to better combat the disease; there are many cellular metabolites, which may affect processing and thus the efficacy of the drugs. Examples of two formulations of platinum compounds illustrate how changing the chemistry of the platinum will result in less toxic and better tolerated drugs. The consequence of the much lower toxicity of the drug, can be readily realized because cisplatin administration requires hospital stay whereas Lipoplatin can be done in an outpatient manner. Similarly, the properties of Satraplatin allow for development of an oral drug. These forms of platinum demonstrate that the direct consequence of more selective speciation is lower side effects and cheaper administration of the anticancer agent. Therefore we urge that as the community goes forward in development of new drugs, control of speciation chemistry will be considered as one of the key strategies in the future development of anticancer drugs. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I.; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal
2015-05-01
In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, 1H- and 13C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity.
Jose, Joby; Dhanya, A T; Haridas, Karickal R; Sumesh Kumar, T M; Jayaraman, Sony; Variyar, E Jayadevi; Sudhakaran, Sudheesh
2016-12-01
The study was initiated to determine the anticancer activity of a novel compound isolated from the plant Mimosa pudica. The structure of the compound was identified as a derivative of myricetin having alkyl, hydroxy alkyl and methyl substitutions on the basis of spectral evidences (UV-vis, FT-IR, 1 H NMR and Mass spectra). The isolated compound was interpreted as 2-(2',6'-dimethyl-3',4',5'-alkyl or hydroxy alkyl substituted phenyl)-3-oxy-(alkyl or hydoxy alkyl)- 5,7-dihydroxy-chromen-4-one. In vitro evaluation of anticancer activity against human lung adenocarcinoma cell line (A549) and human erythroleukemic cell line (K562) were conducted using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. In vivo anticancer activity was determined against Dalton's Ascites Lymphoma (DAL) in Swiss albino mice. The mice were treated with intraperitoneal administration of the compound at 25mg/kg and 100mg/kg body weight and were compared with the normal, DAL control and standard drug cyclophosphamide treated groups. The histology revealed that the compound could protect the cellular architecture of liver and kidney. The results from the in vitro, in vivo and histological examinations confirmed the ethnopharmacological significance of the isolated compound and could be considered further for the development of an effective drug against cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
A Review of Molecular Mechanisms of the Anti-Leukemic Effects of Phenolic Compounds in Honey
Abubakar, Murtala B.; Abdullah, Wan Zaidah; Sulaiman, Siti Amrah; Suen, Ang Boon
2012-01-01
Hematologic malignancies constitute about 9% of all new cases of cancers as reported via the GLOBOCAN series by International Agency for Research on Cancer (IARC) in 2008. So far, the conventional therapeutic and surgical approaches to cancer therapy have not been able to curtail the rising incidence of cancers, including hematological malignancies, worldwide. The last decade has witnessed great research interest in biological activities of phenolic compounds that include anticancer, anti-oxidation and anti-inflammation, among other things. A large number of anticancer agents combat cancer through cell cycle arrest, induction of apoptosis and differentiation, as well as through inhibition of cell growth and proliferation, or a combination of two or more of these mechanisms. Various phenolic compounds from different sources have been reported to be promising anticancer agents by acting through one of these mechanisms. Honey, which has a long history of human consumption both for medicinal and nutritional uses, contains a variety of phenolic compounds such as flavonoids, phenolic acids, coumarins and tannins. This paper presents a review on the molecular mechanisms of the anti-leukemic activity of various phenolic compounds on cell cycle, cell growth and proliferation and apoptosis, and it advocates that more studies should be conducted to determine the potential role of honey in both chemoprevention and chemotherapy in leukemia. PMID:23203111
Jiang, Qi-Wei; Cheng, Ke-Jun; Mei, Xiao-Long; Qiu, Jian-Ge; Zhang, Wen-Ji; Xue, You-Qiu; Qin, Wu-Ming; Yang, Yang; Zheng, Di-Wei; Chen, Yao; Wei, Meng-Ning; Zhang, Xu; Lv, Min; Chen, Mei-Wan; Wei, Xing; Shi, Zhi
2015-10-20
Triptolide and celastrol are two main active compounds isolated from Thunder God Vine with the potent anticancer activity. However, the anticancer effect of triptolide in combination with celastrol is still unknown. In the present study, we demonstrated that the combination of triptolide with celastrol synergistically induced cell growth inhibition, cell cycle arrest at G2/M phase and apoptosis with the increased intracellular ROS accumulation in cancer cells. Pretreatment with ROS scavenger N-acetyl-L-cysteine dramatically blocked the apoptosis induced by co-treatment with triptolide and celastrol. Treatment with celastrol alone led to the decreased expressions of HSP90 client proteins including survivin, AKT, EGFR, which was enhanced by the addition of triptolide. Additionally, the celastrol-induced expression of HSP70 and HSP27 was abrogated by triptolide. In the nude mice with xenograft tumors, the lower-dose combination of triptolide with celastrol significantly inhibited the growth of tumors without obvious toxicity. Overall, triptolide in combination with celastrol showed outstanding synergistic anticancer effect in vitro and in vivo, suggesting that this beneficial combination may offer a promising treatment option for cancer patients.
HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor.
Kogan, Natalya M; Schlesinger, Michael; Priel, Esther; Rabinowitz, Ruth; Berenshtein, Eduard; Chevion, Mordechai; Mechoulam, Raphael
2007-01-01
Anthracyclines, a large group of quinonoid compounds, are used to treat some forms of cancer. Although highly effective in cancer therapy, the mechanism of action of these compounds is not specific; they act on cancer and other cells by numerous mechanisms. A new anticancer quinone (HU-331) was synthesized from cannabidiol. It shows significant high efficacy against human cancer cell lines in vitro and against in vivo tumor grafts in nude mice. In this study, we investigated its mode of action and present evidence on its unique mechanism. HU-331 does not cause cancer cell cycle arrest, cell apoptosis, or caspase activation. HU-331-caused cell death of human cancer cell lines is not mediated by reactive oxygen intermediates/species, as exposure to HU-331 failed to elicit the generation of reactive oxygen species. HU-331 inhibits DNA topoisomerase II even at nanomolar concentrations but has only a slight nonsignificant effect on DNA topoisomerase I action. The cannabinoid quinone HU-331 is a highly specific inhibitor of topoisomerase II, compared with most known anticancer quinones. It might represent a new potent anticancer drug.
Godugu, Chandraiah; Doddapaneni, Ravi; Safe, Stephen H.; Singh, Mandip
2017-01-01
The present study demonstrates the promising anticancer effects of novel C-substituted diindolylmethane (DIM) derivatives DIM-10 and DIM-14 in aggressive TNBC models. In vitro studies demonstrated that these compounds possess strong anticancer effects. Caco-2 permeability studies resulted in poor permeability and poor oral bioavailability was demonstrated by pharmacokinetic studies. Nano structured lipid carrier (NLC) formulations were prepared to increase the clinical acceptance of these compounds. Significant increase in oral bioavailability was observed with NLC formulations. Compared to DIM-10, DIM-10 NLC formulation showed increase in Cmax and AUC values by 4.73 and 11.19-folds, respectively. Similar pattern of increase was observed with DIM-14 NLC formulations. In dogs DIM-10 NLC formulations showed an increase of 2.65 and 2.94-fold in Cmax and AUC, respectively. The anticancer studies in MDA-MB-231 orthotopic TNBC models demonstrated significant reduction in tumor volumes in DIM-10 and DIM-14 NLC treated animals. Our studies suggest that NLC formulation of both DIM-10 and 14 is effective in TNBC models. PMID:27586082
Imidazoles and benzimidazoles as tubulin-modulators for anti-cancer therapy.
Torres, Fernando C; García-Rubiño, M Eugenia; Lozano-López, César; Kawano, Daniel F; Eifler-Lima, Vera L; von Poser, Gilsane L; Campos, Joaquín M
2015-01-01
Imidazoles and benzimidazoles are privileged heterocyclic bioactive compounds used with success in the clinical practice of innumerous diseases. Although there are many advancements in cancer therapy, microtubules remain as one of the few macromolecular targets validated for planning active anti-cancer compounds, and the design of drugs that modulate microtubule dynamics in unknown sites of tubulin is one of the goals of the medicinal chemistry. The discussion of the role of new and commercially available imidazole and benzimidazole derivatives as tubulin modulators is scattered throughout scientific literature, and indicates that these compounds have a tubulin modulation mechanism different from that of tubulin modulators clinically available, such as paclitaxel, docetaxel, vincristine and vinblastine. In fact, recent literature indicates that these derivatives inhibit microtubule formation binding to the colchicine site, present good pharmacokinetic properties and are capable of overcoming multidrug resistance in many cell lines. The understanding of the mechanisms involved in the imidazoles/benzimidazoles modulation of microtubule dynamics is very important to develop new strategies to overcome the resistance to anti-cancer drugs and to discover new biomarkers and targets for cancer chemotherapy.
Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.
Zhang, Ning; Yu, Zhimei; Yang, Xiaohong; Hu, Ping; He, Yun
2018-04-25
Artemisinin is a potential anticancer agent with an interesting trioxane sesquiterpene structure. In order to improve the biological activity and metabolic stability of artemisinin, a series of novel ring-contracted artemisinin dimers were synthesized. These dimers were evaluated by MTT assay against six cancer cell lines. Most of the dimmers exhibited improved antiproliferative activities over artemisinin. Especially, compound 8b showed the most pronounced anti-cancer activity for PC12 cancer cells with an IC 50 value of 1.56 μM. Thus, PC12 cancer cells were used to further investigate the mechanism of antiproliferation for this series of compounds. Compound 8b arrested cell cycle at G1 phase and induced cell apoptosis via up-regulation of Bad, Bax, caspase-3 and caspase-9 protein expressions while inhibiting the expression of Bcl-xL. The present studies are the first to synthesize the ring-contracted artemisinin as dimers and show that these dimers have potent anti-tumor activities against several cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities
Zhang, Yong; Jiang, Peixin; Ye, Min; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan
2012-01-01
Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones. PMID:23202971
NPCARE: database of natural products and fractional extracts for cancer regulation.
Choi, Hwanho; Cho, Sun Young; Pak, Ho Jeong; Kim, Youngsoo; Choi, Jung-Yun; Lee, Yoon Jae; Gong, Byung Hee; Kang, Yeon Seok; Han, Taehoon; Choi, Geunbae; Cho, Yeeun; Lee, Soomin; Ryoo, Dekwoo; Park, Hwangseo
2017-01-01
Natural products have increasingly attracted much attention as a valuable resource for the development of anticancer medicines due to the structural novelty and good bioavailability. This necessitates a comprehensive database for the natural products and the fractional extracts whose anticancer activities have been verified. NPCARE (http://silver.sejong.ac.kr/npcare) is a publicly accessible online database of natural products and fractional extracts for cancer regulation. At NPCARE, one can explore 6578 natural compounds and 2566 fractional extracts isolated from 1952 distinct biological species including plants, marine organisms, fungi, and bacteria whose anticancer activities were validated with 1107 cell lines for 34 cancer types. Each entry in NPCARE is annotated with the cancer type, genus and species names of the biological resource, the cell line used for demonstrating the anticancer activity, PubChem ID, and a wealth of information about the target gene or protein. Besides the augmentation of plant entries up to 743 genus and 197 families, NPCARE is further enriched with the natural products and the fractional extracts of diverse non-traditional biological resources. NPCARE is anticipated to serve as a dominant gateway for the discovery of new anticancer medicines due to the inclusion of a large number of the fractional extracts as well as the natural compounds isolated from a variety of biological resources.
Zheng, Jie; Lou, Jessica R.; Zhang, Xiao-Xi; Benbrook, Doris M.; Hanigan, Marie H.; Lind, Stuart E.; Ding, Wei-Qun
2013-01-01
A variety of metal-binding compounds have been found to exert anti-cancer activity. We postulated that N-acetylcysteine (NAC), which is a membrane-permeable metal-binding compound, might have anti-cancer activity in the presence of metals. We found that NAC/Cu(II) significantly alters growth and induces apoptosis in human cancer lines, yet NAC/Zn(II) and NAC/Fe(III) do not. We further confirmed that this cytotoxicity of NAC/Cu(II) is attributed to reactive oxygen species (ROS). These findings indicate that the combination of Cu(II) and thiols generates cytotoxic ROS that induce apoptosis in cancer cells. They also indicate a fourth class of anti-neoplastic metal-binding compounds, the “ROS generator”. PMID:20667650
Abdelrahman, Mostafa; Mahmoud, Hassan Y A H; El-Sayed, Magdi; Tanaka, Shuhei; Tran, L S
2017-07-01
Exploration of new and promising anticancer compounds continues to be one of the main tasks of cancer research because of the drug resistance, high cytotoxicity and limitations of tumor selectivity. Natural products represent a better choice for cancer treatment in comparison with synthetic compounds because of their pharmacokinetic properties and lower side effects. In the current study, we isolated a steroidal saponin, named Cepa2, from the dry roots of shallot (Allium cepa L. Aggregatum group), and determined its structure by using two-dimensional nuclear manganic resonance (2D NMR). The 1 H NMR and 13 C NMR data revealed that the newly isolated Cepa2 compound is identical to alliospiroside A (C 38 H 60 O 12 ) [(25S)-3β-hydroxyspirost-5-en-1β-yl-2-O-(6-deoxy-α-L-mannopyranosyl)-α-L-arabinopyranoside], whose anticancer activity remains elusive. Our in vitro examination of the cytotoxic activity of the identified Cepa2 against P3U1 myeloma cancer cell line showed its high efficiency as an anticancer with 91.13% reduction in P3U1 cell viability 12 h post-treatment. The reduction of cell viability was correlated with the increase in reactive oxygen species levels in Cepa2-treated P3U1 cells, as compared with untreated cells. Moreover, scanning electron microscope results demonstrated apoptosis of the Cepa2-treated P3U1 cells in a time course-dependent manner. The results of our study provide evidence for the anticancer properties of the natural Cepa2/alliospiroside A extracted from shallot plants, and a strong foundation for in-depth investigations to build theoretical bases for cell apoptosis and development of novel anticancer drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment
NASA Astrophysics Data System (ADS)
Pacardo, Dennis B.; Neupane, Bhanu; Rikard, S. Michaela; Lu, Yue; Mo, Ran; Mishra, Sumeet R.; Tracy, Joseph B.; Wang, Gufeng; Ligler, Frances S.; Gu, Zhen
2015-07-01
A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics.A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01568e
Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation.
Shaaban, Saad; Sasse, Florenz; Burkholz, Torsten; Jacob, Claus
2014-07-15
A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski's Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas
2013-01-01
Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents. PMID:24205049
Costa, Margarida; Garcia, Mónica; Costa-Rodrigues, João; Costa, Maria Sofia; Ribeiro, Maria João; Fernandes, Maria Helena; Barros, Piedade; Barreiro, Aldo; Vasconcelos, Vitor; Martins, Rosário
2013-01-01
The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria. PMID:24384871
Hedvat, Michael; Emdad, Luni; Das, Swadesh K; Kim, Keetae; Dasgupta, Santanu; Thomas, Shibu; Hu, Bin; Zhu, Shan; Dash, Rupesh; Quinn, Bridget A; Oyesanya, Regina A; Kegelman, Timothy P; Sokhi, Upneet K; Sarkar, Siddik; Erdogan, Eda; Menezes, Mitchell E; Bhoopathi, Praveen; Wang, Xiang-Yang; Pomper, Martin G; Wei, Jun; Wu, Bainan; Stebbins, John L; Diaz, Paul W; Reed, John C; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B
2012-11-01
Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specificpromoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.
Gao, Mingxiang; Li, Jinyu; Nie, Cunbin; Song, Beibei; Yan, Lin; Qian, Hai
2018-05-15
Capsaicin (CAP), the prototypical TRPV1 agonist, is the major active component in chili peppers with health-promoting benefits. However, its use is limited by the low bioavailability and irritating quality. In this study, for improving the activity of CAP and alleviating its irritating effects, a series of H 2 S-releasing CAPs were designed and synthesized by combining capsaicin and dihydro capsaicin with various hydrogen sulfide donors. The resulting compounds were evaluated their TRPV1 agonist activity, analgesic activity, anticancer activities, H 2 S-releasing ability, and gastric mucosa irritation. Biological evaluation indicated that the most active compound B 9 , containing 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione moiety as H 2 S donor, had better analgesic activity and displayed more potent cytotoxic effects on the test cell lines than the lead compound CAP. Furthermore, the preferred compound, B 9 reduced rat gastric mucosa irritation caused by CAP. Notably, the improved properties of this derivative are associated with its H 2 S-releasing capability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Design and synthesis of N-(4-aminopyridin-2-yl)amides as B-Raf(V600E) inhibitors.
Li, Xiaokai; Shen, Jiayi; Tan, Li; Zhang, Zhang; Gao, Donglin; Luo, Jinfeng; Cheng, Huimin; Zhou, Xiaoping; Ma, Jie; Ding, Ke; Lu, Xiaoyun
2016-06-15
B-Raf(V600E) was an effective target for the treatment of human cancers. Based on a pan-Raf inhibitor TAK-632, a series of N-(4-aminopyridin-2-yl)amide derivatives were designed as novel B-Raf(V600E) inhibitors. Detailed structure-activity studies of the compounds revealed that most of the compounds displayed potent enzymatic activity against B-Raf(V600E), and good selectivity over B-Raf(WT). One of the most promising compound 4l exhibited potent inhibitory activity with an IC50 value of 38nM for B-raf(V600E), and displayed antiproliferative activities against colo205 and HT29 cells with IC50 values of 0.136 and 0.094μM, respectively. It also displayed good selectivity on both enzymatic and cellular assays over B-Raf(WT). These inhibitors may serve as lead compounds for further developing novel B-Raf(V600E) inhibitors as anticancer drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pharmacophore modeling, virtual screening and molecular docking of ATPase inhibitors of HSP70.
Sangeetha, K; Sasikala, R P; Meena, K S
2017-10-01
Heat shock protein 70 is an effective anticancer target as it influences many signaling pathways. Hence the study investigated the important pharmacophore feature required for ATPase inhibitors of HSP70 by generating a ligand based pharmacophore model followed by virtual based screening and subsequent validation by molecular docking in Discovery studio V4.0. The most extrapolative pharmacophore model (hypotheses 8) consisted of four hydrogen bond acceptors. Further validation by external test set prediction identified 200 hits from Mini Maybridge, Drug Diverse, SCPDB compounds and Phytochemicals. Consequently, the screened compounds were refined by rule of five, ADMET and molecular docking to retain the best competitive hits. Finally Phytochemical compounds Muricatetrocin B, Diacetylphiladelphicalactone C, Eleutheroside B and 5-(3-{[1-(benzylsulfonyl)piperidin-4-yl]amino}phenyl)- 4-bromo-3-(carboxymethoxy)thiophene-2-carboxylic acid were obtained as leads to inhibit the ATPase activity of HSP70 in our findings and thus can be proposed for further in vitro and in vivo evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anticancer Activity of Small Molecule and Nanoparticulate Arsenic(III) Complexes
Swindell, Elden P.; Hankins, Patrick L.; Chen, Haimei; Miodragović, Ðenana U.; O'Halloran, Thomas V.
2014-01-01
Starting in ancient China and Greece, arsenic-containing compounds have been used in the treatment of disease for over 3000 years. They were used for a variety of diseases in the 20th century, including parasitic and sexually transmitted illnesses. A resurgence of interest in the therapeutic application of arsenicals has been driven by the discovery that low doses of a 1% aqueous solution of arsenic trioxide (i.e. arsenous acid) leads to complete remission of certain types of leukemia. Since FDA approval of arsenic trioxide (As2O3) for treatment of acute promyelocytic leukemia (APL) in 2000, it has become a front line therapy in this indication. There are currently over 100 active clinical trials involving inorganic arsenic or organoarsenic compounds registered with the FDA for the treatment of cancers. New generations of inorganic and organometallic arsenic compounds with enhanced activity or targeted cytotoxicity are being developed to overcome some of the shortcomings of arsenic therapeutics, namely short plasma half-lives and narrow therapeutic window. PMID:24147771
Tsukamoto, Sachiko; Takeuchi, Tomoharu; Rotinsulu, Henki; Mangindaan, Remy E P; van Soest, Rob W M; Ukai, Kazuyo; Kobayashi, Hisayoshi; Namikoshi, Michio; Ohta, Tomihisa; Yokosawa, Hideyoshi
2008-12-15
A compound that inhibits the formation of a complex composed of the ubiquitin E2 enzyme Ubc13 and Uev1A was isolated from the marine sponge Leucetta aff. microrhaphis. The compound was identified as leucettamol A (1) by spectroscopic analysis. Its inhibition of Ubc13-Uev1A interaction was tested by the ELISA method, revealing an IC(50) value of 50 microg/mL. The compound is the first inhibitor of Ubc13-Uev1A interaction, that is, that of the E2 activity of Ubc13. Such inhibitors are presumed to be leads for anti-cancer agents that upregulate activity of the tumor suppressor p53 protein. Interestingly, hydrogenation of 1 increased its inhibitory activity with an IC(50) value of 4 microg/mL, while its tetraacetate derivative was inactive, indicating that the hydroxy and/or amino groups of 1 are required for the inhibition.
Su, Chun-Li; Wang, Ying-Ti; Chang, Mu-Hsin; Fang, Kang; Chen, Kwunmin
2014-04-01
The heterocyclic trioxirane compound [1,3,5-tris((oxiran-2-yl)methyl)-1,3,5-triazinane-2,4,6-trione (TATT)] is a synthetic compound which has been used as an experimental anticancer agent in human clinical trials. Curcumin, an active natural compound in turmeric and curry, is an ingredient commonly used in the traditional diet of many Asian countries. In the present study, we observed that TATT exhibited a better anticancer effect on chemoresistant human colorectal cancer HT-29 cells and displayed less cytotoxicity on normal human umbilical vein endothelial cells, compared with FDA-approved anticancer drugs (cisplatin, carboplatin, or oxaliplatin) using MTT assay. TATT also induced a stronger apoptotic effect than that seen with the three studied anticancer drugs, as characterized by externalization of phosphatidylserine using flow cytometry. Administration of caspase 8-specific inhibitor (z-IETD-fmk) and mitochondrial permeability transition pore inhibitor (cyclosporin A) demonstrated that TATT-induced apoptosis proceeded via both extrinsic and intrinsic signaling pathways. It is noteworthy that coadministration of curcumin further significantly increased TATT-induced cytotoxicity, externalization of phosphatidylserine (representing early apoptosis), and the percentages of cells at the sub-G1 phase (representing late apoptosis), producing an additivity and/or synergistic effect, and vice versa. Suppression of nuclear NF-κB was involved in curcumin-enhanced chemosensitivity of TATT. Overall, our data indicate that TATT exerts a chemotherapeutic effect on colorectal cancer cells and coadministration of curcumin enhances the treatment effect of TATT.
Identification of small molecule Hes1 modulators as potential anticancer chemotherapeutics.
Sail, Vibhavari; Hadden, M Kyle
2013-03-01
Hes1 is a key transcriptional regulator primarily controlled by the Notch signaling pathway, and recent studies have demonstrated both an oncogenic and tumor suppressor role for Hes1, depending on the cell type. Small molecules that activate and inhibit Hes1 activity hold promise as future anticancer chemotherapeutics. We have utilized a cell-based dual luciferase assay to identify modulators of Hes1 expression in a medium-throughput format. A modest screen was performed in HCT-116 colon cancer cell lines, and two small molecules were identified and characterized as Hes1 regulators. Compound 3 induced Hes1 expression and exhibited anticancer effects in pulmonary carcinoid tumor cells, a cell type in which the upregulated Notch/Hes1 signaling plays a tumor suppressive role. Treatment of HCT-116 cells with compound 12 resulted in Hes1 downregulation and antitumor effects. © 2012 John Wiley & Sons A/S.
Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent.
Gartner, Michael; Müller, Thomas; Simon, Jan C; Giannis, Athanassios; Sleeman, Jonathan P
2005-01-01
Hyperforin, a natural product of St. John's wort (Hypericum perforatum L.), has a number of pharmacological activities, including antidepressive and antibacterial properties. Furthermore, hyperforin has pronounced antitumor properties against different tumor cell lines, both in vitro and in vivo. Despite being a promising novel anticancer agent, the poor solubility and stability of hyperforin in aqueous solution limits its potential clinical application. In this study, we present the synthesis of hyperforin derivatives with improved pharmacological activity. The synthesized compounds were tested for their solubility and stability properties. They were also investigated for their antitumor properties, both in vitro and in vivo. One of these hyperforin derivatives, Aristoforin, is more soluble in aqueous solution than hyperforin and is additionally highly stable. Importantly, it retains the antitumor properties of the parental compound without inducing toxicity in experimental animals. These data strongly suggest that Aristoforin has potential as an anticancer drug.
NASA Astrophysics Data System (ADS)
Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol
2015-03-01
A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.
Tubulin polymerization-stimulating activity of Ganoderma triterpenoids.
Kohno, Toshitaka; Hai-Bang, Tran; Zhu, Qinchang; Amen, Yhiya; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Shimizu, Kuniyoshi
2017-04-01
Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.
Arif, Hussain; Rehmani, Nida; Farhan, Mohd; Ahmad, Aamir; Hadi, Sheikh Mumtaz
2015-11-09
Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure-activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids.
Arif, Hussain; Rehmani, Nida; Farhan, Mohd; Ahmad, Aamir; Hadi, Sheikh Mumtaz
2015-01-01
Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids. PMID:26569217
A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells.
Kogan, Natalya M; Blázquez, Cristina; Alvarez, Luis; Gallily, Ruth; Schlesinger, Michael; Guzmán, Manuel; Mechoulam, Raphael
2006-07-01
Recent findings on the inhibition of angiogenesis and vascular endothelial cell proliferation by anthracycline antibiotics, which contain a quinone moiety, make this type of compound a very promising lead in cancer research/therapy. We have reported that a new cannabinoid anticancer quinone, cannabidiol hydroxyquinone (HU-331), is highly effective against tumor xenografts in nude mice. For evaluation of the antiangiogenic action of cannabinoid quinones, collagen-embedded rat aortic ring assay was used. The ability of cannabinoids to cause endothelial cell apoptosis was assayed by TUNEL staining and flow cytometry analysis. To examine the genes and pathways targeted by HU-331 in vascular endothelial cells, human cDNA microarrays and polymerase chain reaction were used. Immunostaining with anti-CD31 of tumors grown in nude mice served to indicate inhibition of tumor angiogenesis. HU-331 was found to be strongly antiangiogenic, significantly inhibiting angiogenesis at concentrations as low as 300 nM. HU-331 inhibited angiogenesis by directly inducing apoptosis of vascular endothelial cells without changing the expression of pro- and antiangiogenic cytokines and their receptors. A significant decrease in the total area occupied by vessels in HU-331-treated tumors was also observed. These data lead us to consider HU-331 to have high potential as a new antiangiogenic and anticancer drug.
Dehnhardt, Christoph M; Venkatesan, Aranapakam M; Delos Santos, Efren; Chen, Zecheng; Santos, Osvaldo; Ayral-Kaloustian, Semiramis; Brooijmans, Natasja; Mallon, Robert; Hollander, Irwin; Feldberg, Larry; Lucas, Judy; Chaudhary, Inder; Yu, Ker; Gibbons, Jay; Abraham, Robert; Mansour, Tarek S
2010-01-28
Herein we describe the identification and lead optimization of triazolopyrimidines as a novel class of potent dual PI3K/mTOR inhibitors, resulting in the discovery of 3 (PKI-402). Compound 3 exhibits good physical properties and PK parameters, low nanomolar potency against PI3Kalpha and mTOR, and excellent inhibition of cell proliferation in several human cancer cell lines. Furthermore, in vitro and in vivo biomarker studies demonstrated the ability of 3 to shut down the PI3K/Akt pathway and induce apoptosis in cancer cells. In addition, 3 showed excellent in vivo efficacy in various human cancer xenografts, validating suppression of PI3K/mTOR signaling as a potential anticancer therapy.
Tănase, Constantin I; Drăghici, Constantin; Cojocaru, Ana; Galochkina, Anastasia V; Orshanskaya, Jana R; Zarubaev, Vladimir V; Shova, Sergiu; Enache, Cristian; Maganu, Maria
2015-10-01
New nucleoside analogues with an optically active bicyclo[2.2.1]heptane skeleton as sugar moiety and 6-substituted adenine were synthesized by alkylation of 6-chloropurine intermediate. Thymine and uracil analogs were synthesized by building the pyrimidine ring on amine 1. X-ray crystallography confirmed an exo-coupling of the thymine to the ring and an L configuration of the nucleoside analogue. The library of compounds was tested for their inhibitory activity against influenza virus A∖California/07/09 (H1N1)pdm09 and coxsackievirus B4 in cell culture. Compounds 13a and 13d are the most promising for their antiviral activity against influenza, and compound 3c against coxsackievirus B4. Compounds 3b and 3g were tested for anticancer activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lad, Nitin P; Manohar, Yogesh; Mascarenhas, Malcolm; Pandit, Yashwant B; Kulkarni, Mahesh R; Sharma, Rajiv; Salkar, Kavita; Suthar, Ashish; Pandit, Shivaji S
2017-03-01
A series of novel 4 and 5-substituted methylsulfonyl benzothiazole (MSBT) compounds having amide, alkoxy, sulfonamide, nitro and amine functionality were synthesized from sequential reactions on 5-ethoxy-2-(methylsulfonyl)benzo[d]thiazole such as nitration, reduction, sulfonation, dealkylation, etc. All synthesized compounds were screened against antimicrobial and selected screened for anticancer activity. Antimicrobial activities studies reveled that among all compounds screened, out of MSBT-07, MSBT-11, MSBT-12, MSBT-14, MSBT-19, and MSBT-27 were found to have promising antimicrobial activity at MIC range of 4-50μg/ml against selected bacterial as well as fungal species. Compounds having good antimicrobial activity were screened for cervical cancer (HeLA cell lines). Of these MSBT-07 and MSBT-12 significantly reduced the cell growth. Consequently their calculated GI 50 values were found to be 0.1 or <0.1μM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal
2015-05-05
In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, (1)H- and (13)C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Nwodo, Justina N; Ibezim, Akachukwu; Simoben, Conrad V; Ntie-Kang, Fidele
2016-01-01
Cancer stands as second most common cause of disease-related deaths in humans. Resistance of cancer to chemotherapy remains challenging to both scientists and physicians. Medicinal plants are known to contribute significantly to a large population of Africa, which is to a very large extent linked to folkloric claims which is part of their livelihood. In this review paper, the potential of naturally occurring anti-cancer agents from African flora has been explored, with suggested modes of action, where such data is available. Literature search revealed plant-derived compounds from African flora showing anti-cancer and/or cytotoxic activities, which have been tested in vitro and in vivo. This corresponds to 400 compounds (from mildly active to very active) covering various compound classes. However, in this part II, we only discussed the three major compound classes which are: flavonoids, alkaloids and terpenoids.
NASA Astrophysics Data System (ADS)
Badave, Kirti; Patil, Yogesh; Gonnade, Rajesh; Srinivas, Darbha; Dasgupta, Rajan; Khan, Ayesha; Rane, Sandhya
2011-12-01
Compound 1 [1-imino (acetyl hydrazino)-Vitamin K 3], displays valence tautomerically related electronic isomers as Form I and Form II. Form I exhibits 2D packing fragment with 1D ribbon chains of N-H⋯O hydrogen bonds and shows EPR silent features. While Form II is EPR active and exhibits biradical nature with double quantum transitions at g = 2.0040. 1H NMR of compound 2, [1-imino (hydrazino carboxylate)-Vitamin K 3] and Form II exhibit π delocalization via resonance assisted H-bonding [RAHB] effect compared to Form I. Molecular interactions in Form I and II are visualized by DSC. The electronic structures of compounds 1 and 2 have been correlated to their API values by measuring anticancer activities, mitochondrial potentials and DNA shearing patterns. Form II and compound 2 indicate mitochondria mediated apoptosis (˜75% cell death) while Form I causes 35% cell death.
Ethnobotany, phytochemistry and pharmacology of Arctotis arctotoides (L.f.) O. Hoffm.: A review.
Saleh-E-In, Md Moshfekus; Van Staden, Johannes
2018-06-28
Arctotis arctotoides (Asteraceae) is part of the genus Arctotis. Arctotis is an African genus of approximately 70 species that occur widely in the African continent with diverse medicinal values. This plant is used for the treatment of indigestion and catarrh of the stomach, epilepsy, topical wounds and skin disorders among the ethnic groups in South Africa and reported to have a wide spectrum of pharmacological properties. The aim of the present review is to appraise the botany, traditional uses, phytochemistry, pharmacological potential, analytical methods and safety issues of A. arctotoides. Additionally, this review will help to fill the existing gaps in knowledge and highlight further research prospects in the field of phytochemistry and pharmacology. Information on A. arctotoides was collected from various resources, including books on African medicinal herbs and Zulu medicinal plants, theses, reports and the internet databases such as SciFinder, Google Scholar, Pubmed, Scopus, Web of Science, and Mendeley by using a combination of various meaningful keywords. This review surveys the available literature of the species from 1962 to April 2017. In vitro and in vivo studies of the medicinal properties of A. arctotoides were reviewed. The main isolated and identified compounds were reported as sesquiterpenes, farnesol derivatives, germacranolide, guaianolides and some steroids, of which, nine were reported as antimicrobial. Monoterpenoids and sesquiterpenoids were the predominant essential oil compound classes of the leaves, flowers, stems and roots. The present review revealed potential pharmacological properties such as anti-oxidant, antibacterial, antifungal and anticancer activities of plant extracts as well as isolated compounds. Moreover, the review reports the safety profile (toxicity) of the crude extracts that had been screened on brine shrimps, rats and human cell lines. The present review has focused on the phytochemistry, botany, ethnopharmacology, biological activities and toxicological information of A. arctotoides. On the basis of reported data, A. arctotoides has emerged as a good source of natural medicine for the treatment of microbial infections, skin diseases, anti-inflammatory and anticancer agents and also provides new insights for further isolation of new bioactive compounds, especially the discovery of antimicrobial, anti-inflammatory and anticancer novel therapeutic lead drug molecules. Additionally, intensive investigations regarding pharmacological properties, safety assessment and efficacy with their mechanism of action could be future research interests before starting clinical trials for medicinal practices. Copyright © 2018 Elsevier B.V. All rights reserved.
Wu, Jianzhang; Wu, Shoubiao; Shi, Lingyi; Zhang, Shanshan; Ren, Jiye; Yao, Song; Yun, Di; Huang, Lili; Wang, Jiabing; Li, Wulan; Wu, Xiaoping; Qiu, Peihong; Liang, Guang
2017-01-05
The nuclear factor-kappa B (NF-κB) signaling pathway has been targeted for the therapy of various cancers, including lung cancer. EF24 was considered as a potent inhibitor of NF-κB signaling pathway. In this study, a series of asymmetric EF24 analogues were synthesized and evaluated for their anti-cancer activity against three lung cancer cell lines (A549, LLC, H1650). Most of the compounds exhibited good anti-tumor activity. Among them, compound 81 showed greater cytotoxicity than EF24. Compound 81 also possessed a potent anti-migration and anti-proliferative ability against A549 cells in a concentration-dependent manner. Moreover, compound 81 induced lung cancer cells death by inhibiting NF-κB signaling pathway, and activated the JNK-mitochondrial apoptotic pathway by increasing reactive oxygen species (ROS) generation resulting in apoptosis. In summary, compound 81 is a valuable candidate for anti-lung cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Kandile, Nadia G; Mohamed, Mansoura I; Ismaeel, Hind M
2017-12-01
New compounds based on oxindole moiety were synthesized via the reaction of 5-substitued isatins 1a-e with different nucleophiles such as benzidine, 3,3'-dimethoxybenzidine 2a,b and 2,6-diaminopyridine 3 to afford three different classes of bis-Schiff bases 4a-e, 5a-e and 6a-e, respectively. The structures of the new compounds were elucidated on the basis of their FTIR, 1 H NMR, 13 C NMR, GC/MS spectral data and elemental analysis. The in vitro antimicrobial activity of the new compounds was evaluated using a broth dilution technique in terms of minimal inhibitory concentration (MIC) against four bacterial and two fungal pathogens and anticancer activities against HELA cervix. The revealed data showed that compound 9d has excellent activity against Gram + ve and Gram -ve bacteria, and compounds 11b presented promising anticancer activity against HELA cervix. [Formula: see text].
Frattaruolo, Luca; Lacret, Rodney; Cappello, Anna Rita; Truman, Andrew W
2017-11-17
Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of the newly discovered compounds, thioalbamide, indicates that it is highly cytotoxic to cancer cells, while exhibiting significantly less activity toward a noncancerous epithelial cell line.
Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.
Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava
2012-12-05
Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.
Novel taspine derivative 12k inhibits cell growth and induces apoptosis in lung cell carcinoma.
Dai, Bingling; Wang, Wenjie; Liu, Rui; Wang, Hongying; Zhang, Yanmin
2015-03-01
Taspine is an active compound in anticancer agent development. 12k was synthesized with taspine as lead compound bearing biphenyl scaffold and showed potent anticancer activity. Here, we investigated the effect of taspine derivative 12k on A549 lung cells. We showed that 12k not only decreased significantly A549 cell viability, A549 cell colony formation but also impaired A549 cell migration. Moreover, 12k treatment blocked cell cycle progression by increasing cell number in S phase to 42.80% for 6 μmol/L vs. 28.86% for control while decreasing cell number in G1 phase. Accordingly, this was associated with an increase protein expression of cyclin E and a decrease protein expression of cyclin D1, cyclin B1 and its associated CDK1 (cdc2). Meanwhile, we found that 12k induced A549 cell apoptosis, which was closely associated with the effect of the Bcl-2 family. Increase of Bad, Bak and Bax expression levels, decrease of Bcl-2 and Mcl-1 expression levels were observed. SiRNA knockdown of c-myc in A549 cells significantly attenuated tumor inhibition effects of 12k. In conclusion, our results demonstrate that 12k has an inhibitory effect on growth of A549 cell by inducing cell cycle arrest and apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Vallejo, María José; Salazar, Lizeth; Grijalva, Marcelo
2017-01-01
Medicinal and aromatic plants (MAPs) are known and have been long in use for a variety of health and cosmetics applications. Potential pharmacological usages that take advantage of bioactive plant-derived compounds' antimicrobial, antifungal, anti-inflammatory, and antioxidant properties are being developed and many new ones explored. Some phytochemicals could trigger ROS-mediated cytotoxicity and apoptosis in cancer cells. A lot of effort has been put into investigating novel active constituents for cancer therapeutics. While other plant-derived compounds might enhance antioxidant defenses by either radical scavenging or stimulation of intracellular antioxidant enzymes, the generation of reactive oxygen species (ROS) leading to oxidative stress is one of the strategies that may show effective in damaging cancer cells. The biochemical pathways involved in plant-derived bioactive compounds' properties are complex, and in vitro platforms have been useful for a comprehensive understanding of the mechanism of action of these potential anticancer drugs. The present review aims at compiling the findings of particularly interesting studies that use cancer cell line models for assessment of antioxidant and oxidative stress modulation properties of plant-derived bioactive compounds.
Bozorov, Khurshed; Ma, Hai-Rong; Zhao, Jiang-Yu; Zhao, Hai-Qing; Chen, Hua; Bobakulov, Khayrulla; Xin, Xue-Lei; Elmuradov, Burkhon; Shakhidoyatov, Khusnutdin; Aisa, Haji A
2014-09-12
Series of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (DDTD) derivatives: azomethines of DDTD (2a-l) have been synthesized and screened for their anticancer, antimicrobial and anti-diabetic activities. The novel synthesized compounds were characterized by (1)H, (13)C NMR, MS and FT-IR analyses. All compounds were evaluated for their antiproliferative activity against three types of cancer cell line such as T47D and MCF-7 (human breast cancer), Hela (human cervical cancer) and Ishikawa (human endometrial cancer) lines. The results showed that most compounds exhibited significant antiproliferative activity against breast cancer cells. The majority of azomethines DDTD influenced strongly against breast cancer cells T47D and MCF-7, among them compounds 2b (2.3 μM), 2c (12.1 μM), 2e (13.2 μM), 2i (14.9 μM), 2j (16.0 μM), 2k (7.1 μM), 2l (8.6 μM) manifest potent anticancer activity against cancer cell T47D than Doxorubicin (DOX, 15.5 μM). Compound 2j has shown potent activity on all three types of cancer cells concurrently and IC50 values were considerably low in comparison with positive control DOX. In addition, all compounds were tested for antimicrobial activity against Staphylococcus aureus ATCC 6538 (Gram positive bacteria), Escherichia coli ATCC 11229 (Gram negative bacteria) and Candida albicans ATCC 10231 (Fungi) strains and 2j which contains in the ring nitrofurfural fragment, showed the highest effect on the three species of microbial pathogens simultaneously. Some compounds induced enzymatic inhibition in a concentration-dependent manner on PTP-1B inhibitor. Copyright © 2014. Published by Elsevier Masson SAS.
Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study
NASA Astrophysics Data System (ADS)
Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad
2018-06-01
Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.
(-)-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer.
Sriwiriyajan, Somchai; Sukpondma, Yaowapa; Srisawat, Theera; Madla, Siribhorn; Graidist, Potchanapond
2017-08-01
Several studies have reported that active compounds isolated from Piper nigrum possess anticancer properties. However, there are no data on anticancer activity of (-)-kusunokinin and piperlonguminine. The purposes of this study were to isolate active compounds from P. nigrum and identify the molecular mechanisms underlying growth and apoptosis pathway in breast cancer cells. Two bioactive compounds, (-)-kusunokinin and piperlonguminine, were isolated from P. nigrum. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry and Western blot analysis. We found that the active compounds, which effect cancer cell lines were (-)-kusunokinin and piperlonguminine. These compounds have potent cytotoxic effects on breast cancer cells (MCF-7 and MDA-MB-468) and colorectal cells (SW-620). (-)-Kusunokinin demonstrated a cytotoxic effect on MCF-7 and MDA-MB-468 with IC 50 values of 1.18 and 1.62μg/mL, respectively. Piperlonguminine had a cytotoxic effect on MCF-7 and MDA-MB-468 with IC 50 values of 1.63 and 2.19μg/mL, respectively. Both compounds demonstrated lower cytotoxicity against normal breast cell lines with IC 50 values higher than 11μg/mL. Cell cycle and apoptotic analysis using flow cytometry, showed that the (-)-kusunokinin and piperlonguminine induced cell undergoing apoptosis and drove cells towards the G2/M phase. Moreover, both compounds decreased topoisomerase II and bcl-2. The increasing of p53 levels further increased p21, bax, cytochrome c, caspase-8, -7 and -3 activities, except caspase-9. These results suggest that the (-)-kusunokinin and piperlonguminine have been shown to have potent anticancer activities through extrinsic pathway and G2/M phase arrest. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Reddy Chamakura, Upendar; Sailaja, E; Dulla, Balakrishna; Kalle, Arunasree M; Bhavani, S; Rambabu, D; Kapavarapu, Ravikumar; Rao, M V Basaveswara; Pal, Manojit
2014-03-01
A series of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives were designed as potential anticancer agents. These compounds were conveniently prepared by using Pd/C-Cu mediated Sonogashira type coupling as a key step. Many of these compounds were found to be promising when tested for their in vitro anti-proliferative properties against six cancer cell lines. All these compounds were found to be selective towards the growth inhibition of cancer cells with IC50 values in the range of 0.9-1.7 μM (against MDA-MB 231 and MCF7 cells), comparable to the known anticancer drug doxorubicin. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ghorab, Mostafa M; Alsaisd, Mansour S; Nissan, Yassin M
2015-01-01
A new series of pyrroles 5, 6, pyrrolopyrimidines 8, 11-14, 16-29, triazolo-pyrrolopyrimidines 9, 10 and 15 carrying a biologically active sulfonamide moities were synthesized using 2-amino-3-cyano-4-(4-bromophenyl)pyrrole 5 as a strategic starting material. The structures of the prepared compounds were confirmed by elemental analyses, IR, 1H-NMR and 13C-NMR data. All of the synthesized compounds showed promising anticancer activity against breast cancer cell line (MCF7) compared to doxorubicin as reference drug, especially compounds 5-17, 21-24 and 28 with better IC50 than that of doxorubicin. In order to suggest the mechanism of action of their cytotoxic activities, molecular docking on the active site of c-Src was done and good results were obtained.
Medicinal plants combating against cancer--a green anticancer approach.
Sultana, Sabira; Asif, Hafiz Muhammad; Nazar, Hafiz Muhammad Irfan; Akhtar, Naveed; Rehman, Jalil Ur; Rehman, Riaz Ur
2014-01-01
Cancer is the most deadly disease that causes the serious health problems, physical disabilities, mortalities, and morbidities around the world. It is the second leading cause of death all over the world. Although great advancement have been made in the treatment of cancer progression, still significant deficiencies and room for improvement remain. Chemotherapy produced a number of undesired and toxic side effects. Natural therapies, such as the use of plant-derived products in the treatment of cancer, may reduce adverse and toxic side effects. However, many plants exist that have shown very promising anticancer activities in vitro and in vivo but their active anticancer principle have yet to be evaluated. Combined efforts of botanist, pharmacologist and chemists are required to find new lead anticancer constituent to fight disease. This review will help researchers in the finding of new bioactive molecules as it will focus on various plants evaluated for anticancer properties in vitro and in vivo.
Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G
2010-08-01
Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.
Phenylpropanoids from Phragmipedium calurum and their antiproliferative activity
Starks, Courtney M.; Williams, Russell B.; Norman, Vanessa L.; Lawrence, Julie A.; O’Neil-Johnson, Mark; Eldridge, Gary R.
2012-01-01
Two new and five known stilbenes and one new alkylresorcinol were isolated from the orchid Phragmipedium calurum during a screen for new anticancer compounds. The compounds were evaluated for antiproliferative activity against multiple human cancer cell lines. Two of the compounds (1 and 7) displayed moderate activity against several cell lines. PMID:22805176
Wang, Xu De; Sun, Yuan Yuan; Zhao, Chen; Qu, Fan Zhi; Zhao, Yu Qing
2017-03-05
(20R)-Dammarane-3β, 12β, 20, 25-tetrol (25-OH-PPD) is a ginsenoside isolated from Panax ginseng (C. A. Meyer). This compound exhibits anti-cancer activities on many human cancer cell lines. In this study, we investigated anti-cancer mechanisms of 12β-O-( L -Chloracetyl)-dammar-20(22)-ene-3β,25-diol(12-Chloracetyl-PPD), a modified 25-OH-PPD. We found that compound 12-Chloracetyl-PPD resulted in a concentration-dependent inhibition of viability in prostate, breast, and gastric cancer cells, without affecting the viability of normal cell (human gastric epithelial cell line-GES-1, hair follicle dermal papilla cell line-HHDPC and rat myocardial cell line-H9C2). In MDA-MB-435 and C4-2B cancer cells, 12-Chloracetyl-PPD induced G2/M cell cycle arrest, down-regulated mouse double minute 2 (MDM2) expression, up-regulated p53 expression, triggered apoptosis, and stimulated reactive oxygen species production. Apoptosis can be attenuated by the reactive oxygen species scavenger N-acetylcysteine. Our results suggested that compound 12-Chloracetyl-PPD showed obvious anti-cancer activity based on delaying cell cycle arrest and inducing cell apoptosis by reactive oxygen species production, which supported development of 12-Chloracetyl-PPD as a potential agent for cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Canela, María-Dolores; Pérez-Pérez, María-Jesús; Noppen, Sam; Sáez-Calvo, Gonzalo; Díaz, J Fernando; Camarasa, María-José; Liekens, Sandra; Priego, Eva-María
2014-05-22
Vascular disrupting agents (VDAs) constitute an innovative anticancer therapy that targets the tumor endothelium, leading to tumor necrosis. Our approach for the identification of new VDAs has relied on a ligand 3-D shape similarity virtual screening (VS) approach using the ROCS program as the VS tool and as query colchicine and TN-16, which both bind the α,β-tubulin dimer. One of the hits identified, using TN-16 as query, has been explored by the synthesis of its structural analogues, leading to 2-(1-((2-methoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (compound 16c) with an IC50 = 0.09 ± 0.01 μM in HMEC-1 and BAEC, being 100-fold more potent than the initial hit. Compound 16c caused cell cycle arrest in the G2/M phase and interacted with the colchicine-binding site in tubulin, as confirmed by a competition assay with N,N'-ethylenebis(iodoacetamide) and by fluorescence spectroscopy. Moreover, 16c destroyed an established endothelial tubular network at 1 μM and inhibited the migration and invasion of human breast carcinoma cells at 0.4 μM. In conclusion, our approach has led to a new chemotype of promising antiproliferative compounds with antimitotic and potential VDA properties.
8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications
Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong
2013-01-01
Metal ions play an important role in biological processes and in metal homeostasis. Metal imbalance is the leading cause for many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. 8-Hydroxyquinoline (8HQ) is a small planar molecule with a lipophilic effect and a metal chelating ability. As a result, 8HQ and its derivatives hold medicinal properties such as antineurodegenerative, anticancer, antioxidant, antimicrobial, anti-inflammatory, and antidiabetic activities. Herein, diverse bioactivities of 8HQ and newly synthesized 8HQ-based compounds are discussed together with their mechanisms of actions and structure–activity relationships. PMID:24115839
Ayers, Sloan; Ehrmann, Brandie M; Adcock, Audrey F; Kroll, David J; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H
2011-11-02
As part of our ongoing investigation of filamentous fungi for anticancer leads, an active fungal extract was identified from the Mycosynthetix library (MSX 55526; from the Order Sordariales). Bioactivity-directed fractionation yielded the known ergosterol peroxide (2) and 5α,8α-epidioxyergosta-6,9(11),22-trien-3β-ol(3), and a new benzoate trimer, termed thielavin B methyl ester (1). The structure elucidation of 1 was facilitated by the use of HRMS coupled to an APPI (atmospheric pressure photoionization) source. Compound 1 proved to be moderately active against a panel of three cancer cell lines.
Shikonin and its derivatives: a patent review.
Wang, Rubing; Yin, Runting; Zhou, Wen; Xu, Defeng; Li, Shaoshun
2012-09-01
Shikonin and its derivatives are the main components of red pigment extracts from Lithospermum erythrorhizon, whose medicinal properties have been confirmed for a long history, and have aroused great interest as the hallmark molecules responsible for their significant biological activities, especially for their striking anticancer effects. Areas covered in this paper include a review of the total synthesis, biological effects and mechanisms of shikonin and its derivatives for their anticancer activities in the past decade, basing on literature and patents. The current state and problems are also discussed. At present, screening for anticancer shikonin derivatives is based on cellular level to find compounds with stronger cytotoxicity. Though several compounds have been discovered with striking cytotoxicity in vitro, however, no selectivity was observed and undoubtedly, the further outcomes have been disappointing because of their great damage to normal cells. Meanwhile, the presumed mechanisms of action are also established in terms of their cytotoxicity. From a pharmacological point of view, most of the shikonin derivatives are at an early stage of their development, and thus it is difficult to determine the exact effectiveness in cancer treatment. With research in this field going deeper, it can be expected that, despite the difficulties, shikonin derivatives as potential anticancer agents will soon follow.
Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.
Rajagopal, Sriram; Kumar, R Ajaya; Deevi, Dhanvanthri S; Satyanarayana, Chitkala; Rajagopalan, R
2003-01-01
Andrographis paniculata plant extract is known to possess a variety of pharmacological activities. Andrographolide, the major constituent of the extract is implicated towards its pharmacological activity. We studied the cellular processes and targets modulated by andrographolide treatment in human cancer and immune cells. Andrographolide treatment inhibited the in vitro proliferation of different tumor cell lines, representing various types of cancers. The compound exerts direct anticancer activity on cancer cells by cell-cycle arrest at G0/G1 phase through induction of cell-cycle inhibitory protein p27 and decreased expression of cyclin-dependent kinase 4 (CDK4). Immunostimulatory activity of andrographolide is evidenced by increased proliferation of lymphocytes and production of interleukin-2. Andrographolide also enhanced the tumor necrosis factor-alpha production and CD marker expression, resulting in increased cytotoxic activity of lymphocytes against cancer cells, which may contribute for its indirect anticancer activity. The in vivo anticancer activity of the compound is further substantiated against B16F0 melanoma syngenic and HT-29 xenograft models. These results suggest that andrographolide is an interesting pharmacophore with anticancer and immunomodulatory activities and hence has the potential for being developed as a cancer therapeutic agent.
Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays
de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra
2016-01-01
Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095
Orang-Ojong, Barnabas Bessem; Munyangaju, Jose Edward; Wei, Ma Shang; Lin, Miao; Wei, Fan Guan; Foukunang, Charles; Zhu, Yan
2013-07-01
Cancer is a significant public health concern and treatment poses a problem and is frequently unsuccessful. As such, continuous efforts in the search for new agents and therapies to improve survival are required. A considerable number of plant extracts and isolated compounds possess significant anti-proliferative or pro-apoptotic effects. The majority of biologically active compounds belong to terpenoids, phenolics and alkaloids. Terpenoid plants such as Hypericum lanceolatum and a few alkaloid plants have been found to be potent anti-parasitic agents but have exhibited poor antimicrobial effects. The screening of medicinal plants for anticancer drugs has provided modern medicine with effective cytotoxic pharmaceuticals. Numerous medicinal plants have traditionally been used for the treatment of various ailments. However, a number of these medicinal plants have not been standardized and their mechanisms of actions are generally unknown. Active drug discovery research using local medicinal plants is ongoing. Some of these plant-derived compounds, including 3,39-dimethoxy-49- O -β-d-xylopyronosylellagic acid, have been tested for their potential use as anticancer agents. This review discussed the scope and possibility of natural products as anticancer remedy.
Karker, Manel; Falleh, Hanen; Msaada, Kamel; Smaoui, Abderrazak; Abdelly, Chedly; Legault, Jean; Ksouri, Riadh
2016-01-01
Reaumuria vermiculata is a xero-halophytic specie widely distributed in the south of Tunisia. In the current study, antioxidant, anti-inflammatory and anticancer activities of Reaumuria vermiculata shoot extracts as well as its phenolic compounds were investigated in different solvent extracts (hexane, dichloromethane, methanol and water). Results showed a strong antioxidant activity, using the ORAC method and a cell based-assay, in methanol extract as well as an important phenolic composition (117.12 mg GAE/g). Hexane and dichloromethane proved an interesting anticancer activity against A-549 lung carcinoma cells, with IC50 values of 17 and 23 µg/ml, respectively. Besides, dichloromethane extract displayed the utmost anti-inflammatory activity, inhibiting NO release over 100 % at 80 µg/ml in LPS-stimulated RAW 264.7. Taken together, these finding suggest that R. vermiculata exhibited an interesting biological activities which may be related to the phenolic composition of this plant. Moreover, the identification of phenolic compounds in R. vermiculata dichloromethane extract using RP-HPLC revealed that myricetin was the major molecule. These results allow us to propose R. vermiculata as a valuable source for bioactive and natural compounds exhibiting interesting biological capacities. PMID:27298615
Tanpure, Rajendra P.; George, Clinton S.; Strecker, Tracy E.; Devkota, Laxman; Tidmore, Justin K.; Lin, Chen-Ming; Herdman, Christine A.; MacDonough, Matthew T.; Sriram, Madhavi; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.
2014-01-01
Diversely functionalized, fused aryl-alkyl ring systems hold a prominent position as well-established molecular frameworks for a variety of anti-cancer agents. The benzosuberene (6,7 fused, also referred to as dihydro-5H-benzo[7]annulene and benzocycloheptene) ring system has emerged as a valuable molecular core component for the development of inhibitors of tubulin assembly, which function as antiproliferative anti-cancer agents and, in certain cases, as vascular disrupting agents (VDAs). Both a phenolic-based analogue (known as KGP18, compound 39) and its corresponding amine-based congener (referred to as KGP156, compound 45), which demonstrate strong inhibition of tubulin assembly (low micromolar range) and potent cytotoxicity (picomolar range for KGP18 and nanomolar range for KGP156) are noteworthy examples of such benzosuberene-based compounds. In order to extend the structure-activity relationship (SAR) knowledge base related to benzosuberene anti-cancer agents, a series of eleven analogues (including KGP18) were prepared in which the methoxylation pattern on the pendant aryl ring as well as functional group incorporation on the fused aryl ring were varied. The synthetic approach to these compounds featured a sequential Wittig olefination, reduction, Eaton's reagent-mediated cyclization strategy to achieve the core benzosuberone intermediate, and represented a higher-yielding synthesis of KGP18 (which we prepared previously through a ring-expansion strategy). Incorporation of a fluorine or chlorine atom at the 1-position of the fused aryl ring or replacement of one of the methoxy groups with hydrogen (on the pendant aryl ring of KGP18) led to benzosuberene analogues that were both strongly inhibitory against tubulin assembly (IC50 approximately 1.0 M) and strongly cytotoxic against selected human cancer cell lines (for example, GI50 = 5.47 nM against NCI-H460 cells with fluorobenzosuberene analogue 37). A water-soluble phosphate prodrug salt of KGP18 (referred to as KGP265, compound 44) and a water-soluble serinamide salt (compound 48) of KGP156 were also synthesized and evaluated in this study. PMID:24183586
Anticancer Properties of Capsaicin Against Human Cancer.
Clark, Ruth; Lee, Seong-Ho
2016-03-01
There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Suttiarporn, Panawan; Chumpolsri, Watcharapong; Mahatheeranont, Sugunya; Luangkamin, Suwaporn; Teepsawang, Somsuda; Leardkamolkarn, Vijittra
2015-01-01
Structures of some bioactive phytochemicals in bran extract of the black rice cv. Riceberry that had demonstrated anti-cancer activity in leukemic cell line were investigated. After saponification with potassium hydroxide, separation of the unsaponified fraction by reversed-phase high performance liquid chromatography (HPLC) resulted in four sub-fractions that had a certain degree of anti-proliferation against a mouse leukemic cell line (WEHI-3 cell), this being IC50 at 24 h ranging between 2.80–467.11 μg/mL. Further purification of the bioactive substances contained in these four sub-fractions was performed by normal-phase HPLC. Structural characterization by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) resulted in, overall, the structures of seven phytosterols and four triterpenoids. Four phytosterols, 24-methylene-ergosta-5-en-3β-ol, 24-methylene-ergosta-7-en-3β-ol, fucosterol, and gramisterol, along with three triterpenoids, cycloeucalenol, lupenone, and lupeol, were found in the two sub-fractions that showed strong anti-leukemic cell proliferation (IC50 = 2.80 and 32.89 μg/mL). The other sterols and triterpenoids were campesterol, stigmasterol, β-sitosterol and 24-methylenecycloartanol. Together with the data from in vitro biological analysis, we suggest that gramisterol is a significant anti-cancer lead compound in Riceberry bran extract. PMID:25756784
NASA Astrophysics Data System (ADS)
Al-Otaibi, Jamelah S.; EL Gogary, Tarek M.
2017-02-01
Anthraquinones are well-known anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ5 and AQ5H) were synthesized and studied with 1,5-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions four conformers of AQ5 were detected within the range of about 42 kcal/mol. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the anthraquinones (AQ5 and AQ5H) were studied with different DNA namely, calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). UV-VIS electronic absorption spectral data were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis. NMR study confirms qualitatively the drug/DNA interaction in terms of peak shift and broadening.
Structural and cytotoxic studies of cationic thiosemicarbazones
NASA Astrophysics Data System (ADS)
Sinniah, Saravana Kumar; Sim, Kae Shin; Ng, Seik Weng; Tan, Kong Wai
2017-06-01
Schiff bases from the thiosemicarbazones family with variable N4 substituents are known to show enhanced growth inhibitory properties. In view of these facts and as a part of our continuous interest in cationic Schiff bases, we have developed several Schiff base ligands from (3-formyl-4-hydroxyphenyl)methyltriphenylphosphonium (T) in present study. The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography). Three of the N4 substituents, namely P(tsc)T, FP(tsc)T and EP(tsc)T exerted strong growth inhibitory properties by inhibiting the highly metastasis prostate cancer growth (PC-3). The thiosemicarbazone with ethylphenyl (EP) moiety displayed most potent activity against all cell lines tested. The MTT data obtained from analysis establishes that phenyl substituent enhances the growth inhibitory properties of the compound. The result affirms that EP(tsc)T would serve as a lead scaffold for rational anticancer agent development.
Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment
Li, Xia; Wang, Xiupeng; Zhang, Jun; Hanagata, Nobutaka; Wang, Xuebin; Weng, Qunhong; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri
2017-01-01
High global incidence of prostate cancer has led to a focus on prevention and treatment strategies to reduce the impact of this disease in public health. Boron compounds are increasingly recognized as preventative and chemotherapeutic agents. However, systemic administration of soluble boron compounds is hampered by their short half-life and low effectiveness. Here we report on hollow boron nitride (BN) spheres with controlled crystallinity and boron release that decrease cell viability and increase prostate cancer cell apoptosis. In vivo experiments on subcutaneous tumour mouse models treated with BN spheres demonstrated significant suppression of tumour growth. An orthotopic tumour growth model was also utilized and further confirmed the in vivo anti-cancer efficacy of BN spheres. Moreover, the administration of hollow BN spheres with paclitaxel leads to synergetic effects in the suppression of tumour growth. The work demonstrates that hollow BN spheres may function as a new agent for prostate cancer treatment. PMID:28059072
Radix Bupleuri: A Review of Traditional Uses, Botany, Phytochemistry, Pharmacology, and Toxicology.
Yang, Fude; Dong, Xiaoxv; Yin, Xingbin; Wang, Wenping; You, Longtai; Ni, Jian
2017-01-01
Radix Bupleuri (Chaihu) has been used as a traditional medicine for more than 2000 years in China, Japan, Korea, and other Asian countries. Phytochemical studies demonstrated that this plant contains essential oils, triterpenoid saponins, polyacetylenes, flavonoids, lignans, fatty acids, and sterols. Crude extracts and pure compounds isolated from Radix Bupleuri exhibited various biological activities, such as anti-inflammatory, anticancer, antipyretic, antimicrobial, antiviral, hepatoprotective, neuroprotective, and immunomodulatory effects. However, Radix Bupleuri could also lead to hepatotoxicity, particularly in high doses and with long-term use. Pharmacokinetic studies have demonstrated that the major bioactive compounds (saikosaponins a, b 2 , c, and d) were absorbed rapidly in rats after oral administration of the extract of Radix Bupleuri . This review aims to comprehensively summarize the traditional uses, botany, phytochemistry, pharmacology, toxicology, and pharmacokinetics of Radix Bupleuri reported to date with an emphasis on its biological properties and mechanisms of action.
Developments in platinum anticancer drugs
NASA Astrophysics Data System (ADS)
Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira
2018-01-01
Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.
Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases
Jain, Chetan Kumar; Majumder, Hemanta Kumar; Roychoudhury, Susanta
2017-01-01
DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs. PMID:28503091
Chinthaparthi, Radha Rani; Bhatnagar, Ira; Gangireddy, Chandra Sekhar Reddy; Syama, Sundar Chereddy; Cirandur, Suresh Reddy
2013-09-01
Syntheses of a new series of biologically potent α-aminophosphonates were accomplished by one-pot Kabachnik-Fields reaction using TiO2-SiO2 as solid supported catalyst under microwave irradiation conditions. The chemical structures of all the newly synthesized compounds were confirmed by analytical and spectral (IR, 1H, 13C, 31P NMR, and mass) data. Their anticancer nature was evaluated by screening the in vitro activity on two human cancer cell lines, HeLa and SK-BR-3. Compounds 4i and 4o showed the best activity on these cancer cells even though the majority of the compounds, and particularly 4l and 4p, have good cytotoxic activity against them. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morales, Fátima; Ramírez, Alberto; Morata-Tarifa, Cynthia; Navarro, Saúl A; Marchal, Juan A; Campos, Joaquín M; Conejo-García, Ana
2017-03-01
Cancer is among the leading causes of death worldwide. Medical interest has focused on macrocyclic polyamines because of their properties as antitumor agents. Results/Methodology: We have designed and synthesized a series of 1,2-diaminocyclohexane derivatives with notable in vitro antiproliferative activities against the MCF-7, HCT-116 and A375 cancer cell lines. Cell cycle and apoptosis analyses were also carried out. Our results show that all the compounds are potent cytotoxic agents, especially against the A375 cell line. The selective activity of the macrocyclic derivative against A375, via apoptosis, supposes a great advantage for future therapeutic use. This exemplifies the potential of 1,2-diaminocyclohexane derivatives to qualify as lead structures for future anticancer drug development due to their easy syntheses and noteworthy bioactivity.
NASA Astrophysics Data System (ADS)
Arafath, Md. Azharul; Adam, Farook; Razali, Mohd. R.; Ahmed Hassan, Loiy E.; Ahamed, Mohamed B. Khadeer; Majid, Amin Malik S. A.
2017-02-01
A carbothioamide NSO tridentate Schiff base ligand (HL) and its square planar complexes Na[NiLOAc], Na[PdLOAc] and [PtLdmso] have been synthesized and characterized on the basis of melting point, elemental analysis, FT-IR, 1H NMR, 13C NMR, UV-Vis spectra. The structure of HL was elucidated with X-ray diffraction analysis. In the present study, the synthesized compounds were evaluated for their anticancer properties against three human cancer cell lines breast cancer (MCF-7), cervical (Hela), and colon (HCT-116). In addition, the cytotoxicity of the synthesized compounds was tested on a normal human cell line (human endothelial cell line EA.hy926). Among the tested compounds, the complex [NiLOAc] excelled in halting proliferation of the cervical and colon cancer cells with median inhibitory concentration (IC50) values of 28.33 and 34.4 μM, respectively. The complex, [PdLOAc] demonstrated selective cytotoxicity against breast cancer line MCF-7 with IC50 = 47.5 μM, while HL showed inhibitory effect against colon cancer cell line (HCT-116) with IC50 = 55.66 μM. The complex, [PtLdmso] showed mild activity against breast cancer (MCF-7) and cervical cancer (Hela) cells with IC50 = 64.44 and 68.3 μM, respectively, whereas, it displayed insignificant cytotoxicity against human endothelial cells (EA.hy926) with IC50 > 200 μM. Cancer cells treated with [NiLOAc] showed apoptotic features such as membrane blebbing and DNA condensation. Thus, the findings of the present study demonstrated that the series of metal complexes of HL could form the new lead for development of cancer chemotherapies to treat human cervical, breast and colon malignancies.
Keshava, Rohini; Muniyappa, Nagesh; Gope, Rajalakshmi; Ramaswamaiah, Ananthanarayana Saligrama
2016-01-01
Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.
Chen, Xiao-Jia; Zhang, Xiao-Jing; Shui, Yan-Mei; Wan, Jian-Bo
2016-01-01
Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer. PMID:27446225
The Anticancer Activity of Sea Buckthorn [Elaeagnus rhamnoides (L.) A. Nelson].
Olas, Beata; Skalski, Bartosz; Ulanowska, Karolina
2018-01-01
Various parts of sea buckthorn [ Elaeagnus rhamnoides (L.) A. Nelson], particularly the berries, known also as seaberries, or Siberian pineapples, are characterized by a unique composition of bioactive compounds: phenolic compounds, vitamins (especially vitamin C), unsaturated fatty acids, and phytosterols such as beta-sitosterol. These berries, together with the juices, jams, and oils made from them, have a range of beneficial antioxidant, anti-inflammatory, and anticancer effects. This short review discusses whether sea buckthorn may represent a "golden mean" for the treatment of cancers: It has anti-proliferation properties and can induce apoptosis and stimulate the immune system, and sea buckthorn oil counteracts many side effects of chemotherapy by restoring kidney and liver function, increasing appetite, and keeping patients in general good health. Although the anticancer activity of sea buckthorn has been confirmed by many in vitro and animal in vivo studies, the treatment and prophylactic doses for humans are unknown. Therefore, greater attention should be paid to the development of well-controlled and high-quality clinical experiments in this area.
Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review
Uzma, Fazilath; Mohan, Chakrabhavi D.; Hashem, Abeer; Konappa, Narasimha M.; Rangappa, Shobith; Kamath, Praveen V.; Singh, Bhim P.; Mudili, Venkataramana; Gupta, Vijai K.; Siddaiah, Chandra N.; Chowdappa, Srinivas; Alqarawi, Abdulaziz A.; Abd_Allah, Elsayed F.
2018-01-01
Cancer is a major cause of death worldwide, with an increasing number of cases being reported annually. The elevated rate of mortality necessitates a global challenge to explore newer sources of anticancer drugs. Recent advancements in cancer treatment involve the discovery and development of new and improved chemotherapeutics derived from natural or synthetic sources. Natural sources offer the potential of finding new structural classes with unique bioactivities for cancer therapy. Endophytic fungi represent a rich source of bioactive metabolites that can be manipulated to produce desirable novel analogs for chemotherapy. This review offers a current and integrative account of clinically used anticancer drugs such as taxol, podophyllotoxin, camptothecin, and vinca alkaloids in terms of their mechanism of action, isolation from endophytic fungi and their characterization, yield obtained, and fungal strain improvement strategies. It also covers recent literature on endophytic fungal metabolites from terrestrial, mangrove, and marine sources as potential anticancer agents and emphasizes the findings for cytotoxic bioactive compounds tested against specific cancer cell lines. PMID:29755344
Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy.
Xie, Maobin; Fan, Dejun; Li, Yi; He, Xiaowen; Chen, Xiaoming; Chen, Yufeng; Zhu, Jixiang; Xu, Guibin; Wu, Xiaojian; Lan, Ping
2017-01-01
To deliver insoluble natural compounds into colon cancer cells in a controlled fashion. Curcumin (CM)-silk fibroin (SF) nanoparticles (NPs) were prepared by solution-enhanced dispersion by supercritical CO 2 (SEDS) (20 MPa pressure, 1:2 CM:SF ratio, 1% concentration), and their physicochemical properties, intracellular uptake efficiency, in vitro anticancer effect, toxicity, and mechanisms were evaluated and analyzed. CM-SF NPs (<100 nm) with controllable particle size were prepared by SEDS. CM-SF NPs had a time-dependent intracellular uptake ability, which led to an improved inhibition effect on colon cancer cells. Interestingly, the anticancer effect of CM-SF NPs was improved, while the side effect on normal human colon mucosal epithelial cells was reduced by a concentration of ~10 μg/mL. The anticancer mechanism involves cell-cycle arrest in the G 0 /G 1 and G 2 /M phases in association with inducing apoptotic cells. The natural compound-loaded SF nanoplatform prepared by SEDS indicates promising colon cancer-therapy potential.
Lutterbeck, Carlos Alexandre; Kern, Deivid Ismael; Machado, Ênio Leandro; Kümmerer, Klaus
2015-09-01
Anti-cancer drugs are compounds that are of high environmental relevance because of their lack of specific mode of action. They can be extremely harmful to living organisms even at low concentrations. The present study evaluated the toxic effects of four frequently used anti-cancer drugs against plant seedlings, namely Cyclophosphamide (CP), Methotrexate (MTX), 5-Fluorouracil (5-FU) and Imatinib (IM). The phytotoxicity experiments were performed with Lactuca sativa seedlings whereas cytotoxicity, genotoxicity and mutagenicity investigations were performed with the well-established Allium cepa assays. MTX was the most phytotoxic compound, followed by 5-FU, CP and IM. Significant differences in the Mitotic Indexes (MI) were observed in three of the studied compounds (MTX, 5-FU and CP), indicating potential cytotoxic activity of these substances. Chromosome aberrations were registered in cells that were exposed to 5-FU, CP and IM. All the four compounds caused the formation of micronucleated cells indicating mutagenic potential. Besides, the assays performed with MTX samples presented a high number of cell apoptosis (cell death). Although it is unlikely that the pharmaceuticals concentrations measured in the environment could cause lethal effects in plants, the obtained results indicate that these compounds may affect the growth and normal development of these plants. So, both tests can constitute important tools for a fast screening of environmental contamination e.g. in the context of the reuse of treated wastewater and biosolids of agricultural purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ghorab, Mostafa Mohammed; Al-Said, Mansour Sulaiman; Nissan, Yassin Mohammed
2012-01-01
N,N'-(4,4'-Sulfonylbis(4,1-phenylene))bis(2-cyanoacetamid) 2 was utilized as a key intermediate for the synthesis of novel dihydropyridines 3, 4, 8, dihydroisoquinolines 5-7, dithiolan 10, dithian 11, acrylamide 12, benzochromenes 17 and 18 and chromenopyridones 19 and 20. Compound 2 was the starting material in the synthesis of the acrylamide derivative 14, the pyrazole derivative 15 and the pyrazolopyrimidine derivative 16. All the synthesized compounds were evaluated for their in vitro anticancer activity against human breast cancer cell line (MCF7). Compound 19 showed the best cytotoxic activity with IC(50) value 19.36 µM. In addition, molecular docking study of the synthesized compounds on the active sites of farnesyltransferase and arginine methyltransferase was performed in order to give a suggestion about the mechanism of action of their cytotoxic activity.
Nakhi, Ali; Adepu, Raju; Rambabu, D; Kishore, Ravada; Vanaja, G R; Kalle, Arunasree M; Pal, Manojit
2012-07-01
Novel thieno[3,2-c]pyran-4-one based small molecules were designed as potential anticancer agents. Expeditious synthesis of these compounds was carried out via a multi-step sequence consisting of few steps such as Gewald reaction, Sandmeyer type iodination, Sonogashira type coupling followed by iodocyclization and then Pd-mediated various C-C bond forming reactions. The overall strategy involved the construction of thiophene ring followed by the fused pyranone moiety and then functionalization at C-7 position of the resultant thieno[3,2-c]pyran-4-one framework. Some of the compounds synthesized showed selective growth inhibition of cancer cells in vitro among which two compounds for example, 5d and 6c showed IC(50) values in the range of 2.0-2.5 μM. The crystal structure analysis of an active compound along with hydrogen bonding patterns and molecular arrangement present within the molecule is described. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Osman, M. S.; Ghani, Z. A.; Ismail, N. F.; Razak, N. A. A.; Jaapar, J.; Ariff, M. A. M.
2017-09-01
At present time, Mariposa Christia Vespertillonis (MCV) leave has become popular for its anti-cancer and thus is used widely among the traditional medicine in Malaysia. There are several types of MCV plants and the one that is currently well-known for traditional medicine in Malaysia is the green MCV (GMCV). Red MCV (RMCV) is another type of MCV plant which can also be found easily in Malaysia. In this study, the active compounds for GMCV and RMCV will be compared and analyzed by using Liquid Chromatography - Mass Spectrometry (LC-MS). The active compounds will be extracted from the MCV leaves by using Supercritical Fluid Extraction (SFE). The findings of this study indicates the global yield of the MCV oils is 31 mg/g while the compound identification indicates the presence of anti-cancer, anti-inflammatory and beneficial phytochemicals. This work is an explorative study to reveal the potential of MCV to be extracted using SFE method as potential therapeutic plants for the traditional medicine in Malaysia.
Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu
2016-09-28
In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition.
Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K
2015-12-24
In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.
Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.
2015-01-01
In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788
Alkyne-substituted diminazene as G-quadruplex binders with anticancer activities.
Wang, Changhao; Carter-Cooper, Brandon; Du, Yixuan; Zhou, Jie; Saeed, Musabbir A; Liu, Jinbing; Guo, Min; Roembke, Benjamin; Mikek, Clinton; Lewis, Edwin A; Lapidus, Rena G; Sintim, Herman O
2016-08-08
G-quadruplex ligands have been touted as potential anticancer agents, however, none of the reported G-quadruplex-interactive small molecules have gone past phase II clinical trials. Recently it was revealed that diminazene (berenil, DMZ) actually binds to G-quadruplexes 1000 times better than DNA duplexes, with dissociation constants approaching 1 nM. DMZ however does not have strong anticancer activities. In this paper, using a panel of biophysical tools, including NMR, FRET melting assay and FRET competition assay, we discovered that monoamidine analogues of DMZ bearing alkyne substitutes selectively bind to G-quadruplexes. The lead DMZ analogues were shown to be able to target c-MYC G-quadruplex both in vitro and in vivo. Alkyne DMZ analogues display respectable anticancer activities (single digit micromolar GI50) against ovarian (OVCAR-3), prostate (PC-3) and triple negative breast (MDA-MB-231) cancer cell lines and represent interesting new leads to develop anticancer agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Mahmud, Mohamed; Piwoni, Adriana; Filipczak, Nina; Janicka, Martyna; Gubernator, Jerzy
2016-01-01
The incorporation of hydrophobic drugs into liposomes improve their bioavailability and leads to increased stability and anticancer activity, along with decreased drug toxicity. Curcumin (Cur) is a natural polyphenol compound with a potent anticancer activity in pancreatic adenocarcinoma (PA). In the present study, different types of Cur-loaded liposomal formulations were prepared and characterized in terms of size, shape, zeta potential, optimal drug-to-lipid ratio and stability at 4°C, 37°C; and in human plasma in vitro. The best formulation in terms of these parameters was PEGylated, cholesterol-free formulation based upon hydrogenated soya PC (HSPC:DSPE-PEG2000:Cur, termed H5), which had a 0.05/10 molar ratio of drug-to-lipid, was found to be stable and had a 96% Cur incorporation efficiency. All Cur-loaded liposomal formulations had potent anticancer activity on the PA cancer cell lines AsPC-1 and BxPC-3, and were less toxic to a normal cell line (NHDF). Furthermore, apoptosis-induction induced by Cur in PA cells was associated with morphological changes including cell shrinkage, cytoplasmic blebbing, irregularity in shape and the externalization of cell membrane phosphatidylserine, which was preceded by an increase in intracellular reactive oxygen species (ROS) generation and caspase 3/7 activation. Because the liposomal formulations tested here, especially the H5 variant which exhibited slow release of the Cur in the human plasma test, the formulation may be stable enough to facilitate the accumulation of pharmacologically active amounts of Cur in target cancer tissue by EPR. Therefore, our formulations could serve as a promising therapeutic approach for pancreatic cancer and other cancers.
Quercetin in Cancer Treatment, Alone or in Combination with Conventional Therapeutics?
Brito, Ana Filipa; Ribeiro, Marina; Abrantes, Ana Margarida; Pires, Ana Salomé; Teixo, Ricardo Jorge; Tralhão, José Guilherme; Botelho, Maria Filomena
2015-01-01
Cancer is a problem of global importance, since the incidence is increasing worldwide and therapeutic options are generally limited. Thus, it becomes imperative to find new therapeutic targets as well as new molecules with therapeutic potential for tumors. Flavonoids are polyphenolic compounds that may be potential therapeutic agents. Several studies have shown that these compounds have a higher anticancer potential. Among the flavonoids in the human diet, quercetin is one of the most important. In the last decades, several anticancer properties of quercetin have been described, such as cell signaling, pro-apoptotic, anti-proliferative and anti-oxidant effects, growth suppression. In fact, it is now well known that quercetin has diverse biological effects, inhibiting multiple enzymes involved in cell proliferation, as well as, in signal transduction pathways. On the other hand, there are also studies reporting potential synergistic effects when combined quercetin with chemotherapeutic agents or radiotherapy. In fact, several studies which aim to explore the anticancer potential of these combined treatments have already been published, the majority with promising results. Actually it is well known that quercetin can act on the chemosensitization and radiosensitization but also as chemoprotective and radioprotective, protecting normal cells of the side effects that results from chemotherapy and radiotherapy, which obviously provides notable advantages in their use in anticancer treatment. Thus, all these data indicate that quercetin may have a key role in anticancer treatment. In this context, this review is focused on the relationship between flavonoids and cancer, with special emphasis on the role of quercetin.
Aglycone solanidine and solasodine derivatives: A natural approach towards cancer.
Hameed, Abdul; Ijaz, Shakeel; Mohammad, Imran Shair; Muhammad, Kiran Sher; Akhtar, Naveed; Khan, Haji Muhammad Shoaib
2017-10-01
Over the past few years, it was suggested that a rational approach to treat cancer in clinical settings requires a multipronged approach that augments improvement in systemic efficiency along with modification in cellular phenotype leads to more efficient cell death response. Recently, the combinatory delivery of traditional chemotherapeutic drugs with natural compounds proved to be astonishing to deal with a variety of cancers, especially that are resistant to chemotherapeutic drugs. The natural compounds not only synergize the effects of chemotherapeutics but also minimize drug associated systemic toxicity. In this review, our primary focus was on antitumor effects of natural compounds. Previously, the drugs from natural sources are highly precise and safer than drugs of synthetic origins. Many natural compounds exhibit anti-cancer potentials by inducing apoptosis in different tumor models, in-vitro and in-vivo. Furthermore, natural compounds are also found equally useful in chemotherapeutic drug resistant tumors. Moreover, these Phyto-compounds also possess numerous other pharmacological properties such as antifungal, antimicrobial, antiprotozoal, and hepatoprotection. Aglycone solasodine and solanidine derivatives are the utmost important steroidal glycoalkaloids that are present in various Solanum species, are discussed here. These natural compounds are highly cytotoxic against different tumor cell lines. As the molecular weight is concerned; these are smaller molecular weight chemotherapeutic agents that induce cell death response by initiating apoptosis through both extrinsic and intrinsic pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhu, Ming-Li; Wang, Cui-Yue; Xu, Cheng-Mian; Bi, Wei-Ping; ZHou, Xiu-Ying
2017-03-05
BACKGROUND Colorectal adenocarcinoma is the second leading cause of cancer-related death in the world. The stage of the disease is related to the survival of the patient, and in early phases surgery is the main modality of treatment. The main aim of modern medicinal chemistry is to synthesize small molecules via drug designing, especially by targeting tumor cells. MATERIAL AND METHODS A new series of 19 compounds containing benzothiazole and thiazole were designed. Molecular docking studies were performed on the designed series of molecules. Compounds showing good binding affinity towards the EGFR receptor were selected for synthetic studies. Characterization of the synthesized compounds was done by FTIR, 1HNMR, Mass and C, H, N, analysis. RESULTS The anticancer evaluation of the synthesized compounds was done at NIC, USA at a single dose against colon cancer cell lines HCT 116, HCT15, and HC 29. The active compounds were further evaluated for the 5-dose testing. Compounds were designed by using docking analysis. To ascertain the interaction of EGFR tyrosine kinase binding, energy calculation was used. CONCLUSIONS The results of the present study indicate that the designed compounds show good activity against colon cancer cell lines, which may be further studied to design new potential molecules.
Yugandhar, Pulicherla; Kumar, Konidala Kranthi; Neeraja, Pabbaraju; Savithramma, Nataru
2017-01-01
Aim: This study aims to isolate, characterize, and in silico evaluate of anticancer polyphenols from different parts of Syzygium alternifolium. Materials and Methods: The polyphenols were isolated by standard protocol and characterized using Fourier-transform infrared (FT-IR), High performance liquid chromatography - Photodiode array detector coupled with Electrospray ionization - mass spectrometry (MS/MS). The compounds were elucidated based on retention time and molecular ions (m/z) either by [M+H]+/[M-H]− with the comparison of standard phenols as well as ReSpect software tool. Furthermore, absorption, distribution, metabolism, and excretion (ADME)/toxicity properties of selected phenolic scaffolds were screened using OSIRIS and SwissADME programs, which incorporate toxicity risk assessments, pharmacokinetics, and rule of five principles. Molecular docking studies were carried out for selected toxicity filtered compounds against breast cancer estrogen receptor a (ERa) structure (protein data bank-ID: 1A52) through AutoDock scoring functions by PyRx virtual screening program. Results: The obtained results showed two intensive peaks in each polyphenol fraction analyzed with FT-IR, confirms O-H/C-O stretch of the phenolic functional group. A total of 40 compounds were obtained, which categorized as 9 different classes. Among them, flavonol group represents more number of polyphenols. In silico studies suggest seven compounds have the possibility to use as future nontoxic inhibitors. Molecular docking studies with ERa revealed the lead molecules unequivocally interact with Leu346, Glu353, Leu391, Arg394, Gly521, Leu525 residues, and Phe404 formed atomic π-stacking with dihydrochromen-4-one ring of ligands as like estrodial, which stabilizes the receptor structure and complicated to generate a single mutation for drug resistance. Conclusion: Overall, these results significantly proposed that isolated phenolics could be served as potential ER mitigators for breast cancer therapy. PMID:28894629
Lee, Ching-Hsiao; Yao, Ching-Fa; Huang, Sin-Ming; Ko, Shengkai; Tan, Yi-Hung; Lee-Chen, Guey-Jen; Wang, Yi-Ching
2008-08-15
The clinical responses to chemotherapy in lung cancer patients are unsatisfactory. Thus, the development of more effective anticancer drugs for lung cancer is urgently needed. A 2-step novel synthetic compound, referred to as 1,1,3-tri(3-indolyl)cyclohexane (3-indole), was generated in high purity and yield. 3-Indole was tested for its biologic activity in A549, H1299, H1435, CL1-1, and H1437 lung cancer cells. Animal studies were also performed. The data indicate that 3-indole induced apoptosis in various lung cancer cells. Increased cytochrome-c release from mitochondria to cytosol, decreased expression of antiapoptotic Bcl-2, and increased expression of proapoptotic Bax were observed. In addition, 3-indole stimulated caspases-3, -9, and to a lesser extent caspase-8 activities in cancer cells, suggesting that the intrinsic mitochondria pathway was the potential mechanism involved in 3-indole-induced apoptosis. 3-Indole-induced a concentration-dependent mitochondrial membrane potential dissipation and an increase in reactive oxygen species (ROS) production. Activation of c-Jun N-terminal kinase (JNK) and triggering of DNA damage were also apparent. Note that 3-indole-induced JNK activation and DNA damage can be partially suppressed by an ROS inhibitor. Apoptosis induced by 3-indole could be abrogated by ROS or JNK inhibitors, suggesting the importance of ROS and JNK stress-related pathways in 3-indole-induced apoptosis. Moreover, 3-indole showed in vivo antitumor activities against human xenografts in murine models. On the basis of its potent anticancer activity in cell and animal models, the data suggest that this 2-step synthetic 3-indole compound of high purity and yield is a potential candidate to be tested as a lead pharmaceutical compound for cancer treatment. 2008 American Cancer Society
Fujiki, Hirota; Sueoka, Eisaburo; Watanabe, Tatsuro; Suganuma, Masami
2015-03-01
Green tea is a daily beverage, a non-oxidized non-fermented product containing at least four green tea catechins. Considering our first results when repeated applications of (-)-epigallocatechin gallate (EGCG) prevented tumor promotion in mouse skin, we have continued to look at green tea as a possible cancer preventive agent. 1) The 10-year prospective cohort study by Drs. K. Nakachi and K. Imai revealed that drinking 10 Japanese-size cups (120 mL/cup) of green tea per day delayed cancer onset in humans by 7.3 years among females and by 3.2 years among males. The delay of cancer onset is of course significant evidence of primary cancer prevention in humans. 2) In collaboration with Dr. H. Moriwaki's group we successfully presented a prototype of tertiary cancer prevention showing that 10 Japanese-size cups of green tea daily, supplemented with tablets of green tea extract (G.T.E), reduced recurrence of colorectal adenomas in polypectomy patients by 51.6% (from 31% to 15%). 3) In 1999, we first reported that the combination of green tea catechins and non-steroidal anti-inflammatory drugs showed synergistic anticancer effects in both in vitro and in vivo experiments, along with elucidation of the mechanism. 4) Further studies by other investigators have revealed that various combinations of EGCG or green tea extract and anticancer compounds inhibit tumor volume in xenograft mouse models implanted with various human cancer cell lines. Green tea is a cancer preventive, and green tea catechins act as synergists with anticancer compounds.
Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S.; Nallaganchu, Bhaskara Rao; Olson, Gary L.; Dicker, David T.; Allen, Joshua E.; El-Deiry, Wafik S.
2014-01-01
We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers. PMID:25587031
Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S; Nallaganchu, Bhaskara Rao; Olson, Gary L; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S
2014-12-30
We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers.
Zhang, Jinhui; Li, Li; Jiang, Cheng; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan
2012-12-01
Korean Angelica gigas Nakai (AGN) is a major medicinal herb used in Asian countries such as Korea and China. Traditionally, its dried root has been used to treat anemia, pain, infection and articular rheumatism in Korea, most often through boiling in water to prepare the dosage forms. The pyranocoumarin compound decursin and its isomer decursinol angelate (DA) are the major chemical components in the alcoholic extracts of the root of AGN. The in vitro anti-tumor activities of decursin and/or DA against prostate cancer, lung cancer, breast cancer, colon cancer, bladder cancer, sarcoma, myeloma and leukemia have been increasingly reported in the past decade whereas the in vivo efficacy in mouse models was established only for a few organ sites. Preliminary pharmacokinetic studies by us and others in rodent models indicated that decursinol (DOH), which has much less in vitro direct anticancer activities by itself, is the major and rapid in vivo hydrolysis metabolite of both decursin and DA. Besides decursin, DA and DOH, other chemical components in AGN such as polysaccharides and polyacetylenes have been reported to exert anti-cancer and anti-inflammation activities as well. We systematically reviewed the published literature on the anti-cancer and other bio-activities effects of AGN extract and decursin, DA and DOH, as well as other chemicals identified from AGN. Although a number of areas are identified that merit further investigation, one critical need is first-in-human studies of the pharmacokinetics of decursin/DA to determine whether humans differ from rodents in absorption and metabolism of these compounds.
Lamoral-Theys, Delphine; Wauthoz, Nathalie; Heffeter, Petra; Mathieu, Véronique; Jungwirth, Utte; Lefranc, Florence; Nève, Jean; Dubois, Jacques; Dufrasne, François; Amighi, Karim; Berger, Walter; Gailly, Philippe; Kiss, Robert
2012-01-01
Abstract Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC50in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs. PMID:21810170
Zhao, Ruo-Lin; He, Yu-Min
2018-01-10
Ganoderma lucidum (GL) is an oriental medical fungus, which was used to prevent and treat many diseases. Previously, the effective compounds of Ganoderma lucidum extract (GLE) were extracted from two kinds of GL, [Ganoderma lucidum (Leyss. Ex Fr.) Karst.] and [Ganoderma sinense Zhao, Xu et Zhang], which have been used for adjuvant anti-cancer clinical therapy for more than 20 years. However, its concrete active compounds and its regulation mechanisms on tumor are unclear. In this study, we aimed to identify the main active compounds from GLE and to investigate its anti-cancer mechanisms via drug-target biological network construction and prediction. The main active compounds of GLE were identified by HPLC, EI-MS and NMR, and the compounds related targets were predicted using docking program. To investigate the functions of GL holistically, the active compounds of GL and related targets were predicted based on four public databases. Subsequently, the Identified-Compound-Target network and Predicted-Compound-Target network were constructed respectively, and they were overlapped to detect the hub potential targets in both networks. Furthermore, the qRT-PCR and western-blot assays were used to validate the expression levels of target genes in GLE treated Hepa1-6-bearing C57 BL/6 mice. In our work, 12 active compounds of GLE were identified, including Ganoderic acid A, Ganoderenic acid A, Ganoderic acid B, Ganoderic acid H, Ganoderic acid C2, Ganoderenic acid D, Ganoderic acid D, Ganoderenic acid G, Ganoderic acid Y, Kaemferol, Genistein and Ergosterol. Using the docking program, 20 targets were mapped to 12 compounds of GLE. Furthermore, 122 effective active compounds of GL and 116 targets were holistically predicted using public databases. Compare with the Identified-Compound-Target network and Predicted-Compound-Target network, 6 hub targets were screened, including AR, CHRM2, ESR1, NR3C1, NR3C2 and PGR, which was considered as potential markers and might play important roles in the process of GLE treatment. GLE effectively inhibited tumor growth in Hepa1-6-bearing C57 BL/6 mice. Finally, consistent with the results of qRT-PCR data, the results of western-blot assay demonstrated the expression levels of PGR and ESR1 were up-regulated, as well as the expression levels of NR3C2 and AR were down-regulated, while the change of NR3C1 and CHRM2 had no statistical significance. The results indicated that these 4 hub target genes, including NR3C2, AR, ESR1 and PGR, might act as potential markers to evaluate the curative effect of GLE treatment in tumor. And, the combined data provide preliminary study of the pharmacological mechanisms of GLE, which may be a promising potential therapeutic and chemopreventative candidate for anti-cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Tănase, Constantin I; Drăghici, Constantin; Căproiu, Miron Teodor; Shova, Sergiu; Mathe, Christophe; Cocu, Florea G; Enache, Cristian; Maganu, Maria
2014-01-01
An amine group was synthesized starting from an optically active bicyclo[2.2.1]heptane compound, which was then used to build the 5 atoms ring of a key 6-chloropurine intermediate. This was then reacted with ammonia and selected amines obtaining new adenine- and 6-substituted adenine conformationally constrained carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane skeleton in the sugar moiety. X-ray crystallography confirmed an exo-coupling of base to the ring and a L configuration of the nucleoside analogues. The compounds were tested for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adou, Eba; Miller, James S; Ratovoson, Fidisoa; Birkinshaw, Chris; Andriantsiferana, Rabodo; Rasamison, Vincent E; Kingston, David G I
2010-03-01
Plant natural products have historically been very important to drug discovery and development, particularly in the anticancer field. This is illustrated by a discussion of the structures and activities of camptothecin and its analogues, paclitaxel (Taxol), the vinca alkaloids vinblastine and vincristine, and podophyllotoxin and its analogues. A description of the isolation of one new and three known cardenolides from the Madagascar plant Pentopetia androsaemifolia is then provided as an example of this approach to drug discovery. The paper concludes with a brief discussion of betulinic acid, an old compound which is being developed into an anticancer and anti-HIV agent, and ipomoeassin F, an interesting antiproliferative compound isolated from a plant collected in Suriname.
Yadlapalli, Rama Krishna; Chourasia, O P; Vemuri, Kiranmayi; Sritharan, Manjula; Perali, Ramu Sridhar
2012-04-15
A series of dihydropyrimidine derivatives were synthesized by utilizing Biginelli reaction and evaluated for their in vitro anticancer activity against MCF-7 human breast cancer (HBC) cell line using sulforhodamine B (SRB) assay and antitubercular activity against Mycobacterium tuberculosis (MTB) H(37)Rv using Microplate Alamar Blue Assay (MABA). Compounds 13p, 13t were exhibited 70.6% and 63.7% of HBC cell growth inhibition at 10 μM concentration. Interestingly compound 13p was also found to be the most potent in the series against MTB H(37)Rv with MIC value of 0.125 μg/mL. Copyright © 2012. Published by Elsevier Ltd.
Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making
Gakh, Andrei A.; Vovk, Mykhaylo V.; Mel'nychenko, Nina V.; Sukach, Volodymyr A.
2012-08-14
The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.
Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making
Gakh, Andrei A; Vovk, Mykhaylo V; Mel& #x27; nychenko, Nina V; Sukach, Volodymyr A
2012-10-23
The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.
Valeriote, Frederick A; Tenney, Karen; Media, Joseph; Pietraszkiewicz, Halina; Edelstein, Matthew; Johnson, Tyler A; Amagata, Taro; Crews, Phillip
2012-01-01
A collaborative program was initiated in 1990 between the natural product chemistry laboratory of Dr. Phillip Crews at the University of California Santa Cruz and the experimental therapeutics laboratory of Dr. Fred Valeriote at the Henry Ford Hospital in Detroit. The program focused on the discovery and development of anticancer drugs from sponge extracts. A novel in vitro disk diffusion, solid tumor selective assay was used to examine 2,036 extracts from 683 individual sponges. The bioassay-directed fractionation discovery component led to the identification of active pure compounds from many of these sponges. In most cases, pure compound was prepared in sufficient quantities to both chemically identify the active compound(s) as well as pursue one or more of the biological development components. The latter included IC50, clonogenic survival-concentration exposure, maximum tolerated dose, pharmacokinetics and therapeutic assessment studies. Solid tumor selective compounds included fascaplysin and 10-bromofascaplysin (Fascaplysinopsis), neoamphimedine, 5-methoxyneoamphimedine and alpkinidine (Xestospongia), makaluvamine C and makaluvamine H (Zyzzya), psymberin (Psammocinia and Ircinia), and ethylplakortide Z and ethyldidehydroplakortide Z (Plakortis). These compounds or analogs thereof continue to have therapeutic potential.
Farzaneh, Shabnam; Zeinalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin
2018-01-01
Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity activities of synthesized compounds against breast cancer cell lines MCF-7 and T47D and fibroblast cell lines showed that the synthesized compounds had mild to moderate cytotoxicity against MCT7 and T47D breast cancer cell lines at 10 µM concentration. In vitro COX-1/COX-2 inhibition studies and anticancer activity against MCF-7, identified 1-ferrocenyl-3-(4-methylsulfonylphenyl) propen-1-one as a potent compound (IC50 COX-2 = 0.05 µM, MCF-7: % inhibition (at concentration of 10 µM) = 32.7%), and also 1-ferrocenyl-3- (propan-1-amine)-3-(4-methylsulfonylphenyl) propan-1-one showed the most selectivity on COX-2 inhibition (selectivity index= 313.7). A novel group of ferrocene compounds, possessing a methyl sulfonyl COX-2 pharmacophore were synthesized to investigate the effect of different substituents on selectivity and potency of COX-2 inhibitory activity and their cytotoxicity effects. This study indicates that 1-ferrocenyl-3-amino carbonyl compounds having ferrocene motif and methyl sulfonyl COX-2 pharmacophore is a suitable scaffold to design COX-2 inhibitors and anti-cancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.
Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul
2015-01-01
In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast and colorectal cancers.
Taiwo, Bamigboye J; Taiwo, Grace O; Olubiyi, Olujide O; Fatokun, Amos A
2016-08-01
Chromatographic fractionation of the methanolic extract of Corchorus olitorius (L.) (Tiliaceae), on silica gel yielded two polyphenolic compounds. The structures of the compounds were elucidated as Methyl-1,4,5-tri-O-caffeoyl quinate and trans-3-(4-Hydroxy-3-methoxyphenyl)acrylic anhydride, based on extensive use of spectroscopic techniques such as (1)H and (13)C NMR, DEPT and 2D NMR experiments (COSY, HSQC, HMBC), IR and MS. To establish an initial proof-of-concept for the biological relevance of these compounds, their cytotoxicity against the cancer cell lines HeLa, HL460 and PC3, which might indicate their anti-tumour potential, was assessed. The compounds when tested at a range of concentrations up to 1.6mM were found to possess mild cytotoxic activity which was significant against HeLa cells at ⩾800μM. The trans-3-(4-Hydroxy-3-methoxyl phenyl)acrylic anhydride was found to be related to curcumin, a compound known to have anti-cancer activity. Docking of each of the two compounds and also of curcumin into some molecular targets implicated in tumourigenesis revealed that the three compounds had binding affinities that were superior to those obtained for the co-crystallized inhibitors of metalloproteinase-9, fibroblast growth factor receptor 2 (FGFR2) and epidermal growth factor receptor (EGFR). The plant Corchorus olitorius therefore represents a potential source of natural 'lead' compounds with anti-tumour potential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold
2018-04-13
Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.
Wang, Jiankang; Luo, Bingling; Li, Xiaobing; Lu, Wenhua; Yang, Jing; Hu, Yumin; Huang, Peng; Wen, Shijun
2017-06-22
Reactive oxygen species (ROS) have a crucial role in cell signaling and cellular functions. Mounting evidences suggest that abnormal increase of ROS is often observed in cancer cells and that this biochemical feature can be exploited for selective killing of the malignant cells. A naturally occurring compound phenethyl isothiocyanate (PEITC) has been shown to have promising anticancer activity by modulating intracellular ROS. Here we report a novel synthetic analog of PEITC with superior in vitro and in vivo antitumor effects. Mechanistic study showed that LBL21 induced a rapid depletion of intracellular glutathione (GSH), leading to abnormal ROS accumulation and mitochondrial dysfunction, evident by a decrease in mitochondrial respiration and transmembrane potential. Importantly, LBL21 exhibited the ability to abrogate stem cell-like cancer side population (SP) cells in non-small cell lung cancer A549 cells associated with a downregulation of stem cell markers including OCT4, ABCG2, SOX2 and CD133. Functionally, LBL21 inhibited the ability of cancer cells to form colonies in vitro and develop tumor in vivo. The therapeutic efficacy of LBL21 was further demonstrated in mice bearing A549 lung cancer xenografts. Our study suggests that the novel ROS-modulating agent LBL21 has promising anticancer activity with an advantage of elimination of stem-like cancer cells. This compound merits further study to evaluate its potential for use in cancer treatment.
Mechanistic Basis of Sensitivity/Resistance Towards Anti-Cancer Drugs Targeting Topoisomerase II
2005-04-01
alkylation of hstopo Ilac by both anticancer drugs such as menadione and chemopreventive compounds such as diallyl trisulfide (DAT), which has been...putatively identified menadione as having reacted with Cys427 by matrix-assisted laser desorption ionization (MALDI) MS. Preliminary results from LC-ESI-MS...suggest that menadione reacts with additional thiol residues, albeit through indirect evidence. The indirect evidence is similar to that mentioned
Mechanistic Basis of Sensitivity/Resistance Towards Anti-cancer Drugs Targeting Topoisomerase II
2006-04-01
of hstopo IIα by both anticancer drugs such as menadione and chemopreventive compounds such as 9 diallyl trisulfide (DAT), which has been shown to...we putatively identified menadione as having reacted with Cys427 by matrix-assisted laser desorption ionization (MALDI) MS. Preliminary results...from LC- ESI-MS suggest that menadione reacts with additional thiol residues, albeit through indirect evidence. The indirect evidence is similar to
Olazaran, Fabián E; Rivera, Gildardo; Pérez-Vázquez, Alondra M; Morales-Reyes, Cynthia M; Segura-Cabrera, Aldo; Balderas-Rentería, Isaías
2017-01-12
Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [ N -( p -methoxy-phenyl)-2-( p -methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site.
2016-01-01
Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [N-(p-methoxy-phenyl)-2-(p-methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site. PMID:28105271
Anticancer activity of botanical compounds in ancient fermented beverages (review).
McGovern, P E; Christofidou-Solomidou, M; Wang, W; Dukes, F; Davidson, T; El-Deiry, W S
2010-07-01
Humans around the globe probably discovered natural remedies against disease and cancer by trial and error over the millennia. Biomolecular archaeological analyses of ancient organics, especially plants dissolved or decocted as fermented beverages, have begun to reveal the preliterate histories of traditional pharmacopeias, which often date back thousands of years earlier than ancient textual, ethnohistorical, and ethnological evidence. In this new approach to drug discovery, two case studies from ancient Egypt and China illustrate how ancient medicines can be reconstructed from chemical and archaeological data and their active compounds delimited for testing their anticancer and other medicinal effects. Specifically, isoscopoletin from Artemisia argyi, artemisinin from Artemisia annua, and the latter's more easily assimilated semi-synthetic derivative, artesunate, showed the greatest activity in vitro against lung and colon cancers. In vivo tests of these compounds previously unscreened against lung and pancreatic cancers are planned for the future.
Small mitochondria-targeting molecules as anti-cancer agents
Wang, Feng; Ogasawara, Marcia A.; Huang, Peng
2009-01-01
Alterations in mitochondrial structure and functions have long been observed in cancer cells. Targeting mitochondria as a cancer therapeutic strategy has gained momentum in the recent years. The signaling pathways that govern mitochondrial function, apoptosis and molecules that affect mitochondrial integrity and cell viability have been important topics of the recent review in the literature. In this article, we first briefly summarize the rationale and biological basis for developing mitochondrial-targeted compounds as potential anticancer agents, and then provide key examples of small molecules that either directly impact mitochondria or functionally affect the metabolic alterations in cancer cells with mitochondrial dysfunction. The main focus is on the small molecular weight compounds with potential applications in cancer treatment. We also summarize information on the drug developmental stages of the key mitochondria-targeted compounds and their clinical trial status. The advantages and potential shortcomings of targeting the mitochondria for cancer treatment are also discussed. PMID:19995573
Simoben, Conrad V; Ibezim, Akachukwu; Ntie-Kang, Fidele; Nwodo, Justina N; Lifongo, Lydia L
2015-01-01
Cancer is known to be the second most common disease-related cause of death among humans. In drug discovery programs anti-cancer chemotherapy remains quite challenging due to issues related to resistance. Plants used in traditional medicine are known to contribute significantly within a large proportion of the African population. A survey of the literature has led to the identification of ~400 compounds from African medicinal plants, which have shown anti-cancer, anti-proliferation, anti-tumor and/or cytotoxic activities, tested by in vitro and in vivo assays (from mildly active to very active), mainly alkaloids, terpenoids, flavonoids, coumarins, phenolics, polyacetylates, xanthones, quinones, steroids and lignans. The first part of this review series focuses on xanthones, quinones, steroids, coumarins, phenolics and other compound classes, while part II is focused on alkaloids, terpenoids, flavonoids.
Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V
2013-04-16
The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.
NASA Astrophysics Data System (ADS)
Asegbeloyin, Jonnie Niyi; Oyeka, Ebube Evaristus; Okpareke, Obinna; Ibezim, Akachukwu
2018-02-01
A new potential ONS donor ligand N,N-diethyl-N‧-palmitoylthiourea (PACDEA) with the molecular formular C21H42N2OS has been synthesized and characterized by ESI-MS, UV, FTIR 1H and 13C NMR spectroscopy and single X-ray crystallography. The asymmetric molecules crystallized in the centrosymmetric structure of monoclinic crystal system with space group P21/c. In the crystal structure of the compound, molecules are linked in a continuous chain by intermolecular Nsbnd H⋯Odbnd C hydrogen bonds, which stabilized the crystal structure. The palmitoyl moiety and N (2)-ethyl group lie on a plane, while the thiocarbonyl moiety is twisted and lying othorgonal to the plane. Non-covalent interaction (NCI) analysis on the hydrogen bonded solid state structure of the molecule revealed the presence of a significant number of non-covalent interactions including intermolecular hydrogen bonding interactions, Csbnd Hsbnd -lone pair interactions, weak Van der Waals interactions, and steric/ring closure interactions. The NCI analysis also showed the presence of intramolecular stabilizing Csbnd H⋯Odbnd C and Csbnd H⋯Sdbnd C interactions. Docking simulation revealed that the compound interacted favourably with ten selected validated anticancer drug targets, which is an indication that the compound could possess some anticancer properties.
NASA Astrophysics Data System (ADS)
Masand, Vijay H.; El-Sayed, Nahed N. E.; Bambole, Mukesh U.; Quazi, Syed A.
2018-04-01
Multiple discrete quantitative structure-activity relationships (QSARs) models were constructed for the anticancer activity of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogues with a variety of substituents like sbnd Br, sbnd OH, -OMe, etc. at different positions. A big pool of descriptors was considered for QSAR model building. Genetic algorithm (GA), available in QSARINS-Chem, was executed to choose optimum number and set of descriptors to create the multi-linear regression equations for a dataset of sixty-nine compounds. The newly developed five parametric models were subjected to exhaustive internal and external validation along with Y-scrambling using QSARINS-Chem, according to the OECD principles for QSAR model validation. The models were built using easily interpretable descriptors and accepted after confirming statistically robustness with high external predictive ability. The five parametric models were found to have R2 = 0.80 to 0.86, R2ex = 0.75 to 0.84, and CCCex = 0.85 to 0.90. The models indicate that frequency of nitrogen and oxygen atoms separated by five bonds from each other and internal electronic environment of the molecule have correlation with the anticancer activity.
Lagisetty, Pallavi; Vilekar, Prachi; Sahoo, Kaustuv; Anant, Shrikant; Awasthi, Vibhudutta
2010-01-01
3,5-bis(benzylidene)-4-piperidones are being advanced as synthetic analogs of curcumin for anticancer and anti-inflammatory properties. We performed structure-activity relationship studies, by testing several synthesized 3,5-bis(benzylidene)-4-piperidones for anti-proliferative activity in lung adenocarcinoma H441 cells. Compared to the lead compound 1, or 3,5-bis(2-fluorobenzylidene)-4-piperidone, five compounds were found to be more potent (IC50 < 30 μM), and sixteen compounds possessed reduced cell-killing efficacy (IC50 > 50 μM). Based on the observations, we synthesized 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] (29 or CLEFMA) as a novel analog of 1. CLEFMA was evaluated for anti-proliferative activity in H441 cells, and was found to be several folds more potent than compound 1. We did not find apoptotic cell population in flow cytometry, and the absence of apoptosis was confirmed by the lack of caspase cleavage. The electron microscopy of H441cells indicated that CLEFMA and compound 1 induce autophagic cell death that was inhibited by specific autophagy inhibitor 3-methyladenine. The results suggest that the potent and novel curcuminoid, CLEFMA, offers an alternative mode of cell death in apoptosis-resistant cancers. PMID:20638855
Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances.
Tyagi, Nikhil; Tyagi, Monika; Pachauri, Manendra; Ghosh, Prahlad C
2015-11-01
Cancer is one of the most common devastating disease affecting millions of people per year worldwide. To fight against cancer, a number of natural plant compounds have been exploited by researchers to discover novel anti-cancer therapeutics with minimum or no side effects and plants have proved their usefulness in anti-cancer therapy in past few years. Ricin, a cytotoxic plant protein isolated from castor bean seeds, is a ribosome-inactivating protein which destroys the cells by inhibiting proteins synthesis. Ricin presents great potential as anti-cancer agent and exerts its anti-cancer activity by inducing apoptosis in cancer cells. In this review, we summarize the current information on anti-cancer properties of plant toxin ricin, its potential applications in cancer therapy, challenges associated with its use as therapeutic agent and the recent advances made to overcome these challenges. Nanotechnology could open the doors for quick development of ricin-based anti-cancer therapeutics. Conceivably, ricin may serve as a chemotherapeutic agent against cancer by utilizing nanocarriers for its targeted delivery to cancer cells.
Martínez, Valeria R; Aguirre, María V; Todaro, Juan S; Piro, Oscar E; Echeverría, Gustavo A; Ferrer, Evelina G; Williams, Patricia A M
2018-04-01
Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn 2 (azil) 2 (H 2 O) 4 ]·2H 2 O (ZnAzil), was determined by X-ray diffraction methods. The zinc ions are bridged by azilsartan ligands through their carboxylate oxygen and oxadiazol nitrogen atoms. The compounds were examined for their cytotoxic effects against human lung fibroblast (MRC5) and human lung cancer (A549) cell lines. Azilsartan displayed low cytotoxic effects at 150 μM concentrations in A549 human lung cancer cells but the higher effect measured for the Zn complex suggested that this compound may act as an anticancer agent. An apoptotic oxidative stress mechanism of action via the mitochondrial-dependent intrinsic pathway has been determined. Besides, the compounds exerted weak cytotoxic effects in the normal lung related cell line MRC5. Binding constants of the complex formed between each compound and bovine serum albumin (BSA) are in the intermediate range, hence suggesting that azilsartan and ZnAzil could be bonded and transported by BSA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Casale, Elena; Amboldi, Nadia; Brasca, Maria Gabriella; Caronni, Dannica; Colombo, Nicoletta; Dalvit, Claudio; Felder, Eduard R; Fogliatto, Gianpaolo; Galvani, Arturo; Isacchi, Antonella; Polucci, Paolo; Riceputi, Laura; Sola, Francesco; Visco, Carlo; Zuccotto, Fabio; Casuscelli, Francesco
2014-08-01
In the last decade the heat shock protein 90 (Hsp90) has emerged as a major therapeutic target and many efforts have been dedicated to the discovery of Hsp90 inhibitors as new potent anticancer agents. Here we report the identification of a novel class of Hsp90 inhibitors by means of a biophysical FAXS-NMR based screening of a library of fragments. The use of X-ray structure information combined with modeling studies enabled the fragment evolution of the initial triazoloquinazoline hit to a class of compounds with nanomolar potency and drug-like properties suited for further lead optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.
ZHENG, CHUN-SONG; WU, YIN-SHENG; BAO, HONG-JUAN; XU, XIAO-JIE; CHEN, XING-QIANG; YE, HONG-ZHI; WU, GUANG-WEN; XU, HUI-FENG; LI, XI-HAI; CHEN, JIA-SHOU; LIU, XIAN-XIANG
2014-01-01
Xiao Chai Hu Tang (XCHT), a traditional herbal formula, is widely administered as a cancer treatment. However, the underlying molecular mechanisms of its anticancer effects are not fully understood. In the present study, a computational pharmacological model that combined chemical space mapping, molecular docking and network analysis was employed to predict which chemical compounds in XCHT are potential inhibitors of cancer-associated targets, and to establish a compound-target (C-T) network and compound-compound (C-C) association network. The identified compounds from XCHT demonstrated diversity in chemical space. Furthermore, they occupied regions of chemical space that were the same, or close to, those occupied by drug or drug-like compounds that are associated with cancer, according to the Therapeutic Targets Database. The analysis of the molecular docking and the C-T network demonstrated that the potential inhibitors possessed the properties of promiscuous drugs and combination therapies. The C-C network was classified into four clusters and the different clusters contained various multi-compound combinations that acted on different targets. The study indicated that XCHT has a polypharmacological role in treating cancer and the potential inhibitory components of XCHT require further investigation as potential therapeutic strategies for cancer patients. PMID:24926384
Intestinal P-glycoprotein inhibitors, benzoxanthone analogues.
Chae, Song Wha; Lee, Jaeok; Park, Jung Hyun; Kwon, Youngjoo; Na, Younghwa; Lee, Hwa Jeong
2018-02-01
The inhibitors of P-glycoprotein (P-gp) which limits an access of exogenous compounds in the luminal membrane of the intestine have been studied to enhance the intestinal P-gp-mediated absorption of anticancer drugs. Inhibition of the efflux pump by synthesized benzoxanthone derivatives was investigated in vitro and in vivo. MCF-7/ADR cell line was used for cytotoxicity assay and [ 3 H]-daunomycin (DNM) accumulation/efflux study. Eight benzoxanthone analogues were tested for their effects on DNM cytotoxicity. Among them, three analogues were selected for the accumulation/efflux and P-gp ATPase studies. Paclitaxel (PTX), a P-gp substrate anticancer drug, was orally administered to rats with/without compound 1 (8,10-bis(thiiran-2-ylmethoxy)-7H-benzo[c]xanthen-7-one). The pharmacokinetic parameters of PTX in the presence/absence of compound 1 were evaluated from the plasma concentration-time profiles. Compound 1 increased the DNA accumulation to 6.5-fold and decreased the DNM efflux to approximately 1/2 in the overexpressing P-gp cell line. Relative bioavailability (RB) of PTX in rats was significantly increased up to 3.2-fold by compound 1 (0.5 or 2 mg/kg). Benzoxanthone analogue, compound 1 is strongly suggested to be a promising inhibitor of P-gp to improve an oral absorption of compounds for cancer therapy. © 2017 Royal Pharmaceutical Society.
Nano anti-cancer drugs: pros and cons and future perspectives.
Ali, Imran
2011-02-01
For last one decade, scientists are working for developing nano anti-cancer drugs with claim of ideal ones due to their targeted chemotherapic nature. These drugs have many beneficial properties such as targeted drug delivery and gene therapy modalities with minimum side effects. This article describes pros and cons and future perspectives of nano anti-cancer drugs. Efforts have been made to address importance, special features, toxicities (general, blood identities, immune system and environmental) and future perspectives of nano anti-cancer drugs. It was concluded that nano anti-cancer drugs may be magic bullet drugs for cancer treatment leading to bright future of the whole world.
Al-Balas, Qosay A.; Amawi, Haneen A.; Hassan, Mohammad A.; Qandil, Amjad M.; Almaaytah, Ammar M.; Mhaidat, Nizar M.
2013-01-01
Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor’s binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski’s “rule of five” and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection. PMID:24276257
Al-Balas, Qosay A; Amawi, Haneen A; Hassan, Mohammad A; Qandil, Amjad M; Almaaytah, Ammar M; Mhaidat, Nizar M
2013-05-27
Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor's binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski's "rule of five" and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.
Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar
2015-03-01
We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔG(bind, pred)) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔG(bind, expt) (calculated from the Kd value) are consistent with the predicted value of ΔG(bind, pred) calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological evaluation. Treatment of mice with a daily dose of 300 mg/kg and a single dose of 600 mg/kg indicates that the compound does not induce detectable pathological abnormalities in normal tissues. Also there were no significant differences in hematological parameters between the treated and untreated groups. Hence, the newly designed noscapinoid, 5e is an orally bioavailable, safe and effective anticancer agent with a potential for the treatment of cancer and might be a candidate for clinical evaluation.
NASA Astrophysics Data System (ADS)
Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar
2015-03-01
We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔGbind, pred) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔGbind, expt (calculated from the Kd value) are consistent with the predicted value of ΔGbind, pred calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological evaluation. Treatment of mice with a daily dose of 300 mg/kg and a single dose of 600 mg/kg indicates that the compound does not induce detectable pathological abnormalities in normal tissues. Also there were no significant differences in hematological parameters between the treated and untreated groups. Hence, the newly designed noscapinoid, 5e is an orally bioavailable, safe and effective anticancer agent with a potential for the treatment of cancer and might be a candidate for clinical evaluation.
Toviwek, Borvornwat; Suphakun, Praphasri; Choowongkomon, Kiattawee; Hannongbua, Supa; Gleeson, M Paul
2017-10-15
Reported herein are efforts to profile 4-aryl-N-phenylpyrimidin-2-amines in terms of their anti-cancer activity towards non small-cell lung carcinoma (NSCLC) cells. We have synthesized new 4-aryl-N-phenylpyrimidin-2-amines and assessed them in terms of their cytotoxicity (A549, NCI-H187, MCF7, Vero & KB) and physicochemical properties (logD 7.4 and solubility). 13f and 13c demonstrated potent anti-cancer activity in A549 cells (0.2µM), compared to 0.4μM for the NSCLC drug Doxorubicin. 13f also displayed low experimental logD 7.4 (2.9) and the best solubility (∼40μM). Compounds 13b and 13d showed the best balance of A549 anti-cancer activity and selectivity. 13g showed good activity and selectivity comparable with the anti-cancer drug Doxorubicin. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Hongwei; Sun, Wen; Zhao, Jianping; Wu, Xiaxia; Lu, Jin-Jian; Chen, Xiuping; Xu, Qiong-Ming; Khan, Ikhlas A.; Yang, Shilin
2016-09-01
Four novel compounds (1-4) as well as fourteen reported compounds (5-18) were isolated and purified from Salvia miltiorrhiza Bunge (Danshen). The structures of novel compounds were determined by 1D and 2D NMR, HRESIMS data, etc. The anti-inflammatory properties of all the compounds on RAW264.7 macrophages and their cytotoxicity on H1299 and Bel-7402 cell lines coupled with a structure-activity relationship (SAR) were investigated. Compound 4 demonstrated the best anti-inflammatory activity and was chosen for further research. Compound 4 greatly suppressed secretion of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) in the RAW264.7 macrophages stimulated by LPS. Additionally, the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased and the nuclear translocation of NF-κB was attenuated after treatment with compound 4 in vitro. Compound 4 was able to dramatically inhibit LPS-induced activation of JNK1/2 and ERK1/2 and remarkably disrupted the TLR4 dimerization in LPS-induced RAW264.7 macrophages. Thus, the new compound 4 suppressed LPS-induced inflammation partially is due to the blocking TLR4 dimerization. In addition, the anti-cancer activity investigation indicated that most of isolated compounds exhibited cytotoxicity and the SAR analysis showed that the intact D ring was indispensable and unsaturated D ring played vital role.
Implication of transcriptional repression in compound C-induced apoptosis in cancer cells
Dai, R Y; Zhao, X F; Li, J J; Chen, R; Luo, Z L; Yu, L X; Chen, S K; Zhang, C Y; Duan, C Y; Liu, Y P; Feng, C H; Xia, X M; Li, H; Fu, J; Wang, H Y
2013-01-01
Compound C, a well-known inhibitor of AMP-activated protein kinase (AMPK), has been reported to induce apoptosis in some types of cells. However, the underlying mechanisms remain largely unclear. Using a DNA microarray analysis, we found that the expression of many genes was downregulated upon treatment with compound C. Importantly, compound C caused transcriptional repression with the induction of p53, a well-known marker of transcriptional stress response, in several cancer cell lines. Compound C did not induce the phosphorylation of p53 but dramatically increased the protein level of p53 similar to some other transcriptional inhibitors, including 5,6-dichloro-1-β-D-ribobenzimidazole (DRB). Consistent with previous reports, we found that compound C initiated apoptotic death of cancer cells in an AMPK-independent manner. Similar to DRB and actinomycin D (ActD), two classic transcription inhibitors, compound C not only resulted in the loss of Bcl-2 and Bcl-xl protein but also induced the phosphorylation of eukaryotic initiation factor-alpha (eIF2α) on Ser51. Hence, the phosphorylation of eIF2α might be a novel marker of transcriptional inhibition. It is noteworthy that compound C-mediated apoptosis of cancer cells is correlated with decreased expression of Bcl-2 and Bcl-xl and the phosphorylation of eIF2α on Ser51. Remarkably, compound C exhibits potent anticancer activities in vivo. Taken together, our data suggest that compound C may be an attractive candidate for anticancer drug development. PMID:24157877
Apoptin towards safe and efficient anticancer therapies.
Backendorf, Claude; Noteborn, Mathieu H M
2014-01-01
The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.
Pro-Apoptotic and Anti-Cancer Properties of Diosgenin: A Comprehensive and Critical Review.
Sethi, Gautam; Shanmugam, Muthu K; Warrier, Sudha; Merarchi, Myriam; Arfuso, Frank; Kumar, Alan Prem; Bishayee, Anupam
2018-05-19
Novel and alternative options are being adopted to combat the initiation and progression of human cancers. One of the approaches is the use of molecules isolated from traditional medicinal herbs, edible dietary plants and seeds that play a pivotal role in the prevention/treatment of cancer, either alone or in combination with existing chemotherapeutic agents. Compounds that modulate these oncogenic processes are potential candidates for cancer therapy and may eventually make it to clinical applications. Diosgenin is a naturally occurring steroidal sapogenin and is one of the major bioactive compounds found in dietary fenugreek ( Trigonella foenum-graecum ) seeds. In addition to being a lactation aid, diosgenin has been shown to be hypocholesterolemic, gastro- and hepato-protective, anti-oxidant, anti-inflammatory, anti-diabetic, and anti-cancer. Diosgenin has a unique structural similarity to estrogen. Several preclinical studies have reported on the pro-apoptotic and anti-cancer properties of diosgenin against a variety of cancers, both in in vitro and in vivo. Diosgenin has also been reported to reverse multi-drug resistance in cancer cells and sensitize cancer cells to standard chemotherapy. Remarkably, diosgenin has also been reported to be used by pharmaceutical companies to synthesize steroidal drugs. Several novel diosgenin analogs and nano-formulations have been synthesized with improved anti-cancer efficacy and pharmacokinetic profile. In this review we discuss in detail the multifaceted anti-cancer properties of diosgenin that have found application in pharmaceutical, functional food, and cosmetic industries; and the various intracellular molecular targets modulated by diosgenin that abrogate the oncogenic process.
Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.-P.; Fang, W.-H.; Lin, L.-I.
2008-03-15
Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo II{alpha} activity through the accumulation of Topomore » II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC{sub 50} of 0.9 {mu}M, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC{sub 50} of 9.6 {mu}M, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 {mu}M. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC{sub 50} about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design.« less
Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda
2017-10-01
Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database
Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.
2013-01-01
Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877
Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles.
Yadav, Pinki; Lal, Kashmiri; Kumar, Ashwani; Guru, Santosh Kumar; Jaglan, Sundeep; Bhushan, Shashi
2017-01-27
A series of chalcone linked-1,2,3-triazoles was synthesized via cellulose supported copper nanoparticle catalyzed click reaction in water. The structures of all the compounds were analyzed by IR, NMR and Mass spectral techniques. All the synthesized products were subjected to 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay against a panel of four human cancer cell lines (MCF-7, MIA-Pa-Ca-2, A549, HepG2) to check their anticancer potential. Compound 6h was found to be most active against all the tested cancer cell lines with IC 50 values in the range of 4-11 μM and showed better or comparable activity to the reference drug against all the tested cell lines. Cell cycle analysis revealed that compound 6h induces apoptosis and G2/S arrest in MIA-Pa-Ca-2 cells. Compound 6h triggers mitochondrial potential loss in pancreatic cancer MIA-Pa-Ca-2 cells. Further, Compound 6h also triggers caspase-3 and PARP-1 cleavage, which increases in dose dependent manner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Wang, Yong; Dansette, Patrick M.; Pigeon, Pascal; McGlinchey, Michael J.
2017-01-01
Organometallic compounds bearing the redox motif [ferrocenyl-ene-phenol] have very promising antiproliferative properties which have been further improved by incorporating pertinent substituents able to engender new mechanisms. Here we show that novel ferrociphenols bearing a hydroxypropyl chain exhibit strong antiproliferative effects, in most cases much better than those of cisplatin, tamoxifen, or of previously described ferrociphenols devoid of this terminal OH. This is illustrated, in the case of one of these compounds, by its IC50 values of 110 nM for MDA-MB-231 triple negative breast cancer cells and of 300 nM for cisplatin-resistant A2780cisR human ovarian cancer cells, and by its GI50 values lower than 100 nM towards a series of melanoma and renal cancer cell lines of the NCI-60 panel. Interestingly, oxidative metabolism of these hydroxypropyl-ferrociphenols yields two kinds of quinone methides (QMs) that readily react with various nucleophiles, such as glutathione, to give 1,6- and 1,8-adducts. Protonation of these quinone methides generates numerous reactive metabolites leading eventually to many rearrangement and cleavage products. This unprecedented and fully characterized metabolic profile involving a wide range of electrophilic metabolites that should react with cell macromolecules may be linked to the remarkable profile of antiproliferative activities of this new series. Indeed, the great diversity of unexpected reactive metabolites found upon oxidation will allow them to adapt to various situations present in the cancer cell. These data initiate a novel strategy for the rational design of anticancer molecules, thus opening the way to new organometallic potent anticancer drug candidates for the treatment of chemoresistant cancers. PMID:29629075
Sun, Xiaoxiao; Ai, Midan; Wang, Ying; Shen, Shensi; Gu, Yuan; Jin, Yi; Zhou, Zuyu; Long, Yaqiu; Yu, Qiang
2013-01-01
Induction of tumor cell apoptosis has been recognized as a valid anticancer strategy. However, therapeutic selectivity between tumor and normal cells has always been a challenge. Here, we report a novel anti-cancer compound methyl 3-(4-nitrophenyl) propiolate (NPP) preferentially induces apoptosis in tumor cells through P450-catalyzed reactive oxygen species (ROS) production. A compound sensitivity study on multiple cell lines shows that tumor cells with high basal ROS levels, low antioxidant capacities, and p53 mutations are especially sensitive to NPP. Knockdown of p53 sensitized non-transformed cells to NPP-induced cell death. Additionally, by comparing NPP with other ROS inducers, we show that the susceptibility of tumor cells to the ROS-induced cell death is influenced by the mode, amount, duration, and perhaps location of ROS production. Our studies not only discovered a unique anticancer drug candidate but also shed new light on the understanding of ROS generation and function and the potential application of a ROS-promoting strategy in cancer treatment. PMID:23382387
The Anticancer Activity of Sea Buckthorn [Elaeagnus rhamnoides (L.) A. Nelson
Olas, Beata; Skalski, Bartosz; Ulanowska, Karolina
2018-01-01
Various parts of sea buckthorn [Elaeagnus rhamnoides (L.) A. Nelson], particularly the berries, known also as seaberries, or Siberian pineapples, are characterized by a unique composition of bioactive compounds: phenolic compounds, vitamins (especially vitamin C), unsaturated fatty acids, and phytosterols such as beta-sitosterol. These berries, together with the juices, jams, and oils made from them, have a range of beneficial antioxidant, anti-inflammatory, and anticancer effects. This short review discusses whether sea buckthorn may represent a “golden mean” for the treatment of cancers: It has anti-proliferation properties and can induce apoptosis and stimulate the immune system, and sea buckthorn oil counteracts many side effects of chemotherapy by restoring kidney and liver function, increasing appetite, and keeping patients in general good health. Although the anticancer activity of sea buckthorn has been confirmed by many in vitro and animal in vivo studies, the treatment and prophylactic doses for humans are unknown. Therefore, greater attention should be paid to the development of well-controlled and high-quality clinical experiments in this area. PMID:29593547
Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy
Li, Yi; He, Xiaowen; Chen, Xiaoming; Chen, Yufeng; Zhu, Jixiang; Xu, Guibin; Wu, Xiaojian; Lan, Ping
2017-01-01
Purpose To deliver insoluble natural compounds into colon cancer cells in a controlled fashion. Materials and methods Curcumin (CM)–silk fibroin (SF) nanoparticles (NPs) were prepared by solution-enhanced dispersion by supercritical CO2 (SEDS) (20 MPa pressure, 1:2 CM:SF ratio, 1% concentration), and their physicochemical properties, intracellular uptake efficiency, in vitro anticancer effect, toxicity, and mechanisms were evaluated and analyzed. Results CM-SF NPs (<100 nm) with controllable particle size were prepared by SEDS. CM-SF NPs had a time-dependent intracellular uptake ability, which led to an improved inhibition effect on colon cancer cells. Interestingly, the anticancer effect of CM-SF NPs was improved, while the side effect on normal human colon mucosal epithelial cells was reduced by a concentration of ~10 μg/mL. The anticancer mechanism involves cell-cycle arrest in the G0/G1 and G2/M phases in association with inducing apoptotic cells. Conclusion The natural compound-loaded SF nanoplatform prepared by SEDS indicates promising colon cancer-therapy potential. PMID:29118580
Rosman, Raihana; Saifullah, Bullo; Maniam, Sandra; Dorniani, Dena; Hussein, Mohd Zobir; Fakurazi, Sharida
2018-02-02
Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.
Ávila, Fabricio William; Faquin, Valdemar; Yang, Yong; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li
2013-07-03
Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compounds Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se and SeMSCys content in sprouts increased concomitantly with increasing Se doses. Selenate was superior to selenite in inducing total Se accumulation, but selenite is equally effective as selenate in promoting SeMSCys synthesis in sprouts. Increasing sulfur doses reduced total Se and SeMSCys content in sprouts treated with selenate, but not in those with selenite. Examination of five broccoli cultivars reveals that sprouts generally have better fractional ability than florets to convert inorganic Se into SeMSCys. Distinctive glucosinolate profiles between sprouts and florets were observed, and sprouts contained approximately 6-fold more glucoraphanin than florets. In contrast to florets, glucosinolate content was not affected by Se treatment in sprouts. Thus, Se-enriched broccoli sprouts are excellent for simultaneous accumulation of chemopreventive compounds SeMSCys and glucoraphanin.
Jamsheena, Vellekkatt; Shilpa, Ganesan; Saranya, Jayaram; Harry, Nissy Ann; Lankalapalli, Ravi Shankar; Priya, Sulochana
2016-03-05
Bis(indolyl)methane appended biaryls were designed, synthesized and evaluated in human cervical cancer cell lines (HeLa) for their anticancer activities and compared against normal rat cardiac myoblasts (H9C2) cells. Compounds 1-12 were synthesized, with variations in one of the phenyl unit, in a single step by condensation of biaryl-2-carbaldehydes with indole in the presence of para-toluenesulfonic acid. Compound 1 exhibited a GI50 value of 11.00 ± 0.707 μM and the derivatives, compounds 4 and 11 showed a GI50 value of 8.33 ± 0.416 μM and 9.13 ± 0.177 μM respectively in HeLa cells and was found to be non-toxic to H9C2 cells up to 20 μM. Furthermore, compounds 1, 4 and 11 induced caspase dependent cellular apoptosis in a concentration-dependent manner, reduced mitochondrial membrane potential, inhibited the cell migration and downregulated the production of MMP-2 and MMP-9 in HeLa cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
JBIR-23 and -24, novel anticancer agents from Streptomyces sp. AK-AB27.
Motohashi, Keiichiro; Hwang, Ji-Hwan; Sekido, Yoshitaka; Takagi, Motoki; Shin-ya, Kazuo
2009-01-15
The screening for active compounds against malignant pleural mesothelioma (MPM) cells produced by Streptomyces sp. AK-AB27 resulted in the isolation of two compounds with a dodecahydrodibenzo[b,d]furan skeleton named JBIR-23 (1) and -24 (2). Their structures were established on the basis of extensive NMR and MS analyses. Compounds 1 and 2 exhibited cytotoxic effects against several MPM cell lines.
Curcumin nanoformulations: a future nanomedicine for cancer
Yallapu, Murali M; Jaggi, Meena; Chauhan, Subhash C
2011-01-01
Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion, apoptosis and cell death, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes and complex fabrication for sustained and efficient curcumin delivery. We also discuss the anticancer applications and clinical benefits of nanocurcumin formulations. Only a few novel multifunctional and composite nanosystem strategies offer simultaneous therapy as well as imaging characteristics. We also summarize the challenges to developing curcumin delivery platforms and up-to-date solutions for improving curcumin bioavailability and anticancer potential for therapy. PMID:21959306
Nag, Subhasree Ashok; Qin, Jiang-Jiang; Wang, Wei; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen
2012-01-01
Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-κB and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure–activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors. PMID:22403544
Tortorella, Stephanie M; Royce, Simon G; Licciardi, Paul V; Karagiannis, Tom C
2015-06-01
Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.
Anticancer Properties of Distinct Antimalarial Drug Classes
Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.
2013-01-01
We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728
Mohd Fauzi, Fazlin; Koutsoukas, Alexios; Lowe, Robert; Joshi, Kalpana; Fan, Tai-Ping; Glen, Robert C; Bender, Andreas
2013-03-25
Traditional Chinese medicine (TCM) and Ayurveda have been used in humans for thousands of years. While the link to a particular indication has been established in man, the mode-of-action (MOA) of the formulations often remains unknown. In this study, we aim to understand the MOA of formulations used in traditional medicine using an in silico target prediction algorithm, which aims to predict protein targets (and hence MOAs), given the chemical structure of a compound. Following this approach we were able to establish several links between suggested MOAs and experimental evidence. In particular, compounds from the 'tonifying and replenishing medicinal' class from TCM exhibit a hypoglycemic effect which can be related to activity of the ingredients against the Sodium-Glucose Transporters (SGLT) 1 and 2 as well as Protein Tyrosine Phosphatase (PTP). Similar results were obtained for Ayurvedic anticancer drugs. Here, both primary anticancer targets (those directly involved in cancer pathogenesis) such as steroid-5-alpha-reductase 1 and 2 were predicted as well as targets which act synergistically with the primary target, such as the efflux pump P-glycoprotein (P-gp). In addition, we were able to elucidate some targets which may point us to novel MOAs as well as explain side effects. Most notably, GPBAR1, which was predicted as a target for both 'tonifying and replenishing medicinal' and anticancer classes, suggests an influence of the compounds on metabolism. Understanding the MOA of these compounds is beneficial as it provides a resource for NMEs with possibly higher efficacy in the clinic than those identified by single-target biochemical assays.
Bioinformatics: Cheap and robust method to explore biomaterial from Indonesia biodiversity
NASA Astrophysics Data System (ADS)
Widodo
2015-02-01
Indonesia has a huge amount of biodiversity, which may contain many biomaterials for pharmaceutical application. These resources potency should be explored to discover new drugs for human wealth. However, the bioactive screening using conventional methods is very expensive and time-consuming. Therefore, we developed a methodology for screening the potential of natural resources based on bioinformatics. The method is developed based on the fact that organisms in the same taxon will have similar genes, metabolism and secondary metabolites product. Then we employ bioinformatics to explore the potency of biomaterial from Indonesia biodiversity by comparing species with the well-known taxon containing the active compound through published paper or chemical database. Then we analyze drug-likeness, bioactivity and the target proteins of the active compound based on their molecular structure. The target protein was examined their interaction with other proteins in the cell to determine action mechanism of the active compounds in the cellular level, as well as to predict its side effects and toxicity. By using this method, we succeeded to screen anti-cancer, immunomodulators and anti-inflammation from Indonesia biodiversity. For example, we found anticancer from marine invertebrate by employing the method. The anti-cancer was explore based on the isolated compounds of marine invertebrate from published article and database, and then identified the protein target, followed by molecular pathway analysis. The data suggested that the active compound of the invertebrate able to kill cancer cell. Further, we collect and extract the active compound from the invertebrate, and then examined the activity on cancer cell (MCF7). The MTT result showed that the methanol extract of marine invertebrate was highly potent in killing MCF7 cells. Therefore, we concluded that bioinformatics is cheap and robust way to explore bioactive from Indonesia biodiversity for source of drug and another pharmaceutical material.
Borowiecki, Paweł; Wińska, Patrycja; Bretner, Maria; Gizińska, Małgorzata; Koronkiewicz, Mirosława; Staniszewska, Monika
2018-04-25
Three out of 16 newly synthesized 1,3-dimethylxanthine derivatives (proxyphylline analogues) exhibited consistencies between antifungal and anticancer properties. Proxyphylline possessing 1-(10H-phenothiazin-10-yl)propan-2-yl (6) and polybrominated benzimidazole (41) or benzotriazole moiety (42) remained selectively cidal against Candida albicans (lg R ≥ 3 at conc. of 31, 36 and 20 μM, respectively) however not against normal mammalian Vero cell line in vitro (IC 50 ≥ 280 μM) and Galleria mellonella in vivo. These compounds also displayed moderate antineoplastic activity against human breast adenocarcinoma (MCF-7) cell line (EC 50 = 80 μM) and high against peripheral blood T lymphoblast (CCRF-CEM) (EC 50 = 6.3-6.5 μM). In addition, 6 and 42 exerted: (1) dual activity against fungal adhesion and damage mature biofilm; (2) necrosis of planktonic cells due to loss of membrane function and of structural integrity; (3) biochemical (inhibition of sessile cell respiration) and morphological changes in cell wall polysaccharide contents. Therefore, leading proxyphylline derivatives can be employed to prevent cancer-associated biofilm Candida infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Internalization of Ineffective Platinum Complex in Nanocapsules Renders It Cytotoxic.
Vrana, Oldrich; Novohradsky, Vojtech; Medrikova, Zdenka; Burdikova, Jana; Stuchlikova, Olga; Kasparkova, Jana; Brabec, Viktor
2016-02-18
Anticancer therapy by platinum complexes, based on nanocarrier-based delivery, may offer a new approach to improve the efficacy and tolerability of the platinum family of anticancer drugs. The original rules for the design of new anticancer platinum drugs were affected by the fact that, although cisplatin (cis-[PtCl2 (NH3)2) was an anticancer drug, its isomer transplatin was not cytotoxic. For the first time, it is demonstrated that simple encapsulation of an inactive platinum compound in phospholipid bilayers transforms it into an efficient cytotoxic agent. Notably, the encapsulation of transplatin makes it possible to overcome the resistance mechanisms operating in cancer cells treated with cisplatin and prevents inactivation of transplatin in the extracellular environment. It is also shown that transplatin delivered to the cells in nanocapsules, in contrast to free (nonencapsulated) complex, forms cytotoxic cross-links on DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ren, Meng-Yue; Yu, Qing-Tian; Shi, Chun-Yu; Luo, Jia-Bo
2017-02-13
Cancer is one of the most common lethal diseases, and natural products have been extensively studied as anticancer agents considering their availability, low toxicity, and economic affordability. Plants belonging to the genus Aconitum have been widely used medically in many Asian countries since ancient times. These plants have been proven effective for treating several types of cancer, such as lung, stomach, and liver cancers. The main effective components of Aconitum plants are diterpenoid alkaloids-which are divided into C 18 -, C 19 -, C 20 -, and bis-diterpenoid alkaloids-are reportedly some of the most promising, naturally abundant compounds for treating cancer. This review focuses on the progress of diterpenoid alkaloids with different structures derived from Aconitum plants and some of their derivatives with potential anticancer activities. We hope that this work can serve as a reference for further developing Aconitum diterpenoid alkaloids as anticancer agents.
Apigenin: A dietary flavonoid with diverse anticancer properties.
Madunić, Josip; Madunić, Ivana Vrhovac; Gajski, Goran; Popić, Jelena; Garaj-Vrhovac, Vera
2018-01-28
Apigenin is a natural flavonoid found in several dietary plant foods such as vegetables and fruits. A large number of studies conducted over the past years have shown that this particular natural compound has potential antioxidant, anti-inflammatory, and anticancer properties. Therefore, apigenin has generated a great deal of interest as a possible chemotherapeutic modality due to its low intrinsic toxicity and remarkable effects on normal versus cancerous cells, compared with other structurally related flavonoids. Here, we review its role in anticancer research, as well as several cancer signalling pathways, including MAPK, PI3K/Akt and NF-κB pathways, and their specific role in different cancer types. Based on the available literature, the beneficial effects of apigenin as a future anticancer modality are promising but they require further in vitro and in vivo studies to enable its translation from bench to bedside. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Xiang; Zhao, Wenna; Hu, Xiufang; Hao, Xianxiao; Hong, Fang; Wang, Jianlong; Xiang, Liping; Zhu, Yunhui; Yuan, Yaofeng; Ho, Rodney J Y; Wang, Wenfeng; Shao, Jingwei
2015-12-01
Seventeen novel emodin derivatives were synthesized, and the structures were confirmed by IR, H NMR, MS, and elemental analysis. The cytotoxic activity of the derivatives was evaluated against A375, BGC-823, HepG2, and HELF cells by MTT assay. Compound 9a with highest potency and low toxicity was selected to further investigate its detailed molecular mechanism. The lead compound 9a induced a loss of the mitochondrial transmembrane potential (▵Ψm), an increase in reactive oxygen species (ROS), release of cytochrome c and activation of caspase-3 and caspase-9. In addition, the confocal study showed that emodin derivative 9a (containing asymmetric hydrocarbon tails) was mainly localized in mitochondria, demonstrating a key role of the mitochondria-mediated apoptosis pathway in cancer cells. Taken together, the results demonstrate that embodin derivative 9a preferentially regulates the ROS-mediated apoptosis in A375 cells through the induction of cytochrome c expression and activation of caspase-3 and caspase-9 proteins. © 2015 John Wiley & Sons A/S.
Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years.
Pereira, Thiago Moreira; Franco, Daiana Portella; Vitorio, Felipe; Kummerle, Arthur Eugen
2018-01-01
Coumarins are natural products characterized as 1,2 benzopyrones widely distributed in plants, as well as, in many species of fungi and bacteria. Nowadays, many synthetic procedures allow the discovery of coumarins with expanded chemical space. The ability to exert noncovalent interactions with many enzymes and receptors in live organisms lead the coumarins to exhibit a wide range of biological activities and applications. Then, this manuscript provides an overview of the use of coumarins compounds in medicinal chemistry in treating many diseases. Important examples of the last years have been selected concerning the activities of coumarins as anticoagulant, anticancer, antioxidant, antiviral, anti-diabetics, anti-inflammatory, antibacterial, antifungal and anti-neurodegerative agents. Additionally, it also includes applications of coumarins as fluorescent sensors for biological systems. Thus, this work aims to contribute to the development of new rational research projects for the treatment and diagnosis of pathologies using coumarin derivatives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Li, Rui-Juan; Wang, Ya-Li; Wang, Qing-He; Wang, Jian; Cheng, Mao-Sheng
2015-01-01
Inosine 5′-monophosphate dehydrogenase (IMPDH) is one of the crucial enzymes in the de novo biosynthesis of guanosine nucleotides. It has served as an attractive target in immunosuppressive, anticancer, antiviral, and antiparasitic therapeutic strategies. In this study, pharmacophore mapping and molecular docking approaches were employed to discover novel Homo sapiens IMPDH (hIMPDH) inhibitors. The Güner-Henry (GH) scoring method was used to evaluate the quality of generated pharmacophore hypotheses. One of the generated pharmacophore hypotheses was found to possess a GH score of 0.67. Ten potential compounds were selected from the ZINC database using a pharmacophore mapping approach and docked into the IMPDH active site. We find two hits (i.e., ZINC02090792 and ZINC00048033) that match well the optimal pharmacophore features used in this investigation, and it is found that they form interactions with key residues of IMPDH. We propose that these two hits are lead compounds for the development of novel hIMPDH inhibitors. PMID:25784957
Discovery and Development of ATP-Competitive mTOR Inhibitors Using Computational Approaches.
Luo, Yao; Wang, Ling
2017-11-16
The mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism, and angiogenesis. This protein is an attractive target for new anticancer drug development. Significant progress has been made in hit discovery, lead optimization, drug candidate development and determination of the three-dimensional (3D) structure of mTOR. Computational methods have been applied to accelerate the discovery and development of mTOR inhibitors helping to model the structure of mTOR, screen compound databases, uncover structure-activity relationship (SAR) and optimize the hits, mine the privileged fragments and design focused libraries. Besides, computational approaches were also applied to study protein-ligand interactions mechanisms and in natural product-driven drug discovery. Herein, we survey the most recent progress on the application of computational approaches to advance the discovery and development of compounds targeting mTOR. Future directions in the discovery of new mTOR inhibitors using computational methods are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Natural Compounds from Herbs that can Potentially Execute as Autophagy Inducers for Cancer Therapy.
Lin, Shian-Ren; Fu, Yaw-Syan; Tsai, May-Jywan; Cheng, Henrich; Weng, Ching-Feng
2017-07-01
Accumulated evidence indicates that autophagy is a response of cancer cells to various anti-cancer therapies. Autophagy is designated as programmed cell death type II, and is characterized by the formation of autophagic vacuoles in the cytoplasm. Numerous herbs, including Chinese herbs, have been applied to cancer treatments as complementary and alternative medicines, supplements, or nutraceuticals to dampen the side or adverse effects of chemotherapy drugs. Moreover, the tumor suppressive actions of herbs and natural products induced autophagy that may lead to cell senescence, increase apoptosis-independent cell death or complement apoptotic processes. Hereby, the underlying mechanisms of natural autophagy inducers are cautiously reviewed in this article. Additionally, three natural compounds-curcumin, 16-hydroxycleroda-3,13-dien-15,16-olide, and prodigiosin-are presented as candidates for autophagy inducers that can trigger cell death in a supplement or alternative medicine for cancer therapy. Despite recent advancements in therapeutic drugs or agents of natural products in several cancers, it warrants further investigation in preclinical and clinical studies.
Zhang, Yemin; Zhou, Yu; Li, Mingxin; Wang, Changhua
2016-01-01
Previous studies have evidenced that the anticancer potential of curcumin (diferuloylmethane), a main yellow bioactive compound from plant turmeric was mediated by interfering with PI3K/Akt signaling. However, the underlying molecular mechanism is still poorly understood. This study experimentally revealed that curcumin treatment reduced Akt protein expression in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells, along with an activation of autophagy and suppression of ubiquitin-proteasome system (UPS) function. The curcumin-reduced Akt expression, cell proliferation, and migration were prevented by genetic and pharmacological inhibition of autophagy but not by UPS inhibition. Additionally, inactivation of AMPK by its specific inhibitor compound C or by target shRNA-mediated silencing attenuated curcumin-activated autophagy. Thus, these results indicate that curcumin-stimulated AMPK activity induces activation of the autophagy-lysosomal protein degradation pathway leading to Akt degradation and the subsequent suppression of proliferation and migration in breast cancer cell. PMID:26752181
Regulation of specialised metabolites in Actinobacteria – expanding the paradigms
Hoskisson, Paul A.
2018-01-01
Summary The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster‐specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications. PMID:29457705
Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines
Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul
2015-01-01
In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast and colorectal cancers. PMID:26288313
Naqvi, Arshi; Malasoni, Richa; Gupta, Swati; Srivastava, Akansha; Pandey, Rishi R; Dwivedi, Anil Kumar
2017-10-01
Turmeric ( Curcuma longa ) is reported to possess wide array of biological activities. Herbal Medicament (HM) is a standardized hexane-soluble fraction of C. longa and is well known for its neuroprotective effect. In this study, we attempted to synthesize a novel chemically modified bioactive fraction from HM (NCCL) along with isolation and characterization of a novel marker compound (I). NCCL was prepared from HM. The chemical structure of the marker compound isolated from NCCL was determined from 1D/2D nuclear magnetic resonance, mass spectroscopy, and Fourier transform infrared. The compound so isolated was subjected to in silico and in vitro screenings to test its inhibitory effect on estrogen receptors. Molecular docking studies revealed that the binding poses of the compound I was energetically favorable. Among NCCL and compound I taken for in vitro studies, NCCL had exhibited good anti-cancer activity over compound I against MCF-7, MDA-MB-231, DU-145, and PC-3 cells. This is the first study about the synthesis of a chemically modified bioactive fraction which used a standardized extract since the preparation of the HM. It may be concluded that NCCL fraction having residual components induce more cell death than compound I alone. Thus, NCCL may be used as a potent therapeutic drug. In the present paper, a standardized hexane soluble fraction of Curcuma longa (HM) was chemically modified to give a novel bioactive fraction (NCCL). A novel marker compound was isolated from NCCL and was characerized using various spectral techniques. The compound so isolated was investigated for in-silico screenings. NCCL and isolated compound was subjected to in-vitro anti-cancer screenings against MCF 7, MDA MB 231 (breast adenocarcinoma) and DU 145 and PC 3 cell lines (androgen independent human prostate cancer cells). The virtual screenings reveals that isolated compound has shown favourable drug like properties. NCCL fraction having residual components induces more cell death in these four cancer cell lines than isolated compound alone. Abbreviations used: HM: Herbal Medicament; NCCL: Chemically modified HM; FT-IR: Fourier transform-infrared spectroscopy; NMR: Nuclear magnetic resonance spectroscopy; MS: Mass spectroscopy; HPLC: High-performance liquid chromatography; ER: Estrogen receptor; MTT: 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; MIC: Minimum inhibitory concentration; TAM: Tamoxifen KBr: Potassium bromide; DMSO: Dimethyl sulfoxide; ACN: Acetonitrile; PDB: Protein Data Bank; PDA: Photodiode array detector.
Feyen, Fabian; Cachoux, Frédéric; Gertsch, Jürg; Wartmann, Markus; Altmann, Karl-Heinz
2008-01-01
Epothilones are macrocyclic bacterial natural products with potent microtubule-stabilizing and antiproliferative activity. They have served as successful lead structures for the development of several clinical candidates for anticancer therapy. However, the structural diversity of this group of clinical compounds is rather limited, as their structures show little divergence from the original natural product leads. Our own research has explored the question of whether epothilones can serve as a basis for the development of new structural scaffolds, or chemotypes, for microtubule stabilization that might serve as a basis for the discovery of new generations of anticancer drugs. We have elaborated a series of epothilone-derived macrolactones whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of a conformationally constrained side chain, the removal of the C3-hydroxyl group, and the replacement of C12 with nitrogen. So far, this approach has yielded analogs 30 and 40 that are the most advanced, the most rigorously modified, structures, both of which are potent antiproliferative agents with low nanomolar activity against several human cancer cell lines in vitro. The synthesis was achieved through a macrolactone-based strategy or a high-yielding RCM reaction. The 12-aza-epothilone ("azathilone" 40) may be considered a "non-natural" natural product that still retains most of the overall structural characteristics of a true natural product but is structurally unique, because it lies outside of the general scope of Nature's biosynthetic machinery for polyketide synthesis. Like natural epothilones, both 30 and 40 promote tubulin polymerization in vitro and at the cellular level induce cell cycle arrest in mitosis. These facts indicate that cancer cell growth inhibition by these compounds is based on the same mechanistic underpinnings as those for natural epothilones. Interestingly, the 9,10-dehydro analog of 40 is significantly less active than the saturated parent compound, which is contrary to observations for natural epothilones B or D. This may point to differences in the bioactive conformations of N-acyl-12-aza-epothilones like 40 and natural epothilones. In light of their distinct structural features, combined with an epothilone-like (and taxol-like) in vitro biological profile, 30 and 40 can be considered as representative examples of new chemotypes for microtubule stabilization. As such, they may offer the same potential for pharmacological differentiation from the original epothilone leads as various newly discovered microtubule-stabilizing natural products with macrolactone structures, such as laulimalide, peloruside, or dictyostatin.
The continuing search for antitumor agents from higher plants
Pan, Li; Chai, Heebyung; Kinghorn, A. Douglas
2009-01-01
Plant secondary metabolites and their semi-synthetic derivatives continue to play an important role in anticancer drug therapy. In this short review, selected single chemical entity antineoplastic agents from higher plants that are currently in clinical trials as cancer chemotherapy drug candidates are described. These compounds are representative of a wide structural diversity. In addition, the approaches taken toward the discovery of anticancer agents from tropical plants in the laboratory of the authors are summarized. The successful clinical utilization of cancer chemotherapeutic agents from higher plants has been evident for about half a century, and, when considered with the promising pipeline of new plant-derived compounds now in clinical trials, this augurs well for the continuation of drug discovery research efforts to elucidate additional candidate substances of this type. PMID:20228943
Novel Colchicine Derivatives and their Anti-cancer Activity.
Johnson, Lorelei; Goping, Ing Swie; Rieger, Aja; Mane, Jonathan Y; Huzil, Torin; Banerjee, Asok; Luduena, Richard; Hassani, Bashar; Winter, Philip; Tuszynski, Jack A
2017-01-01
In this paper we provide an overview of the status of various colchicine derivatives in preclinical development with special focus on their anti-cancer activity. We discuss several groups of compounds that have been designed to differentially bind with specific affinities for tubulin β isotypes, especially in regard to βIII, which is commonly over-expressed in cancer. Computational prediction, protein-based and cell-based assays are summarized as well as some animal tests conducted on these compounds. It is concluded that an untapped potential exists for exploiting the colchicine scaffold as a pharmacophore with the possibility of increasing its affinity for tubulin isotypes overexpressed in cancer and decreasing it for normal cells thereby widening the therapeutic window. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mielecki, Marcin; Lesyng, Bogdan
2016-01-01
Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.
Rao, V Ashutosh; Klein, Sarah R; Bonar, Spencer J; Zielonka, Jacek; Mizuno, Naoko; Dickey, Jennifer S; Keller, Paul W; Joseph, Joy; Kalyanaraman, Balaraman; Shacter, Emily
2010-11-05
Mitoquinone (MitoQ) is a synthetically modified, redox-active ubiquinone compound that accumulates predominantly in mitochondria. We found that MitoQ is 30-fold more cytotoxic to breast cancer cells than to healthy mammary cells. MitoQ treatment led to irreversible inhibition of clonogenic growth of breast cancer cells through a combination of autophagy and apoptotic cell death mechanisms. Relatively limited cytotoxicity was seen with the parent ubiquinone coenzyme Q(10.) Inhibition of cancer cell growth by MitoQ was associated with G(1)/S cell cycle arrest and phosphorylation of the checkpoint kinases Chk1 and Chk2. The possible role of oxidative stress in MitoQ activity was investigated by measuring the products of hydroethidine oxidation. Increases in ethidium and dihydroethidium levels, markers of one-electron oxidation of hydroethidine, were observed at cytotoxic concentrations of MitoQ. Keap1, an oxidative stress sensor protein that regulates the antioxidant transcription factor Nrf2, underwent oxidation, degradation, and dissociation from Nrf2 in MitoQ-treated cells. Nrf2 protein levels, nuclear localization, and transcriptional activity also increased following MitoQ treatment. Knockdown of Nrf2 caused a 2-fold increase in autophagy and an increase in G(1) cell cycle arrest in response to MitoQ but had no apparent effect on apoptosis. The Nrf2-regulated enzyme NQO1 is partly responsible for controlling the level of autophagy. Keap1 and Nrf2 act as redox sensors for oxidative perturbations that lead to autophagy. MitoQ and similar compounds should be further evaluated for novel anticancer activity.
Zhang, Jing-Jing; Muenzner, Julienne K; Abu El Maaty, Mohamed A; Karge, Bianka; Schobert, Rainer; Wölfl, Stefan; Ott, Ingo
2016-08-16
A rhodium(i) and a ruthenium(ii) complex with a caffeine derived N-heterocyclic carbene (NHC) ligand were biologically investigated as organometallic conjugates consisting of a metal center and a naturally occurring moiety. While the ruthenium(ii) complex was largely inactive, the rhodium(i) NHC complex displayed selective cytotoxicity and significant anti-metastatic and in vivo anti-vascular activities and acted as both a mammalian and an E. coli thioredoxin reductase inhibitor. In HCT-116 cells it increased the reactive oxygen species level, leading to DNA damage, and it induced cell cycle arrest, decreased the mitochondrial membrane potential, and triggered apoptosis. This rhodium(i) NHC derivative thus represents a multi-target compound with promising anti-cancer potential.
Yang, Yongchong; Shang, Peihua; Cheng, Changmei; Wang, Dongchun; Yang, Ping; Zhang, Feng; Li, Tianwen; Lu, Aijun; Zhao, Yufen
2010-09-01
A current study shows that sodium dichloroacetate (DCA) can induce cancer cell apoptosis and inhibit tumor growth, but its cytotoxic activity is low (IC(50) > 1000 microM for A549). In this paper, a variety of DCA derivatives were synthesized, and their cytotoxic activities were evaluated. The result showed that the N-phenyl-2,2-dichloroacetamide analogues had satisfactory potencies. Among them, N-(3-iodophenyl)-2,2-dichloroacetamide (3e), an optimized lead compound, has an IC(50) against A549 as low as 4.76 microM. Furthermore, it can induce cancer cell apoptosis and has a low toxicity in mice (LD(50) = 1117 mg/kg). 2010 Elsevier Masson SAS. All rights reserved.
Krastel, Philipp; Roggo, Silvio; Schirle, Markus; Ross, Nathan T; Perruccio, Francesca; Aspesi, Peter; Aust, Thomas; Buntin, Kathrin; Estoppey, David; Liechty, Brigitta; Mapa, Felipa; Memmert, Klaus; Miller, Howard; Pan, Xuewen; Riedl, Ralph; Thibaut, Christian; Thomas, Jason; Wagner, Trixie; Weber, Eric; Xie, Xiaobing; Schmitt, Esther K; Hoepfner, Dominic
2015-08-24
Cultivation of myxobacteria of the Nannocystis genus led to the isolation and structure elucidation of a class of novel cyclic lactone inhibitors of elongation factor 1. Whole genome sequence analysis and annotation enabled identification of the putative biosynthetic cluster and synthesis process. In biological assays the compounds displayed anti-fungal and cytotoxic activity. Combined genetic and proteomic approaches identified the eukaryotic translation elongation factor 1α (EF-1α) as the primary target for this compound class. Nannocystin A (1) displayed differential activity across various cancer cell lines and EEF1A1 expression levels appear to be the main differentiating factor. Biochemical and genetic evidence support an overlapping binding site of 1 with the anti-cancer compound didemnin B on EF-1α. This myxobacterial chemotype thus offers an interesting starting point for further investigations of the potential of therapeutics targeting elongation factor 1. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chauhan, Monika; Rana, Anil; Alex, Jimi Marin; Negi, Arvind; Singh, Sandeep; Kumar, Raj
2015-02-01
Design, microwave-assisted synthesis of novel 4-aryl (alkyl)amino-3-nitroquinoline (1a-1l) and 2,4-diaryl (dialkyl)amino-3-nitroquinolines (2a-2k and 3a) via regioselective and complete nucleophilic substitution of 2,4-dichloro-3-nitroquinoline, respectively in water are presented. The newly synthesized compounds were evaluated for the first time for antiproliferative activity against EGFR overexpressing human lung (A-549 and H-460) and colon (HCT-116-wild type and HCT-116-p53 null) cancer cell lines. Some notions about structure-activity relationships (SAR) are presented. Compounds 2e, 2f, 2j and 3a overall exhibited excellent anticancer activity comparable to erlotinib which was used as a positive control. Molecular modeling studies disclosed the recognition pattern of the compounds and also supported the observed SAR. Copyright © 2014 Elsevier Inc. All rights reserved.
Barakat, Assem; Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Ghabbour, Hazem A; Yousuf, Sammer; Ashraf, Mahwish; Shaikh, Nimra Naveed; Iqbal Choudhary, M; Khalil, Ruqaiya; Ul-Haq, Zaheer
2016-10-01
This paper describes a facile protocol, efficient, and environmentally benign for the synthesis a series of barbiturate acid substituted at C5 position 3a-o. The desired compounds subjected in vitro for different set of bioassays including against anti-oxidant (DPPH and super oxide scavenger assays), anti-cancer, α-glucosidase and β-glucuronidase inhibitions. Compound 3m (IC50=22.9±0.5μM) found to be potent α-glucosidase enzyme inhibitors and showed more activity than standard acarbose (IC50=841±1.73μM). Compound 3f (IC50=86.9±4.33μM) found to be moderate β-Glucuronidase enzyme inhibitors and showed activity comparatively less than the standard d-saccharic acid 1,4-lactone (IC50=45.75±2.16μM). Furthermore, in sillico investigation was carried out to investigate bonding mode of barbiturate acid derivatives. Copyright © 2016 Elsevier Inc. All rights reserved.
Ghorab, Mostafa M; Alsaid, Mansour S; El-Gaby, Mohamed S A; Elaasser, Mahmoud M; Nissan, Yassin M
2017-04-07
Various thiourea derivatives have been used as starting materials for compounds with better biological activities. Molecular modeling tools are used to explore their mechanism of action. A new series of thioureas were synthesized. Fluorinated pyridine derivative 4a showed the highest antimicrobial activity (with MIC values ranged from 1.95 to 15.63 µg/mL). Interestingly, thiadiazole derivative 4c and coumarin derivative 4d exhibited selective antibacterial activities against Gram positive bacteria. Fluorinated pyridine derivative 4a was the most active against HepG2 with IC50 value of 4.8 μg/mL. Molecular docking was performed on the active site of MK-2 with good results. Novel compounds were obtained with good anticancer and antibacterial activity especially fluorinated pyridine derivative 4a and molecular docking study suggest good activity as mitogen activated protein kinase-2 inhibitor. Graphical abstract Compound 4a in the active site of MK-2.
Raju, B China; Rao, R Nageswara; Suman, P; Yogeeswari, P; Sriram, D; Shaik, Thokhir Basha; Kalivendi, Shasi Vardhan
2011-05-15
Series of 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives 7a-7zb, 8a-8d and 9a-9d were synthesized and screened for their in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H(37)Rv (MTB) and cytotoxicity against three human cancer cell lines including A549, SK-N-SH and HeLa. The results indicate that six compounds are more potent and 7za is most effective anti-mycobacterial derivative compared to the standard drugs Ethambutol and Ciprofloxacin. However, 12 compounds exhibited cytotoxicity against human neuroblastoma cell line; amongst them the compound 7v is most effective compared to the standard drug Doxorubicin. This is the first report assigning in vitro anti-mycobacterial, anticancer and structure-activity relationship for this new class of 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates. Copyright © 2011 Elsevier Ltd. All rights reserved.
High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics.
Park, See-Hyoung; Phuc, Nguyen Minh; Lee, Jongsung; Wu, Zhexue; Kim, Jieun; Kim, Hyunkyoung; Kim, Nam Doo; Lee, Taeho; Song, Kyung-Sik; Liu, Kwang-Hyeon
2017-01-15
Acetylshikonin is one of the biologically active compounds derived from the root of Lithospermum erythrorhizon, a medicinal plant with anti-cancer and anti-inflammation activity. Although there have been a few previous reports demonstrating that acetylshikonin exerts anti-cancer activity in vitro and in vivo, it is still not clear what is the exact molecular target protein of acetylshikonin in cancer cells. The purpose of this study is to evaluate the inhibitory effect of acetylshikonin against CYP2J2 enzyme which is predominantly expressed in human tumor tissues and carcinoma cell lines. The inhibitory effect of acetylshikonin on the activities of CYP2J2-mediated metabolism were investigated using human liver microsomes (HLMs), and its cytotoxicity against human hepatoma HepG2 cells was also evaluated. Astemizole, a representative CYP2J2 probe substrate, was incubated in HLMs in the presence or absence of acetylshikonin. After incubation, the samples were analyzed by liquid chromatography and triple quadrupole mass spectrometry. The anti-cancer activity of acetylshikonin was evaluated on human hepatocellular carcinoma HepG2 cells. WST-1, cell counting, and colony formation assays were further adopted for the estimation of the growth rate of HepG2 cells treated with acetylshikonin. Acetylshikonin inhibited CYP2J2-mediated astemizole O-demethylation activity (K i = 2.1µM) in a noncompetitive manner. The noncompetitive inhibitory effect of acetylshikonin on CYP2J2 enzyme was also demonstrated using this 3D structure, which showed different binding location of astemizole and acetylshikonin in CYP2J2 model. It showed cytotoxic effects against human hepatoma HepG2 cells (IC 50 = 2μM). In addition, acetylshikonin treatment inhibited growth of human hepatocellular carcinoma HepG2 cells leading to apoptosis accompanied with p53, bax, and caspase3 activation as well as bcl2 down-regulation. Taken together, our present study elucidates acetylshikonin displays the inhibitory effects against CYP2J2 in HLMs and anti-cancer activity in human hepatocellular carcinoma HepG2 cells. Copyright © 2016 Elsevier GmbH. All rights reserved.
Novel primary amine diazeniumdiolates-Chemical and biological characterization.
Puglisi, Melany P; Bradaric, Michael J; Pontikis, John; Cabai, Jonathan; Weyna, Theodore; Tednes, Patrick; Schretzman, Robert; Rickert, Karl; Cao, Zhao; Andrei, Daniela
2018-05-02
Hit, Lead & Candidate Discovery Diazeniumdiolates, also known as NONOates, are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release nitric oxide (NO . ) and/or their congeneric nitroxyl (HNO). The purpose of this work was to synthesize a series of primary amine-based diazeniumdiolates as HNO/NO donors and to determine their efficacy as anticancer and antifungal agents in vivo. The seven compounds (3a-3g) were successfully synthesized and characterized, one of which had been previously reported in the literature (3g). Two compounds showed anti-proliferative effects against ovarian (ES2 and SKOV3) and AML monocyte-derived cancer cells (THP-1) when tested with standard MTT assays. Compounds 3a and 3g demonstrated reduced ovarian cancer cell proliferation when treated at doses from 0.033 to 1.0 mg/mL at the 24 hr time point. These compounds also exhibited moderate and selective antifungal activity against Fusarium oxysporum f.sp. lycopersici, one cause of opportunistic infections of immunocompromised patients, inhibiting the growth of the fungi at LD 50 at 10 mg/mL. A third compound (3e) did not exhibit similar activities, possibly due to the alkyl chain. Our results suggest that the primary amine diazeniumdiolates may offer a versatile platform for the development of HNO/NO donors for biomedical applications. © 2018 Wiley Periodicals, Inc.
Larocque, Kristen; Ovadje, Pamela; Djurdjevic, Sinisa; Mehdi, Mariam; Green, James; Pandey, Siyaram
2014-01-01
Colchicine, a natural product of Colchicum autumnae currently used for gout treatment, is a tubulin targeting compound which inhibits microtubule formation by targeting fast dividing cells. This tubulin-targeting property has lead researchers to investigate the potential of colchicine and analogs as possible cancer therapies. One major study conducted on an analogue of allocolchicine, ZD 6126, was halted in phase 2 clinical trials due to severe cardio-toxicity associated with treatment. This study involves the development and testing of novel allocolchicine analogues that hold non-toxic anti-cancer properties. Currently we have synthesized and evaluated the anti-cancer activities of two analogues; N-acetyl-O-methylcolchinol (NSC 51046 or NCME), which is structurally similar to ZD 6126, and (S)-3,8,9,10-tetramethoxyallocolchicine (Green 1), which is a novel derivative of allocolchicine that is isomeric in the A ring. NSC 51046 was found to be non-selective as it induced apoptosis in both BxPC-3 and PANC-1 pancreatic cancer cells and in normal human fibroblasts. Interestingly, we found that Green 1 was able to modestly induce pro-death autophagy in these pancreatic cancer cells and E6-1 leukemia cells but not in normal human fibroblasts. Unlike colchicine and NSC 51046, Green 1 does not appear to affect tubulin polymerization indicating that it has a different molecular target. Green 1 also caused increased reactive oxygen species (ROS) production in mitochondria isolated from pancreatic cancer cells. Furthermore, in vivo studies revealed that Green 1 was well tolerated in mice. Our findings suggest that a small change in the structure of colchicine has apparently changed the mechanism of action and lead to improved selectivity. This may lead to better selective treatments in cancer therapy. PMID:24466327
Niu, Mingshan; Sun, Yan; Liu, Bo
2012-01-01
In the present work, we studied the structure-activity relationship (SAR) of tautomycetin (TMC) and its derivatives. Further, we demonstrated the correlation between the immunosuppressive fuction, anticancer activity and protein phosphatase type 1 (PP1) inhibition of TMC and its derivatives. We have prepared some TMC derivatives via combinatorial biosynthesis, isolation from fermentation broth or chemical degradation of TMC. We found that the immunosuppressive activity was correlated with anticancer activity for TMC and its analog compounds, indicating that TMC may home at the same targets for its immunosuppressive and anticancer activities. Interestingly, TMC-F1, TMC-D1 and TMC-D2 all retained significant, albeit reduced PP1 inhibitory activity compared to TMC. However, only TMC-D2 showed immunosuppressive and anticancer activities in studies carried out in cell lines. Moreover, TMC-Chain did not show any significant inhibitory activity towards PP1 but showed strong growth inhibitory effect. This observation implicates that the maleic anhydride moiety of TMC is critical for its phosphatase inhibitory activity whereas the C1-C18 moiety of TMC is essential for the inhibition of tumor cell proliferation. Furthermore, we measured in vivo phosphatase activities of PP1 in MCF-7 cell extracts treated with TMC and its related compounds, and the results indicate that the cytotoxicity of TMC doesn't correlate with its in vivo PP1 inhibition activity. Taken together, our study suggests that the immunosuppressive and anticancer activities of TMC are not due to the inhibition of PP1. Our results provide a novel insight for the elucidation of the underlying molecular mechanisms of TMC's important biological functions. PMID:22563261
Bhandari, Jaya; Muhammad, BushraTaj; Thapa, Pratiksha; Shrestha, Bhupal Govinda
2017-02-08
There is growing interest in the use of plants for the treatment and prevention of cancer. Medicinal plants are currently being evaluated as source of promising anticancer agents. In this paper, we have investigated the anticancer potential of plant Allium wallichii, a plant native to Nepal and growing at elevations of 2300-4800 m. This is the first study of its kind for the plant mentioned. The dried plant was extracted in aqueous ethanol. Phytochemical screening, anti-microbial assay, anti-oxidant assay, cytotoxicity assay and the flow-cytometric analysis were done for analyzing different phytochemicals present, anti-microbial activity, anti-oxidant activity and anti-cancer properties of Allium wallichii. We observed the presence of steroids, terpenoids, flavonoids, reducing sugars and glycosides in the plant extract and the plant showed moderate anti-microbial and anti-oxidant activity. The IC 50 values of Allium wallichii in different cancer cell lines are 69.69 μg/ml for Prostate cancer (PC3) cell line, 55.29 μg/ml for Breast Cancer (MCF-7) cell line and 46.51 μg/ml for cervical cancer (HeLa) cell line as compared to Doxorubicin (0.85 μg/ml). The cell viability assay using FACS showed that the IC 50 value of Allium wallichii for Burkitt's lymphoma (B-Lymphoma) cell line was 3.817 ± 1.99 mg/ml. Allium wallichii can be an important candidate to be used as an anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Allium wallichii is highly recommended as the crude extract itself showed promising cytotoxicity.
Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents
Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V
2013-01-01
Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date. PMID:23459471
Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.
Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V
2013-01-01
Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.
Synthesis of a novel fused pyrrolodiazepine-based library with anti-cancer activity.
Malik, Neha; Iyamu, Iredia D; Scheidt, Karl A; Schiltz, Gary E
2018-04-11
Development of drugs for new and persistent diseases will increasingly rely on the expansion of accessible chemical space to allow exploration of novel molecular targets. Here we report the synthesis of a library of novel fused heterobicyclic small molecules based on the 1,4-diazepine and 2,4-pyrrolidinedione scaffolds. Key chemical transformations included a Mannich-type condensation and chemoselective N-acylation reactions. Screening shows anti-cancer activity of several library compounds which suggests translational potential of this novel chemical scaffold.
Cui, Chang-Hao; Kim, Da Jung; Jung, Suk-Chae; Kim, Sun-Chang; Im, Wan-Taek
2017-05-19
Minor ginsenosides, such as compound K, Rg₃( S ), which can be produced by deglycosylation of ginsenosides Rb₁, showed strong anti-cancer effects. However, the anticancer effects of gypenoside LXXV, which is one of the deglycosylated shapes of ginsenoside Rb₁, is still unknown due to the rarity of its content in plants. Here, we cloned and characterized a novel ginsenoside-transforming β-glucosidase (BglG167b) derived from Microbacterium sp. Gsoil 167 which can efficiently hydrolyze gypenoside XVII into gypenoside LXXV, and applied it to the production of gypenoside LXXV at the gram-scale with high specificity. In addition, the anti-cancer activity of gypenoside LXXV was investigated against three cancer cell lines (HeLa, B16, and MDA-MB231) in vitro. Gypenoside LXXV significantly reduced cell viability, displaying an enhanced anti-cancer effect compared to gypenoside XVII and Rb₁. Taken together, this enzymatic method would be useful in the preparation of gypenoside LXXV for the functional food and pharmaceutical industries.
Bala, Manju; Pratap, Kunal; Verma, Praveen Kumar; Singh, Bikram; Padwad, Yogendra
2015-12-04
Tinospora cordifolia (Willd.) Miers ex Hook. f. & Thomas. (Menispermaceae) is one of the most widely used plants in various traditional medicinal systems including "Ayurveda". The plant is used for the treatment of jaundice, rheumatism, urinary disorder, skin diseases, diabetes and anemia. The phytoconstituents present in the plant belongs to different class of compounds such as alkaloids, diterpenoids lactones, glycosides, steroids, phenol, aliphatic compounds and polysaccharides. The aim of present study was the isolation, structure elucidation, quantification and pharmacological evaluation of secondary metabolites from T. cordifolia for anticancer and immunomodulatory activities. Different extracts and fractions were prepared from the stem of T. cordifolia. Pure molecules were isolated using normal phase chromatography and characterized on the basis of NMR and mass spectroscopic techniques. The anti-cancer and immunomodulatory activities of different extracts, fractions and isolated compounds were evaluated against four different human cancer cell lines, KB (human oral squamous carcinoma), CHOK-1 (hamster ovary), HT-29 (human colon cancer) and SiHa (human cervical cancer) and murine primary cells respectively. A simple, normal phase HPTLC method was also developed for the quantification of three bioactive compounds i.e N-formylannonain (1), 11-hydroxymustakone (5) and yangambin (8) in the stem of T. cordifolia hosted on fifteen different plants. Chromatographic purification of different fractions led to the isolation of eight pure molecules i.e N-formylannonain (1), magnoflorine (2), jatrorrhizine (3) palmatine (4), 11-hydroxymustakone (5), cordifolioside A (6), tinocordiside (7) and yangambin (8). All extracts and fractions were active against KB and CHOK-1 cells whereas among the pure molecules palmatine (4) was found to be active against KB and HT-29; tinocordiside (7) against KB and CHOK-1; yangambin (8) against KB cells however N-formylannonain (1) and 11-hydroxymustakone (5), was found active for immunomodulatory activity. HPTLC quantification of three active molecules i.e N-formylannonain (1), 11-hydroxymustakone (5), and yangambin (8) were found in highest quantity in the stem of T. cordifolia hosted on Mangifera indica, however, other two active molecules were not quantified due to their insufficient quantity. Eight compounds have been isolated and characterized belonging to different classes. The pharmacological evaluation of extract, fractions and pure molecules revealed the ethnomedicinal value of T. cordifolia for anticancer and immunomodulatory activities. Copyright © 2015. Published by Elsevier Ireland Ltd.
Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer
Crombag, Marie-Rose B.S.; Joerger, Markus; Thürlimann, Beat; Schellens, Jan H.M.; Beijnen, Jos H.; Huitema, Alwin D.R.
2016-01-01
Background: Elderly patients receiving anticancer drugs may have an increased risk to develop treatment-related toxicities compared to their younger peers. However, a potential pharmacokinetic (PK) basis for this increased risk has not consistently been established yet. Therefore, the objective of this study was to systematically review the influence of age on the PK of anticancer agents frequently administered to elderly breast cancer patients. Methods: A literature search was performed using the PubMed electronic database, Summary of Product Characteristics (SmPC) and available drug approval reviews, as published by EMA and FDA. Publications that describe age-related PK profiles of selected anticancer drugs against breast cancer, excluding endocrine compounds, were selected and included. Results: This review presents an overview of the available data that describe the influence of increasing age on the PK of selected anticancer drugs used for the treatment of breast cancer. Conclusions: Selected published data revealed differences in the effect and magnitude of increasing age on the PK of several anticancer drugs. There may be clinically-relevant, age-related PK differences for anthracyclines and platina agents. In the majority of cases, age is not a good surrogate marker for anticancer drug PK, and the physiological state of the individual patient may better be approached by looking at organ function, Charlson Comorbidity Score or geriatric functional assessment. PMID:26729170
Živković, Marijana B; Matić, Ivana Z; Rodić, Marko V; Novaković, Irena T; Krivokuća, Ana M; Sladić, Dušan M; Krstić, Natalija M
2017-11-01
The synthesis and cytotoxic activities determination of new steroidal mono- and bis(thiazolidin-4-ones) 4a-f and 5a-f have been performed. Their anticancer action was also evaluated in comparison to previously synthesized and reported corresponding steroidal thiosemicarbazones. All compounds were obtained as stereoisomeric mixtures with different configuration (E or Z) in the hydrazone moiety at the C-3 position. After several consecutive crystallizations diastereomerically pure major (E)-isomers of mono-thiazolidin-4-ones were isolated. The structure and stereochemistry of 2,4-thiazolidinedione,2-[(17-oxoandrost-4-en-3-ylidene)hydrazone] were confirmed by X-ray analysis. A pathway for the formation of thiazolidin-4-one ring was proposed. The steroid thiazolidinone derivatives examined in this study exerted selective concentration-dependent cytotoxic activities on six tested malignant cell lines. Ten out of twelve examined compounds exhibited strong cytotoxic effects on K562 cells (IC 50 values from 8.5μM to 14.9μM), eight on HeLa cells (IC 50 values ranging from 8.9μM to 15.1μM) while against MDA-MB-361 cells six compouds exerted similar or even higher cytotoxic action (IC 50 values from 12.7μM to 25.6μM) than cisplatin (21.5μM) which served as a positive control. Eight of these ten compounds showed high selectivity in the cytotoxic action against HeLa and K562 cancer cell lines when compared with normal human fibroblasts MRC-5 and normal human PBMC. The study of mechanisms of the anticancer activity of the two selected compounds, mono- and bis(thiazolidin-4-one) derivatives of 19-norandrost-4-ene-3,17-dione 4a and 5a, revealed that both of these compounds induced apoptosis in HeLa cells through extrinsic and intrinsic signalling pathways. Treatment of EA.hy926 cells with sub-toxic concentrations of these compounds led to the inhibition of cell connecting and sprouting, and tube formation. The synthesized compounds exhibited poor antioxidant activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Williams, Kevin; Bilsland, Elizabeth; Sparkes, Andrew; Aubrey, Wayne; Young, Michael; Soldatova, Larisa N; De Grave, Kurt; Ramon, Jan; de Clare, Michaela; Sirawaraporn, Worachart; Oliver, Stephen G; King, Ross D
2015-03-06
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Williams, Kevin; Bilsland, Elizabeth; Sparkes, Andrew; Aubrey, Wayne; Young, Michael; Soldatova, Larisa N.; De Grave, Kurt; Ramon, Jan; de Clare, Michaela; Sirawaraporn, Worachart; Oliver, Stephen G.; King, Ross D.
2015-01-01
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist ‘Eve’ designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax. PMID:25652463
Braca, Alessandra; Dal Piaz, Fabrizio; Marzocco, Stefania; Autore, Giuseppina; Vassallo, Antonio; De Tommasi, Nunziatina
2011-03-01
Over the past years, there was an explosion in the knowledge of the protein target and molecular mechanism associated with various disease types and in the new research of drugs of natural origin. The key idea is to evaluate bioactive natural products interacting with protein domains of different genetic origin but structurally preserved to develop libraries of compounds biologically validated and selected from an evolutionistic point of view. Compared with synthetic compounds, natural products have a major number of unused scaffolds and not comparable to the libraries of synthetic compounds, and could represent a promising starting points for the discovery of new bioactive compounds. Many natural products are reported to interact with proteins involved in serious diseases, such as inflammation and cancer. Recently various chemical classes of plant secondary metabolites have emerged as potential therapeutic compounds in several inflammatory diseases. Owing to the findings that triterpenoids, a common class of plant secondary metabolites, have anti-inflammatory and anti-cancer effects on humans, the interest in their potential application in human health and disease is increasing. The present review describes anti-inflammatory triterpenes derivatives from plant and fungi reported during the last two decades in order to provide an account of this field of investigation, sorting compounds according to their targets, phospholipase A(2) (PLA(2)), cycloxygenase (COX), and lipoxygenase (LOX). The attempt is also being made to enumerate the possible leads for further synthetic and drug discovery program development.
NASA Astrophysics Data System (ADS)
Al-Otaibi, Jamelah S.; Teesdale Spittle, Paul; El Gogary, Tarek M.
2017-01-01
Anthraquinones form the basis of several anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ4 and AQ4H) were synthesized and studied along with 1,4-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions two conformers of AQ4 were detected and computed as 25.667 kcal/mol apart. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). Molecular docking studies for the inhibition of CDK2 and DNA binding were carried out to explore the anti cancer potency of these drugs. NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the three anthraquinones (AQ4, AQ4H and 1,4-DAAQ) were studied with three DNA (calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). NMR study shows a qualitative pattern of drug/DNA interaction in terms of band shift and broadening. UV-VIS electronic absorption spectra were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis.
Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen
2014-01-01
Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen
2014-01-01
Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246 × 10−6 mol/L and 5.910 × 10−6 mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies. PMID:25548779
Lee, Kyeong; Lee, Jee-Hyun; Boovanahalli, Shanthaveerappa K; Choi, Yongseok; Choo, Soo-Jin; Yoo, Ick-dong; Kim, Dong Hee; Yun, Mi Young; Lee, Gye Won; Song, Gyu-Yong
2010-12-01
We report the synthesis of a novel series of highly potent melanin inhibitors which were obtained through structural modification of an anticancer compound S-(+)-decursinol. The in vitro inhibitory potencies of the newly synthesized compounds were evaluated against α-MSH induced melanin production in B16 murine melanoma cells. Among the compounds evaluated, compounds 2, 3, 6b, 7a, 7b, 8a and 8b emerged as highly potent inhibitors of melanin production. Besides, these compounds demonstrated significantly low cytotoxicity. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Thamkachy, Reshma; Kumar, Rohith; Rajasekharan, K N; Sengupta, Suparna
2016-03-08
p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status. In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts. We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf. Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in diaminothiazole class of compounds for further follow-up.
Nagashima, Shunta; Maruyama, Junichi; Kawano, Shodai; Iwasa, Hiroaki; Nakagawa, Kentaro; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Nishina, Hiroshi; Hata, Yutaka
2016-06-01
Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.