Science.gov

Sample records for anticancer targeted agents

  1. Naturally occurring anti-cancer agents targeting EZH2.

    PubMed

    Shahabipour, Fahimeh; Caraglia, Michele; Majeed, Muhammed; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-03-18

    Natural products are considered as promising tools for the prevention and treatment of cancer. The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase unit of polycomb repressor complexes such as PRC2 complex that has oncogenic roles through interference with growth and metastatic potential. Several agents targeting EZH2 has been discovered but they often induce side effects in clinical trials. Recently, EZH2 has emerged as a potential target of natural products with documented anti-cancer effects and this discloses a new scenario for the development of EZH2 inhibitory strategies with agents with low cytotoxic detrimental effects. In fact, several natural products such as curcumin, triptolide, ursolic acid, sulforaphane, davidiin, tanshindiols, gambogic acid, berberine and Alcea rosea have been shown to serve as EZH2 modulators. Mechanisms like inhibition of histone H3K4, H3K27 and H3K36 trimethylation, down-regulation of matrix metalloproteinase expression, competitive binding to the S-adenosylmethionine binding site of EZH2 and modulation of tumor-suppressive microRNAs have been demonstrated to mediate the EZH2-inhibitory activity of the mentioned natural products. This review summarizes the pathways that are regulated by various natural products resulting in the suppression of EZH2, and provides a plausible molecular mechanism for the putative anti-cancer effects of these compounds.

  2. Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent.

    PubMed

    Dell'Antone, Paolo

    2009-11-01

    3-bromopyruvate (3-BrPA), a pyruvate analog recently proposed as a possible anticancer drug, was investigated in relation to its capacity to inhibit energy production in fractions obtained from normal cells (rat hepatocytes) and in isolated rat thymocytes . Findings were that main targets of the drug were glyceraldehyde 3-phosphate dehydrogenase, and not hexokinase as suggested for hepatoma cells, and succinate -driven ATP synthesis. Consistently with the above findings, in the normal cells studied (thymocytes ) the drug elicited an important fall in ATP levels. The significance of the present findings in concern with a possible therapeutic usefulness of the drug is discussed.

  3. Development of anticancer agents targeting the Hedgehog signaling.

    PubMed

    Zhang, Xiangqian; Tian, Ye; Yang, Yanling; Hao, Jijun

    2017-03-17

    Hedgehog signaling is an evolutionarily conserved pathway which is essential in embryonic and postnatal development as well as adult organ homeostasis. Abnormal regulation of Hedgehog signaling is implicated in many diseases including cancer. Consequently, substantial efforts have made in the past to develop potential therapeutic agents that specifically target the Hedgehog signaling for cancer treatment. Here, we review the therapeutic agents for inhibition of the Hedgehog signaling and their clinical advances in cancer treatment.

  4. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  5. Nanomicellar carriers for targeted delivery of anticancer agents

    PubMed Central

    Zhang, Xiaolan; Huang, Yixian; Li, Song

    2014-01-01

    Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10–100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors’ recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers. PMID:24341817

  6. Development of anticancer agents targeting the Wnt/β-catenin signaling

    PubMed Central

    Zhang, Xiangqian; Hao, Jijun

    2015-01-01

    Wnt/β-catenin signaling plays indispensable roles in both embryonic development and adult homeostasis. Abnormal regulation of this pathway is implicated in many types of cancer. Consequently, substantial efforts have made to develop therapeutic agents as anticancer drugs by specifically targeting the Wnt/β-catenin pathway. Here we systematically review the potential therapeutic agents that have been developed to date for inhibition of the Wnt/β-catenin cascade as well as current status of clinical trials of some of these agents. PMID:26396911

  7. Genetic and epigenetic studies for determining molecular targets of natural product anticancer agents.

    PubMed

    Wang, Yujiong; Li, Yong; Liu, Xiaoming; Cho, William C S

    2013-06-01

    Cancer is a disease caused by a series of genetic and epigenetic alterations. Therefore, agents targeting the genetic and/or epigenetic machinery offer potential for the development of anticancer drugs. Accumulating evidence has demonstrated that some common natural products [such as epigallocatechin-3-gallate (EGCG), curcumin, genistein, sulforaphane (SFN) and resveratrol] have anticancer properties through the mechanisms of altering epigenetic processes [including DNA methylation, histone modification, chromatin remodeling, microRNA (miRNA) regulation] and targeting cancer stem cells (CSCs). These bioactive compounds are able to revert epigenetic alterations in a variety of cancers in vitro and in vivo. They exert anticancer effects by targeting various signaling pathways related to the initiation, progression and metastasis of cancer. It appears that natural products hold great promise for cancer prevention and treatment by altering various epigenetic modifications. This review aims to discuss our current understanding of genetic and epigenetic targets of natural products and the effects of some common natural products on cancer chemoprevention and treatment.

  8. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent.

    PubMed

    Jiang, Sheng-Nan; Park, Seung-Hwan; Lee, Hee Jung; Zheng, Jin Hai; Kim, Hyung-Seok; Bom, Hee-Seung; Hong, Yeongjin; Szardenings, Michael; Shin, Myung Geun; Kim, Sun-Chang; Ntziachristos, Vasilis; Choy, Hyon E; Min, Jung-Joon

    2013-11-01

    A number of recent reports have demonstrated that attenuated Salmonella typhimurium are capable of targeting both primary and metastatic tumors. The use of bacteria as a vehicle for the delivery of anticancer drugs requires a mechanism that precisely regulates and visualizes gene expression to ensure the appropriate timing and location of drug production. To integrate these functions into bacteria, we used a repressor-regulated tetracycline efflux system, in which the expression of a therapeutic gene and an imaging reporter gene were controlled by divergent promoters (tetAP and tetRP) in response to extracellular tetracycline. Attenuated S. typhimurium was transformed with the expression plasmids encoding cytolysin A, a therapeutic gene, and renilla luciferase variant 8, an imaging reporter gene, and administered intravenously to tumor-bearing mice. The engineered Salmonella successfully localized to tumor tissue and gene expression was dependent on the concentration of inducer, indicating the feasibility of peripheral control of bacterial gene expression. The bioluminescence signal permitted the localization of gene expression from the bacteria. The engineered bacteria significantly suppressed both primary and metastatic tumors and prolonged survival in mice. Therefore, engineered bacteria that carry a therapeutic and an imaging reporter gene for targeted anticancer therapy can be designed as a theranostic agent.

  9. Drug-induced interstitial lung diseases associated with molecular-targeted anticancer agents.

    PubMed

    Gemma, Akihiko

    2009-02-01

    Little was known about drug-induced interstitial lung disease (ILD) when acute ILD-type events developed in several Japanese patients treated with gefitinib. A better understanding of drug-induced ILD is required, including more reliable data about the incidence of events associated with different treatments and identification of the risk factors for this type of ILD. Recent advances in imaging, molecular examination, and pathology have been used in postmarketing surveillance studies designed and conducted by an independent academic team to define the risk and to increase the amount of evidence about ILD related to various molecularly targeted anticancer agents. These studies may shed light on the underlying mechanisms of drug-induced ILD and appropriate evidence-based strategies that can be used to prevent or manage these events.

  10. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents.

    PubMed

    Liu, Jiangping; Chen, Yu; Li, Guanying; Zhang, Pingyu; Jin, Chengzhi; Zeng, Leli; Ji, Liangnian; Chao, Hui

    2015-07-01

    Clinical acceptance of photodynamic therapy is currently hindered by poor depth efficacy and inefficient activation of the cell death machinery in cancer cells during treatment. To address these issues, photoactivation using two-photon absorption (TPA) is currently being examined. Mitochondria-targeted therapy represents a promising approach to target tumors selectively and may overcome the resistance in current anticancer therapies. Herein, four ruthenium(II) polypyridyl complexes (RuL1-RuL4) have been designed and developed to act as mitochondria-targeted two-photon photodynamic anticancer agents. These complexes exhibit very high singlet oxygen quantum yields in methanol (0.74-0.81), significant TPA cross sections (124-198 GM), remarkable mitochondrial accumulation, and deep penetration depth. Thus, RuL1-RuL4 were utilized as one-photon and two-photon absorbing photosensitizers in both monolayer cells and 3D multicellular spheroids (MCSs). These Ru(II) complexes were almost nontoxic towards cells and 3D MCSs in the dark and generate sufficient singlet oxygen under one- and two-photon irradiation to trigger cell death. Remarkably, RuL4 exhibited an IC50 value as low as 9.6 μM in one-photon PDT (λirr = 450 nm, 12 J cm(-2)) and 1.9 μM in two-photon PDT (λirr = 830 nm, 800 J cm(-2)) of 3D MCSs; moreover, RuL4 is an order of magnitude more toxic than cisplatin in the latter test system. The combination of mitochondria-targeting and two-photon activation provides a valuable paradigm to develop ruthenium(II) complexes for PDT applications.

  11. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents

    PubMed Central

    Modica-Napolitano, Josephine S.; Weissig, Volkmar

    2015-01-01

    Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy. PMID:26230693

  12. [Visualization and analysis of adverse reactions of molecularly targeted anticancer agents using the self-organizing map (SOM)].

    PubMed

    Hamamoto, Tomoyuki; Serizawa, Ayaka; Ohtsuki, Kaori; Kawakami, Junko; Sato, Kenichi

    2014-01-01

    Molecularly targeted anticancer agents cause a variety of adverse reactions compared with conventional anticancer agents because of their unique mechanisms of action. Sources of drug information such as package inserts (PIs) provide primarily document-based and numerical information. Therefore it is not easy to obtain a complete picture of drugs with similar effects, or to understand differences among drugs. In this study we used the self-organizing map (SOM) technique to visualize the adverse reactions indicated on PIs of 23 molecularly targeted anticancer agents as of March 2013. In both the presence/absence version and the frequency version, SOM was divided into domains according to mechanism of action, antibody drug or low-molecular weight drug, and molecular target. The component planes of the 753 adverse reaction items in the frequency version enabled us to grasp all available information and differences among the drugs. In some component planes in the presence/absence version, an adverse reaction that had not been reported for a drug but had already been reported for its proximally positioned drug(s) as of March 2013, was found to be reported thereafter by the Drug Safety Update (DSU) or the Adverse Event Report Search System "CzeekV," which is based on FDA Adverse Event Reporting System (FAERS). Our results suggest that visualization of the adverse reactions of molecularly targeted anticancer agents by the SOM technique is useful not only to acquire all available information and differences among drugs, but also to predict the appearance of adverse reactions.

  13. Macromolecular Drug Targets in Cancer Treatment and Thiosemicarbazides as Anticancer Agents.

    PubMed

    Küçükgüzel, Ş Güniz; Coşkun, Göknil P

    2016-01-01

    Cancer is known as abnormal cell division and consisting of a group of diseases on various organ tissues. Many therapies are available in cancer treatment such as chemotherapy, radiotherapy etc. Without damaging normal tissue, there is a huge need for specified anticancer drugs which have effect only on abnormal cancer cells. Therefore, advances in anticancer drug discovery in treating cancer in the recent years, directed towards to the macromolecular targets. Heterocyclic molecules, such as fluconazole, acetazolamide, etc., have a significant role in health care and pharmaceutical drug design. Thiosemicarbazides (NH2-NH-CSNH2) are the simplest hydrazine derivatives of thiocarbamic acid and are not only transition compounds, but they are also very effective organic compounds. Thiosemicarbazides possess an amide and amine protons, carbonyl and thione carbons. These structures have attracted the attention of the researchers in the development of novel compounds with anticonvulsant, antiviral, anti-inflammatory, antibacterial, antimycobacterial, antifungal, antioxidant and anticancer activities. Recently, a number of thiosemicarbazides are available commercially as anticancer drugs for novel anticancer drug discovery. Antineoplastic or anticancer drugs prevent or inhibit the maturation and proliferation of neoplasms. These observations have been guiding the researchers for the development of new thiosemicarbazides that possess anticancer activity.

  14. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents

    PubMed Central

    Matter, Alex

    2015-01-01

    This review starts with a brief history of drug discovery & development, and the place of Asia in this worldwide effort discussed. The conditions and constraints of a successful translational R&D involving academic basic research and clinical research are discussed and the Singapore model for pursuit of open R&D described. The importance of well-characterized, validated drug targets for the search for novel targeted anti-cancer agents is emphasized, as well as a structured, high quality translational R&D. Furthermore, the characteristics of an attractive preclinical development drug candidate are discussed laying the foundation of a successful preclinical development. The most frequent sources of failures are described and risk management at every stage is highly recommended. Organizational factors are also considered to play an important role. The factors to consider before starting a new drug discovery & development project are described, and an example is given of a successful clinical project that has had its roots in local universities and was carried through preclinical development into phase I clinical trials. PMID:26779369

  15. The Applications of Targeting Anti-Cancer Agents in Cancer Therapeutics.

    PubMed

    Sun, Guang-Chun; Yang, Xu; Yu, Yan; Zhao, Dai-Wei

    2015-01-01

    Anti-cancer targeting drugs appear to be a new and powerful "weapon" for cancer therapies. These targeting drugs are directed against specific molecules that are over-expressed or where certain unique factors are aberrantly expressed either in cancer cells or in diseased cell sites. Compared with traditional chemotherapeutic drugs, these targeting drugs have the advantages of high specificity, efficacy and less side effects. Target therapy is a breakthrough and revolutionary advance in the field of cancer therapy. Tumor angiogenesis plays a key role in tumor growth and metastasis and the mutation of tyrosine kinases is also strongly associated with cancer progression. Thus, in this review, we will discuss the advances in the development of targeting anti-cancer drugs by narrowing it down to small molecule tyrosine kinase inhibitors, monoclonal antibodies against epidermal growth factor receptors belonging to the ErbB family of receptor tyrosine kinases and angiogenic inhibitors. It will also address concerns for drug resistance and adverse events.

  16. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways.

    PubMed

    Rengarajan, Thamaraiselvan; Yaacob, Nik Soriani

    2016-10-15

    Epidemiological studies show that consumption of diets rich in fruits and vegetables is associated with lower risks of cancer. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds is fisetin (3,7,3,4-tetrahydroxyflavone), a flavonol that is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. Fisetin has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. Fisetin targets many components of intracellular signaling pathways including regulators of cell survival and apoptosis, tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. Current evidence supports the idea that fisetin is a promising agent for cancer treatment. This review summarizes reported anticancer effects of fisetin, and re-emphasizes its potential therapeutic role in the treatment of cancer.

  17. The prince and the pauper. A tale of anticancer targeted agents

    PubMed Central

    Dueñas-González, Alfonso; García-López, Patricia; Herrera, Luis Alonso; Medina-Franco, Jose Luis; González-Fierro, Aurora; Candelaria, Myrna

    2008-01-01

    Cancer rates are set to increase at an alarming rate, from 10 million new cases globally in 2000 to 15 million in 2020. Regarding the pharmacological treatment of cancer, we currently are in the interphase of two treatment eras. The so-called pregenomic therapy which names the traditional cancer drugs, mainly cytotoxic drug types, and post-genomic era-type drugs referring to rationally-based designed. Although there are successful examples of this newer drug discovery approach, most target-specific agents only provide small gains in symptom control and/or survival, whereas others have consistently failed in the clinical testing. There is however, a characteristic shared by these agents: -their high cost-. This is expected as drug discovery and development is generally carried out within the commercial rather than the academic realm. Given the extraordinarily high therapeutic drug discovery-associated costs and risks, it is highly unlikely that any single public-sector research group will see a novel chemical "probe" become a "drug". An alternative drug development strategy is the exploitation of established drugs that have already been approved for treatment of non-cancerous diseases and whose cancer target has already been discovered. This strategy is also denominated drug repositioning, drug repurposing, or indication switch. Although traditionally development of these drugs was unlikely to be pursued by Big Pharma due to their limited commercial value, biopharmaceutical companies attempting to increase productivity at present are pursuing drug repositioning. More and more companies are scanning the existing pharmacopoeia for repositioning candidates, and the number of repositioning success stories is increasing. Here we provide noteworthy examples of known drugs whose potential anticancer activities have been highlighted, to encourage further research on these known drugs as a means to foster their translation into clinical trials utilizing the more limited

  18. Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents.

    PubMed

    Li, Yi; Tan, Cai-Ping; Zhang, Wei; He, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2015-01-01

    Mitochondria-targeted compounds represent a promising approach to target tumors selectively and overcome resistance to current anticancer therapies. In this work, three cyclometalated iridium(III) complexes (1-3) containing bis-N-heterocyclic carbene (NHC) ligands have been explored as theranostic and photodynamic agents targeting mitochondria. These complexes display rich photophysical properties, which greatly facilitates the study of their intracellular fate. All three complexes are more cytotoxic than cisplatin against the cancer cells screened. 1-3 can penetrate into human cervical carcinoma (HeLa) cells quickly and efficiently, and they can carry out theranostic functions by simultaneously inducing and monitoring the morphological changes in mitochondria. Mechanism studies show that these complexes exert their anticancer efficacy by initiating a cascade of events related to mitochondrial dysfunction. Additionally, they display up to 3 orders of magnitude higher cytotoxicity upon irradiation at 365 nm, which is so far the highest photocytotoxic responses reported for iridium complexes.

  19. Molecular Basis for the Inhibition of Human NMPRTase, a Novel Target for Anticancer Agents

    SciTech Connect

    Khan,J.; Tao, X.; Tong, L.

    2006-01-01

    Nicotinamide phosphoribosyltransferase (NMPRTase) has a crucial role in the salvage pathway of NAD{sup +} biosynthesis, and a potent inhibitor of NMPRTase, FK866, can reduce cellular NAD+ levels and induce apoptosis in tumors. We have determined the crystal structures at up to 2.1-Angstroms resolution of human and murine NMPRTase, alone and in complex with the reaction product nicotinamide mononucleotide or the inhibitor FK866. The structures suggest that Asp219 is a determinant of substrate specificity of NMPRTase, which is confirmed by our mutagenesis studies. FK866 is bound in a tunnel at the interface of the NMPRTase dimer, and mutations in this binding site can abolish the inhibition by FK866. Contrary to current knowledge, the structures show that FK866 should compete directly with the nicotinamide substrate. Our structural and biochemical studies provide a starting point for the development of new anticancer agents.

  20. Fluorine-Containing Taxoid Anticancer Agents and Their Tumor-Targeted Drug Delivery

    PubMed Central

    Seitz, Joshua; Vineberg, Jacob G.; Zuniga, Edison S.; Ojima, Iwao

    2013-01-01

    A long-standing problem of conventional chemotherapy is the lack of tumor-specific treatments. Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing undesirable severe side effects. Consequently, various “molecularly targeted cancer therapies” have been developed for use in specific cancers, including tumor-targeting drug delivery systems. In general, such a drug delivery system consists of a tumor recognition moiety and a cytotoxic “warhead” connected through a “smart” linker to form a conjugate. When a multi-functionalized nanomaterial is used as the vehicle, a “Trojan Horse” approach can be used for mass delivery of cytotoxic “warheads” to maximize the efficacy. Exploitation of the special properties of fluorine has proven successful in the development of new and effective biochemical tools as well as therapeutic agents. Fluorinated congeners can also serve as excellent probes for the investigation of biochemical mechanisms. 19F-NMR can provide unique and powerful tools for mechanistic investigations in chemical biology. This account presents our recent progress, in perspective, on the molecular approaches to the design and development of novel tumor-targeted drug delivery systems for new generation chemotherapy by exploiting the unique nature of fluorine. PMID:23935213

  1. Novel Anticancer Agents Based on Targeting the Trimer Interface of the PRL Phosphatase.

    PubMed

    Bai, Yunpeng; Yu, Zhi-Hong; Liu, Sijiu; Zhang, Lujuan; Zhang, Ruo-Yu; Zeng, Li-Fan; Zhang, Sheng; Zhang, Zhong-Yin

    2016-08-15

    Phosphatase of regenerating liver (PRL) oncoproteins are phosphatases overexpressed in numerous types of human cancer. Elevated levels of PRL associate with metastasis and poor clinical outcomes. In principle, PRL phosphatases offer appealing therapeutic targets, but they remain underexplored due to the lack of specific chemical probes. In this study, we address this issue by exploiting a unique property of PRL phosphatases, namely, that they may function as homotrimers. Starting from a sequential structure-based virtual screening and medicinal chemistry strategy, we identified Cmpd-43 and several analogs that disrupt PRL1 trimerization. Biochemical and structural analyses demonstrate that Cmpd-43 and its close analogs directly bind the PRL1 trimer interface and obstruct PRL1 trimerization. Cmpd-43 also specifically blocks the PRL1-induced cell proliferation and migration through attenuation of both ERK1/2 and Akt activity. Importantly, Cmpd-43 exerted potent anticancer activity both in vitro and in vivo in a murine xenograft model of melanoma. Our results validate a trimerization-dependent signaling mechanism for PRL and offer proof of concept for trimerization inhibitors as candidate therapeutics to treat PRL-driven cancers. Cancer Res; 76(16); 4805-15. ©2016 AACR.

  2. CRM1 is a direct cellular target of the natural anti-cancer agent plumbagin.

    PubMed

    Liu, Xuejiao; Niu, Mingshan; Xu, Xiaoyu; Cai, Wei; Zeng, Lingyu; Zhou, Xiuping; Yu, Rutong; Xu, Kailin

    2014-01-01

    Plumbagin, a naphthoquinone derived from the medicinal plant Plumbago zeylanica, has been shown to exert anti-cancer and anti-proliferative activities in vitro as well as in animal tumor models. However, the mechanism underlying its anti-tumor action still remains unclear. CRM1 is a nuclear export receptor involved in the active transport of tumor suppressors whose function is altered in cancer due to increased expression and overactive transport. We showed that CRM1 is a direct cellular target of plumbagin. The nuclei of cells incubated with plumbagin accumulated tumor-suppressor proteins and inhibited the interactions between CRM1 and these proteins. Particularly, we demonstrated that plumbagin could specifically react with the conserved Cys(528) of CRM1 but not with a Cys(528) mutant peptide through Mass spectrometric analysis. More importantly, cancer cells that are transfected with mutant CRM1 (C528S) are resistant to the inhibitory effects of plumbagin, demonstrating that the inhibition is through direct interaction with Cys(528) of CRM1. The inhibition of nuclear traffic by plumbagin may account for its therapeutic properties in cancer and inflammatory diseases. Our findings could contribute to the development of a new class of CRM1 inhibitors.

  3. Tumor-targeting peptides and small molecules as anti-cancer agents to overcome drug resistance.

    PubMed

    Sarafraz-Yazdi, Ehsan; Pincus, Matthew R; Michl, Josef

    2014-01-01

    Since the introduction of chemotherapy in cancer therapy, development of resistance to every new therapeutic has been the universal experience. The growing understanding of cancer genomics, cancer-associated signal transduction pathways, and key protein drivers of cancer has enabled cancer biologists and medicinal chemists to develop targeted molecules to interfere with these pathways to tackle drug resistant cancers. However, to the dismay of oncologists, the clinical use of many of these tools has once again brought to the forefront the inevitable challenge of drug resistance. It is now understood that cancer resistance to different therapies involves multiple challenges that encompass the cancer cell itself as well as host physiology. This review presents small molecule inhibitors and peptides as two therapeutic approaches in anti-cancer drug development. Resistance to selected samples of these novel therapies is described in the context of cell autonomous resistance, the contributions of the tumor microenvironment, and germ line factors. For each approach, advantages and disadvantages are discussed on how to better overcome the inevitable challenge of resistance in cancer treatment.

  4. Novel antibodies as anticancer agents.

    PubMed

    Zafir-Lavie, I; Michaeli, Y; Reiter, Y

    2007-05-28

    In recent years antibodies, whether generated by traditional hybridoma technology or by recombinant DNA strategies, have evolved from Paul Ehrlich's 'magic bullets' to a modern age 'guided missile'. In the recent years of immunologic research, we are witnessing development in the fields of antigen screening and protein engineering in order to create specific anticancer remedies. The developments in the field of recombinant DNA, protein engineering and cancer biology have let us gain insight into many cancer-related mechanisms. Moreover, novel techniques have facilitated tools allowing unique distinction between malignantly transformed cells, and regular ones. This understanding has paved the way for the rational design of a new age of pharmaceuticals: monoclonal antibodies and their fragments. Antibodies can select antigens on both a specific and a high-affinity account, and further implementation of these qualities is used to target cancer cells by specifically identifying exogenous antigens of cancer cell populations. The structure of the antibody provides plasticity resonating from its functional sites. This review will screen some of the many novel antibodies and antibody-based approaches that are being currently developed for clinical applications as the new generation of anticancer agents.

  5. Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry.

    PubMed

    Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L; Bierbach, Ulrich

    2014-03-01

    Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide-alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum-acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent.

  6. Investigating the cellular fate of a DNA-targeted platinum-based anticancer agent by orthogonal double-click chemistry

    PubMed Central

    Qiao, Xin; Ding, Song; Liu, Fang; Kucera, Gregory L.

    2014-01-01

    Confocal fluorescence microscopy was used to study a platinum-based anticancer agent in intact NCI-H460 lung cancer cells. Orthogonal copper-catalyzed azide–alkyne cycloaddition (click) reactions were used to simultaneously determine the cell-cycle-specific localization of the azide-functionalized platinum–acridine agent 1 and monitor its effects on nucleic acid metabolism. Copper-catalyzed postlabeling showed advantages over copper-free click chemistry using a dibenzocyclooctyne (DIBO)-modified reporter dye, which produced high background levels in microscopic images and failed to efficiently label platinum adducts in chromatin. Compound 1 was successfully labeled with the fluorophore DIBO to yield 1* (characterized by in-line high-performance liquid chromatography/electrospray mass spectrometry). 1 and 1* show a high degree of colocalization in the confocal images, but the ability of 1* to target the (compacted) chromatin was markedly reduced, most likely owing to the steric bulk introduced by the DIBO tag. Nuclear platinum levels correlated inversely with the ability of the cells to synthesize DNA and cause cell cycle arrest, as confirmed by bivariate flow cytometry analysis. In addition, a decrease in the level of cellular transcription, shrinkage of the nucleolar regions, and redistribution of RNA into the cytosol were observed. Postlabeling in conjunction with colocalization experiments is a useful tool for studying the cell killing mechanism of this type of DNA-targeted agent. PMID:24407462

  7. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents.

    PubMed

    Bajaj, Shalini; Asati, Vivek; Singh, Jagadish; Roy, Partha Pratim

    2015-06-05

    Five member heterocyclic 1,3,4-oxadiazole nucleus find unique place in medicinal chemistry and plays significant role in producing anticancer activity. The small and simple 1,3,4-oxadiazole nucleus is present in various compounds involved in research aimed at evaluating new products that posses interesting pharmacological properties such as antitumour activity. Mono and 2,5-di-substituted-1,3,4-oxadiazole derivatives have attracted considerable attention owing to their effective biological activity and extensive use. The important mechanism involved during its tumour suppression is related with the inhibition of different growth factors, enzymes and kinases including telomerase enzyme, histone deacetylase (HDAC), methionine aminopeptidase (MetAP), thymidylate synthase (TS), glycogen synthase kinase-3 (GSK), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) and focal adhesion kinase (FAK). The focused criteria of this review is to highlights the targeted inhibitory activity of 1,3,4-oxadiazole derivatives and their structure activity relationship to generate potential anticancer agents.

  8. Noncovalent Binding to DNA: Still a Target in Developing Anticancer Agents.

    PubMed

    Portugal, José; Barceló, Francisca

    2016-01-01

    DNA-binding compounds are of extraordinary importance in medicine, accounting for a substantial portion of antitumor drugs in clinical usage. However, their mechanisms of action remain sometimes incompletely understood. This review critically examines two broad classes of molecules that bind noncovalently to DNA: intercalators and groove binders. Intercalators bind to DNA by inserting their chromophore moiety between two consecutive base pairs, whereas groove binders fit into the grooves of DNA. Noncovalent DNAinteractive drugs can recognize certain supramolecular DNA structures such as the Gquadruplexes found in telomeres and in numerous gene promoters, and they can act as topoisomerase I and II poisons. We discuss how DNA-binding compounds affect transcription and compete with protein factors for binding to consensus binding sites in gene promoters both in vitro and in cultured cancer cells. Moreover, we comment on the design of molecules that can tightly and specifically bind to any desired target DNA, such as various hairpin polyamides which efficacy as chemotherapeutic agents is being evaluated. At present, genome-wide studies, which provide details of events that may influence both cancer progression and therapeutic outcome, are a common way used to analyze the effects of DNA-binding compounds. A conclusive feature that emerges from reviewing the information on DNA-binding compounds is that both natural sources and chemical approaches can be productively used to obtain drugs to manipulate gene expression in cancer cells.

  9. Safety Pharmacology of Anticancer Agents.

    PubMed

    Martin, Pauline L

    2015-01-01

    The safety pharmacology testing for anticancer agents has historically differed for small molecule pharmaceutical drugs versus large-molecule biopharmaceuticals. For pharmaceutical drugs, dedicated safety pharmacology studies have been conducted according to the ICH M3 (R2), ICH 7A, and ICH S7B guidance documents. For biopharmaceuticals, safety pharmacology endpoints have been incorporated into the repeated-dose toxicology studies according to ICHS6 (R1). However, the introduction of the ICH S9 guidance document for the nonclinical evaluation for anticancer pharmaceuticals has allowed for a streamlined approach for both types of molecules to facilitate access of new potential therapeutics to cancer patients and to reduce the number of animal studies. Examples of the testing strategies that have previously been employed for some representative anticancer agents are provided, and their predictivity to adverse events noted in the clinic is discussed.

  10. Ester-Modified Cyclometalated Iridium(III) Complexes as Mitochondria-Targeting Anticancer Agents

    PubMed Central

    Wang, Fang-Xin; Chen, Mu-He; Hu, Xiao-Ying; Ye, Rui-Rong; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2016-01-01

    Organometallic iridium complexes are potent anticancer candidates which act through different mechanisms from cisplatin-based chemotherapy regimens. Here, ten phosphorescent cyclometalated iridium(III) complexes containing 2,2′-bipyridine-4,4′-dicarboxylic acid and its diester derivatives as ligands are designed and synthesized. The modification by ester group, which can be hydrolysed by esterase, facilitates the adjustment of drug-like properties. The quantum yields and emission lifetimes are influenced by variation of the ester substituents on the Ir(III) complexes. The cytotoxicity of these Ir(III) complexes is correlated with the length of their ester groups. Among them, 4a and 4b are found to be highly active against a panel of cancer cells screened, including cisplatin-resistant cancer cells. Mechanism studies in vitro indicate that they undergo hydrolysis of ester bonds, accumulate in mitochondria, and induce a series of cell-death related events mediated by mitochondria. Furthermore, 4a and 4b can induce pro-death autophagy and apoptosis simultaneously. Our study indicates that ester modification is a simple and feasible strategy to enhance the anticancer potency of Ir(III) complexes. PMID:27958338

  11. Development of anticancer agents: wizardry with osmium.

    PubMed

    Hanif, Muhammad; Babak, Maria V; Hartinger, Christian G

    2014-10-01

    Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action.

  12. Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets.

    PubMed

    Farrell, N P

    2015-12-21

    This tutorial review summarizes chemical, biophysical and cellular biological properties of formally substitution-inert "non-covalent" polynuclear platinum complexes (PPCs). We demonstrate how modulation of the pharmacological factors affecting platinum compound cytotoxicity such as cellular accumulation, reactivity toward extracellular and intracellular sulfur-ligand nucleophiles and consequences of DNA binding is achieved to afford a profile of biological activity distinct from that of covalently-binding agents. The DNA binding of substitution-inert complexes is achieved by molecular recognition through minor groove spanning and backbone tracking of the phosphate clamp. In this situation, the square-planar tetra-am(m)ine Pt(ii) coordination units hydrogen bond to phosphate oxygen OP atoms to form bidentate N-O-N motifs. The modular nature of the polynuclear compounds results in high-affinity binding to DNA and very efficient nuclear condensation. These combined effects distinguish the phosphate clamp as a third mode of ligand-DNA binding, discrete from intercalation and minor-groove binding. The cellular consequences mirror those of the biophysical studies and a significant portion of nuclear DNA is compacted, a unique effect different from mitosis, senescence or apoptosis. Substitution-inert PPCs display cytotoxicity similar to cisplatin in a wide range of cell lines, and sensitivity is indifferent to p53 status. Cellular accumulation is mediated through binding to heparan sulfate proteoglycans (HSPG) allowing for possibilities of tumor selectivity as well as disruption of HSPG function, opening new targets for platinum antitumor agents. The combined properties show that covalently-binding chemotypes are not the unique arbiters of cytotoxicity and antitumor activity and meaningful antitumor profiles can be achieved even in the absence of Pt-DNA bond formation. These dual properties make the substitution-inert compounds a unique class of inherently dual

  13. Targeted Delivery of Anticancer Agents via a Dual Function Nanocarrier with an Interfacial Drug-Interactive Motif

    PubMed Central

    2015-01-01

    We have developed a dual-function drug carrier, polyethylene glycol (PEG)-derivatized farnesylthiosalicylate (FTS). Here we report that incorporation of a drug-interactive motif (Fmoc) into PEG5k–FTS2 led to further improvement in both drug loading capacity and formulation stability. Doxorubicin (DOX) formulated in PEG5k–Fmoc–FTS2 showed sustained release kinetics slower than those of DOX loaded in PEG5k–FTS2. The maximum tolerated dose of DOX- or paclitaxel (PTX)-loaded PEG5k–Fmoc–FTS2 was significantly higher than that of the free drug. Pharmacokinetics and biodistribution studies showed that DOX/PEG5k–Fmoc–FTS2 mixed micelles were able to retain DOX in the bloodstream for a significant amount of time and efficiently deliver the drug to tumor sites. More importantly, drug (DOX or PTX)-loaded PEG5k–Fmoc–FTS2 led to superior antitumor activity over other treatments including drugs formulated in PEG5k–FTS2 in breast cancer and prostate cancer models. Our improved dual function carrier with a built-in drug-interactive motif represents a simple and effective system for targeted delivery of anticancer agents. PMID:25325795

  14. HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy

    PubMed Central

    Lee, Hyunseung; Son, Mi Kwon; Yun, Sun-Mi; Ahn, Sung-Hoon; Lee, Kyeong-Ryoon; Lee, Soyoung; Kim, Donghee; Hong, Sungwoo; Hong, Soon-Sun

    2014-01-01

    As PI3K/Akt signaling is frequently deregulated in a wide variety of human tumors, PI3K inhibitors are an emerging class of drugs for cancer treatment. The monitoring of the drug behavior and distribution in the biological system can play an important role for targeted therapy and provide information regarding the response or resistance to available therapies. In this study, therefore, we have developed a family of xanthine derivatives, serving as a dual function exhibiting fluorescence, as well as inhibiting PI3K. Among them, HS-133 showed anti-proliferative effects and was monitored for its subcellular localization by a fluorescence microscopy. HS-133 suppressed the PI3K/Akt pathway and induced cell cycle arrest at the G0/G1 phase. The induction of apoptosis by HS-133 was confirmed by the increases of the cleaved PARP, caspase-3, and caspase-8. Furthermore, HS-133 decreased the protein expression of HIF-1α and VEGF, as well inhibited the tube formation and migration of the human umbilical vein endothelial cells. In vivo imaging also showed that tumors were visualized fluorescent with HS-133, and its oral administration significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Thus, we suggest that HS-133 may be used as a fluorescent anticancer agent against human breast cancer. PMID:25338206

  15. Discovery and Development of Topoisomerase Inhibitors as Anticancer Agents.

    PubMed

    Kathiravan, Muthu K; Kale, Anuj N; Nilewar, Shrikant

    2016-01-01

    As one of the leading causes of deaths worldwide, cancer is posing threat despite efforts being taken to develop effective anticancer drugs. There is an increase in number of chemotherapy treatments due to growing number of manifestations causing increasing toxicities of cytotoxic agents. Almost all the anticancer agents available till date have one or the other side effects. Topoisomerases are the attractive targets to develop effective anticancer agents. There has been development of many topoisomerase inhibitors till date and has shown good anticancer activity but their side effects outnumber their anticancer potential. Hence, there is an urgent need to develop effective therapeutic agents with fewer side effects. This review deals with design and development aspect of topoisomerase inhibitors as exciting novel anticancer agents. The emphasis has been laid in particular on the new potential heterocyles as TOP inhibitors in the field of medicinal chemistry. The review discusses about the topoisomerase poisons, TOP1 suppressors, TOP inhibitors and Dual TOP 1/2 inhibitors.

  16. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer agents.

    PubMed

    Xiong, Kai; Chen, Yu; Ouyang, Cheng; Guan, Rui-Lin; Ji, Liang-Nian; Chao, Hui

    2016-06-01

    Four cyclometalated iridium(III) complexes [Ir(dfppy)2(L)](+) (dfppy = 2-(2,4-difluorophenyl)pyridine, L = 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine, Ir1; 6-(isoquinolin-1-yl)-1,3,5-triazine-2,4-diamine, Ir2; 6-(quinolin-2-yl)-1,3,5-triazine-2,4-diamine, Ir3; 6-(isoquinolin-3-yl)-1,3,5-triazine-2,4-diamine, Ir4) have been synthesized and characterized. Distinct from cisplatin, Ir1-Ir4 could specifically target mitochondria and induced apoptosis against various cancer cell lines, especially for cisplatin resistant cells. ICP-MS results indicated that Ir1-Ir4 were taken up via different mechanism for cancer cells and normal cells, which resulted in their high selectivity. The structure-activity relationship and signaling pathways were also discussed.

  17. Diacetoxyscirpenol as a new anticancer agent to target hypoxia-inducible factor 1

    PubMed Central

    Choi, Yong-Joon; Shin, Hyun-Woo; Chun, Yang-Sook; Leutou, Alain Simplice; Son, Byeng Wha; Park, Jong-Wan

    2016-01-01

    Hypoxia activates hypoxia-inducible factor 1, which promotes the progression of malignancy by stimulating angiogenesis and by augmenting the ability of tumors to survive. Thus, HIF-1 is one of the most compelling targets for treating cancers. The aim of this study was to find a small molecule that inhibits HIF-1 under hypoxia in cancer cells. 7,280 compounds in a chemical library were tested in a cancer cell line expressing luciferase HIF-dependently. Through three rounds of screening, we finally picked up a compound that originates from a marine bacterium parasitizing red alga. The antibiotic potently inhibited HIF-1 expression and its transcriptional activity in cancer cells exposed to hypoxia. Through two-step fractionation, diacetoxyscirpenol was purified and identified as a HIF-inhibiting ingredient. Mechanistically, diacetoxyscirpenol inhibits the synthesis of HIF-1α protein and also interferes with the dimerization of HIF-1α and ARNT. It attenuates HIF-mediated gene expression in cancer cells exposed to hypoxia, and by doing so reduces tumorigenic and angiogenic potentials of cancer cells. More importantly, diacetoxyscirpenol retarded tumor growth in mice, and reduced HIF-1α expression and vascular formation in the tumors. Overall, diacetoxyscirpenol is considered a potential drug deregulating the HIF-1 signaling pathway, and it could be beneficially employed for treating malignant tumors with hypoxic microenvironment. PMID:27613833

  18. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  19. Design, Synthesis and Biological Evaluation of Novel Rapamycin Benzothiazole Hybrids as mTOR Targeted Anti-cancer Agents.

    PubMed

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-01-01

    The immunosuppressant drug rapamycin, was firstly identified as a mammalian target of rapamycin (mTOR) allosteric inhibitor, and its derivatives have been successfully developed as anti-cancer drugs. Therefore, finding rapamycin derivatives with better anti-cancer activity has been proved to be an effective way to discover new targeted anti-cancer drugs. In this paper, structure modification was performed at the C-43 position of rapamycin using bioisosterism and a hybrid approach: a series of novel rapamycin-benzothiazole hybrids 4a-e, 5a-c, and 9a, b have been designed, synthesized and evaluated for their anti-cancer activity against Caski, CNE-2, SGC-7901, PC-3, SK-NEP-1 and A-375 human cancer cell lines. Some of these compounds (4a-e, 9a, b) displayed good to excellent potency against the Caski and SK-NEP-1 cell line as compared with rapamycin. Compound 9b as the most active compound showed IC50 values of 8.3 (Caski) and 9.6 μM (SK-NEP-1), respectively. In addition, research on the mechanism showed that 9b was able to cause G1 phase arrest and induce apoptosis in the Caski cell line. Most importantly, it significantly decreased the phosphorylation of S6 ribosomal protein, p70S6K1 and 4EBP1, which indicated that 9b inhibited the cancer cell growth by blocking the mTOR pathway and may have the potential to become a new mTOR inhibitor.

  20. Synthesis of Rapamycin Derivatives Containing the Triazole Moiety Used as Potential mTOR-Targeted Anticancer Agents.

    PubMed

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-06-01

    Rapamycin, a potent antifungal antibiotic, was approved as immunosuppressant, and lately its derivatives have been developed into mTOR targeting anticancer drugs. Structure modification was performed at the C-42 position of rapamycin, and a novel series of rapamycin triazole hybrids (4a-d, 5a-e, 8a-e, and 9a-e) was facilely synthesized via Huisgen's reaction. The anticancer activity of these compounds was evaluated against the Caski, H1299, MGC-803, and H460 human cancer cell lines. Some of the derivatives (8a-e, 9a-e) appeared to have stronger activity than that of rapamycin; however, 4a-d and 5a-e failed to show potential anticancer activity. Compound 9e with a (2,4-dichlorophenylamino)methyl moiety on the triazole ring was the most active anticancer compound, which showed IC50 values of 6.05 (Caski), 7.89 (H1299), 25.88 (MGC-803), and 8.60 μM (H460). In addition, research on the mechanism showed that 9e was able to cause cell morphological changes and to induce apoptosis in the Caski cell line. Most importantly, 9e can decrease the phosphorylation of mTOR and of its downstream key proteins, S6 and P70S6K1, indicating that 9e can effectively inhibit the mTOR signaling pathway. Thus, it may have the potential to become a new mTOR inhibitor against various cancers.

  1. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.

    PubMed

    Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form.

  2. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents

    PubMed Central

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  3. Taxane anticancer agents: a patent perspective

    PubMed Central

    Ojima, Iwao; Lichtenthal, Brendan; Lee, Siyeon; Wang, Changwei; Wang, Xin

    2016-01-01

    Introduction Paclitaxel and docetaxel were two epoch-making anticancer drugs and have been successfully used in chemotherapy for a variety of cancer types. In 2010, a new taxane, cabazitaxel, was approved by FDA for use in combination with prednisone for the treatment of metastatic hormone-refractory prostate cancer. Albumin-bound paclitaxel (nab™-paclitaxel; abraxane) nanodroplet formulation was another notable invention (FDA approval 2005 for refractory, metastatic, or relapsed breast cancer). Abraxane in combination with gemcitabine for the treatment of pancreatic cancer was approved by FDA in 2013. Accordingly, there have been a huge number of patent applications dealing with taxane anticancer agents in the last five years. Thus, it is a good time to review the progress in this area and find the next wave for new developments. Area covered This review article covers the patent literature from 2010 to early 2015 on various aspects of taxane-based chemotherapies and drug developments. Expert opinion Three FDA-approved taxane anticancer drugs will continue to expand their therapeutic applications, especially through drug combinations and new formulations. Inspired by the success of abraxane, new nano-formulations are emerging. Highly potent new-generation taxanes will play a key role in the development of efficacious tumor-targeted drug delivery systems. PMID:26651178

  4. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic.

    PubMed

    Au, Kin Man; Satterlee, Andrew; Min, Yuanzeng; Tian, Xi; Kim, Young Seok; Caster, Joseph M; Zhang, Longzhen; Zhang, Tian; Huang, Leaf; Wang, Andrew Z

    2016-03-01

    Zoledronate (Zol) is a third-generation bisphosphonate that is widely used as an anti-resorptive agent for the treatment of cancer bone metastasis. While there is preclinical data indicating that bisphosphonates such as Zol have direct cytotoxic effects on cancer cells, such effect has not been firmly established in the clinical setting. This is likely due to the rapid absorption of bisphosphonates by the skeleton after intravenous (i.v.) administration. Herein, we report the reformulation of Zol using nanotechnology and evaluation of this novel nanoscale metal-organic frameworks (nMOFs) formulation of Zol as an anticancer agent. The nMOF formulation is comprised of a calcium zoledronate (CaZol) core and a polyethylene glycol (PEG) surface. To preferentially deliver CaZol nMOFs to tumors as well as facilitate cellular uptake of Zol, we incorporated folate (Fol)-targeted ligands on the nMOFs. The folate receptor (FR) is known to be overexpressed in several tumor types, including head-and-neck, prostate, and non-small cell lung cancers. We demonstrated that these targeted CaZol nMOFs possess excellent chemical and colloidal stability in physiological conditions. The release of encapsulated Zol from the nMOFs occurs in the mid-endosomes during nMOF endocytosis. In vitro toxicity studies demonstrated that Fol-targeted CaZol nMOFs are more efficient than small molecule Zol in inhibiting cell proliferation and inducing apoptosis in FR-overexpressing H460 non-small cell lung and PC3 prostate cancer cells. Our findings were further validated in vivo using mouse xenograft models of H460 and PC3. We demonstrated that Fol-targeted CaZol nMOFs are effective anticancer agents and increase the direct antitumor activity of Zol by 80-85% in vivo through inhibition of tumor neovasculature, and inhibiting cell proliferation and inducing apoptosis.

  5. Designed TPR Modules as Novel Anticancer Agents

    SciTech Connect

    Cortajarena,A.; Yi, F.; Regan, L.

    2008-01-01

    Molecules specifically designed to modulate protein-protein interactions have tremendous potential as novel therapeutic agents. One important anticancer target is the chaperone Hsp90, whose activity is essential for the folding of many oncogenic proteins, including HER2, IGFIR, AKT, RAF-1, and FLT-3. Here we report the design and characterization of new tetratricopeptide repeat modules, which bind to the C-terminus of Hsp90 with higher affinity and with greater specificity than natural Hsp90-binding co-chaperones. Thus, when these modules are introduced into the cell, they out-compete endogenous co-chaperones for binding, thereby inhibiting Hsp90 function. The effect of Hsp90 inhibition in this fashion is dramatic; HER2 levels are substantially decreased and BT474 HER2 positive breast cancer cells are killed. Our designs thus provide new tools with which to dissect the mechanism of Hsp90-mediated protein folding and also open the door to the development of an entirely new class of anticancer agents.

  6. Redesigning the DNA-Targeted Chromophore in Platinum–Acridine Anticancer Agents: A Structure–Activity Relationship Study

    PubMed Central

    Pickard, Amanda J.; Liu, Fang; Bartenstein, Thomas F.; Haines, Laura G.; Levine, Keith E.; Kucera, Gregory L.; Bierbach, Ulrich

    2014-01-01

    Platinum–acridine hybrid agents show low-nanomolar potency in chemoresistant non-small cell lung cancer (NSCLC), but high systemic toxicity in vivo. To reduce the promiscuous genotoxicity of these agents and improve their pharmacological properties, a modular build–click–screen approach was used to evaluate a small library of twenty hybrid agents containing truncated and extended chromophores of varying basicities. Selected derivatives were resynthesized and tested in five NSCLC cell lines representing large cell, squamous cell, and adenocarcinomas. 7-Aminobenz[c]acridine was identified as a promising scaffold in a hybrid agent (P1–B1) that maintained submicromolar activity in several of the DNA-repair proficient and p53-mutant cancer models, while showing improved tolerability in mice by 32-fold compared to the parent platinum–acridine (P1–A1). The distribution and DNA/RNA adduct levels produced by the acridine- and benz[c]acridine-based analogues in NCI-H460 cells (confocal microscopy, ICP-MS), and their ability to bind G-quadruplex forming DNA sequences (CD spectroscopy, HR-ESMS) were studied. P1–B1 emerges as a less genotoxic, more tolerable, and potentially more target-selective hybrid agent than P1–A1. PMID:25302716

  7. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance

    PubMed Central

    Lee, Z-W; Teo, X-Y; Tay, E Y-W; Tan, C-H; Hagen, T; Moore, P K; Deng, L-W

    2014-01-01

    Background and Purpose Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2S) in cell survival. The present study investigated the effect of H2S on the viability of cancer and non-cancer cells. Experimental Approach Cancer and non-cancer cells were exposed to H2S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi) was determined by ratiometric pHi measurement using BCECF staining. Key Results Continuous, but not a single, exposure to H2S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. Conclusions and Implications Low and continuous exposure to H2S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy. PMID:24827113

  8. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  9. Agents from amphibians with anticancer properties.

    PubMed

    Lu, Chuang-Xin; Nan, Ke-Jun; Lei, Yan

    2008-11-01

    Amphibians have been found to be a source of agents with anticancer properties. Bufalin, for example, is an anticancer agent that may induce apoptosis by its interaction with other genes and cellular components. Certain peptides with anticancer activities have been found in amphibian skin; they include magainins, aureins, citropin 1.1 and gaegurins. These peptides may exert a cytotoxic effect on human cancer cells through various mechanisms. Onconase, amphinase, cSBL (sialic acid-binding lectin purified from Rana catesbeiana eggs) and jSBL (sialic acid-binding lectin purified from Rana japonica eggs), which belong to the RNase A family, were purified from the oocyte cells and eggs of three amphibians, and they induce cytotoxicity by degrading cellular RNA. This paper discusses the medical and pharmaceutical significance of products derived from amphibians.

  10. Tetrazole Derivatives as Promising Anticancer Agents.

    PubMed

    Popova, Elena A; Protas, Aleksandra V; Trifonov, Rostislav E

    2017-03-27

    Tetrazole cycle is a promising pharmacophore fragment frequently used in the development of novel drugs. This moiety is a stable, practically non-metabolized bioisosteric analog of carboxylic, cis-amide, and other functional groups. Over recent 10-15 years, various isomeric forms of tetrazole (NH-unsubstituted, 1H-1-substituted, and 2H-2-substituted tetrazoles) have been successfully used in the design of promising anticancer drugs. Coordination compounds of transition metals containing tetrazoles as ligands, semisynthetic tetrazolyl derivatives of natural compounds (biogenic acids, peptides, steroids, combretastatin, etc.), 5-oxo and 5-thiotetrazoles, and some other related compounds have been recognized as promising antineoplastic agents. This review presents a comprehensive analysis of modern approaches to synthesis of these tetrazole derivatives as well as their biological (anticancer) properties. The most promising structure types of tetrazoles to be used as anticancer agents have been picked out.

  11. Recent development of anticancer therapeutics targeting Akt.

    PubMed

    Morrow, John K; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J; Mash, Eugene A; Powis, Garth; Zhang, Shuxing

    2011-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches.

  12. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles

    PubMed Central

    Douziech-Eyrolles, Laurence; Marchais, Hervé; Hervé, Katel; Munnier, Emilie; Soucé, Martin; Linassier, Claude; Dubois, Pierre; Chourpa, Igor

    2007-01-01

    During the last decade, the application of nanotechnologies for anticancer drug delivery has been extensively explored, hoping to improve the efficacy and to reduce side effects of chemotherapy. The present review is dedicated to a certain kind of anticancer drug nanovectors developed to target tumors with the help of an external magnetic field. More particularly, this work treats anticancer drug nanoformulations based on superparamagnetic iron oxide nanoparticles coated with biocompatible polymers. The major purpose is to focus on the specific requirements and technological difficulties related to controlled delivery of antitumoral agents. We attempt to state the problem and its possible perspectives by considering the three major constituents of the magnetic therapeutic vectors: iron oxide nanoparticles, polymeric coating and anticancer drug. PMID:18203422

  13. Anticancer agents: towards the future.

    PubMed

    Palumbo, Manlio

    2004-09-01

    A major need in cancer chemotherapy is the availability of cancer cell-specific drugs. This paper discusses recent advances and perspectives in the field of selective drug recognition considering the key targets tyrosine kinases, DNA-topoisomerases and telomerase.

  14. The quinolone family: from antibacterial to anticancer agents.

    PubMed

    Sissi, Claudia; Palumbo, Manlio

    2003-11-01

    The present review focuses on the structural modifications responsible for the transformation of an antibacterial into an anticancer agent. Indeed, a distinctive feature of drugs based on the quinolone structure is their remarkable ability to target different type II topoisomerase enzymes. In particular, some congeners of this drug family display high activity not only against bacterial topoisomerases, but also against eukaryotic topoisomerases and are toxic to cultured mammalian cells and in vivo tumor models. Hence, these cytotoxic quinolones represent an exploitable source of new anticancer agents, which might also help addressing side-toxicity and resistance phenomena. Their ability to bind metal ion co-factors represents an additional means of modulating their pharmacological response(s). Moreover, quinolones link antibacterial and anticancer chemotherapy together and provide an opportunity to clarify drug mechanism across divergent species.

  15. Crude drugs as anticancer agents

    PubMed Central

    Mou, Xiaoyang; Kesari, Santosh; Wen, Patrick Y; Huang, Xudong

    2011-01-01

    Although tremendous progress has been made in basic cancer biology and in the development of novel cancer treatments, cancer remains a leading cause of death in the world. The etiopathogenesis of cancer is complex. Besides genetic predisposition, known environmental factors associated with cancer are: diet, lifestyle, and environmental toxins. Toxicity of drugs and eventual relapse of cancers contribute to high cancer death rates. Current therapeutic interventions for cancer- surgery, chemotherapy, radiotherapy, thermotherapy, etc. are far from being curative for many forms of cancer. Chemotherapy, in particular, though the most commonly used cancer treatment, is usually associated with side effects with varying degrees of severity. The purpose of this brief review is to assemble current literature on some crude drugs and to focus on their beneficial roles and drug targets in cancer therapy and chemo-prevention. Although their pharmacological mechanisms and biochemical roles in cancer biology and tumor chemo-prevention are not fully understood, crude drugs are believed to have nutriceutical effects upon cancer patients. PMID:21394282

  16. Advances in cobalt complexes as anticancer agents.

    PubMed

    Munteanu, Catherine R; Suntharalingam, Kogularamanan

    2015-08-21

    The evolution of resistance to traditional platinum-based anticancer drugs has compelled researchers to investigate the cytostatic properties of alternative transition metal-based compounds. The anticancer potential of cobalt complexes has been extensively studied over the last three decades, and much time has been devoted to understanding their mechanisms of action. This perspective catalogues the development of antiproliferative cobalt complexes, and provides an in depth analysis of their mode of action. Early studies on simple cobalt coordination complexes, Schiff base complexes, and cobalt-carbonyl clusters will be documented. The physiologically relevant redox properties of cobalt will be highlighted and the role this plays in the preparation of hypoxia selective prodrugs and imaging agents will be discussed. The use of cobalt-containing cobalamin as a cancer specific delivery agent for cytotoxins will also be described. The work summarised in this perspective shows that the biochemical and biophysical properties of cobalt-containing compounds can be fine-tuned to produce new generations of anticancer agents with clinically relevant efficacies.

  17. Novel 1,6-naphthyridin-2(1H)-ones as potential anticancer agents targeting Hsp90.

    PubMed

    Montoir, David; Barillé-Nion, Sophie; Tonnerre, Alain; Juin, Philippe; Duflos, Muriel; Bazin, Marc-Antoine

    2016-08-25

    Hsp90 is an ATP-dependent chaperone known to be overexpressed in many cancers. This way, Hsp90 is an important target for drug discovery. Novobiocin, an aminocoumarin antibiotic, was reported to inhibit Hsp90 targeting C-terminal domain, and showed anti-proliferative properties, leading to the development of new and more active compounds. Consequently, a new set of novobiocin analogs derived from 1,6-naphthyridin-2(1H)-one scaffold was designed, synthesized and evaluated against two breast cancer cell lines. Subsequently, cell cycle progression and apoptosis were conducted on best candidates, finally Western Blot analysis was performed to measure their ability to induce degradation of Hsp90 client proteins.

  18. Chemical genetics analysis of an aniline mustard anticancer agent reveals complex I of the electron transport chain as a target.

    PubMed

    Fedeles, Bogdan I; Zhu, Angela Y; Young, Kellie S; Hillier, Shawn M; Proffitt, Kyle D; Essigmann, John M; Croy, Robert G

    2011-09-30

    The antitumor agent 11β (CAS 865070-37-7), consisting of a DNA-damaging aniline mustard linked to an androgen receptor (AR) ligand, is known to form covalent DNA adducts and to induce apoptosis potently in AR-positive prostate cancer cells in vitro; it also strongly prevents growth of LNCaP xenografts in mice. The present study describes the unexpectedly strong activity of 11β against the AR-negative HeLa cells, both in cell culture and tumor xenografts, and uncovers a new mechanism of action that likely explains this activity. Cellular fractionation experiments indicated that mitochondria are the major intracellular sink for 11β; flow cytometry studies showed that 11β exposure rapidly induced oxidative stress, mitochondria being an important source of reactive oxygen species (ROS). Additionally, 11β inhibited oxygen consumption both in intact HeLa cells and in isolated mitochondria. Specifically, 11β blocked uncoupled oxygen consumption when mitochondria were incubated with complex I substrates, but it had no effect on oxygen consumption driven by substrates acting downstream of complex I in the mitochondrial electron transport chain. Moreover, 11β enhanced ROS generation in isolated mitochondria, suggesting that complex I inhibition is responsible for ROS production. At the cellular level, the presence of antioxidants (N-acetylcysteine or vitamin E) significantly reduced the toxicity of 11β, implicating ROS production as an important contributor to cytotoxicity. Collectively, our findings establish complex I inhibition and ROS generation as a new mechanism of action for 11β, which supplements conventional DNA adduct formation to promote cancer cell death.

  19. Design, synthesis and biological evaluation of di-substituted noscapine analogs as potent and microtubule-targeted anticancer agents.

    PubMed

    Mishra, Ram C; Gundala, Sushma R; Karna, Prasanthi; Lopus, Manu; Gupta, Kamlesh K; Nagaraju, Mulpuri; Hamelberg, Donald; Tandon, Vibha; Panda, Dulal; Reid, Michelle D; Aneja, Ritu

    2015-01-01

    Noscapine is an opium-derived kinder-gentler microtubule-modulating drug, currently in Phase I/II clinical trials for cancer chemotherapy. Here, we report the synthesis of four more potent di-substituted brominated derivatives of noscapine, 9-Br-7-OH-NOS (2), 9-Br-7-OCONHEt-NOS (3), 9-Br-7-OCONHBn-NOS (4), and 9-Br-7-OAc-NOS (5) and their chemotherapeutic efficacy on PC-3 and MDA-MB-231 cells. The four derivatives were observed to have higher tubulin binding activity than noscapine and significantly affect tubulin polymerization. The equilibrium dissociation constant (KD) for the interaction between tubulin and 2, 3, 4, 5 was found to be, 55±6μM, 44±6μM, 26±3μM, and 21±1μM respectively, which is comparable to parent analog. The effects of these di-substituted noscapine analogs on cell cycle parameters indicate that the cells enter a quiescent phase without undergoing further cell division. The varying biological activity of these analogs and bulk of substituent at position-7 of the benzofuranone ring system of the parent molecule was rationalized utilizing predictive in silico molecular modeling. Furthermore, the immunoblot analysis of protein lysates from cells treated with 4 and 5, revealed the induction of apoptosis and down-regulation of survivin levels. This result was further supported by the enhanced activity of caspase-3/7 enzymes in treated samples compared to the controls. Hence, these compounds showed a great potential for studying microtubule-mediated processes and as chemotherapeutic agents for the management of human cancers.

  20. Proteomic profiling predicts drug response to novel targeted anticancer therapeutics.

    PubMed

    Lin, Fan; Li, Zilin; Hua, Yunfen; Lim, Yoon Pin

    2016-01-01

    Most recently approved anti-cancer drugs by the US FDA are targeted therapeutic agents and this represents an important trend for future anticancer therapy. Unlike conventional chemotherapy that rarely considers individual differences, it is crucial for targeted therapies to identify the beneficial subgroup of patients for the treatment. Currently, genomics and transcriptomics are the major 'omic' analytics used in studies of drug response prediction. However, proteomic profiling excels both in its advantages of directly detecting an instantaneous dynamic of the whole proteome, which contains most current diagnostic markers and therapeutic targets. Moreover, proteomic profiling improves understanding of the mechanism for drug resistance and helps finding optimal combination therapy. This article reviews the recent success of applications of proteomic analytics in predicting the response to targeted anticancer therapeutics, and discusses the potential avenues and pitfalls of proteomic platforms and techniques used most in the field.

  1. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  2. Farnesyl transferase inhibitors as anticancer agents.

    PubMed

    Haluska, P; Dy, G K; Adjei, A A

    2002-09-01

    Protein farnesylation catalysed by the enzyme farnesyl protein transferase involves the addition of a 15-carbon farnesyl group to conserved amino acid residues at the carboxyl terminus of certain proteins. Protein substrates of farnesyl transferase include several G-proteins, which are critical intermediates of cell signalling and cytoskeletal organisation such as Ras, Rho, PxF and lamins A and B. Activated Ras proteins trigger a cascade of phosphorylation events through sequential activation of the PI3 kinase/AKT pathway, which is critical for cell survival, and the Raf/Mek/Erk kinase pathway that has been implicated in cell proliferation. Ras mutations which encode for constitutively activated proteins are found in 30% of human cancers. Because farnesylation of Ras is required for its transforming and proliferative activity, the farnesyl protein transferase inhibitors were designed as anticancer agents to abrogate Ras function. However, current evidence suggests that the anticancer activity of the farnesyl transferase inhibitors may not be simply due to Ras inhibition. This review will discuss available clinical data on three of these agents that are currently undergoing clinical trials.

  3. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer.

    PubMed

    Parker, James P; Ude, Ziga; Marmion, Celine J

    2016-01-01

    Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided.

  4. Plant Antimicrobial Peptides as Potential Anticancer Agents

    PubMed Central

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy. PMID:25815333

  5. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent.

  6. Recent Trends in Targeted Anticancer Prodrug and Conjugate Design

    PubMed Central

    Singh, Yashveer; Palombo, Matthew; Sinko, Patrick J.

    2009-01-01

    Anticancer drugs are often nonselective antiproliferative agents (cytotoxins) that preferentially kill dividing cells by attacking their DNA at some level. The lack of selectivity results in significant toxicity to noncancerous proliferating cells. These toxicities along with drug resistance exhibited by the solid tumors are major therapy limiting factors that results into poor prognosis for patients. Prodrug and conjugate design involves the synthesis of inactive drug derivatives that are converted to an active form inside the body and preferably at the site of action. Classical prodrug and conjugate design has focused on the development of prodrugs that can overcome physicochemical (e.g., solubility, chemical instability) or biopharmaceutical problems (e.g., bioavailability, toxicity) associated with common anticancer drugs. The recent targeted prodrug and conjugate design, on the other hand, hinges on the selective delivery of anticancer agents to tumor tissues thereby avoiding their cytotoxic effects on noncancerous cells. Targeting strategies have attempted to take advantage of low extracellular pH, elevated enzymes in tumor tissues, the hypoxic environment inside the tumor core, and tumor-specific antigens expressed on tumor cell surfaces. The present review highlights recent trends in prodrug and conjugate rationale and design for cancer treatment. The various approaches that are currently being explored are critically analyzed and a comparative account of the advantages and disadvantages associated with each approach is presented. PMID:18691040

  7. Mitochondria: a promising target for anticancer alkaloids.

    PubMed

    Urra, Félix A; Cordova-Delgado, Miguel; Pessoa-Mahana, Hernan; Ramírez-Rodríguez, Oney; Weiss-Lopez, Boris; Ferreira, Jorge; Araya-Maturana, Ramiro

    2013-01-01

    A great number of alkaloids exhibit high potential in cancer research. Some of them are anticancer drugs with well-defined clinical uses, exerting their action on microtubules dynamics or DNA replication and topology. On the other hand, mitochondria have been recognized as an essential organelle in the establishment of tumor characteristics, especially the resistance to cell death, high proliferative capacity and adaptation to unfavorable cellular environment. Interestingly, many alkaloids exert their anticancer activities affecting selectively some functions of the tumor mitochondria by 1) modulating OXPHOS and ADP/ATP transport, 2) increasing ROS levels and mitochondrial potential dissipation by crosstalk between endoplasmic reticulum (ER) and mitochondria, 3) inducing mitochondria-dependent apoptosis and autophagy, 4) inhibiting mitochondrial metabolic pathways and 5) by alteration of the morphology and biogenesis of this organelle. These antecedents show the relevance of developing research about the effects of alkaloids on functions controlled by tumor mitochondria, offering an attractive target for the design of new alkaloid derivatives, considering organelle- specific delivery strategies. This review describes mitochondria as a central component in the anticancer action of a set of alkaloids, in a way to illustrate the importance of this organelle in medicinal chemistry.

  8. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    PubMed Central

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells can affect numerous cellular processes, including cell growth, proliferation, differentiation, and survival. The potential dependence of cancer cells on the deregulated lipid metabolism suggests that enzymes and regulating factors involved in this process are promising targets for cancer treatment. In this review, we focus on the features associated with the lipid metabolic pathways in cancer, and highlight recent advances on the therapeutic targets of specific lipid metabolic enzymes or regulating factors and target-directed small molecules that can be potentially used as anticancer drugs. PMID:28053954

  9. Natural anti-cancer agents: Implications in gemcitabine-resistant pancreatic cancer treatment.

    PubMed

    Marasini, Bishal; Sahu, Ravi P

    2017-03-15

    Pancreatic cancer is one of the most lethal malignancy accounting for the fourth leading cause of cancer-related deaths in the United States. Among several explored anti-cancer agents, Gemcitabine, a nucleoside analogue remained a front line chemotherapeutic agent for the treatment of pancreatic cancer. However, gemcitabine exerts a low response rate with limited progression free survival in cancer patients due to cellular resistance of pancreatic tumors to this therapy. Several chemotherapeutic agents have been explored in combination with gemcitabine against pancreatic cancer with overall mixed responses and survival rates. Naturally occurring dietary agents possess promising anti-cancer properties and have been shown to target various oncogenic signaling pathways in in-vitro and in-vivo pancreatic cancer models. Multiple studies using natural compounds have shown increased therapeutic efficacy of gemcitabine in pancreatic cancer models. This review is focused on recent updates on preclinical and clinical studies utilizing natural anti-cancer agents with gemcitabine against pancreatic cancer.

  10. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    PubMed

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings.

  11. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    PubMed

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  12. T-oligo as an anticancer agent in colorectal cancer

    SciTech Connect

    Wojdyla, Luke; Stone, Amanda L.; Sethakorn, Nan; Uppada, Srijayaprakash B.; Devito, Joseph T.; Bissonnette, Marc; Puri, Neelu

    2014-04-04

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.

  13. DNA helicases as targets for anti-cancer drugs.

    PubMed

    Sharma, Sudha; Doherty, Kevin M; Brosh, Robert M

    2005-05-01

    DNA helicases have essential roles in nucleic acid metabolism by facilitating cellular processes including replication, recombination, DNA repair, and transcription. The vital roles of helicases in these pathways are reflected by their emerging importance in the maintenance of genomic stability. Recently, a number of human diseases with cancer predisposition have been shown to be genetically linked to a specific helicase defect. This has led researchers to further investigate the roles of helicases in cancer biology, and to study the efficacy of targeting human DNA helicases for anti-cancer drug treatment. Helicase-specific inhibition in malignant cells may compromise the high proliferation rates of cancerous tissues. The role of RecQ helicases in response to replicational stress suggests a molecular target for selectively eliminating malignant tumor cells by a cancer chemotherapeutic agent. Alternate DNA secondary structures such as G-quadruplexes that may form in regulatory regions of oncogenes or G-rich telomere sequences are potential targets for cancer therapy since these sequence-specific structures are proposed to affect gene expression and telomerase activation, respectively. Small molecule inhibitors of G-quadruplex helicases may be used to regulate cell cycle progression by modulating promotor activation or disrupting telomere maintenance, important processes of cellular transformation. The design of small molecules which deter helicase function at telomeres may provide a molecular target since telomerase activity is necessary for the proliferation of numerous immortal cells. Although evidence suggests that helicases are specifically inhibited by certain DNA binding compounds, another area of promise in anti-cancer therapy is siRNA technology. Specific knockdown of helicase expression can be utilized as a means to sensitize oncogenic proliferating cell lines. This review will address these topics in detail and summarize the current avenues of research in

  14. Topoisomerase as target for antibacterial and anticancer drug discovery.

    PubMed

    Kathiravan, Muthu K; Khilare, Madhavi M; Nikoomanesh, Kiana; Chothe, Aparna S; Jain, Kishor S

    2013-06-01

    DNA topoisomerases comprise a major aspect of basic cellular biology and are molecular targets for a variety of drugs like antibiotics, antibacterials and anticancer drugs. They act by inhibiting the topoisomerase molecule from relegating DNA strands after cleavage and convert the topoisomerases molecule into a DNA damaging agent. Though drugs of various categories acting through different mechanisms are available for the treatment, there are still problems associated with the currently available drugs. Therefore, Structural biologists, Structural chemists and Medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase and drug treating each class along with their structural requirement and activity. The emphasis has been laid in particular on the new potential heterocyles and the possible treatments as well as the current ongoing research status in the field of topoisomerase as dual targeting.

  15. Coumarin: a promising scaffold for anticancer agents.

    PubMed

    Kaur, Manjinder; Kohli, Swarandeep; Sandhu, Sonali; Bansal, Yogita; Bansal, Gulshan

    2015-01-01

    Coumarin enjoys an important place in drug discovery process due to its presence in diversity of biologically active compounds. Many compounds of plant origin are derivatives of coumarin. Taking these natural products as lead, research groups across the globe have designed and synthesized numerous coumarin analogues for treatment of varied diseases. Cancer is one of the dreadful chronic diseases, and many drugs are available for its treatment. However, due to heterogeneity of cancer, the search is still on to develop drugs for specific types of cancers. The present review is an attempt to study various coumarin derivatives of natural as well as synthetic origins, which are identified or developed for the treatment of different types of cancers. Herein, we have classified various anticancer coumarin derivatives on the basis of their origin as well as substitution around it. These are discussed under the headings of natural, semi-synthetic and synthetic coumarin derivatives. The synthetic coumarin derivatives are further classified as mono-, di- and poly-substituted and fused coumarin derivatives. Of the six positions available for substituents on coumarin nucleus, only three positions (C-3, C-4 and C-7) are exploited for the selection of functional groups appropriate for anticancer activity. The other positions (C-5, C-6 and C-8) are either unexplored or very less exploited. The present review is expected to provide the medicinal chemists a guide to choose new functional groups for substitution at different positions of coumarin nucleus for development of novel compounds for the treatment of a specific type of cancer.

  16. Hyperglycaemia Induced by Novel Anticancer Agents: An Undesirable Complication or a Potential Therapeutic Opportunity?

    PubMed

    Shah, Rashmi R

    2017-03-01

    Signalling pathways involving protein kinase, insulin-like growth factor 1, insulin receptors and the phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) system are critical in promoting oncogenesis. The use of anticancer agents that inhibit these pathways frequently results in hyperglycaemia, an on-target effect of these drugs. Hyperglycaemia induced by these agents denotes optimal inhibition of the desired pharmacological target. As hyperglycaemia can be treated successfully and effectively with metformin, managing this complication by reducing the dose of or discontinuing the anticancer drug may be counterproductive, especially if it is otherwise effective and clinically tolerated. The use of metformin to treat hyperglycaemia induced by anticancer drugs provides a valuable therapeutic opportunity of potentiating their clinical anticancer effects. Although evidence from randomised controlled trials is awaited, extensive preclinical evidence and clinical observational studies suggest that metformin has anticancer properties that improve overall survival in patients with diabetes and a variety of cancers. Metformin has also been reported to reverse resistance to epidermal growth factor receptor (EGFR)-inhibiting tyrosine kinase inhibitors. This review summarises briefly the role of the above signalling pathways in oncogenesis, the causal association between inhibition of these pathways and hyperglycaemia, and the effect of metformin on clinical outcomes resulting from its anticancer properties. The evidence reviewed herein, albeit almost exclusively from observational studies, provides support for a greater use of metformin not only in patients with cancer and diabetes or drug-induced hyperglycaemia but also potentially as an anticancer drug. However, prospective randomised controlled studies are needed in all these settings to better assess the effect on clinical outcomes of adding metformin to ongoing anticancer therapy.

  17. Natural compounds as anticancer agents: Experimental evidence

    PubMed Central

    Wang, Jiao; Jiang, Yang-Fu

    2012-01-01

    Cancer prevention research has drawn much attention worldwide. It is believed that some types of cancer can be prevented by following a healthy life style. Cancer chemoprevention by either natural or synthetic agents is a promising route towards lowering cancer incidence. In recent years, the concept of cancer chemoprevention has evolved greatly. Experimental studies in animal models demonstrate that the reversal or suppression of premalignant lesions by chemopreventive agents is achievable. Natural occurring agents such as dietary phytochemicals, tea polyphenols and resveratrol show chemopreventive activity in animal models. Moreover, clinical trials for testing the safety and efficacy of a variety of natural agents in preventing or treating human malignancy have been ongoing. Here, we summarize experimental data on the chemopreventive or tumor suppressive effects of several natural compounds including curcumin, (-)-epigallocatechin-3-gallate, resveratrol, indole-3-carbinol, and vitamin D. PMID:24520533

  18. NSAIDs: Old Drugs Reveal New Anticancer Targets.

    PubMed

    Piazza, Gary A; Keeton, Adam B; Tinsley, Heather N; Whitt, Jason D; Gary, Bernard D; Mathew, Bini; Singh, Raj; Grizzle, William E; Reynolds, Robert C

    2010-05-25

    There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX) inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  19. Insight into the reactive form of the anticancer agent iproplatin.

    PubMed

    Volckova, Erika; Weaver, Evelyne; Bose, Rathindra N

    2008-05-01

    The reaction of iproplatin with reduced glutathione at different mole ratios yielded cis-di(isopropylamine)chloro-glutathionatoplatinum(II), not the expected cis-dichloro- species, indicating a mode of action of this anticancer agent that is different from that of cis-diamminedichloroplatinum(II).

  20. Selective anti-cancer agents as anti-aging drugs.

    PubMed

    Blagosklonny, Mikhail V

    2013-12-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.

  1. ING Proteins as Potential Anticancer Drug Targets

    PubMed Central

    Unoki, M.; Kumamoto, K.; Harris, C.C.

    2009-01-01

    Recent emerging evidence suggests that ING family proteins play roles in carcinogenesis both as oncogenes and tumor suppressor genes depending on the family members and on cell status. Previous results from non-physiologic overexpression experiments showed that all five family members induce apoptosis or cell cycle arrest, thus it had been thought until very recently that all of the family members function as tumor suppressor genes. Therefore restoration of ING family proteins in cancer cells has been proposed as a treatment for cancers. However, ING2 knockdown experiments showed unexpected results: ING2 knockdown led to senescence in normal human fibroblast cells and suppressed cancer cell growth. ING2 is also overexpressed in colorectal cancer, and promotes cancer cell invasion through an MMP13 dependent pathway. Additionally, it was reported that ING2 has two isoforms, ING2a and ING2b. Although expression of ING2a predominates compared with ING2b, both isoforms confer resistance against cell cycle arrest or apoptosis to cancer cells, thus knockdown of both isoforms is critical to remove this resistance. Taken together, these results suggest that ING2 can function as an oncogene in some specific types of cancer cells, indicating restoration of this gene in cancer cells could cause cancer progression. Because knockdown of ING2 suppresses cancer cell invasion and induces apoptosis or cell cycle arrest, ING2 may be an anticancer drug target. In this brief review, we discuss possible clinical applications of ING2 with the latest knowledge of molecular targeted therapies. PMID:19442116

  2. Pharmacologic agents targeting autophagy

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Xia, Hong-guang; Yuan, Junying

    2015-01-01

    Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies. PMID:25654545

  3. Alkaloids Isolated from Natural Herbs as the Anticancer Agents

    PubMed Central

    Lu, Jin-Jian; Bao, Jiao-Lin; Chen, Xiu-Ping; Huang, Min; Wang, Yi-Tao

    2012-01-01

    Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made. PMID:22988474

  4. Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery

    PubMed Central

    Scott, Latanya. M.; Lawrence, Harshani. R.; Sebti, Saïd. M.; Lawrence, Nicholas. J.; Wu, Jie.

    2010-01-01

    Protein tyrosine phosphatases (PTPs) are a diverse family of enzymes encoded by 107 genes in the human genome. Together with protein tyrosine kinases (PTKs), PTPs regulate various cellular activities essential for the initiation and maintenance of malignant phenotypes. While PTK inhibitors are now used routinely for cancer treatment, the PTP inhibitor development field is still in the discovery phase. In this article, the suitability of targeting PTPs for novel anticancer drug discovery is discussed. Examples are presented for PTPs that have been targeted for anticancer drug discovery as well as potential new PTP targets for novel anticancer drug discovery. PMID:20337577

  5. Double layered hydroxides as potential anti-cancer drug delivery agents.

    PubMed

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed.

  6. Cullin-RING Ligases as Attractive Anti-cancer Targets

    PubMed Central

    Zhao, Yongchao; Sun, Yi

    2014-01-01

    The ubiquitin-proteasome system (UPS) promotes the timely degradation of short-lived proteins with key regulatory roles in a vast array of biological processes, such as cell cycle progression, oncogenesis and genome integrity. Thus, abnormal regulation of UPS disrupts the protein homeostasis and causes many human diseases, particularly cancer. Indeed, the FDA approval of bortezomib, the first class of general proteasome inhibitor, for the treatment of multiple myeloma, demonstrated that the UPS can be an attractive anti-cancer target. However, normal cell toxicity associated with bortezomib, resulting from global inhibition of protein degradation, promotes the focus of drug discovery efforts on targeting enzymes upstream of the proteasome for better specificity. E3 ubiquitin ligases, particularly those known to be activated in human cancer, become an attractive choice. Cullin-RING Ligases (CRLs) with multiple components are the largest family of E3 ubiquitin ligases and are responsible for ubiquitination of ~20% of cellular proteins degraded through UPS. Activity of CRLs is dynamically regulated and requires the RING component and cullin neddylation. In this review, we will introduce the UPS and CRL E3s and discuss the biological processes regulated by each of eight CRLs through substrate degradation. We will further discuss how cullin neddylation controls CRL activity, and how CRLs are being validated as the attractive cancer targets by abrogating the RING component through genetic means and by inhibiting cullin neddylation via MLN4924, a small molecule indirect inhibitor of CRLs, currently in several Phase I clinical trials. Finally, we will discuss current efforts and future perspectives on the development of additional inhibitors of CRLs by targeting E2 and/or E3 of cullin neddylation and CRL-mediated ubiquitination as potential anti-cancer agents. PMID:23151137

  7. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    SciTech Connect

    Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A. K.; Kumar, R.; Wang, J.; O'Malley, J.; Boland, P. M.; Jayanthi, S.; Kumar, T. K. S.; Yadava, N.; Chandra, D.

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  8. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    DOE PAGES

    Yadav, N.; Kumar, S.; Marlowe, T.; ...

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrialmore » biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS

  9. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents

    PubMed Central

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-01-01

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  10. Recent advances in oral anticancer agents for colon cancer.

    PubMed

    Shukla, Raj Kumar

    2013-12-01

    To provide therapeutic alternatives to intravenous colon chemotherapy major recent research is focusing on the development of oral chemotherapeutic agents with the intention to improve the quality of life of patients. Initially 5-fluorouracil was most commonly used for the treatment of colorectal cancer but currently oxaliplatin and irinotecan are also available. The majority of these new drugs are pyrimidines and their analogs. The rationale for using oral anticancer agents is discussed and new drugs, such as farnesyl protein transferase inhibitor S-1, rubitecan, ZD9331, MMI-166, eflornithine, sulindac, and oral camptothecin analogs, among others, are presented with the results of their preclinical and clinical developments. This article focuses on the advancement of clinical development and also discusses the relative merits and demerits of these agents. The accelerated approval of these agents by regulatory authorities is supported by survival benefit, response rate and time to progression.

  11. Discovery of new anticancer agents from higher plants

    PubMed Central

    Pan, Li; Chai, Hee-Byung; Kinghorn, A. Douglas

    2012-01-01

    1. ABSTRACT Small organic molecules derived from higher plants have been one of the mainstays of cancer chemotherapy for approximately the past half a century. In the present review, selected single chemical entity natural products of plant origin and their semi-synthetic derivatives currently in clinical trials are featured as examples of new cancer chemotherapeutic drug candidates. Several more recently isolated compounds obtained from plants showing promising in vivo biological activity are also discussed in terms of their potential as anticancer agents, with many of these obtained from species that grow in tropical regions. Since extracts of only a relatively small proportion of the ca. 300,000 higher plants on earth have been screened biologically to date, bioactive compounds from plants should play an important role in future anticancer drug discovery efforts. PMID:22202049

  12. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants

    PubMed Central

    Ntie-Kang, Fidele; Simoben, Conrad Veranso; Karaman, Berin; Ngwa, Valery Fuh; Judson, Philip Neville; Sippl, Wolfgang; Mbaze, Luc Meva’a

    2016-01-01

    Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner–Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa’s expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space. PMID:27445461

  13. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants.

    PubMed

    Ntie-Kang, Fidele; Simoben, Conrad Veranso; Karaman, Berin; Ngwa, Valery Fuh; Judson, Philip Neville; Sippl, Wolfgang; Mbaze, Luc Meva'a

    2016-01-01

    Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner-Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa's expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space.

  14. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    PubMed

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  15. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    PubMed

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.

  16. Discovery and Evaluation of PRL Trimer Disruptors for Novel Anticancer Agents.

    PubMed

    Bai, Yunpeng; Yu, Zhi-Hong; Zhang, Zhong-Yin

    2016-01-01

    Overexpression of PRL phosphatases (PRL1, PRL2, and PRL3) has been found in a variety of late-stage tumors and their distant metastatic sites. Therefore, the oncogenic PRL phosphatases represent intriguing targets for cancer therapy. There is considerable interest in identifying small molecule inhibitors targeting PRLs as novel anticancer agents. However, it has been difficult to acquire phosphatase activity-based PRL inhibitors due to the unusual wide and shallow catalytic pockets of PRLs revealed by crystal structure studies. Here, we present a novel method to identify PRL1 inhibitors by targeting the PRL1 trimer interface and the procedure to characterize their biochemical and cellular activity.

  17. Discovery of Anticancer Agents of Diverse Natural Origin

    PubMed Central

    KINGHORN, A. DOUGLAS; CARCACHE DE BLANCO, ESPERANZA J.; LUCAS, DAVID M.; RAKOTONDRAIBE, H. LIVA; ORJALA, JIMMY; SOEJARTO, D. DOEL; OBERLIES, NICHOLAS H.; PEARCE, CEDRIC J.; WANI, MANSUKH C.; STOCKWELL, BRENT R.; BURDETTE, JOANNA E.; SWANSON, STEVEN M.; FUCHS, JAMES R.; PHELPS, MITCHELL A.; XU, LIHUI; ZHANG, XIAOLI; SHEN, YOUNG YONGCHUN

    2016-01-01

    Recent progress is described in an ongoing collaborative multidisciplinary research project directed towards the purification, structural characterization, chemical modification, and biological evaluation of new potential natural product anticancer agents obtained from a diverse group of organisms, comprising tropical plants, aquatic and terrestrial cyanobacteria, and filamentous fungi. Information is provided on how these organisms are collected and processed. The types of bioassays are indicated in which initial extracts, chromatographic fractions, and purified isolated compounds of these acquisitions are tested. Several promising biologically active lead compounds from each major organism major class investigated are described, and these may be seen to be representative of very wide chemical diversity. PMID:27793884

  18. Quinolones in the Search for New Anticancer Agents.

    PubMed

    Batalha, Pedro Netto; Vieira de Souza, Maria Cecília Bastos; Peña-Cabrera, Eduardo; Cruz, David Cruz; da Costa Santos Boechat, Fernanda

    2016-01-01

    Quinolones have a large bio-dynamicity. Although they are well known as antibacterials, another important activity has been investigated - quinolones are able to inhibit cancer cell proliferation. In view of the great versatility associated with the synthesis of quinolones, many researchers have spent time and resources on the development of new structurally diversified quinolone derivatives with the purpose of finding new possibilities for cancer treatment. In this review some of the most recent advances in the search for new quinolone anticancer agents are highlighted, with focus on naturally occurring substances, bioactive metal complexes, molecular hybrids, photosensitizers and heterocycle condensed quinolones.

  19. In vitro evaluation of a combination treatment involving anticancer agents and an aurora kinase B inhibitor.

    PubMed

    Sakai, Senna; Izumi, Hiroto; Yoshiura, Yukiko; Nakayama, Yoshifumi; Yamaguchi, Takahiro; Harada, Yoshikazu; Koi, Chiho; Kurata, Hiroyuki; Morimoto, Yasuo

    2016-11-01

    Aurora kinase B (AURKB) inhibitors are regarded as potential molecular-targeting drugs for cancer therapy. The present study evaluated the cytotoxic effect of a combination of AZD1152-hQPA, an AURKB inhibitor, and various anticancer agents on the HeLa human cervical cancer cell line, as well as its cisplatin-resistant equivalent HCP4 cell line. It was demonstrated that AZD1152-hQPA had an antagonistic effect on the cytotoxicity of cisplatin, etoposide and doxorubicin, but had a synergistic effect on that of all-trans-retinoic acid (ATRA), Am80 and TAC-101, when tested on HeLa cells. Cisplatin, etoposide and doxorubicin were shown to increase the cellular expression of AURKB, while ATRA, Am80 and TAC-101 downregulated its expression. These results suggested that AURKB expression is regulated by these anticancer agents at the transcriptional level, and that the level of expression of AURKB may influence the cytotoxic effect of AZD1152-hQPA. Therefore, when using anticancer agents, decreasing the expression of AURKB using a molecular-targeting drug may be an optimal therapeutic strategy.

  20. In vitro evaluation of a combination treatment involving anticancer agents and an aurora kinase B inhibitor

    PubMed Central

    Sakai, Senna; Izumi, Hiroto; Yoshiura, Yukiko; Nakayama, Yoshifumi; Yamaguchi, Takahiro; Harada, Yoshikazu; Koi, Chiho; Kurata, Hiroyuki; Morimoto, Yasuo

    2016-01-01

    Aurora kinase B (AURKB) inhibitors are regarded as potential molecular-targeting drugs for cancer therapy. The present study evaluated the cytotoxic effect of a combination of AZD1152-hQPA, an AURKB inhibitor, and various anticancer agents on the HeLa human cervical cancer cell line, as well as its cisplatin-resistant equivalent HCP4 cell line. It was demonstrated that AZD1152-hQPA had an antagonistic effect on the cytotoxicity of cisplatin, etoposide and doxorubicin, but had a synergistic effect on that of all-trans-retinoic acid (ATRA), Am80 and TAC-101, when tested on HeLa cells. Cisplatin, etoposide and doxorubicin were shown to increase the cellular expression of AURKB, while ATRA, Am80 and TAC-101 downregulated its expression. These results suggested that AURKB expression is regulated by these anticancer agents at the transcriptional level, and that the level of expression of AURKB may influence the cytotoxic effect of AZD1152-hQPA. Therefore, when using anticancer agents, decreasing the expression of AURKB using a molecular-targeting drug may be an optimal therapeutic strategy. PMID:27895801

  1. Discovery and development of natural product oridonin-inspired anticancer agents.

    PubMed

    Ding, Ye; Ding, Chunyong; Ye, Na; Liu, Zhiqing; Wold, Eric A; Chen, Haiying; Wild, Christopher; Shen, Qiang; Zhou, Jia

    2016-10-21

    Natural products have historically been, and continue to be, an invaluable source for the discovery of various therapeutic agents. Oridonin, a natural diterpenoid widely applied in traditional Chinese medicines, exhibits a broad range of biological effects including anticancer and anti-inflammatory activities. To further improve its potency, aqueous solubility and bioavailability, the oridonin template serves as an exciting platform for drug discovery to yield better candidates with unique targets and enhanced drug properties. A number of oridonin derivatives (e.g. HAO472) have been designed and synthesized, and have contributed to substantial progress in the identification of new agents and relevant molecular mechanistic studies toward the treatment of human cancers and other diseases. This review summarizes the recent advances in medicinal chemistry on the explorations of novel oridonin analogues as potential anticancer therapeutics, and provides a detailed discussion of future directions for the development and progression of this class of molecules into the clinic.

  2. Non-covalent carriage of anticancer agents by humanized antibody trastuzumab.

    PubMed

    Yadav, Arpita; Sharma, Sweta; Yadav, Veejendra Kumar

    2016-05-01

    This article explores the internalization and non-covalent carriage of small molecule anticancer agents like vinca alkaloids by humanized monoclonal antibody trastuzumab. Such carriage is marked by significant reduction in side effects and increased therapeutic value of these anticancer agents. This study is coherent with few clinical observations of enhanced efficiency of these anticancer agents when co-administered with therapeutic antibodies. This study will also serve as the foundation for screening a database of anticancer agents for possible compounds that may be co-delivered alongwith the antibody. Based on this study vincristine conformation inside antibody and its charge environment may be used as descriptors for screening purposes.

  3. Carnosol: A promising anti-cancer and anti-inflammatory agent

    PubMed Central

    Johnson, Jeremy J.

    2011-01-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicincal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. PMID:21382660

  4. Mitochondrial chaperones may be targets for anti-cancer drugs

    Cancer.gov

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  5. HB-EGF inhibition in combination with various anticancer agents enhances its antitumor effects in gastric cancer.

    PubMed

    Sanui, Ayako; Yotsumoto, Fusanori; Tsujioka, Hiroshi; Fukami, Tatsuya; Horiuchi, Shinji; Shirota, Kyoko; Yoshizato, Toshiyuki; Kawarabayashi, Tatsuhiko; Kuroki, Masahide; Miyamoto, Shingo

    2010-08-01

    Advanced gastric cancer (GC) is one of the most lethal malignancies. Although many anticancer agents exist for the treatment of GC, its prognosis remains extremely poor. Therefore, further development of targeted therapies is required for patients with GC. To assess the role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) as a target for GC therapy, the expression of EGF receptor ligands in GC cell lines, and the antitumor effects of an HB-EGF inhibitor (CRM197) as a single agent and in combination with other anticancer agents was assessed in GC cells. HB-EGF was the predominantly expressed ligand among EGF receptor ligands in all the cells. CRM197 induced significant cell apoptosis. Anticancer agents augmented the secretion of HB-EGF into the medium and simultaneously induced cell apoptosis. Combination of CRM197 with other anticancer agents significantly enhanced cell apoptosis. Additionally, co-administration of CRM197 and paclitaxel resulted in synergistic antitumor effects. These results suggested that HB-EGF is a rational target for GC therapy.

  6. Monofunctional and Higher-Valent Platinum Anticancer Agents

    PubMed Central

    Johnstone, Timothy C.; Wilson, Justin J.

    2013-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called “non-traditional” platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with an historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo. PMID:23738524

  7. Comprehensive Review on Betulin as a Potent Anticancer Agent

    PubMed Central

    Kiełbus, Michał; Stepulak, Andrzej

    2015-01-01

    Numerous plant-derived substances, and their derivatives, are effective antitumour and chemopreventive agents. Yet, there are also a plethora of tumour types that do not respond, or become resistant, to these natural substances. This requires the discovery of new active compounds. Betulin (BE) is a pentacyclic triterpene and secondary metabolite of plants abundantly found in the outer bark of the birch tree Betulaceae sp. BE displays a broad spectrum of biological and pharmacological properties, among which the anticancer and chemopreventive activity attract most of the attention. In this vein, BE and its natural and synthetic derivatives act specifically on cancer cells with low cytotoxicity towards normal cells. Although the antineoplastic mechanism of action of BE is not well understood yet, several interesting aspects of BE's interactions are coming to light. This review will summarize the anticancer and chemopreventive potential of BE in vitro and in vivo by carefully dissecting and comparing the doses and tumour lines used in previous studies, as well as focusing on mechanisms underlying its activity at cellular and molecular level, and discuss future prospects. PMID:25866796

  8. Comprehensive review on betulin as a potent anticancer agent.

    PubMed

    Król, Sylwia Katarzyna; Kiełbus, Michał; Rivero-Müller, Adolfo; Stepulak, Andrzej

    2015-01-01

    Numerous plant-derived substances, and their derivatives, are effective antitumour and chemopreventive agents. Yet, there are also a plethora of tumour types that do not respond, or become resistant, to these natural substances. This requires the discovery of new active compounds. Betulin (BE) is a pentacyclic triterpene and secondary metabolite of plants abundantly found in the outer bark of the birch tree Betulaceae sp. BE displays a broad spectrum of biological and pharmacological properties, among which the anticancer and chemopreventive activity attract most of the attention. In this vein, BE and its natural and synthetic derivatives act specifically on cancer cells with low cytotoxicity towards normal cells. Although the antineoplastic mechanism of action of BE is not well understood yet, several interesting aspects of BE's interactions are coming to light. This review will summarize the anticancer and chemopreventive potential of BE in vitro and in vivo by carefully dissecting and comparing the doses and tumour lines used in previous studies, as well as focusing on mechanisms underlying its activity at cellular and molecular level, and discuss future prospects.

  9. Anticancer Efficacy of Photodynamic Therapy with Lung Cancer-Targeted Nanoparticles.

    PubMed

    Chang, Ji-Eun; Cho, Hyun-Jong; Jheon, Sanghoon

    2016-12-01

    Photodynamic therapy (PDT) is a non-invasive and non-surgical method representing an attractive alternative choice for lung cancer treatment. Photosensitizers selectively accumulate in tumor tissue and lead to tumor cell death in the presence of oxygen and the proper wavelength of light. To increase the therapeutic effect of PDT, we developed both photosensitizer- and anticancer agent-loaded lung cancer-targeted nanoparticles. Both enhanced permeability and retention (EPR) effect-based passive targeting and hyaluronic-acid-CD44 interaction-based active targeting were applied. CD44 is a well-known hyaluronic acid receptor that is often introduced as a biomarker of non-small cell lung cancer. In addition, a combination of PDT and chemotherapy is adopted in the present study. This combination concept may increase anticancer therapeutic effects and reduce adverse reactions. We chose hypocrellin B (HB) as a novel photosensitizer in this study. It has been reported that HB causes higher anticancer efficacy of PDT compared to hematoporphyrin derivatives(1). Paclitaxel was selected as the anticancer drug since it has proven to be a potential treatment for lung cancer(2). The antitumor efficacies of photosensitizer (HB) solution, photosensitizer encapsulated hyaluronic acid-ceramide nanoparticles (HB-NPs), and both photosensitizer- and anticancer agent (paclitaxel)-encapsulated hyaluronic acid-ceramide nanoparticles (HB-P-NPs) after PDT were compared both in vitro and in vivo. The in vitro phototoxicity in A549 (human lung adenocarcinoma) cells and the in vivo antitumor efficacy in A549 tumor-bearing mice were evaluated. The HB-P-NP treatment group showed the most effective anticancer effect after PDT. In conclusion, the HB-P-NPs prepared in the present study represent a potential and novel photosensitizer delivery system in treating lung cancer with PDT.

  10. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    PubMed Central

    Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua

    2016-01-01

    Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273

  11. New gold carbene complexes as candidate anticancer agents.

    PubMed

    Pratesi, Alessandro; Cirri, Damiano; Đurović, Mirjana D; Pillozzi, Serena; Petroni, Giulia; Bugarčić, Živadin D; Messori, Luigi

    2016-10-01

    Three structurally related gold(I) carbene complexes with bulky hydrophobic ligands i.e. 1-3 were investigated in solution for further consideration as candidate anticancer agents. Cytotoxic assays were subsequently conducted on bone marrow-derived preosteoclast cell line of human origin (FLG 29.1) and human colon cancer cells (HCT-116). A far greater cytotoxic activity was measured for compound 1 against HCT-116 cells compared to 2 and 3; conversely, all compounds were highly and similarly active against FLG 29.1 cells. Results obtained for the reaction of complexes 1 and 2 with RNase A documented the occurrence of a weak interaction with this model protein and the formation of a tiny amount of the corresponding adduct. Moreover, a certain reactivity of the complex 2 was also detected toward GSH. The general implications of the obtained results are discussed.

  12. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells

    PubMed Central

    Bauer, Matthias R.; Joerger, Andreas C.; Fersht, Alan R.

    2016-01-01

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53’s oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1MET(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells. PMID:27551077

  13. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells.

    PubMed

    Bauer, Matthias R; Joerger, Andreas C; Fersht, Alan R

    2016-09-06

    The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

  14. Targeting tumor glycolysis by a mitotropic agent.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram

    2016-01-01

    Metabolic reprogramming is one of the hallmarks of cancer. Altered metabolism in cancer cells is exemplified by enhanced glucose utilization, a biochemical signature that is clinically exploited for cancer diagnosis using positron-emission tomography and computed tomography imaging. Accordingly, disrupting the glucose metabolism of cancer cells has been contemplated as a potential therapeutic strategy against cancer. Experimental evidences indicate that targeting glucose metabolism by inhibition of glycolysis or oxidative phosphorylation promotes anticancer effects. Yet, successful clinical translation of antimetabolites or energy blockers to treat cancer remains a challenge, primarily due to lack of efficacy and/or systemic toxicity. Recently, using nanotechnology, Marrache and Dhar have documented the feasibility of delivering a glycolytic inhibitor through triphenylphosphonium (TPP), a mitotropic agent that selectively targets mitochondria based on membrane potential. Furthermore, by utilizing gold nanoparticles the investigators also demonstrated the potential for simultaneous induction of photothermal therapy, thus facilitating an additional line of attack on cancer cells. The report establishes that specific inhibition of tumor glycolysis is achievable through TPP-dependent selective targeting of cancer cells. This nanotechnological approach involving TPP-guided selective delivery of an antiglycolytic agent complemented with photothermal therapy provides a new window of opportunity for effective and specific targeting of tumor glycolysis.

  15. Anticancer Gold(III) Porphyrins Target Mitochondrial Chaperone Hsp60.

    PubMed

    Hu, Di; Liu, Yungen; Lai, Yau-Tsz; Tong, Ka-Chung; Fung, Yi-Man; Lok, Chun-Nam; Che, Chi-Ming

    2016-01-22

    Identification of the molecular target(s) of anticancer metal complexes is a formidable challenge since most of them are unstable toward ligand exchange reaction(s) or biological reduction under physiological conditions. Gold(III) meso-tetraphenylporphyrin (gold-1 a) is notable for its high stability in biological milieux and potent in vitro and in vivo anticancer activities. Herein, extensive chemical biology approaches employing photo-affinity labeling, click chemistry, chemical proteomics, cellular thermal shift, saturation-transfer difference NMR, protein fluorescence quenching, and protein chaperone assays were used to provide compelling evidence that heat-shock protein 60 (Hsp60), a mitochondrial chaperone and potential anticancer target, is a direct target of gold-1 a in vitro and in cells. Structure-activity studies with a panel of non-porphyrin gold(III) complexes and other metalloporphyrins revealed that Hsp60 inhibition is specifically dependent on both the gold(III) ion and the porphyrin ligand.

  16. Carfilzomib is an effective anticancer agent in anaplastic thyroid cancer.

    PubMed

    Mehta, Amit; Zhang, Lisa; Boufraqech, Myriem; Zhang, Yaqin; Patel, Dhaval; Shen, Min; Kebebew, Electron

    2015-06-01

    Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies. Currently, there is no standard or effective therapy for ATC. Drug repurposing for cancer treatment is an emerging approach for identifying compounds that may have antineoplastic effects. The aim of this study was to use high-throughput drug library screening to identify and subsequently validate novel therapeutic agents with anticancer effects in ATC. We performed quantitative high-throughput screening (qHTS) in ATC cell lines (SW-1736, 8505C, and C-643), using a compound library of 3282 drugs. qHTS identified 100 compounds that were active in all three ATC cell lines. Proteasome inhibitors were one of the most active drug categories according to enrichment analysis. Of the three proteasome inhibitors screened, a second-generation proteasome inhibitor, carfilzomib, was the most active. Treatment of ATC cells with carfilzomib significantly inhibited cellular proliferation and induced G2/M cell cycle arrest and caspase-dependent apoptosis. Mechanistically, carfilzomib increased expression of p27 (CDKN1B) and decreased expression of the anti-apoptotic protein ATF4. Pretreatment with carfilzomib reduced in vivo metastases (lung, bone, liver, and kidney) and disease progression, and decreased N-cadherin expression. Carfilzomib treatment of mice with established, widely metastatic disease significantly increased their survival, without significant toxicity. Our findings support the use or clinical study of carfilzomib as a therapeutic option in patients with advanced and metastatic ATC.

  17. Diaryl Urea: A Privileged Structure in Anticancer Agents.

    PubMed

    Garuti, Laura; Roberti, Marinella; Bottegoni, Giovanni; Ferraro, Mariarosaria

    2016-01-01

    The diaryl urea is an important fragment/pharmacophore in constructing anticancer molecules due to its near-perfect binding with certain acceptors. The urea NH moiety is a favorable hydrogen bond donor, while the urea oxygen atom is regarded as an excellent acceptor. Many novel compounds have been synthesized and evaluated for their antitumor activity with the successful development of sorafenib. Moreover, this structure is used to link alkylating pharmacophores with high affinity DNA binders. In addition, the diaryl urea is present in several kinase inhibitors, such as RAF, KDR and Aurora kinases. Above all, this moiety is used in the type II inhibitors: it usually forms one or two hydrogen bonds with a conserved glutamic acid and one with the backbone amide of the aspartic acid in the DFG motif. In addition, some diaryl urea derivatives act as Hedgehog (Hh) ligands, binding and inhibiting proteins involved in the homonymous Hh signaling pathway. In this review we provide some of the methodologies adopted for the synthesis of diaryl ureas and a description of the most representative antitumor agents bearing the diaryl urea moiety, focusing on their mechanisms bound to the receptors and structure-activity relationships (SAR). An increased knowledge of these derivatives could prompt the search to find new and more potent compounds.

  18. Validating Aurora B as an anti-cancer drug target.

    PubMed

    Girdler, Fiona; Gascoigne, Karen E; Eyers, Patrick A; Hartmuth, Sonya; Crafter, Claire; Foote, Kevin M; Keen, Nicholas J; Taylor, Stephen S

    2006-09-01

    The Aurora kinases, a family of mitotic regulators, have received much attention as potential targets for novel anti-cancer therapeutics. Several Aurora kinase inhibitors have been described including ZM447439, which prevents chromosome alignment, spindle checkpoint function and cytokinesis. Subsequently, ZM447439-treated cells exit mitosis without dividing and lose viability. Because ZM447439 inhibits both Aurora A and B, we set out to determine which phenotypes are due to inhibition of which kinase. Using molecular genetic approaches, we show that inhibition of Aurora B kinase activity phenocopies ZM447439. Furthermore, a novel ZM compound, which is 100 times more selective for Aurora B over Aurora A in vitro, induces identical phenotypes. Importantly, inhibition of Aurora B kinase activity induces a penetrant anti-proliferative phenotype, indicating that Aurora B is an attractive anti-cancer drug target. Using molecular genetic and chemical-genetic approaches, we also probe the role of Aurora A kinase activity. We show that simultaneous repression of Aurora A plus induction of a catalytic mutant induces a monopolar phenotype. Consistently, another novel ZM-related inhibitor, which is 20 times as potent against Aurora A compared with ZM447439, induces a monopolar phenotype. Expression of a drug-resistant Aurora A mutant reverts this phenotype, demonstrating that Aurora A kinase activity is required for spindle bipolarity in human cells. Because small molecule-mediated inhibition of Aurora A and Aurora B yields distinct phenotypes, our observations indicate that the Auroras may present two avenues for anti-cancer drug discovery.

  19. CNIO cancer conference: targeted search for anticancer drugs.

    PubMed

    Fischer, Peter M

    2003-06-01

    The topics discussed at the conference covered many aspects of cancer research, from the genetic search for new targets, target validation and drug discovery, all the way to preclinical and clinical development of oncology drugs. Here the presentations on new metabolic, angiogenic, cell cycle and other molecular targets, as well as recent developments with experimental drugs with action on some of these targets, are summarised. Particular emphasis is placed on the emerging realisation that changes in the metabolic phenotype lie at the heart of cellular transformation. New insights into the biological links between cancer cell metabolism and the balance between survival and death signalling are likely to lead to the identification of a new category of anticancer targets.

  20. Flavaglines: potent anticancer drugs that target prohibitins and the helicase eIF4A.

    PubMed

    Basmadjian, Christine; Thuaud, Frédéric; Ribeiro, Nigel; Désaubry, Laurent

    2013-12-01

    Flavaglines are complex natural products that are found in several medicinal plants of Southeast Asia in the genus Aglaia; these compounds have shown exceptional anticancer and cytoprotective activities. This review describes the significance of flavaglines as a new class of pharmacological agents and presents recent developments in their synthesis, structure-activity relationships, identification of their molecular targets and modes of action. Flavaglines display a unique profile of anticancer activities that are mediated by two classes of unrelated proteins: prohibitins and the translation initiation factor eIF4A. The identification of these molecular targets is expected to accelerate advancement toward clinical studies. The selectivity of cytotoxicity towards cancer cells has been shown to be due to an inhibition of the transcription factor HSF1 and an upregulation of the tumor suppressor TXNIP. In addition, flavaglines display potent anti-inflammatory, cardioprotective and neuroprotective activities; however, the mechanisms underlying these activities are yet to be elucidated.

  1. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    PubMed Central

    Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.

    2010-01-01

    ABSTRACT Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward. PMID:20725771

  2. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles

    NASA Astrophysics Data System (ADS)

    Fan, Jianquan; Fang, Gang; Wang, Xiaodan; Zeng, Fang; Xiang, Yufei; Wu, Shuizhu

    2011-11-01

    A targeted anticancer prodrug system was fabricated with 180 nm mesoporous silica nanoparticles (MSNs) as carriers. The anticancer drug doxorubicin (DOX) was conjugated to the particles through an acid-sensitive carboxylic hydrazone linker which is cleavable under acidic conditions. Moreover, folic acid (FA) was covalently conjugated to the particle surface as the targeting ligand for folate receptors (FRs) overexpressed in some cancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systems showed a strong dependence on the environmental pH values. The fluorescent dye FITC was incorporated in the MSNs so as to trace the cellular uptake on a fluorescence microscope. Cellular uptakes by HeLa, A549 and L929 cell lines were tested for FA-conjugated MSNs and plain MSNs respectively, and a much more efficient uptake by FR-positive cancer cells (HeLa) can be achieved by conjugation of folic acid onto the particles because of the folate-receptor-mediated endocytosis. The cytotoxicities for the FA-conjugated MSN prodrug, the plain MSN prodrug and free DOX against three cell lines were determined, and the result indicates that the FA-conjugated MSN prodrug exhibits higher cytotoxicity to FR-positive cells, and reduced cytotoxicity to FR-negative cells. Thus, with 180 nm MSNs as the carriers for the prodrug system, good drug loading, selective targeting and sustained release of drug molecules within targeted cancer cells can be realized. This study may provide useful insights for designing and improving the applicability of MSNs in targeted anticancer prodrug systems.

  3. Current developments of coumarin-based anti-cancer agents in medicinal chemistry.

    PubMed

    Emami, Saeed; Dadashpour, Sakineh

    2015-09-18

    Cancer is one of the leading health hazards and the prominent cause of death in the world. A number of anticancer agents are currently in clinical practice and used for treatment of various kinds of cancers. There is no doubt that the existing arsenal of anticancer agents is insufficient due to the high incidence of side effects and multidrug resistance. In the efforts to develop suitable anticancer drugs, medicinal chemists have focused on coumarin derivatives. Coumarin is a naturally occurring compound and a versatile synthetic scaffold possessing wide spectrum of biological effects including potential anticancer activity. This review article covers the current developments of coumarin-based anticancer agents and also discusses the structure-activity relationship of the most potent compounds.

  4. Molecular Mechanisms of Anti-cancer Activities of β-elemene: Targeting Hallmarks of Cancer.

    PubMed

    Jiang, Shiyu; Ling, Chunhua; Li, Wei; Jiang, Hongxin; Zhi, Qiaoming; Jiang, Min

    2016-01-01

    Increasing knowledge on the hallmark characteristics of cancer and tumor pharmacology has promoted the introduction of phytochemicals, such as traditional Chinese medicine (TCM) in cancer therapy, which modulate numerous molecular targets and exert anticancer activities. β-elemene, an active and non-toxic compound isolated from the Chinese medicinal herb Rhizoma Zedoariae, has been explored as a potent anti-cancer agent against multiple cancers in extensive clinical trials and experimental research in vivo and in vitro. β-elemene exerts therapeutic potential via modulation of core hallmark capabilities of cancer by suppressing proliferative signaling, such as MAPK and PI3K/Akt/mTOR pathway, inducing cell death, up-regulating growth suppressors, deactivating invasion and metastasis and interacting replicative immortality and attenuating angiogenesis. Recent studies have significantly improved our understanding of anti-cancer activities and underlying molecular mechanisms of this Chinese medicine. This review presents these novel findings regarding the unique properties of β-elemene as an agent for cancer treatment, with an emphasis on multi-targeting biological and molecular regulation.

  5. Cardiotoxicity of Molecularly Targeted Agents

    PubMed Central

    Hedhli, Nadia; Russell, Kerry S

    2011-01-01

    Cardiac toxicity of molecularly targeted cancer agents is increasingly recognized as a significant side effect of chemotherapy. These new potent therapies may not only affect the survival of cancer cells, but have the potential to adversely impact normal cardiac and vascular function. Unraveling the mechanisms by which these therapies affect the heart and vasculature is crucial for improving drug design and finding alternative therapies to protect patients predisposed to cardiovascular disease. In this review, we summarize the classification and side effects of currently approved molecularly targeted chemotherapeutics. PMID:22758623

  6. Anti-cancer chalcones: Structural and molecular target perspectives.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek

    2015-06-15

    Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.

  7. Novel C6-substituted 1,3,4-oxadiazinones as potential anti-cancer agents

    PubMed Central

    Jung, Yujin; Yun, Hye Jeong; Min, Hye-Young; Lee, Ho Jin; Pham, Phuong Chi; Moon, Jayoung; Kwon, Dah In; Lim, Bumhee; Suh, Young-Ger; Lee, Jeeyeon; Lee, Ho-Young

    2015-01-01

    The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents. PMID:26515601

  8. ER maleate is a novel anticancer agent in oral cancer: implications for cancer therapy

    PubMed Central

    Fu, Guodong; Somasundaram, Raj Thani; Jessa, Fatima; Srivastava, Gunjan; MacMillan, Christina; Witterick, Ian; Walfish, Paul G.; Ralhan, Ranju

    2016-01-01

    ER maleate [10-(3-Aminopropyl)-3, 4-dimethyl-9(10H)-acridinone maleate] identified in a kinome screen was investigated as a novel anticancer agent for oral squamous cell carcinoma (OSCC). Our aim was to demonstrate its anticancer effects, identify putative molecular targets and determine their clinical relevance and investigate its chemosensitization potential for platinum drugs to aid in OSCC management. Biologic effects of ER maleate were determined using oral cancer cell lines in vitro and oral tumor xenografts in vivo. mRNA profiling, real time PCR and western blot revealed ER maleate modulated the expression of polo-like kinase 1 (PLK1) and spleen tyrosine kinase (Syk). Their clinical significance was determined in oral SCC patients by immunohistochemistry and correlated with prognosis by Kaplan-Meier survival and multivariate Cox regression analyses. ER maleate induced cell apoptosis, inhibited proliferation, colony formation, migration and invasion in oral cancer cells. Imagestream analysis revealed cell cycle arrest in G2/M phase and increased polyploidy, unravelling deregulation of cell division and cell death. Mechanistically, ER maleate decreased expression of PLK1 and Syk, induced cleavage of PARP, caspase9 and caspase3, and increased chemosensitivity to carboplatin; significantly suppressed tumor growth and increased antitumor activity of carboplatin in tumor xenografts. ER maleate treated tumor xenografts showed reduced PLK1 and Syk expression. Clinical investigations revealed overexpression of PLK1 and Syk in oral SCC patients that correlated with disease prognosis. Our in vitro and in vivo findings provide a strong rationale for pre-clinical efficacy of ER maleate as a novel anticancer agent and chemosensitizer of platinum drugs for OSCC. PMID:26934445

  9. The Anticancer Agent Chaetocin Is a Competitive Substrate and Inhibitor of Thioredoxin Reductase

    PubMed Central

    Tibodeau, Jennifer D.; Benson, Linda M.; Isham, Crescent R.; Owen, Whyte G.

    2009-01-01

    Abstract We recently reported that the antineoplastic thiodioxopiperazine natural product chaetocin potently induces cellular oxidative stress, thus selectively killing cancer cells. In pursuit of underlying molecular mechanisms, we now report that chaetocin is a competitive and selective substrate for the oxidative stress mitigation enzyme thioredoxin reductase-1 (TrxR1) with lower Km than the TrxR1 native substrate thioredoxin (Trx; chaetocin Km = 4.6 ± 0.6 μM, Trx Km = 104.7 ± 26 μM), thereby attenuating reduction of the critical downstream ROS remediation substrate Trx at achieved intracellular concentrations. Consistent with a role for TrxR1 targeting in the anticancer effects of chaetocin, overexpression of the TrxR1 downstream effector Trx in HeLa cells conferred resistance to chaetocin-induced, but not to doxorubicin-induced, cytotoxicity. As the TrxR/Trx pathway is of central importance in limiting cellular reactive oxygen species (ROS)—and as chaetocin exerts its selective anticancer effects via ROS imposition—the inhibition of TrxR1 by chaetocin has potential to explain its selective anticancer effects. These observations have important implications not just with regard to the mechanism of action and clinical development of chaetocin and related thiodioxopiperazines, but also with regard to the utility of molecular targets within the thioredoxin reductase/thioredoxin pathway in the development of novel candidate antineoplastic agents. Antioxid. Redox Signal. 11, 1097–1106. PMID:18999987

  10. A review of economic impact of targeted oral anticancer medications.

    PubMed

    Shen, Chan; Chien, Chun-Ru; Geynisman, Daniel M; Smieliauskas, Fabrice; Shih, Ya-Chen T

    2014-02-01

    There has been a rapid increase in the use of targeted oral anticancer medications (OAMs) in the past decade. As OAMs are often expensive, economic consideration play a significant role in the decision to prescribe, receive or cover them. This paper performs a systematic review of costs or budgetary impact of targeted OAMs to better understand their economic impact on the healthcare system, patients as well as payers. We present our review in a summary table that describes the method and main findings, take into account multiple factors, such as country, analytical approach, cost type, study perspective, timeframe, data sources, study population and care setting when we interpret the results from different papers, and discuss the policy and clinical implications. Our review raises a concern regarding the role of sponsorship on findings of economic analyses as the vast majority of pharmaceutical company-sponsored studies reported cost advantages toward the sponsor's drugs.

  11. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    PubMed Central

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  12. Design, synthesis and biological evaluation of novel diphenylthiazole-based cyclooxygenase inhibitors as potential anticancer agents.

    PubMed

    Abdelazeem, Ahmed H; Gouda, Ahmed M; Omar, Hany A; Tolba, Mai F

    2014-12-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications as analgesics and antipyretics. Currently, there is a growing interest in their antitumor activity and their ability to reduce the risk and mortality of several cancers. While several studies revealed the ability of NSAIDs to induce apoptosis and inhibit angiogenesis in cancer cells, their exact anticancer mechanism is not fully understood. However, both cyclooxygenase (COX)-dependent and -independent pathways were reported to have a role. In an attempt to develop new anticancer agents, a series of diphenylthiazole substituted thiazolidinone derivatives was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. Additionally, the inhibitory activity of the synthesized derivatives against COX enzymes was investigated as a potential mechanism for the anticancer activity. Cytotoxicity assay results showed that compounds 15b and 16b were the most potent anticancer agents with half maximal inhibitory concentrations (IC50) between 8.88 and 19.25μM against five different human cancer cell lines. Interestingly, COX inhibition assay results were in agreement with that of the cytotoxicity assays where the most potent anticancer compounds showed good COX-2 inhibition comparable to that of celecoxib. Further support to our results were gained by the docking studies which suggested the ability of compound 15b to bind into COX-2 enzyme with low energy scores. Collectively, these results demonstrated the promising activity of the newly designed compounds as leads for subsequent development into potential anticancer agents.

  13. Structure-activity analysis of 2'-modified cinnamaldehyde analogues as potential anticancer agents.

    PubMed

    Gan, Fei Fei; Chua, Yee Shin; Scarmagnani, Silvia; Palaniappan, Puvithira; Franks, Mark; Poobalasingam, Thurka; Bradshaw, Tracey D; Westwell, Andrew D; Hagen, Thilo

    2009-10-02

    The natural product 2'-hydroxycinnamaldehyde (HCA) and its analogue, 2'-benzoyloxycinnamaldehyde (BCA), have been previously shown to have antiproliferative and proapoptotic effects in vitro and inhibit tumor growth in vivo. In this study, we use structure-activity analysis to define structural features that are important for the activity of cinnamaldehyde analogues. Our results emphasize an important role for both the propenal group as well as the modification at the 2'-position. Further studies were aimed to characterize the mechanism of action of BCA. Exposure to BCA induced cell death via caspase-dependent and -independent pathways. Cell death was not due to autophagy or necrosis as a result of energy depletion or induction of reactive oxygen species. Our findings have important implications for future drug design and highlight the importance of defining molecular drug targets for this promising class of potential anticancer agents.

  14. Importance of influx and efflux systems and xenobiotic metabolizing enzymes in intratumoral disposition of anticancer agents.

    PubMed

    Rochat, B

    2009-08-01

    In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.

  15. Nrf2 activity as a potential biomarker for the pan-epigenetic anticancer agent, RRx-001

    PubMed Central

    Ning, Shoucheng; Sekar, Thillai Veerapazham; Scicinski, Jan; Oronsky, Bryan; Peehl, Donna M.; Knox, Susan J.; Paulmurugan, Ramasamy

    2015-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulatory transcription factor that plays an important role in the antioxidant response pathway against anticancer drug-induced cytotoxic effects. RRx-001 is a new anticancer agent that generates reactive oxygen and nitrogen species, and leads to epigenetic alterations in cancer cells. Here we report the RRx-001 mediated nuclear translocation of Nrf2 and the activation of expression of its downstream enzymes HO-1 and NQO1 in tumor cells. Inhibition of intrinsic Nrf2 expression by Nrf2-specific siRNA increased cell sensitivity to RRx-001. Molecular imaging of tumor cells co-expressing pARE-Firefly luciferase and pCMV-Renilla luciferase-mRFP in vitro and in vivo in mice revealed that RRx-001 significantly increased ARE-FLUC signal in cells in a dose- and time-dependent manner, suggesting that RRx-001 is an effective activator of the Nrf2-ARE signaling pathway. The pre-treatment level of ARE-FLUC signal in cells, reflecting basal activity of Nrf2, negatively correlated with the tumor response to RRx-001. The results support the concept that RRx-001 activates Nrf2-ARE antioxidant signaling pathways in tumor cells. Hence measurement of Nrf2-mediated activation of downstream target genes through ARE signaling may constitute a useful molecular biomarker for the early prediction of response to RRx-001 treatment, and thereby guide therapeutic decision-making. PMID:26280276

  16. Synthesis and Evaluation of Novel Erlotinib–NSAID Conjugates as More Comprehensive Anticancer Agents

    PubMed Central

    2015-01-01

    A series of novel anticancer agents were designed and synthesized based on coupling of different nonsteroidal anti-inflammatory drugs (NSAIDs) with the epidermal growth-factor receptor (EGFR) tyrosine kinase inhibitor, erlotinib. Both the antiproliferative and pharmacokinetic activity of the target compounds were evaluated using HCC827 and A431 tumor cell lines. Among the derivatives made, compounds 10a, 10c, and 21g showed superb potency, comparable to that of erlotinib. Furthermore, preliminary SAR analysis showed that when the NSAIDs were conjugated via linkage to C-6 OH versus linkage to C-7 OH of the quinazoline nucleus, superior anticancer activity was achieved. Finally, the in vitro pharmacokinetic profile of several conjugates demonstrated the desired dissociation kinetics as the coupled molecules were effectively hydrolyzed, releasing both erlotinib and the specific NSAID in a time-dependent manner. The conjugation strategy represents a unique and simplified approach toward combination therapy, particularly for the treatment of cancers where both EGFR overexpression and inflammation play a direct role in disease progression. PMID:26487917

  17. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities.

    PubMed

    Zhou, Shuang; Wang, Fengfei; Wong, Eric T; Fonkem, Ekokobe; Hsieh, Tze-Chen; Wu, Joseph M; Wu, Erxi

    2013-01-01

    Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed.

  18. Design and synthesis of 1,4-dihydropyridine derivatives as anti-cancer agent.

    PubMed

    Viradiya, Denish; Mirza, Sheefa; Shaikh, Faraz; Kakadiya, Rajesh; Rathod, Anand; Jain, Nayan; Rawal, Rakesh; Shah, Anamik

    2016-12-06

    A series of 1,4-dihydropyridine based compounds bearing benzylpyridinium moiety have been designed and evaluated for in vitro anticancer activity against glioblastoma U87MG, lung cancer A549 and colorectal adenocarcinoma Caco-2 cell lines using the MTT assay. Among these compounds, 7b, 7d, 7e, and 7f exhibited potent anticancer activity against the cell lines tested. The cytotoxicity of the synthesized derivatives was compared to standard drugs (carboplatin, gemcitabine, and daunorubicin). Thus, synthesized 1,4-dihydropyridines can be considered as the encouraging molecules for further drug development as anticancer agents.

  19. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  20. Targeting MKK3 as a novel anticancer strategy: molecular mechanisms and therapeutical implications

    PubMed Central

    Baldari, S; Ubertini, V; Garufi, A; D'Orazi, G; Bossi, G

    2015-01-01

    Mitogen-activated protein kinase kinase 3 (MAP2K3, MKK3) is a member of the dual specificity protein kinase group that belongs to the MAP kinase kinase family. This kinase is activated by mitogenic or stress-inducing stimuli and participates in the MAP kinase-mediated signaling cascade, leading to cell proliferation and survival. Several studies highlighted a critical role for MKK3 in tumor progression and invasion, and we previously identified MKK3 as transcriptional target of mutant (mut) p53 to sustain cell proliferation and survival, thus rendering MKK3 a promising target for anticancer therapies. Here, we found that targeting MKK3 with RNA interference, in both wild-type (wt) and mutp53-carrying cells, induced endoplasmic reticulum stress and autophagy that, respectively, contributed to stabilize wtp53 and degrade mutp53. MKK3 depletion reduced cancer cell proliferation and viability, whereas no significant effects were observed in normal cellular context. Noteworthy, MKK3 depletion in combination with chemotherapeutic agents increased tumor cell response to the drugs, in both wtp53 and mutp53 cancer cells, as demonstrated by enhanced poly (ADP-ribose) polymerase cleavage and reduced clonogenic ability in vitro. In addition, MKK3 depletion reduced tumor growth and improved biological response to chemotherapeutic in vivo. The overall results indicate MKK3 as a novel promising molecular target for the development of more efficient anticancer treatments in both wtp53- and mutp53-carrying tumors. PMID:25633290

  1. Proteomic Analysis of Anticancer TCMs Targeted at Mitochondria

    PubMed Central

    Wang, Yang; Yu, Ru-Yuan; He, Qing-Yu

    2015-01-01

    Traditional Chinese medicine (TCM) is a rich resource of anticancer drugs. Increasing bioactive natural compounds extracted from TCMs are known to exert significant antitumor effects, but the action mechanisms of TCMs are far from clear. Proteomics, a powerful platform to comprehensively profile drug-regulated proteins, has been widely applied to the mechanistic investigation of TCMs and the identification of drug targets. In this paper, we discuss several bioactive TCM products including terpenoids, flavonoids, and glycosides that were extensively investigated by proteomics to illustrate their antitumor mechanisms in various cancers. Interestingly, many of these natural compounds isolated from TCMs mostly exert their tumor-suppressing functions by specifically targeting mitochondria in cancer cells. These TCM components induce the loss of mitochondrial membrane potential, the release of cytochrome c, and the accumulation of ROS, initiating apoptosis cascade signaling. Proteomics provides systematic views that help to understand the molecular mechanisms of the TCM in tumor cells; it bears the inherent limitations in uncovering the drug-protein interactions, however. Subcellular fractionation may be coupled with proteomics to capture and identify target proteins in mitochondria-enriched lysates. Furthermore, translating mRNA analysis, a new technology profiling the drug-regulated genes in translatome level, may be integrated into the systematic investigation, revealing global information valuable for understanding the action mechanism of TCMs. PMID:26568766

  2. Inhibition of Mitochondrial Complex II by the Anticancer Agent Lonidamine*

    PubMed Central

    Guo, Lili; Shestov, Alexander A.; Worth, Andrew J.; Nath, Kavindra; Nelson, David S.; Leeper, Dennis B.; Glickson, Jerry D.; Blair, Ian A.

    2016-01-01

    The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells. LND inhibits the formation of fumarate and malate and suppresses succinate-induced respiration of isolated mitochondria. Utilizing biochemical assays, we determined that LND inhibits the succinate-ubiquinone reductase activity of respiratory complex II without fully blocking succinate dehydrogenase activity. LND also induces cellular reactive oxygen species through complex II, which reduced the viability of the DB-1 melanoma cell line. The ability of LND to promote cell death was potentiated by its suppression of the pentose phosphate pathway, which resulted in inhibition of NADPH and glutathione generation. Using stable isotope tracers in combination with isotopologue analysis, we showed that LND increased glutaminolysis but decreased reductive carboxylation of glutamine-derived α-ketoglutarate. Our findings on the previously uncharacterized effects of LND may provide potential combinational therapeutic approaches for targeting cancer metabolism. PMID:26521302

  3. A Theoretical Model for the Hormetic Dose-response Curve for Anticancer Agents.

    PubMed

    Yoshimasu, Tatsuya; Ohashi, Takuya; Oura, Shoji; Kokawa, Yozo; Kawago, Mitsumasa; Hirai, Yoshimitsu; Miyasaka, Miwako; Nishiguchi, Haruka; Kawashima, Sayoko; Yata, Yumi; Honda, Mariko; Fujimoto, Takahiro; Okamura, Yoshitaka

    2015-11-01

    In the present article, we quantitatively evaluated the dose-response relationship of hormetic reactions of anticancer agents in vitro. Serial dilutions of gemcitabine, cisplatin, 5-fluorouracil, vinorelbine, and paclitaxel were administered to the A549 non-small-cell lung cancer cell line. The bi-phasic sigmoidal curve with hormetic and cytotoxic effects is given by the formula y=(a-b/(1+exp(c(*)log(x)-d)))/(1+exp(e(*)log(x)-f)), that was used to perform a non-linear least square regression. The dose-responses of the five anticancer agents were fitted to this equation. Gemcitabine and 5-fluorouracil, which had the lowest ED50 for their hormetic reaction, had the most pronounced promotive effects out of the five anticancer agents tested. The hormetic reaction progressed exponentially with culturing time. Our theoretical model will be useful in predicting how hormetic reactions affect patients with malignant tumors.

  4. Aurora kinase family: a new target for anticancer drug.

    PubMed

    Macarulla, Teresa; Ramos, Francisco Javier; Tabernero, Josep

    2008-06-01

    Aurora kinases (AK) are the name given to a family of Serine/threonine (Ser/Thr) protein kinases. These proteins represent a novel family of kinases crucial for cell cycle control. The cell division process is one of the hallmarks of every living organism. Within the complete cell-cycle process, mitosis constitutes one of the most critical steps. The main purpose of mitosis is to segregate sister chromatics into two daughters cells. It is a complex biologic process, and errors in this mechanism can lead to genomic instability, a condition associated with tumorigenesis. This process is tightly regulated by several proteins, some of them acting as check-points that ultimately ensure the correct temporal and spatial coordination of this critical biologic process. Among this network of mitotic regulators, AK play a critical role in cellular division by controlling chromatid segregation. Three AK family members have been identified in mammalian cells: A, B, and C. These proteins are implicated in several vital events in mitosis. In experimental models, overexpression of AK can induce spindle defects, chromosome mis-segregation, and malignant transformation. Conversely, downregulation of AK expression cause mitotic arrest and apoptosis in tumor cell lines. The expression levels of human AK are increased in certain types of cancer including breast, colon, pancreatic, ovarian, and gastric tumors. This observation has lent an interest to this family of kinases as potential drug targets for development of new anticancer therapies. This review focuses in recent progress in the role of AK in tumorogenesis and the development of new anticancer drug against AK proteins. This manuscript also includes some relevant patents as well.

  5. Emerging Role of G-quadruplex DNA as Target in Anticancer Therapy.

    PubMed

    Cimino-Reale, Graziella; Zaffaroni, Nadia; Folini, Marco

    2016-01-01

    DNA has represented the most exploited target for the development of anticancer agents. It is now established that DNA may assume a variety of non-B conformations. This evidence has generated a total novel wave of interest in DNA as a cancer-associated target, since its distinct non-B structures may be regarded as sites for selective therapeutic intervention. G-quadruplexes are peculiar non-B DNA conformations that may form within guaninerich nucleic acid sequences. They are generated by a core of two or more vertically stacked G-quartets (i.e., the square planar arrangement of four guanine residues) held together by intervening loops of variable length. The evidence that G-quadruplexes are highly polymorphic and overrepresented within human genome points out at such non-B DNA conformations as druggable sites amenable of targeting by small molecules. In the present paper we will provide a concise overview on the emerging role of G-quadruplex structures forming within telomeres, gene promoters and mitochondrial DNA as a promising therapeutic target in cancer. In this context, a variety of small molecules has been documented to have excellent G-quadruplex binding/stabilizing properties and to exert good antiproliferative and antitumor activity in several in vitro and in vivo models of human cancers. Pieces of evidence indicate that targeting G-quadruplexes may represent an innovative and fascinating approach for the therapeutic management of the neoplastic disease. However, several issues still need to be addressed both at chemical and biological level before G-quadruplex-interacting molecules will turn out into effective therapeutic agents. Nevertheless, this has been an exciting, though sometime subdued, field of research over the last century. The continued improvements in methodologies and the development of specific tools will contribute not only to achieve the design and development of potentially novel anticancer approaches but also to deepen our knowledge of

  6. (-)-Arctigenin as a lead compound for anticancer agent.

    PubMed

    Chen, Gui-Rong; Li, Hong-Fu; Dou, De-Qiang; Xu, Yu-Bin; Jiang, Hong-Shuai; Li, Fu-Rui; Kang, Ting-Guo

    2013-01-01

    (-)-Arctigenin, an important active constituent of the traditional Chinese herb Fructus Arctii, was found to exhibit various bioactivities, so it can be used as a good lead compound for further structure modification in order to find a safer and more potent medicine. (-)-Arctigenin derivatives 1-5 of (-)-arctingen were obtained by modifying with ammonolysis at the lactone ring and sulphonylation at C (6') and C (6″) and O-demethylation at CH3O-C (3'), CH3O-C (3″) and CH3O-C (4″), and their anticancer bioactivities were examined.

  7. Chrysin-benzothiazole conjugates as antioxidant and anticancer agents.

    PubMed

    Mistry, Bhupendra M; Patel, Rahul V; Keum, Young-Soo; Kim, Doo Hwan

    2015-12-01

    7-(4-Bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one, obtained from chrysin with 1,4-dibromobutane, was combined with a wide range of 6-substituted 2-aminobenzthiazoles, which had been prepared from the corresponding anilines with potassium thiocyanate. Free radical scavenging efficacies of newer analogues were measured using DPPH and ABTS assays, in addition to the assessment of their anticancer activity against cervical cancer cell lines (HeLa and CaSki) and ovarian cancer cell line (SK-OV-3) implementing the SRB assay. Cytotoxicity of titled compounds was checked using Madin-Darby canine kidney (MDCK) non-cancer cell line. Overall, 6a-r indicated remarkable antioxidant power as DPPH and ABTS(+) scavengers; particularly the presence of halogen(s) (6g, 6h, 6j-6l) was favourable with IC50 values comparable to the control ascorbic acid. Unsubstituted benzothiazole ring favored the activity of resultant compounds (6a and 6r) against HeLa cell line, whereas presence of chlorine (6g) or a di-fluoro group (6k) was a key to exert strong action against CaSki. Moreover, a mono-fluoro (6j) and a ketonic functionality (6o) were beneficial to display anticipated anticancer effects against ovarian cancer cell line SK-OV-3. The structural assignments of the new products were done on the basis of IR, (1)H NMR, (13)C NMR spectroscopy and elemental analysis.

  8. Role of Ubiquitin Ligases and the Proteasome in Oncogenesis: Novel Targets for Anticancer Therapies

    PubMed Central

    Micel, Lindsey N.; Tentler, John J.; Smith, Peter G.; Eckhardt, Gail S.

    2013-01-01

    The ubiquitin proteasome system (UPS) regulates the ubiquitination, and thus degradation and turnover, of many proteins vital to cellular regulation and function. The UPS comprises a sequential series of enzymatic processes using four key enzyme families: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-carrier proteins), E3 (ubiquitin-protein ligases), and E4 (ubiquitin chain assembly factors). Because the UPS is a crucial regulator of the cell cycle, and abnormal cell-cycle control can lead to oncogenesis, aberrancies within the UPS pathway can result in a malignant cellular phenotype and thus has become an attractive target for novel anticancer agents. This article will provide an overall review of the mechanics of the UPS, describe aberrancies leading to cancer, and give an overview of current drug therapies selectively targeting the UPS. PMID:23358974

  9. New Pt-NNSO core anticancer agents: Structural optimization and investigation of their anticancer activity.

    PubMed

    Chong, Shu Xian; Jin, Yinxue; Au-Yeung, Steve Chik Fun; To, Kenneth Kin Wah

    2017-02-12

    A series of new platinum Pt(II) compounds possessing a bidentate leaving ligand modified from oxaliplatin has been synthesized, with one of the oxygen ligating atom substituted for a sulphur atom (resulting in a Pt-NNSO coordination core structure). The general structures are R,R-diaminocyclohexane (DACH)-Pt-(methylthio)acetic acid (K4) and DACH-Pt-(thiophenylacetic acid) (K4 derivatives). Substitution of an electron donating or withdrawing group at the ortho or para position on the phenyl ring of K4 derivatives was found to affect the complexes' stability, reactivity with the biological molecules (5'-guanosine monophosphate (5'-GMP) and L-methionine (L-Met)) and anticancer activity. (1)H NMR experiments demonstrated that Pt-NNSO complexes formed a mixture of mono- and diadduct with 5'-GMP in various ratios, which are different from the classical Pt drugs (forming mainly diadduct). In addition, all of the K4 derivatives with improved lipophilicity are less deactivated by L-Met in comparison to cisplatin (CDDP) and oxaliplatin. Biological assessments showed that all Pt-NNSO complexes are less toxic than CDDP in normal porcine kidney cells and are minimally affected by drug resistance. Some of the new compounds also displayed comparable anticancer activity to CDDP or better than carboplatin in a few cancer cell lines. The lower reactivity of the Pt-NNSO compounds than CDDP towards thiol molecules, presumably leading to less efflux in resistant cancer cells, and the ability to inhibit autophagy were believed to allow the new compounds to be less affected by Pt resistance.

  10. Prediction and Early Evaluation of Anticancer Therapy Response: From Imaging of Drug Efflux Pumps to Targeted Therapy Response.

    PubMed

    Meng, Qingqing; Li, Zheng; Li, Shaoshun

    2016-01-01

    Multidrug resistance (MDR) describes the resistance of tumor cells to chemotherapy and has been ascribed to the overexpression of drug efflux pumps. Molecular imaging of drug efflux pumps is helpful to identify the patients who may be resistant to the chemotherapy and thus will avoid the unnecessary treatment and increase the therapeutic effectiveness. Imaging probes targeting drug efflux pumps can non-invasively evaluate the Pgp function and play an important role in identification of MDR, prediction of response, and monitoring MDR modulation. On the other hand, new anticancer agents based on molecular targets such as epidermal growth factor receptor (EGFR) and angiogenic factor receptor may potentially be combined with chemotherapeutic drugs to overcome the MDR. Imaging of molecular targets visualize treatment response of patients at molecular level vividly and help to select right patients for certain targeted anticancer therapy. Among all the imaging modalities, nuclear imaging including positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging has the greatest promise for rapid translation to the clinic and can realize quantitative visualization of biochemical processes in vivo. In this review, we will summarize the nuclear imaging probes utilized for predicting and evaluating the early anticancer therapy response.99mTc labeled agents and PET based radiopharmaceuticals like 18F-Paclitaxel, 11C-Verapamil for drug efflux pumps imaging will be discussed here. Moreover, molecular imaging probes used for targeted therapy response evaluation like 18F-Tamoxifen,89Zr-Trastuzumab will also be introduced in this review.

  11. Folate receptor targeted liposomes encapsulating anti-cancer drugs.

    PubMed

    Chaudhury, Anumita; Das, Surajit

    2015-01-01

    Among all available lipid based nanoparticulate systems, the success of liposomal drug delivery system is evident by the number of liposomal products available in the market or under advanced stages of preclinical and clinical trials. Liposome has the ability to deliver chemotherapeutic agents to the targeted tissues or even inside the cancerous cells by enhanced intracellular penetration or improved tumour targeting. In the last decade, folate receptor mediated tumour targeting has emerged as an attractive alternative method of active targeting of cancer cells through liposomes due to its numerous advantages over other targeting methods. Folate receptors, also known as folate binding proteins, allow the binding and internalization of folate or folic acid into the cells by a method called folate receptor mediated endocytosis. They have restricted presence in normal cells and are mostly expressed during malignant transformation. In this review article, folate receptor targeting capability of liposomes has been described. This review article has focussed on the different cancer drugs which have been encapsulated in folate receptor targeted liposomes and their in vitro as well as in vivo efficacies in several tumour models.

  12. Mitochondria Death/Survival Signaling Pathways in Cardiotoxicity Induced by Anthracyclines and Anticancer-Targeted Therapies

    PubMed Central

    Montaigne, David; Hurt, Christopher; Neviere, Remi

    2012-01-01

    Anthracyclines remain the cornerstone of treatment in many malignancies but these agents have a cumulative dose relationship with cardiotoxicity. Development of cardiomyopathy and congestive heart failure induced by anthracyclines are typically dose-dependent, irreversible, and cumulative. Although past studies of cardiotoxicity have focused on anthracyclines, more recently interest has turned to anticancer drugs that target many proteins kinases, such as tyrosine kinases. An attractive model to explain the mechanism of this cardiotoxicity could be myocyte loss through cell death pathways. Inhibition of mitochondrial transition permeability is a valuable tool to prevent doxorubicin-induced cardiotoxicity. In response to anthracycline treatment, activation of several protein kinases, neuregulin/ErbB2 signaling, and transcriptional factors modify mitochondrial functions that determine cell death or survival through the modulation of mitochondrial membrane permeability. Cellular response to anthracyclines is also modulated by a myriad of transcriptional factors that influence cell fate. Several novel targeted chemotherapeutic agents have been associated with a small but worrying risk of left ventricular dysfunction. Agents such as trastuzumab and tyrosine kinase inhibitors can lead to cardiotoxicity that is fundamentally different from that caused by anthracyclines, whereas biological effects converge to the mitochondria as a critical target. PMID:22482055

  13. Pegylated arginine deiminase: a novel anticancer enzyme agent

    PubMed Central

    Feun, Lynn; Savaraj, Niramol

    2011-01-01

    Pegylated arginine deiminase (ADI-PEG20) is a novel anticancer enzyme that produces depletion of arginine, which is a nonessential amino acid in humans. Certain tumours, such as malignant melanoma and hepatocellular carcinoma, are auxotrophic for arginine. These tumours that are sensitive to arginine depletion do not express argininosuccinate synthetase, a key enzyme in the synthesis of arginine from citrulline. ADI-PEG20 inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Phase I – II trials in patients with melanoma and hepatocellular carcinomas have shown the drug to have antitumour activity and tolerable side effects. Large Phase II trials and randomised, controlled Phase III trials are needed to determine its overall efficacy in the treatment of these malignancies and others. PMID:16787144

  14. Recent development in [1,4]benzodiazepines as potent anticancer agents: a review.

    PubMed

    Gill, Rupinder Kaur; Kaushik, Shiv Om; Chugh, Jasreen; Bansal, Sumit; Shah, Anamik; Bariwal, Jitender

    2014-01-01

    The [1,4]benzodiazepine is an important class of heterocyclic compounds and clinically used for many ailments in humans. The [1,4]benzodiazepine has unique structure that mimics the peptide linkage. This interesting observation completely shifted the interest of medicinal chemist for [1,4]benzodiazepine from CNS acting drugs to anticancer agents. During last few decades, a large number of reports have appeared in the literature highlighting the anticancer activity of [1,4]benzodiazepines. Here, in this article, we have discussed the brief synthesis, origin of [1,4]benzodiazepines as anticancer agent, their mechanism of action and latest developments in this field. We have compiled the most important literature reports from last few decades till date.

  15. Plant Anticancer Agents XXXIII. Constituents of Passerina vulgaris1.

    PubMed

    Ji-Xian, G; Handa, S S; Pezzuto, J M; Kinghorn, A D; Farnsworth, N R

    1984-06-01

    Two lignans of known structure, (+)-syringaresinol, a cytotoxic agent, and (+)-nortrachelogenin, a compound with demonstrated antileukemic activity, were isolated from a biologically active extract of the stems of PASSERINA VULGARIS.

  16. Base excision repair: contribution to tumorigenesis and target in anticancer treatment paradigms

    PubMed Central

    Illuzzi, Jennifer L.; Wilson, David M.

    2015-01-01

    Cancer treatments often lose their effectiveness due to the development of multiple drug resistance. Thus, identification of key proteins involved in the tumorigenic process and the survival mechanism(s), coupled with the design of novel therapeutic compounds (such as small molecule inhibitors), are essential steps towards the establishment of improved anticancer treatment strategies. DNA repair pathways and their proteins have been exposed as potential targets for combinatorial anticancer therapies that involve DNA-interactive cytotoxins, such as alkylating agents, because of their central role in providing resistance against DNA damage. In addition, an understanding of the tumor-specific genetics and associated DNA repair capacity has allowed research scientists and clinicians to begin to devise more targeted treatment strategies based on the concept of synthetic lethality. In this review, the repair mechanisms, as well as the links to cancer progression and treatment, of three key proteins that function in the base excision repair pathway, i.e. APE1, POLβ, and FEN1, are discussed. PMID:22788768

  17. Fanconi anemia D2 protein confers chemoresistance in response to the anticancer agent, irofulven.

    PubMed

    Wang, Yutian; Wiltshire, Timothy; Senft, Jamie; Wenger, Sharon L; Reed, Eddie; Wang, Weixin

    2006-12-01

    The Fanconi anemia-BRCA pathway of genes are frequently mutated or epigenetically repressed in human cancer. The proteins of this pathway play pivotal roles in DNA damage signaling and repair. Irofulven is one of a new class of anticancer agents that are analogues of mushroom-derived illudin toxins. Preclinical studies and clinical trials have shown that irofulven is effective against several tumor cell types. The exact nature of irofulven-induced DNA damage is not completely understood. Previously, we have shown that irofulven activates ATM and its targets, NBS1, SMC1, CHK2, and p53. In this study, we hypothesize that irofulven induces DNA double-strand breaks and FANCD2 may play an important role in modulating cellular responses and chemosensitivity in response to irofulven treatment. By using cells that are proficient or deficient for FANCD2, ATR, or ATM, we showed that irofulven induces FANCD2 monoubiquitination and nuclear foci formation. ATR is important in mediating irofulven-induced FANCD2 monoubiquitination. Furthermore, we showed that FANCD2 plays a critical role in maintaining chromosome integrity and modulating chemosensitivity in response to irofulven-induced DNA damage. Therefore, this study suggests that it might be clinically significant to target irofulven therapy to cancers defective for proteins of the Fanconi anemia-BRCA pathway.

  18. Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anticancer agents

    PubMed Central

    Al-Balas, Qosay A; Hassan, Mohammad A; Al-Shar’i, Nizar A; Mhaidat, Nizar M; Almaaytah, Ammar M; Al-Mahasneh, Fatima M; Isawi, Israa H

    2016-01-01

    Background The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I) and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs. Methods Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I. Results Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM. Conclusion We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may be efficiently employed in future optimization steps. PMID:27574401

  19. Targeting autophagy in cancer stem cells as an anticancer therapy.

    PubMed

    Lei, Yuanyuan; Zhang, Dan; Yu, Jin; Dong, Hui; Zhang, Jianwei; Yang, Shiming

    2017-05-01

    Cancer stem cells (CSCs), which comprise a small proportion of total cancer cells, have special capacities for self-renewal, differentiation and tumor formation. Currently, CSCs are regarded as the major cause of the failure in anticancer therapy, such as chemoresistance and/or radioresistance, tumor recurrence and metastasis. Autophagy, a process of cellular self-digestion and response to stress, has a role in tumor formation and progression, and it may play a dual role in CSCs-related resistance to anticancer therapy. Most researchers believe that autophagy contributes to stemness maintenance of CSCs and is responsible for the failure of anticancer therapy. Unexpectedly, several studies have also suggested that loss of stemness in CSCs could be mediated by autophagy. Here, we review the recent advances in CSCs and autophagy, especially analyze the complex relationship between them, and hope to apply this new knowledge to the strategies for anticancer therapy.

  20. Design, synthesis, and anticancer activity of novel berberine derivatives prepared via CuAAC "click" chemistry as potential anticancer agents.

    PubMed

    Jin, Xin; Yan, Tian-Hua; Yan, Lan; Li, Qian; Wang, Rui-Lian; Hu, Zhen-Lin; Jiang, Yuan-Ying; Sun, Qing-Yan; Cao, Yong-Bing

    2014-01-01

    A series of novel derivatives of phenyl-substituted berberine triazolyls has been designed and synthesized via copper-catalyzed azide-alkyne cycloaddition click chemistry in an attempt to develop antitumor agents. All of the compounds were evaluated for anticancer activity against a panel of three human cancer cell lines, including MCF-7 (breast), SW-1990 (pancreatic), and SMMC-7721 (liver) and the noncancerous human umbilical vein endothelial cell (HUVEC) cell lines. The results indicated that most of the compounds displayed notable anticancer activities against the MCF-7 cells compared with berberine. Among these derivatives, compound 16 showed the most potent inhibitory activity against the SW-1990 and SMMC-7721 cell lines, with half-maximal inhibitory concentration (IC50) values of 8.54±1.97 μM and 11.87±1.83 μM, respectively. Compound 36 exhibited the most potent inhibitory activity against the MCF-7 cell line, with an IC50 value of 12.57±1.96 μM. Compound 16 and compound 36 exhibited low cytotoxicity in the HUVEC cell line, with IC50 values of 25.49±3.24 μM and 30.47±3.47 μM. Furthermore, compounds 14, 15, 16, 17, 18, 32, and 36 exhibited much better selectivity than berberine toward the normal cell line HUVEC.

  1. A translational study "case report" on the small molecule "energy blocker" 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside.

    PubMed

    Ko, Y H; Verhoeven, H A; Lee, M J; Corbin, D J; Vogl, T J; Pedersen, P L

    2012-02-01

    The small alkylating molecule, 3-bromopyruvate (3BP), is a potent and specific anticancer agent. 3BP is different in its action from most currently available chemo-drugs. Thus, 3BP targets cancer cells' energy metabolism, both its high glycolysis ("Warburg Effect") and mitochondrial oxidative phosphorylation. This inhibits/ blocks total energy production leading to a depletion of energy reserves. Moreover, 3BP as an "Energy Blocker", is very rapid in killing such cells. This is in sharp contrast to most commonly used anticancer agents that usually take longer to show a noticeable effect. In addition, 3BP at its effective concentrations that kill cancer cells has little or no effect on normal cells. Therefore, 3BP can be considered a member, perhaps one of the first, of a new class of anticancer agents. Following 3BP's discovery as a novel anticancer agent in vitro in the Year 2000 (Published in Ko et al. Can Lett 173:83-91, 2001), and also as a highly effective and rapid anticancer agent in vivo shortly thereafter (Ko et al. Biochem Biophys Res Commun 324:269-275, 2004), its efficacy as a potent anticancer agent in humans was demonstrated. Here, based on translational research, we report results of a case study in a young adult cancer patient with fibrolamellar hepatocellular carcinoma. Thus, a bench side discovery in the Department of Biological Chemistry at Johns Hopkins University, School of Medicine was taken effectively to bedside treatment at Johann Wolfgang Goethe University Frankfurt/Main Hospital, Germany. The results obtained hold promise for 3BP as a future cancer therapeutic without apparent cyto-toxicity when formulated properly.

  2. Multifunctional Nanoprobes for Cancer Cell Targeting, Imaging and Anticancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Linkov, Pavel; Laronze-Cochard, Marie; Sapi, Janos; Sidorov, Lev N.; Nabiev, Igor

    The diagnosis and treatment of cancer have been greatly improved with recent developments in bio-nanotechnology, including engineering of multifunctional probes. One of the promising nanoscale tools for cancer imaging is fluorescent quantum dots (QDs), whose small size and unique optical properties allow them to penetrate into cells and ensure highly sensitive optical diagnosis of cancer at the cellular level. Furthermore, novel multi-functional probes have been developed in which QDs are conjugated with one or several functional molecules, including targeting moieties and therapeutic agents. Here, the strategy for engineering novel nanocarriers for controlled nucleus-targeted antitumor drug delivery and real-time imaging by single- or two-photon microscopy is described. A triple multifunctional nanoprobe is being developed that consists of a nitrogen-based heterocyclic derivative, an anticancer agent interacting with a DNA in living cells; a recognized molecule serving as a vector responsible for targeted delivery of the probe into cancer cells; and photoluminescent QDs providing the imaging capability of the probe. Subsequent optimization of the multifunctional nanoprobe will offer new possibilities for cancer diagnosis and treatment.

  3. Recent developments of C-4 substituted coumarin derivatives as anticancer agents.

    PubMed

    Dandriyal, Jyoti; Singla, Ramit; Kumar, Manvendra; Jaitak, Vikas

    2016-08-25

    Cancer is a prominent cause of death in global. Currently, the numbers of drugs that are in clinical practice are having a high prevalence of side effect and multidrug resistance. Researchers have made an attempt to expand a suitable anticancer drug that has no MDR and side effect. Coumarin scaffold became an attractive subject due to their broad spectrum of pharmacological activities. Coumarin derivatives extensively explored for anticancer activities as it possesses minimum side effect along with multi-drug reversal activity. Coumarin derivatives can act by various mechanisms on different tumor cell lines depending on substitution pattern of the core structure of coumarin. Substitution on coumarin nucleus leads to the search for more potent compounds. In this review, we have made an effort to give a synthetic strategy for the preparation of C-4 substituted coumarin derivatives as anticancer agents based on their mechanism of action and also discuss the SAR of the most active compound.

  4. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic.

    PubMed

    Pace, Jennifer R; DeBerardinis, Albert M; Sail, Vibhavari; Tacheva-Grigorova, Silvia K; Chan, Kelly A; Tran, Raymond; Raccuia, Daniel S; Wechsler-Reya, Robert J; Hadden, M Kyle

    2016-04-28

    Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold.

  5. Investigation of Vietnamese plants for potential anticancer agents

    PubMed Central

    Pérez, Lynette Bueno; Still, Patrick C.; Naman, C. Benjamin; Ren, Yulin; Pan, Li; Chai, Hee-Byung; Carcache de Blanco, Esperanza J.; Ninh, Tran Ngoc; Van Thanh, Bui; Swanson, Steven M.; Soejarto, Djaja D.

    2014-01-01

    Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities. PMID:25395897

  6. Reprogramming urokinase into an antibody-recruiting anticancer agent.

    PubMed

    Jakobsche, Charles E; McEnaney, Patrick J; Zhang, Andrew X; Spiegel, David A

    2012-02-17

    Synthetic compounds for controlling or creating human immunity have the potential to revolutionize disease treatment. Motivated by challenges in this arena, we report herein a strategy to target metastatic cancer cells for immune-mediated destruction by targeting the urokinase-type plasminogen activator receptor (uPAR). Urokinase-type plasminogen activator (uPA) and uPAR are overexpressed on the surfaces of a wide range of invasive cancer cells and are believed to contribute substantially to the migratory propensities of these cells. The key component of our approach is an antibody-recruiting molecule that targets the urokinase receptor (ARM-U). This bifunctional construct is formed by selectively, covalently attaching an antibody-binding small molecule to the active site of the urokinase enzyme. We demonstrate that ARM-U is capable of directing antibodies to the surfaces of target cancer cells and mediating both antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC) against multiple human cancer cell lines. We believe that the reported strategy has the potential to inform novel treatment options for a variety of deadly, invasive cancers.

  7. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents.

    PubMed

    Chiou, Chun-Tang; Lee, Wei-Chun; Liao, Jiahn-Haur; Cheng, Jing-Jy; Lin, Lie-Chwen; Chen, Chih-Yu; Song, Jen-Shin; Wu, Ming-Hsien; Shia, Kak-Shan; Li, Wen-Tai

    2015-06-15

    Indirubin, an active component in the traditional Chinese medicine formula Danggui Longhui Wan, shows promising anticancer effects. Meisoindigo is an analog derived from indirubin, which is less toxic and appears to be even more potent against cancer. In considering meisoindigo as a structural template for the development of new drugs, we designed and synthesized a series of 3-ylideneoxindole acetamides as novel anticancer agents. The acetamides were then evaluated for in vitro and in vivo anticancer activities. The 3-ylideneoxindole acetamides were found to have better anticancer activity than was indirubin-3'-oxime in several cancer cell lines and also displayed a spectrum of activity similar to that of the drug candidate roscovitine, a CDK inhibitor. Among the 3-ylideneoxindole acetamides, compound 10 showed particularly good efficacy. Cell cycle analysis further revealed that compound 10 arrested cells in the G1 phase and caused an increase in the sub-G1 population, indicating that the apoptosis pathway had been induced. In addition, exposure of cells to compound 10 led to the upregulation of the cell-cycle regulator cyclin D1, which was sustained at a high level. In contrast, the same compound induced a short-term elevation in the level of cyclin E, which was followed by a rapid decrease and the attenuation of Rb phosphorylation. Furthermore, a docking model suggests that compound 10 binds to the active site of CDK4. In testing the therapeutic potency of compound 10 on CT26-xenografted BALB/c mice, a significant reduction in tumor size comparable to that of cisplatin was found when administrated via the i.p. route. The mice presented no loss of body weight, indicating that this compound possesses low toxicity. In the future, we are planning in vivo investigations of these new active anticancer agents to better elucidate active mechanisms at the cellular level and thus benefit the development of anticancer therapies.

  8. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy.

    PubMed

    Siemann, Dietmar W; Mercer, Emma; Lepler, Sharon; Rojiani, Amyn M

    2002-05-01

    The utility of combining the vascular targeting agents 5,6-dimethyl-xanthenone-4 acetic acid (DMXAA) and combretastatin A-4 disodium phosphate (CA4DP) with the anticancer drugs cisplatin and cyclophosphamide (CP) was evaluated in experimental rodent (KHT sarcoma), human breast (SKBR3) and ovarian (OW-1) tumor models. Doses of the vascular targeting agents that led to rapid vascular shutdown and subsequent extensive central tumor necrosis were identified. Histologic evaluation showed morphologic damage of tumor cells within a few hours after treatment, followed by extensive hemorrhagic necrosis and dose-dependent neoplastic cell death as a result of prolonged ischemia. Whereas these effects were induced by a range of CA4DP doses (10-150 mg/kg), the dose response to DMXAA was extremely steep; doses < or = 15 mg/kg were ineffective and doses > or = 20 mg/kg were toxic. DMXAA also enhanced the tumor cell killing of cisplatin, but doses > 15 mg/kg were required. In contrast, CA4DP increased cisplatin-induced tumor cell killing at all doses studied. This enhancement of cisplatin efficacy was dependent on the sequence and interval between the agents. The greatest effects were achieved when the vascular targeting agents were administered 1-3 hr after cisplatin. When CA4DP (100 mg/kg) or DMXAA (17.5 mg/kg) were administered 1 hr after a range of doses of cisplatin or CP, the tumor cell kill was 10-500-fold greater than that seen with chemotherapy alone. In addition, the inclusion of the antivascular agents did not increase bone marrow stem cell toxicity associated with these anticancer drugs, thus giving rise to a therapeutic gain.

  9. Histone deacetylase inhibitors: understanding a new wave of anticancer agents.

    PubMed

    Villar-Garea, Ana; Esteller, Manel

    2004-11-01

    Cancer is as much an epigenetic disease as it is a genetic and cytogenetic disease. The discovery that drastic changes in DNA methylation and histone modifications are commonly found in human tumors has inspired various laboratories and pharmaceutical companies to develop and study epigenetic drugs. One of the most promising groups of agents is the inhibitors of histone deacetylases (HDACs), which have different biochemical and biologic properties but have a single common activity: induction of acetylation in histones, the key proteins in nucleosome and chromatin structure. One of the main mechanisms of action of HDAC inhibitors is the transcriptional reactivation of dormant tumor-suppressor genes, such as p21WAF1. However, their pleiotropic nature leaves open the possibility that their well-known differentiation, cell-cycle arrest and apoptotic properties are also involved in other functions associated with HDAC inhibition. Many phase I clinical trials indicate that HDAC inhibitors appear to be well-tolerated drugs. Thus, the field is ready for rigorous biologic and clinical scrutiny to validate the therapeutic potential of these drugs. Our current data indicate that the use of HDAC inhibitors, probably in association with classical chemotherapy drugs or in combination with DNA-demethylating agents, could be promising for cancer patients.

  10. Fenugreek: a naturally occurring edible spice as an anticancer agent.

    PubMed

    Shabbeer, Shabana; Sobolewski, Michelle; Anchoori, Ravi Kumar; Kachhap, Sushant; Hidalgo, Manuel; Jimeno, Antonio; Davidson, Nancy; Carducci, Michael A; Khan, Saeed R

    2009-02-01

    In recent years, various dietary components that can potentially be used for the prevention and treatment of cancer have been identified. In this study, we demonstrate that extract (FE) from the seeds of the plant Trigonella foenum graecum, commonly called fenugreek, are cytotoxic in vitro to a panel of cancer but not normal cells. Treatment with 10-15 ug/mL of FE for 72 h was growth inhibitory to breast, pancreatic and prostate cancer cell lines (PCa). When tested at higher doses (15-20 ug/mL), FE continued to be growth inhibitory to PCa cell lines but not to either primary prostate or hTert-immortalized prostate cells. At least part of the growth inhibition is due to induction of cell death, as seen by incorporation of Ethidium Bromide III into cancer cells exposed to FE. Molecular changes induced in PCa cells are: in DU-145 cells: downregulation of mutant p53, and in PC-3 cells upregulation of p21 and inhibition of TGFbeta induced phosphorylation of Akt. The surprising finding of our studies is that death of cancer cells occurs despite growth stimulatory pathways being simultaneously upregulated (phosphorylated) by FE. Thus, these studies add another biologically active agent to our armamentarium of naturally occurring agents with therapeutic potential.

  11. Mefloquine-oxazolidine derivatives: a new class of anticancer agents.

    PubMed

    Rodrigues, Felipe A R; Bomfim, Igor da S; Cavalcanti, Bruno C; Pessoa, Claudia; Goncalves, Raoni S B; Wardell, James L; Wardell, Solange M S V; de Souza, Marcus V N

    2014-01-01

    A series of 23 racemic mefloquine-oxazolidine derivatives, 4-[3-(aryl)hexahydro[1,3]oxazolo[3,4-a]pyridin-1-yl]-2,8-bis(trifluoromethyl)quinolines, derived from (R*, S*)-(±)-mefloquine and arenealdehydes, have been evaluated for their activity against four cancer cell lines (HCT-8, OVCAR-8, HL-60, and SF-295). Good cytotoxicities have been determined with IC50 values ranging from 0.59 to 4.79 μg/mL. In general compounds with aryl groups having strong electron-releasing substituents, such as HO and MeO, or electron-rich heteroaryl groups, for example imidazol-2-y-l, are active. However, other factors such as steric effects may play a role. As both the active and non-active conformations of the mefloquine-oxazolidine derivatives are similar, it is concluded that molecular conformations do not play a significant role either. This study is the first to evaluate mefloquine derivatives as antitumor agents. The mefloquine-oxazolidine derivatives are considered to be useful leads for the rational design of new antitumor agents.

  12. Large-scale automatic extraction of side effects associated with targeted anticancer drugs from full-text oncological articles.

    PubMed

    Xu, Rong; Wang, QuanQiu

    2015-06-01

    Targeted anticancer drugs such as imatinib, trastuzumab and erlotinib dramatically improved treatment outcomes in cancer patients, however, these innovative agents are often associated with unexpected side effects. The pathophysiological mechanisms underlying these side effects are not well understood. The availability of a comprehensive knowledge base of side effects associated with targeted anticancer drugs has the potential to illuminate complex pathways underlying toxicities induced by these innovative drugs. While side effect association knowledge for targeted drugs exists in multiple heterogeneous data sources, published full-text oncological articles represent an important source of pivotal, investigational, and even failed trials in a variety of patient populations. In this study, we present an automatic process to extract targeted anticancer drug-associated side effects (drug-SE pairs) from a large number of high profile full-text oncological articles. We downloaded 13,855 full-text articles from the Journal of Oncology (JCO) published between 1983 and 2013. We developed text classification, relationship extraction, signaling filtering, and signal prioritization algorithms to extract drug-SE pairs from downloaded articles. We extracted a total of 26,264 drug-SE pairs with an average precision of 0.405, a recall of 0.899, and an F1 score of 0.465. We show that side effect knowledge from JCO articles is largely complementary to that from the US Food and Drug Administration (FDA) drug labels. Through integrative correlation analysis, we show that targeted drug-associated side effects positively correlate with their gene targets and disease indications. In conclusion, this unique database that we built from a large number of high-profile oncological articles could facilitate the development of computational models to understand toxic effects associated with targeted anticancer drugs.

  13. Molecular mechanism of action of microtubule-stabilizing anticancer agents.

    PubMed

    Prota, Andrea E; Bargsten, Katja; Zurwerra, Didier; Field, Jessica J; Díaz, José Fernando; Altmann, Karl-Heinz; Steinmetz, Michel O

    2013-02-01

    Microtubule-stabilizing agents (MSAs) are efficacious chemotherapeutic drugs widely used for the treatment of cancer. Despite the importance of MSAs for medical applications and basic research, their molecular mechanisms of action on tubulin and microtubules remain elusive. We determined high-resolution crystal structures of αβ-tubulin in complex with two unrelated MSAs, zampanolide and epothilone A. Both compounds were bound to the taxane pocket of β-tubulin and used their respective side chains to induce structuring of the M-loop into a short helix. Because the M-loop establishes lateral tubulin contacts in microtubules, these findings explain how taxane-site MSAs promote microtubule assembly and stability. Further, our results offer fundamental structural insights into the control mechanisms of microtubule dynamics.

  14. Targeting Tumor Metabolism for Cancer Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target?

    PubMed Central

    Zhang, Wen; Zhang, Shao-Lin; Hu, Xiaohui; Tam, Kin Yip

    2015-01-01

    Cancer remains a lethal threat to global lives. Development of novel anticancer therapeutics is still a challenge to scientists in the field of biomedicine. In cancer cells, the metabolic features are significantly different from those of normal ones, which are hallmarks of several malignancies. Recent studies brought atypical cellular metabolism, such as aerobic glycolysis or the Warburg effect, into the scientific limelight. Targeting these altered metabolic pathways in cancer cells presents a promising therapeutic strategy. Pyruvate dehydrogenase kinases (PDKs), key enzymes in the pathway of glucose metabolism, could inactivate the pyruvate dehydrogenase complex (PDC) by phosphorylating it and preserving the substrates pyruvate, lactate and alanine for gluconeogenesis. Overexpression of PDKs could block the oxidative decarboxylation of pyruvate to satisfy high oxygen demand in cancer cells, while inhibition of PDKs could upregulate the activity of PDC and rectify the balance between the demand and supply of oxygen, which could lead to cancer cell death. Thus, inhibitors targeting PDKs represent a promising strategy for cancer treatment by acting on glycolytic tumors while showing minimal side effects on the oxidative healthy organs. This review considers the role of PDKs as regulator of PDC that catalyzes the oxidative decarboxylation of pyruvate in mitochondrion. It is concluded that PDKs are solid therapeutic targets. Inhibition of PDKs could be an attractive therapeutic approach for the development of anti-cancer drugs. PMID:26681918

  15. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    PubMed

    Bao, Jiaolin; Huang, Borong; Zou, Lidi; Chen, Shenghui; Zhang, Chao; Zhang, Yulin; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  16. Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: new anticancer agents.

    PubMed

    Husain, Asif; Rashid, Mohd; Shaharyar, M; Siddiqui, Anees A; Mishra, Ravinesh

    2013-04-01

    Two series of Benzimidazole clubbed with triazolo-thiadiazoles (5a-q, 5r, 5s and 5x-a(1)) and triazolo-thiadiazines (5t-w) were synthesized with an aim to produce promising anticancer agents. In vitro anticancer activities of synthesized compounds were investigated at the National Cancer Institute (NCI) against NCI 60 cell line panel; results showed good to remarkable broad-spectrum anticancer activity. Among them, the compound 5h (NCS: 760452, 1-(1H-benzo [d] imidazol-2-yl)-3-(6-(2,4-dichlorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl) propan-1-one) exhibited significant growth inhibition with GI50 values ranging from 0.20 to 2.58 μM and found superior selectivity for the leukemia cell lines and further screened at 10-fold dilutions of five different concentrations (0.01, 0.1, 1, 10 and 100 μM). The 5h may possibly be used as lead compound for developing new anticancer agents.

  17. Mitochondria targeting nano agents in cancer therapeutics

    PubMed Central

    Zhang, Xiao-Ying; Zhang, Pei-Ying

    2016-01-01

    Mitochondria have emerged as noteworthy therapeutic targets as their physiological functions are often altered in pathological conditions such as cancer. The electronic databases of MEDLINE, EMBASE and PubMed were searched for recent studies reporting the importance of mitochondria targeting nanoagents in cancer therapeutics. The concluding remarks of the above papers mostly confirmed the growing potential of these novel nanoagents in the area of anticancer research. Furthermore, numerous studies demonstrated the immense potential of nanocarriers in delivering mitochondria-acting compounds to their target site. Among the assemblage of nanomaterials, carbon nanotubes (CNTs) are becoming more prominent for drug delivery due to favorable attributes including their unique shape, which promotes cellular uptake, and large aspect ratio that facilitates conjugation of bioactive molecules on their surface. The present review focused on the current view of variable options available in mitochondria-targeting anticancer therapeutics. It may be concluded that improvements are essential for its establishment as a gold standard therapeutic option especially in the clinical setting. PMID:28105197

  18. Photophysical characterization of anticancer drug valrubicin in rHDL nanoparticles and its use as an imaging agent.

    PubMed

    Shah, Sunil; Chib, Rahul; Raut, Sangram; Bermudez, Jaclyn; Sabnis, Nirupama; Duggal, Divya; Kimball, Joseph D; Lacko, Andras G; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2016-02-01

    Nanoparticles are target-specific drug delivery agents that are increasingly used in cancer therapy to enhance bioavailability and to reduce off target toxicity of anti-cancer agents. Valrubicin is an anti-cancer drug, currently approved only for vesicular bladder cancer treatment because of its poor water solubility. On the other hand, valrubicin carrying reconstituted high density lipoprotein (rHDL) nanoparticles appear ideally suited for extended applications, including systemic cancer chemotherapy. We determined selected fluorescence properties of the free (unencapsulated) drug vs. valrubicin incorporated into rHDL nanoparticles. We have found that upon encapsulation into rHDL nanoparticles the quantum yield of valrubicin fluorescence increased six fold while its fluorescence lifetime increased about 2 fold. Accordingly, these and potassium iodide (KI) quenching data suggest that upon incorporation, valrubicin is localized deep in the interior of the nanoparticle, inside the lipid matrix. Fluorescence anisotropy of the rHDL valrubicin nanoparticles was also found to be high along with extended rotational correlation time. The fluorescence of valrubicin could also be utilized to assess its distribution upon delivery to prostate cancer (PC3) cells. Overall the fluorescence properties of the rHDL: valrubicin complex reveal valuable novel characteristics of this drug delivery vehicle that may be particularly applicable when used in systemic (intravenous) therapy.

  19. Rationale and clinical use of multitargeting anticancer agents.

    PubMed

    Melisi, Davide; Piro, Geny; Tamburrino, Anna; Carbone, Carmine; Tortora, Giampaolo

    2013-08-01

    Human solid tumors contain genetically distinct subpopulations of tumor cells that can be enriched under selective pressure of specific treatments. This heterogeneous nature reflects the dynamism of drug response and it represents a fundamental driver of resistance. Moreover, the complexity of cancer disease is increased by the activity of cross-talking, redundant signaling pathways, escape pathways and compensatory events, which triggers activation of secondary growth and survival. Broad multi-targeted approaches are requested to overcome a complex, heterogeneous, and dynamic disease such as cancer.

  20. Small Molecules Targeting c-Myc Oncogene: Promising Anti-Cancer Therapeutics

    PubMed Central

    Chen, Bing-Jia; Wu, Yan-Ling; Tanaka, Yoshimasa; Zhang, Wen

    2014-01-01

    The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal translocation, rearrangement, and amplification. Its encoded protein transduces intracellular signals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the research and development of c-Myc-targeted drugs. PMID:25332683

  1. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics.

    PubMed

    Chen, Bing-Jia; Wu, Yan-Ling; Tanaka, Yoshimasa; Zhang, Wen

    2014-01-01

    The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal translocation, rearrangement, and amplification. Its encoded protein transduces intracellular signals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the research and development of c-Myc-targeted drugs.

  2. The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside.

    PubMed

    Azevedo-Silva, J; Queirós, O; Baltazar, F; Ułaszewski, S; Goffeau, A; Ko, Y H; Pedersen, P L; Preto, A; Casal, M

    2016-08-01

    At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.

  3. Bacterial biosynthesis and maturation of the didemnin anticancer agents

    PubMed Central

    Xu, Ying; Kersten, Roland D.; Nam, Sang-Jip; Lu, Liang; Al-Suwailem, Abdulaziz M.; Zheng, Huajun; Fenical, William; Dorrestein, Pieter C.

    2012-01-01

    The antineoplastic agent didemnin B from the Caribbean tunicate Trididemnum solidum was the first marine drug to be clinically tested in humans. Because of its limited supply and its complex cyclic depsipeptide structure, considerable challenges were encountered during didemnin B's development that continue to limit aplidine (dehydrodidemnin B), which is currently being evaluated in numerous clinical trials. Herein we show that the didemnins are bacterial products produced by the marine α-proteobacteria Tistrella mobilis and Tistrella bauzanensis via a unique post-assembly line maturation process. Complete genome sequence analysis of the 6,513,401 bp T. mobilis strain KA081020-065 with its five circular replicons revealed the putative didemnin biosynthetic gene cluster (did) on the 1,126,962 bp megaplasmid pTM3. The did locus encodes a 13-module hybrid nonribosomal peptide synthetase-polyketide synthase enzyme complex organized in a co-linear arrangement for the synthesis of the fatty acylglutamine ester derivatives didemnins X and Y rather than didemnin B as first anticipated. Imaging mass spectrometry of T. mobilis bacterial colonies captured the time-dependent extracellular conversion of the didemnin X and Y precursors to didemnin B in support of an unusual post-synthetase activation mechanism. Significantly, the discovery of the didemnin biosynthetic gene cluster may provide a long-term solution to the supply problem that presently hinders this group of marine natural products and pave the way for the genetic engineering of new didemnin congeners. PMID:22458477

  4. [Developing FGFR inhibitors as potential anti-cancer agents].

    PubMed

    Zsákai, Lilian; Németh, Gábor; Szántai-Kis, Csaba; Greff, Zoltán; Horváth, Zoltán; Szokol, Bálint; Baska, Ferenc; Boon, Tin Chuad; Orfi, Lászlo; Kéri, Györgya

    2013-01-01

    Fibroblast Growth Factor Receptor (FGFR) family is a sequentially highly related subgroup of membrane proteins consisting of four tyrosine kinase type enzyme: FGFR1, FGFR2, FGFR3 and FGFR4. These are kinases of great interest in a wide spectrum of physiological processes such as tissue repair via controlling cell proliferation. As initiatiors of cell proliferation, in some cases they have leading roles in several types of cancer, eg. breast cancer, pancreas cancer, gastric tumors and multiple myeloma via overexpression and/or mutation. This phenomenon makes them promising targets for drug development in order to develop signal transduction therapies based on small molecule FGFR inhibitors. We have developed two main groups of lead molecules: compounds with benzotiophene and oxindole cores utilizing numerous methods from in silico modelling via in vitro biochemichal assays and testing on relevant cell lines to cytotoxicity assays.

  5. The application of click chemistry in the synthesis of agents with anticancer activity

    PubMed Central

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. PMID:25792812

  6. The application of click chemistry in the synthesis of agents with anticancer activity.

    PubMed

    Ma, Nan; Wang, Ying; Zhao, Bing-Xin; Ye, Wen-Cai; Jiang, Sheng

    2015-01-01

    The copper(I)-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry) to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents.

  7. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    SciTech Connect

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-11

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  8. [Phase I clinical trial design of anticancer agents--a Fibonacci and a modified Fibonacci sequence].

    PubMed

    Kusaba, H; Tamura, T

    2000-05-01

    A Phase I clinical trial of an anticancer agent is the first evaluation in humans, and it is an important step in drug development. From the ethical point of view, the goal is to escalate to the maximum tolerated dose quickly, yet safely, to minimize the likelihood of treating patients at doses that are too low or high. It is expected that the contradictions between safety and efficacy in the Phase I clinical trials will be solved by developing methods. The modified Fibonacci sequence has been generally adopted for dose escalation, although it includes some problems. It is necessary to recognize that the method used for Phase I clinical trials for anticancer agents remains unsatisfactory, and that it is also necessary to develop more ethical and scientific methods.

  9. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents

    NASA Astrophysics Data System (ADS)

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔGbind, pred) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔGbind, expt (calculated from the Kd value) are consistent with the predicted value of ΔGbind, pred calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological

  10. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents.

    PubMed

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔG(bind, pred)) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔG(bind, expt) (calculated from the Kd value) are consistent with the predicted value of ΔG(bind, pred) calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further

  11. Ligand substitutions between ruthenium–cymene compounds can control protein versus DNA targeting and anticancer activity

    PubMed Central

    Adhireksan, Zenita; Davey, Gabriela E.; Campomanes, Pablo; Groessl, Michael; Clavel, Catherine M.; Yu, Haojie; Nazarov, Alexey A.; Yeo, Charmian Hui Fang; Ang, Wee Han; Dröge, Peter; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2014-01-01

    Ruthenium compounds have become promising alternatives to platinum drugs by displaying specific activities against different cancers and favourable toxicity and clearance properties. Nonetheless, their molecular targeting and mechanism of action are poorly understood. Here we study two prototypical ruthenium-arene agents—the cytotoxic antiprimary tumour compound [(η6-p-cymene)Ru(ethylene-diamine)Cl]PF6 and the relatively non-cytotoxic antimetastasis compound [(η6-p-cymene)Ru(1,3,5-triaza-7-phosphaadamantane)Cl2]—and discover that the former targets the DNA of chromatin, while the latter preferentially forms adducts on the histone proteins. Using a novel ‘atom-to-cell’ approach, we establish the basis for the surprisingly site-selective adduct formation behaviour and distinct cellular impact of these two chemically similar anticancer agents, which suggests that the cytotoxic effects arise largely from DNA lesions, whereas the protein adducts may be linked to the other therapeutic activities. Our study shows promise for developing new ruthenium drugs, via ligand-based modulation of DNA versus protein binding and thus cytotoxic potential, to target distinguishing epigenetic features of cancer cells. PMID:24637564

  12. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.

    PubMed

    Geromichalos, George D; Alifieris, Constantinos E; Geromichalou, Elena G; Trafalis, Dimitrios T

    2016-01-01

    Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Nowadays, new generation of anti- cancer drugs, able to inhibit more than one pathway, is believed to play a major role in contemporary anticancer drug research. In this way, polypharmacology, focusing on multi-target drugs, has emerged as a new paradigm in drug discovery. A number of recent successful drugs have in part or in whole emerged from a structure-based research approach. Many advances including crystallography and informatics are behind these successes. Increasing insight into the genetics and molecular biology of cancer has resulted in the identification of an increasing number of potential molecular targets, for anticancer drug discovery and development. These targets can be approached through exploitation of emerging structural biology, "rational" drug design, screening of chemical libraries, or a combination of these methods. The result is the rapid discovery of new anticancer drugs. In this article we discuss the application of molecular modeling, molecular docking and virtual high-throughput screening to multi-targeted anticancer drug discovery. Efforts have been made to employ in silico methods for facilitating the search and design of selective multi-target agents. These computer aided molecular design methods have shown promising potential in facilitating drug discovery directed at selective multiple targets and is expected to contribute to intelligent lead anticancer drugs.

  13. Telomeres and telomerase: Pharmacological targets for new anticancer strategies?

    PubMed

    Pendino, F; Tarkanyi, I; Dudognon, C; Hillion, J; Lanotte, M; Aradi, J; Ségal-Bendirdjian, E

    2006-03-01

    Telomeres are located at the ends of eukaryotic chromosomes. Human telomerase, a cellular reverse transcriptase, is a ribonucleoprotein enzyme that catalyzes the synthesis and extension of telomeric DNA. It is composed of at least, a template RNA component (hTR; human Telomerase RNA) and a catalytic subunit, the telomerase reverse transcriptase (hTERT). The absence of telomerase is associated with telomere shortening and aging of somatic cells, while high telomerase activity is observed in over 85% of human cancer cells, strongly indicating its key role during tumorigenesis. Several details regarding telomere structure and telomerase regulation have already been elucidated, providing new targets for therapeutic exploitation. Further support for anti-telomerase approaches comes from recent studies indicating that telomerase is endowed of additional functions in the control of growth and survival of tumor cells that do not depend only on the ability of this enzyme to maintain telomere length. This observation suggests that inhibiting telomerase or its synthesis may have additional anti-proliferative and apoptosis inducing effect, independently of the reduction of telomere length during cell divisions. This article reviews the basic information about the biology of telomeres and telomerase and attempts to present various approaches that are currently under investigation to inhibit its expression and its activity. We summarize herein distinct anti-telomerase approaches like antisense strategies, reverse transcriptase inhibitors, and G-quadruplex interacting agents, and also review molecules targeting hTERT expression, such as retinoids and evaluate them for their therapeutic potential. "They conceive a certain theory, and everything has to fit into that theory. If one little fact will not fit it, they throw it aside. But it is always the facts that will not fit in that are significant". "Death on the Nile". Agatha Christie.

  14. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  15. Centrosome – a promising anti-cancer target

    PubMed Central

    Rivera-Rivera, Yainyrette; Saavedra, Harold I

    2016-01-01

    The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition), functional (abnormal microtubule nucleation and disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research. PMID:28008224

  16. Identification of endoplasmic reticulum stress-inducing agents by antagonizing autophagy: a new potential strategy for identification of anti-cancer therapeutics in B-cell malignancies

    PubMed Central

    Mahoney, Emilia; Maddocks, Kami; Flynn, Joseph; Jones, Jeffrey; Cole, Sara L.; Zhang, Xiaoli; Byrd, John C.; Johnson, Amy J.

    2013-01-01

    The endoplasmic reticulum (ER) plays a vital function in multiple cellular processes. There is a growing interest in developing therapeutic agents that can target the ER in cancer cells, inducing a stress response that leads to cell death. However, ER stress-inducing agents can also induce autophagy, a survival strategy of cancer cells. Therefore, by inhibiting autophagy we can increase the efficacy of the ER stress-inducing agents. Nelfinavir, a human immunodeficiency virus (HIV) protease inhibitor with anti-cancer properties, can induce ER stress. Nelfinavir’s effects on chronic lymphocytic leukemia (CLL) are yet to be elucidated. Herein we demonstrate that nelfinavir induces ER morphological changes and stress response, along with an autophagic protective strategy. Our data reveal that chloroquine, an autophagy inhibitor, significantly increases nelfinavir cytotoxicity. These results identify a novel strategy potentially effective in CLL treatment, by repositioning two well-known drugs as a combinatorial therapy with anti-cancer properties. PMID:23469959

  17. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property.

    PubMed

    Azmi, Asfar S; Sarkar, Fazlul H; Hadi, S M

    2013-01-01

    " Let food be thy medicine and medicine be thy food" was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating) behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents.

  18. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure?

    PubMed

    Apetoh, L; Ladoire, S; Coukos, G; Ghiringhelli, F

    2015-09-01

    Recent clinical trials revealed the impressive efficacy of immunological checkpoint blockade in different types of metastatic cancers. Such data underscore that immunotherapy is one of the most promising strategies for cancer treatment. In addition, preclinical studies provide evidence that some cytotoxic drugs have the ability to stimulate the immune system, resulting in anti-tumor immune responses that contribute to clinical efficacy of these agents. These observations raise the hypothesis that the next step for cancer treatment is the combination of cytotoxic agents and immunotherapies. The present review aims to summarize the immune-mediated effects of chemotherapeutic agents and their clinical relevance, the biological and clinical features of immune checkpoint blockers and finally, the preclinical and clinical rationale for novel therapeutic strategies combining anticancer agents and immune checkpoint blockers.

  19. Essential Oils and Their Constituents as Anticancer Agents: A Mechanistic View

    PubMed Central

    Mantha, Anil K.

    2014-01-01

    Exploring natural plant products as an option to find new chemical entities as anticancer agents is one of the fastest growing areas of research. Recently, in the last decade, essential oils (EOs) have been under study for their use in cancer therapy and the present review is an attempt to collect and document the available studies indicating EOs and their constituents as anticancer agents. This review enlists nearly 130 studies of EOs from various plant species and their constituents that have been studied so far for their anticancer potential and these studies have been classified as in vitro and in vivo studies for EOs and their constituents. This review also highlights in-depth various mechanisms of action of different EOs and their constituents reported in the treatment strategies for different types of cancer. The current review indicates that EOs and their constituents act by multiple pathways and mechanisms involving apoptosis, cell cycle arrest, antimetastatic and antiangiogenic, increased levels of reactive oxygen and nitrogen species (ROS/RNS), DNA repair modulation, and others to demonstrate their antiproliferative activity in the cancer cell. The effect of EOs and their constituents on tumour suppressor proteins (p53 and Akt), transcription factors (NF-κB and AP-1), MAPK-pathway, and detoxification enzymes like SOD, catalase, glutathione peroxidase, and glutathione reductase has also been discussed. PMID:25003106

  20. Plant-derived anticancer agents: a promising treatment for bone metastasis

    PubMed Central

    Juárez, Patricia

    2014-01-01

    Bone metastasis is a very frequent complication of advanced cancer, and it remains an incurable disease. Current therapies that have been approved for the treatment of bone metastases delay the occurrence of skeletal-related events and can extend the patient's lifespan by a few years. However, they will not cure or cause the regression of established bone metastases, and new side effects are emerging after prolonged treatment. Thus, new therapies are severely needed. There are compelling evidences from in vitro and in vivo preclinical studies that support the use of compounds derived from plants to treat several forms of cancers including bone metastasis. More than 25% of the drugs used during the past 20 years were directly derived from plants, whereas another 25% are chemically altered natural products. Still, only 5–15% of the ∼250 000 higher plants have ever been investigated for bioactive compounds. There is a growing interest for the study of anticancer drugs with relatively low side effects that target specific key signaling pathways that control the establishment and progression of the cancer metastasis. Therefore, further studies are needed to identify new natural compounds with high efficiency in cancer prevention and treatment. Extensive reviews about plant-derived agents and their use in cancer have been published, but none when it comes to the treatment of bone metastases. Only a few of these compounds have been evaluated for the treatment of bone metastasis; here we describe some of the most prominent ones that are having the potential to reach the clinic soon. PMID:28243436

  1. Neem Limonoids as Anticancer Agents: Modulation of Cancer Hallmarks and Oncogenic Signaling.

    PubMed

    Nagini, Siddavaram

    2014-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile medicinal plants, widely distributed in the Indian subcontinent. Neem is a rich source of limonoids that are endowed with potent medicinal properties predominantly antioxidant, anti-inflammatory, and anticancer activities. Azadirachtin, gedunin, and nimbolide are more extensively investigated relative to other neem limonoids. Accumulating evidence indicates that the anticancer effects of neem limonoids are mediated through the inhibition of hallmark capabilities of cancer such as cell proliferation, apoptosis evasion, inflammation, invasion, and angiogenesis. The neem limonoids have been demonstrated to target oncogenic signaling kinases and transcription factors chiefly, NF-κB, Wnt/β-catenin, PI3K/Akt, MAPK, and JAK/STAT signaling pathways. Neem limonoids that target multiple pathways that are aberrant in cancer are ideal candidates for cancer chemoprevention and therapy.

  2. Pharmacokinetic Properties of Anticancer Agents for the Treatment of CNS Tumors: Update of the Literature

    PubMed Central

    Jacus, Megan O.; Daryani, Vinay M.; Harstead, K. Elaine; Patel, Yogesh T.; Throm, Stacy L.; Stewart, Clinton F.

    2015-01-01

    Despite significant improvement in outcomes for patients with hematological malignancies and solid tumors over the past 10 years, patients with primary or metastatic brain tumors continue to have a poor prognosis. A primary reason for this is the inability of many chemotherapeutic drugs to penetrate into the brain and brain tumors at concentrations high enough to exert an antitumor effect due to unique barriers and efflux transporters. Several studies have been published recently examining the CNS pharmacokinetics of various anticancer drugs in patients with primary and metastatic brain tumors. To summarize recent advances in the field, this review will critically present studies published within the last 9 years examining brain and cerebrospinal fluid penetration of clinically available anticancer agents for patients with CNS tumors. PMID:26293618

  3. Evolution in Medicinal Chemistry of Ursolic Acid Derivatives as Anticancer Agents

    PubMed Central

    Chen, Haijun; Gao, Yu; Wang, Ailan; Zhou, Xiaobin; Zheng, Yunquan; Zhou, Jia

    2015-01-01

    Currently, there is a renewed interest in common dietaries and plant-based traditional medicines for the prevention and treatment of cancer. In the search for potential anticancer agents from natural sources, ursolic acid (UA), a pentacyclic triterpenoid widely found in various medicinal herbs and fruits, exhibits powerful biological effects including its attractive anticancer activity against various types of cancer cells. However, the limited solubility, rapid metabolism and poor bioavailability of UA restricted its further clinical applications. In the past decade, with substantial progress toward the development of new chemical entities for the treatment of cancer, numerous UA derivatives have been designed and prepared to overcome its disadvantages. Despite extensive effort, discovery of effective UA derivatives has so far met with only limited success. This review summarizes the current status of the structural diversity and evolution in medicinal chemistry of UA analogues and provides a detailed discussion of future direction for further research in the chemical modifications of UA. PMID:25617694

  4. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents.

    PubMed

    Chen, Haijun; Gao, Yu; Wang, Ailan; Zhou, Xiaobin; Zheng, Yunquan; Zhou, Jia

    2015-03-06

    Currently, there is a renewed interest in common dietaries and plant-based traditional medicines for the prevention and treatment of cancer. In the search for potential anticancer agents from natural sources, ursolic acid (UA), a pentacyclic triterpenoid widely found in various medicinal herbs and fruits, exhibits powerful biological effects including its attractive anticancer activity against various types of cancer cells. However, the limited solubility, rapid metabolism and poor bioavailability of UA restricted its further clinical applications. In the past decade, with substantial progress toward the development of new chemical entities for the treatment of cancer, numerous UA derivatives have been designed and prepared to overcome its disadvantages. Despite extensive effort, discovery of effective UA derivatives has so far met with only limited success. This review summarizes the current status of the structural diversity and evolution in medicinal chemistry of UA analogues and provides a detailed discussion of future direction for further research in the chemical modifications of UA.

  5. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents

    PubMed Central

    Liu, Yu; Wan, Wen-zhu; Li, Yan; Zhou, Guan-lian; Liu, Xin-guang

    2017-01-01

    Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors. PMID:27769061

  6. Pre-clinical evaluation of a novel class of anti-cancer agents, the Pyrrolo-1, 5-benzoxazepines

    PubMed Central

    Greene, LM; Butini, S; Campiani, G; Williams, DC; Zisterer, DM

    2016-01-01

    Microtubules are currently ranked one of the most validated targets for chemotherapy; with clinical use of microtubule targeting agents (MTAs) extending beyond half a century. Recent research has focused on the development of novel MTAs to combat drug resistance and drug associated toxicities. Of particular interest are compounds structurally different to those currently used within the clinic. The pyrrolo-1, 5-benzoxazepines (PBOXs) are a structurally distinct novel group of anti-cancer agents, some of which target tubulin. Herein, we review the chemistry, mechanism of action, preclinical development of the PBOXs and comparisons with clinically relevant chemotherapeutics. The PBOXs induce a range of cellular responses including; cell cycle arrest, apoptosis, autophagy, anti-vascular and anti-angiogenic effects. The apoptotic potential of the PBOXs extends across a wide spectrum of cancer-derived cell lines, by targeting tubulin and multiple molecular pathways frequently deregulated in human cancers. Extensive experimental data suggest that combining the PBOXs with established chemotherapeutics or radiation is therapeutically advantageous. Pre-clinical highlights of the PBOXs include; cancer specificity and improved therapeutic efficacy as compared to some current first line therapeutics. PMID:27994676

  7. Targeting Cytochrome P450 Enzymes: A New Approach in Anti-cancer Drug Development

    PubMed Central

    Bruno, Robert D.; Njar, Vincent C.O.

    2007-01-01

    Cytochrome P450s (CYPs) represent a large class of heme-containing enzymes that catalyze the metabolism of multitudes of substrates both endogenous and exogenous. Until recently, however, CYPs have been largely overlooked in cancer drug development, acknowledged only for their role in Phase I metabolism of chemotherapeutics. The first successful strategy targeting CYP enzymes in cancer therapy was the development of potent inhibitors of CYP19 (aromatase) for the treatment of breast cancer. Aromatase inhibitors ushered in a new era in hormone ablation therapy for estrogen dependent cancers, and have paved the way for similar strategies (i.e. inhibition of CYP17) that combat androgen dependent prostate cancer. Identification of CYPs involved in the inactivation of anti-cancer metabolites of Vitamin D3 and Vitamin A has triggered development of agents that target these enzymes as well. The discovery of the over-expression of exogenous metabolizing CYPs, such as CYP1B1, in cancer cells has roused interest in the development of inhibitors for chemoprevention and of prodrugs designed to be activated by CYPs only in cancer cells. Finally, the expression of CYPs within tumors has been utilized in the development of bioreductive molecules that are activated by CYPs only under hypoxic conditions. This review offers the first comprehensive analysis of strategies in drug development that either inhibit or exploit CYP enzymes for the treatment of cancer. PMID:17544277

  8. Expression of sulfotransferase SULT1A1 in cancer cells predicts susceptibility to the novel anticancer agent NSC-743380.

    PubMed

    Huang, Xiao; Cao, Mengru; Wang, Li; Wu, Shuhong; Liu, Xiaoying; Li, Hongyu; Zhang, Hui; Wang, Rui-Yu; Sun, Xiaoping; Wei, Caimiao; Baggerly, Keith A; Roth, Jack A; Wang, Michael; Swisher, Stephen G; Fang, Bingliang

    2015-01-01

    The small molecule anticancer agent NSC-743380 modulates functions of multiple cancer-related pathways and is highly active in a subset of cancer cell lines in the NCI-60 cell line panel. It also has promising in vivo anticancer activity. However, the mechanisms underlying NSC-743380's selective anticancer activity remain uncharacterized. To determine biomarkers that may be used to identify responders to this novel anticancer agent, we performed correlation analysis on NSC-743380's anticancer activity and the gene expression levels in NCI-60 cell lines and characterized the functions of the top associated genes in NSC-743380-mediated anticancer activity. We found sulfotransferase SULT1A1 is causally associated with NSC-743380's anticancer activity. SULT1A1 was expressed in NSC-743380-sensitive cell lines but was undetectable in resistant cancer cells. Ectopic expression of SULT1A1 in NSC743380 resistant cancer cells dramatically sensitized the resistant cells to NSC-743380. Knockdown of the SULT1A1 in the NSC-743380 sensitive cancer cell line rendered it resistance to NSC-743380. The SULT1A1 protein levels in cell lysates from 18 leukemia cell lines reliably predicted the susceptibility of the cell lines to NSC-743380. Thus, expression of SULT1A1 in cancer cells is required for NSC-743380's anticancer activity and can be used as a biomarker for identification of NSC-743380 responders.

  9. Mapping Novel Metabolic Nodes Targeted by Anti-Cancer Drugs that Impair Triple-Negative Breast Cancer Pathogenicity.

    PubMed

    Roberts, Lindsay S; Yan, Peter; Bateman, Leslie A; Nomura, Daniel K

    2017-03-08

    Triple-negative breast cancers (TNBCs) are estrogen receptor, progesterone receptor, and HER2 receptor-negative subtypes of breast cancers that show the worst prognoses and lack targeted therapies. Here, we have coupled the screening of ∼400 anticancer agents that are under development or in the clinic with chemoproteomic and metabolomic profiling to identify novel metabolic mechanisms for agents that impair TNBC pathogenicity. We identify 20 anticancer compounds that significantly impaired cell survival across multiple types of TNBC cells. Among these 20 leads, the phytoestrogenic natural product licochalcone A was of interest, since TNBCs are unresponsive to estrogenic therapies, indicating that licochalcone A was likely acting through another target. Using chemoproteomic profiling approaches, we reveal that licochalcone A impairs TNBC pathogenicity, not through modulating estrogen receptor activity but rather through inhibiting prostaglandin reductase 1, a metabolic enzyme involved in leukotriene B4 inactivation. We also more broadly performed metabolomic profiling to map additional metabolic mechanisms of compounds that impair TNBC pathogenicity. Overlaying lipidomic profiling with drug responses, we find that deubiquitinase inhibitors cause dramatic elevations in acyl carnitine levels, which impair mitochondrial respiration and contribute to TNBC pathogenic impairments. We thus put forth two unique metabolic nodes that are targeted by drugs or drug candidates that impair TNBC pathogenicity. Our results also showcase the utility of coupling drug screens with chemoproteomic and metabolomic profiling to uncover unique metabolic drivers of TNBC pathogenicity.

  10. Acoustic response from adherent targeted contrast agents

    PubMed Central

    Zhao, Shukui; Kruse, Dustin E.; Ferrara, Katherine W.; Dayton, Paul A.

    2006-01-01

    In ultrasonic molecular imaging, encapsulated micron-sized gas bubbles are tethered to a blood vessel wall by targeting ligands. A challenging problem is to detect the echoes from adherent microbubbles and distinguish them from echoes from non-adherent agents and tissue. Echoes from adherent contrast agents are observed to include a high amplitude at the fundamental frequency, and significantly different spectral shape compared with free agents (p < 0.0003). Mechanisms for the observed acoustical difference and potential techniques to utilize these differences for molecular imaging are proposed. PMID:17225437

  11. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells.

    PubMed

    Torquato, Heron F V; Goettert, Márcia I; Justo, Giselle Z; Paredes-Gamero, Edgar J

    2017-04-01

    Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.

  12. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy.

    PubMed

    González-Vallinas, Margarita; Reglero, Guillermo; Ramírez de Molina, Ana

    2015-01-01

    Cancer remains an important cause of mortality nowadays and, therefore, new therapeutic approaches are still needed. Rosemary (Rosmarinus officinalis L.) has been reported to possess antitumor activities both in vitro and in animal studies. Some of these activities were attributed to its major components, such as carnosic acid, carnosol, ursolic acid, and rosmarinic acid. Initially, the antitumor effects of rosemary were attributed to its antioxidant activity. However, in recent years, a lack of correlation between antioxidant and antitumor effects exerted by rosemary was reported, and different molecular mechanisms were related to its tumor inhibitory properties. Moreover, supported by the U.S. Food and Drug Administration and the European Food and Safety Authority, specific compositions of rosemary extract were demonstrated to be safe for human health and used as antioxidant additive in foods, suggesting the potential easy application of this agent as a complementary approach in cancer therapy. In this review, we aim to summarize the reported anticancer effects of rosemary, the demonstrated molecular mechanisms related to these effects and the interactions between rosemary and currently used anticancer agents. The possibility of using rosemary extract as a complementary agent in cancer therapy in comparison with its isolated components is discussed.

  13. Inner conflict in patients receiving oral anticancer agents: a qualitative study

    PubMed Central

    Komatsu, Hiroko; Takahashi, Tsunehiro

    2015-01-01

    Objectives To explore the experiences of patients receiving oral anticancer agents. Design A qualitative study using semistructured interviews with a grounded theory approach. Setting A university hospital in Japan. Participants 14 patients with gastric cancer who managed their cancer with oral anticancer agents. Results Patients with cancer experienced inner conflict between rational belief and emotional resistance to taking medication due to confrontation with cancer, doubt regarding efficacy and concerns over potential harm attached to use of the agent. Although they perceived themselves as being adherent to medication, they reported partial non-adherent behaviours. The patients reassessed their lives through the experience of inner conflict and, ultimately, they recognised their role in medication therapy. Conclusions Patients with cancer experienced inner conflict, in which considerable emotional resistance to taking their medication affected their occasional non-adherent behaviours. In patient-centred care, it is imperative that healthcare providers understand patients’ inner conflict and inconsistency between their subjective view and behaviour to support patient adherence. PMID:25872938

  14. Seeking new anti-cancer agents from autophagy-regulating natural products.

    PubMed

    Hua, Fang; Shang, Shuang; Hu, Zhuo-Wei

    2017-04-01

    Natural products are an important original source of many widely used drugs, including anti-cancer drugs. Early research efforts for seeking anti-cancer therapy from the natural products are mainly focused on the compounds with cytotoxicity capability. The good examples include vinblastine, vincristine, the camptothecin derivatives; topotecan, irinotecan, epipodophyllotoxin derivatives and paclitaxel. In a recent decade, the fundamental progression has been made in the understanding of molecular and cellular mechanisms regarding tumor initiation, metastasis, therapeutic resistance, immune escape, and relapse, which provide a great opportunity for the development of new mechanism-based anticancer drugs, especially drugs against new molecular and cellular targets. Autophagy, a critical cell homeostasis mechanism and promising drug target involved in a verity of human diseases including cancer, can be modulated by many compounds derived from natural products. In this review, we'll give a short introduction of autophagy and discuss the roles of autophagy in the tumorigenesis and progression. And then, we summarize the accumulated evidences to show the anti-tumor effects of several compounds derived from natural products through modulation of autophagy activity.

  15. Mitochondrial Targeting of Vitamin E Succinate Enhances Its Pro-apoptotic and Anti-cancer Activity via Mitochondrial Complex II*

    PubMed Central

    Dong, Lan-Feng; Jameson, Victoria J. A.; Tilly, David; Cerny, Jiri; Mahdavian, Elahe; Marín-Hernández, Alvaro; Hernández-Esquivel, Luz; Rodríguez-Enríquez, Sara; Stursa, Jan; Witting, Paul K.; Stantic, Bela; Rohlena, Jakub; Truksa, Jaroslav; Kluckova, Katarina; Dyason, Jeffrey C.; Ledvina, Miroslav; Salvatore, Brian A.; Moreno-Sánchez, Rafael; Coster, Mark J.; Ralph, Stephen J.; Smith, Robin A. J.; Neuzil, Jiri

    2011-01-01

    Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC50 of 80 μm, whereas the electron transfer from CII to CIII was inhibited with IC50 of 1.5 μm. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser68 within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug. PMID:21059645

  16. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II.

    PubMed

    Dong, Lan-Feng; Jameson, Victoria J A; Tilly, David; Cerny, Jiri; Mahdavian, Elahe; Marín-Hernández, Alvaro; Hernández-Esquivel, Luz; Rodríguez-Enríquez, Sara; Stursa, Jan; Witting, Paul K; Stantic, Bela; Rohlena, Jakub; Truksa, Jaroslav; Kluckova, Katarina; Dyason, Jeffrey C; Ledvina, Miroslav; Salvatore, Brian A; Moreno-Sánchez, Rafael; Coster, Mark J; Ralph, Stephen J; Smith, Robin A J; Neuzil, Jiri

    2011-02-04

    Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC(50) of 80 μM, whereas the electron transfer from CII to CIII was inhibited with IC(50) of 1.5 μM. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser(68) within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug.

  17. Novel, Broad Spectrum Anticancer Agents Containing the Tricyclic 5:7:5-Fused Diimidazodiazepine Ring System

    PubMed Central

    2010-01-01

    Synthesis of a series of novel, broad spectrum anticancer agents containing the tricyclic 5:7:5-fused diimidazo[4,5-d:4′,5′-f][1,3]diazepine ring system is reported. Compounds 1, 2, 8, 11, and 12 in the series show promising in vitro antitumor activity with low micromolar IC50 values against prostate, lung, breast, and ovarian cancer cell lines. Some notions about structure−activity relationships and a possible mechanism of biological activity are presented. Also presented are preliminary in vivo toxicity studies of 1 using SCID mice. PMID:21572541

  18. Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: design and synthesis as anticancer agents.

    PubMed

    Husain, Asif; Rashid, Mohd; Mishra, Ravinesh; Parveen, Shama; Shin, Dong-Soo; Kumar, Deepak

    2012-09-01

    Two new series of benzimidazole bearing oxadiazole[1-(1H-benzo[d]imidazol-2-yl)-3-(5-substituted-1,3,4-oxadiazol-2-yl)propan-1-ones (4a-l)] and triazolo-thiadiazoles[1-(1H-benzo[d]imidazol-2-yl)-3-(6-(substituted)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)propan-1-one (7a-e)] have been synthesized successfully from 4-(1H-benzo[d]imidazol-2-yl)-4-oxobutanehydrazide (3) with an aim to produce promising anticancer agents. In vitro anticancer activities of synthesized compounds were screened at the National Cancer Institute (NCI), USA, according to their applied protocol against full NCI 60 human cell lines panel; results showed good to remarkable anticancer activity. Among them, compound (4j, NCS: 761980) exhibited significant growth inhibition and further screened at 10-fold dilutions of five different concentrations (0.01, 0.1, 1, 10 and 100 μM) with GI(50) values ranging from 0.49 to 48.0 μM and found superior for the non-small cell lung cancer cell lines like HOP-92 (GI(50) 0.49, TGI 19.9,LC(50) >100 and Log(10)GI(50) -6.30, Log(10)TGI -4.70, Log(10)LC(50) >-4.00).

  19. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    SciTech Connect

    Bello, A.; Konforte, D; Poduch, E; Furlonger, C; Wei, L; Liu, Y; Lewis, M; Pai, E; Paige, C; Kotra, L

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro, 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.

  20. Synthesis and Evaluation of Aminothiazole-Paeonol Derivatives as Potential Anticancer Agents.

    PubMed

    Tsai, Chia-Ying; Kapoor, Mohit; Huang, Ying-Pei; Lin, Hui-Hsien; Liang, Yu-Chuan; Lin, Yu-Ling; Huang, Su-Chin; Liao, Wei-Neng; Chen, Jen-Kun; Huang, Jer-Shing; Hsu, Ming-Hua

    2016-01-26

    In this study, novel aminothiazole-paeonol derivatives were synthesized and characterized using ¹H-NMR, (13)C-NMR, IR, mass spectroscopy, and high performance liquid chromatography. All the new synthesized compounds were evaluated according to their anticancer effect on seven cancer cell lines. The experimental results indicated that these compounds possess high anticancer potential regarding human gastric adenocarcinoma (AGS cells) and human colorectal adenocarcinoma (HT-29 cells). Among these compounds, N-[4-(2-hydroxy-4-methoxyphenyl)thiazol-2-yl]-4-methoxybenzenesulfonamide (13c) had the most potent inhibitory activity, with IC50 values of 4.0 µM to AGS, 4.4 µM to HT-29 cells and 5.8 µM to HeLa cells. The 4-fluoro-N-[4-(2-hydroxy-4-methoxyphenyl)thiazol-2-yl]benzenesulfonamide (13d) was the second potent compound, showing IC50 values of 7.2, 11.2 and 13.8 µM to AGS , HT-29 and HeLa cells, respectively. These compounds are superior to 5-fluorouracil (5-FU) for relatively higher potency against AGS and HT-29 human cancer cell lines along with lower cytotoxicity to fibroblasts. Novel aminothiazole-paeonol derivatives in this work might be a series of promising lead compounds to develop anticancer agents for treating gastrointestinal adenocarcinoma.

  1. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of

  2. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    PubMed

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  3. Reverse screening approach to identify potential anti-cancer targets of dipyridamole

    PubMed Central

    Ge, Shu-Min; Zhan, Dong-Ling; Zhang, Shu-Hua; Song, Li-Qiang; Han, Wei-Wei

    2016-01-01

    Dipyridamole (DIP) inhibits thrombus formation when given chronically, and causes vasodilation over a short time. To date, DIP can increase the anticancer drugs (5-fluorouracil, methotrexate, piperidine, vincristine) concentration in cancer cells and hence enhance the efficacy of treatment cancer. The inhibition of DIP may result in increased 5-fluorouracil efficacy and diminish the drug side effects. But the actual molecular targets remain unknown. In this study, reverse protein-ligands docking, and quantum mechanics were used to search for the potential molecular targets of DIP. The quantum mechanics calculation was performed by using Gaussian 03 program package. Reverse pharmacophore mapping was used to search for potential molecular target candidates for a given small molecule. The docking study was used for exploring the potential anti-cancer targets of dipyridamole. The two predicted binders with the statistically significant prediction are dihydropyrimidine dehydrogenase (DPD) (PDB Id: 1GTE) and human spindle checkpoint kinase Bub1 (PDB Id: 3E7E). Structure analysis suggests that electrostatic interaction and hydrogen bonding play an important role in their binding process. The strong functional linkage of DIP and 5FU supports our prediction. In conclusion, these results generate a tractable set of anticancer proteins. The exploration of polypharmacology will provide us new opportunities in treating systematic diseases, such as the cancers. The results would generate a tractable set of anticancer target proteins for future experimental validations. PMID:28077994

  4. Preclinical Investigations of PM01183 (Lurbinectedin) as a Single Agent or in Combination with Other Anticancer Agents for Clear Cell Carcinoma of the Ovary

    PubMed Central

    Takahashi, Ryoko; Mabuchi, Seiji; Kawano, Mahiru; Sasano, Tomoyuki; Matsumoto, Yuri; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Sawada, Kenjiro; Kimura, Tadashi

    2016-01-01

    Objective The objective of this study was to evaluate the antitumor effects of lurbinectedin as a single agent or in combination with existing anticancer agents for clear cell carcinoma (CCC) of the ovary, which is regarded as an aggressive, chemoresistant, histological subtype. Methods Using human ovarian CCC cell lines, the antitumor effects of lurbinectedin, SN-38, doxorubicin, cisplatin, and paclitaxel as single agents were assessed using the MTS assay. Then, the antitumor effects of combination therapies involving lurbinectedin and 1 of the other 4 agents were evaluated using isobologram analysis to examine whether these combinations displayed synergistic effects. The antitumor activity of each treatment was also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines. Finally, we determined the effects of mTORC1 inhibition on the antitumor activity of lurbinectedin-based chemotherapy. Results Lurbinectedin exhibited significant antitumor activity toward chemosensitive and chemoresistant CCC cells in vitro. An examination of mouse CCC cell xenografts revealed that lurbinectedin significantly inhibits tumor growth. Among the tested combinations, lurbinectedin plus SN-38 resulted in a significant synergistic effect. This combination also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Everolimus significantly enhanced the antitumor activity of lurbinectedin-based chemotherapies. Conclusions Lurbinectedin, a new agent that targets active transcription, exhibits antitumor activity in CCC when used as a single agent and has synergistic antitumor effects when combined with irinotecan. Our results indicate that lurbinectedin is a promising agent for treating ovarian CCC, both as a first-line treatment and as a salvage treatment for recurrent lesions that develop after platinum-based or paclitaxel treatment. PMID:26986199

  5. Multi-Agent Cooperative Target Search

    PubMed Central

    Hu, Jinwen; Xie, Lihua; Xu, Jun; Xu, Zhao

    2014-01-01

    This paper addresses a vision-based cooperative search for multiple mobile ground targets by a group of unmanned aerial vehicles (UAVs) with limited sensing and communication capabilities. The airborne camera on each UAV has a limited field of view and its target discriminability varies as a function of altitude. First, by dividing the whole surveillance region into cells, a probability map can be formed for each UAV indicating the probability of target existence within each cell. Then, we propose a distributed probability map updating model which includes the fusion of measurement information, information sharing among neighboring agents, information decay and transmission due to environmental changes such as the target movement. Furthermore, we formulate the target search problem as a multi-agent cooperative coverage control problem by optimizing the collective coverage area and the detection performance. The proposed map updating model and the cooperative control scheme are distributed, i.e., assuming that each agent only communicates with its neighbors within its communication range. Finally, the effectiveness of the proposed algorithms is illustrated by simulation. PMID:24865884

  6. Multi-agent cooperative target search.

    PubMed

    Hu, Jinwen; Xie, Lihua; Xu, Jun; Xu, Zhao

    2014-05-26

    This paper addresses a vision-based cooperative search for multiple mobile ground targets by a group of unmanned aerial vehicles (UAVs) with limited sensing and communication capabilities. The airborne camera on each UAV has a limited field of view and its target discriminability varies as a function of altitude. First, by dividing the whole surveillance region into cells, a probability map can be formed for each UAV indicating the probability of target existence within each cell. Then, we propose a distributed probability map updating model which includes the fusion of measurement information, information sharing among neighboring agents, information decay and transmission due to environmental changes such as the target movement. Furthermore, we formulate the target search problem as a multi-agent cooperative coverage control problem by optimizing the collective coverage area and the detection performance. The proposed map updating model and the cooperative control scheme are distributed, i.e., assuming that each agent only communicates with its neighbors within its communication range. Finally, the effectiveness of the proposed algorithms is illustrated by simulation.

  7. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update

    PubMed Central

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C.; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods—including fruits, vegetables, tea, wine, as well as other dietary supplements—and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  8. Death receptors as targets for anti-cancer therapy

    PubMed Central

    Papenfuss, Kerstin; Cordier, Stefanie M; Walczak, Henning

    2008-01-01

    Human tumour cells are characterized by their ability to avoid the normal regulatory mechanisms of cell growth, division and death. The classical chemotherapy aims to kill tumour cells by causing DNA damage-induced apoptosis. However, as many tumour cells posses mutations in intracellular apoptosis-sensing molecules like p53, they are not capable of inducing apoptosis on their own and are therefore resistant to chemotherapy. With the discovery of the death receptors the opportunity arose to directly trigger apoptosis from the outside of tumour cells, thereby circumventing chemotherapeutic resistance. Death receptors belong to the tumour necrosis factor receptor superfamily, with tumour necrosis factor (TNF) receptor-1, CD95 and TNF-related apoptosis-inducing ligand-R1 and -R2 being the most prominent members. This review covers the current knowledge about these four death receptors, summarizes pre-clinical approaches engaging these death receptors in anti-cancer therapy and also gives an overview about their application in clinical trials conducted to date. PMID:19210756

  9. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect

    PubMed Central

    Chen, Xi-sha; Li, Lan-ya; Guan, Yi-di; Yang, Jin-ming; Cheng, Yan

    2016-01-01

    Tumor cells rely mainly on glycolysis for energy production even in the presence of sufficient oxygen, a phenomenon termed the Warburg effect, which is the most outstanding characteristic of energy metabolism in cancer cells. This metabolic adaptation is believed to be critical for tumor cell growth and proliferation, and a number of onco-proteins and tumor suppressors, including the PI3K/Akt/mTOR signaling pathway, Myc, hypoxia-inducible factor and p53, are involved in the regulation of this metabolic adaptation. Moreover, glycolytic cancer cells are often invasive and impervious to therapeutic intervention. Thus, altered energy metabolism is now appreciated as a hallmark of cancer and a promising target for cancer treatment. A better understanding of the biology and the regulatory mechanisms of aerobic glycolysis has the potential to facilitate the development of glycolysis-based therapeutic interventions for cancer. In addition, glycolysis inhibition combined with DNA damaging drugs or chemotherapeutic agents may be effective anticancer strategies through weakening cell damage repair capacity and enhancing drug cytotoxicity. PMID:27374491

  10. Chemotherapy, targeted agents, antiemetics and growth-factors in human milk: how should we counsel cancer patients about breastfeeding?

    PubMed

    Pistilli, Barbara; Bellettini, Giulia; Giovannetti, Elisa; Codacci-Pisanelli, Giovanni; Azim, Hatem A; Benedetti, Giovanni; Sarno, Maria Anna; Peccatori, Fedro A

    2013-05-01

    An increasing number of women are diagnosed with cancer during pregnancy and lactation. Women are usually advised to interrupt breastfeeding during systemic anticancer treatment for fear of serious adverse effects to the nursed infant. However, the issue is poorly addressed in the literature and very few studies have evaluated the safety of breastfeeding during or after cytotoxic drugs or target agents administration. In this review we will analyze the available evidence that addresses the issue of anticancer drugs, targeted agents, antiemetics and growth-factors excretion in human milk. This could serve as a unique resource that may aid physicians in the management of breastfeeding cancer patients interested in maintaining lactation during treatment.

  11. [Sensitivity of esophageal cancer to anticancer agents and supplementary chemotherapy combined with surgical treatment].

    PubMed

    Masaki, Y; Ishigami, K; Oka, M; Matsumoto, N; Honma, K; Uchiyama, T

    1986-04-01

    The authors examined the sensitivities of esophageal cancer to Bleomycin (BLM), Peplomycin (PEP), Cisplatin (CDDP) and 5-FU by the INAS method using 3H-thymidine or 14C-formate as labeled precursors, and determined the concentrations of anticancer agents in cancer lesions by the Band Culture method. On the other hand, the authors investigated the superiority or inferiority of various methods of BLM administration by observing the prevention effect of BLM on the development of experimental esophageal cancer in rats. Forty-three cases out of 76, 57%, showed a sensitivity to BLM, 60% to PEP, 38% to CDDP and 56% to 5-FU. As to the types of roentgenological findings, the superficial and tumorous types showed a high sensitivity rate. As to the types of macroscopical findings, the protruded and superficial types showed a high sensitivity rate. As to the types of histological findings, well differentiated squamous cell carcinoma showed a high sensitivity rate. Sensitivity was higher in metastatic lymph nodes than in main cancer lesions. Tumor tissues which had undergone previous hyperthermic management (at 42 degrees C) showed a higher sensitivity than those which had not. PEP at a half dose brought about the same grade of anticancer effect as BLM. The sensitivities of esophageal cancer to various anticancer agents showed individual differences among clinical cases. Therefore, combination chemotherapy for esophageal cancer was thought to be an effective administration method. The divided administration of small doses of BLM was thought to be more superior than the one-shot administration of a large dose for esophageal cancer. The results of the INAS sensitivity test were perfectly coincident with the effects of chemotherapy in clinical cases of esophageal cancer.

  12. Development of an In Vitro Model to Screen CYP1B1-Targeted Anticancer Prodrugs.

    PubMed

    Wang, Zhiying; Chen, Yao; Drbohlav, Laura M; Wu, Judy Qiju; Wang, Michael Zhuo

    2016-12-01

    Cytochrome P450 1B1 (CYP1B1) is an anticancer therapeutic target due to its overexpression in a number of steroid hormone-related cancers. One anticancer drug discovery strategy is to develop prodrugs specifically activated by CYP1B1 in malignant tissues to cytotoxic metabolites. Here, we aimed to develop an in vitro screening model for CYP1B1-targeted anticancer prodrugs using the KLE human endometrial carcinoma cell line. KLE cells demonstrated superior stability of CYP1B1 expression relative to transiently transfected cells and did not express any appreciable amount of cognate CYP1A1 or CYP1A2, which would have compromised the specificity of the screening assay. The effect of two CYP1B1-targeted probe prodrugs on KLE cells was evaluated in the absence and presence of a CYP1B1 inhibitor to chemically "knock out" CYP1B1 activity (CYP1B1 inhibited). Both probe prodrugs were more toxic to KLE cells than to CYP1B1-inhibited KLE cells and significantly induced G0/G1 arrest and decreased the S phase in KLE cells. They also exhibited pro-apoptotic effects in KLE cells, which were attenuated in CYP1B1-inhibited KLE cells. In summary, a KLE cell-based model has been characterized to be suitable for identifying CYP1B1-targeted anticancer prodrugs and should be further developed and employed for screening chemical libraries.

  13. Highly Adaptable Triple-Negative Breast Cancer Cells as a Functional Model for Testing Anticancer Agents

    PubMed Central

    Singh, Balraj; Shamsnia, Anna; Raythatha, Milan R.; Milligan, Ryan D.; Cady, Amanda M.; Madan, Simran; Lucci, Anthony

    2014-01-01

    A major obstacle in developing effective therapies against solid tumors stems from an inability to adequately model the rare subpopulation of panresistant cancer cells that may often drive the disease. We describe a strategy for optimally modeling highly abnormal and highly adaptable human triple-negative breast cancer cells, and evaluating therapies for their ability to eradicate such cells. To overcome the shortcomings often associated with cell culture models, we incorporated several features in our model including a selection of highly adaptable cancer cells based on their ability to survive a metabolic challenge. We have previously shown that metabolically adaptable cancer cells efficiently metastasize to multiple organs in nude mice. Here we show that the cancer cells modeled in our system feature an embryo-like gene expression and amplification of the fat mass and obesity associated gene FTO. We also provide evidence of upregulation of ZEB1 and downregulation of GRHL2 indicating increased epithelial to mesenchymal transition in metabolically adaptable cancer cells. Our results obtained with a variety of anticancer agents support the validity of the model of realistic panresistance and suggest that it could be used for developing anticancer agents that would overcome panresistance. PMID:25279830

  14. Indole-fused benzooxazepines: a new structural class of anticancer agents

    PubMed Central

    Singh, Ashok K; Raj, Vinit; Rai, Amit; Keshari, Amit K; Saha, Sudipta

    2017-01-01

    Aim: A new series of compounds (1a–16a) bearing indole-fused benzooxazepine was synthesized, characterized and evaluated for anticancer activity. Materials & methods: In this study, all the synthesized compounds were screened via in vitro anticancer testing on Hep-G2 cancer cell line. A computational study was carried out on cancer-related targets including IL-2, IL-6, COX-2 Caspase-3 and Caspase-8. Results: Some of the synthesized compounds effectively controlled the growth of cancerous cells. Conclusion: The most active compounds – 6a, 10a, 13a, 14a and 15a – exemplify notable anticancer profile with GI50 <10 μg/ml. Preliminary structure–activity relationship among the tested compounds can produce an assumption that the electronegative groups at phenyl ring attached with indole-fused benzooxazepine are instrumental for the activity. Molecular docking study showed crucial hydrogen bond and π–π stacking interactions, with good ADMET profiling and molecular dynamic simulation. PMID:28344831

  15. Organometallic Palladium Complexes with a Water-Soluble Iminophosphorane Ligand as Potential Anticancer Agents

    PubMed Central

    Carreira, Monica; Calvo-Sanjuán, Rubén; Sanaú, Mercedes; Marzo, Isabel; Contel, María

    2012-01-01

    The synthesis and characterization of a new water-soluble iminophosphorane ligand TPA=N-C(O)-2BrC6H4 (C,N-IM; TPA = 1,3,5-triaza-7-phosphaadamantane) 1 is reported. Oxidative addition of 1 to Pd2(dba)3 affords the orthopalladated dimer [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) as a mixture of cis and trans isomers (1:1 molar ratio) where the iminophosphorane moeity behaves as a C,N-pincer ligand. By addition of different neutral or monoanionic ligands to 2, the bridging bromide can be cleaved and a variety of hydrophilic or water-soluble mononuclear organometallic palladium(II) complexes of the type [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L-L)] (L-L = acac (3); S2CNMe2 (4); 4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid disodium salt C12H6N2(C6H4SO3Na)2 (5)); [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L)Br] (L = P(mC6H4SO3Na)3 (6); P(3-Pyridyl)3 (7)) and, [Pd(C6H4(C(O)N=TPA)-2}(TPA)2Br] (8) are obtained as single isomers. All new complexes were tested as potential anticancer agents and their cytotoxicity properties were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells, normal T-lymphocytes (PBMC) and DU-145 human prostate cancer cells. Compounds [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) and [Pd{C6H4(C(O)N=TPA-kC,N)-2}(acac)] 3 (which has been crystallographically characterized) display the higher cytotoxicity against the above mentioned cancer cell lines while being less toxic to normal T-lymphocytes (peripheral blood mononuclear cells: PBMC). In addition, 3 is very toxic to cisplatin resistant Jurkat shBak indicating a cell death pathway that may be different to that of cisplatin. The interaction of 2 and 3 with plasmid (pBR322) DNA is much weaker than that of cisplatin pointing to an alternative biomolecular target for these cytotoxic compounds. All the compounds show an interaction with human serum albumin (HSA) faster than that of cisplatin. PMID:23066172

  16. Evaluation of respiration of mitochondria in cancer cells exposed to mitochondria-targeted agents.

    PubMed

    Kluckova, Katarina; Dong, Lan-Feng; Bajzikova, Martina; Rohlena, Jakub; Neuzil, Jiri

    2015-01-01

    Respiration is one of the major functions of mitochondria, whereby these vital organelles use oxygen to produce energy. Many agents that may be of potential clinical relevance act by targeting mitochondria, where they may suppress mitochondrial respiration. It is therefore important to evaluate this process and understand how this is modulated by small molecules. Here, we describe the general methodology to assess respiration in cultured cells, followed by the evaluation of the effect of one anticancer agent targeted to mitochondria on this process, and also how to assess this in tumor tissue.

  17. Molecular combo of photodynamic therapeutic agent silicon(iv) phthalocyanine and anticancer drug cisplatin.

    PubMed

    Mao, Jiafei; Zhang, Yangmiao; Zhu, Jianhui; Zhang, Changli; Guo, Zijian

    2009-02-28

    The combination of a red light PDT agent and a Pt(ii)-based chemotherapeutic drug at the molecular level maintains the intrinsic functions of each unit; the conjugated complexes exhibit remarkable photocytoxicity and demonstrate potential to serve as agents for DNA-targeting PDT as well as red light photochemotherapy.

  18. Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe₃O₄ magnetic nanoparticles for targeted anticancer effects.

    PubMed

    Li, Min; Neoh, Koon-Gee; Wang, Rong; Zong, Bao-Yu; Tan, Jia Yong; Kang, En-Tang

    2013-01-23

    Superparamagnetic nanoparticles grafted with hyperbranched polyglycerol (HPG) and conjugated with methotrexate (MTX) (MNP-g-HPG-MTX) were synthesized via a sol-gel reaction followed by thiol-ene click chemistry and esterification reaction. The successful grafting of MTX and HPG onto the nanoparticles was confirmed by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, and UV-visible spectroscopy. The HPG-graft layer confers the magnetic nanoparticles with good dispersibility and stability in aqueous medium and macrophage-evasive property while the MTX acts as a chemotherapeutic drug as well as a tumor targeting ligand. The dose-dependent targeting and anticancer effect of the MNP-g-HPG-MTX nanoparticles were evaluated, and the results showed that depending on the amount of conjugated MTX and the concentration of the incubated nanoparticles, the uptake of MNP-g-HPG-MTX nanoparticles by human head and neck cancer (KB) cells can be eight times or more higher than those by 3T3 fibroblasts and RAW macrophages. As a result, the MNP-g-HPG-MTX nanoparticles are capable of killing ∼50% of the KB cells while at the same time exhibiting low cytotoxicity towards 3T3 fibroblasts and RAW macrophages. Thus, such nanoparticles can potentially be used as active targeting anticancer agents.

  19. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy.

    PubMed

    Ganapathy-Kanniappan, S; Vali, M; Kunjithapatham, R; Buijs, M; Syed, L H; Rao, P P; Ota, S; Kwak, B K; Loffroy, R; Geschwind, J F

    2010-08-01

    The pyruvate analog, 3-bromopyruvate, is an alkylating agent and a potent inhibitor of glycolysis. This antiglycolytic property of 3-bromopyruvate has recently been exploited to target cancer cells, as most tumors depend on glycolysis for their energy requirements. The anticancer effect of 3-bromopyruvate is achieved by depleting intracellular energy (ATP) resulting in tumor cell death. In this review, we will discuss the principal mechanism of action and primary targets of 3-bromopyruvate, and report the impressive antitumor effects of 3-bromopyruvate in multiple animal tumor models. We describe that the primary mechanism of 3-bromopyruvate is via preferential alkylation of GAPDH and that 3-bromopyruvate mediated cell death is linked to generation of free radicals. Research in our laboratory also revealed that 3-bromopyruvate induces endoplasmic reticulum stress, inhibits global protein synthesis further contributing to cancer cell death. Therefore, these and other studies reveal the tremendous potential of 3-bromopyruvate as an anticancer agent.

  20. Targeted alpha anticancer therapies: update and future prospects

    PubMed Central

    Allen, Barry J; Huang, Chen-Yu; Clarke, Raymond A

    2014-01-01

    Targeted alpha therapy (TAT) is an emerging option for local and systemic cancer treatment. Preclinical research and clinical trials show that alpha-emitting radionuclides can kill targeted cancer cells while sparing normal cells, thus reducing toxicity. 223RaCl2 (Xofigo®) is the first alpha emitting radioisotope to gain registration in the US for palliative therapy of prostate cancer bone metastases by indirect physiological targeting. The alpha emitting radioisotopes 211At, 213Bi, 225Ac and 227Th are being used to label targeting vectors such as monoclonal antibodies for specific cancer therapy indications. In this review, safety and tolerance aspects are considered with respect to microdosimetry, specific energy, Monte Carlo model calculations, biodosimetry, equivalent dose and mutagenesis. The clinical efficacy of TAT for solid tumors may also be enhanced by its capacity for tumor anti-vascular (TAVAT) effects. This review emphasizes key aspects of TAT research with respect to the PAI2-uPAR complex and the monoclonal antibodies bevacizumab, C595 and J591. Clinical trial outcomes are reviewed for neuroendocrine tumors, leukemia, glioma, melanoma, non-Hodgkins lymphoma, and prostate bone metastases. Recommendations and future directions are proposed. PMID:25422581

  1. Isatin Derived Spirocyclic Analogues with α-Methylene-γ-butyrolactone as Anticancer Agents: A Structure-Activity Relationship Study.

    PubMed

    Rana, Sandeep; Blowers, Elizabeth C; Tebbe, Calvin; Contreras, Jacob I; Radhakrishnan, Prakash; Kizhake, Smitha; Zhou, Tian; Rajule, Rajkumar N; Arnst, Jamie L; Munkarah, Adnan R; Rattan, Ramandeep; Natarajan, Amarnath

    2016-05-26

    Design, synthesis, and evaluation of α-methylene-γ-butyrolactone analogues and their evaluation as anticancer agents is described. SAR identified a spirocyclic analogue 19 that inhibited TNFα-induced NF-κB activity, cancer cell growth and tumor growth in an ovarian cancer model. A second iteration of synthesis and screening identified 29 which inhibited cancer cell growth with low-μM potency. Our data suggest that an isatin-derived spirocyclic α-methylene-γ-butyrolactone is a suitable core for optimization to identify novel anticancer agents.

  2. Targeted Delivery System of Nanobiomaterials in Anticancer Therapy: From Cells to Clinics

    PubMed Central

    Jin, Su-Eon; Jin, Hyo-Eon; Hong, Soon-Sun

    2014-01-01

    Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1–100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy. PMID:24672796

  3. Promises and challenges of anticancer drugs that target the epigenome.

    PubMed

    Verbrugge, Inge; Johnstone, Ricky W; Bots, Michael

    2011-10-01

    The occurrence of epigenetic aberrations in cancer and their role in promoting tumorigenesis has led to the development of various small molecule inhibitors that target epigenetic enzymes. In preclinical settings, many epigenetic inhibitors demonstrate promising activity against a variety of both hematological and solid tumors. The therapeutic efficacy of those inhibitors that have entered the clinic however, is restricted predominantly to hematological malignancies. Here we outline the observed epigenetic aberrations in various types of cancer and the clinical responses to epigenetic drugs. We furthermore discuss strategies to improve the responsiveness of both hematological and solid malignancies to epigenetic drugs.

  4. Natural Product-Derived Spirooxindole Fragments Serve as Privileged Substructures for Discovery of New Anticancer Agents.

    PubMed

    Yu, Bin; Zheng, Yi-Chao; Shi, Xiao-Jing; Qi, Ping-Ping; Liu, Hong-Min

    2016-01-01

    The utility of natural products for identifying anticancer agents has been highly pursued in the last decades and over 100 drug molecules in clinic are natural products or natural product-derived compounds. Natural products are believed to be able to cover unexplored chemical space that is normally not occupied by commercially available molecule libraries. However, the low abundance and synthetic intractability of natural products have limited their applications in drug discovery. Recently, the identification of biologically relevant fragments derived from biologically validated natural products has been recognized as a powerful strategy in searching new biological probes and drugs. The spirocyclic oxindoles, as privileged structural scaffolds, have shown their potential in designing new drugs. Several anticancer drug candidates such as SAR405838, RO8994, CFI-400945 and their bioisosteres are undergoing clinical trials or preclinical studies. To highlight the significant progress, we focus on illustrating the discovery of SAR405838, RO8994, CFI-400945 and their bioisosteres for cancer therapy using substructure-based strategies and discussing modes of action, binding models and preclinical data.

  5. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action.

    PubMed

    Lee, In-Chul; Choi, Bu Young

    2016-03-04

    Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A.

  6. Organogold(III) compounds as experimental anticancer agents: chemical and biological profiles.

    PubMed

    Massai, Lara; Cirri, Damiano; Michelucci, Elena; Bartoli, Gianluca; Guerri, Annalisa; Cinellu, Maria A; Cocco, Fabio; Gabbiani, Chiara; Messori, Luigi

    2016-10-01

    In the last few years gold(III) complexes have attracted growing attention in the medicinal chemistry community as candidate anticancer agents. In particular some organogold(III) compounds manifested quite attractive pharmacological behaviors in preclinical studies. Here we compare the chemical and biological properties of the novel organogold(III) complex [Au(bipy(dmb)-H)(NH(CO)CH3)][PF6] (Aubipy(aa)) with those of its parent compounds [Au(bipy(dmb)-H)(OH)][PF6] (Aubipy(c)) and [Au2(bipy(dmb)-H)2)(μ-O)][PF6]2 (Au2bipy(c)), previously synthesized and characterized. The three study compounds were comparatively assessed for their antiproliferative actions against HCT-116 cancer cells, revealing moderate cytotoxic effects. Proapoptotic and cell cycle effects were also monitored. Afterward, to gain additional mechanistic insight, the three gold compounds were challenged against the model proteins HEWL, RNase A and cytochrome c and reactions investigated through UV-Vis and ESI-MS analysis. A peculiar and roughly invariant protein metalation profile emerges in the three cases consisting of protein binding of {Au(bipy(dmb)-H)} moieties. The implications of these results are discussed in the frame of current knowledge on anticancer gold compounds.

  7. Synthesis of novel anticancer agents through opening of spiroacetal ring of diosgenin.

    PubMed

    Hamid, A A; Hasanain, Mohammad; Singh, Arjun; Bhukya, Balakishan; Omprakash; Vasudev, Prema G; Sarkar, Jayanta; Chanda, Debabrata; Khan, Feroz; Aiyelaagbe, O O; Negi, Arvind S

    2014-09-01

    Diosgenin has been modified to furostane derivatives after opening the F-spiroacetal ring. The aldehyde group at C26 in derivative 8 was unexpectedly transformed to the ketone 9. The structure of ketone 9 was confirmed by spectroscopy and finally by X-ray crystallography. Five of the diosgenin derivatives showed significant anticancer activity against human cancer cell lines. The most potent molecule of this series i.e. compound 7, inhibited cellular growth by arresting the population at G0/G1 phase of cell division cycle. Cells undergo apoptosis after exposure to the derivative 7 which was evident by increase in sub G0 population in cell cycle analysis. Docking experiments showed caspase-3 and caspase-9 as possible molecular targets for these compounds. This was further validated by cleavage of PARP, a caspase target in apoptotic pathway. Compound 7 was found non-toxic up to 1000mg/kg dose in acute oral toxicity in Swiss albino mice.

  8. Biological agents targeting beyond TNF-alpha

    PubMed Central

    Sharma, Rashmi; Sharma, Chaman Lal; Mahajan, Annil

    2008-01-01

    Biological agents represent an important addition to the therapies for immuno-inflammatory conditions and have a great impact on the disease course and quality of life of these patients. However, recent reports of serious infections like tuberculosis, demyelinating and neurodegenerative diseases, pancytopenia, cardiovascular diseases, etc. after anti-TNF therapy raised questions on their safety. Hence, focus is shifted towards drugs targeting cytokine checkpoints in the inflammatory cascades beyond TNF-α. Existing therapeutic targets include the biological agents acting as antagonists of various inflammatory cytokines (Anakinra, Tocilizumab, Atlizumab) and modulators of CD80 or CD86-CD28 co-stimulatory signal (Abatacept), CD2 receptors on T-cells (Alefacept), CD11a, subunit of leukocyte function-associated antigen 1 (Efalizumab), vitronectin receptor and CD20 antigen on pre-B, immature and mature B cells (Rituximab). With the introduction of these novel molecules the future for immunomodulatory intervention in rheumatology, asthma, crohn's disease, septic shock etc. looks very promising. These novel therapeutic agents could truly give a new hope to the clinician to modify the disease and achieve tangible improvements in the lives of the patients. PMID:19742267

  9. Repurposing Drugs in Oncology (ReDO)—Propranolol as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Bouche, Gauthier; Sukhatme, Vidula; Meheus, Lydie; Rooman, Ilse; Sukhatme, Vikas P

    2016-01-01

    Propranolol (PRO) is a well-known and widely used non-selective beta-adrenergic receptor antagonist (beta-blocker), with a range of actions which are of interest in an oncological context. PRO displays effects on cellular proliferation and invasion, on the immune system, on the angiogenic cascade, and on tumour cell sensitivity to existing treatments. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. In particular there is evidence that PRO is effective at multiple points in the metastatic cascade, particularly in the context of the post-surgical wound response. Based on this evidence the case is made for further clinical investigation of the anticancer effects of PRO, particularly in combination with other agents. A number of trials are on-going, in different treatment settings for various cancers. PMID:27899953

  10. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents.

    PubMed

    Lv, Peng-Cheng; Li, Huan-Qiu; Sun, Juan; Zhou, Yang; Zhu, Hai-Liang

    2010-07-01

    Two series of pyrazole derivatives designing for potential EGFR kinase inhibitors have been discovered. Some of them exhibited significant EGFR inhibitory activity. Compound 3-(3,4-dimethylphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (C5) displayed the most potent EGFR inhibitory activity with IC₅₀ of 0.07 μM, which was comparable to the positive control erlotinib. Docking simulation was performed to position compound C5 into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicating that some of the pyrazole derivatives own high antiproliferative activity against MCF-7. Compound C5 showed significant antiproliferative activity against MCF-7 with IC₅₀ of 0.08 μM. Therefore, compound C5 with potent inhibitory activity in tumor growth inhibition would be a potential anticancer agent.

  11. Novel anticancer agent, SQAP, binds to focal adhesion kinase and modulates its activity

    PubMed Central

    Izaguirre-Carbonell, Jesus; Kawakubo, Hirofumi; Murata, Hiroshi; Tanabe, Atsushi; Takeuchi, Toshifumi; Kusayanagi, Tomoe; Tsukuda, Senko; Hirakawa, Takeshi; Iwabata, Kazuki; Kanai, Yoshihiro; Ohta, Keisuke; Miura, Masahiko; Sakaguchi, Kengo; Matsunaga, Sachihiro; Sahara, Hiroeki; Kamisuki, Shinji; Sugawara, Fumio

    2015-01-01

    SQAP is a novel and promising anticancer agent that was obtained by structural modifications from a natural compound. SQAP inhibits angiogenesis in vivo resulting in increased hypoxia and reduced tumor volume. In this study, the mechanism by which SQAP modifies the tumor microenvironment was revealed through the application of a T7 phage display screening. This approach identified five SQAP-binding proteins including sterol carrier protein 2, multifunctional enzyme type 2, proteasomal ubiquitin receptor, UV excision repair protein and focal adhesion kinase (FAK). All the interactions were confirmed by surface plasmon resonance analysis. Since FAK plays an important role in cell turnover and angiogenesis, the influence of SQAP on FAK was the principal goal of this study. SQAP decreased FAK phosphorylation and cell migration in human umbilical vein endothelial cells and A549 cancer cells. These findings suggest that inhibition of FAK phosphorylation works as the mechanism for the anti-angiogenesis activity of SQAP. PMID:26456697

  12. Investigation of Degradation Properties of Poly(lactide-co-glycolide) Matrix for Anticancer Agent Delivery

    SciTech Connect

    Ghani, S. M.; Mohamed, M. S. W.; Yahya, A. F.; Noorsal, K.

    2010-03-11

    Poly(lactide-co-glycolide)(PLA{sub 50}GA{sub 50}) is a biodegradable and biocompatible polymer. It offers tremendous potential as a basis for drug delivery, either as drug delivery system alone or in conjugate with a medical device. The PLA{sub 50}GA{sub 50} is the material of choice for relatively shorter-duration applications, while the homopolymer PLA (poly-L-lactide) and PGA (polyglycolide) are preferred for longer term delivery of drugs. This paper discusses the degradation properties of poly(lactide-co-glycolide)(PLA{sub 50}GA{sub 50}) at inherent viscosity of 0.89 dL/g as preliminary studies for anticancer agent delivery.

  13. Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging.

    PubMed

    Shanavas, Asifkhan; Sasidharan, Sisini; Bahadur, Dhirendra; Srivastava, Rohit

    2017-01-15

    Hybrid nanoparticles with magnetic poly (lactide-co-glycolide) (PLGA) nanoparticle 'core', surface modified with folate-chitosan (fol-cht) conjugate 'shell' are evaluated as simultaneous anti-cancer therapeutic and MRI contrast agent. The fol-cht conjugate is prepared using carbodiimide crosslinking chemistry at an optimized folate to amine (chitosan) molar ratio for further coating on PLGA nanoparticles loaded with docetaxel and well packed super paramagnetic iron oxide nanoparticles (SPIONs). Apart from possessing a targeting moiety, the coating provides a physical barrier to avoid undesired burst release of drug and also imparts sensitivity to acidic pH, due to protonated amine group dependent decondensation of the coating and subsequent drug release. The biocompatible hybrid nanoparticles provide receptor targeted docetaxel and SPION delivery for anti-cancer therapy and magnetic resonance (MR) imaging respectively, as tested in both folate receptor positive and negative cancer cells. Enhancement in nanoparticle uptake by folate receptor positive oral cancer cells caused significant increase in docetaxel mediated cytotoxicity. While polymeric encapsulation and fol-cht coating negatively affects the magnetic property of iron oxide nanoparticles, their aggregation in the core, shortened the overall T2 relaxation time thereby enhancing the nanoparticle relaxivity to provide better in vitro MR imaging.

  14. Tyrosine kinase, aurora kinase and leucine aminopeptidase as attractive drug targets in anticancer therapy - characterisation of their inhibitors.

    PubMed

    Ziemska, Joanna; Solecka, Jolanta

    Cancers are the leading cause of deaths all over the world. Available anticancer agents used in clinics exhibit low therapeutic index and usually high toxicity. Wide spreading drug resistance of cancer cells induce a demanding need to search for new drug targets. Currently, many on-going studies on novel compounds with potent anticancer activity, high selectivity as well as new modes of action are conducted. In this work, we describe in details three enzyme groups, which are at present of extensive interest to medical researchers and pharmaceutical companies. These include receptor tyrosine kinases (e.g. EGFR enzymes) and non-receptor tyrosine kinases (Src enzymes), type A, B and C Aurora kinases and aminopeptidases, especially leucine aminopeptidase. We discuss classification of these enzymes, biochemistry as well as their role in the cell cycle under normal conditions and during cancerogenesis. Further on, the work describes enzyme inhibitors that are under in vitro, preclinical, clinical studies as well as drugs available on the market. Both, chemical structures of discovered inhibitors and the role of chemical moieties in novel drug design are discussed. Described enzymes play essential role in cell cycle, especially in mitosis (Aurora kinases), cell differentiation, growth and apoptosis (tyrosine kinases) as well as G1/S transition (leucine aminopeptidase). In cancer cells, they are overexpressed and only their inhibition may stop tumor progression. This review presents the clinical outcomes of selected inhibitors and argues the safety of drug usage in human volunteers. Clinical studies of EGFR and Src kinase inhibitors in different tumors clearly show the need for molecular selection of patients (to those with mutations in genes coding EGFR and Src) to achieve positive clinical response. Current data indicates the great necessity for new anticancer treatment and actions to limit off-target activity.

  15. Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy.

    PubMed

    Jordan, Bénédicte F; Sonveaux, Pierre

    2012-01-01

    Radiotherapy and chemotherapy are widespread clinical modalities for cancer treatment. Among other biological influences, hypoxia is a main factor limiting the efficacy of radiotherapy, primarily because oxygen is involved in the stabilization of the DNA damage caused by ionizing radiations. Radiobiological hypoxia is found in regions of rodent and human tumors with a tissue oxygenation level below 10 mmHg at which tumor cells become increasingly resistant to radiation damage. Since hypoxic tumor cells remain clonogenic, their resistance to the treatment strongly influences the therapeutic outcome of radiotherapy. There is therefore an urgent need to identify adjuvant treatment modalities aimed to increase tumor pO(2) at the time of radiotherapy. Since tumor hypoxia fundamentally results from an imbalance between oxygen delivery by poorly efficient blood vessels and oxygen consumption by tumor cells with high metabolic activities, two promising approaches are those targeting vascular reactivity and tumor cell respiration. This review summarizes the current knowledge about the development and use of tumor-selective vasodilators, inhibitors of tumor cell respiration, and drugs and treatments combining both activities in the context of tumor sensitization to X-ray radiotherapy. Tumor-selective vasodilation may also be used to improve the delivery of circulating anticancer agents to tumors. Imaging tumor perfusion and oxygenation is of importance not only for the development and validation of such combination treatments, but also to determine which patients could benefit from the therapy. Numerous techniques have been developed in the preclinical setting. Hence, this review also briefly describes both magnetic resonance and non-magnetic resonance in vivo methods and compares them in terms of sensitivity, quantitative or semi-quantitative properties, temporal, and spatial resolutions, as well as translational aspects.

  16. Identification of potential transmembrane protease serine 4 inhibitors as anti-cancer agents by integrated computational approach.

    PubMed

    Ilamathi, M; Hemanth, R; Nishanth, S; Sivaramakrishnan, V

    2016-01-21

    Transmembrane protease serine 4 is a well known cell surface protease facilitating the extracellular matrix degradation and epithelial mesenchymal transition in hepatocellular carcinoma. Henceforth targeting transmembrane protease serine 4 is strongly believed to provide therapeutic intervention against hepatocellular carcinoma. Owing to lack of crystal structure for human transmembrane protease serine 4, we predicted its three dimensional structure for the first time in this study. Experimentally proven inhibitor-Tyroserleutide (TSL) against hepatocellular carcinoma via transmembrane protease serine 4 was used as a benchmark to identify structurally similar candidates from PubChem database to create the TSL library. Virtual screening of TSL library against modeled transmembrane protease serine 4 revealed the top four potential inhibitors. Further binding free energy (ΔGbind) analysis of the potential inhibitors revealed the best potential lead compound against transmembrane protease serine 4. Drug likeliness nature of the top four potential hits were additionally analyzed in comparison to TSL to confirm on the best potential lead compound with the highest % of human oral absorption. Consequently, e-pharmacophore mapping of the best potential lead compound yielded a six point feature. It was observed to contain four hydrogen bond donor sites (D), one positively ionizable site (P) and one aromatic ring (R). Such e-pharmacophore insight obtained from structural determinants by integrated computational analysis could serve as a framework for further advancement of drug discovery process of new anti-cancer agents with less toxicity and high specificity targeting transmembrane protease serine 4 and hepatocellular carcinoma.

  17. Targeting carbonic anhydrase IX improves the anti-cancer efficacy of mTOR inhibitors

    PubMed Central

    Faes, Seraina; Planche, Anne; Uldry, Emilie; Santoro, Tania; Pythoud, Catherine; Stehle, Jean-Christophe; Horlbeck, Janine; Letovanec, Igor; Riggi, Nicolo; Datta, Dipak; Demartines, Nicolas; Dormond, Olivier

    2016-01-01

    The inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) by chemical inhibitors, such as rapamycin, has demonstrated anti-cancer activity in preclinical and clinical trials. Their efficacy is, however, limited and tumors eventually relapse through resistance formation. In this study, using two different cancer mouse models, we identify tumor hypoxia as a novel mechanism of resistance of cancer cells against mTORC1 inhibitors. Indeed, we show that the activity of mTORC1 is mainly restricted to the non-hypoxic tumor compartment, as evidenced by a mutually exclusive staining pattern of the mTORC1 activity marker pS6 and the hypoxia marker pimonidazole. Consequently, whereas rapamycin reduces cancer cell proliferation in non-hypoxic regions, it has no effect in hypoxic areas, suggesting that cancer cells proliferate independently of mTORC1 under hypoxia. Targeting the hypoxic tumor compartment by knockdown of carbonic anhydrase IX (CAIX) using short hairpin RNA or by chemical inhibition of CAIX with acetazolamide potentiates the anti-cancer activity of rapamycin. Taken together, these data emphasize that hypoxia impairs the anti-cancer efficacy of rapalogs. Therapeutic strategies targeting the hypoxic tumor compartment, such as the inhibition of CAIX, potentiate the efficacy of rapamycin and warrant further clinical evaluation. PMID:27153561

  18. Preparation and characterization of novel chitosan-protamine nanoparticles for nucleus-targeted anticancer drug delivery.

    PubMed

    Yu, Xiwei; Hou, Jiahui; Shi, Yijie; Su, Chang; Zhao, Liang

    It is well known that most anticancer drugs commonly show high toxicity to the DNA of tumor cells and exert effects by combining with the DNA or associated enzymes in the nucleus. Most developed drugs are first delivered into the cytoplasm and then transferred to the nucleus through the membrane pores. Sometimes, the transportation of drugs from cytoplasm to nucleus is not efficient and often results in poor therapeutic effects. In this study, we developed special and novel nanoparticles (NPs) made of chitosan and protamine for targeted nuclear capture of drugs to enhance anticancer effects. The anticancer effects of nuclear targeted-delivery of drugs in NPs were also evaluated by investigating cytotoxicity, cellular uptake mechanism, and cell apoptosis on cells. Chitosan-protamine NPs were characterized by good drug entrapment, sustained release, small average particle size, low polydispersity index, and high encapsulation efficiency; and accomplished the efficient nuclear delivery of fluorouracil (5-Fu). Compared with free 5-Fu and 5-Fu-loaded chitosan NPs, treatment of A549 cells and HeLa cells with 5-Fu-loaded chitosan-protamine NPs showed the highest cytotoxicity and further induced the significant apoptosis of cells. In addition, 5-Fu-loaded chitosan-protamine NPs exhibited the best efficiency in inhibiting tumor growth than the other three formulations. 5-Fu-loaded chitosan-protamine NPs enhanced antitumor efficacy through the targeted nuclear capture of drugs and showed promising potential as a nanodelivery system for quickly locating drugs in the nucleus of cells.

  19. Dietary polyphenols as antioxidants and anticancer agents: more questions than answers.

    PubMed

    Hu, Miao-Lin

    2011-01-01

    High intake of fruit and vegetables is believed to be beneficial to human health. Fruit, vegetables and some beverages, such as tea and coffee, are particularly rich in dietary polyphenols. Various studies have suggested (but not proven) that dietary polyphenols may protect against cardiovasucalar diseases, neurodegenerative diseases and some forms of cancer. Dietary polyphenols may exert their anticancer effects through several possible mechanisms, such as removal of carcinogenic agents, modulation of cancer cell signaling and antioxidant enzymatic activities, and induction of apoptosis as well as cell cycle arrest. Some of these effects may be related, at least partly, to their antioxidant activities. In recent years, a new concept of the antioxidant effects of dietary polyphenols has emerged, i.e., direct scavenging activity toward reactive species and indirect antioxidant activity; the latter activity is thought to arise primarily via the activation of nuclear factor-erythroid-2-related factor 2 which stimulates the activities of antioxidant enzymes such as glutathione peroxidase (GPx), glutathione S-transferase, catalase, NAD(P)H: quinone oxidoreductase-1 (NQO1), and/or phase II enzymes. The direct antioxidant activity of dietary polyphenols in vivo is probably limited because of their low concentrations in vivo, except in the gastrointestinal tract where they are present in high concentrations. Paradoxically, the pro-oxidant effect of dietary polyphenols may contribute to the activation of antioxidant enzymes and protective proteins in cultured cells and animal models because of the adaptation of cells and tissues to mild/moderate oxidative stress. Despite a plethora of in vitro studies on dietary polyphenols, many questions remain to be answered, such as: (1) How relevant are the direct and indirect antioxidant activities of dietary polyphenols in vivo? (2) How important are these activities in the anticancer effects of dietary polyphenols? (3) Do the pro

  20. Application of computer assisted combinatorial chemistry in antivirial, antimalarial and anticancer agents design

    NASA Astrophysics Data System (ADS)

    Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.

    Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.

  1. Neddylation Pathway as a Novel Anti-cancer Target: Mechanistic Investigation and Therapeutic Implication.

    PubMed

    Jiang, Yanan; Jia, Lijun

    2015-01-01

    Protein neddylation, a newly characterized posttranslational modification that adds the ubiquitin-like molecule NEDD8 to substrates, modulates important biological processes, whereas dysfunction of neddylation may cause several serious diseases, such as cancer. Inhibition of neddylation pathway has emerged as a promising anticancer strategy, as evidenced by development of the NEDD8-activating enzyme (NAE) inhibitor MLN4924. Due to its potent anti-cancer efficacy and well-tolerated toxicity, MLN4924 has been evaluated in multiple Phase I clinical trials for solid tumors and hematologic malignancies. Recently, accumulating evidences indicate that neddylation pathway also plays a pivotal role in the regulation of multiple processes of tumor microenvironment (TME), such as tumor angiogenesis and the function of immune cells. In this review, we briefly summarize the latest progresses in this field and highlight neddylation pathway as an attractive therapeutic target against human cancer.

  2. Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo.

    PubMed

    Attoub, Samir; Sperandio, Olivier; Raza, Haider; Arafat, Kholoud; Al-Salam, Suhail; Al Sultan, Mahmood Ahmed; Al Safi, Maha; Takahashi, Takashi; Adem, Abdu

    2013-10-01

    Phytochemical compounds are emerging as a new generation of anticancer agents with limited toxicity in cancer patients. The purpose of this study was to investigate the potential impact of thymoquinone (TQ), the major constituent of black seed, on survival, invasion of cancer cells in vitro, and tumor growth in vivo. Exposure of cells derived from lung (LNM35), liver (HepG2), colon (HT29), melanoma (MDA-MB-435), and breast (MDA-MB-231 and MCF-7) tumors to increasing TQ concentrations resulted in a significant inhibition of viability through the inhibition of Akt phosphorylation leading to DNA damage and activation of the mitochondrial-signaling proapoptotic pathway. We provide evidence that TQ at non-toxic concentrations inhibited the invasive potential of LNM35, MDA-MB-231, and MDA-MB231-1833 cancer cells. Moreover, we demonstrate that TQ synergizes with DNA-damaging agent cisplatin to inhibit cellular viability. The anticancer activity of thymoquinone was also investigated in athymic mice inoculated with the LNM35 lung cells. Administration of TQ (10 mg/kg/i.p.) for 18 days inhibited the LNM35 tumor growth by 39% (P < 0.05). Tumor growth inhibition was associated with significant increase in the activated caspase-3. The in silico target identification suggests several potential targets of TQ mainly HDAC2 proteins and the 15-hydroxyprostaglandin dehydrogenase. In this context, we demonstrated that TQ treatment resulted in a significant inhibition of HDAC2 proteins. In view of the available experimental findings, we contend that thymoquinone and/or its analogues may have clinical potential as an anticancer agent alone or in combination with chemotherapeutic drugs such as cisplatin.

  3. Bone-targeting agents in prostate cancer

    PubMed Central

    Suzman, Daniel L.; Boikos, Sosipatros A.; Carducci, Michael A.

    2014-01-01

    Bone metastases are present in the vast majority of men with advanced prostate cancer, representing the main cause for morbidity and mortality. Recurrent or metastatic disease is managed initially with androgen deprivation but the majority of the patients eventually will progress to castration-resistant prostate cancer, with patients developing bone metastases in most of the cases. Survival and growth of the metastatic prostate cancer cells is dependent on a complex microenvironment (onco-niche) that includes the osteoblasts, the osteoclasts, the endothelium, and the stroma. This review summarizes agents that target the pathways involved in this complex interaction between prostate cancer and bone micro-environment and aim to transform lethal metastatic prostate cancer into a chronic disease. PMID:24398856

  4. HER2 Targeted Molecular MR Imaging Using a De Novo Designed Protein Contrast Agent

    PubMed Central

    Qiao, Jingjuan; Li, Shunyi; Wei, Lixia; Jiang, Jie; Long, Robert; Mao, Hui; Wei, Ling; Wang, Liya; Yang, Hua; Grossniklaus, Hans E.; Liu, Zhi-Ren; Yang, Jenny J.

    2011-01-01

    The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different expression levels of HER2 in both human cell lines and xenograft mice models. In addition to its 100-fold higher dose efficiency compared to clinically approved non-targeting contrast agent DTPA, our developed agent also exhibits advantages in crossing the endothelial boundary, tissue distribution, and tumor tissue retention over reported contrast agents as demonstrated by even distribution of the imaging probe across the entire tumor mass. This contrast agent will provide a powerful tool for quantitative assessment of molecular markers, and improved resolution for diagnosis, prognosis and drug discovery. PMID:21455310

  5. Targeted delivery of 5-fluorouracil to cholangiocarcinoma cells using folic acid as a targeting agent.

    PubMed

    Ngernyuang, Nipaporn; Seubwai, Wunchana; Daduang, Sakda; Boonsiri, Patcharee; Limpaiboon, Temduang; Daduang, Jureerut

    2016-03-01

    There are limits to the standard treatment for cholangiocarcinoma (CCA) including drug resistance and side effects. The objective of this study was to develop a new technique for carrying drugs by conjugation with gold nanoparticles and using folic acid as a targeting agent in order to increase drug sensitivity. Gold nanoparticles (AuNPs) were functionalized with 5-fluorouracil (5FU) and folic acid (FA) using polyethylene glycol (PEG) shell as a linker (AuNPs-PEG-5FU-FA). Its cytotoxicity was tested in CCA cell lines (M139 and M213) which express folic acid receptor (FA receptor). The results showed that AuNPs-PEG-5FU-FA increased the cytotoxic effects in the M139 and M213 cells by 4.76% and 7.95%, respectively compared to those treated with free 5FU+FA. It is found that the cytotoxicity of the AuNPs-PEG-5FU-FA correlates with FA receptor expression suggested the use of FA as a targeted therapy. The mechanism of cytotoxicity was mediated via mitochondrial apoptotic pathway as determined by apoptosis array. In conclusion, our findings shed some light on the use of gold nanoparticles for conjugation with potential compounds and FA as targeted therapy which contribute to the improvement of anti-cancer drug efficacy. In vivo study should be warranted for its effectiveness of stability, biosafety and side effect reduction.

  6. Pharmacokinetics and derivation of an anticancer dosing regimen for the novel anti-cancer agent isobutyl-deoxynyboquinone (IB-DNQ), a NQO1 bioactivatable molecule, in the domestic felid species.

    PubMed

    Lundberg, Alycen P; Francis, Joshua M; Pajak, Malgorzata; Parkinson, Elizabeth I; Wycislo, Kathryn L; Rosol, Thomas J; Brown, Megan E; London, Cheryl A; Dirikolu, Levent; Hergenrother, Paul J; Fan, Timothy M

    2016-12-14

    Isobutyl-deoxynyboquinone (IB-DNQ) is a selective substrate for NAD(P)H:quinone oxidoreductase (NQO1), an enzyme overexpressed in many solid tumors. Following activation by NQO1, IB-DNQ participates in a catalytic futile reduction/reoxidation cycle with consequent toxic reactive oxygen species generation within the tumor microenvironment. To elucidate the potential of IB-DNQ to serve as a novel anticancer agent, in vitro studies coupled with in vivo pharmacokinetic and toxicologic investigations in the domestic felid species were conducted to investigate the tractability of IB-DNQ as a translationally applicable anticancer agent. First, using feline oral squamous cell carcinoma (OSCC) as a comparative cancer model, expressions of NQO1 were characterized in not only human, but also feline OSCC tissue microarrays. Second, IB-DNQ mediated cytotoxicity in three immortalized feline OSCC cell lines were studied under dose-dependent and sequential exposure conditions. Third, the feasibility of administering IB-DNQ at doses predicted to achieve cytotoxic plasma concentrations and biologically relevant durations of exposure were investigated through pharmacokinetic and tolerability studies in healthy research felines. Intravenous administration of IB-DNQ at 1.0-2.0 mg/kg achieved peak plasma concentrations and durations of exposure reaching or exceeding predicted in vitro cytotoxic concentrations. Clinical adverse side effects including ptyalism and tachypnea exhibited during and post-IV infusion of IB-DNQ were transient and tolerable. Additionally, IB-DNQ administration did not produce acute or delayed-onset unacceptable hematologic, non-hematologic, or off-target oxidative toxicities. Collectively, the findings reported here within provide important safety and pharmacokinetic data to support the continued development of IB-DNQ as a novel anticancer strategy for NQO1 expressing cancers.

  7. The interactions of anticancer agents with tea catechins: current evidence from preclinical studies.

    PubMed

    Shang, Weihu; Lu, Weidong; Han, Mei; Qiao, Jinping

    2014-01-01

    Tea catechins exhibit a broad range of pharmacological activities that impart beneficial effects on human health. Epigallocatechin-3-gallate (EGCG), one of the major tea catechins, has been widely associated with cancer prevention and treatment. In addition, tea catechins in combination with anticancer drugs are being evaluated as a new cancer treatment strategy. However, the interactions of anticancer drugs with tea catechins are largely unknown. Accumulated data indicate significant interactions between anticancer drugs and tea catechins, such as synergistic tumor inhibition or antagonist activity. Therefore, it is critical to understand comprehensively the effects of tea catechins on anticancer drugs. Focusing on evidence from preclinical studies, this paper will review the interactions between anticancer drugs and tea catechins, including pharmacodynamics and pharmacokinetics effects. We hope that by detailing the interactions between anticancer drugs and tea catechins, more attention will be directed to this important therapeutic combination in the future.

  8. A transesterification reaction is implicated in the covalent binding of benzo[b]acronycine anticancer agents with DNA and glutathion.

    PubMed

    David-Cordonnier, Marie Hélène; Laine, William; Kouach, Mostafa; Briand, Gilbert; Vezin, Hervé; Gaslonde, Thomas; Michel, Sylvie; Doan Thi Mai, Huong; Tillequin, Francois; Koch, Michel; Léonce, Stéphane; Pierré, Alain; Bailly, Christian

    2004-01-02

    The benzo[b]acronycine derivative S23906-1 has been recently identified as a promising antitumor agent, showing remarkable in vivo activities against a panel of solid tumors. The anticancer activity is attributed to the capacity of the drug to alkylate DNA, selectively at the exocyclic 2-amino group of guanine residues. Hydrolysis of the C-1 and C-2 acetate groups of S23906-1 provides the diol compound S28907-1 which is inactive whereas the intermediate C-2 monoacetate derivative S28687-1 is both highly reactive toward DNA and cytotoxic. The reactivity of this later compound S28687-1 toward two bionucleophiles, DNA and the tripeptide glutathion, has been investigated by mass spectrometry to identify the nature of the (type II) covalent adducts characterized by the loss of the acetate group at position 2. On the basis of NMR and molecular modeling analyses, the reaction mechanism is explained by a transesterification process where the acetate leaving group is transferred from position C-2 to C-1. Altogether, the study validates the reaction scheme of benzo[b]acronycine derivative with its target.

  9. Synthesis of xanthohumol analogues and discovery of potent thioredoxin reductase inhibitor as potential anticancer agent.

    PubMed

    Zhang, Baoxin; Duan, Dongzhu; Ge, Chunpo; Yao, Juan; Liu, Yaping; Li, Xinming; Fang, Jianguo

    2015-02-26

    The selenoprotein thioredoxin reductases (TrxRs) are attractive targets for anticancer drugs development. Xanthohumol (Xn), a naturally occurring polyphenol chalcone from hops, has received increasing attention because of its multiple pharmacological activities. We synthesized Xn and its 43 analogues and discovered that compound 13n displayed the highest cytotoxicity toward HeLa cells (IC50 = 1.4 μM). Structure-activity relationship study indicates that the prenyl group is not necessary for cytotoxicity, and introducing electron-withdrawing group, especially on the meta-position, is favored. In addition, methylation of the phenoxyl groups generally improves the potency. Mechanistic study revealed that 13n selectively inhibits TrxR and induces reactive oxygen species and apoptosis in HeLa cells. Cells overexpressing TrxR are resistant to 13n insult, while knockdown of TrxR sensitizes cells to 13n treatment, highlighting the physiological significance of targeting TrxR by 13n. The clarification of the structural determinants for the potency would guide the design of novel potent molecules for future development.

  10. Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents.

    PubMed

    Rodrigues, Tiago; Sieglitz, Florian; Bernardes, Gonçalo J L

    2016-11-07

    Treatment of cancer is a significant challenge in clinical medicine, and its research is a top priority in chemical biology and drug discovery. Consequently, there is an urgent need for identifying innovative chemotypes capable of modulating unexploited drug targets. The transient receptor potential (TRPs) channels persist scarcely explored as targets, despite intervening in a plethora of pathophysiological events in numerous diseases, including cancer. Both agonists and antagonists have proven capable of evoking phenotype changes leading to either cell death or reduced cell migration. Among these, natural products entail biologically pre-validated and privileged architectures for TRP recognition. Furthermore, several natural products have significantly contributed to our current knowledge on TRP biology. In this Tutorial Review we focus on selected natural products, e.g. capsaicinoids, cannabinoids and terpenes, by highlighting challenges and opportunities in their use as starting points for designing natural product-inspired TRP channel modulators. Importantly, the de-orphanization of natural products as TRP channel ligands may leverage their exploration as viable strategy for developing anticancer therapies. Finally, we foresee that TRP channels may be explored for the selective pharmacodelivery of cytotoxic payloads to diseased tissues, providing an innovative platform in chemical biology and molecular medicine.

  11. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions.

    PubMed Central

    Kivistö, K T; Kroemer, H K; Eichelbaum, M

    1995-01-01

    1. Little information is available about the pharmacokinetic interactions of anticancer drugs in man. However, clinically significant drug interactions do occur in cancer chemotherapy, and it is likely that important interactions have not been recognized. 2. Specific cytochrome P450 (CYP) enzymes have been recently shown to be involved in the metabolism of several essential anticancer agents. In particular, enzymes of the CYP3A subfamily play a role in the metabolism of many anticancer drugs, including epipodophyllotoxins, ifosphamide, tamoxifen, taxol and vinca alkaloids. CYP3A4 has been shown to catalyse the activation of the prodrug ifosphamide, raising the possibility that ifosphamide could be activated in tumour tissues containing this enzyme. 3. As examples of recently found, clinically significant interactions, cyclosporin considerably increases plasma doxorubicin and etoposide concentrations. Although cyclosporin and calcium channel blockers may influence the pharmacokinetics of certain anticancer agents by inhibiting their CYP3A mediated metabolism, it is more likely that these P-glycoprotein inhibitors inhibit P-glycoprotein mediated drug elimination. 4. Appropriate caution should be exercised when combining P-glycoprotein inhibitors and potential CYP3A inhibitors with cancer chemotherapy. PMID:8703657

  12. Rescuing chemotaxis of the anticancer agent Salmonella enterica serovar Typhimurium VNP20009.

    PubMed

    Broadway, Katherine M; Denson, Elizabeth A P; Jensen, Roderick V; Scharf, Birgit E

    2015-10-10

    The role of chemotaxis and motility in Salmonella enterica serovar Typhimurium tumor colonization remains unclear. We determined through swim plate assays that the well-established anticancer agent S. Typhimurium VNP20009 is deficient in chemotaxis, and that this phenotype is suppressible. Through genome sequencing, we revealed that VNP20009 and four selected suppressor mutants had a single nucleotide polymorphism (SNP) in cheY causing a mutation in the conserved proline residue at position 110. CheY is the response regulator that interacts with the flagellar motor-switch complex and modulates rotational bias. The four suppressor mutants additionally carried non-synonymous SNPs in fliM encoding a flagellar switch protein. The CheY-P110S mutation in VNP20009 likely rendered the protein unable to interact with FliM, a phenotype that could be suppressed by mutations in FliM. We replaced the mutated cheY in VNP20009 with the wild-type copy and chemotaxis was partially restored. The swim ring of the rescued strain, VNP20009 cheY(+), was 46% the size of the parental strain 14028 swim ring. When tested in capillary assays, VNP20009 cheY(+) was 69% efficient in chemotaxis towards the attractant aspartate as compared to 14028. Potential reasons for the lack of complete restoration and implications for bacterial tumor colonization will be discussed.

  13. Microencapsulation of lectin anti-cancer agent and controlled release by alginate beads, biosafety approach.

    PubMed

    El-Aassar, M R; Hafez, Elsayed E; El-Deeb, Nehal M; Fouda, Moustafa M G

    2014-08-01

    Hepatocellular carcinoma (HCC) is considered as one of the most aggressive cancer worldwide. In Egypt, the prevalence of HCC is increasing during last years. Recently, drug-loaded microparticles were used to improve the efficiency of various medical treatments. This study is designed to evaluate the anticancer potentialities of lectins against HCC while hinting to its safety usage. The aim is also extended to encapsulate lectins in alginate microbeads for oral drug delivery purposes. The extracted lectins showed anti-proliferative effect against HCC with a percentage of 60.76% by using its nontoxic dose with an up-regulation of P53 gene expression. Concerning the handling of lectin alginate microbeads for oral drug delivery, the prepared lectin alginate beads were ∼100μm in diameter. The efficiency of the microcapsules was checked by scanning electron microscopy, the SEM showed the change on the alginate beads surface revealing the successful lectin encapsulation. The release of lectins from the microbeads depended on a variety of factors as the microbeads forming carriers and the amount-encapsulated lectins. The Pisum sativum extracted lectins may be considered as a promising agent in controlling HCC and this solid dosage form could be suitable for oral administration complemented with/or without the standard HCC drugs.

  14. Repurposing Drugs in Oncology (ReDO)—diclofenac as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P

    2016-01-01

    Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper. PMID:26823679

  15. Parthenium hysterophorus: A Probable Source of Anticancer, Antioxidant and Anti-HIV Agents

    PubMed Central

    Kumar, Shashank; Chashoo, Gousia; Saxena, Ajit K.; Pandey, Abhay K.

    2013-01-01

    The present work reports the anticancer, antioxidant, lipo-protective, and anti-HIV activities of phytoconstituents present in P. hysterophorus leaf. Dried leaf samples were sequentially extracted with nonpolar and polar solvents. Ethanol fraction showed noticeable cytotoxic activity (81–85%) in SRB assay against MCF-7 and THP-1 cancer cell lines at 100 μg/ml concentration, while lower activity was observed with DU-145 cell line. The same extract exhibited 17–98% growth inhibition of HL-60 cancer cell lines in MTT assay, showing concentration dependent response. Ethanol extract caused 12% reduction in mitochondrial membrane potential and 10% increment in sub G1 population of HL-60 cell lines. Several leaf fractions, namely, ethyl acetate, ethanol, and aqueous fractions exhibited considerable reducing capability at higher concentrations. Most of the extracts demonstrated appreciable (>75%) metal ion chelating and hydroxyl radical scavenging activities at 200 µg/ml. All the extracts except aqueous fraction accounted for about 70–80% inhibition of lipid peroxidation in rat liver homogenate indicating protective response against membrane damage. About 40% inhibition of reverse transcriptase (RT) activity was observed in hexane fraction in anti-HIV assay at 6.0 µg/ml concentration. The study showed that phytochemicals present in P. hysterophorus leaf have considerable potential as cytotoxic and antioxidant agents with low to moderate anti-HIV activity. PMID:24350290

  16. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review

    PubMed Central

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2016-01-01

    Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy. PMID:27669218

  17. Recent developments in L-asparaginase discovery and its potential as anticancer agent.

    PubMed

    Shrivastava, Abhinav; Khan, Abdul Arif; Khurshid, Mohsin; Kalam, Mohd Abul; Jain, Sudhir K; Singhal, Pradeep K

    2016-04-01

    L-Asparaginase (EC3.5.1.1) is an enzyme, which is used for treatment of acute lymphoblastic leukaemia (ALL) and other related blood cancers from a long time. This enzyme selectively hydrolyzes the extracellular amino acid L-asparagine into L-aspartate and ammonia, leading to nutritional deficiencies, protein synthesis inhibition, and ultimately death of lymphoblastic cells by apoptosis. Currently, bacterial asparaginases are used for treatment purpose but offers scepticism due to a number of toxicities, including thrombosis, pancreatitis, hyperglycemia, and hepatotoxicity. Resistance towards bacterial asparaginase is another major disadvantage during cancer management. This situation attracted attention of researchers towards alternative sources of L-asparaginase, including plants and fungi. Present article discusses about potential of L-asparaginase as an anticancer agent, its mechanism of action, and adverse effects related to current asparaginase formulations. This article also provides an outlook for recent developments in L-asparaginase discovery from alternative sources and their potential as a less toxic alternative to current formulations.

  18. Design, Synthesis, and Evaluation of Genistein Analogues as Anti-Cancer Agents

    PubMed Central

    Xiong, Pahoua; Wang, Rubing; Zhang, Xiaojie; Torre, Eduardo DeLa; Leon, Francisco; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2016-01-01

    Genistein is a bioactive isoflavone derived from soybeans. The tie-in between the intake of genistein and the decreased incidence of some solid tumors (including prostate cancer) has been demonstrated by epidemiological studies. The potential of genistein in treating prostate cancer has also been displayed by in vitro cell-based and in vivo animal experiments. Genistein has entered clinical trials for both chemoprevention and potential treatment of prostate cancer. Even though the low oral bioavailability has presented the major challenges to genistein’s further clinical development, chemical modulation of genistein holds the promise to generate potential anti-prostate cancer agents with enhanced potency and/or better pharmacokinetic profiles than genistein. As part of our ongoing project to develop natural products-based anti-prostate cancer agents, the current study was undertaken to synthesize eight genistein analogues for cytotoxic evaluation in three prostate cancer cell lines (PC-3, DU-145, LNCaP; both androgen-sensitive and androgen-refractory cell lines), as well as one aggressive cervical cancer cell line (HeLa). Eight genistein analogues have been successfully synthesized with Suzuki-Miyaura coupling reaction as a key step. Their in vitro anti-cancer potential was evaluated by trypan blue exclusion assay and WST-1 cell proliferation assay against a panel of four human cancer cell lines. The acquired data suggest i) that the C-5 and C-7 hydroxyl groups in genistein are very important for the cytotoxicity and anti-proliferative activity; and ii) that 1-alkyl-1H-pyrazol-4-yl and pyridine-3-yl might act as good bioisosteres for the 4'-hydroxyphenyl moiety in genistein. PMID:25991428

  19. Preparation and characterization of novel chitosan–protamine nanoparticles for nucleus-targeted anticancer drug delivery

    PubMed Central

    Yu, Xiwei; Hou, Jiahui; Shi, Yijie; Su, Chang; Zhao, Liang

    2016-01-01

    It is well known that most anticancer drugs commonly show high toxicity to the DNA of tumor cells and exert effects by combining with the DNA or associated enzymes in the nucleus. Most developed drugs are first delivered into the cytoplasm and then transferred to the nucleus through the membrane pores. Sometimes, the transportation of drugs from cytoplasm to nucleus is not efficient and often results in poor therapeutic effects. In this study, we developed special and novel nanoparticles (NPs) made of chitosan and protamine for targeted nuclear capture of drugs to enhance anticancer effects. The anticancer effects of nuclear targeted-delivery of drugs in NPs were also evaluated by investigating cytotoxicity, cellular uptake mechanism, and cell apoptosis on cells. Chitosan–protamine NPs were characterized by good drug entrapment, sustained release, small average particle size, low polydispersity index, and high encapsulation efficiency; and accomplished the efficient nuclear delivery of fluorouracil (5-Fu). Compared with free 5-Fu and 5-Fu-loaded chitosan NPs, treatment of A549 cells and HeLa cells with 5-Fu-loaded chitosan–protamine NPs showed the highest cytotoxicity and further induced the significant apoptosis of cells. In addition, 5-Fu-loaded chitosan–protamine NPs exhibited the best efficiency in inhibiting tumor growth than the other three formulations. 5-Fu-loaded chitosan–protamine NPs enhanced antitumor efficacy through the targeted nuclear capture of drugs and showed promising potential as a nanodelivery system for quickly locating drugs in the nucleus of cells. PMID:27881917

  20. Immune mechanisms regulating pharmacokinetics and pharmacodynamics of PEGylated liposomal anticancer agents

    NASA Astrophysics Data System (ADS)

    Song, Gina

    integrated approaches, we were able to identify the immunological mechanisms at the molecular, tissue, and clinical levels that may contribute to inter-individual variability in PK and PD of PLD. This dissertation research has a potential to make an impact on development of future NP-based anticancer therapeutics as well as on clinical use of PLD (DoxilRTM) and other PEGylated liposomal anticancer agents.

  1. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs

    PubMed Central

    Feng, Shini; Zhang, Huijie; Yan, Ting; Huang, Dandi; Zhi, Chunyi; Nakanishi, Hideki; Gao, Xiao-Dong

    2016-01-01

    With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN) has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS) with receptor-mediated targeting. Folic acid (FA) was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 μg/mL. Then, doxorubicin hydrochloride (DOX), a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. PMID:27695318

  2. A DNA/HDAC dual-targeting drug CY190602 with significantly enhanced anticancer potency

    PubMed Central

    Liu, Chuan; Ding, Hongyu; Li, Xiaoxi; Pallasch, Christian P; Hong, Liya; Guo, Dianwu; Chen, Yi; Wang, Difei; Wang, Wei; Wang, Yajie; Hemann, Michael T; Jiang, Hai

    2015-01-01

    Genotoxic drugs constitute a major treatment modality for human cancers; however, cancer cells' intrinsic DNA repair capability often increases the threshold of lethality and renders these drugs ineffective. The emerging roles of HDACs in DNA repair provide new opportunities for improving traditional genotoxic drugs. Here, we report the development and characterization of CY190602, a novel bendamustine-derived drug with significantly enhanced anticancer potency. We show that CY190602's enhanced potency can be attributed to its newly gained ability to inhibit HDACs. Using this novel DNA/HDAC dual-targeting drug as a tool, we further explored HDAC's role in DNA repair. We found that HDAC activities are essential for the expression of several genes involved in DNA synthesis and repair, including TYMS, Tip60, CBP, EP300, and MSL1. Importantly, CY190602, the first-in-class example of such DNA/HDAC dual-targeting drugs, exhibited significantly enhanced anticancer activity in vitro and in vivo. These findings provide rationales for incorporating HDAC inhibitory moieties into genotoxic drugs, so as to overcome the repair capacity of cancer cells. Systematic development of similar DNA/HDAC dual-targeting drugs may represent a novel opportunity for improving cancer therapy. PMID:25759362

  3. A DNA/HDAC dual-targeting drug CY190602 with significantly enhanced anticancer potency.

    PubMed

    Liu, Chuan; Ding, Hongyu; Li, Xiaoxi; Pallasch, Christian P; Hong, Liya; Guo, Dianwu; Chen, Yi; Wang, Difei; Wang, Wei; Wang, Yajie; Hemann, Michael T; Jiang, Hai

    2015-03-09

    Genotoxic drugs constitute a major treatment modality for human cancers; however, cancer cells' intrinsic DNA repair capability often increases the threshold of lethality and renders these drugs ineffective. The emerging roles of HDACs in DNA repair provide new opportunities for improving traditional genotoxic drugs. Here, we report the development and characterization of CY190602, a novel bendamustine-derived drug with significantly enhanced anticancer potency. We show that CY190602's enhanced potency can be attributed to its newly gained ability to inhibit HDACs. Using this novel DNA/HDAC dual-targeting drug as a tool, we further explored HDAC's role in DNA repair. We found that HDAC activities are essential for the expression of several genes involved in DNA synthesis and repair, including TYMS, Tip60, CBP, EP300, and MSL1. Importantly, CY190602, the first-in-class example of such DNA/HDAC dual-targeting drugs, exhibited significantly enhanced anticancer activity in vitro and in vivo. These findings provide rationales for incorporating HDAC inhibitory moieties into genotoxic drugs, so as to overcome the repair capacity of cancer cells. Systematic development of similar DNA/HDAC dual-targeting drugs may represent a novel opportunity for improving cancer therapy.

  4. Iron(III)-binding of the anticancer agents doxorubicin and vosaroxin.

    PubMed

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Jamieson, Gene; Fox, Judith A; Orvig, Chris

    2015-02-07

    The Fe(iii)-binding constant of vosaroxin, an anticancer quinolone derivative, has been determined spectrophotometrically and compared with the analogous Fe(iii) complex formed with doxorubicin. The in vivo metabolic stability and iron coordination properties of the quinolones compared to the anthracylines may provide significant benefit to cardiovascular safety. The mechanism of action of both molecules target the topoisomerase II enzyme. Both doxorubicin (Hdox, log βFeL3 = 33.41, pM = 17.0) and vosaroxin (Hvox, log βFeL3 = 33.80(3), pM = 15.9) bind iron(iii) with comparable strength; at physiological pH however, [Fe(vox)3] is the predominant species in contrast to a mixture of species observed for the Fe:dox system. Iron(iii) nitrate and gallium(iii) nitrate at a 1 : 3 ratio with vosaroxin formed stable tris(vosaroxacino)-iron(iii) and tris(vosaroxino)gallium(iii) complexes that were isolated and characterized. Their redox behavior was studied by CV, and their stereochemistry was further explored in temperature dependent (1)H NMR studies. The molecular pharmacology of their interaction with iron(iii) may be one possible differentiation in the safety profile of quinolones compared to anthracyclines in relation to cardiotoxicity.

  5. Indolin-2-one compounds targeting thioredoxin reductase as potential anticancer drug leads

    PubMed Central

    Kaminska, Kamila K.; Bertrand, Helene C.; Tajima, Hisashi; Stafford, William C.; Cheng, Qing; Chen, Wan; Wells, Geoffrey; Arner, Elias S.J.; Chew, Eng-Hui

    2016-01-01

    Several compounds bearing the indolinone chemical scaffold are known to possess anticancer properties. For example, the tyrosine kinase inhibitor sunitinib is an arylideneindolin-2-one compound. The chemical versatility associated with structural modifications of indolinone compounds underlies the potential to discover additional derivatives possessing anticancer properties. Previously synthesized 3-(2-oxoethylidene)indolin-2-one compounds, also known as supercinnamaldehyde (SCA) compounds in reference to the parent compound 1 [1-methyl-3(2-oxopropylidene)indolin-2-one], bear a nitrogen-linked α,β-unsaturated carbonyl (Michael acceptor) moiety. Here we found that analogs bearing N-substituents, in particular compound 4 and 5 carrying an N-butyl and N-benzyl substituent, respectively, were strongly cytotoxic towards human HCT 116 colorectal and MCF-7 breast carcinoma cells. These compounds also displayed strong thioredoxin reductase (TrxR) inhibitory activity that was likely attributed to the electrophilicity of the Michael acceptor moiety. Their selectivity towards cellular TrxR inhibition over related antioxidant enzymes glutathione reductase (GR), thioredoxin (Trx) and glutathione peroxidase (GPx) was mediated through targeting of the selenocysteine (Sec) residue in the highly accessible C-terminal active site of TrxR. TrxR inhibition mediated by indolin-2-one compounds led to cellular Trx oxidation, increased oxidative stress and activation of apoptosis signal-regulating kinase 1 (ASK1). These events also led to activation of p38 and JNK mitogen-activated protein kinase (MAPK) signaling pathways, and cell death with apoptotic features of PARP cleavage and caspase 3 activation. In conclusion, these results suggest that indolin-2-one-based compounds specifically targeting TrxR may serve as novel drug leads for anticancer therapy. PMID:27244886

  6. Design, synthesis, and anticancer activity of novel berberine derivatives prepared via CuAAC “click” chemistry as potential anticancer agents

    PubMed Central

    Jin, Xin; Yan, Tian-Hua; Yan, Lan; Li, Qian; Wang, Rui-Lian; Hu, Zhen-Lin; Jiang, Yuan-Ying; Sun, Qing-Yan; Cao, Yong-Bing

    2014-01-01

    A series of novel derivatives of phenyl-substituted berberine triazolyls has been designed and synthesized via copper-catalyzed azide-alkyne cycloaddition click chemistry in an attempt to develop antitumor agents. All of the compounds were evaluated for anticancer activity against a panel of three human cancer cell lines, including MCF-7 (breast), SW-1990 (pancreatic), and SMMC-7721 (liver) and the noncancerous human umbilical vein endothelial cell (HUVEC) cell lines. The results indicated that most of the compounds displayed notable anticancer activities against the MCF-7 cells compared with berberine. Among these derivatives, compound 16 showed the most potent inhibitory activity against the SW-1990 and SMMC-7721 cell lines, with half-maximal inhibitory concentration (IC50) values of 8.54±1.97 μM and 11.87±1.83 μM, respectively. Compound 36 exhibited the most potent inhibitory activity against the MCF-7 cell line, with an IC50 value of 12.57±1.96 μM. Compound 16 and compound 36 exhibited low cytotoxicity in the HUVEC cell line, with IC50 values of 25.49±3.24 μM and 30.47±3.47 μM. Furthermore, compounds 14, 15, 16, 17, 18, 32, and 36 exhibited much better selectivity than berberine toward the normal cell line HUVEC. PMID:25120353

  7. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy.

    PubMed

    Shuvalov, Oleg; Petukhov, Alexey; Daks, Alexandra; Fedorova, Olga; Vasileva, Elena; Barlev, Nickolai A

    2017-02-03

    Cancer-related metabolism has recently emerged as one of the "hallmarks of cancer". It has several important features, including altered metabolism of glucose and glutamine. Importantly, altered cancer metabolism connects different biochemical pathways into the one fine-tuned metabolic network, which stimulates high proliferation rates and plasticity to malignant cells. Among the keystones of cancer metabolism are one-carbon metabolism and nucleotide biosynthesis, which provide building blocks to anabolic reactions. Accordingly, the importance of these metabolic pathways for anticancer therapy has well been documented by more than fifty years of clinical use of specific metabolic inhibitors - methotrexate and nucleotides analogs. In this review we discuss one-carbon metabolism and nucleotide biosynthesis as common and specific features of many, if not all, tumors. The key enzymes involved in these pathways also represent promising anti-cancer therapeutic targets. We review different aspects of these metabolic pathways including their biochemistry, compartmentalization and expression of the key enzymes and their regulation at different levels. We also discuss the effects of known inhibitors of these pathways as well as the recent data on other enzymes of the same pathways as perspective pharmacological targets.

  8. Multi-target pursuit formation of multi-agent systems

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Guan, Xin-Ping; Luo, Xiao-Yuan

    2011-01-01

    The main goal of this paper is to design a team of agents that can accomplish multi-target pursuit formation using a developed leader—follower strategy. It is supposed that every target can accept a certain number of agents. First, each agent can automatically choose its target based on the distance from the agent to the target and the number of agents accepted by the target. In view of the fact that all agents are randomly dispersed in the workplace at the initial time, we present a numbering strategy for them. During the movement of agents, not every agent can always obtain pertinent state information about the targets. So, a developed leader—follower strategy and a pursuit formation algorithm are proposed. Under the proposed method, agents with the same target can maintain a circle formation. Furthermore, it turns out that the pursuit formation algorithm for agents to the desired formation is convergent. Simulation studies are provided to illustrate the effectiveness of the proposed method.

  9. Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents.

    PubMed

    Charrier, Jean-Damien; Durrant, Steven J; Golec, Julian M C; Kay, David P; Knegtel, Ronald M A; MacCormick, Somhairle; Mortimore, Michael; O'Donnell, Michael E; Pinder, Joanne L; Reaper, Philip M; Rutherford, Alistair P; Wang, Paul S H; Young, Stephen C; Pollard, John R

    2011-04-14

    DNA-damaging agents are among the most frequently used anticancer drugs. However, they provide only modest benefit in most cancers. This may be attributed to a genome maintenance network, the DNA damage response (DDR), that recognizes and repairs damaged DNA. ATR is a major regulator of the DDR and an attractive anticancer target. Herein, we describe the discovery of a series of aminopyrazines with potent and selective ATR inhibition. Compound 45 inhibits ATR with a K(i) of 6 nM, shows >600-fold selectivity over related kinases ATM or DNA-PK, and blocks ATR signaling in cells with an IC(50) of 0.42 μM. Using this compound, we show that ATR inhibition markedly enhances death induced by DNA-damaging agents in certain cancers but not normal cells. This differential response between cancer and normal cells highlights the great potential for ATR inhibition as a novel mechanism to dramatically increase the efficacy of many established drugs and ionizing radiation.

  10. Peroxisome Proliferator Activated Receptor A Ligands as Anticancer Drugs Targeting Mitochondrial Metabolism

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2011-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary therapeutic approach. This idea is based on hitting the cancer cell metabolic weak points through PPAR α mediated stimulation of mitochondrial fatty acid oxidation and ketogenesis with simultaneous reduction of glucose and glutamine consumption. PPAR α activity is induced by fasting and its molecular consequences overlap with the effects of calorie restriction and ketogenic diet (CRKD). CRKD induces increase of NAD+/NADH ratio and drop in ATP/AMP ratio. The first one is the main stimulus for enhanced protein deacetylase SIRT1 activity; the second one activates AMP-dependent protein kinase (AMPK). Both SIRT1 and AMPK exert their major metabolic activities such as fatty acid oxidation and block of glycolysis and protein, nucleotide and fatty acid synthesis through the effector protein peroxisome proliferator activated receptor gamma 1 α coactivator (PGC-1α). PGC-1α cooperates with PPAR α and their activities might contribute to potential anticancer effects of CRKD, which were reported for various brain tumors. Therefore, PPAR α activation can engage molecular interplay among SIRT1, AMPK, and PGC-1α that provides a new, low toxicity dietary approach supplementing traditional anticancer regimen. PMID:21133850

  11. Synthesis, crystallographic characterization and electrochemical property of a copper(II) complex of the anticancer agent elesclomol.

    PubMed

    Vo, Nha Huu; Xia, Zhiqiang; Hanko, Jason; Yun, Tong; Bloom, Steve; Shen, Jianhua; Koya, Keizo; Sun, Lijun; Chen, Shoujun

    2014-01-01

    Elesclomol is a novel anticancer agent that has been evaluated in a number of late stage clinical trials. A new and convenient synthesis of elesclomol and its copper complex is described. X-ray crystallographic characterization and the electrochemical properties of the elesclomol copper(II) complex are discussed. The copper(II) cation is coordinated in a highly distorted square-planar geometry to each of the sulphur and amide nitrogen atoms of elesclomol. Electrochemical measurements demonstrate that the complex undergoes a reversible one-electron reduction at biologically accessible potentials. In contrast the free elesclomol is found electrochemically inactive. This evidence is in strong support of the mechanism of action we proposed for the anticancer activity of elesclomol.

  12. Targeting Neddylation Pathways to Inactivate Cullin-RING Ligases for Anticancer Therapy

    PubMed Central

    Zhao, Yongchao; Morgan, Meredith A.

    2014-01-01

    Abstract Significance: Protein neddylation is catalyzed by an E1 NEDD8-activating enzyme (NAE), an E2 NEDD8-conjugating enzyme, and an E3 NEDD8 ligase. Known physiological substrates of neddylation are cullin family members. Cullin neddylation leads to activation of cullin-RING ligases (CRLs), the largest family of E3 ubiquitin ligases responsible for ubiquitylation and degradation of many key signaling/regulatory proteins. Thus, through modulating CRLs, neddylation regulates many biological processes, including cell cycle progression, signal transduction, and tumorigenesis. Given that NEDD8 is overexpressed and CRLs are abnormally activated in many human cancers, targeting protein neddylation, in general, and cullin neddylation, in particular, appears to be an attractive anticancer approach. Recent Advances: MLN4924, a small molecule inhibitor of NAE, was discovered that inactivates CRLs and causes accumulation of CRL substrates to suppress tumor cell growth both in vitro and in vivo. Promising preclinical results advanced MLN4924 to several clinical trials for anticancer therapy. Critical Issues: In preclinical settings, MLN4924 effectively suppresses tumor cell growth by inducing apoptosis, senescence, and autophagy, and causes sensitization to chemoradiation therapies in a cellular context-dependent manner. Signal molecules that determine the cell fate upon MLN4924 treatment, however, remain elusive. Cancer cells develop MLN4924 resistance by selecting target mutations. Future Directions: In the clinical side, several Phase 1b trials are under way to determine the safety and efficacy of MLN4924, acting alone or in combination with conventional chemotherapy, against human solid tumors. In the preclinical side, the efforts are being made to develop additional neddylation inhibitors by targeting NEDD8 E2s and E3s. Antioxid. Redox Signal. 21, 2383–2400. PMID:24410571

  13. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration

    PubMed Central

    Ishii, Isao; Harada, Yasuo; Kasahara, Tadashi

    2012-01-01

    Pyrvinium pamoate (PP) is an FDA-approved classical anthelmintic, but is now attracting particular attention as an anti-cancer drug after recent findings of its potent cytotoxicity against various cancer cell lines only during glucose starvation, as well as its anti-tumor activity against hypovascular pancreatic cancer cells transplanted in mice. The molecular mechanisms by which PP promotes such preferential toxicity against cancer cells are currently under extensive investigation. PP suppressed the NADH-fumarate reductase system that mediates a reverse reaction of the mitochondrial electron-transport chain complex II in anaerobic organisms such as parasitic helminthes or mammalian cells under tumor microenvironment-mimicking hypoglycemic/hypoxic conditions, thereby inhibiting efficient ATP production. PP also inhibited the unfolded protein response induced by glucose starvation, thereby inhibiting the proliferation of pancreatic cancer cells. Even under normoglycemic/normoxic conditions, PP suppressed the mitochondrial electron-transport chain complex I and thereby STAT3, inhibiting the proliferation of myeloma/erythroleukemia cells. Here, we review accumulating knowledge on its working mechanisms and evaluate PP as a novel anti-cancer drug that targets mitochondrial respiration. PMID:23061049

  14. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration.

    PubMed

    Ishii, Isao; Harada, Yasuo; Kasahara, Tadashi

    2012-01-01

    Pyrvinium pamoate (PP) is an FDA-approved classical anthelmintic, but is now attracting particular attention as an anti-cancer drug after recent findings of its potent cytotoxicity against various cancer cell lines only during glucose starvation, as well as its anti-tumor activity against hypovascular pancreatic cancer cells transplanted in mice. The molecular mechanisms by which PP promotes such preferential toxicity against cancer cells are currently under extensive investigation. PP suppressed the NADH-fumarate reductase system that mediates a reverse reaction of the mitochondrial electron-transport chain complex II in anaerobic organisms such as parasitic helminthes or mammalian cells under tumor microenvironment-mimicking hypoglycemic/hypoxic conditions, thereby inhibiting efficient ATP production. PP also inhibited the unfolded protein response induced by glucose starvation, thereby inhibiting the proliferation of pancreatic cancer cells. Even under normoglycemic/normoxic conditions, PP suppressed the mitochondrial electron-transport chain complex I and thereby STAT3, inhibiting the proliferation of myeloma/erythroleukemia cells. Here, we review accumulating knowledge on its working mechanisms and evaluate PP as a novel anti-cancer drug that targets mitochondrial respiration.

  15. Are Doses and Schedules of Small-Molecule Targeted Anticancer Drugs Recommended by Phase I Studies Realistic?

    PubMed

    Roda, Desamparados; Jimenez, Begoña; Banerji, Udai

    2016-05-01

    Tolerability of molecularly targeted agents (MTA) used in cancer therapeutics is determined in phase I trials. We reviewed the reported incidence of toxicity in phase III trials at doses and schedules recommended by phase I trials to evaluate whether these recommendations are realistic when drugs are used in larger populations of patients. We systematically reviewed a safety profile of small molecule (SM-MTA) and mAb MTA (MA-MTA) approved by the FDA in the last 12 years. There was a significantly increased percentage of grade 3 or 4 adverse events reported with SM-MTA compared with MA-MTA [40% vs. 27%; RR 1.5; 95% confidence interval (CI), 1.10-2.25, P = 0.038] in phase III studies. Importantly, a substantial proportion of patients (45%) treated with SM-MTA required dose modifications due to drug-related toxicity in phase III trials. However, this toxicity was associated to a definitive study drug discontinuation in only 9%. Overall, 25% of SM-MTA declared recommended phase II doses below MTD based on pharmacokinetic-pharmacodynamic data and these trials were associated with a significantly reduced number of dose modifications in registration trials (32% vs. 50%; RR 0.64; 95% CI, 0.43-0.88, P = 0.01). Tolerability is going to come into further focus due to the need for combinations of SM-MTA and other anticancer agents. There was a higher incidence of grade 3-4 toxicity in phase III trials in combinations versus single-agent SM-MTAs (64% vs. 37%; RR 1.73; 95% CI, 1.3-2.3, P = 0.001). These results indicate that phase I studies underestimate toxicity while recommending doses of SM-MTA. Clin Cancer Res; 22(9); 2127-32. ©2015 AACR.

  16. Curcumin-albumin conjugates as an effective anti-cancer agent with immunomodulatory properties.

    PubMed

    Aravind, S R; Krishnan, Lissy K

    2016-05-01

    the drug form has the potential to be used as an anticancer agent in affected human subjects.

  17. Targeting cancer using cholesterol conjugates

    PubMed Central

    Radwan, Awwad A.; Alanazi, Fares K.

    2013-01-01

    Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol–anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo. PMID:24493968

  18. Modulation of Epigenetic Targets for Anticancer Therapy: Clinicopathological Relevance, Structural Data and Drug Discovery Perspectives

    PubMed Central

    Andreol, Federico; Barbosa, Arménio Jorge Moura; Daniele Parenti, Marco; Rio, Alberto Del

    2013-01-01

    Research on cancer epigenetics has flourished in the last decade. Nevertheless growing evidence point on the importance to understand the mechanisms by which epigenetic changes regulate the genesis and progression of cancer growth. Several epigenetic targets have been discovered and are currently under validation for new anticancer therapies. Drug discovery approaches aiming to target these epigenetic enzymes with small-molecules inhibitors have produced the first pre-clinical and clinical outcomes and many other compounds are now entering the pipeline as new candidate epidrugs. The most studied targets can be ascribed to histone deacetylases and DNA methyltransferases, although several other classes of enzymes are able to operate post-translational modifications to histone tails are also likely to represent new frontiers for therapeutic interventions. By acknowledging that the field of cancer epigenetics is evolving with an impressive rate of new findings, with this review we aim to provide a current overview of pre-clinical applications of small-molecules for cancer pathologies, combining them with the current knowledge of epigenetic targets in terms of available structural data and drug design perspectives. PMID:23016851

  19. Targeted search for anticancer drugs--CNIO cancer conference. 16-18 March, Madrid, Spain.

    PubMed

    Lacal, Juan-Carlos; Carnero, Amancio

    2003-05-01

    The Spanish National Cancer Center has launched a new series of cancer conferences devoted to timely themes in oncology. These meetings aim to bring together a maximum of 50 participants, including 20 to 25 speakers along with 25 to 30 participants for in-depth discussion of new results and ideas in frontline cancer research. There is no registration fee to attend, but participants must organize their own travel and accommodation expenses; free communications are presented as posters, but a few may be selected for short (15 min) oral presentations. This particular meeting was organized by Amancio Carnero and David H Beach, and was mostly devoted to state of the art methodologies for the identification of new targets for anticancer drug design, although the development of novel drugs was also discussed.

  20. Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review

    PubMed Central

    Porporato, Paolo E.; Dhup, Suveera; Dadhich, Rajesh K.; Copetti, Tamara; Sonveaux, Pierre

    2011-01-01

    Cancer is a metabolic disease and the solution of two metabolic equations: to produce energy with limited resources and to fulfill the biosynthetic needs of proliferating cells. Both equations are solved when glycolysis is uncoupled from oxidative phosphorylation in the tricarboxylic acid cycle, a process known as the glycolytic switch. This review addresses in a comprehensive manner the main molecular events accounting for high-rate glycolysis in cancer. It starts from modulation of the Pasteur Effect allowing short-term adaptation to hypoxia, highlights the key role exerted by the hypoxia-inducible transcription factor HIF-1 in long-term adaptation to hypoxia, and summarizes the current knowledge concerning the necessary involvement of aerobic glycolysis (the Warburg effect) in cancer cell proliferation. Based on the many observations positioning glycolysis as a central player in malignancy, the most advanced anticancer treatments targeting tumor glycolysis are briefly reviewed. PMID:21904528

  1. Cooperative target convergence using multiple agents

    SciTech Connect

    Kwok, K.S.; Driessen, B.J.

    1997-10-01

    This work considers the problem of causing multiple (100`s) autonomous mobile robots to converge to a target and provides a follow-the-leader approach to the problem. Each robot has only a limited-range sensor for sending the target and also larger but also limited-range robot-to-robot communication capability. Because of the small amount of information available to the robots, a practical approach to improve convergence to the target is to have a robot follow the robot with the best quality of information. Specifically, each robot emits a signal that informs in-range robots what its status is. A robot has a status value of 0 if it is itself in range of the target. A robot has a status of 1 if it is not in range of the target but is in communication range of a robot that is in range of the target. A robot has a status of 2 if it is not in range of the target but is within range of another robot that has status 1, and so on. Of all the mobile robots that any given robot is in range of, it follows the one with the best status. The emergent behavior is the ant-like trails of robots following each other toward the target. If the robot is not in range of another robot that is either in range of the target or following another robot, the robot will assign-1 to its quality-of-information, and will execute an exhaustive search. The exhaustive search will continue until it encounters either the target or another robot with a nonnegative quality-of-information. The quality of information approach was extended to the case where each robot only has two-bit signals informing it of distance to in-range robots.

  2. Evaluation of bishexadecyltrimethyl ammonium palladium tetrachloride based dual functional colloidal carrier as an antimicrobial and anticancer agent.

    PubMed

    Kaur, Gurpreet; Kumar, Sandeep; Dilbaghi, Neeraj; Kaur, Baljinder; Kant, Ravi; Guru, Santosh Kumar; Bhushan, Shashi; Jaglan, Sundeep

    2016-04-21

    We have developed a dual function carrier using bishexadecyltrimethyl ammonium palladium tetrachloride, which has anticancer as well as antibacterial activity, using a ligand insertion method with a simple and easy work procedure. The complex is prepared by a simple and cost effective method using hexadecyltrimethyl ammonium chloride and palladium chloride under controlled stoichiometry. Herein, we report the aggregation (self assembly) of the metallosurfactant having palladium as a counter ion, in aqueous medium along with its binding affinity with bovine serum albumin. The palladium surfactant has exhibited excellent antimicrobial efficacy against fungus and bacteria (both Gram-positive and Gram-negative bacteria). Cytotoxicity of palladium surfactant against cancerous (Human leukemia HL-60, pancreatic MIA-Pa-Ca-2 and prostate cancer PC-3) and healthy cells (fR2 human breast epithelial cells) was also evaluated using MTT assay. The present dual functional moiety shows a low IC50 value and has potential to be used as an anticancer agent. Our dual function carrier which itself possesses antimicrobial and anticancer activity represents a simple and effective system and can also be utilized as a drug carrier in the future.

  3. Bidirectional functions of arsenic as a carcinogen and an anti-cancer agent in human squamous cell carcinoma.

    PubMed

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Kato, Masashi

    2014-01-01

    Bidirectional cancer-promoting and anti-cancer effects of arsenic for cancer cells have been revealed in previous studies. However, each of these effects (cancer-promoting or anti-cancer) was found in different cells at different treated-concentration of arsenic. In this study, we for the first time indicated that arsenic at concentration of 3 µM, equal to average concentration in drinking water in cancer-prone areas in Bangladesh, simultaneously expressed its bidirectional effects on human squamous cell carcinoma HSC5 cells with distinct pathways. Treatment with 3 µM of arsenic promoted cell invasion via upregulation of expression of MT1-MMP and downregulation of expression of p14ARF and simultaneously induced cell apoptosis through inhibition of expression of N-cadherin and increase of expression of p21(WAF1/CIP1) at both transcript and protein levels in HSC5 cells. We also showed that inhibition of MT1-MMP expression by NSC405020 resulted in decrease of arsenic-mediated invasion of HSC5 cells involving decrease in phosphorylated extracellular signal-regulated kinases (pERK). Taken together, our biological and biochemical findings suggested that arsenic expressed bidirectional effects as a carcinogen and an anti-cancer agent in human squamous cell carcinoma HSC5 cells with distinct pathways. Our results might play an important scientific evident for further studies to find out a better way in treatment of arsenic-induced cancers, especially in squamous cell carcinoma.

  4. 1-Piperazinylphthalazines as potential VEGFR-2 inhibitors and anticancer agents: Synthesis and in vitro biological evaluation.

    PubMed

    Abou-Seri, Sahar M; Eldehna, Wagdy M; Ali, Mamdouh M; Abou El Ella, Dalal A

    2016-01-01

    In our endeavor towards the development of effective VEGFR-2 inhibitors, three novel series of phthalazine derivatives based on 1-piperazinyl-4-arylphthalazine scaffold were synthesized. All the newly prepared phthalazines 16a-k, 18a-e and 21a-g were evaluated in vitro for their inhibitory activity against VEGFR-2. In particular, compounds 16k and 21d potently inhibited VEGFR-2 at sub-micromolar IC50 values 0.35 ± 0.03 and 0.40 ± 0.04 μM, respectively. Moreover, seventeen selected compounds 16c-e, 16g, 16h, 16j, 16k, 18c-e and 21a-g were evaluated for their in vitro anticancer activity according to US-NCI protocol, where compounds 16k and 21d proved to be the most potent anticancer agents. While, compound 16k exhibited potent broad spectrum anticancer activity with full panel GI50 (MG-MID) value of 3.62 μM, compound 21d showed high selectivity toward leukemia and prostate cancer subpanels [subpanel GI50 (MG-MID) 3.51 and 5.15 μM, respectively]. Molecular docking of compounds16k and 21d into VEGFR-2 active site was performed to explore their potential binding mode.

  5. Molecular designing and in silico evaluation of darunavir derivatives as anticancer agents

    PubMed Central

    Mahto, Manoj kumar; Yellapu, Nanda Kumar; Kilaru, Ravendra Babu; Chamarthi, Naga Raju; Bhaskar, Matcha

    2014-01-01

    Darunavir is a synthetic nonpeptidic protease inhibitor which has been tested for anticancer properties. To deduce and enhance the anticancer activity of the Darunavir, we have modified its reactive moiety in an effective way. We designed 9 analogues in ChemBioOffice 2010 and minimized using the LigPrep tool of Schrödinger 2011. These analogues can obstruct the activity of other signalling pathways which are implicated in many tumors. Results of the QikProp showed that all the analogues lied in the specified range of all the pharmacokinetic (ADMET) properties required to become the successful drug. Docking study was performed to test its anticancer activity against the biomarkers of the five main types of cancers i.e. bone, brain, breast, colon and skin cancer. Grid was generated for each oncoproteins by specifying the active site amino acids. The binding model of best scoring analogue with each protein was assessed from their G-scores and disclosed by docking analysis using the XP visualizer tool. An analysis of the receptor-ligand interaction studies revealed that these nine Darunavir analogues are active against all cancer biomarkers and have the features to prove themselves as anticancer drugs, further to be synthesized and tested against the cell lines. PMID:24966524

  6. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery.

  7. Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent

    PubMed Central

    Milgroom, Andrew; Intrator, Miranda; Madhavan, Krishna; Mazzaro, Luciano; Shandas, Robin; Liu, Bolin; Park, Daewon

    2014-01-01

    Ultrasound (US) is used widely in the context of breast cancer. While it is advantageous for a number of reasons, it has low specificity and requires the use of a contrast agent. Its use as a standalone diagnostic and real-time imaging modality could be achieved by development of a tumor-targeted ultrasound contrast agent (UCA); functionalizing the UCA with a tumor-targeting agent would also allow the targeted administration of anti-cancer drugs at the tumor site. In this article, clinical US techniques are used to show that mesoporous silica nanoparticles (MSNs), functionalized with the monoclonal antibody Herceptin®, can be used as an effective UCA by increasing US image contrast. Furthermore, in vitro assays show the successful localization and binding of the MSN-Herceptin conjugate to HER2+ cancer cells, resulting in tumor-specific cytotoxicity. These results demonstrate the potential of MSNs as a stable, biocompatible, and effective therapeutic and diagnostic (“theranostic”) agent for US-based breast cancer imaging, diagnosis, and treatment. PMID:24269054

  8. Development of synthetic lethality anticancer therapeutics.

    PubMed

    Fang, Bingliang

    2014-10-09

    The concept of synthetic lethality (the creation of a lethal phenotype from the combined effects of mutations in two or more genes) has recently been exploited in various efforts to develop new genotype-selective anticancer therapeutics. These efforts include screening for novel anticancer agents, identifying novel therapeutic targets, characterizing mechanisms of resistance to targeted therapy, and improving efficacies through the rational design of combination therapy. This review discusses recent developments in synthetic lethality anticancer therapeutics, including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations in multiple genes and abnormalities in multiple signaling pathways, synthetic lethality for a specific tumor suppressor gene or oncogene is likely cell context-dependent. Delineation of the mechanisms underlying synthetic lethality and identification of treatment response biomarkers will be critical for the success of synthetic lethality anticancer therapy.

  9. Methylselenocysteine - a Promising Antiangiogenic Agent for Overcoming Drug Delivery Barriers in Solid Malignancies for Therapeutic Synergy with Anticancer Drugs

    PubMed Central

    Bhattacharya, Arup

    2011-01-01

    Introduction Despite progress, chemotherapeutic response in solid malignancies has remained limited. While initial results of the use of antiangiogenic agents in combination chemotherapy indicated an enhanced therapeutic response, recent data indicates that the surviving cancer is not only able to surmount therapy, but is actually able to adapt a more aggressive metastatic phenotype. Thus, selecting an antiangiogenic agent that is less likely to lead to tumor resurgence is a key to future therapeutic success of antiangiogenic agents, in a combinatorial setting. Areas covered Against the broad spectrum of currently used antiangiogenic agents in the clinic, the putative benefits of the use of organo selenium (Se) compounds, such as methylselenocysteine (MSC), are discussed in this reiew. Expert opinion MSC, being part of the mammalian physiology, is a well tolerated, versatile and economical antiangiogenic agent. It down regulates multiple key upstream tumor survival markers, and enhances tumor drug delivery, at a given systemic dose of an anticancer agent, while protecting normal tissue from cytotoxic adverse effects. Further clinical trials, especially in poorly differentiated cancers, are warranted. PMID:21473705

  10. Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development.

    PubMed

    Soga, Shiro; Akinaga, Shiro; Shiotsu, Yukimasa

    2013-01-01

    Heat shock protein (Hsp) 90 is an ATP-dependent molecular chaperone which stabilizes various oncogenic kinases, including HER2, EGFR, BCR-ABL, B-Raf and EML4-ALK, which are essential for tumor growth. Several monoclonal antibodies and small molecule kinase inhibitors which target these kinases have been identified as potential new molecular target therapeutics. Previous reports have shown that many oncogenic proteins essential for cancer transformation are chaperoned by the Hsp90 complex, and some of these client proteins have been discovered by using Hsp90 inhibitors, such as geldanamycin (GA) and radicicol (RD).Thus far more than 200 client proteins have been identified. In past derivatives of these natural products have been evaluated in clinical trials, but none of the 1st generation of Hsp90 inhibitors has been approved yet because of their limitations in physico-chemical properties and/or safety profiles. However, recent reports have indicated that more than 10 new agents, 2nd generation of Hsp90 inhibitors with different chemotypes from GA and RD, have entered clinical trials and some of them showed clinical efficacy. In this review article, we describe the discoveries of major Hsp90 client proteins in the cancer field by RD derivatives, the history of KW-2478 discovery and development by Kyowa Hakko Kirin, and gave an update on the current status of new Hsp90 inhibitors in clinical trials.

  11. Scaffold-hopping of bioactive flavonoids: Discovery of aryl-pyridopyrimidinones as potent anticancer agents that inhibit catalytic role of topoisomerase IIα.

    PubMed

    Priyadarshani, Garima; Amrutkar, Suyog; Nayak, Anmada; Banerjee, Uttam C; Kundu, Chanakya N; Guchhait, Sankar K

    2016-10-21

    A strategy of scaffold-hopping of bioactive natural products, flavones and isoflavones, leading to target-based discovery of potent anticancer agents has been reported for the first time. Scaffold-hopped flavones, 2-aryl-4H-pyrido[1,2-a]pyrimidin-4-ones and the scaffold-hopped isoflavones, 3-aryl-pyrido[1,2-a]pyrimidin-4-ones were synthesized via Pd-catalyzed activation-arylation methods. Most of the compounds were found to exhibit pronounced human topoisomerase IIα (hTopoIIα) inhibitory activities and several compounds were found to be more potent than etoposide (a hTopoIIα-inhibiting anticancer drug). These classes of compounds were found to be hTopoIIα-selective catalytic inhibitors while not interfering with topoisomerase I and interacted with DNA plausibly in groove domain. Cytotoxicities against various cancer cells, low toxicity in normal cells, and apoptotic effects were observed. Interestingly, compared to parent flavones/isoflavones, their scaffold-hopped analogs bearing alike functionalities showed significant/enhanced hTopoIIα-inhibitory and cytotoxic properties, indicating the importance of a natural product-based scaffold-hopping strategy in the drug discovery.

  12. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  13. Microtubule-targeting agents in oncology and therapeutic potential in hepatocellular carcinoma

    PubMed Central

    Loong, Herbert H; Yeo, Winnie

    2014-01-01

    In mammalian cells, microtubules are present both in interphase and dividing cells. In the latter, microtubules forming the mitotic spindle are highly dynamic and exquisitely sensitive to therapeutic inhibitors. Developed to alter microtubule function, microtubule-binding agents have been proven to be highly active as an anticancer treatment. Significant development of microtubule-binding agents has taken place in recent years, with newer anti-tubulin agents now showing novel properties of enhanced tumor specificity, reduced neurotoxicity, and insensitivity to chemoresistance mechanisms. Hepatocellular carcinoma remains one of the most difficult cancers to treat, with chemotherapies being relatively ineffective. There is now evidence to suggest that microtubule-binding agents may be effective in the treatment of hepatocellular carcinoma, especially when used in combination with mammalian target of rapamycin inhibitors. Preclinical models have suggested that the latter may be able to overcome resistance to microtubule binding agents. In this review article, recent developments of novel microtubule binding agents and their relevance to the treatment of hepatocellular carcinoma will be discussed. PMID:24790457

  14. Synergistic Anticancer Effect of Peptide-Docetaxel Nanoassembly Targeted to Tubulin: Toward Development of Dual Warhead Containing Nanomedicine.

    PubMed

    Mohapatra, Saswat; Saha, Abhijit; Mondal, Prasenjit; Jana, Batakrishna; Ghosh, Subhajit; Biswas, Atanu; Ghosh, Surajit

    2017-01-01

    Microtubule dynamics play a crucial role in cancer cell division. Various drugs are developed to target microtubule. Although a few of them show potential in treatment of cancer, but success rate is limited due to their poor bioavailability and lack of specificity. Thus, development of highly bioavailable and target specific anticancer drug is extremely necessary. To address these key issues, here, a combination of approaches such as development of a dodecapeptide-docetaxel nanoassembly targeted to tubulin and MUC1 (mucin 1, cell surface associated glycoprotein) targeting oligonucleotide aptamer conjugated liposome for delivering peptide-docetaxel nanoassembly into the breast cancer cell have been demonstrated. These studies reveal that the peptide forms nanoassembly and entraps docetaxel drug. Further, the liposomal formulation of peptide-docetaxel exerts synergistic anticancer effect, activates key mitotic check point proteins, and inhibits bipolar spindle formation, metastatic cancer cell migration, and growth of tumor mimicking 3D multicellular spheroid.

  15. Tuning the metabolism of the anticancer drug cisplatin with chemoprotective agents to improve its safety and efficacy

    PubMed Central

    Sooriyaarachchi, Melani; George, Graham N.; Pickering, Ingrid J.; Narendran, Aru

    2016-01-01

    Numerous in vivo studies have shown that the severe toxic side-effects of intravenously administered cisplatin can be significantly reduced by the co-administration of sulfur-containing ‘chemoprotective agents’. Using a metallomics approach, a likely biochemical basis for these potentially useful observations was only recently uncovered and appears to involve the reaction of chemoprotective agents with cisplatin-derived Pt-species in human plasma to form novel platinum–sulfur complexes (PSC's). We here reveal aspects of the structure of two PSC's and establish the identification of an optimal chemoprotective agent to ameliorate the toxic side-effects of cisplatin, while leaving its antineoplastic activity largely intact, as a feasible research strategy to transform cisplatin into a safer and more effective anticancer drug. PMID:27722429

  16. Amide Coupling Reaction for the Synthesis of Bispyridine-based Ligands and Their Complexation to Platinum as Dinuclear Anticancer Agents

    PubMed Central

    Apps, Michael G.; Johnson, Ben W.; Sutcliffe, Oliver B.; Brown, Sarah D.; Wheate, Nial J.

    2014-01-01

    Amide coupling reactions can be used to synthesize bispyridine-based ligands for use as bridging linkers in multinuclear platinum anticancer drugs. Isonicotinic acid, or its derivatives, are coupled to variable length diaminoalkane chains under an inert atmosphere in anhydrous DMF or DMSO with the use of a weak base, triethylamine, and a coupling agent, 1-propylphosphonic anhydride. The products precipitate from solution upon formation or can be precipitated by the addition of water. If desired, the ligands can be further purified by recrystallization from hot water. Dinuclear platinum complex synthesis using the bispyridine ligands is done in hot water using transplatin. The most informative of the chemical characterization techniques to determine the structure and gross purity of both the bispyridine ligands and the final platinum complexes is 1H NMR with particular analysis of the aromatic region of the spectra (7-9 ppm). The platinum complexes have potential application as anticancer agents and the synthesis method can be modified to produce trinuclear and other multinuclear complexes with different hydrogen bonding functionality in the bridging ligand. PMID:24893964

  17. Phytosterols as a natural anticancer agent: Current status and future perspective.

    PubMed

    Shahzad, Naiyer; Khan, Wajahatullah; Md, Shadab; Ali, Asgar; Saluja, Sundeep Singh; Sharma, Sadhana; Al-Allaf, Faisal A; Abduljaleel, Zainularifeen; Ibrahim, Ibrahim Abdel Aziz; Abdel-Wahab, Ali Fathi; Afify, Mohamed Abdelaziz; Al-Ghamdi, Saeed Saeed

    2017-04-01

    Phytosterols are naturally occurring compounds in plants, structurally similar to cholesterol. The human diet is quite abundant in sitosterol and campesterol. Phytosterols are known to have various bioactive properties including reducing intestinal cholesterol absorption which alleviates blood LDL-cholesterol and cardiovascular problems. It is indicated that phytosterol rich diets may reduce cancer risk by 20%. Phytosterols may also affect host systems, enabling antitumor responses by improving immune response recognition of cancer, affecting the hormone dependent endocrine tumor growth, and by sterol biosynthesis modulation. Moreover, phytosterols have also exhibited properties that directly inhibit tumor growth, including reduced cell cycle progression, apoptosis induction, and tumor metastasis inhibition. The objective of this review is to summarize the current knowledge on occurrences, chemistry, pharmacokinetics and potential anticancer properties of phytosterols in vitro and in vivo. In conclusion, anticancer effects of phytosterols have strongly been suggested and support their dietary inclusion to prevent and treat cancers.

  18. Repurposing drugs in oncology (ReDO)—cimetidine as an anti-cancer agent

    PubMed Central

    Pantziarka, Pan; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vidula; Sukhatme, Vikas P

    2014-01-01

    Cimetidine, the first H2 receptor antagonist in widespread clinical use, has anti-cancer properties that have been elucidated in a broad range of pre-clinical and clinical studies for a number of different cancer types. These data are summarised and discussed in relation to a number of distinct mechanisms of action. Based on the evidence presented, it is proposed that cimetidine would synergise with a range of other drugs, including existing chemotherapeutics, and that further exploration of the potential of cimetidine as an anti-cancer therapeutic is warranted. Furthermore, there is compelling evidence that cimetidine administration during the peri-operative period may provide a survival benefit in some cancers. A number of possible combinations with other drugs are discussed in the supplementary material accompanying this paper. PMID:25525463

  19. Novel angular benzophenazines: dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents.

    PubMed

    Vicker, Nigel; Burgess, Luke; Chuckowree, Irina S; Dodd, Rory; Folkes, Adrian J; Hardick, David J; Hancox, Timothy C; Miller, Warren; Milton, John; Sohal, Sukhjit; Wang, Shouming; Wren, Stephen P; Charlton, Peter A; Dangerfield, Wendy; Liddle, Chris; Mistry, Prakash; Stewart, Alistair J; Denny, William A

    2002-01-31

    A series of substituted angular benzophenazines were prepared using a new synthetic route via a novel regiocontrolled condensation of 1,2-naphthoquinones and 2,3-diaminobenzoic acids. The synthesis and biological activity of this new series of substituted 8,9-benzo[a]phenazine carboxamide systems are described. The analogues were evaluated against the H69 parental human small cell lung carcinoma cell line and H69/LX4 resistant cell line which overexpresses P-glycoprotein. Selected analogues were evaluated against the COR-L23 parental human non small cell lung carcinoma cell line and the COR-L23/R resistant cell line which overexpresses multidrug resistance protein. This series of novel angular benzophenazines were potent cytotoxic agents in these cell lines and may be able to circumvent multidrug resistance mechanisms which result in the lack of efficacy of many drugs in cancer chemotherapy. These compounds show dual inhibition of topoisomerase I and topoisomerase II and thus target two key enzymes responsible for the topology of DNA that are active at different points in the cell cycle. The introduction of chirality into the carboxamide side chain of these novel benzophenazine carboxamides has resulted in the discovery of a potent enantiospecific series of cytotoxic agents, exemplified by 4-methoxy-benzo[a]phenazine-11-carboxylic acid (2-(dimethylamino)-1-(R)-methyl-ethyl)-amide, XR11576 ((R)-4j' '). In vivo activity has been demonstrated for 4-methoxy-benzo[a]phenazine-11-carboxylic acid (2-(dimethylamino)-1-(R)-methyl-ethyl)-amide, XR11576, after intravenous administration to female mice, and this compound has been selected as a development candidate for further evaluation.

  20. [Quod medicina aliis, aliis est acre venenum**--venoms as a source of anticancer agents].

    PubMed

    Kucińska, Małgorzata; Ruciński, Piotr; Murias, Marek

    2013-01-01

    Natural product derived from plants and animals were used in folk medicine for centuries. The venoms produced by animals for hunting of self-defence are rich in bioactive compounds with broad spectrum of biological activity. The papers presents the most promising compounds isolated from venoms of snakes, scorpions and toads. For these compounds both: mechanism of anticancer activity as well as possibilities of clinical use are presented.

  1. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents

    SciTech Connect

    Shashkova, Elena V.; May, Shannon M.; Barry, Michael A.

    2009-11-25

    Human adenovirus type 5 (Ad5) has been the most popular platform for the development of oncolytic Ads. Alternative Ad serotypes with low seroprevalence might allow for improved anticancer efficacy in Ad5-immune patients. We studied the safety and efficacy of rare serotypes Ad6, Ad11 and Ad35. In vitro cytotoxicity of the Ads correlated with expression of CAR and CD46 in most but not all cell lines. Among CAR-binding viruses, Ad5 was often more active than Ad6, among CD46-binding viruses Ad35 was generally more cytotoxic than Ad11 in cell culture studies. Ad5, Ad6, and Ad11 demonstrated similar anticancer activity in vivo, whereas Ad35 was not efficacious. Hepatotoxicity developed only in Ad5-injected mice. Predosing with Ad11 and Ad35 did not increase infection of hepatocytes with Ad5-based vector demonstrating different interaction of these Ads with Kupffer cells. Data obtained in this study suggest developing Ad6 and Ad11 as alternative Ads for anticancer treatment.

  2. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent.

    PubMed

    Arjunan, Nithya; Kumari, Henry Linda Jeeva; Singaravelu, Chandra Mohan; Kandasamy, Ruckmani; Kandasamy, Jothivenkatachalam

    2016-11-01

    Chitosan (CS), a seaweed polysaccharide is a natural macromolecule which is widely being used in medical applications because of its distinctive antimicrobial and anticancer properties. Silver, a noble metal, is also receiving wide attention for its potential usage in antimicrobial and anticancer therapeutics. In this study, an effective way of reduction of silver using chitosan at varying reaction temperatures and an optimised concentration of silver were performed. The optical, structural, spectral, morphological and elemental studies of the biosynthesized chitosan-silver (CS-Ag) nanocomposites were characterized by several techniques. The synthesized CS-Ag nanocomposites exhibit particle size around 20nm and were further exploited for potent biological applications in nanomedicine due to their nanometric sizes and biocompatibility of chitosan. The antimicrobial activity of the biosynthesized CS-Ag nanocomposites exhibits zone of inhibition ranged between 09.666±0.577 and 19.000±1.000 (mm). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were from 8 to 128μgmL(-1) and 16 to 256μgmL(-1) respectively, with the highest antimicrobial activity shown against Gram-negative Salmonella sp. The synergistic effect of chitosan and silver as a composite in nanometric size revealed significant IC50 value of 29.35μgmL(-1) and a maximum of 95.56% inhibition at 100μgmL(-1) against A549 lung cancer cell line, resulting in potent anticancer effect.

  3. Ferns and lycopods--a potential treasury of anticancer agents but also a carcinogenic hazard.

    PubMed

    Tomšík, Pavel

    2014-06-01

    Many species of seedless vascular plants-ferns and lycopods-have been used as food and folk medicine since ancient times. Some of them have become the focus of intensive research concerning their anticancer properties. Studies on the anticancer effect of crude extracts are being increasingly replaced by bioactivity-guided fractionation, as well as detailed assessment of the mechanism of action. Numerous compounds-especially flavonoids such as amentoflavone and protoapigenone, and also simpler phenolic compounds, steroids, alkaloids and terpenoids-were isolated and found to be cytotoxic, particularly pro-apoptotic, or to induce cell cycle arrest in cancer cell lines in vitro. In in vivo experiments, some fern-derived compounds inhibited tumour growth with little toxicity. On the other hand, many ferns-not only the well-known Bracken (Pteridium)-may pose a significant hazard to human health due to the fact that they contain carcinogenic sesquiterpenoids and their analogues. The objective of this review is to summarise the recent state of research on the anticancer properties of ferns and lycopods, with a focus on their characteristic bioactive constituents. The carcinogenic hazard posed by ferns is also mentioned.

  4. Rational Design, Synthesis, and Biological Evaluation of Third Generation α-Noscapine Analogues as Potent Tubulin Binding Anti-Cancer Agents

    PubMed Central

    Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas

    2013-01-01

    Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔGbind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents. PMID:24205049

  5. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    PubMed

    Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas

    2013-01-01

    Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind ) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  6. Molecular-Targeted Antitumor Agents 19

    PubMed Central

    Liu, Yang; Liu, Rui; Mao, Shui-Chun; Morgan, J. Brian; Jekabsons, Mika B.; Zhou, Yu-Dong; Nagle, Dale G.

    2009-01-01

    A natural product chemistry-based approach was employed to discover small molecule inhibitors of the important tumor-selective molecular target hypoxia-inducible factor-1 (HIF-1). Bioassay-guided isolation of an active lipid extract of a Saipan collection of the marine sponge Lendenfeldia sp. afforded the terpene-derived furanolipid furospongolide as the primary inhibitor of hypoxia-induced HIF-1 activation (IC50 2.9 μM, T47D breast tumor cells). The active component of the extract also contained one new cytotoxic scalarane sesterterpene and two previously reported scalaranes. Furospongolide blocked the induction of the downstream HIF-1 target secreted vascular endothelial growth factor (VEGF) and was shown to suppress HIF-1 activation by inhibiting the hypoxic induction of HIF-1α protein. Mechanistic studies indicate that furospongolide inhibits HIF-1 activity primarily by suppressing tumor cell respiration via the blockade of NADH-ubiquinone oxidoreductase (complex I)-mediated mitochondrial electron transfer. PMID:18989978

  7. Dual-targeting organometallic ruthenium(II) anticancer complexes bearing EGFR-inhibiting 4-anilinoquinazoline ligands.

    PubMed

    Zhang, Yang; Zheng, Wei; Luo, Qun; Zhao, Yao; Zhang, Erlong; Liu, Suyan; Wang, Fuyi

    2015-08-07

    We have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226). Reported herein are the synthesis, characterisation and evaluation of the biological activity of a new series of ruthenium(ii) complexes of the type [(η(6)-arene)Ru(N,N-L)Cl]PF6 (arene = p-cymene, benzene, 2-phenylethanol or indane, L = 4-anilinoquinazolines). These organometallic ruthenium complexes undergo fast hydrolysis in aqueous solution. Intriguingly, the ligation of (arene)Ru(II) fragments with 4-anilinoquinazolines not only makes the target complexes excellent EGFR inhibitors, but also confers the complexes high affinity to bind to DNA minor grooves while maintaining their reactivity towards DNA bases, characterising them with dual-targeting properties. Molecular modelling studies reveal that the hydrolysis of these complexes is a favourable process which increases the affinity of the target complexes to bind to EGFR and DNA. In vitro biological activity assays show that most of this group of ruthenium complexes are selectively active inhibiting the EGF-stimulated growth of the HeLa cervical cancer cell line, and the most active complex [(η(6)-arene)Ru(N,N-L13)Cl]PF6 (, IC50 = 1.36 μM, = 4-(3'-chloro-4'-fluoroanilino)-6-(2-(2-aminoethyl)aminoethoxy)-7-methoxyquinazoline) is 29-fold more active than its analogue, [(η(6)-arene)Ru(N,N-ethylenediamine)Cl]PF6, and 21-fold more active than gefitinib, a well-known EGFR inhibitor in use clinically. These results highlight the strong promise to develop highly active ruthenium anticancer complexes by ligation of cytotoxic ruthenium pharmacophores with bioactive organic molecules.

  8. Molecular targeting agents in cancer therapy: science and society.

    PubMed

    Shaikh, Asim Jamal

    2012-01-01

    The inception of targeted agents has revolutionized the cancer therapy paradigm, both for physicians and patients. A large number of molecular targeted agents for cancer therapy are currently available for clinical use today. Many more are in making, but there are issues that remain to be resolved for the scientific as well as social community before the recommendation of their widespread use in may clinical scenarios can be done, one such issue being cost and cost effectiveness, others being resistance and lack of sustained efficacy. With the current knowledge about available targeted agents, the growing knowledge of intricate molecular pathways and unfolding of wider spectrum of molecular targets that can really matter in the disease control, calls for only the just use of the agents available now, drug companies need to make a serious attempt to reduce the cost of the agents. Research should focus on agents that show sustained responses in preclinical data. More needs to be done in laboratories and by the pharmaceutical industries, before we can truly claim to have entered a new era of targeted therapy in cancer care.

  9. Polysaccharide-Gold Nanocluster Supramolecular Conjugates as a Versatile Platform for the Targeted Delivery of Anticancer Drugs

    NASA Astrophysics Data System (ADS)

    Li, Nan; Chen, Yong; Zhang, Ying-Ming; Yang, Yang; Su, Yue; Chen, Jia-Tong; Liu, Yu

    2014-02-01

    Through the high affinity of the β-cyclodextrin (β-CD) cavity for adamantane moieties, novel polysaccharide-gold nanocluster supramolecular conjugates (HACD-AuNPs) were successfully constructed from gold nanoparticles (AuNPs) bearing adamantane moieties and cyclodextrin-grafted hyaluronic acid (HACD). Due to their porous structure, the supramolecular conjugates could serve as a versatile and biocompatible platform for the loading and delivery of various anticancer drugs, such as doxorubicin hydrochloride (DOX), paclitaxel (PTX), camptothecin (CPT), irinotecan hydrochloride (CPT-11), and topotecan hydrochloride (TPT), by taking advantage of the controlled association/dissociation of drug molecules from the cavities formed by the HACD skeletons and AuNPs cores as well as by harnessing the efficient targeting of cancer cells by hyaluronic acid. Significantly, the release of anticancer drugs from the drug@HACD-AuNPs system was pH-responsive, with more efficient release occurring under a mildly acidic environment, such as that in a cancer cell. Taking the anticancer drug DOX as an example, cell viability experiments revealed that the DOX@HACD-AuNPs system exhibited similar tumor cell inhibition abilities but lower toxicity than free DOX due to the hyaluronic acid reporter-mediated endocytosis. Therefore, the HACD-AuNPs supramolecular conjugates may possess great potential for the targeted delivery of anticancer drugs.

  10. Claudin-4 binder C-CPE 194 enhances effects of anticancer agents on pancreatic cancer cell lines via a MAPK pathway.

    PubMed

    Kono, Tsuyoshi; Kondoh, Masuo; Kyuno, Daisuke; Ito, Tatsuya; Kimura, Yasutoshi; Imamura, Masafumi; Kohno, Takayuki; Konno, Takumi; Furuhata, Tomohisa; Sawada, Norimasa; Hirata, Koichi; Kojima, Takashi

    2015-12-01

    The C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) modulates the tight junction protein claudin and disrupts the tight junctional barrier. It also can enhance the effectiveness of anticancer agents. However, the detailed mechanisms of the effects of C-CPE remain unclear in both normal and cancerous cells. The C-CPE mutant called C-CPE 194 binds only to claudin-4, but the C-CPE 194 mutant called C-CPE m19 binds not only to claudin-4 but also to claudin-1. In the present study, to investigate the mechanisms of the effects of C-CPE on claudin expression, the tight junctional functions and the cytotoxicity of anticancer agents, human pancreatic cancer cells, and normal human pancreatic duct epithelial cells (HPDEs) were treated with C-CPE 194 and C-CPE m19. In well-differentiated cells of the pancreatic cancer cell line HPAC, C-CPE 194 and C-CPE m19 disrupted both the barrier and fence functions without changes in expression of claudin-1 and -4, together with an increase of MAPK phosphorylation. C-CPE 194, but not C-CPE m19, enhanced the cytotoxicity of the anticancer agents gemcitabine and S-1. In poorly differentiated pancreatic cancer cell line PANC-1, C-CPE 194, but not C-CPE m19, decreased claudin-4 expression and enhanced MAPK activity and the cytotoxicity of the anticancer agents. In normal HPDEs, C-CPE 194 and C-CPE m19 decreased claudin-4 expression and enhanced the MAPK activity, whereas they did not affect the cytotoxicity of the anticancer agents. Our findings suggest that the claudin-4 binder C-CPE 194 enhances effects of anticancer agents on pancreatic cancer cell lines via a MAPK pathway.

  11. STAT3 Inhibition by Microtubule-Targeted Drugs: Dual Molecular Effects of Chemotherapeutic Agents

    PubMed Central

    Walker, Sarah R.; Chaudhury, Mousumi; Frank, David A.

    2011-01-01

    To improve the effectiveness of anti-cancer therapies, it is necessary to identify molecular targets that are essential to a tumor cell but dispensable in a normal cell. Increasing evidence indicates that the transcription factor STAT3, which regulates the expression of genes controlling proliferation, survival, and self-renewal, constitutes such a target. Recently it has been found that STAT3 can associate with the cytoskeleton. Since many of the tumors in which STAT3 is activated, such as breast cancer and ovarian cancer, are responsive to drugs that target microtubules, we examined the effect of these compounds on STAT3. We found that microtubule stabilizers, such as paclitaxel, or microtubule inhibitors, such as vinorelbine, decrease the activating tyrosine phosphorylation of STAT3 in tumor cells and inhibit the expression of STAT3 target genes. Paclitaxel decreases the association between STAT3 and microtubules, and appears to decrease STAT3 phosphorylation through induction of a negative feedback regulator. The cytotoxic activity of paclitaxel in breast cancer cell lines correlates with its ability to decrease STAT3 phosphorylation. However, consistent with the necessity for expression of a negative regulator, treatment of resistant MDA-MB-231 cells with the DNA demethylating agent 5-azacytidine restores the ability of paclitaxel to block STAT3-dependent gene expression. Finally, the combination of paclitaxel and agents that directly target STAT3 has beneficial effects in killing STAT3-dependent cell lines. Thus, microtubule-targeted agents may exert some of their effects by inhibiting STAT3, and understanding this interaction may be important for optimizing rational targeted cancer therapies. PMID:21949561

  12. Ficus spp. (fig): ethnobotany and potential as anticancer and anti-inflammatory agents.

    PubMed

    Lansky, Ephraim Philip; Paavilainen, Helena M; Pawlus, Alison D; Newman, Robert A

    2008-09-26

    This review explores medieval, ancient and modern sources for ethnopharmacological uses of Ficus (fig) species, specifically for employment against malignant disease and inflammation. The close connection between inflammatory/infectious and cancerous diseases is apparent both from the medieval/ancient merging of these concepts and the modern pharmacological recognition of the initiating and promoting importance of inflammation for cancer growth. Also considered are chemical groups and compounds underlying the anticancer and anti-inflammatory actions, the relationship of fig wasps and fig botany, extraction and storage of fig latex, and traditional methods of preparing fig medicaments including fig lye, fig wine and medicinal poultices.

  13. Cheminformatics models based on machine learning approaches for design of USP1/UAF1 abrogators as anticancer agents.

    PubMed

    Wahi, Divya; Jamal, Salma; Goyal, Sukriti; Singh, Aditi; Jain, Ritu; Rana, Preeti; Grover, Abhinav

    2015-06-01

    Cancer cells have upregulated DNA repair mechanisms, enabling them survive DNA damage induced during repeated rapid cell divisions and targeted chemotherapeutic treatments. Cancer cell proliferation and survival targeting via inhibition of DNA repair pathways is currently a very promiscuous anti-tumor approach. The deubiquitinating enzyme, USP1 is known to promote DNA repair via complexing with UAF1. The USP1/UAF1 complex is responsible for regulating DNA break repair pathways such as trans-lesion synthesis pathway, Fanconi anemia pathway and homologous recombination. Thus, USP1/UAF1 inhibition poses as an efficient anti-cancer strategy. The recently made available high throughput screen data for anti USP1/UAF1 activity prompted us to compute bioactivity predictive models that could help in screening for potential USP1/UAF1 inhibitors having anti-cancer properties. The current study utilizes publicly available high throughput screen data set of chemical compounds evaluated for their potential USP1/UAF1 inhibitory effect. A machine learning approach was devised for generation of computational models that could predict for potential anti USP1/UAF1 biological activity of novel anticancer compounds. Additional efficacy of active compounds was screened by applying SMARTS filter to eliminate molecules with non-drug like features. The structural fragment analysis was further performed to explore structural properties of the molecules. We demonstrated that modern machine learning approaches could be efficiently employed in building predictive computational models and their predictive performance is statistically accurate. The structure fragment analysis revealed the structures that could play an important role in identification of USP1/UAF1 inhibitors.

  14. Meta-analysis of inter-patient pharmacokinetic variability of liposomal and non-liposomal anticancer agents

    PubMed Central

    Schell, Ryan F.; Sidone, Brian J.; Caron, Whitney P.; Walsh, Mark D.; Zamboni, Beth A.; Ramanathan, Ramesh K.; Zamboni, William C.

    2013-01-01

    Purpose A meta-analysis was conducted to evaluate the inter-patient pharmacokinetic (PK) variability of liposomal and small molecule (SM) anticancer agents. Methods Inter-patient PK variability of 9 liposomal and SM formulations of the same drug were evaluated. PK variability was measured as coefficient of variance (CV%) of area under the plasma concentration versus time curve (AUC) and the fold-difference between AUCmax and AUCmin (AUC range). Results CV% of AUC and AUC ranges were 2.7-fold (P<0.001) and 16.7-fold (P=0.13) greater, respectively, for liposomal compared with SM drugs. There was an inverse linear relationship between the clearance (CL) of liposomal agents and PK variability with a lower CL associated with greater PK variability (R2 = 0.39). PK variability of liposomal agents was greater when evaluated from 0–336 h compared with 0–24 h. Conclusion PK variability of liposomes is significantly greater than SM. The factors associated with the PK variability of liposomal agents needs to be evaluated. PMID:23891988

  15. Identification and characterization of anticancer compounds targeting apoptosis and autophagy from Chinese native Garcinia species.

    PubMed

    Xu, Danqing; Lao, Yuanzhi; Xu, Naihan; Hu, Hui; Fu, Wenwei; Tan, Hongsheng; Gu, Yunzhi; Song, Zhijun; Cao, Peng; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. Active compounds targeting apoptosis and autophagy are candidates for anti-cancer drugs. In this study, we collected Garcinia species from China and extracted them into water or ethanol fractions. Then, we performed a functional screen in search of novel apoptosis and autophagy regulators. We first characterized the anti-proliferation activity of the crude extracts on multiple cell lines. HeLa cells expressing GFP-LC3 were used to examine the effects of the crude extracts on autophagy. Their activities were confirmed by Western blots of A549 and HeLa cells. By using bioassay guided fractionation, we found that two caged prenylxanthones from Garcinia bracteata, neobractatin and isobractatin, can significantly induce apoptosis and inhibit autophagy. Our results suggest that different Garcinia species displayed various degrees of toxicity on different cancer cell lines. Furthermore, the use of a high content screening assay to screen natural products was an essential method to identify novel autophagy regulators.

  16. Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth

    PubMed Central

    Vittorio, Orazio; Brandl, Miriam; Cirillo, Giuseppe; Kimpton, Kathleen; Hinde, Elizabeth; Gaus, Katharina; Yee, Eugene; Kumar, Naresh; Duong, Hien; Fleming, Claudia; Haber, Michelle; Norris, Murray; Boyer, Cyrille; Kavallaris, Maria

    2016-01-01

    Neuroblastoma is frequently diagnosed at advanced stage disease and treatment includes high dose chemotherapy and surgery. Despite the use of aggressive therapy survival rates are poor and children that survive their disease experience long term side effects from their treatment, highlighting the need for effective and less toxic therapies. Catechin is a natural polyphenol with anti-cancer properties and limited side effects, however its mechanism of action is unknown. Here we report that Dextran-Catechin, a conjugated form of catechin that increases serum stability, is preferentially and markedly active against neuroblastoma cells having high levels of intracellular copper, without affecting non-malignant cells. Copper transporter 1 (CTR1) is the main transporter of copper in mammalian cells and it is upregulated in neuroblastoma. Functional studies showed that depletion of CTR1 expression reduced intracellular copper levels and led to a decrease in neuroblastoma cell sensitivity to Dextran-Catechin, implicating copper in the activity of this compound. Mechanistically, Dextran-Catechin was found to react with copper, inducing oxidative stress and decreasing glutathione levels, an intracellular antioxidant and regulator of copper homeostasis. In vivo, Dextran-Catechin significantly attenuated tumour growth in human xenograft and syngeneic models of neuroblastoma. Thus, Dextran-Catechin targets copper, inhibits tumour growth, and may be valuable in the treatment of aggressive neuroblastoma and other cancers dependent on copper for their growth. PMID:27374085

  17. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs

    SciTech Connect

    Ashley, Neil Poulton, Joanna

    2009-01-16

    The anthracyclines, such as doxorubicin (DXR), are potent anti-cancer drugs but they are limited by their clinical toxicity. The mechanisms involved remain poorly understood partly because of the difficulty in determining sub-cellular drug localisation. Using a novel method utilising the fluorescent DNA dye PicoGreen, we found that anthracyclines intercalated not only into nuclear DNA but also mitochondrial DNA (mtDNA). Intercalation of mtDNA by anthracyclines may thus contribute to the marked mitochondrial toxicity associated with these drugs. By contrast, ethidium bromide intercalated exclusively into mtDNA, without interacting with nuclear DNA, thereby explaining why mtDNA is the main target for ethidium. By exploiting PicoGreen quenching we also developed a novel assay for quantification of mtDNA levels by flow-cytometry, an approach which should be useful for studies of mitochondrial dysfunction. In summary our PicoGreen assay should be useful to study drug/DNA interactions within live cells, and facilitate therapeutic drug monitoring and kinetic studies in cancer patients.

  18. Targeting anticancer drug delivery to pancreatic cancer cells using a fucose-bound nanoparticle approach.

    PubMed

    Yoshida, Makoto; Takimoto, Rishu; Murase, Kazuyuki; Sato, Yasushi; Hirakawa, Masahiro; Tamura, Fumito; Sato, Tsutomu; Iyama, Satoshi; Osuga, Takahiro; Miyanishi, Koji; Takada, Kohichi; Hayashi, Tsuyoshi; Kobune, Masayoshi; Kato, Junji

    2012-01-01

    Owing to its aggressiveness and the lack of effective therapies, pancreatic ductal adenocarcinoma has a dismal prognosis. New strategies to improve treatment and survival are therefore urgently required. Numerous fucosylated antigens in sera serve as tumor markers for cancer detection and evaluation of treatment efficacy. Increased expression of fucosyltransferases has also been reported for pancreatic cancer. These enzymes accelerate malignant transformation through fucosylation of sialylated precursors, suggesting a crucial requirement for fucose by pancreatic cancer cells. With this in mind, we developed fucose-bound nanoparticles as vehicles for delivery of anticancer drugs specifically to cancer cells. L-fucose-bound liposomes containing Cy5.5 or Cisplatin were effectively delivered into CA19-9 expressing pancreatic cancer cells. Excess L-fucose decreased the efficiency of Cy5.5 introduction by L-fucose-bound liposomes, suggesting L-fucose-receptor-mediated delivery. Intravenously injected L-fucose-bound liposomes carrying Cisplatin were successfully delivered to pancreatic cancer cells, mediating efficient tumor growth inhibition as well as prolonging survival in mouse xenograft models. This modality represents a new strategy for pancreatic cancer cell-targeting therapy.

  19. Transferrin receptors and the targeted delivery of therapeutic agents against cancer

    PubMed Central

    Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.

    2012-01-01

    Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850

  20. Synthesis and biological evaluation of tetracyclic fluoroquinolones as antibacterial and anticancer agents.

    PubMed

    Al-Trawneh, Salah A; Zahra, Jalal A; Kamal, Marwan R; El-Abadelah, Mustafa M; Zani, Franca; Incerti, Matteo; Cavazzoni, Andrea; Alfieri, Roberta R; Petronini, Pier G; Vicini, Paola

    2010-08-15

    A simple and efficient synthesis of 6-fluoro-4-oxopyrido[2,3-a]carbazole-3-carboxylic acids (13a-e) and a structurally related 6-fluoro-4-oxothieno[2',3':4,5]pyrrolo[3,2-h]quinoline (13f) was achieved via Stille arylation of 7-chloro-6-fluoro-8-nitro-4-oxoquinoline-3-carboxylate and a subsequent microwave-assisted phosphite-mediated Cadogan reaction. The new compounds were tested for their in vitro antimicrobial and antiproliferative activity. The ability of 13a-f to inhibit the activity of DNA gyrase and topoisomerase IV was also investigated. The thieno isostere (13f) emerged as the most active antibacterial, while the 9-fluoro derivative (13e) was the most potent against multidrug-resistant staphylococci. Compounds 13a, 13c-f displayed growth inhibition against MCF-7 breast tumor and A549 non-small cell lung cancer cells coupled with an absence of cytotoxicity toward normal human-derm fibroblasts (HuDe). Compound 13e was the most active anticancer against MCF-7 cells, with greater potency than ellipticine (IC(50) 0.8 and 1.6muM, respectively). The most active compounds in this series show promise as dual acting anticancer and antibacterial chemotherapeutics.

  1. Repurposing Drugs in Oncology (ReDO)—nitroglycerin as an anti-cancer agent

    PubMed Central

    Sukhatme, Vidula; Bouche, Gauthier; Meheus, Lydie; Sukhatme, Vikas P; Pantziarka, Pan

    2015-01-01

    Nitroglycerin (NTG), a drug that has been in clinical use for more than a century, has a range of actions which make it of particular interest in an oncological setting. It is generally accepted that the main mechanism of action of NTG is via the production of nitric oxide (NO), which improves cardiac oxygenation via multiple mechanisms including improved blood flow (vasodilation), decreased platelet aggregation, increased erythrocyte O2 release and decreased mitochondrial utilization of oxygen. Its vasoactive properties mean that it has the potential to exploit more fully the enhanced permeability and retention effect in delivering anti-cancer drugs to tumour tissues. Moreover NTG can reduce HIF-1α levels in hypoxic tumour tissues and this may have anti-angiogenic, pro-apoptotic and anti-efflux effects. Additionally NTG may enhance anti-tumour immunity. Pre-clinical and clinical data on these anti-cancer properties of NTG are summarised and discussed. While there is evidence of a positive action as a monotherapy in prostate cancer, there are mixed results in NSCLC where initially positive results have yet to be fully replicated. Based on the evidence presented, a case is made that further exploration of the clinical benefits that may accrue to cancer patients is warranted. Additionally, it is proposed that NTG may synergise with a number of other drugs, including other repurposed drugs, and these are discussed in the supplementary material appended to this paper. PMID:26435741

  2. Preclinical pharmacology of BA-TPQ, a novel synthetic iminoquinone anticancer agent.

    PubMed

    Ezell, Scharri J; Li, Haibo; Xu, Hongxia; Zhang, Xiangrong; Gurpinar, Evrim; Zhang, Xu; Rayburn, Elizabeth R; Sommers, Charnell I; Yang, Xinyi; Velu, Sadanandan E; Wang, Wei; Zhang, Ruiwen

    2010-07-13

    Marine natural products and their synthetic derivatives represent a major source of novel candidate anti-cancer compounds. We have recently tested the anti-cancer activity of more than forty novel compounds based on an iminoquinone makaluvamine scaffold, and have found that many of the compounds exert potent cytotoxic activity against human cancer cell lines. One of the most potent compounds, BA-TPQ [(11,12),7-(benzylamino)-1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H)-one], was active against a variety of human cancer cell lines, and inhibited the growth of breast and prostate xenograft tumors in mice. However, there was some toxicity noted in the mice following administration of the compound. In order to further the development of BA-TPQ, and in a search for potential sites of accumulation that might underlie the observed toxicity of the compound, we accomplished preclinical pharmacological studies of the compound. We herein report the in vitro and in vivo pharmacological properties of BA-TPQ, including its stability in plasma, plasma protein binding, metabolism by S9 enzymes, and plasma and tissue distribution. We believe these studies will be useful for further investigations, and may be useful for other investigators examining the use of similar compounds for cancer therapy.

  3. Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents

    PubMed Central

    Del Papa, Joshua; Parks, Robin J.

    2017-01-01

    Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics. PMID:28106842

  4. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1

    PubMed Central

    Potter, G A; Patterson, L H; Wanogho, E; Perry, P J; Butler, P C; Ijaz, T; Ruparelia, K C; Lamb, J H; Farmer, P B; Stanley, L A; Burke, M D

    2002-01-01

    Resveratrol is a cancer preventative agent that is found in red wine. Piceatannol is a closely related stilbene that has antileukaemic activity and is also a tyrosine kinase inhibitor. Piceatannol differs from resveratrol by having an additional aromatic hydroxy group. The enzyme CYP1B1 is overexpressed in a wide variety of human tumours and catalyses aromatic hydroxylation reactions. We report here that the cancer preventative agent resveratrol undergoes metabolism by the cytochrome P450 enzyme CYP1B1 to give a metabolite which has been identified as the known antileukaemic agent piceatannol. The metabolite was identified by high performance liquid chromatography analysis using fluorescence detection and the identity of the metabolite was further confirmed by derivatisation followed by gas chromatography–mass spectrometry studies using authentic piceatannol for comparison. This observation provides a novel explanation for the cancer preventative properties of resveratrol. It demonstrates that a natural dietary cancer preventative agent can be converted to a compound with known anticancer activity by an enzyme that is found in human tumours. Importantly this result gives insight into the functional role of CYP1B1 and provides evidence for the concept that CYP1B1 in tumours may be functioning as a growth suppressor enzyme. British Journal of Cancer (2002) 86, 774–778. DOI: 10.1038/sj/bjc/6600197 www.bjcancer.com © 2002 Cancer Research UK PMID:11875742

  5. Recent Advancements In 1, 4-Disubstituted 1H-1,2,3-Triazoles As Potential Anticancer Agents.

    PubMed

    Lal, Kashmiri; Yadav, Pinki

    2016-08-11

    Cancer is a class of formidable disease with a high degree of mortality. Although, there has been much progress in chemotherapy still the problem of drug resistance has led to the search for newer leads with superior efficacy. 1,2,3-Triazole are among a vast number of nitrogen containing heterocycles studied extensively as pharmacologically important scaffolds. Recently developed copper (I)-catalyzed cycloaddition reaction between organic azides and terminal alkynes yielding 1,4-disubstituted 1,2,3-triazoles has attracted considerable attention because it allows the construction of vast array of 1,2,3-triazoles with significant potential in pharmaceutical chemistry. In this article, an attempt to summarize the wide range of anticancer agents derived from Copper(I)-Catalyzed azide alkyne cycloaddition reported by the authors worldwide has been made. This review includes articles published from 2010 onwards and summarizes the recent progress on the development of 1,4-disubstituted 1H-1,2,3-triazole as novel anticancer chemotypes with high therapeutic indices.

  6. Exploring DNA topoisomerases as targets of novel therapeutic agents in the treatment of infectious diseases.

    PubMed

    Tse-Dinh, Y-C

    2007-03-01

    DNA topoisomerases are ubiquitous enzymes needed to overcome topological problems encountered during DNA replication, transcription, recombination and maintenance of genomic stability. They have proved to be valuable targets for therapy, in part because some anti-topoisomerase agents act as poisons. Bacterial DNA gyrase and topoisomerase IV (type IIA topoisomerases) are targets of fluoroquinolones while human topoisomerase I (a type IB topoisomerase) and topoisomerase II are targets of various anticancer drugs. Bacterial type IA topoisomerase share little sequence homology to type IB or type IIA topoisomerases, but all topoisomerases have the potential of having the covalent phosphotyrosine DNA cleavage intermediate trapped by drug action. Recent studies have demonstrated that stabilization of the covalent complex formed by bacterial topoisomerase I and cleaved DNA can lead to bacterial cell death, supporting bacterial topoisomerase I as a promising target for the development of novel antibiotics. For current antibacterial therapy, the prevalence of fluoroquinolone-resistant bacterial pathogens has become a major public health concern, and efforts are directed towards identifying novel inhibitors of bacterial type IIA topoisomerases that are not affected by fluoroquinolone resistant mutations on the gyrase or topoisomerase IV genes. For anti-viral therapy, poxviruses encode their own type IB topoisomerases; these enzymes differ in drug sensitivity from human topoisomerase I. To confront potential threat of small pox as a weapon in terrorist attacks, vaccinia virus topoisomerase I has been targeted for discovery of anti-viral agents. These new developments of DNA topoisomerases as targets of novel therapeutic agents being reviewed here represent excellent opportunities for drug discovery in the treatment of infectious diseases.

  7. Macrophage Polarization: Anti-cancer Strategies to Target Tumor-associated Macrophage in Breast Cancer.

    PubMed

    Tariq, Muhammad; Zhang, Jieqiong; Liang, Guikai; Ding, Ling; He, Qiaojun; Yang, Bo

    2017-01-20

    Tumor-associated macrophages (TAMs) are the most abundant inflammatory cells and orchestrate different stages of breast cancer development. TAMs participate in the tumor angiogenesis, matrix remodeling, invasion, immunosuppression, metastasis, and chemoresistance in breast cancer. Several clinical studies indicate the association between the high influx of TAMs in tumor with poor prognosis in hepatocellular, ovarian, cervical, and breast cancer. Previously developed hypotheses have proposed that TAMs participate in antitumor responses of the body, while recently many clinical and experimental studies have revealed that TAMs in tumor microenvironment predominantly resemble with M2-like polarized macrophages and produce a high amount of anti-inflammatory factors which are directly responsible for the development of tumor. Various studies have shown that TAMs in tumor either enhance or antagonize the anti-tumor efficacy of cytotoxic agents, antibodies-targeting cancer cells, and therapeutic agents depending on the nature of treatment. Thereby, multiple roles of TAMs suggests that it is very important to develop novel therapeutic strategies to target TAMs in breast tumor. In this review, we have discussed the functional role of TAMs in breast cancer and summarized available recent advances potential therapeutic strategies that effectively target to TAMs cells. This article is protected by copyright. All rights reserved.

  8. Combining molecular targeted agents with radiation therapy for malignant gliomas

    PubMed Central

    Scaringi, Claudia; Enrici, Riccardo Maurizi; Minniti, Giuseppe

    2013-01-01

    The expansion in understanding the molecular biology that characterizes cancer cells has led to the rapid development of new agents to target important molecular pathways associated with aberrant activation or suppression of cellular signal transduction pathways involved in gliomagenesis, including epidermal growth factor receptor, vascular endothelial growth factor receptor, mammalian target of rapamycin, and integrins signaling pathways. The use of antiangiogenic agent bevacizumab, epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib, mammalian target of rapamycin inhibitors temsirolimus and everolimus, and integrin inhibitor cilengitide, in combination with radiation therapy, has been supported by encouraging preclinical data, resulting in a rapid translation into clinical trials. Currently, the majority of published clinical studies on the use of these agents in combination with radiation and cytotoxic therapies have shown only modest survival benefits at best. Tumor heterogeneity and genetic instability may, at least in part, explain the poor results observed with a single-target approach. Much remains to be learned regarding the optimal combination of targeted agents with conventional chemoradiation, including the use of multipathways-targeted therapies, the selection of patients who may benefit from combined treatments based on molecular biomarkers, and the verification of effective blockade of signaling pathways. PMID:23966794

  9. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer.

    PubMed

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-08-14

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway.

  10. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  11. 1,2,3-Triazole-nimesulide hybrid: Their design, synthesis and evaluation as potential anticancer agents.

    PubMed

    Mareddy, Jyoti; Suresh, N; Kumar, C Ganesh; Kapavarapu, Ravikumar; Jayasree, A; Pal, Sarbani

    2017-02-01

    A new hybrid template has been designed by integrating the structural features of nimesulide and the 1,2,3-triazole moiety in a single molecular entity at the same time eliminating the problematic nitro group of nimesulide. The template has been used for the generation of a library of molecules as potential anticancer agents. A mild and greener CuAAC approach has been used to synthesize these compounds via the reaction of 4-azido derivative of nimesulide and terminal alkynes in water. Three of these compounds showed promising growth inhibition (IC50 ∼6-10μM) of A549, HepG2, HeLa and DU145 cancer cell lines but no significant effects on HEK293 cell line. They also inhibited PDE4B in vitro (60-70% at 10μM) that was supported by the docking studies (PLP score 87-94) in silico.

  12. Synthesis and Structure–Activity Relationship Study of 1-Phenyl-1-(quinazolin-4-yl)ethanols as Anticancer Agents

    PubMed Central

    2015-01-01

    A quinazoline derivative PVHD121 (1a) was shown to have strong antiproliferative activity against various tumor-derived cell lines, including A549 (lung), NCI-H460 (lung), HCT116 (colon), MCF7 (breast), PC3 (prostate), and HeLa (cervical) cells with IC50 values from 0.1 to 0.3 μM. A structure–activity relationship (SAR) study at the 2- and 4-position of the quinazoline core lead to the discovery of more potent anticancer agents (14, 16, 17, 19, 24, and 31). The results of an in vitro tubulin polymerization assay and fluorescent-based colchicine site competition assay with purified tubulin indicated that 1a inhibits tubulin polymerization by binding to the colchicine site. PMID:25815147

  13. Discovery of Pyrazolo[1,5-a]pyrimidine TTK Inhibitors: CFI-402257 is a Potent, Selective, Bioavailable Anticancer Agent.

    PubMed

    Liu, Yong; Laufer, Radoslaw; Patel, Narendra Kumar; Ng, Grace; Sampson, Peter B; Li, Sze-Wan; Lang, Yunhui; Feher, Miklos; Brokx, Richard; Beletskaya, Irina; Hodgson, Richard; Plotnikova, Olga; Awrey, Donald E; Qiu, Wei; Chirgadze, Nickolay Y; Mason, Jacqueline M; Wei, Xin; Lin, Dan Chi-Chia; Che, Yi; Kiarash, Reza; Fletcher, Graham C; Mak, Tak W; Bray, Mark R; Pauls, Henry W

    2016-07-14

    This work describes a scaffold hopping exercise that begins with known imidazo[1,2-a]pyrazines, briefly explores pyrazolo[1,5-a][1,3,5]triazines, and ultimately yields pyrazolo[1,5-a]pyrimidines as a novel class of potent TTK inhibitors. An X-ray structure of a representative compound is consistent with 1(1)/2 type inhibition and provides structural insight to aid subsequent optimization of in vitro activity and physicochemical and pharmacokinetic properties. Incorporation of polar moieties in the hydrophobic and solvent accessible regions modulates physicochemical properties while maintaining potency. Compounds with enhanced oral exposure were identified for xenograft studies. The work culminates in the identification of a potent (TTK K i = 0.1 nM), highly selective, orally bioavailable anticancer agent (CFI-402257) for IND enabling studies.

  14. Design and synthesis of novel hydroxyanthraquinone nitrogen mustard derivatives as potential anticancer agents via a bioisostere approach

    PubMed Central

    Zhao, Li-Ming; Ma, Feng-Yan; Jin, Hai-Shan; Zheng, Shilong; Zhong, Qiu; Wang, Guangdi

    2016-01-01

    A series of hydroxyanthraquinones having an alkylating N-mustard pharmacophore at 1′-position were synthesized via a bioisostere approach to evaluate their cytotoxicity against four tumor cell lines (MDA-MB-231, HeLa, MCF-7 and A549). These compounds displayed significant in vitro cytotoxicity against MDA-MB-231 and MCF-7 cells, reflecting the excellent selectivity for the human breast cancer. Among them, compound 5k was the most cytotoxic with IC50 value of 0.263 nM and is more potent than DXR (IC50 = 0.294 nM) in inhibiting the growth of MCF-7 cells. The excellent cytotoxicity and good selectivity of compound 5k suggest that it could be a promising lead for further design and development of anticancer agents, especially for breast cancer. PMID:26291039

  15. Stathmin: A Relay Protein in the Development of Prostate Cancer and a Potential Target for Anti-Cancer Therapy

    DTIC Science & Technology

    2007-11-01

    Development of Prostate Cancer and a Potential Target for Anti-cancer Therapy P.I. Ritwik Ghosh, PhD Task 1 Investigate how the levels of... low grade and high grade human prostate samples from 111 patients to analyze and semi-quantify the levels of stathmin expression as they increase with...cancer grade. The levels of stathmin expression to be compared to that in benign prostatic hyperplasia ( BPH ). Status: Stathmin expression has been

  16. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents.

    PubMed

    Miller, Marvin J; Zhu, Helen; Xu, Yanping; Wu, Chunrui; Walz, Andrew J; Vergne, Anne; Roosenberg, John M; Moraski, Garrett; Minnick, Albert A; McKee-Dolence, Julia; Hu, Jingdan; Fennell, Kelley; Kurt Dolence, E; Dong, Li; Franzblau, Scott; Malouin, Francois; Möllmann, Ute

    2009-02-01

    Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the "microbial war", extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.

  17. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    PubMed Central

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y.; Fung, Kar-Ming; Towner, Rheal A.

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  18. Effect of cyclosporin A on human bone marrow granulocyte-macrophage progenitors with anti-cancer agents.

    PubMed

    Ishida, Y; Matsuda, H; Kida, K

    1995-10-01

    Cyclosporin A (CyA) overcomes P-glycoprotein (P-gp) associated multidrug resistance (MDR). P-gp expression is frequently observed among, not only various cancer cells, but also several normal tissues including bone marrow progenitor cells. These findings lead us to examine whether CyA enhances the myelotoxicity of anti-cancer agents. Bone marrow mononuclear cells were incubated with anti-cancer agents (vincristine, VCR; doxorubicin, ADM; etoposide, VP-16; cytarabine, Ara-C; methotrexate, MTX) and a concentration of CyA (0.5, 5.0 micrograms/mL). The methylcellulose assay for granulocyte-macrophage progenitors (CFU-GM) was conducted using the post-treated cells. There was no significant toxicity for marrow CFU-GM formation after 72 h incubation with CyA (84-108% of control). The inhibitory concentration that reduced colonies by 50% (IC50) was 12 nmol/L for VCR, 6 nmol/L for ADM, 220 nmol/L for VP-16, 15 nmol/L for Ara-C and 35 nmol/L for MTX, respectively. For VCR, ADM and VP-16, the number of CFU-GM was unchanged with the addition of CyA at 0.5 microgram/mL concentration. In contrast at 5 micrograms/mL CyA, the number of CFU-GM (% of control) was reduced significantly (P < 0.05 or P < 0.01). With MTX and Ara-C, the number of CFU-GM was unchanged after addition of CyA, even at 5 micrograms/mL concentration. We conclude CyA may therefore enhance cytotoxic drug sensitivity in MDR tumor cells at a clinically achievable concentration (0.5 microgram/mL) without marrow toxicity.

  19. Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids.

    PubMed

    Dai, Fang; Liu, Guo-Yun; Li, Yan; Yan, Wen-Jing; Wang, Qi; Yang, Jie; Lu, Dong-Liang; Ding, De-Jun; Lin, Dong; Zhou, Bo

    2015-08-01

    Developing anticancer agents by a prooxidant strategy has attracted increasing attention in recent years, although it is not conventional in medicinal chemistry and is completely opposite to antioxidant therapy. In this work, a panel of diarylpentanoids as the curcumin mono-carbonyl analogs were designed and synthesized, and their cytotoxic and proapoptotic mechanisms against human lung cancer A549 cells were investigated at the frontiers of chemistry and biology. It was found that compared with curcumin, the compounds (A1, B1, and C1) bearing two ortho substituents on the aromatic rings, especially A1, exhibit significantly increased cytotoxic and proapoptotic activities through a Michael acceptor unit-dependent prooxidant-mediated mechanism. The prooxidative ability is governed not only by their electrophilicity but also by their geometry, cellular uptake and metabolic stability, and TrxR-inhibitory activity. Mechanistic investigation reveals that the compound A1 could effectively and irreversibly modify the TrxR by virtue of the above optimal biochemical parameters, and convert this antioxidant enzyme into a reactive oxygen species (ROS) promoter, resulting in a burst of the intracellular ROS including H2O2 and O2(-)•. The ROS generation is associated with falling apart in the redox buffering system, and subsequently induces increases in Ca(2+) influx and oxidative stress, collapse of mitochondrial membrane potential, and activation of caspase-9 and caspase-3, ultimately leading to cell apoptosis. This work highlights the feasibility in designing curcumin-inspired anticancer agents by a prooxidant strategy, and gives us useful information on how to design them.

  20. Methylsulfonyl benzothiazoles (MSBT) derivatives: Search for new potential antimicrobial and anticancer agents.

    PubMed

    Lad, Nitin P; Manohar, Yogesh; Mascarenhas, Malcolm; Pandit, Yashwant B; Kulkarni, Mahesh R; Sharma, Rajiv; Salkar, Kavita; Suthar, Ashish; Pandit, Shivaji S

    2017-03-01

    A series of novel 4 and 5-substituted methylsulfonyl benzothiazole (MSBT) compounds having amide, alkoxy, sulfonamide, nitro and amine functionality were synthesized from sequential reactions on 5-ethoxy-2-(methylsulfonyl)benzo[d]thiazole such as nitration, reduction, sulfonation, dealkylation, etc. All synthesized compounds were screened against antimicrobial and selected screened for anticancer activity. Antimicrobial activities studies reveled that among all compounds screened, out of MSBT-07, MSBT-11, MSBT-12, MSBT-14, MSBT-19, and MSBT-27 were found to have promising antimicrobial activity at MIC range of 4-50μg/ml against selected bacterial as well as fungal species. Compounds having good antimicrobial activity were screened for cervical cancer (HeLA cell lines). Of these MSBT-07 and MSBT-12 significantly reduced the cell growth. Consequently their calculated GI50 values were found to be 0.1 or <0.1μM.

  1. Synthesis and characterization of 2-substituted benzimidazoles and their evaluation as anticancer agent

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I.; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal

    2015-05-01

    In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, 1H- and 13C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity.

  2. Library construction and biological evaluation of enmein-type diterpenoid analogues as potential anticancer agents.

    PubMed

    Li, Dahong; Xu, Shengtao; Cai, Hao; Pei, Lingling; Wang, Lei; Wu, Xiaoming; Yao, Hequan; Jiang, Jieyun; Sun, Yijun; Xu, Jinyi

    2013-05-01

    A library of promising enmein-type 14-O-diterpenoid derivatives was constructed from a commercially available kaurene-type oridonin by practical and efficient synthetic methods. These synthetic derivatives were evaluated for their antiproliferative activities against a set of four human cancer cell lines. The IC50 values are similar to or improved over those of the parent molecule and paclitaxel, the latter of which was used as a positive control. Compound 29 was further investigated for its apoptotic properties against human hepatocarcinoma Bel-7402 cells to better understand its mode of action. Moreover, compound 29 was shown to have potent antitumor activity in vivo in studies with a murine model of gastric cancer (MGC-803 mice). These results warrant further preclinical investigations of these diterpenoid-based analogues as potential novel anticancer chemotherapeutics.

  3. Synthesis and biological evaluation of some novel tetrahydroquinolines as anticancer and antimicrobial agents.

    PubMed

    Faidallah, Hassan M; Saqer, Alaa A; Alamry, Khalid A; Khan, Khalid A; Asiri, Abdullah M

    2014-06-01

    This study reports the synthesis of a series of new 2-amino-3-cyano-8-methyl-4-substituted-5,6,7,8-tetrahydroquinolines along with some derived fused-ring systems. Ten compounds have shown remarkable cytotoxic activity against human colon carcinoma HT29, hepatocellular carcinoma HepG2 and Caucasian breast adenocarcinoma MCF7 cell lines. Six compounds showed considerable broad-spectrum cytotoxic activity among which two proved to be the most active derivatives. Likewise, seven compounds from the series were found to exhibit significant antimicrobial activity and three of them proved to be the most active candidates. Two alkylthio-pyrimido quinolines are suggested as possible antimicrobial and anticancer candidates in the present series.

  4. Anticancer agent xanthohumol inhibits IL-2 induced signaling pathways involved in T cell proliferation

    PubMed Central

    Liu, Yongbo; Gao, Xiaohua; Deeb, Dorrah; Arbab, Ali S.; Dulchavsky, Scott A.; Gautam, Subhash C.

    2013-01-01

    Xanthohumol (XN), a prenylated chalcone present in hops exhibits anti-inflammatory, antioxidant and anticancer activity. In the present study we show that XN inhibits the proliferation of mouse lymphoma cells and IL-2 induced proliferation and cell cycle progression in mouse splenic T cells. The suppression of T cell proliferation by XN was due to the inhibition of IL-2 induced Janus kinase/signal transducers and activators of transcription (Jak/STAT) and extracellular signal-regulated kinase 1 and 2 (Erk1/2) signaling pathways. XN also inhibited proliferation-related cellular proteins such as c-Myc, c-Fos and NF-κB and cyclin D1. Thus, understanding of IL-2 induced cell signaling pathways in normal T cells, which are constitutively turned on in T cell lymphomas may facilitate development of XN for the treatment of hematologic cancers. PMID:22946339

  5. New triarylpyrazoles as broad-spectrum anticancer agents: design, synthesis, and biological evaluation.

    PubMed

    El-Gamal, Mohammed I; Park, Yi Seul; Chi, Dae Yoon; Yoo, Kyung Ho; Oh, Chang-Hyun

    2013-07-01

    A new series of diarylureas and diarylamides possessing 1,3,4-triarylpyrazole scaffold was designed and synthesized. Their in vitro antiproliferative activities against NCI-60 cell line panel were tested. Most of the compounds showed strong and broad-spectrum antiproliferative activities. Compound 18 exerted sub-micromolar IC50 values over all the subpanels of nine different cancer types. Its IC50 value over MDA-MB-435 melanoma cell line was 27 nM. Compounds 10-13, 22, and 23 possessing urea spacer exerted lethal effect over the NCI-60 panel with mean %inhibitions more than 100% in single-dose testing. Compounds 13 and 23 with urea linker and 3',5'-bis(trifluoromethyl)phenyl terminal ring showed the highest mean %inhibition over the NCI-60 panel in single-dose testing, and showed high potencies and broad-spectrum anticancer activities in five-dose testing.

  6. DRDE-07 and its analogues as promising cytoprotectants to nitrogen mustard (HN-2)--an alkylating anticancer and chemical warfare agent.

    PubMed

    Sharma, Manoj; Vijayaraghavan, R; Gautam, Anshoo

    2009-08-10

    Nitrogen mustard (HN-2), also known as mechlorethamine, is an alkylating anticancer agent as well as blister inducing chemical warfare agent. We evaluated the cytoprotective efficacy of amifostine, DRDE-07 and their analogues, and other antidotes of mustard agents against HN-2. Administration of 1 LD(50) of HN-2 (20mg/kg) percutaneously, decreased WBC count from 24h onwards. Liver glutathione (GSH) level decreased prominently and the maximum depletion was observed on 7th day post-HN-2 administration. Oxidised glutathione (GSSG) level increased significantly at 24h post-administration and subsequently showed a progressive decrease. Hepatic malondialdehyde (MDA) level and percent DNA damage increased progressively following HN-2 administration. The spleen weight decreased progressively and reached a minimum on 3-4 days with subsequent increase. The antidotes were administered repeatedly for 4 and 8 days after percutaneous administration of single sublethal dose (0.5 and 0.25 LD(50)) of HN-2. Treatment with DRDE-07, DRDE-30 and DRDE-35 significantly protected the changes in spleen weight, WBC count, GSH, GSSG, MDA and DNA damage following HN-2 administration (0.5 and 0.25 LD(50)). There was no alteration in the transaminases (AST and ALT), and alkaline phosphatase (ALP) activities, neither with HN-2 nor with antidotes. The present study shows that HN-2 is highly toxic by percutaneous route and DRDE-07, DRDE-30 and DRDE-35 can partially protect it.

  7. Lappaol F, a novel anticancer agent isolated from plant arctium Lappa L.

    PubMed

    Sun, Qing; Liu, Kanglun; Shen, Xiaoling; Jin, Weixin; Jiang, Lingyan; Sheikh, M Saeed; Hu, Yingjie; Huang, Ying

    2014-01-01

    In an effort to search for new cancer-fighting therapeutics, we identified a novel anticancer constituent, Lappaol F, from plant Arctium Lappa L. Lappaol F suppressed cancer cell growth in a time- and dose-dependent manner in human cancer cell lines of various tissue types. We found that Lappaol F induced G(1) and G(2) cell-cycle arrest, which was associated with strong induction of p21 and p27 and reduction of cyclin B1 and cyclin-dependent kinase 1 (CDK1). Depletion of p21 via genetic knockout or short hairpin RNA (shRNA) approaches significantly abrogated Lappaol F-mediated G(2) arrest and CDK1 and cyclin B1 suppression. These results suggest that p21 seems to play a crucial role in Lappaol F-mediated regulation of CDK1 and cyclin B1 and G(2) arrest. Lappaol F-mediated p21 induction was found to occur at the mRNA level and involved p21 promoter activation. Lappaol F was also found to induce cell death in several cancer cell lines and to activate caspases. In contrast with its strong growth inhibitory effects on tumor cells, Lappaol F had minimal cytotoxic effects on nontumorigenic epithelial cells tested. Importantly, our data also demonstrate that Lappaol F exhibited strong growth inhibition of xenograft tumors in nude mice. Lappaol F was well tolerated in treated animals without significant toxicity. Taken together, our results, for the first time, demonstrate that Lappaol F exhibits antitumor activity in vitro and in vivo and has strong potential to be developed as an anticancer therapeutic.

  8. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent.

    PubMed

    Lozano, Neus; Al-Ahmady, Zahraa S; Beziere, Nicolas S; Ntziachristos, Vasilis; Kostarelos, Kostas

    2015-03-30

    Indocyanine green (ICG) is an FDA-approved, strongly photo-absorbent/fluorescent probe that has been incorporated into a clinically-relevant PEGylated liposome as a flexible optoacoustic contrast agent platform. This study describes the engineering of targeted PEGylated liposome-ICG using the anti-MUC-1 "humanized" monoclonal antibody (MoAb) hCTM01 as a tumour-specific theranostic system. We aimed to visualise non-invasively the tumour accumulation of these MoAb-targeted liposomes over time in tumour-bearing mice using multispectral optoacoustic tomography (MSOT). Preferential accumulation of targeted PEGylated liposome-ICG was studied after intravenous administration in comparison to non-targeted PEGylated liposome-ICG using both fast growing (4T1) and slow growing (HT-29) MUC-1 positive tumour models. Monitoring liposomal ICG in the tumour showed that both targeted and non-targeted liposome-ICG formulations preferentially accumulated into the tumour models studied. Rapid accumulation was observed for targeted liposomes at early time points mainly in the periphery of the tumour volume suggesting binding to available MUC-1 receptors. In contrast, non-targeted PEGylated liposomes showed accumulation at the centre of the tumour at later time points. In an attempt to take this a step further, we successfully encapsulated the anticancer drug, doxorubicin (DOX) into both targeted and non-targeted PEGylated liposome-ICG. The engineering of DOX-loaded targeted ICG liposome systems present a novel platform for combined tumour-specific therapy and diagnosis. This can open new possibilities in the design of advanced image-guided cancer therapeutics.

  9. The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents

    PubMed Central

    Petschauer, Jennifer S.; Madden, Andrew J.; Kirschbrown, Whitney P.; Song, Gina; Zamboni, William C.

    2015-01-01

    Major advances in carrier-mediated agents, which include nanoparticles, nanosomes and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages, such as greater solubility, duration of exposure and delivery to the site of action over their small-molecule counterparts, there is substantial variability in systemic clearance and distribution, tumor delivery and pharmacologic effects (efficacy and toxicity) of these agents. This review provides an overview of factors that affect the pharmacokinetics and pharmacodynamics of carrier-mediated agents in preclinical models and patients. PMID:25707978

  10. Combinatorial high-throughput experimental and bioinformatic approach identifies molecular pathways linked with the sensitivity to anticancer target drugs

    PubMed Central

    Venkova, Larisa; Aliper, Alexander; Suntsova, Maria; Kholodenko, Roman; Shepelin, Denis; Borisov, Nicolas; Malakhova, Galina; Vasilov, Raif; Roumiantsev, Sergey; Zhavoronkov, Alex; Buzdin, Anton

    2015-01-01

    Effective choice of anticancer drugs is important problem of modern medicine. We developed a method termed OncoFinder for the analysis of new type of biomarkers reflecting activation of intracellular signaling and metabolic molecular pathways. These biomarkers may be linked with the sensitivity to anticancer drugs. In this study, we compared the experimental data obtained in our laboratory and in the Genomics of Drug Sensitivity in Cancer (GDS) project for testing response to anticancer drugs and transcriptomes of various human cell lines. The microarray-based profiling of transcriptomes was performed for the cell lines before the addition of drugs to the medium, and experimental growth inhibition curves were built for each drug, featuring characteristic IC50 values. We assayed here four target drugs - Pazopanib, Sorafenib, Sunitinib and Temsirolimus, and 238 different cell lines, of which 11 were profiled in our laboratory and 227 - in GDS project. Using the OncoFinder-processed transcriptomic data on ∼600 molecular pathways, we identified pathways showing significant correlation between pathway activation strength (PAS) and IC50 values for these drugs. Correlations reflect relationships between response to drug and pathway activation features. We intersected the results and found molecular pathways significantly correlated in both our assay and GDS project. For most of these pathways, we generated molecular models of their interaction with known molecular target(s) of the respective drugs. For the first time, our study uncovered mechanisms underlying cancer cell response to drugs at the high-throughput molecular interactomic level. PMID:26317900

  11. Precision Medicine for Molecularly Targeted Agents and Immunotherapies in Early-Phase Clinical Trials

    PubMed Central

    Lopez, Juanita; Harris, Sam; Roda, Desam; Yap, Timothy A

    2015-01-01

    Precision medicine in oncology promises the matching of genomic, molecular, and clinical data with underlying mechanisms of a range of novel anticancer therapeutics to develop more rational and effective antitumor strategies in a timely manner. However, despite the remarkable progress made in the understanding of novel drivers of different oncogenic processes, success rates for the approval of oncology drugs remain low with substantial fiscal consequences. In this article, we focus on how recent rapid innovations in technology have brought greater clarity to the biological and clinical complexities of different cancers and advanced the development of molecularly targeted agents and immunotherapies in clinical trials. We discuss the key challenges of identifying and validating predictive biomarkers of response and resistance using both tumor and surrogate tissues, as well as the hurdles associated with intratumor heterogeneity. Finally, we outline evolving strategies employed in early-phase trial designs that incorporate omics-based technologies. PMID:26609214

  12. VEGF pathway targeting agents, vessel normalization and tumor drug uptake: from bench to bedside

    PubMed Central

    Arjaans, Marlous; Schröder, Carolina P.; Oosting, Sjoukje F.; Dafni, Urania; Kleibeuker, Josée E.; de Vries, Elisabeth G.E.

    2016-01-01

    Vascular endothelial growth factor (VEGF) pathway targeting agents have been combined with other anticancer drugs, leading to improved efficacy in carcinoma of the cervix, stomach, lung, colon and rectum, ovary, and breast. Vessel normalization induced by VEGF pathway targeting agents influences tumor drug uptake. Following bevacizumab treatment, preclinical and clinical studies have shown a decrease in tumor delivery of radiolabeled antibodies and two chemotherapeutic drugs. The decrease in vessel pore size during vessel normalization might explain the decrease in tumor drug uptake. Moreover, the addition of bevacizumab to cetuximab, or panitumumab in colorectal cancer patients or to trastuzumab in breast cancer patients, did not improve efficacy. However, combining bevacizumab with chemotherapy did increase efficacy in some cancer types. Novel biomarkers to select patients who may benefit from combination therapies, such as the effect of an angiogenesis inhibitor on tumor perfusion, requires innovative trial designs and large clinical trials. Small imaging studies with radiolabeled drugs could be used in the interphase to gain further insight into the interplay between VEGF targeted therapy, vessel normalization and tumor drug delivery. PMID:26789111

  13. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets.

    PubMed

    Guo, Jing; Liu, Hui; Zheng, Jie

    2016-01-04

    Synthetic lethality (SL) is a type of genetic interaction between two genes such that simultaneous perturbations of the two genes result in cell death or a dramatic decrease of cell viability, while a perturbation of either gene alone is not lethal. SL reflects the biologically endogenous difference between cancer cells and normal cells, and thus the inhibition of SL partners of genes with cancer-specific mutations could selectively kill cancer cells but spare normal cells. Therefore, SL is emerging as a promising anticancer strategy that could potentially overcome the drawbacks of traditional chemotherapies by reducing severe side effects. Researchers have developed experimental technologies and computational prediction methods to identify SL gene pairs on human and a few model species. However, there has not been a comprehensive database dedicated to collecting SL pairs and related knowledge. In this paper, we propose a comprehensive database, SynLethDB (http://histone.sce.ntu.edu.sg/SynLethDB/), which contains SL pairs collected from biochemical assays, other related databases, computational predictions and text mining results on human and four model species, i.e. mouse, fruit fly, worm and yeast. For each SL pair, a confidence score was calculated by integrating individual scores derived from different evidence sources. We also developed a statistical analysis module to estimate the druggability and sensitivity of cancer cells upon drug treatments targeting human SL partners, based on large-scale genomic data, gene expression profiles and drug sensitivity profiles on more than 1000 cancer cell lines. To help users access and mine the wealth of the data, we developed other practical functionalities, such as search and filtering, orthology search, gene set enrichment analysis. Furthermore, a user-friendly web interface has been implemented to facilitate data analysis and interpretation. With the integrated data sets and analytics functionalities, SynLethDB would

  14. The anticancer multi-kinase inhibitor dovitinib also targets topoisomerase I and topoisomerase II.

    PubMed

    Hasinoff, Brian B; Wu, Xing; Nitiss, John L; Kanagasabai, Ragu; Yalowich, Jack C

    2012-12-15

    Dovitinib (TKI258/CHIR258) is a multi-kinase inhibitor in phase III development for the treatment of several cancers. Dovitinib is a benzimidazole-quinolinone compound that structurally resembles the bisbenzimidazole minor groove binding dye Hoechst 33258. Dovitinib bound to DNA as shown by its ability to increase the DNA melting temperature and by increases in its fluorescence spectrum that occurred upon the addition of DNA. Molecular modeling studies of the docking of dovitinib into an X-ray structure of a Hoechst 33258-DNA complex showed that dovitinib could reasonably be accommodated in the DNA minor groove. Because DNA binders are often topoisomerase I (EC 5.99.1.2) and topoisomerase II (EC 5.99.1.3) inhibitors, the ability of dovitinib to inhibit these DNA processing enzymes was also investigated. Dovitinib inhibited the catalytic decatenation activity of topoisomerase IIα. It also inhibited the DNA-independent ATPase activity of yeast topoisomerase II which suggested that it interacted with the ATP binding site. Using isolated human topoisomerase IIα, dovitinib stabilized the enzyme-cleavage complex and acted as a topoisomerase IIα poison. Dovitinib was also found to be a cellular topoisomerase II poison in human leukemia K562 cells and induced double-strand DNA breaks in K562 cells as evidenced by increased phosphorylation of H2AX. Finally, dovitinib inhibited the topoisomerase I-catalyzed relaxation of plasmid DNA and acted as a cellular topoisomerase I poison. In conclusion, the cell growth inhibitory activity and the anticancer activity of dovitinib may result not only from its ability to inhibit multiple kinases, but also, in part, from its ability to target topoisomerase I and topoisomerase II.

  15. Targeting human vasohibin-2 by a neutralizing monoclonal antibody for anti-cancer treatment.

    PubMed

    Koyanagi, Takahiro; Suzuki, Yasuhiro; Komori, Kazuki; Saga, Yasushi; Matsubara, Shigeki; Fujiwara, Hiroyuki; Sato, Yasufumi

    2016-12-29

    There are 2 members of the vasohibin (VASH) family, VASH1 and VASH2. VASH1 is expressed mainly in endothelial cells to inhibit angiogenesis, whereas VASH2 is expressed mainly in cancer cells to stimulate tumor growth. The aim of the present study was to establish neutralizing monoclonal antibody (mAb) against human VASH2 and apply it as an anti-cancer treatment. We previously raised mAbs against several synthetic peptides of hVASH1, and found that one of them exhibited neutralizing activity against hVASH1. Because of the similarity in the amino acid sequences between VASH1 and VASH2, we hypothesized that they shared the bioactive center. When we mutated 4 amino acids within the region, the mutant VASH2 lost its pro-angiogenic activity. We therefore raised mAb against a synthetic peptide overlapping the mutated amino acids of hVASH2, and isolated one clone (1760) that almost completely inhibited the stimulatory effect of hVASH2 on the migration of and tube formation by ECs. When we used this clone 1760 antibody for cancer treatment, the peritoneal injection of it inhibited both tumor growth and angiogenesis in a mouse xenograft model of human cancer cells. In terms of anti-tumor activity, 25 mg/kg of clone 1760 was equivalent to 5 mg/kg of bevacizmab. From these results, we propose the targeting of human VASH2 with neutralizing mAb as a new strategy for cancer treatment. This article is protected by copyright. All rights reserved.

  16. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers.

    PubMed

    Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert

    2013-03-01

    The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs.

  17. Destabilization of the MutSα’s protein-protein interface due to binding to the DNA adduct induced by anticancer agent Carboplatin via molecular dynamics simulations

    PubMed Central

    Negureanu, Lacramioara; Salsbury, Freddie R

    2013-01-01

    DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854

  18. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink.

    PubMed

    Wilson, Maxwell Z; Wang, Rurun; Gitai, Zemer; Seyedsayamdost, Mohammad R

    2016-02-09

    While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal-bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA's cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed.

  19. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink

    PubMed Central

    Wilson, Maxwell Z.; Wang, Rurun; Gitai, Zemer; Seyedsayamdost, Mohammad R.

    2016-01-01

    While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal–bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA’s cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed. PMID:26802120

  20. Development and validation of a rapid HPLC method for quantitation of SP-141, a novel pyrido[b]indole anticancer agent, and an initial pharmacokinetic study in mice

    PubMed Central

    Nag, Subhasree; Qin, Jiang-Jiang; Voruganti, Sukesh; Wang, Ming-Hai; Sharma, Horrick; Patil, Shivaputra; Buolamwini, John K.; Wang, Wei; Zhang, Ruiwen

    2015-01-01

    There is an increasing interest in targeting the MDM2 oncogene for cancer therapy. SP-141, a novel designed small molecule MDM2 inhibitor, exerts excellent in vitro and in vivo anticancer activity. To facilitate the preclinical development of this candidate anticancer agent, we have developed an HPLC method for the quantitative analysis of SP-141. The method was validated to be precise, accurate, and specific, with a linear range of 16.2–32,400 ng/mL in plasma, 16.2–6480 ng/mL in homogenates of brain, heart, liver, kidneys, lungs, muscle and tumor, and 32.4–6480 ng/mL in spleen homogenates. The lower limit of quantification was 16.2 ng/mL in plasma and all the tissue homogenates, except for spleen homogenates, where it was 32.4 ng/mL. The intra- and inter-assay precisions (coefficient of variation) were between 0.86 and 13.39%, and accuracies (relative errors) ranged from −8.50 to 13.92%. The relative recoveries were 85.6–113.38%. SP-141 was stable in mouse plasma, modestly plasma bound and metabolized by S9 microsomal enzymes. We performed an initial pharmacokinetic study in tumor-bearing nude mice, demonstrating that SP-141 has a short half-life in plasma and wide tissue distribution. In summary, this HPLC method can be used in future preclinical and clinical investigations of SP-141. PMID:25294254

  1. Recent progress in fungus-derived bioactive agents for targeting of signaling machinery in cancer cells

    PubMed Central

    Lin, Xiukun; Farooqi, Ammad Ahmad; Ismail, Muhammad

    2015-01-01

    It is becoming increasingly understood that tumor cells may have different mutations and dependencies on diverse intracellular signaling cascades for survival or metastatic potential. Overexpression of oncogenes, inactivation of tumor suppressor genes, genetic/epigenetic mutations, genomic instability, and loss of apoptotic cell death are some of the mechanisms that have been widely investigated in molecular oncology. We partition this multicomponent review into the most recent evidence on the anticancer activity of fungal substances obtained from in vitro and xenografted models, and these fungal substances modulate expression of oncogenic and tumor suppressor miRNAs. There are some outstanding questions regarding fungus-derived chemical-induced modulation of intracellular signaling networks in different cancer cell lines and preclinical models. Certain hints have emerged, emphasizing mechanisms via which apoptosis can be restored in TRAIL-resistant cancer cells. Reconceptualization of the knowledge obtained from these emerging areas of research will enable us to potentially identify natural agents with notable anticancer activity and minimal off-target effects. Integration of experimentally verified evidence obtained from cancer cell line gene expression with large-scale functional screening results and pharmacological sensitivity data will be helpful in identification of therapeutics with substantial efficacy. New tools and technologies will further deepen our understanding of the signaling networks that underlie the development of cancer, metastasis, and resistance to different therapeutics at both a personal and systems-wide level. PMID:25848216

  2. Modeling of hyaluronic acid containing anti-cancer drugs-loaded polylactic-co-glycolic acid bioconjugates for targeted delivery to cancer cells

    NASA Astrophysics Data System (ADS)

    Gul-e-Saba, Adulphakdee, A.; Madthing, A.; Zafar, M. N.; Abdullah, M. A.

    2012-09-01

    Molecular modeling of hyaluronan (HA), polylactic-co-glycolic acid (PLGA), polyethylene glycol-bis-amine (PEG-bis-amine), Curcumin, Cisplatin and the conjugate HA-PEG-PLGA containing Curcumin/Cisplatin were performed using Discovery Studio 2.5 to better understand issues and constraints related to targeted delivery of potent anticancer drugs to cancer cells. HA, a versatile biopolymer is a ligand of cancer cell receptor, CD44 that can be particularly useful in a receptor-mediated cellular uptake of drug-incorporated nanoparticles. Biocompatible and biodegradable polymers, PLGA and PEG, serve as polymeric micelles for controlled-release of drug. Curcumin as a natural anticancer agent has poor solubility that limits its use in drug therapeutics, while platinum-based Cisplatin exhibits systemic cytotoxicity. These can be overcome via drug delivery in polymeric biocompatible vehicles. The PLGA-PEG-HA conjugate shows the total measurement of 105 bond length with average bond length of 1.274163 Å. The conjugation between PEG and HA occurs at C8-O1 atoms and can be manipulated to improve properties.

  3. Potential anticancer heterometallic Fe-Au and Fe-Pd agents: initial mechanistic insights.

    PubMed

    Lease, Nicholas; Vasilevski, Vadim; Carreira, Monica; de Almeida, Andreia; Sanaú, Mercedes; Hirva, Pipsa; Casini, Angela; Contel, María

    2013-07-25

    A series of gold(III) and palladium(II) heterometallic complexes with new iminophosphorane ligands derived from ferrocenylphosphanes [{Cp-P(Ph2)═N-Ph}2Fe] (1), [{Cp-P(Ph2)═N-CH2-2-NC5H4}2Fe] (2), and [{Cp-P(Ph2)═N-CH2-2-NC5H4}Fe(Cp)] (3) have been synthesized and structurally characterized. Ligands 2 and 3 afford stable coordination complexes [AuCl2(3)]ClO4, [{AuCl2}2(2)](ClO4)2, [PdCl2(3)], and [{PdCl2}2(2)]. The complexes have been evaluated for their antiproliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), in human breast cancer cells (MCF7) and in a nontumorigenic human embryonic kidney cell line (HEK-293T). The highly cytotoxic trimetallic derivatives M2Fe (M = Au, Pd) are more cytotoxic to cancer cells than their corresponding monometallic fragments. Moreover, these complexes were significantly more cytotoxic than cisplatin in the resistant A2780R and the MCF7 cell lines. Studies of the interactions of the trimetallic compounds with DNA and the zinc-finger protein PARP-1 indicate that they exert anticancer effects in vitro based on different mechanisms of actions with respect to cisplatin.

  4. The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent

    PubMed Central

    Marcinkowska, Ewa; Wallace, Graham R.; Brown, Geoffrey

    2016-01-01

    The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D3 (1,25D) has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues. PMID:27187375

  5. Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents.

    PubMed

    Aldawsari, Fahad S; Aguayo-Ortiz, Rodrigo; Kapilashrami, Kanishk; Yoo, Jakyung; Luo, Minkui; Medina-Franco, José L; Velázquez-Martínez, Carlos A

    2016-10-01

    Resveratrol is a natural polyphenol with plethora of biological activities. Resveratrol has previously shown to decrease DNA-methyltransferase (DNMT) enzymes expression and to reactivate silenced tumor suppressor genes. Currently, it seems that no resveratrol analogs have been developed as DNMT inhibitors. Recently, we reported the synthesis of resveratrol-salicylate derivatives and by examining the chemical structure of these analogs, we proposed that these compounds could exhibit DNMT inhibition especially that they resembled NSC 14778, a compound we previously identified as a DNMT inhibitor by virtual screening. Indeed, using in vitro DNMT inhibition assay, some of the resveratrol-salicylate analogs we screened in this work that showed selective inhibition against DNMT3 enzymes which were greater than resveratrol. A molecular docking study revealed key binding interactions with DNMT3A and DNMT3B enzymes. In addition, the most active analog, 10 showed considerable cytotoxicity against three human cancer cells; HT-29, HepG2 and SK-BR-3, which was greater than resveratrol. Further studies are needed to understand the anticancer mechanisms of these derivatives.

  6. Progress Toward the Development of Noscapine and Derivatives as Anticancer Agents.

    PubMed

    DeBono, Aaron; Capuano, Ben; Scammells, Peter J

    2015-08-13

    Many nitrogen-moiety containing alkaloids derived from plant origins are bioactive and play a significant role in human health and emerging medicine. Noscapine, a phthalideisoquinoline alkaloid derived from Papaver somniferum, has been used as a cough suppressant since the mid 1950s, illustrating a good safety profile. Noscapine has since been discovered to arrest cells at mitosis, albeit with moderately weak activity. Immunofluorescence staining of microtubules after 24 h of noscapine exposure at 20 μM elucidated chromosomal abnormalities and the inability of chromosomes to complete congression to the equatorial plane for proper mitotic separation ( Proc. Natl. Acad. Sci. U. S. A. 1998 , 95 , 1601 - 1606 ). A number of noscapine analogues possessing various modifications have been described within the literature and have shown significantly improved antiprolific profiles for a large variety of cancer cell lines. Several semisynthetic antimitotic alkaloids are emerging as possible candidates as novel anticancer therapies. This perspective discusses the advancing understanding of noscapine and related analogues in the fight against malignant disease.

  7. Potential Anticancer Heterometallic Fe-Au and Fe-Pd Agents: Initial Mechanistic Insights

    PubMed Central

    Lease, Nicholas; Vasilevski, Vadim; Carreira, Monica; de Almeida, Andreia; Sanaú, Mercedes; Hirva, Pipsa; Casini, Angela; Contel, Maria

    2013-01-01

    A series of gold(III) and palladium(II) heterometallic complexes with new iminophosphorane ligands derived from ferrocenyl-phosphanes [{Cp-P(Ph2)=N-Ph}2Fe] (1), [{Cp-P(Ph2)=N-CH2-2-NC5H4}2Fe] (2) and [{Cp-P(Ph2)=N-CH2-2-NC5H4}Fe(Cp)] (3) have been synthesized and structurally characterized. Ligands 2 and 3 afford stable coordination complexes [AuCl2(3)]ClO4, [{AuCl2}2(2)](ClO4)2, [PdCl2(3)] and [{PdCl2}2(2)]. The complexes have been evaluated for their antripoliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), in human breast cancer cells (MCF7) and in a non-tumorigenic human embryonic kidney cell line (HEK-293T). The highly cytotoxic trimetallic derivatives M2Fe (M = Au, Pd) are more cytotoxic to cancer cells than their corresponding monometallic fragments. Moreover, these complexes were significantly more cytotoxic than cisplatin in the resistant A2780R and the MCF7 cell lines. Studies of the interactions of the trimetallic compounds with DNA and the zinc-finger protein PARP-1 indicate that they exert anticancer effects in vitro based on different mechanisms of actions with respect to cisplatin. PMID:23786413

  8. Identification of CETP as a molecular target for estrogen positive breast cancer cell death by cholesterol depleting agents

    PubMed Central

    Esau, Luke; Sagar, Sunil; Bangarusamy, Dhinoth; Kaur, Mandeep

    2016-01-01

    Cholesterol and its metabolites act as steroid hormone precursors, which promote estrogen receptor positive (ER+) breast cancer (BC) progression. Development of cholesterol targeting anticancer drugs has been hindered due to the lack of knowledge of viable molecular targets. Till now, Cholesteryl ester transfer protein (CETP) has been envisaged as a feasible molecular target in atherosclerosis, but for the first time, we show that CETP contributes to BC cell survival when challenged with cholesterol depleting agents. We show that MCF-7 CETP knockout BC cells pose less resistance towards cytotoxic compounds (Tamoxifen and Acetyl Plumbagin (AP)), and were more susceptible to intrinsic apoptosis. Analysis of differentially expressed genes using Ingenuity Pathway Analysis (IPA), in vivo tumor inhibition, and in vitro phenotypic responses to AP revealed a unique CETP-centric cholesterol pathway involved in sensitizing ER+ BC cells to intrinsic mitochondrial apoptosis. Furthermore, analysis of cell line, tissue and patient data available in publicly available databases linked elevated CETP expression to cancer, cancer relapse and overall poor survival. Overall, our findings highlight CETP as a pharmacologically relevant and unexploited cellular target in BC. The work also highlights AP as a promising chemical entity for preclinical investigations as a cholesterol depleting anticancer therapeutic agent. PMID:28050232

  9. Identification of CETP as a molecular target for estrogen positive breast cancer cell death by cholesterol depleting agents.

    PubMed

    Esau, Luke; Sagar, Sunil; Bangarusamy, Dhinoth; Kaur, Mandeep

    2016-09-01

    Cholesterol and its metabolites act as steroid hormone precursors, which promote estrogen receptor positive (ER+) breast cancer (BC) progression. Development of cholesterol targeting anticancer drugs has been hindered due to the lack of knowledge of viable molecular targets. Till now, Cholesteryl ester transfer protein (CETP) has been envisaged as a feasible molecular target in atherosclerosis, but for the first time, we show that CETP contributes to BC cell survival when challenged with cholesterol depleting agents. We show that MCF-7 CETP knockout BC cells pose less resistance towards cytotoxic compounds (Tamoxifen and Acetyl Plumbagin (AP)), and were more susceptible to intrinsic apoptosis. Analysis of differentially expressed genes using Ingenuity Pathway Analysis (IPA), in vivo tumor inhibition, and in vitro phenotypic responses to AP revealed a unique CETP-centric cholesterol pathway involved in sensitizing ER+ BC cells to intrinsic mitochondrial apoptosis. Furthermore, analysis of cell line, tissue and patient data available in publicly available databases linked elevated CETP expression to cancer, cancer relapse and overall poor survival. Overall, our findings highlight CETP as a pharmacologically relevant and unexploited cellular target in BC. The work also highlights AP as a promising chemical entity for preclinical investigations as a cholesterol depleting anticancer therapeutic agent.

  10. Three-Arm, Biotin-Tagged Carbazole-Dicyanovinyl-Chlorambucil Conjugate: Simultaneous Tumor Targeting, Sensing, and Photoresponsive Anticancer Drug Delivery.

    PubMed

    Venkatesh, Yarra; Karthik, S; Rajesh, Y; Mandal, Mahitosh; Jana, Avijit; Singh, N D Pradeep

    2016-12-19

    The design, synthesis, and in vitro biological studies of a biotin-carbazole-dicyanovinyl-chlorambucil conjugate (Bio-CBZ-DCV-CBL; 6) are reported. This conjugate (6) is a multifunctional single-molecule appliance composed of a thiol-sensor DCV functionality, a CBZ-derived phototrigger as well as fluorescent reporter, and CBL as the anticancer drug, and Bio as the cancer-targeting ligand. In conjugate 6, the DCV bond undergoes a thiol-ene click reaction at pH<7 with intracellular thiols, thereby shutting down internal charge transfer between the donor CBZ and acceptor DCV units, resulting in a change of the fluorescence color from green to blue, and thereby, sensing the tumor microenvironment. Subsequent photoirradiation results in release of the anticancer drug CBL in a controlled manner.

  11. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    DOEpatents

    Gakh, Andrei A; Vovk, Mykhaylo V; Mel& #x27; nychenko, Nina V; Sukach, Volodymyr A

    2012-10-23

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  12. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    DOEpatents

    Gakh, Andrei A.; Vovk, Mykhaylo V.; Mel'nychenko, Nina V.; Sukach, Volodymyr A.

    2012-08-14

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  13. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides

    PubMed Central

    Sun, Jiawei; Jiang, Lei; Lin, Yi; Gerhard, Ethan Michael; Jiang, Xuehua; Li, Li; Yang, Jian; Gu, Zhongwei

    2017-01-01

    Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Here, multistage tumor-targeting liposomes containing two targeted peptide-modified lipids, cRGD-PEG2000-DSPE and KLA-PEG2000-DSPE, were developed for encapsulation of the anticancer drug paclitaxel (PTX, RGD-KLA/PTX-Lips). Compared with Taxol (free PTX), RGD/PTX-Lips and KLA/PTX-Lips, the half-maximal inhibitory concentration (IC50) value of RGD-KLA/PTX-Lips in vitro was 1.9-, 36.7- and 22.7-fold lower with 4T1 cells, respectively, because of higher levels of cellular uptake. Similar results were also observed with human umbilical vascular endothelial cells (HUVECs). An apoptosis assay showed that the total apoptotic ratio of RGD-KLA/PTX-Lips was the highest because of the mitochondria-targeted drug delivery and the activation of mitochondrial apoptosis pathways, as evidenced by visible mitochondrial localization, decreased mitochondrial membrane potential, release of cytochrome c and increased activities of caspase-9 and caspase-3. The strongest tumor growth inhibition (TGI; 80.6%) and antiangiogenesis effects without systemic toxicity were also observed in RGD-KLA/PTX-Lip-treated 4T1 tumor xenograft BALB/c mice. In conclusion, these multistage tumor-targeting liposomes represent a promising anticancer drug delivery system (DDS) capable of maximizing anticancer therapeutic efficacy and minimizing systemic toxicity. PMID:28280323

  14. In-silico & In-vitro identification of structure-activity relationship pattern of Serpentine & Gallic acid targeting PI3Kγ as potential anticancer target.

    PubMed

    Sharma, Pooja; Shukla, Aparna; Kalani, Komal; Dubey, Vijaya; Luqman, Suaib; Srivastava, S K; Khan, Feroz

    2017-03-30

    Natural products showed anticancer activity and often induce apoptosis or autophagy in cancer cells through the PI3K/Akt/mTOR signaling pathways. The potential of natural products as PI3Ks inhibitors has been reported, which suggest PI3Ks a promising anticancer target. Phosphoinositide 3-kinase (PI3K) is a family of related intracellular signal transducer enzymes or lipid kinases that regulate different cellular processes involved in cancer. In the studied work, anticancer potential of two active plant secondary metabolites, namely gallic acid and serpentine was evaluated against PI3Ks, especially gamma isoform and compared with the wortmannin, a steroid metabolite of the fungi and a non-specific covalent known inhibitor of PI3Ks, based on in-silico QSAR, molecular docking, eADMET and in-vitro activity. To identify the molecular reason behind the similar target based activity of these shikimate pathway metabolites on PI3Ks, structure-activity relationship study was performed. we developed predictive quantitative activity structural relationship model applying multiple linear regression which reveals identification of structural properties regulating the inhibitory activity of serpentine and gallic acid on PI3Kγ. The model exhibited acceptable statistical parameter such as regression coefficient (r2 = 0.76), cross-validation coefficient (r2CV = 0.72) and test set validation coefficient (q2 = 0.55). Structural elucidation was done through NMR studies. Predicted activities were further evaluated through in-vitro testing of gallic acid and serpentine targeting against anticancer target PI3Ks. The identified chemical features were amide group count, amine group count, secondary amine group count, highest occupied molecule orbital (HOMO) energy and valence connectivity index (order 2). To gain more insight into their mode of action, molecular docking study was performed. In-silico ADME and toxicity estimation was also done for pharmacokinetic and bioavailability

  15. The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer.

    PubMed

    Heidegger, Isabel; Massoner, Petra; Sampson, Natalie; Klocker, Helmut

    2015-10-28

    Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer death in males. In recent years, several new targeting agents have been introduced for the treatment of advanced stages of the disease. However, development of resistance limits the efficacy of new drugs and there is a further need to develop additional novel treatment approaches. One of the most investigated targets in cancer research is the insulin-like growth factor (IGF) axis, whose receptors are overexpressed in several cancer entities including PCa. In preclinical studies in PCa, targeting of the IGF axis receptors showed promising anti-tumor effects. Currently available data on clinical studies do not meet the expectations for this new treatment approach. In this review we provide a summary of preclinical and clinical studies on the IGF axis in PCa including treatment with monoclonal antibodies and tyrosine kinase inhibitors. Moreover, we summarize preliminary results from ongoing studies and discuss limitations and side effects of the substances used. We also address the role of the IGF axis in the biomarkers setting including IGF-binding proteins and genetic variants.

  16. Structure – relaxivity relationships among targeted MR contrast agents

    PubMed Central

    Zhang, Zhaoda

    2012-01-01

    Paramagnetic gadolinium(III) complexes are widely used to increase contrast in magnetic resonance (MR) images. Contrast enhancement depends on the concentration of the gadolinium complex and on its relaxivity, an inherent property of the complex. Increased relaxivity results in greater image contrast or the ability to detect the contrast agent at a lower concentration. Increasing relaxivity enables imaging of abundant molecular targets. Relaxivity depends on the structure of the complex, kinetics of inner-sphere and second sphere water exchange, and on the rotational dynamics of the molecule. The latter, and in some cases the former, properties of the complex change when it is bound to its target. All of these properties can be rationally tuned to enhance relaxivitry. In this Microreview we summarize our efforts in understanding and optimizing the relaxivity of contrast agents targeted to serum albumin and to fibrin. PMID:22745568

  17. In vitro and in vivo evaluation of organometallic gold(I) derivatives as anticancer agents.

    PubMed

    García-Moreno, Elena; Tomás, Alejandro; Atrián-Blasco, Elena; Gascón, Sonia; Romanos, Eduardo; Rodriguez-Yoldi, Mary Jesus; Cerrada, Elena; Laguna, Mariano

    2016-02-14

    Alkyne gold(I) derivatives with the water soluble phosphanes PTA (1,3,5-triaza-7-phosphaadamantane) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) were described and their anticancer potential against the colon cancer cell line Caco-2 (PD7 and TC7 clones) was studied. Strong antiproliferative effects are found, for all the new complexes, to be even more pronounced than for the reference drug cisplatin, and similar to auranofin. The interaction of these derivatives with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. The types of quenching and binding constants were determined by a fluorescence quenching method. Moderate values of the binding constants are calculated for the tested derivatives indicating that these complexes can be stored and carried easily by this protein in the body. The study of the thermodynamic parameters in the case of [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] points out to the presence of van der Waals interactions or hydrogen bonding between the metallic complex and the protein. In addition, the complex [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] has shown inhibition in colon cancer proliferation of HTC-116-luc2 cell lines via the apoptotic pathway and S-phase arrest of the cell cycle. Intraperitoneal injection of this derivative in athymic nude mice inoculated with HTC-116-luc2 cells prolonged their survival and displayed moderate inhibition of the tumour growth with no subsequent organ (kidney and liver) damage after treatment.

  18. Suprafenacine, an indazole-hydrazide agent, targets cancer cells through microtubule destabilization.

    PubMed

    Choi, Bo-Hwa; Chattopadhaya, Souvik; Thanh, Le Nguyen; Feng, Lin; Nguyen, Quoc Toan; Lim, Chuan Bian; Harikishore, Amaravadhi; Nanga, Ravi Prakash Reddy; Bharatham, Nagakumar; Zhao, Yan; Liu, Xuewei; Yoon, Ho Sup

    2014-01-01

    Microtubules are a highly validated target in cancer therapy. However, the clinical development of tubulin binding agents (TBA) has been hampered by toxicity and chemoresistance issues and has necessitated the search for new TBAs. Here, we report the identification of a novel cell permeable, tubulin-destabilizing molecule--4,5,6,7-tetrahydro-1H-indazole-3-carboxylic acid [1p-tolyl-meth-(E)-ylidene]-hydrazide (termed as Suprafenacine, SRF). SRF, identified by in silico screening of annotated chemical libraries, was shown to bind microtubules at the colchicine-binding site and inhibit polymerization. This led to G2/M cell cycle arrest and cell death via a mitochondria-mediated apoptotic pathway. Cell death was preceded by loss of mitochondrial membrane potential, JNK-mediated phosphorylation of Bcl-2 and Bad, and activation of caspase-3. Intriguingly, SRF was found to selectively inhibit cancer cell proliferation and was effective against drug-resistant cancer cells by virtue of its ability to bypass the multidrug resistance transporter P-glycoprotein. Taken together, our results suggest that SRF has potential as a chemotherapeutic agent for cancer treatment and provides an alternate scaffold for the development of improved anti-cancer agents.

  19. Zampanolide and dactylolide: cytotoxic tubulin-assembly agents and promising anticancer leads

    PubMed Central

    2014-01-01

    Covering: through January 2014 Zampanolide is a marine natural macrolide and a recent addition to the family of microtubule-stabilizing cytotoxic agents. Zampanolide exhibits unique effects on tubulin assembly and is more potent than paclitaxel against several multi-drug resistant cancer cell lines. A high-resolution crystal structure of αβ-tubulin in complex with zampanolide explains how taxane-site microtubule-stabilizing agents promote microtubule assemble and stability. This review provides an overview of current developments of zampanolide and its related but less potent analogue dactylolide, covering their natural sources and isolation, structure and conformation, cytotoxic potential, structure–activity studies, mechanism of action, and syntheses. PMID:24945566

  20. A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells

    PubMed Central

    Wang, Jing; Zhu, Hai; Han, Yuqing; Jin, Mingji; Wang, Jun; Zhou, Congya; Ma, Junfeng; Lin, Qingcong; Wang, Zhaoyi; Meng, Kun; Fu, Xueqi

    2016-01-01

    Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer. PMID:27281614

  1. Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release

    NASA Astrophysics Data System (ADS)

    Fan, Jianquan; Zeng, Fang; Xu, Jiangsheng; Wu, Shuizhu

    2013-09-01

    Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of 100-300 nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX-CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

  2. Implications of nanoscale based drug delivery systems in delivery and targeting tubulin binding agent, noscapine in cancer cells.

    PubMed

    Chandra, Ramesh; Madan, Jitender; Singh, Prashant; Chandra, Ankush; Kumar, Pradeep; Tomar, Vartika; Dass, Sujata K

    2012-12-01

    Noscapine, a tubulin binding anticancer agent undergoing Phase I/II clinical trials, inhibits tumor growth in nude mice bearing human xenografts of breast, lung, ovarian, brain, and prostrate origin. The analogues of noscapine like 9-bromonoscapine (EM011) are 5 to 10-fold more active than parent compound, noscapine. Noscapinoids inhibit the proliferation of cancer cells that are resistant to paclitaxel and epothilone. Noscapine also potentiated the anticancer activity of doxorubicin in a synergistic manner against triple negative breast cancer (TNBC). However, physicochemical and pharmacokinetic (ED50˜300-600 mg/kg bodyweight) limitations of noscapine present hurdle in development of commercial anticancer formulations. Therefore, objectives of the present review are to summarize the chemotherapeutic potential of noscapine and implications of nanoscale based drug delivery systems in enhancing the therapeutic efficacy of noscapine in cancer cells. We have constructed noscapine-enveloped gelatin nanoparticles, NPs and poly (ethylene glycol) grafted gelatin NPs as well as inclusion complex of noscapine in β-cyclodextrin (β-CD) and evaluated their physicochemical characteristics. The Fe3O4 NPs were also used to incorporate noscapine in its polymeric nanomatrix system where molecular weight of the polymer governed the encapsulation efficiency of drug. The enhanced noscapine delivery using μPAR-targeted optical-MR imaging trackable NPs offer a great potential for image directed targeted delivery of noscapine. Human Serum Albumin NPs (150-300 nm) as efficient noscapine drug delivery systems have also been developed for potential use in breast cancer.

  3. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes.

    PubMed

    Ray, Sriparna; Mohan, Renu; Singh, Jay K; Samantaray, Manoja K; Shaikh, Mobin M; Panda, Dulal; Ghosh, Prasenjit

    2007-12-05

    Complete synthetic, structural, and biomedical studies of two Pd complexes as well as Au and Ag complexes of 1-benzyl-3-tert-butylimidazol-2-ylidene are reported. Specifically, trans-[1-benzyl-3-tert-butylimidazol-2-ylidene]Pd(pyridine)Cl2 (1a) was synthesized from the reaction of 1-benzyl-3-tert-butylimidazolium chloride (1) with PdCl2 in the presence of K2CO3 as a base. The other palladium complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]2PdCl2 (1b), and a gold complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]AuCl (1c), were synthesized by following a transmetallation route from the silver complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]AgCl (1d), by treatment with (COD)PdCl2 and (SMe2)AuCl, respectively. The silver complex 1d in turn was synthesized by the reaction of 1 with Ag2O. The molecular structures of 1a-d have been determined by X-ray diffraction studies. Biomedical studies revealed that, while the palladium complexes 1a and 1b displayed potent anticancer activity, the gold (1c) and silver (1d) complexes exhibited significant antimicrobial properties. Specifically, 1b showed strong antiproliferative activity against three types of human tumor cells, namely, cervical cancer (HeLa), breast cancer (MCF-7), and colon adenocarcinoma (HCT 116), in culture. The antiproliferative activity of 1b was found to be considerably stronger than that of cisplatin. The 1b complex inhibited tumor cell proliferation by arresting the cell cycle progression at the G2 phase, preventing the mitotic entry of the cell. We present evidence suggesting that the treated cells underwent programmed cell death through a p53-dependent pathway. Though both the gold (1c) and silver (1d) complexes showed antimicrobial activity toward Bacillus subtilis, 1c was found to be ca. 2 times more potent than 1d.

  4. Comparison of the effects of various anticancer agents on intestinal anastomosis after intraperitoneal administration.

    PubMed

    Arikan, A Y; Senel, F M; Akman, R Y; Can, C

    1999-01-01

    In this study, the effects of intraperitoneal 5-fluorouracil (5-FU), cisplatinum (Cis), adriamycin (Adr), and methotrexate (MTX) administration on rat intestinal anastomosis were compared. Cis and MTX led to significant weight loss in the first 5 days compared with the control group. Within 14 days all rats except the MTX group nearly reached their preoperative weight. No remarkable weight loss or systemic toxicity was observed among the 5-FU and Adr groups. The anastomosis bursting pressure (ABP) at 1 week was significantly lower than that of the control group (P < 0.01 and P < 0.005, respectively). On day 14 the anastomosis bursting pressure in the Cis group was similar to that of the control group but was significantly lower in the MTX group (P < 0.002). Histopathologically, MTX avoided the development of a mucosal layer at the anastomosis site and led to ulcer formation in some of the rats. The ABPs at 7 and 14 days were similar to those in the control group. Neither of the agents had any significant mechanical or histopathologic adverse effects on anastomosis. According to the results of our study, MTX impaired the healing of the anastomosis, and we thus conclude that the intraperitoneal administration of this agent is not safe. On the other hand, Cis showed a detrimental effect on the anastomosis, particularly in the early phase, but this effect disappeared in the late phase. Cis thus should not be administered in the early postoperative phase. As a result, 5-FU and Adr were found to be the safest agents as they did not delay wound healing and did not reduce the anastomotic strength.

  5. Molecular predictors of therapeutic response to specific anti-cancer agents

    DOEpatents

    Spellman, Paul T.; Gray, Joe W.; Sadanandam, Anguraj; Heiser, Laura M.; Gibb, William J.; Kuo, Wen-lin; Wang, Nicholas J.

    2016-11-29

    Herein is described the use of a collection of 50 breast cancer cell lines to match responses to 77 conventional and experimental therapeutic agents with transcriptional, proteomic and genomic subtypes found in primary tumors. Almost all compounds produced strong differential responses across the cell lines produced responses that were associated with transcriptional and proteomic subtypes and produced responses that were associated with recurrent genome copy number abnormalities. These associations can now be incorporated into clinical trials that test subtype markers and clinical responses simultaneously.

  6. A comparison of patient adherence and preference of packaging method for oral anticancer agents using conventional pill bottles versus daily pill boxes.

    PubMed

    Macintosh, P W; Pond, G R; Pond, B J; Leung, V; Siu, L L

    2007-07-01

    Adherence to medications is an important issue in oncology due to the increasing number of anticancer agents, such as targeted therapies, formulated for oral dosing. A prospective, crossover design was utilized in which patients on capecitabine were randomly assigned to one of two packaging methods for one cycle, and then switched over to the alternate packaging method in the subsequent cycle. Twenty-five patients were accrued to this study. Adherence rates were similar when using the daily pill boxes (17/21 = 81%) and when using the conventional pill bottles (18/21 = 86%). However, more patients were satisfied with the daily pill boxes (61% versus 11%, P = 0.027), preferred the daily pill boxes (61% versus 17%, P = 0.061), and thought the daily pill boxes were more helpful in reminding them to take their medications (50% versus 11%, P = 0.070). In conclusion, this small pilot study did not demonstrate that the use of daily pill boxes improved patient adherence with capecitabine, but patient satisfaction and preference for this packaging method were greater than for the conventional pill bottles. Further exploration of this intervention in a larger study is warranted.

  7. Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products

    NASA Astrophysics Data System (ADS)

    Villadsen, Nikolaj L.; Jacobsen, Kristian M.; Keiding, Ulrik B.; Weibel, Esben T.; Christiansen, Bjørn; Vosegaard, Thomas; Bjerring, Morten; Jensen, Frank; Johannsen, Mogens; Tørring, Thomas; Poulsen, Thomas B.

    2016-11-01

    Tumour hypoxia is speculated to be a key driver of therapeutic resistance and metastatic dissemination. Consequently, the discovery of new potent agents that selectively target the hypoxic cell population may reveal new and untapped antitumour mechanisms. Here we demonstrate that the BE-43547 subclass of the APD-CLD (amidopentadienoate-containing cyclolipodepsipeptides) natural products possesses highly hypoxia-selective growth-inhibitory activity against pancreatic cancer cells. To enable this discovery, we have developed the first synthesis of the BE-43547-macrocyclic scaffold in 16 steps (longest linear sequence), which also allowed access to the full panel of relative stereoisomers and ultimately to the assignment of stereochemical configuration. Discrepancies between the spectroscopic signatures of the synthetic compounds with that originally reported for the BE-43547 members stimulated us to re-isolate the natural product from a BE-43547-producing microorganism during which we elucidated the biosynthetic gene clusters for the BE-43547 family as well as for all other known APD-CLDs. Our studies underline the exciting possibilities for the further development of the anticancer activities of these natural products.

  8. In Vitro Evaluation of Oxoplatin: An Oral Platinum(IV) Anticancer Agent

    PubMed Central

    Olszewski, Ulrike; Ach, Florian; Ulsperger, Ernst; Baumgartner, Gerhard; Zeillinger, Robert; Bednarski, Patrick; Hamilton, Gerhard

    2009-01-01

    Platinum(IV) compounds like oxoplatin (cis, cis, trans-diammine-dichlorido-dihydroxido-platinum(IV)) show increased stability and therefore can be applied orally. In a panel of 38 human cancer cell lines this drug induced S-phase arrest and cell death with IC50 values 2.5-fold higher than cisplatin. Oxoplatin may be converted to cisplatin by intracellular reducing agents, however, exposure to 0.1 M HCl mimicking gastric acid yielded cis-diammine-tetrachlorido-platinum(IV) exhibiting twofold increased activity. Similar results were obtained for another platinum(IV) compound, JM 149 (ammine-dichlorido-(cyclohexylamine)-dihydroxido-platinum(IV)), but not for its parent drug JM 216/satraplatin. Genome-wide expression profiling of H526 small cell lung cancer cells treated with these platinum species revealed clear differences in the expression pattern of affected genes between oxoplatin and cisplatin. In conclusion, oxoplatin constitutes a potent oral agent that is either reduced or converted to distinct active compounds, for example, by gastric acid or acidic areas prevailing in solid tumors, in dependence of the respective pharmaceutical formulation. PMID:19587824

  9. Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent.

    PubMed

    Hanson, Britt Erika; Vesole, David H

    2009-09-01

    Heat shock proteins are vital to cell survival under conditions of stress. They bind client proteins to assist in protein stabilization, translocation of polypeptides across cell membranes and recovery of proteins from aggregates. Heat shock protein inhibitors are a diverse group of novel agents that have been demonstrated to have pro-apoptotic effects on malignant cells through inhibition of ATP binding on the ATP/ADP-binding pocket of the heat shock protein. Initial development of heat shock protein 90 inhibitors, geldanamycin and 17-AAG, were limited by hepatotoxicity and the need for solvent carrying agents. In contrast, retaspimycin, or IPI-504, a derivative of geldanamycin and 17-AAG, is highly soluble in water and generally well tolerated. In Phase I/II trials, retaspimycin has shown activity in NSCLC and gastrointestinal stromal tumor. The most promising activity was observed in gastrointestinal stromal tumors. Phase I/II trials are currently underway to evaluate the dosing schedules and activity of IPI-504 in breast cancer. Given the in vitro activity in diffuse large B-cell lymphoma, mantle cell lymphoma, melanoma, leukemia and pancreatic cancer, current and future trials are of clinical interest. This article reviews IPI-504 and its utility in a wide variety of cancer phenotypes.

  10. Redox therapy in neonatal sepsis: reasons, targets, strategy, and agents.

    PubMed

    Bajčetić, Milica; Spasić, Snežana; Spasojević, Ivan

    2014-09-01

    Neonatal sepsis is one of the most fulminating conditions in neonatal intensive care units. Antipathogen and supportive care are administered routinely, but do not deliver satisfactory results. In addition, the efforts to treat neonatal sepsis with anti-inflammatory agents have generally shown to be futile. The accumulating data imply that intracellular redox changes intertwined into neonatal sepsis redox cycle represent the main cause of dysfunction of mitochondria and cells in neonatal sepsis. Our aim here is to support the new philosophy in neonatal sepsis treatment, which involves the integration of mechanisms that are responsible for cellular dysfunction and organ failure, the recognition of the most important targets, and the selection of safe agents that can stop the neonatal sepsis redox cycle by hitting the hot spots. Redox-active agents that could be beneficial for neonatal sepsis treatment according to these criteria include lactoferrin, interleukin 10, zinc and selenium supplements, ibuprofen, edaravone, and pentoxifylline.

  11. 'Smartening' anticancer therapeutic nanosystems using biomolecules.

    PubMed

    Núñez-Lozano, Rebeca; Cano, Manuel; Pimentel, Belén; de la Cueva-Méndez, Guillermo

    2015-12-01

    To be effective, anticancer agents must induce cell killing in a selective manner, something that is proving difficult to achieve. Drug delivery systems could help to solve problems associated with the lack of selectivity of classical chemotherapeutic agents. However, to realize this, such systems must overcome multiple physiological barriers. For instance, they must evade surveillance by the immune system, attach selectively to target cells, and gain access to their interior. Furthermore, there they must escape endosomal entrapment, and release their cargoes in a controlled manner, without affecting their functionality. Here we review recent efforts aiming at using biomolecules to confer these abilities to bare nanoparticles, to transform them into smart anticancer therapeutic nanosystems.

  12. The Mechanistic Targets of Antifungal Agents: An Overview

    PubMed Central

    Mazu, Tryphon K.; Bricker, Barbara A.; Flores-Rozas, Hernan; Ablordeppey, Seth Y.

    2016-01-01

    Pathogenic fungi are a major causative group for opportunistic infections (OIs). AIDS patients and other immunocompromised individuals are at risk for OIs, which if not treated appropriately, contribute to the mortality associated with their conditions. Several studies have indicated that the majority of HIV-positive patients contract fungal infections throughout the course of their disease. Similar observations have been made regarding the increased frequency of bone marrow and organ transplants, the use of antineoplastic agents, the excessive use of antibiotics, and the prolonged use of corticosteroids among others. In addition, several pathogenic fungi have developed resistance to current drugs. Together these have conspired to spur a need for developing new treatment options for OIs. To aid this effort, this article reviews the biological targets of current and emerging drugs and agents that act through these targets for the treatment of opportunistic fungal infections. PMID:26776224

  13. LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy

    NASA Astrophysics Data System (ADS)

    Popov, Boris V.

    2013-02-01

    Near infrared laser immunotherapy becomes now a new promising research field to cure the patients with cancers. One of the critical limitation in medical application of this treatment is availability of the specific markers for delivery of laser-sensitive nanoparticles. When coupled to antibodies to the cancer stem cells markers these nanoparticles may be delivered to the cancer tissue and mediate the laser induced thermolysis of the cancer stem cells that initiate and drive growth of cancer. This paper addresses the Lgr5 cell surface marker mediating the Wnt/β-catenin signal transduction as a potential target for anti-cancer laser immunotherapy of skin cancers.

  14. Diarylureas and diarylamides with pyrrolo[2,3-d]pyrimidine scaffold as broad-spectrum anticancer agents.

    PubMed

    El-Gamal, Mohammed Ibrahim; Oh, Chang-Hyun

    2014-01-01

    A series of diarylureas and diarylamides possessing pyrrolo[2,3-d]pyrimidine scaffold was designed and synthesized. The in vitro antiproliferative activities of a selected group of the target compounds against NCI-60 cell line panel were tested and compared with Sorafenib and Imatinib as reference compounds. Most of the compounds showed strong and broad-spectrum antiproliferative activities. Compounds IVa, IVb, and IVd with benzamido moiety at position 4 of the pyrrolo[2,3-d]pyrimidine nucleus, para-disubstituted phenyl ring at N1-position of pyrrolo[2,3-d]pyrimidine scaffold, and urea linker showed strong and broad-spectrum anticancer results with high potencies and efficacies. In addition, the amide derivatives Vb and Vc demonstrated one-digit nanomolar IC50 values over two and one cell line(s), respectively. Amid all the target compounds, compound IVa demonstrated the best results in both one-dose and five-dose testing modes. It showed 109.18% mean % inhibition over the NCI-60 cancer cell line panel at 10 µM concentration, submicromolar 50% inhibitory concentration (IC50) values over eight cell lines of eight different cancer types, and high efficacy with total growth inhibition (TGI) and 50% lethal concentration (LC50) values less than 4.22 µM over three colon, ovarian, and prostate cancer cell lines. It showed superior potency and efficacy to Sorafenib and Imatinib over most of the tested cell lines.

  15. Orthogonally functionalized nanoscale micelles for active targeted codelivery of methotrexate and mitomycin C with synergistic anticancer effect.

    PubMed

    Li, Yang; Lin, Jinyan; Wu, Hongjie; Chang, Ying; Yuan, Conghui; Liu, Cheng; Wang, Shuang; Hou, Zhenqing; Dai, Lizong

    2015-03-02

    The design of nanoscale drug delivery systems for the targeted codelivery of multiple therapeutic drugs still remains a formidable challenge (ACS Nano, 2013, 7, 9558-9570; ACS Nano, 2013, 7, 9518-9525). In this article, both mitomycin C (MMC) and methotrexate (MTX) loaded DSPE-PEG micelles (MTX-M-MMC) were prepared by self-assembly using the dialysis technique, in which MMC-soybean phosphatidylcholine complex (drug-phospholipid complex) was encapsulated within MTX-functionalized DSPE-PEG micelles. MTX-M-MMC could coordinate an early phase active targeting effect with a late-phase synergistic anticancer effect and enable a multiple-responsive controlled release of both drugs (MMC was released in a pH-dependent pattern, while MTX was released in a protease-dependent pattern). Furthermore, MTX-M-MMC could codeliver both drugs to significantly enhance the cellular uptake, intracellular delivery, cytotoxicity, and apoptosis in vitro and improve the tumor accumulation and penetration and anticancer effect in vivo compared with either both free drugs treatment or individual free drug treatment. To our knowledge, this work provided the first example of the systemically administrated, orthogonally functionalized, and self-assisted nanoscale micelles for targeted combination cancer chemotherapy. The highly convergent therapeutic strategy opened the door to more simplified, efficient, and flexible nanoscale drug delivery systems.

  16. Novel p53-dependent anticancer strategy by targeting iron signaling and BNIP3L-induced mitophagy

    PubMed Central

    Wilfinger, Nastasia; Austin, Shane; Scheiber-Mojdehkar, Barbara; Berger, Walter; Reipert, Siegfried; Praschberger, Monika; Paur, Jakob; Trondl, Robert; Keppler, Bernhard K.; Zielinski, Christoph C.; Nowikovsky, Karin

    2016-01-01

    This study identifies BNIP3L as the key regulator of p53-dependent cell death mechanism in colon cancer cells targeted by the novel gallium based anticancer drug, KP46. KP46 specifically accumulated into mitochondria where it caused p53-dependent morphological and functional damage impairing mitochondrial dynamics and bioenergetics. Furthermore, competing with iron for cellular uptake, KP46 lowered the intracellular labile iron pools and intracellular heme. Accordingly, p53 accumulated in the nucleus where it activated its transcriptional target BNIP3L, a BH3 only domain protein with functions in apoptosis and mitophagy. Upregulated BNIP3L sensitized the mitochondrial permeability transition and strongly induced PARKIN-mediated mitochondrial clearance and cellular vacuolization. Downregulation of BNIP3L entirely rescued cell viability caused by exposure of KP46 for 24 hours, confirming that early induced cell death was regulated by BNIP3L. Altogether, targeting BNIP3L in wild-type p53 colon cancer cells is a novel anticancer strategy activating iron depletion signaling and the mitophagy-related cell death pathway. PMID:26517689

  17. Site-specific tumor-targeted fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Achilefu, Samuel I.; Bugaj, Joseph E.; Dorshow, Richard B.; Jimenez, Hermo N.; Rajagopalan, Raghavan; Wilhelm, R. Randy; Webb, Elizabeth G.; Erion, Jack L.

    2001-01-01

    Site-specific delivery of drugs and contrast agents to tumors protects normal tissues from the cytotoxic effect of drugs, and enhances the contrast between normal and diseased tissues. In optical medicine, biocompatible dyes can be used as photo therapeutics or as contrast agents. Previous studies have shown that the use of covalent or non-covalent dye conjugates of carries such as antibodies, liposomes, and polysaccharides improves the delivery of such molecules to tumors. However, large biomolecules can elicit adverse immunogenic reactions and also result in prolonged blood circulation times, delaying visualization of target tissues. A viable alternative to this strategy is to use small bioactive molecule-dye conjugates. These molecules have several advantages over large biomolecules, including ease of synthesis of a variety of high purity compounds for combinatorial screening of new targets, enhanced diffusivity to solid tumors, and the ability to affect the pharmocokinetics of the conjugates by minor structural changes. Thus, we conjugated a near IR light absorbing dye to bioactive peptides that specifically target over expressed tumor receptors in established rat tumor lines. High tumor uptake of the conjugates was obtained without loss of either the peptide receptor affinity or the dye fluorescence. These findings demonstrate the efficacy of a small peptide-dye conjugate strategy for in vivo tumor imaging. Site-specific delivery of photodynamic therapy agents may also benefit form this approach.

  18. Evaluation of SD-208, a TGF-β-RI Kinase Inhibitor, as an Anticancer Agent in Retinoblastoma.

    PubMed

    Fadakar, Puran; Akbari, Abolfazl; Ghassemi, Fariba; Mobini, Gholam Reza; Mohebi, Masoumeh; Bolhassani, Manzar; Abed Khojasteh, Hoda; Heidari, Mansour

    2016-06-01

    Retinoblastoma is the most common intraocular tumor in children resulting from genetic alterations and transformation of mature retinal cells. The objective of this study was to investigate the effects of SD-208, TGF-β-RI kinase inhibitor, on the expression of some miRNAs including a miR-17/92 cluster in retinoblastoma cells. Prior to initiate this work, the cell proliferation was studied by Methyl Thiazolyl Tetrazolium (MTT) and bromo-2'-deoxyuridine (BrdU) assays. Then, the expression patterns of four miRNAs (18a, 20a, 22, and 34a) were investigated in the treated SD-208 (0.0, 1, 2 and 3 µM) and untreated Y-79 cells. A remarkable inhibition of the cell proliferation was found in Y-79 cells treated with SD-208 versus untreated cells. Also, the expression changes were observed in miRNAs 18a, 20a, 22 and 34a in response to SD-208 treatment (P<0.05). The findings of the present study suggest that the anti-cancer effect of SD-208 may be exerted due to the regulation of specific miRNAs, at least in this particular retinoblastoma cell line. To the best of the researchers' knowledge, this is the first report demonstrating that the SD-208 could alter the expression of tumor suppressive miRNAs as well as oncomiRs in vitro. In conclusion, the present data suggest that SD-208 could be an alternative agent in retinoblastoma treatment.

  19. Design, synthesis and in vitro evaluation of novel dehydroabietic acid derivatives containing a dipeptide moiety as potential anticancer agents.

    PubMed

    Huang, Xiao-Chao; Jin, Le; Wang, Meng; Liang, Dong; Chen, Zhen-Feng; Zhang, Ye; Pan, Ying-Ming; Wang, Heng-Shan

    2015-01-07

    A series of novel dehydroabietic acid (DHA) chiral dipeptide derivatives were designed and synthesized as potent antitumor agents. The inhibitory activities of these compounds against NCI-H460 (lung), HeLa (epithelial cervical) and MGC-803 (gastric) human cancer cell lines were estimated by MTT assay in vitro. The antitumor activities screening indicated that many compounds showed moderate to high levels of antitumor activities against these three cancer cell lines and most of these compounds displayed more potent inhibitory activities compared with commercial anticancer drug 5-fluorouracil (5-FU). The induction of apoptosis and affects on the cell cycle distribution with compound 8k were investigated by acridine orange/ethidium bromide staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay, flow cytometry and the activities of caspase-3 and -9 assay in Hela cells, which exhibited that the compound could induce cell apoptosis in Hela cells. In addition, further investigation showed that apoptosis were associated with loss of mitochondrial membrane potential, enhancement of mitochondrial cytochrome c release and intracellular ROS production, elevation of Bax expression, down-regulation of Bcl-2, and the activation of caspase-9 and -3.

  20. Synthesis and evaluation of glycopolymeric decorated gold nanoparticles functionalized with gold-triphenyl phosphine as anti-cancer agents.

    PubMed

    Adokoh, Christian K; Quan, Stephen; Hitt, Mary; Darkwa, James; Kumar, Piyush; Narain, Ravin

    2014-10-13

    In this study, statistical glyco-dithiocarbamate (DTC) copolymers were synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequently used to prepare glyconanoparticles and conjugated glyconanoparticles with the anticancer drug, gold(I) triphenylphosphine. These glyconanoparticles and the corresponding conjugates were then tested for their in vitro cytotoxicity in both normal and cancer cell lines using Neutral Red assay. The glyconanoparticles and their Au(I)PPh3 conjugates were all active against MCF7 and HepG2 cells, but galactose-functionalized glyconanoparticles {P(GMA-EDAdtc(AuPPh3)-st-LAEMA)AuNP} were found to be the most cytotoxic to HepG2 cells (IC50 ∼ 4.13 ± 0.73 μg/mL). The p(GMA-EDAdtc(AuPPh3)-st-LAEMA)AuNP was found to be a 4-fold more potent antitumor agent in HepG2 cells, and the overexpressed asialoglycoprotein (ASGPR) receptors revealed to play an important role in the cytotoxicity, presumably by the enhanced uptake. In addition, the glyconanoparticles Au(I) conjugates are found to be significantly more toxic as compared to the standard chemotherapeutic reagents such as cisplatin and cytarabine.

  1. Psoralea glandulosa as a Potential Source of Anticancer Agents for Melanoma Treatment

    PubMed Central

    Madrid, Alejandro; Cardile, Venera; González, César; Montenegro, Ivan; Villena, Joan; Caggia, Silvia; Graziano, Adriana; Russo, Alessandra

    2015-01-01

    With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1), 3-hydroxy-bakuchiol (2) and 12-hydroxy-iso-bakuchiol (3)) against melanoma cells (A2058). In addition, the effect in cancer cells of bakuchiol acetate (4), a semi-synthetic derivative of bakuchiol, was examined. The results obtained show that the resinous exudate inhibited the growth of cancer cells with IC50 value of 10.5 μg/mL after 48 h of treatment, while, for pure compounds, the most active was the semi-synthetic compound 4. Our data also demonstrate that resin is able to induce apoptotic cell death, which could be related to an overall action of the meroterpenes present. In addition, our data seem to indicate that the apoptosis correlated to the tested products appears, at least in part, to be associated with an increase of reactive oxygen species (ROS) production. In summary, our study provides the first evidence that P. glandulosa may be considered a source of useful molecules in the development of analogues with more potent efficacy against melanoma cells. PMID:25860949

  2. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents.

    PubMed

    Chen, Jia-Nian; Wang, Xian-Fu; Li, Ting; Wu, De-Wen; Fu, Xiao-Bo; Zhang, Guang-Ji; Shen, Xing-Can; Wang, Heng-Shan

    2016-01-01

    Through a structure-based molecular hybridization approach, a series of novel quinazolinyl-diaryl urea derivatives were designed, synthesized, and screened for their in vitro antiproliferative activities against three cancer cell lines (HepG2, MGC-803, and A549). Six compounds (7 g, 7 m, 7 o, 8 e, 8 g, and 8 m) showed stronger activity against a certain cell line compared with the positive reference drugs sorafenib and gefitinib. Among the six compounds, 8 g exhibited the strongest activity. In particular, compound 8 g induced A549 apoptosis, arrested cell cycle at the G0/G1 phase, elevated intracellular reactive oxygen species level, and decreased mitochondrial membrane potential. This compound can also effectively regulate the expression of apoptosis- and cell cycle-related proteins, and influence the Raf/MEK/ERK pathway. Molecular docking and structure-activity relationship analyses revealed that it can bind well to the active site of the receptor c-Raf, which was consistent with the biological data. Therefore, compound 8 g may be a potent antitumor agent, representing a promising lead for further optimization.

  3. Design, modeling, synthesis and biological activity evaluation of camptothecin-linked platinum anticancer agents.

    PubMed

    Cincinelli, Raffaella; Musso, Loana; Dallavalle, Sabrina; Artali, Roberto; Tinelli, Stella; Colangelo, Donato; Zunino, Franco; De Cesare, Michelandrea; Beretta, Giovanni Luca; Zaffaroni, Nadia

    2013-05-01

    The design, modeling, synthesis and biological activity evaluation of two hybrid agents formed by 7-oxyiminomethylcamptothecin derivatives and diaminedichloro-platinum (II) complex are reported. The compounds showed growth inhibitory activity against a panel of human tumor cell lines, including sublines resistant to topotecan and platinum compounds. The derivatives were active in all the tested cell lines, and compound 1b, the most active one, was able to overcome cisplatin resistance in the osteosarcoma U2OS/Pt cell line. Platinum-containing camptothecins produced platinum-DNA adducts and topoisomerase I-mediated DNA damage with cleavage pattern and persistence similar to SN38, the active principle of irinotecan. Compound 1b exhibited an appreciable antitumor activity in vivo against human H460 tumor xenograft, comparable to that of irinotecan at lower well-tolerated dose levels and superior to cisplatin. The results support the interpretation that the diaminedichloro-platinum (II) complex conjugated via an oxyiminomethyl linker at the 7-position of the camptothecin resulted in a new class of effective antitumor compounds.

  4. Folates as adjuvants to anticancer agents: Chemical rationale and mechanism of action.

    PubMed

    Danenberg, Peter V; Gustavsson, Bengt; Johnston, Patrick; Lindberg, Per; Moser, Rudolf; Odin, Elisabeth; Peters, Godefridus J; Petrelli, Nicholas

    2016-10-01

    Folates have been used with cytotoxic agents for decades and today they are used in hundreds of thousands of patients annually. Folate metabolism is complex. In the treatment of cancer with 5-fluorouracil, the administration of folates mechanistically leads to the formation of [6R]-5,10-methylene-tetrahydrofolate, and the increased concentration of this molecule leads to stabilization of the ternary complex comprising thymidylate synthase, 2'-deoxy-uridine-5'-monophosphate, and [6R]-5,10-methylene-tetrahydrofolate. The latter is the only natural folate that can bind directly in the ternary complex, with other folates requiring metabolic activation. Modulation of thymidylate synthase activity became central in the study of folate/cytotoxic combinations and, despite wide use, research into the folate component was neglected, leaving important questions unanswered. This article revisits the mechanisms of action of folates and evaluates commercially available folate derivatives in the light of current research. Better genomic insight and availability of new analytical techniques and stable folate compounds may open new avenues of research and therapy, ultimately bringing increased clinical benefit to patients.

  5. Phosphine-gold(I) compounds as anticancer agents: general description and mechanisms of action.

    PubMed

    Lima, João Carlos; Rodriguez, Laura

    2011-12-01

    Gold complexes have been explored as metallodrugs with great potential applications as antitumoral agents. In particular, gold-phosphine derivatives seemed quite promising since the use of the antiarthritic auranofin drug (thiolate-Au-PEt3 complex) presented also biological activity against different cancer cells. So, different auranofin analogues have been explored within this context and for this reason, the main number of phosphine-gold complexes developed with this goal contain thiolate ligands. Other complexes have been also studied such as tetrahedral bis(phosphine)gold(I) and phosphine-gold-halides. Very recently, phosphine-gold-alkynyl complexes have also shown very interesting biological activities although few reports are published related to them. Their mechanism of action seems to be clearly different that the used by platinum drugs (DNA intercalating processes) and recent studies point to be related to the inhibition of Trx reductase. Cellular uptake and biodistribution studies are well reported in the original works but the use of luminescence techniques is relatively less explored. For this, the use of these techniques is also specifically reported in this review.

  6. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    PubMed

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  7. Design, Synthesis, and Biological Evaluation of Stable Colchicine Binding Site Tubulin Inhibitors as Potential Anticancer Agents

    PubMed Central

    2015-01-01

    To block the metabolically labile sites of novel tubulin inhibitors targeting the colchicine binding site based on SMART, ABI, and PAT templates, we have designed, synthesized, and biologically tested three focused sets of new derivatives with modifications at the carbonyl linker, the para-position in the C ring of SMART template, and modification of A ring of the PAT template. Structure–activity relationships of these compounds led to the identification of new benzimidazole and imidazo[4,5-c]pyridine-fused ring templates, represented by compounds 4 and 7, respectively, which showed enhanced antitumor activity and substantially improved the metabolic stability in liver microsomes compared to SMART. MOM group replaced TMP C ring and generated a potent analogue 15, which showed comparable potency to the parent SMART compound. Further modification of PAT template yielded another potent analogue 33 with 5-indolyl substituent at A ring. PMID:25122533

  8. Chloramphenicol Derivatives as Antibacterial and Anticancer Agents: Historic Problems and Current Solutions

    PubMed Central

    Dinos, George P.; Athanassopoulos, Constantinos M.; Missiri, Dionissia A.; Giannopoulou, Panagiota C.; Vlachogiannis, Ioannis A.; Papadopoulos, Georgios E.; Papaioannou, Dionissios; Kalpaxis, Dimitrios L.

    2016-01-01

    Chloramphenicol (CAM) is the D-threo isomer of a small molecule, consisting of a p-nitrobenzene ring connected to a dichloroacetyl tail through a 2-amino-1,3-propanediol moiety. CAM displays a broad-spectrum bacteriostatic activity by specifically inhibiting the bacterial protein synthesis. In certain but important cases, it also exhibits bactericidal activity, namely against the three most common causes of meningitis, Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis. Resistance to CAM has been frequently reported and ascribed to a variety of mechanisms. However, the most important concerns that limit its clinical utility relate to side effects such as neurotoxicity and hematologic disorders. In this review, we present previous and current efforts to synthesize CAM derivatives with improved pharmacological properties. In addition, we highlight potentially broader roles of these derivatives in investigating the plasticity of the ribosomal catalytic center, the main target of CAM. PMID:27271676

  9. Pyrazole scaffold: a remarkable tool in the development of anticancer agents.

    PubMed

    Kumar, Harish; Saini, Deepika; Jain, Sandeep; Jain, Neelam

    2013-01-01

    Pyrazole has been the topic of interest for thousands of researchers across the world because of its wide spectrum pharmacological activities. Various structural modifications of the pyrazole nucleus have been made to explore its characteristics and biological potential. The present work aims to review the use of molecular modeling in the designing of novel pyrazole analogs that may target various receptors such as protein kinase inhibitor, tyrosine kinase, Aurora-A kinase, tumor growth factor (TGF), cyclin dependent kinase (CDK) and fibroblast growth factor (FGF), which are significant for the management of cancer. An insight has been given in this article for the importance of pyrazoles in the treatment of cancer and the perspectives that they hold for future research.

  10. Phosphatidylinositol-3-kinase as a putative target for anticancer action of clotrimazole.

    PubMed

    Furtado, Cristiane M; Marcondes, Mariah C; Carvalho, Renato S; Sola-Penna, Mauro; Zancan, Patricia

    2015-05-01

    Clotrimazole (CTZ) has been proposed as an antitumoral agent because of its properties that inhibit glycolytic enzymes and detach them from the cytoskeleton. However, the broad effects of the drug, e.g., acting on different enzymes and pathways, indicate that CTZ might also affect several signaling pathways. In this study, we show that CTZ interferes with the human breast cancer cell line MCF-7 after a short incubation period (4 h), thereby diminishing cell viability, promoting apoptosis, depolarizing mitochondria, inhibiting key glycolytic regulatory enzymes, decreasing the intracellular ATP content, and permeating plasma membranes. CTZ treatment also interferes with autophagy. Moreover, when the incubation is performed under hypoxic conditions, certain effects of CTZ are enhanced, such as phosphatidylinositol-3-phosphate kinase (PI3K), which is inhibited upon CTZ treatment; this inhibition is potentiated under hypoxia. CTZ-induced PI3K inhibition is not caused by upstream effects of CTZ because the drug does not affect the interaction of the PI3K regulatory subunit and the insulin receptor substrate (IRS)-1. Additionally, CTZ directly inhibits human purified PI3K in a dose-dependent and reversible manner. Pharmacologic and in silico results suggest that CTZ may bind to the PI3K catalytic site. Therefore, we conclude that PI3K is a novel, putative target for the antitumoral effects of CTZ, interfering with autophagy, apoptosis, cell division and viability.

  11. Preclinical evaluation of the metabolism and disposition of RRx-001, a novel investigative anticancer agent.

    PubMed

    Scicinski, Jan; Oronsky, Bryan; Taylor, Michael; Luo, Gang; Musick, Timothy; Marini, Joseph; Adams, Christopher M; Fitch, William L

    2012-09-01

    RRx-001 has shown promise as a novel cancer therapeutic agent. The disposition of RRx-001 was evaluated in vitro and after intravenous administration to rats. At both 24 and 168 h after a single intravenous administration of ¹⁴C-RRx-001 (10 mg/kg), the majority of radiolabel was in the blood. The recovery of label in excreta was quite low, but the major route of radiolabel excretion was via the kidney, with approximately 26% in the urine by the first 8 h and decreasing amounts in all subsequent collections to a total of 36.3% by 168 h. The partitioning of total radioactivity in red blood cells (RBCs) and plasma was determined after in vitro addition to human, rat, dog, and monkey whole blood at 1 and 20 μM. In rat, at 30 min, approximately 75% of the radioactivity is associated with RBCs and 25% with plasma. In human, at 30 min, approximately 25% of the radioactivity is associated with RBCs and 75% with plasma. Analysis by liquid chromatography/radiodetection/mass spectrometry showed that ¹⁴C-RRx-001 reacted rapidly with whole blood to give four major soluble metabolites: the GSH and Cys adducts of RRx-001 (M1 and M2) and the corresponding mononitro GSH and Cys adducts (M3 and M4). Human Hb was incubated with cold RRx-001 in buffer, and a standard proteomics protocol was used to separate and identify the tryptic peptides. Standard peptide collision-induced fragment ions supported the structure of the peptide GTFATLSELHCDK with the alkylation on the Cys-93 locus of the Hb β chain.

  12. Compatibility and stability of the investigational polypeptide marine anticancer agent kahalalide F in infusion devices.

    PubMed

    Nuijen, B; Bouma, M; Manada, C; Jimeno, J M; Lazaro, L L; Bult, A; Beijnen, J H

    2001-01-01

    Kahalalide F is a novel marine-derived antitumor agent isolated from the marine mollusk Elysia rufescens, an organism living in the seas near Hawaii. The compound has shown highly selective in vitro activity against prostate tumors and phase I trials in patients with androgen independent prostate tumors incorporating a daily times five and weekly schedule have been initiated. Kahalalide F is pharmaceutically formulated as a lyophilized product containing 150 microg active substance per dosage unit. Prior to i.v. administration it is reconstituted with a solution composed of Cremophor EL, ethanol absolute and Water for Injection (CEW, 5/5/90% v/v/v) with further dilution in 0.9% w/v sodium chloride for infusion. The aim of this study was to investigate the compatibility and stability of kahalalide F with different infusion systems prior to the start of clinical trials with the compound. Due to the presence of Cremophor EL in the infusion solution, leaching of diethylhexyl phthalate (DEHP) from polyvinyl chloride infusion containers (PVC, Add-a-Flex) was found. Loss of kahalalide F as a consequence of sorption to contact surfaces was shown with an infusion container composed of low density polyethylene (LD-PE, Miniflac). We conclude that kahalalide F must be administered in a 3-h infusion in concentrations of 0.5 microg/mL to 14.7 microg/mL using an administration set consisting of a glass container and a low-extrables, DEHP-free extension set. Kahalalide F 150 microg/vial powder for infusion reconstituted with 5/5/90% v/v/v CEW is stable in the original container for at least 24 h at room temperature (+20-25 degrees C) and ambient light conditions. Infusion solutions stored in glass infusion containers at either room temperature (+20-25 degrees C, in the dark) or refrigerated conditions (+2-8 degrees C, in the dark) are stable for at least 5 days after preparation.

  13. Histone Deacetylase Inhibitors in Clinical Studies as Templates for New Anticancer Agents

    PubMed Central

    Mottamal, Madhusoodanan; Zheng, Shilong; Huang, Tien L.; Wang, Guangdi

    2015-01-01

    Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility. PMID:25738536

  14. Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells

    PubMed Central

    Bache, Matthias; Münch, Christin; Güttler, Antje; Wichmann, Henri; Theuerkorn, Katharina; Emmerich, Daniel; Paschke, Reinhard; Vordermark, Dirk

    2015-01-01

    Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8–2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 µM. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 µM under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer. PMID:26540049

  15. Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents.

    PubMed

    Piano, Valentina; Benjamin, Daniel I; Valente, Sergio; Nenci, Simone; Marrocco, Biagina; Mai, Antonello; Aliverti, Alessandro; Nomura, Daniel K; Mattevi, Andrea

    2015-11-20

    Dysregulated ether lipid metabolism is an important hallmark of cancer cells. Previous studies have reported that lowering ether lipid levels by genetic ablation of the ether lipid-generating enzyme alkyl-glycerone phosphate synthase (AGPS) lowers key structural and oncogenic ether lipid levels and alters fatty acid, glycerophospholipid, and eicosanoid metabolism to impair cancer pathogenicity, indicating that AGPS may be a potential therapeutic target for cancer. In this study, we have performed a small-molecule screen to identify candidate AGPS inhibitors. We have identified several lead AGPS inhibitors and have structurally characterized their interactions with the enzyme and show that these inhibitors bind to distinct portions of the active site. We further show that the lead AGPS inhibitor 1a selectively lowers ether lipid levels in several types of human cancer cells and impairs their cellular survival and migration. We provide here the first report of in situ-active pharmacological tools for inhibiting AGPS, which may provide chemical scaffolds for future AGPS inhibitor development for cancer therapy.

  16. Heritable and cancer risks of exposures to anticancer drugs: inter-species comparisons of covalent deoxyribonucleic acid-binding agents.

    PubMed

    Vogel, E W; Barbin, A; Nivard, M J; Stack, H F; Waters, M D; Lohman, P H

    1998-05-25

    In the past years, several methodologies were developed for potency ranking of genotoxic carcinogens and germ cell mutagens. In this paper, we analyzed six sub-classes of covalent deoxyribonucleic acid (DNA) binding antineoplastic drugs comprising a total of 37 chemicals and, in addition, four alkyl-epoxides, using four approaches for the ranking of genotoxic agents on a potency scale: the EPA/IARC genetic activity profile (GAP) database, the ICPEMC agent score system, and the analysis of qualitative and quantitative structure-activity and activity-activity relationships (SARs, AARs) between types of DNA modifications and genotoxic endpoints. Considerations of SARs and AARs focused entirely on in vivo data for mutagenicity in male germ cells (mouse, Drosophila), carcinogenicity (TD50s) and acute toxicity (LD50s) in rodents, whereas the former two approaches combined the entire database on in vivo and in vitro mutagenicity tests. The analysis shows that the understanding and prediction of rank positions of individual genotoxic agents requires information on their mechanism of action. Based on SARs and AARs, the covalent DNA binding antineoplastic drugs can be divided into three categories. Category 1 comprises mono-functional alkylating agents that primarily react with N7 and N3 moieties of purines in DNA. Efficient DNA repair is the major protective mechanism for their low and often not measurable genotoxic effects in repair-competent germ cells, and the need of high exposure doses for tumor induction in rodents. Due to cell type related differences in the efficiency of DNA repair, a strong target cell specificity in various species regarding the potency of these agents for adverse effects is found. Three of the four evaluation systems rank category 1 agents lower than those of the other two categories. Category 2 type mutagens produce O-alkyl adducts in DNA in addition to N-alkyl adducts. In general, certain O-alkyl DNA adducts appear to be slowly repaired, or

  17. Antinuclear antibodies with nucleosome-restricted specificity for targeted delivery of chemotherapeutic agents.

    PubMed

    Torchilin, Vladimir P

    2010-08-01

    Circulating antinuclear autoantibodies (ANAs) are well known to accompany various pathological conditions and can be artificially induced by immunization. Research and clinical data permit us to hypothesize a definite connection between cancer and ANAs. Based on the available data, my group's research suggested that exogenous ANAs may be used as anticancer therapeutics. Among these ANAs, nucleosome-specific ANAs may be particularly useful. Advances in cancer immunotherapy with monoclonal antibodies re-emphasized the role of humoral immunity in neoplasia control. The development of a universal antibody targeting diverse cancers is of clear importance. We showed that certain natural ANAs recognize the surface of numerous tumor cells but not normal cells via cell surface-bound nucleosomes originating from the apoptotically dying neighboring tumor cells, mediate antibody-dependent cellular cytotoxicity of tumor cells in vitro and inhibit the development of murine tumor in syngeneic mice. A single monoclonal antinuclear nucleosome-specific autoantibody, mAb 2C5, specifically recognizes multiple unrelated human tumor cell lines and accumulates at a high tumor-to-normal cell ratio in various human tumors in nude mice. Immunotherapy with mAb 2C5 resulted in significant suppression of the growth of several human tumors. In addition, mAb 2C5, when used in subtherapeutic quantities, can serve as a highly efficient specific ligand to target various drug- or diagnostic agent-loaded pharmaceutical nanocarriers, such as liposomes and polymeric micelles, to various tumors. Here, the data (accumulated predominantly in our laboratory over several years) on mAb 2C5-mediated tumor targeting of chemotherapeutic agents is reviewed.

  18. New Oily Agents for Targeting Chemoembolization for Hepatocellular Carcinoma

    SciTech Connect

    Hamuro, Masao; Nakamura, Kenji; Sakai, Yukimasa; Nakata, Manabu; Ichikawa, Hideki; Fukumori, Yoshinobu; Yamada, Ryusaku

    1999-03-15

    Purpose: The evaluation of new oily agents for targeting chemoembolization for hepatocellular carcinoma. Methods: Five types of oily preparation were injected into the hepatic artery of 54 rabbits inoculated with VX2 carcinoma cells in order to evaluate (1) the safety of these preparations, (2) their histologic distribution and the amount of agents remaining at tumor sites, and (3) computed tomographic (CT) images obtained. Of these preparations, three were made by mixing non-iodinated poppy seed oil and a thickener and then adjusted to have a viscosity lower than, equal to, or higher than that of lipiodol. A fourth preparation was a mixture of lipiodol and a thickener with a higher viscosity than lipiodol alone, and the fifth preparation was lipiodol alone. Results: (1) No injury to the hepatic parenchyma was observed hematologically or histologically. (2) With increase in the viscosity, a significantly larger amount of agent remained at the tumor site. No agent was present at normal sites 14 days after intraarterial injection, regardless of which preparation was given. (3) On CT scans following intraarterial injection, tumor cells were visibly deeply stained in the non-iodinated preparation groups, while the lipiodol groups were not evaluable because of excessively high attenuation. Conclusion: The non-iodinated oily preparations and highly viscous oily preparations developed in the present study were more useful than lipiodol for treatment of hepatic tumors.

  19. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer.

    PubMed

    Wu, Jianzhang; Wu, Shoubiao; Shi, Lingyi; Zhang, Shanshan; Ren, Jiye; Yao, Song; Yun, Di; Huang, Lili; Wang, Jiabing; Li, Wulan; Wu, Xiaoping; Qiu, Peihong; Liang, Guang

    2017-01-05

    The nuclear factor-kappa B (NF-κB) signaling pathway has been targeted for the therapy of various cancers, including lung cancer. EF24 was considered as a potent inhibitor of NF-κB signaling pathway. In this study, a series of asymmetric EF24 analogues were synthesized and evaluated for their anti-cancer activity against three lung cancer cell lines (A549, LLC, H1650). Most of the compounds exhibited good anti-tumor activity. Among them, compound 81 showed greater cytotoxicity than EF24. Compound 81 also possessed a potent anti-migration and anti-proliferative ability against A549 cells in a concentration-dependent manner. Moreover, compound 81 induced lung cancer cells death by inhibiting NF-κB signaling pathway, and activated the JNK-mitochondrial apoptotic pathway by increasing reactive oxygen species (ROS) generation resulting in apoptosis. In summary, compound 81 is a valuable candidate for anti-lung cancer therapy.

  20. Targeted Nanomedicine for Suppression of CD44 and Simultaneous Cell Death Induction in Ovarian Cancer: an Optimal Delivery of siRNA and Anticancer Drug

    PubMed Central

    Shah, Vatsal; Taratula, Oleh; Garbuzenko, Olga B.; Taratula, Olena R.; Rodriguez-Rodriguez, Lorna; Minko, Tamara

    2013-01-01

    Purpose: The proposed project is aimed at enhancing the efficiency of epithelial ovarian cancer treatment and reducing adverse side effects of chemotherapy using nanotechnology. Overexpression of the CD44 membrane receptor results in tumor initiation, growth, tumor stem cells specific behavior, development of drug resistance, and metastases. We hypothesize that a developed cancer targeted delivery system which combines CD44 siRNA with paclitaxel would successfully deliver its payload inside cancer cells, effectively induce cell death, and prevent metastases. Experimental Design: We synthesized, characterized, and tested a nanoscale-based drug delivery system containing a modified Polypropylenimine (PPI) dendrimer as a carrier; anticancer drug paclitaxel as a cell death inducer; a synthetic analog of luteinizing hormone-releasing hormone (LHRH) peptide as a tumor targeting moiety, and siRNA targeted to CD44 mRNA. The proposed NDDS was tested in vitro and in vivo using metastatic ovarian cancer cells isolated from patients with malignant ascites. Results: We found that in contrast to cells isolated from primary tumors, CD44 was highly overexpressed in metastatic cancer cells. Treatment with the proposed tumor-targeted nanoscale-based nucleic acid and drug delivery system led to the suppression of CD44 mRNA and protein, efficient induction of cell death, effective tumor shrinkage, and prevention of adverse side effects on healthy organs. Conclusion: We show a high therapeutic potential for combinatorial treatment of ovarian carcinoma with a novel drug delivery system that effectively transports siRNA targeting to CD44 mRNA simultaneously with cytotoxic agents. PMID:24036854

  1. Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine.

    PubMed

    Liu, Jubo; Xiao, Yuehua; Allen, Christine

    2004-01-01

    To establish a method for predicting polymer-drug compatibility as a means to guide formulation development, we carried out physicochemical analyses of polymer-drug pairs and compared the difference in total and partial solubility parameters of polymer and drug. For these studies, we employed a range of biodegradable polymers and the anticancer agent Ellipticine as the model drug. The partial and total solubility parameters for the polymer and drug were calculated using the group contribution method. Drug-polymer pairs with different enthalpy of mixing values were analyzed by physicochemical techniques including X-ray diffraction and Fourier transform infrared. Polymers identified to be compatible [i.e., polycaprolactone (PCL) and poly-beta-benzyl-L-aspartate (PBLA)] and incompatible [i.e., poly (d,l-lactide (PLA)], by the above mentioned methods, were used to formulate Ellipticine. Specifically, Ellipticine was loaded into PBLA, PCL, and PLA films using a solvent casting method to produce a local drug formulation; while, polyethylene oxide (PEO)-b-polycaprolactone (PCL) and PEO-b-poly (d,l-lactide) (PLA) copolymer micelles were prepared by both dialysis and dry down methods resulting in a formulation for systemic administration. The drug release profiles for all formulations and the drug loading efficiency for the micelle formulations were also measured. In this way, we compared formulation characteristics with predictions from physicochemical analyses and comparison of total and partial solubility parameters. Overall, a good correlation was obtained between drug formulation characteristics and findings from our polymer-drug compatibility studies. Further optimization of the PEO-b-PCL micelle formulation for Ellipticine was also performed.

  2. Mechanism of Degradation of an α-Keto-Epoxide, a Model for the Warhead for Various Proteasome Inhibitor Anticancer Agents.

    PubMed

    Phizackerley, Kirsten M; Jumaa, Mouhannad; Lopalco, Antonio; Wolfe, Bradley H; Ablan, Christopher D; Stella, Valentino J

    2016-12-20

    The anticancer agent, carfilzomib, has a unique α-keto-epoxide warhead. The model α-keto-epoxide, N-((S)-1-((R)-2-methyloxiran-2-yl)-1-oxo-3-phenylpropan-2-yl)pivalamide (1), along with a few of its degradation products was synthesized and studied. The kinetics of hydrolysis and identification of some of the degradation products of 1 were performed at pH values 2, 4, 5, 7, and 8 at 25°C, 40°C, and 60°C and followed by HPLC and liquid chromatography-mass spectroscopy, respectively. 1 degraded independent of pH between pH values 4-7 but showed some acid catalysis at pH 2 and base catalysis at pH 8. Energy of activation, Ea, values progressed from 16.8 ± 0.1 at pH 2 to 20.3 ± 0.1 kcal/mole at pH 8. The major initial degradation products in the pH range 4-5 were the S,R diol (hydrolysis of the epoxide), and S,R chlorohydrin (in the presence of chloride ions). At pH 7-8, the major products were the R,R diastereomer and the S,R and R,R diols. At pH 2, additional unidentified products were seen with relative retention times of 0.28, 0.30, 0.33, and 0.35 and masses equivalent to the diols. The study of 1 provides insight into the degradation of future drugs that use an α-keto-epoxide functional group.

  3. Level of Serum Enzymes and Electrocardiogram in Healthy Rabbits after Injection of ICD-85 as an Anticancer Agent

    PubMed Central

    Zare Mirakabadi, Abbas; Sarzaeem, Ali

    2015-01-01

    Background: Our previous in vivo studies confirmed that ICD-85, as an anticancer agent, was able to prevent further growth of breast tumors and expand the life expectancy of mice with breast cancer. Methods: Blood collection was carried out before, 1, 3, and 6 hours after ICD-85 injection. Sera were used to determinate the cardio and hepatic enzymes levels, including ALT, AST, LDH, CPK, and Ck-MB. Coagulation factors such as PT and PTT were also assayed. ECGs of all rabbits were recorded during the experiment. Results: ECG results showed that the injection of 50 and 100 µg/kg ICD-85 into healthy rabbits has no significant effect on heart function while the injection of 150 to 200 µg/kg ICD-85 caused ECG wave changes and mild bradycardia without toxic effects on heart. After ICD-85 injection (concentrations below 100 µg/kg), no significant increase was observed in liver and cardiac enzymes (ALT, AST, LDH, CPK, and CK-MB). However, the concentration of 150 µg/kg and above caused a rise in the enzymes. Comparison of the PT and PTT before and after ICD-85 injection showed no significant clotting time at any concentrations below 200 µg/kg. Conclusion: Based on the results obtained in the present study as well as our previous reports, ICD-85 at concentrations below 100 µg/kg seems to have no significant effect on the serum enzymes as indicators of hepatotoxicity and cardiotoxicity in healthy rabbits. However, to confirm this conclusion, more detailed surveys on heart and liver is needed to be carried out. PMID:26239313

  4. Exogenous agents that target transmembrane domains of proteins.

    PubMed

    Yin, Hang

    2008-01-01

    Although membrane proteins account for approximately one third of all proteins encoded in the human genome, the functions and structures of their transmembrane domains are much less understood than the water-soluble regions. A major hurdle in studying these transmembrane domains is the lack of appropriate exogenous agents that can be used as specific probes. Despite the daunting challenges, major strides have recently been made in targeting the transmembrane domains of a variety of membrane proteins. High affinity and selectivity have been achieved in model biophysical systems, membranes of bacteria, and mammalian cells.

  5. Synthesis and anti-cancer screening of novel heterocyclic-(2H)-1,2,3-triazoles as potential anti-cancer agents

    PubMed Central

    Penthala, Narsimha Reddy; Madhukuri, Leena; Thakkar, Shraddha; Madadi, Nikhil Reddy; Lamture, Gauri; Eoff, Robert L.; Crooks, Peter A.

    2015-01-01

    trans-Cyanocombretastatin A-4 (trans-CA-4) analogues have been structurally modified to afford their more stable CA-4-(2H)-1,2,3-triazole analogues. Fifteen novel, stable 4-heteroaryl-5-aryl-(2H)-1,2,3-triazole CA-4 analogues (8a–i, 9 and 11a–e) were evaluated for anti-cancer activity against a panel of 60 human cancer cell lines. These analogues displayed potent cytotoxic activity against both hematological and solid tumor cell lines with GI50 values in the low nanomolar range. The most potent compound, 8a, was a benzothiophen-2-yl analogue that incorporated a 3,4,5-trimethoxyphenyl moiety connected to the (2H)-1,2,3-triazole ring system. Compound 8a exhibited GI50 values of <10 nM against 80% of the cancer cell lines in the panel. Three triazole analogues, 8a, 8b and 8g, showed particularly potent growth inhibition against the triple negative Hs578T breast cancer cell line with GI50 values of 10.3 nM, 66.5 nM and 20.3 nM, respectively. Molecular docking studies suggest that these compounds bind to the same hydrophobic pocket at the interface of α- and β-tubulin that is occupied by colchicine and cis-CA-4, and are stabilized by Van der Waals’ interactions with surrounding amino acid residues. Compound 8a was found to inhibit tubulin polymerization in vitro with an IC50 value of 1.7 µM. The potent cytotoxicity of these novel compounds and their inhibition of tubulin dynamics make these triazole analogues promising candidates for development as anti-cancer drugs. PMID:27066215

  6. An enzoinformatics study targeting polo-like kinases-1 enzyme: Comparative assessment of anticancer potential of compounds isolated from leaves of Ageratum houstonianum

    PubMed Central

    Rizvi, Syed Mohd. Danish; Shakil, Shazi; Zeeshan, Mohd.; Khan, Mohd. Sajid; Shaikh, Sibhghatulla; Biswas, Deboshree; Ahmad, Adnan; Kamal, Mohammad Amjad

    2014-01-01

    Natural products from plant sources, embracing inherently ample structural diversity than synthetic ones are the major sources of anticancer agents and will constantly play as protagonists for discovering new drugs. Polo-like kinases (PLKs) play a leading role in the ordered execution of mitotic events and 4 mammalian PLK family members have been identified. PLK1 is an attractive target for anticancer drugs in mammalian cells, among the four members of PLKs. The present study expresses the molecular interaction of compounds (1,2-Benzenedicarboxylic acid bis (2 ethylhexyl) ester, squalene, 3,5-bis (1,1-dimethylethyl) phenol, Pentamethyl tetrahydro-5H-chromene, (1,4-Cyclohexylphenyl) ethanone and 6-Vinyl-7-methoxy-2,2-dimethylchromene) isolated from methanolic extract of leaves of Ageratum houstonianum with PLK1 enzyme. Docking between PLK1 and each of these compounds (separately) was performed using “Auto dock 4.2.” (1,4-Cyclohexylphenyl) ethanone showed the maximum potential as a promising inhibitor of PLK1 enzyme with reference to ∆G (−6.84 kcal/mol) and Ki (9.77 μM) values. This was sequentially followed by Pentamethyl tetrahydro-5H-chromene (∆G = −6.60 kcal/mol; Ki = 14.58 μM), squalene (∆G = −6.17 kcal/mol; Ki = 30.12 μM), 6-Vinyl-7-methoxy-2,2-dimethylchromene (∆G = −5.91 kcal/mol; Ki = 46.68 μM), 3, 5-bis (1,1-dimethylethyl) phenol (∆G = −5.70 kcal/mol; Ki = 66.68 μM) and 1,2-Benzenedicarboxylic acid bis (2 ethylhexyl) ester (∆G = −5.58 kcal/mol; Ki = 80.80 μM). These results suggest that (1,4-Cyclohexylphenyl) ethanone might be a potent PLK1 inhibitor. Further, in vitro and in vivo rumination are warranted to validate the anticancer potential of (1,4-Cyclohexylphenyl) ethanone. PMID:24914294

  7. Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent

    PubMed Central

    Keswani, Rahul K.; Tian, Chao; Peryea, Tyler; Girish, Gandikota; Wang, Xueding; Rosania, Gus R.

    2016-01-01

    Photoacoustic Tomography (PAT) is a deep-tissue imaging modality, with potential clinical applications in the diagnosis of arthritis, cancer and other disease conditions. Here, we identified Clofazimine (CFZ), a red-pigmented dye and anti-inflammatory FDA-approved drug, as a macrophage-targeting photoacoustic (PA) imaging agent. Spectroscopic experiments revealed that CFZ and its various protonated forms yielded optimal PAT signals at wavelengths −450 to 540 nm. CFZ’s macrophage-targeting chemical and structural forms were detected with PA microscopy at a high contrast-to-noise ratio (CNR > 22 dB) as well as with macroscopic imaging using synthetic gelatin phantoms. In vivo, natural and synthetic CFZ formulations also demonstrated significant anti-inflammatory activity. Finally, the injection of CFZ was monitored via a real-time ultrasound-photoacoustic (US-PA) dual imaging system in a live animal and clinically relevant human hand model. These results demonstrate an anti-inflammatory drug repurposing strategy, while identifying a new PA contrast agent with potential applications in the diagnosis and treatment of arthritis. PMID:27000434

  8. The biology of the combretastatins as tumour vascular targeting agents

    PubMed Central

    TOZER, GILLIAN M; KANTHOU, CHRYSO; PARKINS, CHARLES S; HILL, SALLY A

    2002-01-01

    The tumour vasculature is an attractive target for therapy. Combretastatin A-4 (CA-4) and A-1 (CA-1) are tubulin binding agents, structurally related to colchicine, which induce vascular-mediated tumour necrosis in animal models. CA-1 and CA-4 were isolated from the African bush willow, Combretum caffrum, and several synthetic analogues are also now available, such as the Aventis Pharma compound, AVE8062. More soluble, phosphated, forms of CA-4 (CA-4-P) and CA-1 (CA-1-P) are commonly used for in vitro and in vivo studies. These are cleaved to the natural forms by endogenous phosphatases and are taken up into cells. The lead compound, CA-4-P, is currently in clinical trial as a tumour vascular targeting agent. In animal models, CA-4-P causes a prolonged and extensive shut-down of blood flow in established tumour blood vessels, with much less effect in normal tissues. This paper reviews the current understanding of the mechanism of action of the combretastatins and their therapeutic potential. PMID:12059907

  9. A PSMA-targeted theranostic agent for photodynamic therapy.

    PubMed

    Chen, Ying; Chatterjee, Samit; Lisok, Ala; Minn, Il; Pullambhatla, Mrudula; Wharram, Bryan; Wang, Yuchuan; Jin, Jiefu; Bhujwalla, Zaver M; Nimmagadda, Sridhar; Mease, Ronnie C; Pomper, Martin G

    2017-02-01

    Prostate-specific membrane antigen (PSMA) is over-expressed in the epithelium of prostate cancer and in the neovasculature of many non-prostate solid tumors. PSMA has been increasingly used as a target for cancer imaging and therapy. Here we describe a low-molecular-weight theranostic photosensitizer, YC-9, for PSMA-targeted optical imaging and photodynamic therapy (PDT). YC-9 was synthesized by conjugating IRDye700DX N-hydroxysuccinimide (NHS) ester with a PSMA targeting Lys-Glu urea through a lysine-suberate linker in suitable yield. Optical imaging in vivo demonstrated PSMA-specific tumor uptake of YC-9 with rapid clearance from non-target tissues. PSMA-specific cell kill was demonstrated with YC-9in vitro through PDT in PSMA(+) PC3-PIP and PSMA(-) PC3-flu cells. In vivo PDT in mice bearing PSMA(+) PC3-PIP tumors at 4h post-injection of YC-9 (A total of four PDT sessions were performed, 48h apart) resulted in significant tumor growth delay, while tumors in control groups continued to grow. PDT with YC-9 significantly increased the median survival of the PSMA(+) PC3-PIP tumor mice (56.5days) compared to control groups [23.5-30.0days, including untreated, light alone, YC-9 alone (without light) and non-targeted IRDye700DX PDT treatment groups], without noticeable toxicity at the doses used. This study proves in principle that YC-9 is a promising therapeutic agent for targeted PDT of PSMA-expressing tissues, such as prostate tumors, and may also be useful against non-prostate tumors by virtue of neovascular PSMA expression.

  10. Target-specific contrast agents for magnetic resonance microscopy.

    PubMed

    Blackwell, Megan L; Farrar, Christian T; Fischl, Bruce; Rosen, Bruce R

    2009-06-01

    High-resolution ex vivo magnetic resonance (MR) imaging can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. To aid MR sensitivity to cell density and myelination, we have begun the development of target-specific paramagnetic contrast agents. This work details the first application of luxol fast blue (LFB), an optical stain for myelin, as a white matter-selective MR contrast agent for human ex vivo brain tissue. Formalin-fixed human visual cortex was imaged with an isotropic resolution between 80 and 150 microm at 4.7 and 14 T before and after en bloc staining with LFB. Longitudinal (R1) and transverse (R2) relaxation rates in LFB-stained tissue increased proportionally with myelination at both field strengths. Changes in R1 resulted in larger contrast-to-noise ratios (CNR), per unit time, on T1-weighted images between more myelinated cortical layers (IV-VI) and adjacent, superficial layers (I-III) at both field strengths. Specifically, CNR for LFB-treated samples increased by 229 +/- 13% at 4.7 T and 269 +/- 25% at 14 T when compared to controls. Also, additional cortical layers (IVca, IVd, and Va) were resolvable in 14 T-MR images of LFB-treated samples but not in control samples. After imaging, samples were sliced in 40-micron sections, mounted, and photographed. Both the macroscopic and microscopic distributions of LFB were found to mimic those of traditional histological preparations. Our results suggest target-specific contrast agents will enable more detailed MR images with applications in imaging pathological ex vivo samples and constructing better MR atlases from ex vivo brains.

  11. A combined DNA-affinic molecule and N-mustard alkylating agent has an anti-cancer effect and induces autophagy in oral cancer cells.

    PubMed

    Lo, Wen-Liang; Chu, Pen-Yuan; Lee, Tsung-Heng; Su, Tsann-Long; Chien, Yueh; Chen, Yi-Wei; Huang, Pin-I; Tseng, Ling-Ming; Tu, Pang-Hsien; Kao, Shou-Yen; Lo, Jeng-Fan

    2012-01-01

    Although surgery or the combination of chemotherapy and radiation are reported to improve the quality of life and reduce symptoms in patients with oral cancer, the prognosis of oral cancer remains generally poor. DNA alkylating agents, such as N-mustard, play an important role in cancer drug development. BO-1051 is a new 9-anilinoacridine N-mustard-derivative anti-cancer drug that can effectively target a variety of cancer cell lines and inhibit tumorigenesis in vivo. However, the underlying mechanism of BO-1051-mediated tumor suppression remains undetermined. In the present study, BO-1051 suppressed cell viability with a low IC(50) in oral cancer cells, but not in normal gingival fibroblasts. Cell cycle analysis revealed that the tumor suppression by BO-1051 was accompanied by cell cycle arrest and downregulation of stemness genes. The enhanced conversion of LC3-I to LC3-II and the formation of acidic vesicular organelles indicated that BO-1501 induced autophagy. The expression of checkpoint kinases was upregulated as demonstrated with Western blot analysis, showing that BO-1051 could induce DNA damage and participate in DNA repair mechanisms. Furthermore, BO-1051 treatment alone exhibited a moderate tumor suppressive effect against xenograft tumor growth in immunocompromised mice. Importantly, the combination of BO-1051 and radiation led to a potent inhibition on xenograft tumorigenesis. Collectively, our findings demonstrated that BO-1051 exhibited a cytotoxic effect via cell cycle arrest and the induction of autophagy. Thus, the combination of BO-1051 and radiotherapy may be a feasible therapeutic strategy against oral cancer in the future.

  12. Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases.

    PubMed

    Zhao, Chong; Chen, Xin; Yang, Changshan; Zang, Dan; Lan, Xiaoying; Liao, Siyan; Zhang, Peiquan; Wu, Jinjie; Li, Xiaofen; Liu, Ningning; Liao, Yuning; Huang, Hongbiao; Shi, Xianping; Jiang, Lili; Liu, Xiuhua; Dou, Q Ping; Wang, Xuejun; Liu, Jinbao

    2017-01-10

    The ubiquitin-proteasome system (UPS) plays a central role in various cellular processes through selectively degrading proteins involved in critical cellular functions. Targeting UPS has been validated as a novel strategy for treating human cancer, as inhibitors of the 20S proteasome catalytic activity are currently in clinical use for treatment of multiple myeloma and other cancers, and the deubiquitinase activity associated with the proteasome is also a valid target for anticancer agents. Recent studies suggested that zinc pyrithione, an FDA-approved antidandruff agent, may have antitumor activity, but the detailed molecular mechanisms remain unclear. Here we report that zinc pyrithione (ZnPT) targets the proteasome-associated DUBs (USP14 and UCHL5) and inhibits their activities, resulting in a rapid accumulation of protein-ubiquitin conjugates, but without inhibiting the proteolytic activities of 20S proteasomes. Furthermore, ZnPT exhibits cytotoxic effects against various cancer cell lines in vitro, selectively kills bone marrow cells from leukemia patients ex vivo, and efficiently inhibits the growth of lung adenocarcinoma cancer cell xenografts in nude mice. This study has identified zinc pyrithione, an FDA-approved pharmacological agent with potential antitumor properties as a proteasomal DUB inhibitor.

  13. Targeting HER2 Positive Breast Cancer with Chemopreventive Agents

    PubMed Central

    Wahler, Joseph; Suh, Nanjoo

    2015-01-01

    Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is a subtype of breast cancer that is exhibited in approximately 20-30% of breast cancer cases. The overexpression of HER2 is typically associated with a more aggressive disease and poor prognosis. Currently, the therapeutic drugs trastuzumab and lapatinib are the most commonly used to combat HER2+ breast cancer. However, tumors can develop resistance to these drugs. A better understanding of the mechanism of how HER2+ breast cancer works will help aid the development for new therapeutic approaches which more closely target the source of the signaling dysfunction. This review summarizes four major points in the context of HER2 over-expressing breast cancer (i) HER2 as a molecular target in breast cancer therapy, (ii) current treatment options as well as ongoing clinical studies, (iii) animal and cellular models for the study of HER2 over-expressing breast cancer, and (iv) future therapies and chemopreventive agents used to target HER2+ breast cancer. PMID:26442201

  14. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs.

    PubMed

    Pommier, Yves; Leo, Elisabetta; Zhang, HongLiang; Marchand, Christophe

    2010-05-28

    DNA topoisomerases are the targets of important anticancer and antibacterial drugs. Camptothecins and novel noncamptothecins in clinical development (indenoisoquinolines and ARC-111) target eukaryotic type IB topoisomerases (Top1), whereas human type IIA topoisomerases (Top2alpha and Top2beta) are the targets of the widely used anticancer agents etoposide, anthracyclines (doxorubicin, daunorubicin), and mitoxantrone. Bacterial type II topoisomerases (gyrase and Topo IV) are the targets of quinolones and aminocoumarin antibiotics. This review focuses on the molecular and biochemical characteristics of topoisomerases and their inhibitors. We also discuss the common mechanism of action of topoisomerase poisons by interfacial inhibition and trapping of topoisomerase cleavage complexes.

  15. Design and synthesis of pyrazole-oxindole conjugates targeting tubulin polymerization as new anticancer agents.

    PubMed

    Kamal, Ahmed; Shaik, Anver Basha; Jain, Nishant; Kishor, Chandan; Nagabhushana, Ananthamurthy; Supriya, Bhukya; Bharath Kumar, G; Chourasiya, Sumit S; Suresh, Yerramsetty; Mishra, Rakesh K; Addlagatta, Anthony

    2015-03-06

    A series of twenty one compounds with pyrazole and oxindole conjugates were synthesized by Knoevenagel condensation and investigated for their antiproliferative activity on different human cancer cell lines. The conjugates are comprised of a four ring scaffold; the structural isomers 12b and 12c possess chloro-substitution in the D ring. Among the congeners 12b, 12c, and 12d manifested significant cytotoxicity and inhibited tubulin assembly. Treatments with 12b, 12c and 12d resulted in accumulation of cells in G2/M phase, disruption of microtubule network, and increase in cyclin B1 protein. Zebrafish screening revealed that 12b, and 12d caused developmental defects. Docking analysis demonstrated that the congeners occupy the colchicine binding pocket of tubulin.

  16. Beclin-1 and its role as a target for anticancer therapy.

    PubMed

    Toton, E; Lisiak, N; Sawicka, P; Rybczynska, M

    2014-08-01

    The Nomenclature Committee on Cell Death (NCCD, 2009) defines different types of cell death on the basis of morphological, enzymological, immunological and functional criteria. Four basic types of cell death are distinguished from the biochemical point of view: necrosis, apoptosis, autophagy and cornification. Autophagy (macroautophagy) is a highly conserved process by which defective organelles, non-functional proteins and lipids become sequestered within structures called autophagosomes, which fuse with lysosomes, and the engulfed components are then degraded by lysosomal enzymes. The role of autophagy is not only the elimination of components, it also serves as a dynamic recycling system that produces new materials and energy for cellular renovation and homeostasis. Beclin-1 is a protein that plays a central role in autophagy; it interacts with multiple cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, IP3R, PINK and survivin) to promote the formation of the Beclin-1-Vps34-Vps15 complex which triggers the autophagy protein cascade. Beclin-1 dysfunction may lead to immune disorders, liver and neurodegenerative diseases as well as cancer. A positive and negative correlation between the expression pattern and/or activity of Beclin-1 and carcinogenesis has been demonstrated. Here we describe recent advances in understanding the molecular dynamics and regulation of autophagy and we discuss Beclin-1's contribution to anticancer therapy.

  17. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies

    PubMed Central

    Pistritto, Giuseppa; Trisciuoglio, Daniela; Ceci, Claudia; Garufi, Alessia; D'Orazi, Gabriella

    2016-01-01

    Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed. PMID:27019364

  18. A novel anticancer therapy that simultaneously targets aberrant p53 and Notch activities in tumors.

    PubMed

    Yao, Yuting; Wang, Li; Zhang, He; Wang, Haibo; Zhao, Xiaoping; Zhang, Yidan; Zhang, Leilei; Fan, Xianqun; Qian, Guanxiang; Hu, Ji-Fan; Ge, Shengfang

    2012-01-01

    Notch signaling pathway plays an important role in tumorigenesis by maintaining the activity of self-renewal of cancer stem cells, and therefore, it is hypothesized that interference of Notch signaling may inhibit tumor formation and progression. H101 is a recombinant oncolytic adenovirus that is cytolytic in cells lacking intact p53, but it is unable to eradicate caner stem cells. In this study, we tested a new strategy of tumor gene therapy by combining a Notch1-siRNA with H101 oncolytic adenovirus. In HeLa-S3 tumor cells, the combined therapy blocked the Notch pathway and induced apoptosis in tumors that are p53-inactive. In nude mice bearing xenograft tumors derived from HeLa-S3 cells, the combination of H101/Notch1-siRNA therapies inhibited tumor growth. Moreover, Notch1-siRNA increased Hexon gene expression at both the transcriptional and the translational levels, and promoted H101 replication in tumors, thereby enhancing the oncolytic activity of H101. These data demonstrate the feasibility to combine H101 p53-targted oncolysis and anti-Notch siRNA activities as a novel anti-cancer therapy.

  19. Monoclonal antibodies: new agents for cancer detection and targeted therapy

    SciTech Connect

    Baldwin, R.W.; Byers, V.S. )

    1991-01-01

    Antibodies directed against markers on cancer cells are gaining in importance for the purpose of targeting diagnostic and therapeutic agents. In the past, this approach has had very limited success principally because the classical methods for producing antibodies from blood serum of animals immunized with cancer cells or extracts were unsatisfactory. The situation has changed dramatically since 1975 following the design of procedures for 'immortalizing' antibody-producing cells (lymphocytes) by fusing them with cultured myeloma cells to form hybridomas which continuously secrete antibodies. Since these hybridomas produce antibodies coded for by a single antibody-producing cell, the antibodies are called monoclonal. Building on these advances in biomedical research, it is now possible to reproducibly manufacture monoclonal antibodies on a scale suitable for use in cancer detection and therapy.

  20. Therapeutic potential of HMGB1-targeting agents in sepsis

    PubMed Central

    Wang, Haichao; Zhu, Shu; Zhou, Rongrong; Li, Wei; Sama, Andrew E.

    2008-01-01

    Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection. The inflammatory response is partly mediated by innate immune cells (such as macrophages, monocytes and neutrophils), which not only ingest and eliminate invading pathogens but also initiate an inflammatory response upon recognition of pathogen-associated molecular patterns (PAMPs). The prevailing theories of sepsis as a dysregulated inflammatory response, as manifested by excessive release of inflammatory mediators such as tumour necrosis factor and high-mobility group box 1 protein (HMGB1), are supported by extensive studies employing animal models of sepsis. Here we review emerging evidence that support extracellular HMGB1 as a late mediator of experimental sepsis, and discuss the therapeutic potential of several HMGB1-targeting agents (including neutralising antibodies and steroid-like tanshinones) in experimental sepsis. PMID:18980707

  1. Bacterial production and structure-functional validation of a recombinant antigen-binding fragment (Fab) of an anti-cancer therapeutic antibody targeting epidermal growth factor receptor.

    PubMed

    Kim, Ji-Hun; Sim, Dae-Won; Park, Dongsun; Jung, Tai-Geun; Lee, Seonghwan; Oh, Taeheun; Ha, Jong-Ryul; Seok, Seung-Hyeon; Seo, Min-Duk; Kang, Ho Chul; Kim, Young Pil; Won, Hyung-Sik

    2016-12-01

    Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.

  2. Mechanisms of action of DNA-damaging anticancer drugs in treatment of carcinomas: is acute apoptosis an "off-target" effect?

    PubMed

    Havelka, Aleksandra Mandic; Berndtsson, Maria; Olofsson, Maria Hägg; Shoshan, Maria C; Linder, Stig

    2007-10-01

    DNA damage induces apoptosis of cells of hematological origin. Apoptosis is also widely believed to be the major antiproliferative mechanism of DNA damaging anticancer drugs in other cell types, and a large number of laboratories have studied drug-induced acute apoptosis (within 24 hours) of carcinoma cells. It is, however, often overlooked that induction of apoptosis of carcinoma cells generally requires drug concentrations that are at least one order of magnitude higher than those required for loss of clonogenicity. This is true for different DNA damaging drugs such as cisplatin, doxorubicin and camptothecin. We here discuss apoptosis induction by DNA damaging agents using cisplatin as an example. Recent studies have shown that cisplatin induces caspase activation in enucleated cells (cytoplasts lacking a cell nucleus). Cisplatin-induced apoptosis in both cells and cytoplasts is associated with rapid induction of cellular reactive oxygen species and increases in [Ca(2+)](i). Cisplatin has also been reported to induce clustering of Fas/CD95 in the plasma membrane. Available data suggest that the primary responses to cisplatin-induced DNA damage are induction of long-term growth arrest ("premature cell senescence") and mitotic catastrophe, whereas acute apoptosis may be due to "off-target effects" not necessarily involving DNA damage.

  3. Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches.

    PubMed

    Jamal, Mohammad S; Parveen, Shadma; Beg, Mohd A; Suhail, Mohd; Chaudhary, Adeel G A; Damanhouri, Ghazi A; Abuzenadah, Adel M; Rehan, Mohd

    2014-01-01

    Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a naphthoquinone derivative from the roots of plant Plumbago zeylanica and belongs to one of the largest and diverse groups of plant metabolites. The anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin exerts inhibitory effects on multiple cancer-signaling proteins, however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. The present study is the first attempt to provide structural insights into the binding mode of plumbagin to five cancer signaling proteins viz. PI3Kγ, AKT1/PKBα, Bcl-2, NF-κB, and Stat3 using molecular docking and (un)binding simulation analysis. We validated plumbagin docking to these targets with previously known important residues. The study also identified and characterized various novel interacting residues of these targets which mediate the binding of plumbagin. Moreover, the exact modes of inhibition when multiple mode of inhibition existed was also shown. Results indicated that the engaging of these important interacting residues in plumbagin binding leads to inhibition of these cancer-signaling proteins which are key players in the pathogenesis of cancer and thereby ceases the progression of the disease.

  4. D-ring substituted 1,2,3-triazolyl 20-keto pregnenanes as potential anticancer agents: Synthesis and biological evaluation.

    PubMed

    Banday, Abid H; Shameem, Shameem A; Gupta, B D; Kumar, H M Sampath

    2010-12-01

    A facile synthesis of 21-triazolyl derivatives of pregnenolone and their potential antitumour activity is reported. The scheme involves the transformation of the starting pregnenolone acetate into pregnenolone, conversion of pregnenolone to 21-bromo pregnenolone and finally the one-pot, two-step in situ conversion of the bromo derivative to the 21-triazolyl pregnenolone using the 'click chemistry' approach. These derivatives were screened for their anticancer activity against seven human cancer cell lines. The compounds especially 5a, 5b, 5c, 5e, 5g and 5h exhibited significant anticancer activity with compound 5e as the most active in this study.

  5. Hyaluronic acid for anticancer drug and nucleic acid delivery.

    PubMed

    Dosio, Franco; Arpicco, Silvia; Stella, Barbara; Fattal, Elias

    2016-02-01

    Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.

  6. CancerHSP: anticancer herbs database of systems pharmacology

    NASA Astrophysics Data System (ADS)

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-01

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  7. CancerHSP: anticancer herbs database of systems pharmacology.

    PubMed

    Tao, Weiyang; Li, Bohui; Gao, Shuo; Bai, Yaofei; Shar, Piar Ali; Zhang, Wenjuan; Guo, Zihu; Sun, Ke; Fu, Yingxue; Huang, Chao; Zheng, Chunli; Mu, Jiexin; Pei, Tianli; Wang, Yuan; Li, Yan; Wang, Yonghua

    2015-06-15

    The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer agents. Here, to address these unmet needs, we developed an anticancer herbs database of systems pharmacology (CancerHSP), which records anticancer herbs related information through manual curation. Currently, CancerHSP contains 2439 anticancer herbal medicines with 3575 anticancer ingredients. For each ingredient, the molecular structure and nine key ADME parameters are provided. Moreover, we also provide the anticancer activities of these compounds based on 492 different cancer cell lines. Further, the protein targets of the compounds are predicted by state-of-art methods or collected from literatures. CancerHSP will help reveal the molecular mechanisms of natural anticancer products and accelerate anticancer drug development, especially facilitate future investigations on drug repositioning and drug discovery. CancerHSP is freely available on the web at http://lsp.nwsuaf.edu.cn/CancerHSP.php.

  8. Targeting the cell cycle in esophageal adenocarcinoma: an adjunct to anticancer treatment.

    PubMed

    Dibb, Martyn; Ang, Yeng S

    2011-04-28

    Esophageal adenocarcinoma is a major cause of cancer death in men in the developed world. Continuing poor outcomes with conventional therapies that predominantly target apoptosis pathways have lead to increasing interest in treatments that target the cell cycle. A large international effort has led to the development of a large number of inhibitors, which target cell cycle kinases, including cyclin-dependent kinases, Aurora kinases and polo-like kinase. Initial phase I/II trials in solid tumors have often demonstrated only modest clinical benefits of monotherapy. This may relate in part to a failure to identify the patient populations that will gain the most clinical benefit. Newer compounds lacking the side effect profile of first-generation compounds may show utility as adjunctive treatments targeted to an individual's predicted response to treatment.

  9. Targeting the cell cycle in esophageal adenocarcinoma: An adjunct to anticancer treatment

    PubMed Central

    Dibb, Martyn; Ang, Yeng S

    2011-01-01

    Esophageal adenocarcinoma is a major cause of cancer death in men in the developed world. Continuing poor outcomes with conventional therapies that predominantly target apoptosis pathways have lead to increasing interest in treatments that target the cell cycle. A large international effort has led to the development of a large number of inhibitors, which target cell cycle kinases, including cyclin-dependent kinases, Aurora kinases and polo-like kinase. Initial phase I/II trials in solid tumors have often demonstrated only modest clinical benefits of monotherapy. This may relate in part to a failure to identify the patient populations that will gain the most clinical benefit. Newer compounds lacking the side effect profile of first-generation compounds may show utility as adjunctive treatments targeted to an individual’s predicted response to treatment. PMID:21547123

  10. Targeting Mutant KRAS for Anticancer Therapeutics: A Review of Novel Small Molecule Modulators

    PubMed Central

    Wang, Yuanxiang; Kaiser, Christine E.; Frett, Brendan; Li, Hong-yu

    2015-01-01

    The RAS proteins play a role in cell differentiation, proliferation, and survival. Aberrant RAS signaling has been found to play a role in 30% of all cancers. KRAS, a key member of the RAS protein family, is an attractive cancer target, as frequent point mutations in the KRAS gene render the protein constitutively active. A number of attempts have been made to target aberrant KRAS signaling by identifying small molecule compounds that (1) are synthetic lethal to mutant KRAS, (2) block KRAS/GEF interactions, (3) inhibit downstream KRAS effectors, or (4) inhibit the post-translational processing of RAS proteins. In addition, inhibition of novel targets outside the main KRAS signaling pathway, specifically the cell cycle related kinase PLK1, has been shown have an effect in cells that harbor mutant KRAS. Herein we review the use of various high-throughput screening assays utilized to identify new small-molecule compounds capable of targeting mutant KRAS-driven cancers. PMID:23566315

  11. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles.

    PubMed

    Kouchakzadeh, Hasan; Safavi, Maryam Sadat; Shojaosadati, Seyed Abbas

    2015-01-01

    Albumin nanoparticles are one of the most important drug carriers for the delivery of therapeutic drugs, especially for the treatment of malignancies. This potential is due to their high binding capacity for both hydrophobic and hydrophilic drugs and the possibility of surface modification. Accumulation of albumin-bound drugs in the tumor interstitium occurs by the enhanced permeability and retention effect, which is also facilitated by the 60-kDa glycoprotein transcytosis pathway and binding to secreted protein, acidic and rich in cysteine located in the tumor extracellular matrix. In addition, specific ligands such as monoclonal antibodies, folic acid, transferrin, and peptides can be conjugated to the surface of albumin nanoparticles to actively target the drug to its site of action. The albumin-bound paclitaxel, Abraxane, is one of the several therapeutic nanocarriers that have been approved for clinical use. By the development of Abraxane that demonstrates a higher response rate and improved tolerability and therapeutic efficiency in comparison with solvent-based formulation, and with consideration of its commercial success, albumin is attracting the interest of many biotechnological and pharmaceutical companies. This chapter explores the current targeted and nontargeted albumin-based nanoparticles that are in various stages of development for the delivery of therapeutic agents in order to enhance the efficacy of cancer treatment.

  12. Anti-cancer agents based on 4-(hetero)Ary1-1,2,5-oxadiazol-3-yl Amino derivatives and a method of making

    DOEpatents

    Gakh, Andrei A.; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A.; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V.

    2013-01-29

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. ##STR00001## In particular, the invention relates N-substituted derivatives of 4-(hetero)aryl-1,2,5-oxadiazol-3-yl amines having the structural Formula (I) and (II), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. Meaning of R1 and R2 in the Formula (I) and (II) are defined in claim 1. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  13. A novel class of ethacrynic acid derivatives as promising drug-like potent generation of anticancer agents with established mechanism of action.

    PubMed

    Mignani, Serge; El Brahmi, Nabil; El Kazzouli, Saïd; Eloy, Laure; Courilleau, Delphine; Caron, Joachim; Bousmina, Mosto M; Caminade, Anne-Marie; Cresteil, Thierry; Majoral, Jean-Pierre

    2016-10-21

    The well-known diuretic Ethacrynic acid (EA, Edecrin), showing low anti-proliferative activities, was chemically modified at different positions. The new EA derivatives have been tested in vitro in anti-proliferative assays on both tumor KB (epidermal carcinoma) and leukemia HL60 (promyelocytic) cells suitable targets for anticancer activity. Reduction of the α-β double bond of EA completely abolished anti-cancer activities, whereas introduction of either 2-(4-substituted phenyl)ethanamine (series A) or 4-(4-substituted phenyl)piperazine (series B) moieties generated compounds showing moderate to strong anti-proliferative activities against human cancer cell lines. Several substitutions on the phenyl of these two moieties are tolerated. The mechanism of action of the EA derivatives prepared in this study is more complex than the inhibition of glutathione S-transferase π ascribed as unique effect to EA and might help to overcome tumor resistances.

  14. Novel quinolone substituted thiazolidin-4-ones as anti-inflammatory, anticancer agents: design, synthesis and biological screening.

    PubMed

    Suthar, Sharad Kumar; Jaiswal, Varun; Lohan, Sandeep; Bansal, Sumit; Chaudhary, Anil; Tiwari, Amit; Alex, Angel Treasa; Joesph, Alex

    2013-05-01

    Nuclear factor-kappaB (NF-κB) has been reported to regulate various genes involved in cancer and inflammation. Accordingly, drugs suppressing or inhibiting NF-κB may possess both anti-inflammatory and anticancer properties. A library of quinolone substituted thiazolidin-4-ones was docked into the active site of NF-κB and the top-ranked 31 compounds were synthesized and evaluated for anti-inflammatory and anticancer activity. The best-ranked compound 6b showed highest anti-inflammatory activity in carrageenan-induced paw edema model. In vitro anticancer studies revealed 1a and 16a as most active compounds against BT-549, HeLa, COLO-205 and ACHN human cancer cell lines. Compounds 1a and 16a exhibited NF-κB dependent anticancer properties and apoptosis mediated cell death. In vivo Ehrlich ascites carcinoma study further confirmed the antitumor activity of 1a and 16a.

  15. Synthesis and evaluation of multi-wall carbon nanotube–paclitaxel complex as an anti-cancer agent

    PubMed Central

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    Aim: The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Background: Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. Patients and methods: In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. Results: A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. Conclusion: According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport. PMID:27458512

  16. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  17. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach

    PubMed Central

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zet