Sample records for antidiabetic compound isolated

  1. Enzymes inhibition and antidiabetic effect of isolated constituents from Dillenia indica.

    PubMed

    Kumar, Sunil; Kumar, Vipin; Prakash, Om

    2013-01-01

    This study was designed to investigate the enzyme inhibitory and antidiabetic activity for the constituents isolated from Dillenia indica. The leaves of D. indica were extracted with methanol and subjected to fractionation and chromatographic separation, which led to the isolation of seven compounds: betulinic acid (1), n-heptacosan-7-one (2), n-nonatriacontan-18-one (3), quercetin (4), β sitosterol (5), stigmasterol (6), and stigmasteryl palmitate (7). Among these isolates, compounds 1, 4, 5, and 6 were evaluated for in vitro enzyme inhibition and compounds 4, 5 and 6 were evaluated for antidiabetic activity in streptozotocin-nicotinamide induced diabetic mice. Compounds 1, 4, 5, and 6 showed 47.4, 55.2, 48.8, and 44.3% α -amylase inhibition, respectively, and 52.2, 78.2, 52.5, and 34.2% α -glucosidase inhibition, respectively, at the dose of 50 µg/kg. Compounds 4, 5 and 6 also showed significant (∗P < 0.05) antidiabetic activity in streptozotocin-nicotinamide induced diabetic mice at the dose of 10 mg/kg. These results provide evidence that Dillenia indica might be a potential source of antidiabetic agents.

  2. Enzymes Inhibition and Antidiabetic Effect of Isolated Constituents from Dillenia indica

    PubMed Central

    Kumar, Sunil; Kumar, Vipin; Prakash, Om

    2013-01-01

    Aims. This study was designed to investigate the enzyme inhibitory and antidiabetic activity for the constituents isolated from Dillenia indica. Methods. The leaves of D. indica were extracted with methanol and subjected to fractionation and chromatographic separation, which led to the isolation of seven compounds: betulinic acid (1), n-heptacosan-7-one (2), n-nonatriacontan-18-one (3), quercetin (4), β sitosterol (5), stigmasterol (6), and stigmasteryl palmitate (7). Among these isolates, compounds 1, 4, 5, and 6 were evaluated for in vitro enzyme inhibition and compounds 4, 5 and 6 were evaluated for antidiabetic activity in streptozotocin-nicotinamide induced diabetic mice. Results. Compounds 1, 4, 5, and 6 showed 47.4, 55.2, 48.8, and 44.3% α-amylase inhibition, respectively, and 52.2, 78.2, 52.5, and 34.2% α-glucosidase inhibition, respectively, at the dose of 50 µg/kg. Compounds 4, 5 and 6 also showed significant (∗P < 0.05) antidiabetic activity in streptozotocin-nicotinamide induced diabetic mice at the dose of 10 mg/kg. Conclusion. These results provide evidence that Dillenia indica might be a potential source of antidiabetic agents. PMID:24307994

  3. Momordica charantia constituents and antidiabetic screening of the isolated major compounds.

    PubMed

    Harinantenaina, Liva; Tanaka, Michi; Takaoka, Shigeru; Oda, Munehiro; Mogami, Orie; Uchida, Masayuki; Asakawa, Yoshinori

    2006-07-01

    Bioguided fractionation of the methanol extract of Momordica charantia dried gourds led to the isolation of three new cucurbitane triterpenoids (1-3), together with eight known compounds (4-11). The aglycone of momordicoside I was isolated from the ether soluble fraction in a high amount. The structures of the metabolites were established on the basis of one and two dimensional NMR spectroscopic evidence, X-ray analysis, and comparison with the reported data in the literature. A number of phytochemicals have been isolated from Momordica charantia but the constituents responsible for the hypoglycaemic/antihyperglycaemic activities have not been determined. Therefore, in order to evaluate the contribution of the cucurbitane triterpenoids of the ether fraction of M. charantia methanol extract to in vivo anti-diabetic effects, the major compounds, 5beta,19-epoxy-3beta,25-dihydroxycucurbita-6,23(E)-diene (4), and 3beta,7beta,25-trihydroxycucurbita-5,23(E)-dien-19-al (5) have been tested and have shown blood hypoglycaemic effects in the diabetes-induced male ddY mice strain at 400 mg/kg. The two aglycones of charantin did not show any hypoglycaemic effects. Our finding is the first demonstration that major pure cucurbutanoid compounds of M. charantia have in vivo hypoglycaemic effects.

  4. Bioactivity-Guided Isolation of Potential Antidiabetic and Antihyperlipidemic Compounds from Trigonella stellata.

    PubMed

    Shams Eldin, Safa M; Radwan, Mohamed M; Wanas, Amira S; Habib, Abdel-Azim M; Kassem, Fahima F; Hammoda, Hala M; Khan, Shabana I; Klein, Michael L; Elokely, Khaled M; ElSohly, Mahmoud A

    2018-05-25

    The in vitro antidiabetic and antihyperlipidemic activities of an alcoholic extract of Trigonella stellata were evaluated in terms of the activation of PPAR α and PPAR γ in human hepatoma (HepG2) cells. The extract was investigated phytochemically, aiming at the isolation of the most active compounds to be used as a platform for drug discovery. Three new isoflavans, (3 S,4 R)-4,2',4'-trihydroxy)-7-methoxyisoflavan (1), (3 R,4 S)-4,2',4'-trihydroxy-7-methoxy-4'- O-β-d-glucopyranosylisoflavan (2), and (2 S,3 R,4 R)-4,2',4'-trihydroxy-2,7-dimethoxyisoflavan (3), were isolated and characterized along with the five known compounds p-hydroxybenzoic acid (4), 7,4'-dihydroxyflavone (5), dihydromelilotoside (6), quercetin-3,7- O-α-l-dirhamnoside (7), and soyasaponin I (8). The structures of 1-3 were elucidated using various spectroscopic techniques including HRESIMS and 1D and 2D NMR. The absolute stereochemistry of the new isoflavans (1-3) was determined using both experimental and calculated electronic circular dichroism as well as DP4 calculations. The isolated compounds were tested for their PPAR α and PPAR γ activation effects in HepG2 cells.

  5. Marine Algae As A Prospective Source For Antidiabetic Compounds - A Brief Review.

    PubMed

    Unnikrishnan, Pulikkaparambil Sasidharan; Jayasri, Mangalam Achuthananda

    2018-01-01

    Diabetes Mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed to several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Anti-diabetic properties of flavonoid compounds isolated from Hyphaene thebaica epicarp on alloxan induced diabetic rats

    PubMed Central

    Salib, Josline Y.; Michael, Helana N.; Eskande, Emad Fawzy

    2013-01-01

    Background: Diabetes mellitus, becoming the third killer of mankind after cancer and cardiovascular diseases, is one of the most challenging diseases facing health care professionals today. That is why; there has been a growing interest in the therapeutic use of natural products for diabetes, especially those derived from plants. Aim: To evaluate the anti-diabetic activity together with the accompanying biological effects of the fractions and the new natural compounds of Hyphaene thebaica (HT) epicarp. Materials and Methods: 500 g of coarsely powdered of (HT) fruits epicarp were extracted by acetone. The acetone crude extract was fractionated with methanol and ethyl acetate leaving a residual water-soluble fraction WF. The anti-diabetic effects of the WF and one of its compounds of the acetone extract of the (HT) epicarp were investigated in this study using 40 adult male rats. Results: Phytochemical investigation of active WF revealed the presence of ten different flavonoids, among which two new natural compounds luteolin 7-O-[6”-O-α-Lrhamnopyranosyl]-β-D-galactopyranoside 3 and chrysoeriol 7-O-β-D-galactopyranosyl(1→2)-α-L-arabinofuranoside 5 were isolated. Supplementation of the WF improved glucose and insulin tolerance and significantly lowered blood glycosylated hemoglobin levels. On the other hand, compound 5 significantly reduced AST and ALT levels of liver, respectively. Likewise, the kidney functions were improved for both WF and compound 5, whereby both urea and creatinine levels in serum were highly significant Conclusion: The results justify the use of WF and compound 5 of the (HT) epicarp as anti-diabetic agent, taking into consideration that the contents of WF were mainly flavonoids PMID:23598921

  7. Fermentation, Isolation, Structure, and antidiabetic activity of NFAT-133 produced by Streptomyces strain PM0324667

    PubMed Central

    2011-01-01

    Type-2 diabetes is mediated by defects in either insulin secretion or insulin action. In an effort to identify extracts that may stimulate glucose uptake, similar to insulin, a high throughput-screening assay for measuring glucose uptake in skeletal muscle cells was established. During the screening studies to discover novel antidiabetic compounds from microbial resources a Streptomyces strain PM0324667 (MTCC 5543, the Strain accession number at Institute of Microbial Technology, Chandigarh, India), an isolate from arid soil was identified which expressed a secondary metabolite that induced glucose uptake in L6 skeletal muscle cells. By employing bioactivity guided fractionation techniques, a tri-substituted simple aromatic compound with anti-diabetic potential was isolated. It was characterized based on MS and 2D NMR spectral data and identified as NFAT-133 which is a known immunosuppressive agent that inhibits NFAT-dependent transcription in vitro. Our investigations revealed the antidiabetic potential of NFAT-133. The compound induced glucose uptake in differentiated L6 myotubes with an EC50 of 6.3 ± 1.8 μM without activating the peroxisome proliferator-activated receptor-γ. Further, NFAT-133 was also efficacious in vivo in diabetic animals and reduced systemic glucose levels. Thus it is a potential lead compound which can be considered for development as a therapeutic for the treatment of type-2 diabetes. We have reported herewith the isolation of the producer microbe, fermentation, purification, in vitro, and in vivo antidiabetic activity of the compound. PMID:22104600

  8. Antidiabetic compounds from Sarracenia purpurea used traditionally by the Eeyou Istchee Cree First Nation.

    PubMed

    Muhammad, Asim; Guerrero-Analco, Jose A; Martineau, Louis C; Musallam, Lina; Madiraju, Padma; Nachar, Abir; Saleem, Ammar; Haddad, Pierre S; Arnason, John T

    2012-07-27

    Through ethnobotanical surveys, the CIHR Team in Aboriginal Antidiabetic Medicines identified 17 boreal forest plants stemming from the pharmacopeia of the Cree First Nations of Eeyou Istchee (James Bay region of Northern Quebec) that were used traditionally against diabetes symptoms. The leaves of Sarracenia purpurea (pitcher plant), one of the identified Cree plants, exhibited marked antidiabetic activity in vitro by stimulating glucose uptake in C2C12 mouse muscle cells and by reducing glucose production in H4IIE rat liver cells. Fractionation guided by glucose uptake in C2C12 cells resulted in the isolation of 11 compounds from this plant extract, including a new phenolic glycoside, flavonoid glycosides, and iridoids. Compounds 6 (isorhamnetin-3-O-glucoside), 8 [kaempferol-3-O-(6″-caffeoylglucoside], and 11 (quercetin-3-O-galactoside) potentiated glucose uptake in vitro, which suggests they represent active principles of S. purpurea (EC(50) values of 18.5, 13.8, and 60.5 μM, respectively). This is the first report of potentiation of glucose uptake by compounds 6 and 8, while compound 11 (isolated from Vaccinium vitis) was previously shown to enhance glucose uptake. Treatment of H4IIE liver cells with the new compound 1, 6'-O-caffeoylgoodyeroside, decreased hepatic glucose production by reducing glucose-6-phosphatase enzymatic activity (IC(50) = 13.6 μM), which would contribute to lowering glycemia and to the antidiabetic potential of S. purpurea.

  9. Identification of Antidiabetic Compounds from Polyphenolic-rich Fractions of Bulbine abyssinica A. Rich Leaves

    PubMed Central

    Odeyemi, Samuel Wale; Afolayan, Anthony Jiede

    2018-01-01

    Background: Bulbine abyssinica has been reported to possess a variety of pharmacological activities traditionally. Previous work suggested its antidiabetic properties, but information on the antidiabetic compounds is still lacking. Objective: The present research exertion was aimed to isolate and identify biologically active polyphenols from B. abyssinica leaves and to evaluate their efficacy on carbohydrate digesting enzymes. Materials and Methods: Fractionation of the polyphenolic contents from the methanolic extract of B. abyssinica leaves was executed by the silica gel column chromatography to yield different fractions. The antioxidant activities of these fractions were carried out against 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl radicals, and ferric ion-reducing antioxidant power (FRAP). In vitro antidiabetic experimentation was performed by evaluating the α-amylase and α-glucosidase inhibitory capacity. The isolated polyphenols were then identified using liquid chromatography and mass spectroscopy (LC/MS). Results: Out of the eight polyphenolic fractions (BAL 1–8), BAL-4 has the highest inhibitory activity against ABTS radicals whereas BAL-6 showed potent ferric ion-reducing capacity. BAL-5 was the most effective fraction with antidiabetic activity with IC50of 140.0 and 68.58 ± 3.2 μg/ml for α-amylase and α-glucosidase inhibitory activities, respectively. All the fractions competitively inhibited α-amylase, BAL-5 and BAL-6 also inhibited α-glucosidase competitively, while BAL-4 and BAL-1 exhibited noncompetitive and near competitive inhibitions against α-glucosidase, respectively. The LC/MS analysis revealed the presence of carvone in all the fractions. Conclusions: The present study demonstrates the antioxidant and antidiabetic activities of the isolated polyphenols from B. abyssinica. SUMMARY Polyphenols were successfully isolated and identified from Bulbine abyssinica leaves

  10. Promising anti-diabetes mellitus activity in rats of β-amyrin palmitate isolated from Hemidesmus indicus roots.

    PubMed

    Nair, S Ajikumaran; Sabulal, B; Radhika, J; Arunkumar, R; Subramoniam, A

    2014-07-05

    While evaluating the toxicity of the tuberous root extracts of Hemidesmus indicus, a traditional medicinal plant, the glucose lowering property of the root was observed by the investigators. Therefore, it was thought of interest to isolate the anti-hyperglycemic principle from the root and determine its utility to develop an anti-diabetes mellitus medicine. The active principle was isolated from H. indicus root extract by anti-hyperglycemic activity guided chromatographic techniques. Glucose tolerance test in rats was used to evaluate the anti-hyperglycenic property. Anti-diabetes mellitus property was evaluated in alloxan-induced diabetic rats as well as streptozotocin-induced (type-2 model) diabetic rats. The active principle was isolated and identified with spectral data as β-amyrin palmitate. Although it is a known compound, its presence in H. indicus is not known previously. It was observed for the first time that β-amyrin palmitate has remarkable anti-hyperglycemic activity in orally glucose loaded rats. Further, interestingly, it exhibited excellent anti-diabetes mellitus activity in both alloxan-diabetic and streptozotocin-diabetic rats at a very low concentration (50µg/kg body weight). One of the mechanisms of action of β-amyrin palmitate appears to be blocking the entry of glucose from the intestine. β-Amyrin palmitate is very promising to develop a medicine for diabetes for combination therapy and/or mono-therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Inhibition of key enzymes linked to type 2 diabetes by compounds isolated from Aframomum melegueta fruit.

    PubMed

    Mohammed, Aminu; Gbonjubola, Victoria Awolola; Koorbanally, Neil Anthony; Islam, Md Shahidul

    2017-12-01

    The use of Aframomum melegueta K. Schum. (Zingiberaceae) fruit for treatment of diabetes has recently been established in Nigeria. However, compounds responsible for the antidiabetic action have not been identified. The present study carried out the bioassay-guided isolation of possible bioactive compounds responsible for the antidiabetic action of A. melegueta fruit. The A. melegueta fruit was sequentially extracted using ethyl acetate (EtOAc), ethanol and water, and the most active extract (EtOAc) was subjected to column chromatography on a silica gel column using solvent gradient systems of hexane (HEX):EtOAc and EtOAc:MeOH and the isolation of compounds was guided by α-glycosidase and α-amylase inhibitory activities at various concentrations (30-240 μg/mL). According to the results, 3 arylalkanes, 6-paradol (1), 6-shogaol (2) and 6-gingerol (3) and a pentacyclic triterpene, oleanolic acid (4) were isolated from A. melegueta fruit. All the compounds exhibited inhibitory effects against α-amylase and α-glucosidase. 6-Gingerol (3) and oleanolic acid (4) showed higher inhibitory activity against α-amylase (IC 50 : 6-gingerol: 81.78 ± 7.79 μM; oleanolic acid: 91.72 ± 1.63 μM) and α-glucosidase (IC 50 : 6-gingerol: 21.55 ± 0.45 μM; oleanolic acid: 17.35 ± 0.88 μM) compared to the standard drug, acarbose and other isolated compounds. The kinetics of the enzyme action of the compounds showed a noncompetitive mode of inhibition. The data of this study suggest that the 6-gingerol (3) and oleanolic acid (4) showed higher α-amylase and α-glucosidase inhibitory action and therefore could be responsible for the antidiabetic activity of A. melegueta fruit.

  12. Anti-diabetic activity of a mineraloid isolate, in vitro and in genetically diabetic mice.

    PubMed

    Deneau, Joel; Ahmed, Taufeeq; Blotsky, Roger; Bojanowski, Krzysztof

    2011-01-01

    Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models.

  13. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    NASA Astrophysics Data System (ADS)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  14. Effect of salinity medium on antioxidant and antidiabetic activity marine endophytic fungus of asperegillus elegans ptf 9

    NASA Astrophysics Data System (ADS)

    Mulyani, Hani; Artanti, Nina; Fitria, Irni; Filailla, Euis; Kandace, Yoice Sri; Udin, Linar Zalinar

    2017-11-01

    Our previous studies on screening of antioxidant activities from various endophytic fungi isolated from marine bioata showed that A. elegans PTF9 isolated from sea weed is one of the fungus that has good antioxidant activity. In current study we reported the effect of medium salinity (0, 3 and 10% salt in PDB medium) on antioxidant and antidiabetes activity of mycelium and filtrate ethyl acetate extracts of A. elegans Ptf 9. The antioxidant assay was conducted using DPPH free radical scavenging activity method. The antidiabetes assay was conducted using a-glucosidase inhibitory activity method. The results showed that the best antioxidant activity was obtained from filtrate extract of fungus cultures with 0% salt (IC50=1.56 ppm), whereas the best antidiabetes activity was obtained from filtrate extract of fungus culture with 10% salt (IC50= 3.64 ppm). Addition of salt reduced the antioxidant activity, but not the antidiabetes activity. The results suggest that A. elegans PTF9 showed potential for further studies on isolation of antioxidant and antidiabetes lead compounds that could be use for further development of new drugs.

  15. Antidiabetic potential: in vitro inhibition effects of some natural phenolic compounds on α-glycosidase and α-amylase enzymes.

    PubMed

    Taslimi, Parham; Gulçin, İlhami

    2017-10-01

    α-Glycosidase is a catalytic enzyme and it destroys the complex carbohydrates into simple absorbable sugar units. The natural phenolic compounds were tested for their antidiabetic properties as α-glycosidase and α-amylase inhibitors. The phenolic compounds investigated in this study have been used as antidiabetic common medicines. This paper aimed to consider their capability to inhibit α-amylase and α-glycosidase, two significant enzymes defined in serum glucose adjustment. These examination recorded impressive inhibition profiles with IC 50 values in the range of 137.36-737.23 nM against α-amylase and 29.01-157.96 nM against α-glycosidase. © 2017 Wiley Periodicals, Inc.

  16. Evaluation of the Antidiabetic Activity and Chemical Composition of Geranium collinum Root Extracts-Computational and Experimental Investigations.

    PubMed

    Numonov, Sodik; Edirs, Salamet; Bobakulov, Khayrulla; Qureshi, Muhammad Nasimullah; Bozorov, Khurshed; Sharopov, Farukh; Setzer, William N; Zhao, Haiqing; Habasi, Maidina; Sharofova, Mizhgona; Aisa, Haji Akber

    2017-06-13

    The root of Geranium collinum Steph is known in Tajik traditional medicine for its hepatoprotective, antioxidant, and anti-inflammatory therapeutic effects. The present study was conducted to evaluate of potential antidiabetic, antioxidant activities, total polyphenolic and flavonoid content from the different extracts (aqueous, aqueous-ethanolic) and individual compounds isolated of the root parts of G. collinum . The 50% aqueous-ethanolic extract possesses potent antidiabetic activity, with IC 50 values of 0.10 μg/mL and 0.09 μg/mL for the enzymes protein-tyrosine phosphatase (1B PTP-1B) and α-glucosidase, respectively. Phytochemical investigations of the 50% aqueous-ethanolic extract of G. collinum , led to the isolation of ten pure compounds identified as 3,3',4,4'-tetra- O -methylellagic acid ( 1 ), 3,3'-di- O -methylellagic acid ( 2 ), quercetin ( 3 ), caffeic acid ( 4 ), (+)-catechin ( 5 ), (-)-epicatechin ( 6 ), (-)-epigallocatechin ( 7 ), gallic acid ( 8 ), β-sitosterol-3- O -β-d-glucopyranoside ( 9 ), and corilagin ( 10 ). Their structures were determined based on 1D and 2D NMR and mass spectrometric analyses. Three isolated compounds exhibited strong inhibitory activity against PTP-1B, with IC 50 values below 0.9 μg/mL, more effective than the positive control (1.46 μg/mL). Molecular docking analysis suggests polyphenolic compounds such as corilagin, catechin and caffeic acid inhibit PTP-1B and β-sitosterol-3- O -β-d-gluco-pyranoside inhibits α-glucosidase. The experimental results suggest that the biological activity of G. collinum is related to its polyphenol contents. The results are also in agreement with computational investigations. Furthermore, the potent antidiabetic activity of the 50% aqueous-ethanolic extract from G. collinum shows promise for its future application in medicine. To the best of our knowledge, we hereby report, for the first time, the antidiabetic activity of G. collinum.

  17. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract.

    PubMed

    Wang, Yihai; Xiang, Limin; Wang, Chunhua; Tang, Chao; He, Xiangjiu

    2013-01-01

    The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE) of mulberry fruit (Morus alba L.) were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG) and glycosylated serum protein (GSP), and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px) in streptozotocin (STZ)-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit.

  18. In vitro and in vivo antidiabetic potential of extracts and a furostanol saponin from Balanites aegyptiaca.

    PubMed

    Ezzat, Shahira Mohammed; Abdel Motaal, Amira; El Awdan, Sally Abdel Wanees

    2017-12-01

    Balanites aegyptiaca Del. (Zygophyllaceae) fruits are well-known antidiabetic drug in Egyptian folk medicine. Nevertheless, its mechanism of action is still unclear. Searching for the possible mechanisms of action of the plant and identification of its bioactive compounds. A bio-guided protocol based on the evaluation of α-glucosidase (AG) and aldose reductase (AR) inhibitory activities was adopted to isolate the biologically active compounds from the methanol extract (MeEx). An in vivo antidiabetic study was conducted for the active extract, fraction and compound using streptozotocin-induced diabetic male albino Wistar rats at two dose levels (100 and 200 mg/kg.b/wt) for 2 weeks. Three compounds were isolated and identified: a sterol, (1) stigmasterol-3-O-β-d-glucopyranoside; a pregnane glucoside, (2) pregn-5-ene-3β,16β,20(R)-trio1-3-O-β-d-glucopyranoside; a furostanol saponin, (3) 26-(O-β-d-glucopyranosyl)-22-O-methylfurost-5-ene-3β,26-diol-3-O-β-d-glucopyranosyl-(1 → 4)-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside. Only compound 3 possessed significant AG and AR inhibitory activities (IC 50  = 3.12 ± 0.17 and 1.04 ± 0.02 μg/mL, respectively), while compounds 1 and 2 were inactive. The in vivo antidiabetic study revealed that MeEx and furostanol saponin 3 possessed significant activities at a dose of 200 mg/kg through reducing the fasting plasma glucose level by 46.14% and 51.39%, respectively, as well as reducing the total cholesterol by 24.44% and 31.90%, respectively. Compound 3 also caused increment in insulin and C-peptide levels by 63.56% and 65%, respectively. We presented a scientific base for using Balanites aegyptiaca, and shed the light on one of its saponins, as an antidiabetic agent in fasting and postprandial hyperglycaemia along with the improvement of diabetic complications.

  19. Antidiabetic and Antioxidant Effects and Phytochemicals of Mulberry Fruit (Morus alba L.) Polyphenol Enhanced Extract

    PubMed Central

    Wang, Yihai; Xiang, Limin; Wang, Chunhua; Tang, Chao; He, Xiangjiu

    2013-01-01

    The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE) of mulberry fruit (Morus alba L.) were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG) and glycosylated serum protein (GSP), and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px) in streptozotocin (STZ)-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit. PMID:23936259

  20. An invertebrate hyperglycemic model for the identification of anti-diabetic drugs.

    PubMed

    Matsumoto, Yasuhiko; Sumiya, Eriko; Sugita, Takuya; Sekimizu, Kazuhisa

    2011-03-30

    The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover, AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals.

  1. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L.

    PubMed

    Kalaycıoğlu, Zeynep; Gazioğlu, Işıl; Erim, F Bedia

    2017-12-01

    Antioxidant, anticholinesterase and antidiabetic activities of three curcuminoids isolated from the Curcuma longa were simultaneously tested and compared in this study. The highest antioxidant power was detected for curcumin with the applied methods. The drug potentials of curcuminoids for Alzheimer's disease were controlled. Bisdemethoxycurcumin (BDMC) showed substantial inhibitory activity. The activity of demethoxycurcumin (DMC) followed BDMC, whereas curcumin showed very little acetylcholinesterase inhibition activity. Antidiabetic activity of curcuminoids was evaluated by their α-glucosidase inhibitory activities. All curcuminoids show activities with decreasing order as BDMC > curcumin > DMC. The significant activities of BDMC compared to its isomers and examination of chemical structures of isomers might be a starting point in designing new drugs for Alzheimer's and Diabetes Mellitus.

  2. Potential use of bitter melon (Momordica charantia) derived compounds as antidiabetics: In silico and in vivo studies.

    PubMed

    Elekofehinti, Olusola Olalekan; Ariyo, Esther Opeyemi; Akinjiyan, Moses Orimoloye; Olayeriju, Olanrewaju Sam; Lawal, Akeem Olalekan; Adanlawo, Isaac Gbadura; Rocha, Joao Batista Teixeira

    2018-05-12

    Momordica charantia (bitter lemon) belongs to the cucurbitaceae family which has been extensively used in traditional medicines for the cure of various ailments such as cancer and diabetes. The underlying mechanism of M. charantia to maintain glycemic control was investigated. GLP-1 and DPP-4 gene modulation by M. charantia (5-20% inclusion in rats diet) was investigated in vivo by RT-PCR and possible compounds responsible for diabetic action predicted through in silico approach. Phytochemicalss previously characterized from M. charantia were docked into glucacon like peptide-1 receptor (GLP-1r), dipeptidyl peptidase (DPP4) and Takeda-G-protein-receptor-5 (TGR5) predicted using Autodock Vina. The results of the in silico suggests momordicosides D (ligand for TGR5), cucurbitacin (ligand for GLP-1r) and charantin (ligand for DPP-4) as the major antidiabetic compounds in bitter lemon leaf. M. charantia increased the expression of GLP-1 by about 295.7% with concomitant decreased in expression of DPP-4 by 87.2% with 20% inclusion in rat's diet. This study suggests that the mechanism underlying the action of these compounds is through activation of TGR5 and GLP-1 receptor with concurrent inhibition of DPP4. This study confirmed the use of this plant in diabetes management and the possible bioactive compounds responsible for its antidiabetic property are charantin, cucurbitacin and momordicoside D and all belong to the class of saponins. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2017-08-29

    The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998-2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012-2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.

  4. The novel gluconeogenesis inhibitors FR225659 and related compounds that originate from Helicomyces sp. No. 19353. I. Taxonomy, fermentation, isolation and physico-chemical properties.

    PubMed

    Ohtsu, Yoshihiro; Sasamura, Hiromi; Tsurumi, Yasuhisa; Yoshimura, Seiji; Takase, Shigehiro; Hashimoto, Michizane; Shibata, Toshihiro; Hino, Motohiro; Fujii, Takashi

    2003-08-01

    FR225659 and four related compounds are novel gluconeogenesis inhibitors that consist of a novel acyl-group and three abnormal amino acids. They were isolated from the culture broth of Helicomyces sp. No. 19353 and can be purified by absorptive resin and reverse-phase column chromatography. They are potent inhibitors of gluconeogenesis in primary cultured rat hepatocytes and thus may be useful as anti-diabetic agents.

  5. Lack of pharmacokinetic interaction for ISIS 113715, a 2'-0-methoxyethyl modified antisense oligonucleotide targeting protein tyrosine phosphatase 1B messenger RNA, with oral antidiabetic compounds metformin, glipizide or rosiglitazone.

    PubMed

    Geary, Richard S; Bradley, JoAnn D; Watanabe, Tanya; Kwon, Younggil; Wedel, Mark; van Lier, Jan J; VanVliet, André A

    2006-01-01

    ISIS 113715 is a 20-mer phosphorothioate antisense oligonucleotide (ASO) that is complementary to the protein tyrosine phosphatase 1B (PTP-1B) messenger RNA and subsequently reduces translation of the PTP-1B protein, a negative regulator of insulin receptor. ISIS 113715 is currently being studied in early phase II clinical studies to determine its ability to improve or restore insulin receptor sensitivity in patients with type 2 diabetes mellitus. Future work will investigate the combination of ISIS 113715 with antidiabetic compounds. In vitro ultrafiltration human plasma protein binding displacement studies and a phase I clinical study were used to characterise the potential for pharmacokinetic interaction of ISIS 113715 and three marketed oral antidiabetic agents. ISIS 113715 was co-incubated with glipizide and rosiglitazone in whole human plasma and tested for increased free drug concentrations. In a phase I clinical study, 23 healthy volunteers received a single oral dose of an antidiabetic compound (either metformin, glipizide or rosiglitazone) both alone and together with subcutaneous ISIS 113715 200 mg in a sequential crossover design. A comparative pharmacokinetic analysis was performed to determine if there were any effects that resulted from coadministration of ISIS 113715 with these antidiabetic compounds. In vitro human plasma protein binding displacement studies showed only minor effects on rosiglitazone and no effect on glipizide when co-incubated with ISIS 113715. The results of the phase I clinical study further indicate that there were no measurable changes in glipizide (5 mg), metformin (500 mg) or rosiglitazone (2 mg) exposure parameters, maximum plasma concentration and the area under the concentration-time curve, or pharmacokinetic parameter, elimination half-life when coadministered with ISIS 113715. Furthermore, there was no effect of ISIS 113715, administered in combination with metformin, on the urinary excretion of metformin. Conversely

  6. Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon)

    PubMed Central

    Hazarika, Ridip; Parida, Pratap; Neog, Bijoy; Yadav, Raj Narain Singh

    2012-01-01

    Diabetes is one of the major life threatening diseases worldwide. It creates major health problems in urban India. Glycogen Synthase Kinase-3 (GSK-3) protein of human is known for phosphorylating and inactivating glycogen synthase which also acts as a negative regulator in the hormonal control of glucose homeostasis. In traditional medicine, Momordica charantia is used as antidiabetic plant because of its hypoglycemic effect. Hence to block the active site of the GSK-3 protein three anti-diabetic compounds namely, charantin, momordenol & momordicilin were taken from Momordica charantia for docking study and calculation of binding energy. The aim of present investigation is to find the binding energy of three major insulin-like active compounds against glycogen synthase kinase-3 (GSK-3), one of the key proteins involved in carbohydrate metabolism, with the help of molecular docking using ExomeTM Horizon suite. The study recorded minimum binding energy by momordicilin in comparison to the others. PMID:22493531

  7. Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon).

    PubMed

    Hazarika, Ridip; Parida, Pratap; Neog, Bijoy; Yadav, Raj Narain Singh

    2012-01-01

    Diabetes is one of the major life threatening diseases worldwide. It creates major health problems in urban India. Glycogen Synthase Kinase-3 (GSK-3) protein of human is known for phosphorylating and inactivating glycogen synthase which also acts as a negative regulator in the hormonal control of glucose homeostasis. In traditional medicine, Momordica charantia is used as antidiabetic plant because of its hypoglycemic effect. Hence to block the active site of the GSK-3 protein three anti-diabetic compounds namely, charantin, momordenol & momordicilin were taken from Momordica charantia for docking study and calculation of binding energy. The aim of present investigation is to find the binding energy of three major insulin-like active compounds against glycogen synthase kinase-3 (GSK-3), one of the key proteins involved in carbohydrate metabolism, with the help of molecular docking using ExomeTM Horizon suite. The study recorded minimum binding energy by momordicilin in comparison to the others.

  8. Marine Organisms with Anti-Diabetes Properties

    PubMed Central

    Lauritano, Chiara; Ianora, Adrianna

    2016-01-01

    Diabetes is a chronic degenerative metabolic disease with high morbidity and mortality rates caused by its complications. In recent years, there has been a growing interest in looking for new bioactive compounds to treat this disease, including metabolites of marine origin. Several aquatic organisms have been screened to evaluate their possible anti-diabetes activities, such as bacteria, microalgae, macroalgae, seagrasses, sponges, corals, sea anemones, fish, salmon skin, a shark fusion protein as well as fish and shellfish wastes. Both in vitro and in vivo screenings have been used to test anti-hyperglycemic and anti-diabetic activities of marine organisms. This review summarizes recent discoveries in anti-diabetes properties of several marine organisms as well as marine wastes, existing patents and possible future research directions in this field. PMID:27916864

  9. Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2017-01-01

    The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories. PMID:28850074

  10. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark.

    PubMed

    Ahmed, Danish; Kumar, Vikas; Sharma, Manju; Verma, Amita

    2014-05-13

    Albizzia Lebbeck Benth. is traditionally important plant and is reported to possess a variety of pharmacological actions. The present research exertion was undertaken to isolate and characterized the flavonoids from the extract of stem bark of Albizzia Lebbeck Benth. and to evaluate the efficacy of the isolated flavonoids on in-vitro models of type-II diabetes. Furthermore, the results of in-vitro experimentation inveterate by the molecular docking studies of the isolated flavonoids on α-glucosidase and α-amylase enzymes. Isolation of the flavonoids from the methanolic extract of stem bark of A. Lebbeck Benth was executed by the Silica gel (Si) column chromatography to yield different fractions. These fractions were then subjected to purification to obtain three important flavonoids. The isolated flavonoids were then structurally elucidated with the assist of 1H-NMR, 13C-NMR, and Mass spectroscopy. In-vitro experimentation was performed with evaluation of α-glucosidase, α-amylase and DPPH inhibition capacity. Molecular docking study was performed with GLIDE docking software. Three flavonoids, (1) 5-deoxyflavone (geraldone), (2) luteolin and (3) Isookanin were isolated from the EtOAc fraction of the methanolic extract of Albizzia lebbeck Benth bark. (ALD). All the compounds revealed to inhibit the α-glucosidase and α-amylase enzymes in in-vitro investigation correlating to reduce the plasma glucose level. Molecular docking study radically corroborates the binding affinity and inhibition of α-glucosidase and α-amylase enzymes. The present research exertion demonstrates the anti-diabetic and antioxidant activity of the important isolated flavonoids with inhibition of α-glucosidase, α-amylase and DPPH which is further supported by molecular docking analysis.

  11. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark

    PubMed Central

    2014-01-01

    Background Albizzia Lebbeck Benth. is traditionally important plant and is reported to possess a variety of pharmacological actions. The present research exertion was undertaken to isolate and characterized the flavonoids from the extract of stem bark of Albizzia Lebbeck Benth. and to evaluate the efficacy of the isolated flavonoids on in-vitro models of type-II diabetes. Furthermore, the results of in-vitro experimentation inveterate by the molecular docking studies of the isolated flavonoids on α-glucosidase and α-amylase enzymes. Methods Isolation of the flavonoids from the methanolic extract of stem bark of A. Lebbeck Benth was executed by the Silica gel (Si) column chromatography to yield different fractions. These fractions were then subjected to purification to obtain three important flavonoids. The isolated flavonoids were then structurally elucidated with the assist of 1H-NMR, 13C-NMR, and Mass spectroscopy. In-vitro experimentation was performed with evaluation of α-glucosidase, α-amylase and DPPH inhibition capacity. Molecular docking study was performed with GLIDE docking software. Results Three flavonoids, (1) 5-deoxyflavone (geraldone), (2) luteolin and (3) Isookanin were isolated from the EtOAc fraction of the methanolic extract of Albizzia lebbeck Benth bark. (ALD). All the compounds revealed to inhibit the α-glucosidase and α-amylase enzymes in in-vitro investigation correlating to reduce the plasma glucose level. Molecular docking study radically corroborates the binding affinity and inhibition of α-glucosidase and α-amylase enzymes. Conclusion The present research exertion demonstrates the anti-diabetic and antioxidant activity of the important isolated flavonoids with inhibition of α-glucosidase, α-amylase and DPPH which is further supported by molecular docking analysis. PMID:24886138

  12. A combination of (+)-catechin and (-)-epicatechin underlies the in vitro adipogenic action of Labrador tea (Rhododendron groenlandicum), an antidiabetic medicinal plant of the Eastern James Bay Cree pharmacopeia.

    PubMed

    Eid, Hoda M; Ouchfoun, Meriem; Saleem, Ammar; Guerrero-Analco, Jose A; Walshe-Roussel, Brendan; Musallam, Lina; Rapinski, Michel; Cuerrier, Alain; Martineau, Louis C; Arnason, John T; Haddad, Pierre S

    2016-02-03

    Rhododendron groenlandicum (Oeder) Kron & Judd (Labrador tea) was identified as an antidiabetic plant through an ethnobotanical study carried out with the close collaboration of Cree nations of northern Quebec in Canada. In a previous study the plant showed glitazone-like activity in a 3T3-L1 adipogenesis bioassay. The current study sought to identify the active compounds responsible for this potential antidiabetic activity using bioassay guided fractionation based upon an in vitro assay that measures the increase of triglycerides content in 3T3-L1 adipocyte. Isolation and identification of the crude extract's active constituents was carried out. The 80% ethanol extract was fractionated using silica gel column chromatography. Preparative HPLC was then used to isolate the constituents. The identity of the isolated compounds was confirmed by UV and mass spectrometry. Nine chemically distinct fractions were obtained and the adipogenic activity was found in fraction 5 (RGE-5). Quercetins, (+)-catechin and (-)-epicatechin were detected and isolated from this fraction. While (+)-catechin and (-)-epicatechin stimulated adipogenesis (238±26% and 187±21% relative to vehicle control respectively) at concentrations equivalent to their concentrations in the active fraction RGE-5, none afforded biological activity similar to RGE-5 or the plant's crude extract when used alone. When cells were incubated with a mixture of the two compounds, the adipogenic activity was close to that of the crude extract (280.7±27.8 vs 311± 30%). Results demonstrate that the mixture of (+)-catechin and (-)-epicatechin is responsible for the adipogenic activity of Labrador tea. This brings further evidence for the antidiabetic potential of R. groenlandicum and provides new opportunities to profile active principles in biological fluids or in traditional preparations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Cinnamaldehyde--a potential antidiabetic agent.

    PubMed

    Subash Babu, P; Prabuseenivasan, S; Ignacimuthu, S

    2007-01-01

    Cinnamonum zeylanicum (cinnamon) is widely used in traditional system of medicine to treat diabetes in India. The present study was carried out to isolate and identify the putative antidiabetic compounds based on bioassay-guided fractionation; the compound identified decreased the plasma glucose levels. The active compound was purified by repeat column and structure of cinnamaldehyde was determined on the basis of chemical and physiochemical evidence. The LD(50) value of cinnamaldehyde was determined as 1850+/-37 mg/kg bw. Cinnamaldehyde was administered at different doses (5, 10 and 20 mg/kg bw) for 45 days to streptozotocin (STZ) (60 mg/kg bw)-induced male diabetic wistar rats. It was found that plasma glucose concentration was significantly (p<0.05) decreased in a dose-dependent manner (63.29%) compared to the control. In addition, oral administration of cinnamaldehyde (20 mg/kg bw) significantly decreased glycosylated hemoglobin (HbA(1C)), serum total cholesterol, triglyceride levels and at the same time markedly increased plasma insulin, hepatic glycogen and high-density lipoprotein-cholesterol levels. Also cinnamaldehyde restored the altered plasma enzyme (aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, alkaline phosphatase and acid phosphatase) levels to near normal. Administration of glibenclamide, a reference drug (0.6 mg/kg bw) also produced a significant (p<0.05) reduction in blood glucose concentration in STZ-induced diabetic rats. The results of this experimental study indicate that cinnamaldehyde possesses hypoglycemic and hypolipidemic effects in STZ-induced diabetic rats.

  14. Nano-preparation of Andrographis paniculata extract by casein micelle for antidiabetic agent

    NASA Astrophysics Data System (ADS)

    Arbianti, Rita; Dewi, Veronica; Imansari, Farisa; Hermansyah, Heri; Sahlan, Muhamad

    2017-02-01

    Side effects caused by oral medications for person with diabetic are the background of the development of alternative treatments by traditional medicine, herbs. Andrographis paniculata (AP) is one of the herbs that is potent to be anti-diabetic agent. The active compound of AP, andrographolide have been examined to have anti-diabetic activity as α-glucosidase enzyme inhibitor. This research aims to encapsulate sambiloto's extract with casein micelle and produce nanoparticles which have anti-diabetic activity as α-glucosidase inhibitor. Extract of AP is encapsulated by casein micelle and made into nano size using sonicator. The dominant active compounds in AP extract coated by casein are andrographolide, neoandrographolide, 14-deoxy-11,12didehydroandrographolide with encapsulation efficiency of 68.83%, 89.15% and 81.69%, the average diameter of the particles is about 120.57 nm and its loading capacity is 28.85%. AP's extract has antidiabetic activity as α-glucosidase inhibitor with percent inhibition of 95%. The morphology of nanoencapsulated AP's extract analyzed by FE-SEM, were similar with casein micelle.

  15. Synthesis, Characterisation, Molecular Docking, Anti-microbial and Anti-diabetic Screening of Substituted 4-indolylphenyl-6-arylpyrimidine-2-imine Derivatives.

    PubMed

    Ramya, Veerasamy; Vembu, Santhirakasu; Ariharasivakumar, Ganesan; Gopalakrishnan, Manathusamy

    2017-09-01

    The purpose of the research is to synthesise a novel series of (E)-2-(4-(1H-indol-3-yl)-6-p-substituted phenylpyrimidin-2-yl)dimethylguanidine derivatives since 3-(1H-indol-3-yl)-1-p-substituted phenylprop-2-en-1-one and evaluate their molecular docking studies, antimicrobial, and anti-diabetic activities. Among all the synthesized compounds ( 11a-g ), compound 11a exhibits excellent CDOCKER energy (-11.36 kcal/mol). The entire compounds ( 11a-g ) confirm very good antimicrobial activity towards the tested microorganisms. In the in vitro anti-diabetic studies, compounds (11a, 11c, and 11g) confirm higher alpha-amylase and alpha-glucosidase inhibition activity. In the in vivo anti-diabetic activities, the synthesized compounds (11a-g) (10 mg/kg, p.o.) investigated by the streptozotocin (60 mg/kg, ip) -nicotinamide (120 mg/kg, p.o.) - induced model in adult male albino Wistar rat and these derivatives show considerable fasting blood glucose level when compared to metformin hydrochloride a potent and well-known anti-diabetic drug as a reference. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism.

    PubMed

    Mohamed, Elsnoussi Ali Hussin; Siddiqui, Mohammad Jamshed Ahmad; Ang, Lee Fung; Sadikun, Amirin; Chan, Sue Hay; Tan, Soo Choon; Asmawi, Mohd Zaini; Yam, Mun Fei

    2012-10-08

    In the present study, we tested a 50% ethanolic extract of Orthosiphon stamineus plants and its isolated bioactive compound with respect to their α-glucosidase and α-amylase inhibitory activities. Bioactive flavonoid sinensetin was isolated from 50% ethanolic extract of Orthosiphon stamineus. The structure of this pure compound was determined on the NMR data and the α-glucosidase and α-amylase inhibitory activities of isolated sinensetin and 50% ethanolic extract of Orthosiphon stamineus were evaluated. In vitro studies of a 50% ethanolic extract of O. stamineus and the isolated sinensetin compound showed inhibitory activity on α-glucosidase (IC50: 4.63 and 0.66 mg/ml, respectively) and α-amylase (IC50: 36.70 mg/ml and 1.13 mg/ml, respectively). Inhibition of these enzymes provides a strong biochemical basis for the management of type 2 diabetes via the control of glucose absorption. Alpha-glucosidase and α-amylase inhibition could the mechanisms through which the 50% ethanolic extract of O. stamineus and sinensetin exert their antidiabetic activity, indicating that it could have potential use in the management of non-insulin-dependent diabetes.

  17. Why Antidiabetic Vanadium Complexes are Not in the Pipeline of "Big Pharma" Drug Research? A Critical Review.

    PubMed

    Scior, Thomas; Guevara-Garcia, Jose Antonio; Do, Quoc-Tuan; Bernard, Philippe; Laufer, Stefan

    2016-01-01

    Public academic research sites, private institutions as well as small companies have made substantial contributions to the ongoing development of antidiabetic vanadium compounds. But why is this endeavor not echoed by the globally operating pharmaceutical companies, also known as "Big Pharma"? Intriguingly, today's clinical practice is in great need to improve or replace insulin treatment against Diabetes Mellitus (DM). Insulin is the mainstay therapeutically and economically. So, why do those companies develop potential antidiabetic drug candidates without vanadium (vanadium- free)? We gathered information about physicochemical and pharmacological properties of known vanadium-containing antidiabetic compounds from the specialized literature, and converted the data into explanations (arguments, the "pros and cons") about the underpinnings of antidiabetic vanadium. Some discoveries were embedded in chronological order while seminal reviews of the last decade about the Medicinal chemistry of vanadium and its history were also listed for further understanding. In particular, the concepts of so-called "noncomplexed or free" vanadium species (i.e. inorganic oxido-coordinated species) and "biogenic speciation" of antidiabetic vanadium complexes were found critical and subsequently documented in more details to answer the question.

  18. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro.

    PubMed

    Hafizur, Rahman M; Hameed, Abdul; Shukrana, Mishkat; Raza, Sayed Ali; Chishti, Sidra; Kabir, Nurul; Siddiqui, Rehan A

    2015-02-15

    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    PubMed Central

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  20. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    PubMed

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-05-11

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  1. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products.

    PubMed

    Tabassum, Nadia; Tai, Hongmei; Jung, Da-Woon; Williams, Darren R

    2015-01-01

    Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential "hits" fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a "bridge" to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories.

  2. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  3. Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism

    PubMed Central

    2012-01-01

    Background In the present study, we tested a 50% ethanolic extract of Orthosiphon stamineus plants and its isolated bioactive compound with respect to their α-glucosidase and α-amylase inhibitory activities. Methods Bioactive flavonoid sinensetin was isolated from 50% ethanolic extract of Orthosiphon stamineus. The structure of this pure compound was determined on the NMR data and the α-glucosidase and α-amylase inhibitory activities of isolated sinensetin and 50% ethanolic extract of Orthosiphon stamineus were evaluated. Results In vitro studies of a 50% ethanolic extract of O. stamineus and the isolated sinensetin compound showed inhibitory activity on α-glucosidase (IC50: 4.63 and 0.66 mg/ml, respectively) and α-amylase (IC50: 36.70 mg/ml and 1.13 mg/ml, respectively). Inhibition of these enzymes provides a strong biochemical basis for the management of type 2 diabetes via the control of glucose absorption. Conclusion Alpha-glucosidase and α-amylase inhibition could the mechanisms through which the 50% ethanolic extract of O. stamineus and sinensetin exert their antidiabetic activity, indicating that it could have potential use in the management of non-insulin-dependent diabetes. PMID:23039079

  4. Why Antidiabetic Vanadium Complexes are Not in the Pipeline of “Big Pharma” Drug Research? A Critical Review

    PubMed Central

    Scior, Thomas; Guevara-Garcia, Jose Antonio; Do, Quoc-Tuan; Bernard, Philippe; Laufer, Stefan

    2016-01-01

    Public academic research sites, private institutions as well as small companies have made substantial contributions to the ongoing development of antidiabetic vanadium compounds. But why is this endeavor not echoed by the globally operating pharmaceutical companies, also known as “Big Pharma”? Intriguingly, today’s clinical practice is in great need to improve or replace insulin treatment against Diabetes Mellitus (DM). Insulin is the mainstay therapeutically and economically. So, why do those companies develop potential antidiabetic drug candidates without vanadium (vanadium-free)? We gathered information about physicochemical and pharmacological properties of known vanadium-containing antidiabetic compounds from the specialized literature, and converted the data into explanations (arguments, the “pros and cons”) about the underpinnings of antidiabetic vanadium. Some discoveries were embedded in chronological order while seminal reviews of the last decade about the Medicinal chemistry of vanadium and its history were also listed for further understanding. In particular, the concepts of so-called “noncomplexed or free” vanadium species (i.e. inorganic oxido-coordinated species) and “biogenic speciation” of antidiabetic vanadium complexes were found critical and subsequently documented in more details to answer the question. PMID:26997154

  5. Antidiabetic Properties of Germinated Brown Rice: A Systematic Review

    PubMed Central

    Bhanger, Muhammad Iqbal; Ismail, Norsharina; Ismail, Maznah

    2012-01-01

    Diet is an important variable in the course of type 2 diabetes, which has generated interest in dietary options like germinated brown rice (GBR) for effective management of the disease among rice-consuming populations. In vitro data and animal experiments show that GBR has potentials as a functional diet for managing this disease, and short-term clinical studies indicate encouraging results. Mechanisms for antidiabetic effects of GBR due to bioactive compounds like γ-aminobutyric acid (GABA), γ-oryzanol, dietary fibre, phenolics, vitamins, acylated steryl β-glucoside, and minerals include antihyperglycemia, low insulin index, antioxidative effect, antithrombosis, antihypertensive effect, hypocholesterolemia, and neuroprotective effects. The evidence so far suggests that there may be enormous benefits for diabetics in rice-consuming populations if white rice is replaced with GBR. However, long-term clinical studies are still needed to verify these findings on antidiabetic effects of GBR. Thus, we present a review on the antidiabetic properties of GBR from relevant preclinical and clinical studies, in order to provide detailed information on this subject for researchers to review the potential of GBR in combating this disease. PMID:23304216

  6. New arylalkanones from Horsfieldia macrobotrys, effective antidiabetic agents concomitantly inhibiting α-glucosidase and free radicals.

    PubMed

    Ramadhan, Rico; Phuwapraisirisan, Preecha

    2015-10-15

    In search of effective antidiabetic agents having therapeutic effect by inhibiting α-glucosidase and preventive effect by scavenging free radicals, Horsfieldia macrobotrys showed promising bioactivity required for the proposed criteria. Bioassay-guided isolation of the stem bark extract resulted in two new arylalkanones named horsfieldone A (1) and maingayone D (2), together with a new flavanone C-glucoside named 8-C-β-d-glucopyranosylpinocembrin (3). Their structures and stereochemistry were determined by spectroscopic techniques as well as Mosher's method. Of isolated compounds, maingayone D (2) was the most potent inhibitors against both α-glucosidases and free radicals. The presence of additional phenolic moieties in 2 clearly indicated their critical roles in inhibitory effects. Further investigation on mechanism underlying α-glucosidase inhibition indicated that maingayone D (2) could retard the enzyme function by both competitive and noncompetitive manners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [The vanadium compounds: chemistry, synthesis, insulinomimetic properties].

    PubMed

    Fedorova, E V; Buriakina, A V; Vorob'eva, N M; Baranova, N I

    2014-01-01

    The review considers the biological role of vanadium, its participation in various processes in humans and other mammals, and the anti-diabetic effect of its compounds. Vanadium salts have persistent hypoglycemic and antihyperlipidemic effects and reduce the probability of secondary complications in animals with experimental diabetes. The review contains a detailed description of all major synthesized vanadium complexes having antidiabetic activity. Currently, vanadium complexes with organic ligands are more effective and safer than the inorganic salts. Despite the proven efficacy of these compounds as the anti-diabetic agents in animal models, only one organic complex of vanadium is currently under the second phase of clinical trials. All of the considered data suggest that vanadium compound are a new promising class of drugs in modern pharmacotherapy of diabetes.

  8. The novel gluconeogenesis inhibitor FR225654 that originates from Phoma sp. no. 00144. I. Taxonomy, fermentation, isolation and physico-chemical properties.

    PubMed

    Ohtsu, Yoshihiro; Sasamura, Hiromi; Tanaka, Miho; Tsurumi, Yasuhisa; Yoshimura, Seiji; Takase, Shigehiro; Shibata, Toshihiro; Hino, Motohiro; Nakajima, Hidenori

    2005-07-01

    FR225654, a novel gluconeogenesis inhibitor, was isolated from the culture broth of Phoma sp. No. 00144 and purified by adsorptive resin and reverse-phase column chromatography. This compound is a potent inhibitor of gluconeogenesis and is a promising candidate of anti-diabetic agent.

  9. Bioassay Directed Isolation and Biological Evaluation of Compounds Isolated from Rubus fairholmianus Gard.

    PubMed Central

    Plackal George, Blassan; Thangaraj, Parimelazhagan; Sulaiman, Cheruthazhakkatt; Piramanayagam, Shanmughavel; Ramaswamy, Sathish Kumar

    2014-01-01

    The in vitro and in silico analysis of Rubus fairholmianus acetone extract for antioxidant, antiproliferative, and anti-inflammatory activity led to the isolation of six compounds. Amongst all the six isolated compounds tested, 1-(2-hydroxyphenyl)-4-methylpentan-1-one (compound 1) and 2-[(3-methylbutoxy) carbonyl] benzoic acid (compound 2) were found to be more active in inhibiting BRCA and COX target proteins, which also showed the better results for DPPH and ABTS radical scavenging assays. The promising results of this investigation emphasize the importance of using R. fairholmianus in the treatment of radical generated disorders mainly cancer and other inflammatory diseases. PMID:25254204

  10. Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh.

    PubMed

    Pant, Dipak Raj; Pant, Narayan Dutt; Saru, Dil Bahadur; Yadav, Uday Narayan; Khanal, Dharma Prasad

    2017-01-01

    The main aims of the study were to evaluate the phytochemical constituents and to study the antioxidant, antimicrobial, antidiabetic, anti-inflammatory, and analgesic activities of extracts from stem wood of Pterocarpus marsupium . Ethanol, acetone and isopropyl alcohol (IPA) (1:1) extracts of stem wood of P. marsupium were subjected to phytochemical screening and analysis of biological activities from August 2015 to January 2016. The antioxidant assay was carried out using 2, 2-diphenyl-1-picrylhydrazyl scavenging method, antimicrobial activity testing by cup diffusion method, antidiabetic test evaluation by oral glucose tolerance test in mice, anti-inflammatory effect was evaluated by hind paw edema method in mice and analgesic test evaluation by a chemical writhing method in mice. The results of the study revealed that P. marsupium is a source of various phytoconstituents such as alkaloids, glycosides, saponins, tannins, proteins, carbohydrates, cardiac glycosides, flavonoids, and terpenoids. Both the acetone and IPA extract as well as the ethanol extract of stem wood of P. marsupium exhibited a dose-dependent antioxidant activity. Acetone and IPA extract showed antibacterial activity against Gram-positive bacteria, while the ethanolic extract was found to possess antidiabetic activity. The antidiabetic activity of the extract was found to be time and dose-dependent. Similarly, the acetone and IPA extract was found to have anti-inflammatory activity, which was also time and dose-dependent. Furthermore, the ethanolic extract showed analgesic activity, which was dose-dependent. The ethanolic extract was found to be nontoxic. Thus, this study laid sufficient background for the further research on extracts from stem wood of P. marsupium for identification, subsequent purification and isolation of compounds having antibacterial, antidiabetic, anti-inflammatory, and analgesic activities.

  11. In vitro evaluation of anti-diabetic activity and cytotoxicity of chemically analysed Ocimum basilicum extracts.

    PubMed

    Kadan, Sleman; Saad, Bashar; Sasson, Yoel; Zaid, Hilal

    2016-04-01

    The aim of this study was to evaluate the role of glucose transporter-4 (GLUT4) in the anti-diabetic effects of methanol, hexane and dichloromethane extracts of the aerial parts of Ocimum basilicum (OB) and to analyze their phytochemical composition. Phytochemical analysis of the three extracts by GC/MS using the silylation derivatization technique revealed 53 compounds, 17 of them were found for the first time in OB. Cytotoxic and anti-diabetic properties of the extracts were evaluated using L6-GLUT4myc muscle cells stably expressing myc epitope at the exofacial loop (GLUT4). No cytotoxic effects were observed in treated cells up to 0.25 mg/ml extract as measured with MTT and LDH-leakage assays. GLUT4 translocation to the plasma membrane was elevated by 3.5 and 7 folds (-/+ insulin) after treatment with OB extracts for 20 h. Our findings suggest that the observed anti-diabetic properties of OB extracts are possibly mediated in part through one or more of the 17 new identified compound. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Indexing Natural Products for Their Potential Anti-Diabetic Activity: Filtering and Mapping Discriminative Physicochemical Properties.

    PubMed

    Zeidan, Mouhammad; Rayan, Mahmoud; Zeidan, Nuha; Falah, Mizied; Rayan, Anwar

    2017-09-17

    Diabetes mellitus (DM) poses a major health problem, for which there is an unmet need to develop novel drugs. The application of in silico techniques and optimization algorithms is instrumental to achieving this goal. A set of 97 approved anti-diabetic drugs, representing the active domain, and a set of 2892 natural products, representing the inactive domain, were used to construct predictive models and to index anti-diabetic bioactivity. Our recently-developed approach of 'iterative stochastic elimination' was utilized. This article describes a highly discriminative and robust model, with an area under the curve above 0.96. Using the indexing model and a mix ratio of 1:1000 (active/inactive), 65% of the anti-diabetic drugs in the sample were captured in the top 1% of the screened compounds, compared to 1% in the random model. Some of the natural products that scored highly as potential anti-diabetic drug candidates are disclosed. One of those natural products is caffeine, which is noted in the scientific literature as having the capability to decrease blood glucose levels. The other nine phytochemicals await evaluation in a wet lab for their anti-diabetic activity. The indexing model proposed herein is useful for the virtual screening of large chemical databases and for the construction of anti-diabetes focused libraries.

  13. An overview on antidiabetic medicinal plants having insulin mimetic property

    PubMed Central

    Patel, DK; Prasad, SK; Kumar, R; Hemalatha, S

    2012-01-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles. PMID:23569923

  14. Updates on Managing Type 2 Diabetes Mellitus with Natural Products: Towards Antidiabetic Drug Development.

    PubMed

    Alam, Fahmida; Islam, Md Asiful; Kamal, M A; Gan, Siew Hua

    2016-08-13

    Over the years, natural products have shown success as antidiabetics in vitro, in vivo and in clinical trials. Because natural product-derived drugs are more affordable and effective with fewer side-effects compared to conventional therapies, pharmaceutical research is increasingly leaning towards the discovery of new antidiabetic drugs from natural products targeting pathways or components associated with type 2 diabetes mellitus (T2DM) pathophysiology. However, the drug discovery process is very lengthy and costly with significant challenges. Therefore, various techniques are currently being developed for the preclinical research phase of drug discovery with the aim of drug development with less time and efforts from natural products. In this review, we have provided an update on natural products including fruits, vegetables, spices, nuts, beverages and mushrooms with potential antidiabetic activities from in vivo, in vitro and clinical studies. Synergistic interactions between natural products and antidiabetic drugs; and potential antidiabetic active compounds from natural products are also documented to pave the way for combination treatment and new drug discovery, respectively. Additionally, a brief idea of the drug discovery process along with the challenges that arise during drug development from natural products and the methods to conquer those challenges are discussed to create a more convenient future drug discovery process.

  15. Chemical Constituents Analysis and Antidiabetic Activity Validation of Four Fern Species from Taiwan

    PubMed Central

    Chen, Chen-Yu; Chiu, Fu-Yu; Lin, Yenshou; Huang, Wei-Jan; Hsieh, Po-Shiuan; Hsu, Feng-Lin

    2015-01-01

    Pterosins are abundant in ferns, and pterosin A was considered a novel activator of adenosine monophosphate-activated protein kinase, which is crucial for regulating blood glucose homeostasis. However, the distribution of pterosins in different species of ferns from various places in Taiwan is currently unclear. To address this question, the distribution of pterosins, glucose-uptake efficiency, and protective effects of pterosin A on β-cells were examined. Our results showed that three novel compounds, 13-chloro-spelosin 3-O-β-d-glucopyranoside (1), (3R)-Pterosin D 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (2), and (2R,3R)-Pterosin L 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (3), were isolated for the first time from four fern species (Ceratopteris thalictroides, Hypolepis punctata, Nephrolepis multiflora, and Pteridium revolutum) along with 27 known compounds. We also examined the distribution of these pterosin compounds in the mentioned fern species (except N. multiflora). Although all pterosin analogs exhibited the same effects in glucose uptake assays, pterosin A prevented cell death and reduced reactive oxygen species (ROS) production. This paper is the first report to provide new insights into the distribution of pterosins in ferns from Taiwan. The potential anti-diabetic activity of these novel phytocompounds warrants further functional studies. PMID:25622260

  16. Synthesis, pharmacological evaluation and molecular docking studies of pyrimidinedione based DPP-4 inhibitors as antidiabetic agents

    NASA Astrophysics Data System (ADS)

    Jha, Vibhu; Bhadoriya, Kamlendra Singh

    2018-04-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of newly developed antidiabetic drugs that bock DPP-4. DPP-4 is responsible for degradation of incretins harmones such as GLP-1 (Glucagon like Peptide) and GIP (Gastric inhibitory polypeptide) that maintain blood-glucose level. Pyrimidinedione based compounds were designed and synthesized for DPP-4 inhibitory activity. These heterocycles were designed by taking Alogliptin as a reference DPP-4 inhibitors and synthesized as N-methylated and N-benzylated pyrimidinediones. These compounds were subjected to DPP-4 assay, five out of nine synthesized compounds have shown in vitro DPP-4 inhibitory activity in significant range. Further, molecular docking studies of these compounds were performed on DPP-4 subunit and compared with natural DPP-4 inhibitors like Flavone, Resveratrol, Quercetin, Diprotin A. Docking studies have led to the conclusion that there are some identical amino acid interactions as Tyr 666 and Tyr 662, seen in both synthesized compounds and natural DPP-4 inhibitors. This study completely gives a good scope for further derivatisation and optimization of synthesized compounds to get clinical candidate as DPP-4 inhibitor for antidiabetic activity.

  17. Antidiabetic and antioxidant activities of Nypa fruticans Wurmb. vinegar sample from Malaysia.

    PubMed

    Yusoff, Nor Adlin; Yam, Mun Fei; Beh, Hooi Kheng; Abdul Razak, Khairul Niza; Widyawati, Tri; Mahmud, Roziahanim; Ahmad, Mariam; Asmawi, Mohd Zaini

    2015-08-01

    To study the antidiabetic and antioxidant activities of nipa palm vinegar (NPV) used in traditional Malay medicine for treating diabetes. NPV was extracted using liquid-liquid extraction method and the obtained samples were subjected to antidiabetic studies using normal and streptozotocin-induced diabetic rat models whereas antidoxidant activities were investigated via in vitro antioxidant tests namely 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzothiozoline-6-sulfonic acid free radicals scavenging activities and the reducing power assay. Single administration of NPV and its extracts were not effective in both normal and diabetic rats. In intraperitoneal glucose tolerance test, NPV and its aqueous extract showed significant blood glucose lowering effect. In the sub-acute study, compared with the diabetic control, aqueous extract of NPV showed the most notable blood glucose lowering effect (56.6%) and a significant improvement in serum insulin levels (79.8%, P < 0.05). To assess NPV's antioxidant activity, three in vitro antioxidant tests were employed: 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzothiozoline-6-sulfonic acid free radical-scavenging assays, and the reducing power assay. Ethyl acetate extract had the greatest antioxidant potential and content of phenolic and flavonoid compounds. A linear positive correlation between the antioxidant parameters was observed. Chemical profiling analysis of aqueous extract of NPV revealed the presence of acetic acid (35.25%), the main active constituent which significantly contributed to the observed antidiabetic activity. Aqueous extract of NPV possesses antihyperglycaemic activities comparable to the metformin, while the ethyl acetate extract precipitated significant antioxidant effects attributable to its high phenolic content. These findings suggest that antioxidant compounds of NPV do not contribute much towards the overall observed antidiabetic effect. Copyright © 2015 Hainan Medical

  18. Antidiabetic activity of polyherbal formulation in streptozotocin - nicotinamide induced diabetic wistar rats.

    PubMed

    Petchi, Rajendran Ramesh; Vijaya, Chockalingam; Parasuraman, Subramani

    2014-04-01

    Glycosmis pentaphylla, Tridax procumbens, and Mangifera indica are well-known plants available throughout India and they are commonly used for the treatment of various diseases including diabetes mellitus. The antidiabetic activity of the individual plant parts is well known, but the synergistic or combined effects are unclear. The concept of polyherbalism has been highlighted in Sharangdhar Samhita, an Ayurvedic literature dating back to 1300 AD. Polyherbal formulations enhance the therapeutic action and reduce the concentrations of single herbs, thereby reducing adverse events. The aim of the present study is to formulate a polyherbal formulation and evaluate its antidiabetic potential in animals. The polyherbal formulation was formulated using the ethanol extracts of the stem bark of G. pentaphylla, whole plant of T. procumbens, and leaves of M. indica. The polyherbal formulation contains the ethanol extracts of G. pentaphylla, T. procumbens, and M. indica in the ratio of 2:2:1. The quality of the finished product was evaluated as per the World Health Organization's guidelines for the quality control of herbal materials. The quality testing parameters of the polyherbal formulation were within the limits. Fingerprint analysis of the polyherbal formulation showed effective separation at 366 nm, and it revealed that the active compound present in the polyherbal formulation and the active compounds present in all the three extracts were the same. The acute toxicity studies of the polyherbal formulation did not show any toxic symptoms in doses up to 2000 mg/kg over 14 days. The oral antidiabetic activity of the polyherbal formulation (250 and 500 mg/kg) was screened against streptozotocin (50 mg/kg; i.p.) + nicotinamide (120 mg/kg; i.p.) induced diabetes mellitus in rats. The investigational drug was administered for 21 consecutive days, and the effect of the polyherbal formulation on blood glucose levels was studied at regular intervals. At the end of the study, the

  19. Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan

    NASA Astrophysics Data System (ADS)

    Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.

    2017-02-01

    Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  20. Antidiabetic phytoconstituents and their mode of action on metabolic pathways

    PubMed Central

    Bharti, Sudhanshu Kumar; Krishnan, Supriya; Kumar, Ashwini

    2018-01-01

    Diabetes Mellitus, characterized by persistent hyperglycaemia, is a heterogeneous group of disorders of multiple aetiologies. It affects the human body at multiple organ levels thus making it difficult to follow a particular line of the treatment protocol and requires a multimodal approach. The increasing medical burden on patients with diabetes-related complications results in an enormous economic burden, which could severely impair global economic growth in the near future. This shows that today’s healthcare system has conventionally been poorly equipped towards confronting the mounting impact of diabetes on a global scale and demands an urgent need for newer and better options. The overall challenge of this field of diabetes treatment is to identify the individualized factors that can lead to improved glycaemic control. Plants are traditionally used worldwide as remedies for diabetes healing. They synthesize a diverse array of biologically active compounds having antidiabetic properties. This review is an endeavour to document the present armamentarium of antidiabetic herbal drug discovery and developments, highlighting mechanism-based antidiabetic properties of over 300 different phytoconstituents of various chemical categories from about 100 different plants modulating different metabolic pathways such as glycolysis, Krebs cycle, gluconeogenesis, glycogen synthesis and degradation, cholesterol synthesis, carbohydrate metabolism as well as peroxisome proliferator activated receptor activation, dipeptidyl peptidase inhibition and free radical scavenging action. The aim is to provide a rich reservoir of pharmacologically established antidiabetic phytoconstituents with specific references to the novel, cost-effective interventions, which might be of relevance to other low-income and middle-income countries of the world. PMID:29492244

  1. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae).

    PubMed

    Raman, A; Lau, C

    1996-03-01

    Unripe fruit, seeds and aerial parts of Momordica charantia Linn. (Cucurbitaceae) have been used in various parts of the world to treat diabetes. Oral administration of the fruit juice or seed powder causes a reduction in fasting blood glucose and improves glucose tolerance in normal and diabetic animals and in humans. Animal and in vitro data support both insulin secretagogue and insulinomimetic activity of the fruit. However, enhanced insulin levels in vivo in response to its administration have not been observed. Although a wide range of compounds have been isolated from Momordica charantia, notably steroidal compounds and proteins, the orally active antidiabetic principle has not been adequately identified. A polypeptide, p-insulin, produces hypoglycaemic effects in humans and animals on subcutaneous injection, but oral activity is questionable. Other reported hypoglycaemic principles from Momordica charantia include the sterol glucoside mixture charantin (fruit) and the pyrimidine nucleoside vicine (seeds). However these are only effective at doses too high to account for all the activity of the plant extract. Principal toxicity of Momordica charantia in animals is to the liver and reproductive system. These effects have not been reported in humans despite widespread use of the fruit medicinally and as a vegetable. Copyright © 1996 Gustav Fischer Verlag · Struttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.

  2. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats

    PubMed Central

    Nugroho, Agung Endro; Andrie, Mohamad; Warditiani, Ni Kadek; Siswanto, Eka; Pramono, Suwidjiyo; Lukitaningsih, Endang

    2012-01-01

    Objectives: Andrographis paniculata (Burm. f.) Nees originates from India and grows widely in many areas in Southeast Asian countries. Andrographis paniculata (Burm. f.) Nees has shown an antidiabetic effect in type 1 DM rats. The present study investigates the purified extract of the plant and its active compound andrographolide for antidiabetic and antihyperlipidemic effects in high-fructose-fat-fed rats, a model of type 2 DM rats. Materials and Methods: Hyperglycemia in rats was induced by high-fructose-fat diet containing 36% fructose, 15% lard, and 5% egg yolks in 0.36 g/200 gb.wt. 55 days. The rats were treated with the extract or test compound on the 50th day. Antidiabetic activity was measured by estimating mainly the pre– and postprandial blood glucose levels and other parameters such as cholesterol, LDL, triglyceride, and body weight. Results: The purified extract and andrographolide significantly (P<0.05) decreased the levels of blood glucose, triglyceride, and LDL compared to controls. However, no changes were observed in serum cholesterol and rat body weight. Metformin also showed similar effects on these parameters. Conclusions: Andrographis paniculata (Burm. f.) Nees or its active compound andrographolide showed hypoglycemic and hypolipidemic effects in high-fat-fructose-fed rat. PMID:22701250

  3. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis.

    PubMed

    Pamunuwa, Geethi; Karunaratne, D Nedra; Waisundara, Viduranga Y

    2016-01-01

    This review discusses the antidiabetic activities of Scoparia dulcis as well as its antioxidant and anti-inflammatory properties in relation to the diabetes and its complications. Ethnomedical applications of the herb have been identified as treatment for jaundice, stomach problems, skin disease, fever, and kidney stones, reproductory issues, and piles. Evidence has been demonstrated through scientific studies as to the antidiabetic effects of crude extracts of S. dulcis as well as its bioactive constituents. The primary mechanisms of action of antidiabetic activity of the plant and its bioactive constituents are through α-glucosidase inhibition, curbing of PPAR-γ and increased secretion of insulin. Scoparic acid A, scoparic acid D, scutellarein, apigenin, luteolin, coixol, and glutinol are some of the compounds which have been identified as responsible for these mechanisms of action. S. dulcis has also been shown to exhibit analgesic, antimalarial, hepatoprotective, sedative, hypnotic, antiulcer, antisickling, and antimicrobial activities. Given this evidence, it may be concluded that S. dulcis could be promoted among the masses as an alternative and complementary therapy for diabetes, provided further scientific studies on the toxicological and pharmacological aspects are carried out through either in vivo or clinical means.

  4. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis

    PubMed Central

    Karunaratne, D. Nedra

    2016-01-01

    This review discusses the antidiabetic activities of Scoparia dulcis as well as its antioxidant and anti-inflammatory properties in relation to the diabetes and its complications. Ethnomedical applications of the herb have been identified as treatment for jaundice, stomach problems, skin disease, fever, and kidney stones, reproductory issues, and piles. Evidence has been demonstrated through scientific studies as to the antidiabetic effects of crude extracts of S. dulcis as well as its bioactive constituents. The primary mechanisms of action of antidiabetic activity of the plant and its bioactive constituents are through α-glucosidase inhibition, curbing of PPAR-γ and increased secretion of insulin. Scoparic acid A, scoparic acid D, scutellarein, apigenin, luteolin, coixol, and glutinol are some of the compounds which have been identified as responsible for these mechanisms of action. S. dulcis has also been shown to exhibit analgesic, antimalarial, hepatoprotective, sedative, hypnotic, antiulcer, antisickling, and antimicrobial activities. Given this evidence, it may be concluded that S. dulcis could be promoted among the masses as an alternative and complementary therapy for diabetes, provided further scientific studies on the toxicological and pharmacological aspects are carried out through either in vivo or clinical means. PMID:27594892

  5. Antidiabetic Effects of Tea.

    PubMed

    Fu, Qiu-Yue; Li, Qing-Sheng; Lin, Xiao-Ming; Qiao, Ru-Ying; Yang, Rui; Li, Xu-Min; Dong, Zhan-Bo; Xiang, Li-Ping; Zheng, Xin-Qiang; Lu, Jian-Liang; Yuan, Cong-Bo; Ye, Jian-Hui; Liang, Yue-Rong

    2017-05-20

    Diabetes mellitus (DM) is a chronic endocrine disease resulted from insulin secretory defect or insulin resistance and it is a leading cause of death around the world. The care of DM patients consumes a huge budget due to the high frequency of consultations and long hospitalizations, making DM a serious threat to both human health and global economies. Tea contains abundant polyphenols and caffeine which showed antidiabetic activity, so the development of antidiabetic medications from tea and its extracts is increasingly receiving attention. However, the results claiming an association between tea consumption and reduced DM risk are inconsistent. The advances in the epidemiologic evidence and the underlying antidiabetic mechanisms of tea are reviewed in this paper. The inconsistent results and the possible causes behind them are also discussed.

  6. Antidiabetic Activity of Polyherbal Formulation in Streptozotocin – Nicotinamide Induced Diabetic Wistar Rats

    PubMed Central

    Petchi, Rajendran Ramesh; Vijaya, Chockalingam; Parasuraman, Subramani

    2014-01-01

    Glycosmis pentaphylla, Tridax procumbens, and Mangifera indica are well-known plants available throughout India and they are commonly used for the treatment of various diseases including diabetes mellitus. The antidiabetic activity of the individual plant parts is well known, but the synergistic or combined effects are unclear. The concept of polyherbalism has been highlighted in Sharangdhar Samhita, an Ayurvedic literature dating back to 1300 AD. Polyherbal formulations enhance the therapeutic action and reduce the concentrations of single herbs, thereby reducing adverse events. The aim of the present study is to formulate a polyherbal formulation and evaluate its antidiabetic potential in animals. The polyherbal formulation was formulated using the ethanol extracts of the stem bark of G. pentaphylla, whole plant of T. procumbens, and leaves of M. indica. The polyherbal formulation contains the ethanol extracts of G. pentaphylla, T. procumbens, and M. indica in the ratio of 2:2:1. The quality of the finished product was evaluated as per the World Health Organization's guidelines for the quality control of herbal materials. The quality testing parameters of the polyherbal formulation were within the limits. Fingerprint analysis of the polyherbal formulation showed effective separation at 366 nm, and it revealed that the active compound present in the polyherbal formulation and the active compounds present in all the three extracts were the same. The acute toxicity studies of the polyherbal formulation did not show any toxic symptoms in doses up to 2000 mg/kg over 14 days. The oral antidiabetic activity of the polyherbal formulation (250 and 500 mg/kg) was screened against streptozotocin (50 mg/kg; i.p.) + nicotinamide (120 mg/kg; i.p.) induced diabetes mellitus in rats. The investigational drug was administered for 21 consecutive days, and the effect of the polyherbal formulation on blood glucose levels was studied at regular intervals. At the end of the study, the

  7. Identification of PPARgamma Partial Agonists of Natural Origin (II): In Silico Prediction in Natural Extracts with Known Antidiabetic Activity

    PubMed Central

    Guasch, Laura; Sala, Esther; Mulero, Miquel; Valls, Cristina; Salvadó, Maria Josepa; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2013-01-01

    Background Natural extracts have played an important role in the prevention and treatment of diseases and are important sources for drug discovery. However, to be effectively used in these processes, natural extracts must be characterized through the identification of their active compounds and their modes of action. Methodology/Principal Findings From an initial set of 29,779 natural products that are annotated with their natural source and using a previously developed virtual screening procedure (carefully validated experimentally), we have predicted as potential peroxisome proliferators-activated receptor gamma (PPARγ) partial agonists 12 molecules from 11 extracts known to have antidiabetic activity. Six of these molecules are similar to molecules with described antidiabetic activity but whose mechanism of action is unknown. Therefore, it is plausible that these 12 molecules could be the bioactive molecules responsible, at least in part, for the antidiabetic activity of the extracts containing them. In addition, we have also identified as potential PPARγ partial agonists 10 molecules from 16 plants with undescribed antidiabetic activity but that are related (i.e., they are from the same genus) to plants with known antidiabetic properties. None of the 22 molecules that we predict as PPARγ partial agonists show chemical similarity with a group of 211 known PPARγ partial agonists obtained from the literature. Conclusions/Significance Our results provide a new hypothesis about the active molecules of natural extracts with antidiabetic properties and their mode of action. We also suggest plants with undescribed antidiabetic activity that may contain PPARγ partial agonists. These plants represent a new source of potential antidiabetic extracts. Consequently, our work opens the door to the discovery of new antidiabetic extracts and molecules that can be of use, for instance, in the design of new antidiabetic drugs or functional foods focused towards the

  8. Antioxidant and α-glucosidase activities of benzoic acid derivate from the bark of Myristica fatua Houtt

    NASA Astrophysics Data System (ADS)

    Megawati, Darmawan, Akhmad; Fajriah, Sofa; Primahana, Gian; Dewi, Rizna Triana; Minarti, Meiliawati, Lia

    2017-11-01

    Myrictica fatua Houtt widely used in Indonesian as one of the traditional medicinal plants. Cancer and diabetic mellitus (DM) type 2 are two degenerative diseases caused by the presence of excessive free radicals in the body. Antioxidant and anti-diabetic active compounds were needed to reduce the risk of the diseases. One of the chemical compound groups that can be used as antioxidant and antidiabetic is phenolic compound. Isolation of the methanolic extract of the bark of M. fatua Houtt using chromatography methods led to the isolation of phenolic compound. Methyl 3,4-dihydroxybenzoate showed antioxidant and antidiabetic activities through DPPH free radicals scavenger and α-glucosidase inhibitions activities test showed IC50 value 7.96 and 7.68 ug / mL, respectively

  9. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    PubMed Central

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  10. Therapeutic potential of octyl gallate isolated from fruits of Terminalia bellerica in streptozotocin-induced diabetic rats.

    PubMed

    Latha, R Cecily Rosemary; Daisy, P

    2013-06-01

    Medicinal plants are a potential source of antidiabetic drugs. Terminalia bellerica Roxb. (Combretaceae) is used in Indian traditional systems of medicine to treat diabetes mellitus. The aim of this study was to isolate and identify antihyperglycemic principle(s) from the fruits of T. bellerica and assess the bioactivity in streptozotocin (STZ)-induced diabetic rats. Bioassay-guided fractionation was followed to isolate the active compound(s), structure was elucidated using (1)H and (13)C NMR, IR and mass spectrometry and administered intragastrically to diabetic Wistar rats at different doses (5, 10 and 20 mg/kg, body weight) for 28 d. Plasma glucose, insulin, C-peptide and other biochemical parameters were studied. Octyl gallate (OG) isolated first time from the fruit rind of T. bellerica significantly (p < 0.05) reduced plasma glucose to near normal values (108.47 ± 6.9 mg/dl) after 14 d at the dose of 20 mg/kg. In addition, OG significantly increased plasma insulin, C-peptide, total protein, albumin, tissue glycogen, body weight and markedly decreased serum total cholesterol, triglyceride, LDL-cholesterol, urea, uric acid and creatinine in diabetic rats. Also OG restored the altered regulatory enzymes of carbohydrate metabolism. OG might have augmented the secretion of insulin by the modulation of cAMP and intracellular calcium levels in the β cells of the pancreas. Our findings indicate that OG isolated first time from the fruit rind of T. bellerica has potential antidiabetic effect as it augments insulin secretion and normalizes the altered biochemical parameters in experimental diabetic rat models.

  11. New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities.

    PubMed

    Qin, Ning-Bo; Jia, Cui-Cui; Xu, Jun; Li, Da-Hong; Xu, Fan-Xing; Bai, Jiao; Li, Zhan-Lin; Hua, Hui-Ming

    2017-06-01

    Two new amide compounds, mariamides A and B (1-2), were obtained together with fourteen known compounds from the seeds of milk thistle (Silybum marianum). Their structures were established on the basis of extensive 1D and 2D NMR analyses, as well as HR-ESI-MS data. Most of the compounds showed significant antioxidant activities than positive control in ABTS and FRAP assays. However, only amide compounds 1-4 showed moderate DPPH radical scavenging activity and compounds 7 and 16 showed the most potent activity against DPPH. Most of the compounds showed moderate to stronger α-glucosidase inhibitory activities. Nevertheless, only flavonoids showed strong PTP1B inhibitory activities. These results indicate a use of milk thistle seed extracts as promising antioxidant and antidiabetic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Honey - A Novel Antidiabetic Agent

    PubMed Central

    Erejuwa, Omotayo O.; Sulaiman, Siti A.; Wahab, Mohd S. Ab

    2012-01-01

    Diabetes mellitus remains a burden worldwide in spite of the availability of numerous antidiabetic drugs. Honey is a natural substance produced by bees from nectar. Several evidence-based health benefits have been ascribed to honey in the recent years. In this review article, we highlight findings which demonstrate the beneficial or potential effects of honey in the gastrointestinal tract (GIT), on the gut microbiota, in the liver, in the pancreas and how these effects could improve glycemic control and metabolic derangements. In healthy subjects or patients with impaired glucose tolerance or diabetes mellitus, various studies revealed that honey reduced blood glucose or was more tolerable than most common sugars or sweeteners. Pre-clinical studies provided more convincing evidence in support of honey as a potential antidiabetic agent than clinical studies did. The not-too-impressive clinical data could mainly be attributed to poor study designs or due to the fact that the clinical studies were preliminary. Based on the key constituents of honey, the possible mechanisms of action of antidiabetic effect of honey are proposed. The paper also highlights the potential impacts and future perspectives on the use of honey as an antidiabetic agent. It makes recommendations for further clinical studies on the potential antidiabetic effect of honey. This review provides insight on the potential use of honey, especially as a complementary agent, in the management of diabetes mellitus. Hence, it is very important to have well-designed, randomized controlled clinical trials that investigate the reproducibility (or otherwise) of these experimental data in diabetic human subjects. PMID:22811614

  13. Metal based biologically active compounds: Design, synthesis, DNA binding and antidiabetic activity of 6-methyl-3-formyl chromone derived hydrazones and their metal (II) complexes.

    PubMed

    Philip, Jessica Elizabeth; Shahid, Muhammad; Prathapachandra Kurup, M R; Velayudhan, Mohanan Puzhavoorparambil

    2017-10-01

    Two chromone hydrazone ligands HL 1 and HL 2 were synthesized and characterized by elemental analyses, IR, 1 H NMR & 13 C NMR, electronic absorption and mass spectra. The reactions of the chromone hydrazones with transition metals such as Ni, Cu, and Zn (II) salts of acetate afforded mononuclear metal complexes. Characterization and structure elucidation of the prepared chromone hydrazone metal (II) complexes were done by elemental, IR, electronic, EPR spectra and thermo gravimetric analyses as well as conductivity and magnetic susceptibility measurements. The spectroscopic data showed that the ligand acts as a mono basic bidentate with coordination sites are azomethine nitrogen and hydrazonic oxygen, and they exhibited distorted geometry. The biological studies involved antidiabetic activity i.e. enzyme inhibition of α-amylase and α-glucosidase, Calf Thymus - DNA (CT-DNA) interaction and molecular docking. Potential capacity of synthesized compounds to inhibit the α-amylase and α-glucosidase activity was assayed whereas DNA interaction studies were carried out with the help UV-Vis absorption titration and viscosity method. The docking studies of chromone hydrazones show that they are minor groove binders. Complexes were found to be good DNA - intercalates. Chromone hydrazones and its transition metal complexes have shown comparable antidiabetic activity with a standard drug acarbose. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Phytochemicals and antidiabetic activity of Eusideroxylon zwageri stem bark collected from East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Kusuma, I. W.; Rahmini; Ramadhan, R.; Rahmawati, N.; Suwasono, R. A.; Sari, NM

    2018-04-01

    Eusideroxylon zwagery (Lauraceae), a tropical tree species known as ulin or borneo iron wood and traditionally used for the treatment of diabetes in the Ethnic of Kutai. Plant extract was prepared by maceration using ethanol. The plant extract was evaluated its DPPH and superoxide radicals scavenging activity, the inhibition on α-glucosidase and α-amylase activity as antidiabetic potential and the analysis of the total phenolic, total flavonoids and proanthocyanidin contents. The ethanolic extract of the stem bark was 8.62% on the dry weight basis. The IC50 values of antioxidant activity of the extract in DPPH and superoxide radical scavenging mechanisms were 44.90 µg/ml and 30.47 µg/ml. In antidiabetic assay, the E. zwageri stem bark extract showed IC50 value 58.45µg/ml in ɑ-glucosidase inhibition, and 9.04 µg/ml in ɑ-amylase inhibition. Quercetin, an antidiabetic activity-having flavonoid, displayed IC50 values 2.00 µg/ml and 4.04 µg/ml in ɑ-glucosidase and ɑ-amylase inhibitory assays. In phytochemical assay, the extract had 31.28 GAE/g extract (mg), 30.48 CE/g extract (mg) and 183.3 PE/g extract (mg) for the total phenolic, total flavonoid and total proanthocyanidin contents. The limited reports of E. zwageri indicated the needs to search the active compounds from plant as potential antidiabetic agents by considering plant conservation status.

  15. Garlic as an anti-diabetic agent: recent progress and patent reviews.

    PubMed

    Padiya, Raju; Banerjee, Sanjay K

    2013-08-01

    This article reviews recent literature on the usage and relevance of garlic and its bioactive components in controlling diabetes and diabetes-associated pathologies; and also updates recent patents on the subject. Antidiabetic effect of garlic is well documented even in ancient medical literature. Garlic and its active ingredients have been extensively studied for their antidiabetic efficacies in either experimentally induced or genetic animal models of diabetes. Human studies are also available where hypoglycemic effect of garlic was reported. The beneficial effects of garlic are mainly attributed to the presence of volatile sulfur compounds like alliin, allicin, diallyl disulfide, diallyl trisulfide, diallyl sulfide, S-allyl cysteine, ajoene and allyl mercaptan. Garlic and garlic extracts have been shown to be effective in reducing insulin resistance. Therefore, considering the importance of garlic in controlling diabetic complications, several preparations and food processes containing garlic have been patented. This review discusses some of the recent progresses made in this field and consolidates the results.

  16. In vitro antimicrobial activity of extracts and isolated compound from Dalbergia stipulacea Roxb. leaves

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Bhat, Tahir Ahmad; Singh, Rattan Deep

    2017-07-01

    The study was designed to examine the in vitro antimicrobial efficacy of extracts and isolated compound of Dalbergia stipulacea. Combined extracts (chloroform and methanol) of plant leaves fractionated with n-butanol loaded with column afforded a flavonoid glycoside compound identified as luteolin 4'-rutinoside. Different extracts and isolated compound exhibited pronounced antibacterial and antifungal varied activities against four bacteria (Clostridium acetobutylinium, Bacillus subtilis, Streptococcus mutans, and Pseudomonas sp.) and one fungus (Candida albicans) susceptibility were determined using disc diffusion method. The minimum inhibitory concentration (MIC) of extracts and isolated compounds was determined by broth dilution method. The maximum activity was shown by chloroform extract against C. albicans with a zone of inhibition of 17 mm and minimum activity was displayed by methanolic extract against Pseudomonas sp. with 5 mm. However, isolated compound has shown maximum activity against Pseudomonas sp. with 15 mm. The MIC values higher in methanol extract against Pseudomonas sp. and isolated compound shows good against Pseudomonas sp. and B. subtilis. Our findings indicate that plant could be used as a good antimicrobial agent in food, pharmaceutical and bio-pesticide industries.

  17. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  18. Antibacterial, anti-inflammatory and anti-oxidatant activities of various isolated compounds from Cratoxylum species.

    PubMed

    Rodanant, Pirasut; Boonnak, Nawong; Surarit, Rudee; Kuvatanasuchati, Jintakorn; Lertsooksawat, Wannee

    2017-05-01

    The objective of this study was to investigate the bioactivity of twenty-nine known isolated compounds from Cratoxylum species including three anthraquinones, four triterpenes, and twenty-two xanthones. All isolated compounds were subjected to antibacterial, anti-inflammatory and anti-oxidant activities. Cytotoxicity evaluations were performed by MTT assay. The anti-oxidatant activity was performed using DPPH assay. The anti-inflammatory activity was evaluated from the production of cytokines TNF-α and IL1-β using ELISA assay. Human gingival fibroblasts and monocytes could tolerate both anthraquinones and triterpenes. All isolated anthraquinones showed moderate-to-high antibacterial efficacy while compound A3 also demonstrated moderate anti-inflammatory effect. None of the isolated triterpenes, except for T1, inhibited the expression of TNF-α. A number of isolated xanthones was toxic to HGFs and monocytes. Compound X5, X14 and a 1:1 mixture of X5 and X6 showed comparative anti-inflammatory activity to dexamethasone. Several triterpene and xanthone compounds also expressed antibacterial effect against P. gingivalis. Some isolated xanthones exerted anti-oxidant activity comparable to ascorbic acid. Accordingly, selected pure compounds from plants of Cratoxylum genus might be of benefit in developing medications that are important in treating periodontal diseases.

  19. Antidiabetes and Anti-obesity Activity of Lagerstroemia speciosa

    PubMed Central

    Klein, Guy; Kim, Jaekyung; Himmeldirk, Klaus; Cao, Yanyan

    2007-01-01

    The leaves of Lagerstroemia speciosa (Lythraceae), a Southeast Asian tree more commonly known as banaba, have been traditionally consumed in various forms by Philippinos for treatment of diabetes and kidney related diseases. In the 1990s, the popularity of this herbal medicine began to attract the attention of scientists worldwide. Since then, researchers have conducted numerous in vitro and in vivo studies that consistently confirmed the antidiabetic activity of banaba. Scientists have identified different components of banaba to be responsible for its activity. Using tumor cells as a cell model, corosolic acid was isolated from the methanol extract of banaba and shown to be an active compound. More recently, a different cell model and the focus on the water soluble fraction of the extract led to the discovery of other compounds. The ellagitannin Lagerstroemin was identified as an effective component of the banaba extract responsible for the activity. In a different approach, using 3T3-L1 adipocytes as a cell model and a glucose uptake assay as the functional screening method, Chen et al. showed that the banaba water extract exhibited an insulin-like glucose transport inducing activity. Coupling HPLC fractionation with a glucose uptake assay, gallotannins were identified in the banaba extract as components responsible for the activity, not corosolic acid. Penta-O-galloyl-glucopyranose (PGG) was identified as the most potent gallotannin. A comparison of published data with results obtained for PGG indicates that PGG has a significantly higher glucose transport stimulatory activity than Lagerstroemin. Chen et al. have also shown that PGG exhibits anti-adipogenic properties in addition to stimulating the glucose uptake in adipocytes. The combination of glucose uptake and anti-adipogenesis activity is not found in the current insulin mimetic drugs and may indicate a great therapeutic potential of PGG. PMID:18227906

  20. Isolation of an iron-binding compound from Pseudomonas aeruginosa.

    PubMed Central

    Cox, C D; Graham, R

    1979-01-01

    An iron-binding compound was isolated from ethyl acetate extracts of culture supernatant fluids of Pseudomonas aeruginosa and was purified by successive paper and thin-layer chromatographic procedures. The purified compound was characterized by UV, visible, infrared, and fluorescence spectroscopy. The compound possesses phenolic characteristics, with little or no similarity to dihydroxybenzoates and no indication of a hydroxamate group. P. aeruginosa synthesized the compound during active growth in culture media containing less than 5 X 10(-6) M added FeCl3. When added to iron-poor cultures of P. aeruginosa, the compound promoted the growth of the bacterium and also reversed growth inhibition by the iron chelator ethylenediamine-di-(o-hydroxyphenylacetic acid). PMID:104968

  1. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium.

    PubMed

    Nair, P K Raveedran; Melnick, Steven J; Wnuk, Stanislaw F; Rapp, Magdalena; Escalon, Enrique; Ramachandran, Cheppail

    2009-04-21

    The fruits and seeds of Semecarpus anacardium are used widely for the treatment of human cancers and other diseases in the Ayurvedic and Sidda systems of medicine in India. The principal aim of this investigation was to isolate and characterize the anticancer compound from the kernel of Semecarpus anacardium nut. The bioactivity-tailored isolation and detailed chemical characterization were used to identify the active compound. Cytotoxicity, apoptosis, cell cycle arrest as well as synergism between the identified anticancer compound and doxorubicin in human tumor cell lines were analyzed. GC/MS, IR, proton NMR, carbon NMR and collisionally induced dissociation (CID) spectra analysis showed that the isolated active compound is 3-(8'(Z),11'(Z)-pentadecadienyl) catechol (SA-3C). SA-3C is cytotoxic to tumor cell lines with IC(50) values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. SA-3C induced apoptosis in human leukemia cell lines in a dose-dependent manner and showed synergistic cytotoxicity with doxorubicin. The cell cycle arrest induced by SA-3C at S- and G(2)/M-phases correlated with inhibition of checkpoint kinases. SA-3C isolated from the kernel of Semecarpus anacardium can be developed as an important anticancer agent for single agent and/or multiagent cancer therapy.

  2. Natural Phyto-Bioactive Compounds for the Treatment of Type 2 Diabetes: Inflammation as a Target

    PubMed Central

    Gothai, Sivapragasam; Ganesan, Palanivel; Park, Shin-Young; Fakurazi, Sharida; Choi, Dong-Kug; Arulselvan, Palanisamy

    2016-01-01

    Diabetes is a metabolic, endocrine disorder which is characterized by hyperglycemia and glucose intolerance due to insulin resistance. Extensive research has confirmed that inflammation is closely involved in the pathogenesis of diabetes and its complications. Patients with diabetes display typical features of an inflammatory process characterized by the presence of cytokines, immune cell infiltration, impaired function and tissue destruction. Numerous anti-diabetic drugs are often prescribed to diabetic patients, to reduce the risk of diabetes through modulation of inflammation. However, those anti-diabetic drugs are often not successful as a result of side effects; therefore, researchers are searching for efficient natural therapeutic targets with less or no side effects. Natural products’ derived bioactive molecules have been proven to improve insulin resistance and associated complications through suppression of inflammatory signaling pathways. In this review article, we described the extraction, isolation and identification of bioactive compounds and its molecular mechanisms in the prevention of diabetes associated complications. PMID:27527213

  3. Chlorogenic Acid and Rutin Play a Major Role in the In Vivo Anti-Diabetic Activity of Morus alba Leaf Extract on Type II Diabetic Rats

    PubMed Central

    Hunyadi, Attila; Martins, Ana; Hsieh, Tusty-Jiuan; Seres, Adrienn; Zupkó, István

    2012-01-01

    The leaves of the white mulberry tree (Morus alba L.) are used worldwide in traditional medicine as anti-diabetics. Various constituents of mulberry leaves, such as iminosugars (i.e. 1-deoxynojirimicin), flavonoids and related compounds, polysaccharides, glycopeptides and ecdysteroids, have been reported to exert anti-diabetic activity, but knowledge about their contribution to the overall activity is limited. The objective of the present work was to determine the in vivo anti-diabetic activity of an extract of mulberry leaves (MA), and to examine to what extent three major constituents, chlorogenic acid, rutin and isoquercitrin, might contribute to the observed activity. Quantities of the three constituents of interest in the extract were determined by using HPLC-DAD. Activity was determined by using a type II diabetic rat model. After 11 days of per os administration of 250 or 750 mg/kg of MA or the corresponding amounts of each individual compound, a dose dependent decrease of non-fasting blood glucose levels were found for MA, chlorogenic acid and rutin, but not for isoquercitrin. Based on our results, chlorogenic acid and rutin might account for as much as half the observed anti-diabetic activity of MA, hence they can be considered as excellent markers for the quality control of mulberry products. PMID:23185641

  4. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats.

    PubMed

    Latha, R Cecily Rosemary; Daisy, P

    2011-01-15

    Diabetes mellitus causes derangement of carbohydrate, protein and lipid metabolism which eventually leads to a number of secondary complications. Terminalia bellerica is widely used in Indian medicine to treat various diseases including diabetes. The present study was carried out to isolate and identify the putative antidiabetic compound from the fruit rind of T. bellerica and assess its chemico-biological interaction in experimental diabetic rat models. Bioassay guided fractionation was followed to isolate the active compound, structure was elucidated using (1)H and (13)C NMR, IR, UV and mass spectrometry and the compound was identified as gallic acid (GA). GA isolated from T. bellerica and synthetic GA was administered to streptozotocin (STZ)-induced diabetic male Wistar rats at different doses for 28 days. Plasma glucose level was significantly (p<0.05) reduced in a dose-dependent manner when compared to the control.Histopathological examination of the pancreatic sections showed regeneration of β-cells of islets of GA-treated rats when compared to untreated diabetic rats. In addition, oral administration of GA (20mg/kg bw) significantly decreased serum total cholesterol, triglyceride, LDL-cholesterol, urea, uric acid, creatinine and at the same time markedly increased plasma insulin, C-peptide and glucose tolerance level. Also GA restored the total protein, albumin and body weight of diabetic rats to near normal. Thus our findings indicate that gallic acid present in fruit rind of T. bellerica is the active principle responsible for the regeneration of β-cells and normalizing all the biochemical parameters related to the patho-biochemistry of diabetes mellitus and hence it could be used as a potent antidiabetic agent. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran.

    PubMed

    Wang, Wei; Guo, Jia; Zhang, Junnan; Peng, Jie; Liu, Tianxing; Xin, Zhihong

    2015-03-15

    The bound phenolic compounds in rice bran were released and extracted with ethyl acetate based on alkaline digestion. An investigation of the chemical constituents of EtOAc extract has led to the isolation of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine known compounds, cycloeucalenol cis-ferulate (1), cycloeucalenol trans-ferulate (2), trans-ferulic acid (3), trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6), methyl caffeate (7), vanillic aldehyde (9) and para-hydroxy benzaldehyde (10). The structures of these compounds were determined using a combination of spectroscopic methods and chemical analysis. Among the compounds isolated, compound 3, 5 and 7 exhibited strong DPPH and ABTS(+) radical scavenging activities, followed by compounds 4 and 6. Compound 1 and 2 showed potent DPPH and ABTS(+) radical scavenging activities, compound 8 displayed moderate antioxidant activity against ABTS(+) radical, whereas compound 9 and 10 showed weak antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparative Analysis of Chemical Profile, Antioxidant, In-vitro and In-vivo Antidiabetic Activities of Juniperus foetidissima Willd. and Juniperus sabina L.

    PubMed Central

    Orhan, Nilüfer; Deliorman Orhan, Didem; Gökbulut, Alper; Aslan, Mustafa; Ergun, Fatma

    2017-01-01

    Fruit and leaves of junipers are commonly used internally as tea and pounded fruits are eaten to lower blood glucose levels in Anatolia. Thus, we aimed to evaluate antidiabetic and antioxidant potential and the chemical profile of Juniperus foetidissima Willd. and J. sabina L. in this study. In-vitro antidiabetic activities of leaf and fruit extracts were examined by their inhibitory activity on α-glucosidase and α-amylase enzymes. Then, in-vivo antidiabetic activities of leaf and fruit extracts of Juniperus species were investigated on streptozotocin-induced diabetic rats. Additionally, antioxidant activities (phosphomolybdenum, ferric-reducing antioxidant power and ABTS radical scavenging activity assays), phytochemical screening tests and high performance liquid chromatography analysis (HPLC) were done. In-vitro enzyme inhibitory effects of the extracts were supported by the results of in-vivo antidiabetic activity studies. Phytochemical screening tests indicated presence of flavonoids, tannins, terpenoids and carbohydrates in the extracts. Amentoflavone was identified as the major compound in the extracts and content of amentoflavone was determined. As a result, Juniperus extracts and its active constituents might be beneficial for diabetes and its complications. PMID:29844777

  7. Alpha-Glucosidase Enzyme Biosensor for the Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants

    NASA Astrophysics Data System (ADS)

    Mohiuddin, M.; Arbain, D.; Islam, A. K. M. Shafiqul; Ahmad, M. S.; Ahmad, M. N.

    2016-02-01

    A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α- d-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau ( Ehretis laevis), Cemumar ( Micromelum pubescens), and Kedondong ( Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.

  8. Alpha-Glucosidase Enzyme Biosensor for the Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants.

    PubMed

    Mohiuddin, M; Arbain, D; Islam, A K M Shafiqul; Ahmad, M S; Ahmad, M N

    2016-12-01

    A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α-D-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau (Ehretis laevis), Cemumar (Micromelum pubescens), and Kedondong (Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.

  9. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.

    PubMed

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2015-01-01

    Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.

  10. Antioxidant activities of phenolic compounds isolated from the leaves of Macaranga allorobinsonii Whitmore

    NASA Astrophysics Data System (ADS)

    Darmawan, Akhmad; Fajriah, Sofa; Megawati, Dewijanti, Indah D.; Banjarnahor, Sofna; Yuliani, Tri; Hartati, Sri; Mozef, Tjandrawati; Effendi, Ruslan; Swandiny, Greesty F.

    2017-01-01

    Two secondary metabolites compounds, gallic acid (1) and methyl gallate (2) have been isolated from the ethyl acetate fraction of the methanol extract of the leaves of Macaranga allorobinsonii Whitmore. Isolation and purification of the secondary metabolite compounds conducted using chromatography methods, and structure elucidation determined based on NMR, mass spectroscopic data and compared with appropriate references.

  11. A REVIEW ON SOME ANTIDIABETIC PLANTS OF INDIA

    PubMed Central

    Rai, M.K.

    1995-01-01

    The control over diabetes mellitus depends upon the availability of insulin. Various efforts have been made in the recent past to control / check it. There is an increasing demand to use the natural antidiabetic agents. The literature pertaining to antidiabetic herbs is scattered. The present article is a conglomeration of available indigenous literature. It gives an additional information of list of antidiabetic plants which have not been discussed by Nagarajan et al76 and Handa et al45. It also presents some common plants used in diabetes, and the future of hypoglycaemic herbal drugs. PMID:22556695

  12. Spectral characterization and antibacterial activity of an isolated compound from Memecylon edule leaves.

    PubMed

    Srinivasan, R; Natarajan, D; Shivakumar, M S

    2017-03-01

    Memecylon edule Roxb. (Melastamataceae family) is a small evergreen tree reported as having ethnobotanical and pharmacological properties. The present study was aimed to investigate the spectral characterization and antibacterial activity of isolated pure compound (3β-hydroxyurs-12-en-28-oic acid (ursolic acid)) from Memecylon edule leaves by performing bioassay guided isolation method. The structure derivation of isolated compound was done by different spectral studies like UV, FT-IR, LC-MS, CHNS analysis, 1D ( 1 H, 13 C and DEPT-135) and 2D-NMR (HSQC and HMBC), respectively. About 99.29% purity of the compound was found in LC analysis. 1 H NMR spectrum results of compound shown 48 protons appear at different shielded region and most of the protons were present in aliphatic region. Whereas, 13 C NMR spectral data resulted seven methyl carbons (CH3), nine methylene carbons (CH2), seven methine carbons (CH) and six non-hydrogenated carbons (C) which are characteristic of pentacyclic triterpene. The isolated pure compound was tested for its antibacterial properties against targeted human pathogens by performing agar well diffusion, MIC and MBC assays and the result exhibits better growth inhibitory effects against S. epidermidis and S. pneumoniae, with the MIC values of 1.56 and 3.15μg/ml. The outcome of this study suggests that the bioactive compound is used for development of plant based drugs in pharmaceutical industry for combating microbial mediated diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Antimicrobial Activities of Extract and Compounds Isolated from Brillantaisia lamium

    PubMed Central

    Tamokou, Jean De Dieu; Kuiate, Jules Roger; Tene, Mathieu; Kenla Nwemeguela, Timothée Julbelin; Tane, Pierre

    2011-01-01

    Background: Brillantaisia lamium is an erect branched herb, which grows to a height of 1.50 m in moist tropical areas, both in full sun and partial shade. In , the aerial part of this plant is used in the treatment of various microbial infections such as skin diseases and infections of urinary tract. The aim of this study was to evaluate the antimicrobial activities of CH2Cl2: MeOH (1:1) extract, fractions and compounds from the aerial part of B. lamium. Methods: The plant was dried and extracted by maceration in CH2Cl2: MeOH (1:1 v/v). Structures of the compounds from the CH2Cl2: MeOH (1:1) soluble fraction were determined by spectroscopic methods and compared with published data. The broth micro dilution method was used to evaluate the antimicrobial activities against bacteria and fungal species. Results: Four known compounds: aurantiamide acetate (1), lupeol (2), lespedin (3), sitosterol 3-O-β-D-glucopyranoside (4) and a mixture of sterols: campesterol (5), stigmasterol (6) and β-sitosterol (7) were isolated from CH2Cl2: MeOH (1:1) extract of B. lamium aerial parts. The crude extract, fractions and isolated compounds exhibited both antibacterial and antifungal activities that varied with microorganism (MIC=6.25 – 1000 µg/ml). Compound 3 was the most active (MIC=6.25 – 100 µg/ml) while Staphylococcus aureus, Enterococcus faecalis, Candida tropicalis and Cryptococcus neoformans were the most sensitive to all the tested compounds. Conclusion: The overall results of this study indicate that the CH2Cl2: MeOH (1:1) extract and some of isolated compounds have interesting antimicrobial properties and can be used for the treatment of fungal and bacterial infections. PMID:23365474

  14. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea

    PubMed Central

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-01-01

    Four new sesquiterpene lactones, 8α-(2′Z-tigloyloxy)-hirsutinolide (1), 8α-(2′Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5–11), three norisoprenoids (12–14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1–16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. PMID:24370662

  15. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea.

    PubMed

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-03-01

    Four new sesquiterpene lactones, 8α-(2'Z-tigloyloxy)-hirsutinolide (1), 8α-(2'Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5-11), three norisoprenoids (12-14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1-16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties

    PubMed Central

    Graf, Brittany L.; Poulev, Alexander; Kuhn, Peter; Grace, Mary H.; Lila, Mary Ann; Raskin, Ilya

    2014-01-01

    Quinoa (Chenopodium quinoa Willd.) contains high levels of biologically active phytoecdysteroids, which have been implicated in plant defense from insects, and have shown a range of beneficial pharmacological effects in mammals. We demonstrated that the most prevalent phytoecdysteroid, 20-hydroxyecdysone (20HE), was secreted (leached) from intact quinoa seeds into water during the initial stages of seed germination. Leaching efficiency was optimized by ethanol concentration (70% ethanol), temperature (80°C), time (4 h), and solvent ratio (5 ml/g seed). When compared to extraction of macerated seeds, the leaching procedure released essentially all the 20HE available in the seeds (491 μg/g seed). The optimized quinoa leachate (QL), containing 0.86% 20HE, 1.00% total phytoecdysteroids, 2.59% flavonoid glycosides, 11.9% oil, and 20.4% protein, significantly lowered fasting blood glucose in obese, hyperglycemic mice. Leaching effectively releases and concentrates bioactive phytochemicals from quinoa seeds, providing an efficient means to produce a food-grade mixture that may be useful for anti-diabetic applications. PMID:24912714

  17. Herbicidal activity of pure compound isolated from rhizosphere inhabiting Aspergillus flavus.

    PubMed

    Khattak, Saeed Ullah; Lutfullah, Ghosia; Iqbal, Zafar; Rehman, Irshad Ur; Ahmad, Jamshaid; Khan, Abid Ali

    2018-05-01

    In the quest for bioactive natural products of fungal origin, Aspergillus flavus was isolated from rhizosphere of Mentha piperita using Potato Dextrose Agar (PDA) and Czapec Yeast Broth (CYB) nutrient media for metabolites production. In total, three different metabolites were purified using HPLC/LCMS and the structures were established using 500 Varian NMR experiments. Further the isolated metabolites in different concentrations (10, 100, 1000 μg/mL) were tested for herbicidal activity using Completely Randomized design (CRD) against the seeds of Silybum marianum and Avena fatua which are major threats to wheat crop in Pakistan. Among the isolated metabolites, one compound was found active against the test weed species whose activity is reported in the present work. The chemical name of the compound is 2-(1, 4-dihydroxybutan-2-yl)-1, 3-dihydroxy-6, 8-dimethoxyanthracene-9, 10(4aH, 9aH)-dione with mass of 388. Results showed that all seeds germinated in control treatment; however, with the metabolite treated, the growth was retarded to different levels in all parts of the weeds. At a dose of 1000 μg/mL of the pure compound, 100% seeds of S. marianum and 60% seeds of A. fatua were inhibited. Interestingly, the pure compound exhibited less inhibition of 10% towards the seeds of common wheat (Triticum aestivum).

  18. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds

    PubMed Central

    Dhakal, Dipesh; Pokhrel, Anaya Raj; Shrestha, Biplav; Sohng, Jae Kyung

    2017-01-01

    Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications. PMID:28663748

  19. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis

    PubMed Central

    2010-01-01

    Background The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. Methods The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. Results The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. Conclusion This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds. PMID:20939907

  20. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Johann, Susana; Sá, Nívea P; Lima, Luciana A R S; Cisalpino, Patricia S; Cota, Betania B; Alves, Tânia M A; Siqueira, Ezequias P; Zani, Carlos L

    2010-10-12

    The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds.

  1. The Hypoglycemic, Hypolipidemic, and Anti-Diabetic Nephritic Activities of Zeaxanthin in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats.

    PubMed

    Kou, Ling; Du, Mingzhao; Zhang, Chaopu; Dai, Zhiyin; Li, Xuan; Zhang, Baohai

    2017-07-01

    Zeaxanthin (ZA), an important compound found in Lycium barbarum, shows various pharmacodynamic effects. In our present study, a high-fat, high-sucrose diet and streptozotocin (STZ)-induced diabetic rat model was used to investigate the antidiabetic activities of ZA. After a 4-week administration of 200 and 400 mg/kg of ZA and 100 mg/kg of metformin hydrochloride, various blood biochemical indexes were detected. ZA strongly normalized the reduced bodyweight and enhanced fasting blood glucose in diabetic rats. The positive data obtained from the oral glucose tolerance test further confirmed its antidiabetic effects. ZA displayed significant hypolipidemic activities indicated by its modulation of serum levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. The antidiabetic nephropathy of ZA was confirmed by its regulation of pathological kidney structures, urine levels of n-acetyl-β-d-glucosaminidase and albuminuria, and serum levels of urea nitrogen. ZA inhibited the serum levels of inflammatory factors including interleukin-2 (IL-2), IL-6, tumor necrosis factor-α, and nuclear factor kappa B, further confirming its renal protection. Moreover, the serum imbalances in superoxide dismutase, glutathione peroxidase, methane dicarboxylic aldehyde, and catalase were normalized by ZA, suggesting its antioxidant properties. Altogether, ZA produced hypoglycemic, hypolipidemic, and antidiabetic nephritic effects in a diet-STZ-induced diabetic rat model.

  2. Phytochemical screening and in-vitro antioxidant activity isolated bioactive compounds from Tridax procumbens Linn.

    PubMed

    Saxena, Manjusha; Mir, Abrar Hussain; Sharma, Manik; Malla, Mohd Yousu; Qureshi, Sumeerah; Mir, Mohd Iqbal; Chaturvedi, Yogesh

    2013-12-15

    Tridax procumbens L., Asteraceae, has been extensively used for various ailments in the Ayurvedic system of medicine. Previous studies have revealed remarkable phytoconstituents from Tridax procumbens L. with significant antioxidant activity. The aim of the present study is to measure the anti-DPPH activity of the purified isolated compounds from n butanol soluble part and ethyl acetate soluble part of successive methanolic extract of Tridax procumbens L. We thus quantified the total phenolic and total flavonoids in different purified isolated compounds, the whole of the tests were evaluated with a sample cone. of 100 microg mL(-1) and were determined spectrophotometrically using Folin-ciocaltue and AlCl3 reagents, respectively. DPPH (1,1-diphenyl, 2-picryl hydrazyl) assay was used to determine the in vitro antioxidant activity of different isolated compounds. Isolated compounds, one from ethyl acetate soluble part (EF-I) and one from n butanol soluble part (BF-II) were reported to possess a significant anti DPPH activity with lowest IC50 values 67.26 and 80.90 microg mL(-1), respectively while comparable to standard ascorbic acid with IC50 value of 59.62 microg mL(-1), due to the high concentration of phenols 146.4 microg mL(-1) from EF-I and 142.2 microg mL(-1) from BF-II and flavonoids 48 and 42.5 microg mL(-1) found in EF-I and BF-II isolated compounds, respectively.

  3. Anti-Diabetic Potential of Noni: The Yin and the Yang.

    PubMed

    Nerurkar, Pratibha V; Hwang, Phoebe W; Saksa, Erik

    2015-09-25

    Escalating trends of chronic diseases such as type-2 diabetes (T2D) have sparked a renewed interest in complementary and alternative medicine, including herbal products. Morinda citrifolia (noni) has been used for centuries by Pacific Islanders to treat various ailments. Commercial noni fruit juice has been marketed as a dietary supplement since 1996. In 2003, the European Commission approved Tahitian noni juice as a novel food by the Health and Consumer Protection Directorate General. Among noni's several health benefits, others and we have demonstrated the anti-diabetic effects of fermented noni fruit juice in animal models. Unfortunately, noni's exciting journey from Polynesian medicine to the research bench does not reach its final destination of successful clinical outcomes when translated into commercial products. Noni products are perceived to be safe due to their "natural" origin. However, inadequate evidence regarding bioactive compounds, molecular targets, mechanism of action, pharmacokinetics, long-term safety, effective dosages, and/or unanticipated side effects are major roadblocks to successful translation "from bench side to bedside". In this review we summarize the anti-diabetic potential of noni, differences between traditional and modern use of noni, along with beneficial clinical studies of noni products and challenges in clinical translation of noni's health benefits.

  4. Recommendations on the effect of antidiabetic drugs in bone.

    PubMed

    Rozas-Moreno, Pedro; Reyes-García, Rebeca; Jódar-Gimeno, Esteban; Varsavsky, Mariela; Luque-Fernández, Inés; Cortés-Berdonces, María; Muñoz-Torres, Manuel

    2017-03-01

    To provide recommendations on the effect of antidiabetic drugs on bone fragility to help select the most adequate antidiabetic treatment, especially in diabetic patients with high risk of fracture. Members of the Bone Metabolism Working Group of the Spanish Society of Endocrinology. The GRADE system (Grading of Recommendations, Assessment, Development, and Evaluation) was used to establish both the strength of recommendations and the quality of evidence. A systematic search was made in MEDLINE (Pubmed) using the following terms associated to the name of each antidiabetic drug: AND "osteoporosis", "fractures", "bone mineral density", "bone markers", "calciotropic hormones". Papers in English with publication date before 30 April 2016 were reviewed. Recommendations were jointly discussed by the Working Group. The document summaries the data on the potential effects of antidiabetic drugs on bone metabolism and fracture risk. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects.

    PubMed

    Pereira, Carla; Barros, Lillian; Ferreira, Isabel C F R

    2016-03-15

    The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals. © 2015 Society of Chemical Industry.

  6. Leishmanicidal compounds of Nectria pseudotrichia, an endophytic fungus isolated from the plant Caesalpinia echinata (Brazilwood).

    PubMed

    Cota, Betania Barros; Tunes, Luiza Guimarães; Maia, Daniela Nabak Bueno; Ramos, Jonas Pereira; Oliveira, Djalma Menezes de; Kohlhoff, Markus; Alves, Tânia Maria de Almeida; Souza-Fagundes, Elaine Maria; Campos, Fernanda Fraga; Zani, Carlos Leomar

    2018-02-01

    BACKGROUND In a screen of extracts from plants and fungi to detect antileishmanial activity, we found that the ethyl acetate extract of the fungus Nectria pseudotrichia, isolated from the tree Caesalpinia echinata (Brazilwood), is a promising source of bioactive compounds. OBJECTIVES The aims of this study were to isolate and determine the chemical structures of the compounds responsible for the antileishmanial activity of the organic extract from N. pseudotrichia. METHODS Compounds were isolated by chromatographic fractionation using semi-preparative high-performance liquid chromatography, and their chemical structures were determined by analytical and spectral data and by comparison with published data. The antileishmanial activity of the isolated compounds was evaluated in intracellular amastigote forms of Leishmania (Viannia) braziliensis expressing firefly luciferase as reporter gene, and cytotoxicity was determined in Vero and THP-1 mammalian cell lines by MTT assay. FINDINGS Fractionation of the extract yielded seven compounds: 10-acetyl trichoderonic acid A (1), 6'-acetoxy-piliformic acid (2), 5',6'-dehydropiliformic acid (3), piliformic acid (4), hydroheptelidic acid (5), xylaric acid D (6), and cytochalasin D (7). Compounds 1, 2 and 3 are reported here for the first time. Compounds 1, 2, and 5 were more active, with IC50 values of 21.4, 28.3, and 24.8 µM, respectively, and showed low toxicity to Vero and THP-1 cells. MAIN CONCLUSIONS N. pseudotrichia produces secondary metabolites that are more toxic to intracellular amastigote forms of L. (V.) braziliensis than to mammalian cells.

  7. Proposed anti-HSV compounds isolated from Simira species.

    PubMed

    Cavalcanti, Jessica F; de Araujo, Marcelo F; Gonçalves, Priscila B; Romeiro, Nelilma C; Villela Romanos, Maria T; Curcino Vieira, Ivo J; Braz-Filho, Raimundo; de Carvalho, Mário G; Sanches, Mirza N G

    2017-09-19

    Secondary metabolites isolated from Simira eleiezeriana and Simira glaziovii were evaluated against herpes simplex virus (HSV-1) and (HSV-2). The 50% effective concentrations values (EC 50 ) were calculated from the dose-response curve and the selectivity index (SI) against the virus. The physicochemical data LogP, (PSA), (NRB), (HBA) and (HBD) were obtained using Marvin Sketch. Among the tested compounds, conipheraldeyde, harman and simirane A showed better results with EC 50 6.39; 4.90; 4.61 µg/mL and SI 78.3; 11.8; 7.01, respectively, for HSV-1, and EC 50 41.2; 71.8; 3.73 µg/mL and SI 12.1; 24.7; 8.7, respectively, for HSV-2. The percentage of inhibition (PI) obtained for HSV-1 were higher than 60%, and for HSV-2 these compounds showed PI > 90%. The physical chemical data showed that the most active compounds satisfy the attributes for drugs with good oral bioavailability.

  8. Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq.

    PubMed

    Al-Bayati, Firas A

    2009-06-12

    Mentha longifolia L. (Lamiaceae) leaves have been traditionally implemented in the treatment of minor sore throat and minor mouth or throat irritation by the indigenous people of Iraq, although the compounds responsible for the medicinal properties have not been identified. In the present study, an antimicrobial compound was isolated and characterized, and its biological activity was assessed. The compound was isolated and characterized from the extracted essential oil using different spectral techniques: TLC, FTIR spectra and HPLC. Antimicrobial activity of the compound was assessed using both disc diffusion and microdilution method in 96 multi-well microtiter plates. A known compound was isolated from the essential oil of the plant and was identified as (-) menthol. The isolated compound was investigated for its antimicrobial activity against seven selected pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Streptococcus mutans, Streptococcus faecalis, Streptococcus pyogenis, Lactobacillus acidophilus, Pseudomonas aeruginosa and the yeast Candida albicans. Menthol at different concentrations (1:1, 1:5, 1:10, 1:20) was active against all tested bacteria except for P. aeruginosa, and the highest inhibitory effect was observed against S. mutans (zone of inhibition: 25.3 mm) using the disc diffusion method. Minimal inhibitory concentration MIC values ranged from 15.6-125.0 microg/ml, and the most promising results were observed against S. aureus and S. mutans (MIC 15.6 microg/ml) while, S. faecalis, S. pyogenis and L. acidophilus ranked next (MIC 31.2 microg/ml). Furthermore, menthol achieved considerable antifungal activity against the yeast C. albicans (zone of inhibition range: 7.1-18.5 mm; MIC: 125.0). The isolation of an antimicrobial compound from M. longifolia leaves validates the use of this plant in the treatment of minor sore throat and minor mouth or throat irritation.

  9. Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq

    PubMed Central

    Al-Bayati, Firas A

    2009-01-01

    Background Mentha longifolia L. (Lamiaceae) leaves have been traditionally implemented in the treatment of minor sore throat and minor mouth or throat irritation by the indigenous people of Iraq, although the compounds responsible for the medicinal properties have not been identified. In the present study, an antimicrobial compound was isolated and characterized, and its biological activity was assessed. Methods The compound was isolated and characterized from the extracted essential oil using different spectral techniques: TLC, FTIR spectra and HPLC. Antimicrobial activity of the compound was assessed using both disc diffusion and microdilution method in 96 multi-well microtiter plates. Results A known compound was isolated from the essential oil of the plant and was identified as (-) menthol. The isolated compound was investigated for its antimicrobial activity against seven selected pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Streptococcus mutans, Streptococcus faecalis, Streptococcus pyogenis, Lactobacillus acidophilus, Pseudomonas aeruginosa and the yeast Candida albicans. Menthol at different concentrations (1:1, 1:5, 1:10, 1:20) was active against all tested bacteria except for P. aeruginosa, and the highest inhibitory effect was observed against S. mutans (zone of inhibition: 25.3 mm) using the disc diffusion method. Minimal inhibitory concentration MIC values ranged from 15.6–125.0 μg/ml, and the most promising results were observed against S. aureus and S. mutans (MIC 15.6 μg/ml) while, S. faecalis, S. pyogenis and L. acidophilus ranked next (MIC 31.2 μg/ml). Furthermore, menthol achieved considerable antifungal activity against the yeast C. albicans (zone of inhibition range: 7.1–18.5 mm; MIC: 125.0). Conclusion The isolation of an antimicrobial compound from M. longifolia leaves validates the use of this plant in the treatment of minor sore throat and minor mouth or throat irritation. PMID:19523224

  10. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  11. Leishmanicidal compounds of Nectria pseudotrichia, an endophytic fungus isolated from the plant Caesalpinia echinata (Brazilwood)

    PubMed Central

    Cota, Betania Barros; Tunes, Luiza Guimarães; Maia, Daniela Nabak Bueno; Ramos, Jonas Pereira; de Oliveira, Djalma Menezes; Kohlhoff, Markus; Alves, Tânia Maria de Almeida; Souza-Fagundes, Elaine Maria; Campos, Fernanda Fraga; Zani, Carlos Leomar

    2018-01-01

    BACKGROUND In a screen of extracts from plants and fungi to detect antileishmanial activity, we found that the ethyl acetate extract of the fungus Nectria pseudotrichia, isolated from the tree Caesalpinia echinata (Brazilwood), is a promising source of bioactive compounds. OBJECTIVES The aims of this study were to isolate and determine the chemical structures of the compounds responsible for the antileishmanial activity of the organic extract from N. pseudotrichia. METHODS Compounds were isolated by chromatographic fractionation using semi-preparative high-performance liquid chromatography, and their chemical structures were determined by analytical and spectral data and by comparison with published data. The antileishmanial activity of the isolated compounds was evaluated in intracellular amastigote forms of Leishmania (Viannia) braziliensis expressing firefly luciferase as reporter gene, and cytotoxicity was determined in Vero and THP-1 mammalian cell lines by MTT assay. FINDINGS Fractionation of the extract yielded seven compounds: 10-acetyl trichoderonic acid A (1), 6′-acetoxy-piliformic acid (2), 5′,6′-dehydropiliformic acid (3), piliformic acid (4), hydroheptelidic acid (5), xylaric acid D (6), and cytochalasin D (7). Compounds 1, 2 and 3 are reported here for the first time. Compounds 1, 2, and 5 were more active, with IC50 values of 21.4, 28.3, and 24.8 µM, respectively, and showed low toxicity to Vero and THP-1 cells. MAIN CONCLUSIONS N. pseudotrichia produces secondary metabolites that are more toxic to intracellular amastigote forms of L. (V.) braziliensis than to mammalian cells. PMID:29236928

  12. Detection of isolated cerebrovascular beta-amyloid with Pittsburgh compound B.

    PubMed

    Greenberg, Steven M; Grabowski, Thomas; Gurol, M Edip; Skehan, Maureen E; Nandigam, R N Kaveer; Becker, John A; Garcia-Alloza, Monica; Prada, Claudia; Frosch, Matthew P; Rosand, Jonathan; Viswanathan, Anand; Smith, Eric E; Johnson, Keith A

    2008-11-01

    Imaging of cerebrovascular beta-amyloid (cerebral amyloid angiopathy) is complicated by the nearly universal overlap of this pathology with Alzheimer's pathology. We performed positron emission tomographic imaging with Pittsburgh Compound B on 42-year-old man with early manifestations of Iowa-type hereditary cerebral amyloid angiopathy, a form of the disorder with little or no plaque deposits of fibrillar beta-amyloid. The results demonstrated increased Pittsburgh Compound B retention selectively in occipital cortex, sparing regions typically labeled in Alzheimer's disease. These results offer compelling evidence that Pittsburgh Compound B positron emission tomography can noninvasively detect isolated cerebral amyloid angiopathy before overt signs of tissue damage such as hemorrhage or white matter lesions.

  13. New cytotoxic and anti-inflammatory compounds isolated from Morus alba L.

    PubMed

    Qin, Jing; Fan, Min; He, Juan; Wu, Xing-De; Peng, Li-Yan; Su, Jia; Cheng, Xiao; Li, Yan; Kong, Ling-Mei; Li, Rong-Tao; Zhao, Qin-Shi

    2015-01-01

    Six Diels-Alder adducts (1-6) and nine prenylated flavanones (7-15) were isolated from the root bark of Morus alba L. Among them, soroceal B (1) and sanggenol Q (7) were new compounds. Their structures were elucidated on the basis of extensive spectroscopic methods, including 1D and 2D NMR techniques. Compounds 1-3, 9, 10, 12, 13 and 15 exhibited cytotoxic activity against five human tumour lines and compound 2 inhibited significantly selective cytotoxic activities towards HL-60 and AGS cells with IC50 of 3.4 and 3.6 μM. Compounds 3, 5, 9 and 12 exhibited moderate inhibitory activity against nitric oxide production in LPS-activated RAW264.7.

  14. Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial

    NASA Astrophysics Data System (ADS)

    Prasetya, A. T.; Mursiti, S.; Maryan, S.; Jati, N. K.

    2018-04-01

    Extraction and isolation of papaya seeds and leaves (Carica papaya L) has been performed using n-hexane and ethanol solvents. Further isolation of the extract obtained using ethyl acetate and diethyl ether solvents. The result of the phytochemical test of papaya extract obtained by mixture of an active compound of flavonoids, alkaloids, tannins, steroids, and saponins. Ethyl acetate isolates containing only flavonoids and diethyl ether isolates contain only alkaloids. Extracts and isolates from papaya plants had gram-positive antibacterial activity greater than the gram-negative bacteria, but both did not have antifungal activity. Papaya extracts have greater antibacterial activity than flavonoid isolates and alkaloid isolates. Strong antibacterial inhibitory sequences are extracts of papaya plants, flavonoid isolates, and alkaloid isolates.

  15. Therapeutic Phytogenic Compounds for Obesity and Diabetes

    PubMed Central

    Jung, Hee Soong; Lim, Yun; Kim, Eun-Kyoung

    2014-01-01

    Natural compounds have been used to develop drugs for many decades. Vast diversities and minimum side effects make natural compounds a good source for drug development. However, the composition and concentrations of natural compounds can vary. Despite this inconsistency, half of the Food and Drug Administration (FDA)-approved pharmaceuticals are natural compounds or their derivatives. Therefore, it is essential to continuously investigate natural compounds as sources of new pharmaceuticals. This review provides comprehensive information and analysis on natural compounds from plants (phytogenic compounds) that may serve as anti-obesity and/or anti-diabetes therapeutics. Our growing understanding and further exploration of the mechanisms of action of the phytogenic compounds may afford opportunities for development of therapeutic interventions in metabolic diseases. PMID:25421245

  16. Isolation and identification of antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L.

    PubMed

    Sufian, Adila S; Ramasamy, Kalavathy; Ahmat, Norizan; Zakaria, Zainul A; Yusof, M Izwan M

    2013-03-07

    Muntingia calabura (Elaeocarpaceae) is one of the most common roadside trees in Malaysia. Its leaves, barks, flowers and roots have been used as a folk remedy for the treatment of fever, incipient cold, liver disease, as well as an antiseptic agent in Southeast Asia. The aim of this study is to isolate and identify the antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L. Antibacterial and cytotoxic activities were determined by micro-broth dilution and MTT assays, respectively. Seven fractions (F1-F7), three flavones and a chalcone were isolated from the active EtOAc extract using bioassay-guided screening. The structures of four compounds were elucidated by spectroscopic methods and compared with published data. The compounds were further tested for their antibacterial and cytotoxic activities. Three flavones and a chalcone [5,7-dihydroxy-3,8-dimethoxyflavone (1), 2',4'-dihydroxychalcone (2), 5-hydroxy-3,7-dimethoxyflavone (3) and 3,5,7-trihydroxy-8-methoxyflavone (4)] were isolated from the active fraction F5 of EtOAc extract. Compounds 1 and 3 were isolated for the first time from Muntingia calabura L. Antibacterial activity indicates that compound 2 exhibited the most significant activity with MIC value of 50 μg/mL and 100 μg/mL against MSSA and MRSA, respectively. Cytotoxic activity indicates that compounds 2 and 3 exhibited very strong activity against HL60 with IC50 values of 3.43 μg/mL and 3.34 μg/mL, respectively. The antibacterial activity of the leaves of Muntingia calabura L. is ascribable to the active compound 2 while the cytotoxic activity is ascribable to the active compounds 2 and 3. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Apoptosis mediated anti-proliferative effect of compound isolated from Cassia auriculata leaves against human colon cancer cell line

    NASA Astrophysics Data System (ADS)

    Esakkirajan, M.; Prabhu, N. M.; Manikandan, R.; Beulaja, M.; Prabhu, D.; Govindaraju, K.; Thiagarajan, R.; Arulvasu, C.; Dhanasekaran, G.; Dinesh, D.; Babu, G.

    2014-06-01

    A compound was isolated from Cassia auriculata leaves and characterized by high-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LC-MS), UV-vis spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). The in vitro anticancer effect of the compound isolated from C. auriculata was evaluated in human colon cancer cells HCT 15 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cytotoxicity, nuclear morphology analysis and measurement of lactate dehydrogenase. The isolated compound 4-(2,5 dichlorobenzyl)-2,3,4,5,6,7 hexahydro7(4 methoxyphenyl)benzo[h][1,4,7] triazecin8(1H)-one showed 50% inhibition of HCT 15 cells when tested at 20 μg/ml after 24 h incubation. Cytotoxicity, nuclear morphology and lactate dehydrogenase assays clearly show potent anticancer activity of the isolated compound against colon cancer. Thus, the in vitro findings suggest that the compound isolated from C. auriculata leaves have potent anti-cancer properties with possible clinical applications.

  18. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage.

    PubMed

    Haakensen, Monique; Vickers, David M; Ziola, Barry

    2009-09-07

    Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol). Use of antimicrobial compounds (e.g., hop-compounds, Penicillin) by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Lactic acid bacteria susceptibility test broth medium (LSM) used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  19. Biospectroscopy for studying the influences of anti-diabetic metals (V, Cr, Mo, and W) to the insulin signaling pathway

    NASA Astrophysics Data System (ADS)

    Safitri, Anna; Levina, Aviva; Lee, Joonsup; Carter, Elizabeth A.; Lay, Peter A.

    2017-03-01

    The prevalence of diabetes, particularly with respect to type 2 diabetes, has reached epidemic proportions and continues to grow worldwide. One of the potential therapeutic targets in the treatment of type 2 diabetes involves the role of protein tyrosine phosphatases in the negative regulation of insulin signaling. The complexes of V(V/IV), Cr(III), W(VI), and Mo(VI), have all been proposed as possible drugs in the treatment of diabetes mellitus. Anti-diabetic activities of V(V/IV), Cr(III), Mo(VI), and W(VI) compounds are likely to be based on similar mechanisms, which involve phosphorylation/dephosphorylation reactions in the glucose uptake and metabolism. In order to clearly understand biological activities and phosphorylation/dephosphorylation reactions involved in anti-diabetic actions of Cr(III), V(V/IV), Mo(VI), and W(VI) complexes, the current research involves the use of cultured insulin-sensitive cells treated with these compounds. These reactions were investigated through vibrational spectroscopy. Protein phosphorylation/dephosphorylation induced conformational changes in secondary protein structure from α-helix to β-sheet, and these changes were detected by the IR spectra, which showed changes in the wavenumber and intensities of signals within the composite protein amide I band.

  20. Evaluation of antioxidative and antidiabetic activity of bark of holarrhena pubescens wall.

    PubMed

    Bhusal, Anup; Jamarkattel, Nirmala; Shrestha, Aasmin; Lamsal, Nisha Kiran; Shakya, Sangam; Rajbhandari, Sneha

    2014-09-01

    The objectives of the study are to screen out various phytochemicals and to evaluate the antioxidant and antidiabetic potential of the stem bark of Holarrhena pubescens Wall (Holarrhena antidysenterica). The antioxidant activity was determined by the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity where ascorbic acid was taken as positive control. The antioxidant property was later exploited and the methanolic extract of plant was tested for antihyperglycemic activity in glucose overloaded hyperglycemic mice. The extract was tested for its hypoglycemic activity at two-dose levels, 250 and 500 mg/kg respectively where Glipizide 5 mg/kg was taken as standard reference drug. All results are presented as mean ± SD (Standard Deviation). Significant differences between experimental groups were determined by Student's t-test. The methanolic and water extract showed strong antioxidant activity with inhibition of more than 90% DPPH free radicals at the concentration of 100μg/mL. The hypoglycemic activity of methanolic extract on glucose tolerance test were significant (p <0.05) for the effects of 500 mg/kg after 120 min of treatment and (p <0.01) for 250 mg/kg of extract after half hour of treatment compared to control. The presence of flavonoides, phenolic compounds suggested that they may be partially responsible for antioxidant and antidiabetic activity.

  1. Phytochemical Compositions and In vitro Assessments of Antioxidant and Antidiabetic Potentials of Fractions from Ehretia cymosa Thonn.

    PubMed Central

    Ogundajo, Akintayo; Ashafa, Anofi Tom

    2017-01-01

    Background: Ehretia cymosa Thonn. is a popular medicinal plant used in different parts of West Africa for the treatment of various ailments including diabetes mellitus. Objective: The current study investigates bioactive constituents and in vitro antioxidant and antidiabetic potentials of fractions from extract of E. cymosa. Materials and Methods: Phytochemical investigation and antioxidant assays were carried out using standard procedures. Antidiabetic potential was assessed by evaluating the inhibitory effects of the fractions on the activities of α-amylase and α-glucosidase, while bioactive constituent's identification was carried out using gas chromatography-mass spectrometric (GC-MS) analysis. Results: The phytochemistry tests of the fractions revealed the presence of tannins, phenols, flavonoids, steroids, terpene, alkaloid, and cardiac glycosides. Methanol fraction shows higher phenolic (27.44 mg gallic acid/g) and flavonoid (235.31 mg quercetin/g) contents, while ethyl acetate fraction revealed higher proanthocyanidins (28.31 mg catechin/g). Methanol fraction displayed higher (P < 0.05) 1,1-diphenyl-2-picryl-hydrazyl (0.47 mg/mL), 2,2-azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid (0.49 mg/mL), and hydroxyl radical (0.55 mg/mL) scavenging activities, while ethyl acetate exhibited strong metal chelating (0.61 mg/mL) and superoxide anion (1.68 mg/mL) scavenging activity. Methanol and ethyl acetate fractions displayed higher inhibition (P < 0.05) against α-glucosidase (0.60 mg/mL) and α-amylase (2.11 mg/mL), respectively. Methanol fraction also inhibited α-amylase and α-glucosidase in competitive and noncompetitive modes, respectively. The GC-MS chromatogram of the methanol fraction revealed 24 compounds, which include phytol (1.78%), stearic acid (1.02%), and 2-hexadecyloxirane (34.18%), which are known antidiabetic and antioxidant agents. Conclusion: The results indicate E. cymosa leaves as source of active phytochemicals with therapeutic

  2. Phytochemical Compositions and In vitro Assessments of Antioxidant and Antidiabetic Potentials of Fractions from Ehretia cymosa Thonn.

    PubMed

    Ogundajo, Akintayo; Ashafa, Anofi Tom

    2017-10-01

    Ehretia cymosa Thonn. is a popular medicinal plant used in different parts of West Africa for the treatment of various ailments including diabetes mellitus. The current study investigates bioactive constituents and in vitro antioxidant and antidiabetic potentials of fractions from extract of E. cymosa . Phytochemical investigation and antioxidant assays were carried out using standard procedures. Antidiabetic potential was assessed by evaluating the inhibitory effects of the fractions on the activities of α-amylase and α-glucosidase, while bioactive constituent's identification was carried out using gas chromatography-mass spectrometric (GC-MS) analysis. The phytochemistry tests of the fractions revealed the presence of tannins, phenols, flavonoids, steroids, terpene, alkaloid, and cardiac glycosides. Methanol fraction shows higher phenolic (27.44 mg gallic acid/g) and flavonoid (235.31 mg quercetin/g) contents, while ethyl acetate fraction revealed higher proanthocyanidins (28.31 mg catechin/g). Methanol fraction displayed higher ( P < 0.05) 1,1-diphenyl-2-picryl-hydrazyl (0.47 mg/mL), 2,2-azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid (0.49 mg/mL), and hydroxyl radical (0.55 mg/mL) scavenging activities, while ethyl acetate exhibited strong metal chelating (0.61 mg/mL) and superoxide anion (1.68 mg/mL) scavenging activity. Methanol and ethyl acetate fractions displayed higher inhibition ( P < 0.05) against α-glucosidase (0.60 mg/mL) and α-amylase (2.11 mg/mL), respectively. Methanol fraction also inhibited α-amylase and α-glucosidase in competitive and noncompetitive modes, respectively. The GC-MS chromatogram of the methanol fraction revealed 24 compounds, which include phytol (1.78%), stearic acid (1.02%), and 2-hexadecyloxirane (34.18%), which are known antidiabetic and antioxidant agents. The results indicate E. cymosa leaves as source of active phytochemicals with therapeutic potentials in the management of diabetes. E. cymosa fractions possess

  3. High performance thin layer chromatography fingerprinting, phytochemical and physico-chemical studies of anti-diabetic herbal extracts

    PubMed Central

    Itankar, Prakash R.; Sawant, Dattatray B.; Tauqeer, Mohd.; Charde, Sonal S.

    2015-01-01

    Introduction: Herbal medicines have gained increasing popularity in the last few decades, and this global resurgence of herbal medicines increases their commercial value. However, this increasing demand has resulted in a decline in their quality, primarily due to a lack of adequate regulations pertaining to herbal medicines. Aim: To develop an optimized methodology for the standardization of herbal raw materials. Materials and Methods: The present study has been designed to examine each of the five herbal anti-diabetic drugs, Gymnema sylvester R. Br., Pterocarpus marsupium Roxburgh., Enicostema littorale Blume., Syzygium cumini (L.) Skeels. and Emblica officinalis Gaertn. The in-house extracts and marketed extracts were evaluated using physicochemical parameters, preliminary phytochemical screening, quantification of polyphenols (Folin–Ciocalteu colorimetric method) and high performance thin layer chromatography (HPTLC) fingerprint profiling with reference to marker compounds in plant extracts. Results: All the plants mainly contain polyphenolic compounds and are quantified in the range of 3.6–21.72% w/w. E. officinalis contain the highest and E. littorale contain the lowest content of polyphenol among plant extracts analyzed. HPTLC fingerprinting showed that the in-house extracts were of better quality than marketed extracts. Conclusion: The results obtained from the study could be utilized for setting limits for the reference phytoconstituents (biomarker) for the quality control and quality assurance of these anti-diabetic drugs. PMID:27011722

  4. Fundamental Studies and Isolation Strategies for Metal Compound Nanoclusters

    DTIC Science & Technology

    2009-02-28

    probe nanocluster structure, bonding and stability, metal oxide, carbide and silicide clusters with up to 50 atoms were investigated with mass...transition metal compounds (carbides, oxides, silicides ) that are expected to have high stability, an essential property for their isolation...Metal carbide, oxide and silicide nanoclusters are studied in the size range from a few up to about 300 atoms. New infrared laser spectroscopy

  5. Bonded-phase extraction column isolation of organic compounds in groundwater at a hazardous waste site

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Ratcliff, S.M.

    1984-01-01

    A procedure for isolation of hazardous organic compounds from water for gas chromatography/mass spectrometry analysis Is presented and applied to creosote- and pentachlorophenol-contaminated groundwater resulting from wood-treatment processes. This simple procedure involved passing a 50-100-mL sample through a bonded-phase extraction column, eluting the trapped organic compounds from the column with 2-4 mL of solvent, and evaporating the sample to 100 ??L with a stream of dry nitrogen, after which the sample was ready for gas chromatography/mass spectrometry analysis. Representative compounds indicative of creosote contamination were used for recovery and precision studies from the cyclohexyl-bonded phase. Recovery of these compounds from n-octyl-, n-octadecyl-, cyclohexyl-, and phenyl-bonded phases was compared. The bonded phase that exhibited the best recovery and least bias toward acidic or basic cmpounds was the n-octadecyl phase. Detailed compound Identification Is given for compounds Isolated from creosote- and pentachlorophenol-contaminated groundwater using the cyclohexyl-bonded phase.

  6. [Glucokinase and glucokinase regulatory proteins as molecular targets for novel antidiabetic drugs].

    PubMed

    Rubtsov, P M; Igudin, E L; Tiulpakov, A N

    2015-01-01

    The impairment of glucose homeostasis leads to hyperglycemia and type-2 diabetes mellitus. Glucokinase (GK), an enzyme that catalyzes the conversion of glucose to glucose-6-phosphate in pancreatic ß-cells, liver hepatocytes, specific hypothalamic neurons, and intestine enterocytes, is a key regulator of glucose homeostasis. In hepatocytes, GK controls the glucose uptake and glycogen synthesis and inhibits the glucose synthesis via the gluconeogenesis pathway. Glucokinase regulatory protein (GKRP) synthesized in hepatocytes acts as an endogenous GK inhibitor. During fasting, GKRP binds GK, inactivates it, and transports it into the cell nucleus, thus isolating it from the hepatocyte carbohydrate metabolism. In the beginning of the 2000s, the research was mainly focused on the development and trials of the small molecule GK activators as potential antidiabetic glucose-lowering drugs. However, the use of such substances increased the risk of hypoglycemia, and clinical studies of most synthetic GK activators are currently discontinued. Allosteric inhibitors of the GK-GKRP interaction are coming as alternative agents increasing the GK activity that can substitute GKA. In this review, we discuss the recent advances and the current state of art in the development of potential antidiabetic drugs targeted to GK as a key regulator of glucose homeostasis.

  7. Isolation and identification of antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds.

    PubMed

    Mohammed, Muthanna J; Al-Bayati, Firas A

    2009-06-01

    The aerial parts of Thymus kotschyanus Boiss. and Hohen. (Lamiaceae) and flower buds of Dianthus caryophyllus L. (Caryophyllaceae) have been traditionally implemented in the treatment of wounds, throat and gum infections and gastro-intestinal disorder by the indigenous people of northern Iraq, although the compounds responsible for the medicinal properties have not been identified. In this study, antibacterial compounds from both plants were isolated and characterized, and the biological activity of each compound was assessed individually and combined. Compounds were isolated and characterized from the extracted essential oils of both plants using different spectral techniques: TLC, FTIR spectra and HPLC. The minimum inhibitory concentrations MIC values for the compounds were assessed individually and combined based on a microdilution and the checkerboard method in 96 multi-well microtiter plates. Two known compounds were isolated from the essential oils of both plants and were identified as thymol and eugenol. The isolated compounds were investigated for their single and combined antibacterial activities against seven selected pathogenic bacteria; Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Thymol MIC values ranged from 15.6 to 250.0 microg/ml and B. cereus was found to be the most sensitive pathogen with a MIC value of 15.6 microg/ml. Eugenol achieved stronger MIC values against most tested pathogens and the best MIC value (15.6 microg/ml) was observed against B. cereus, L. monocytogenes and K. pneumoniae whereas, S. aureus, P. mirabilis and E. coli were inhibited with a MIC value of 31.2 microg/ml. Combination results had antibacterial enhancement against most pathogens and the best synergistic result was seen against P. mirabilis and E. coli. The isolation of two antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower

  8. Isolation, characterization and HPLC quantification of compounds from Aquilegia fragrans Benth: Their in vitro antibacterial activities against bovine mastitis pathogens.

    PubMed

    Mushtaq, Saleem; Aga, Mushtaq A; Qazi, Parvaiz H; Ali, Md Niamat; Shah, Aabid Manzoor; Lone, Sajad Ahmad; Shah, Aiyatullah; Hussain, Aehtesham; Rasool, Faheem; Dar, Hafizullah; Shah, Zeeshan Hamid; Lone, Shabir H

    2016-02-03

    The underground parts of Aquilegia fragrans are traditionally used for the treatment of wounds and various inflammatory diseases like bovine mastitis. However, there are no reports on the phytochemical characterization and antibacterial studies of A. fragrans. To isolate compounds from the methanol extract of the underground parts of A. fragrans and determine their antibacterial activity against the pathogens of bovine mastitis. The study was undertaken in order to scientifically validate the traditional use of A. fragrans. Five compounds were isolated from the methanol extract of the underground parts of A. fragrans using silica gel column chromatography. Structural elucidation of the isolated compounds was done using spectral data analysis and comparison with literature. High performance liquid chromatography (HPLC) was used for the qualitative and quantitative determination of isolated compounds in the crude methanol extract. The methanol extract and isolated compounds were evaluated for antibacterial activities against mastitis pathogens using broth micro-dilution technique. The five isolated compounds were identified as (1) 2, 4-dihydroxyphenylacetic acid methyl ester (2) β-sitosterol (3) Aquilegiolide (4) Glochidionolactone-A and (5) Magnoflorine. A quick and sensitive HPLC method was developed for the first time for qualitative and quantitative determination of four isolated marker compounds from A. fragrans. The crude methanol extract and compound 5 exhibited weak antibacterial activities that varied between the bacterial species (MIC=500-3000 µg/ml). The above results show that the crude methanol extract and isolated compounds from A. fragrans exhibit weak antibacterial activities. Further phytochemical and pharmacological studies are required for proper scientific validation of the folk use of this plant species in the treatment of various inflammatory diseases like bovine mastitis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Isolation and Identification of Algicidal Compound from Streptomyces and Algicidal Mechanism to Microcystis aeruginosa

    PubMed Central

    Luo, Jianfei; Wang, Yuan; Tang, Shuishui; Liang, Jianwen; Lin, Weitie; Luo, Lixin

    2013-01-01

    The biological control of cyanobacterial harmful algal blooms (cyanoHABs) is important to promote human health, environmental protection, and economic growth. Active algicidal compounds and algicidal mechanisms should be identified and investigated to control cyanoHABs. In this study, the algicidal actinobacterium Streptomyces sp. L74 was isolated from the soil of a nearby pond which located in the center lake of Guanghzou Higher Education Mega Center. Results showed that the algicidal activities of cyanoHABs are mainly achieved via an indirect attack by producing algicidal compounds. All active algicidal compounds are hydrophilic substances that are heat and pH stable. In the present study, an active compound (B3) was isolated and purified by high-performance liquid chromatography and identified as a type of triterpenoid saponin (2-hydroxy-12-oleanene-3, 28-O-D-glucopyranosyl) with a molecular formula of C42H70O13 as determined by infrared spectrometry, electrospray ionization mass spectrometry, and nuclear magnetic resonance. Active algicidal compounds from Streptomyces sp. L74 were shown to disrupt the antioxidant systems of Microcystis aeruginosa cells. PMID:24098501

  10. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa.

    PubMed

    Luo, Jianfei; Wang, Yuan; Tang, Shuishui; Liang, Jianwen; Lin, Weitie; Luo, Lixin

    2013-01-01

    The biological control of cyanobacterial harmful algal blooms (cyanoHABs) is important to promote human health, environmental protection, and economic growth. Active algicidal compounds and algicidal mechanisms should be identified and investigated to control cyanoHABs. In this study, the algicidal actinobacterium Streptomyces sp. L74 was isolated from the soil of a nearby pond which located in the center lake of Guanghzou Higher Education Mega Center. Results showed that the algicidal activities of cyanoHABs are mainly achieved via an indirect attack by producing algicidal compounds. All active algicidal compounds are hydrophilic substances that are heat and pH stable. In the present study, an active compound (B3) was isolated and purified by high-performance liquid chromatography and identified as a type of triterpenoid saponin (2-hydroxy-12-oleanene-3, 28-O-D-glucopyranosyl) with a molecular formula of C42H70O13 as determined by infrared spectrometry, electrospray ionization mass spectrometry, and nuclear magnetic resonance. Active algicidal compounds from Streptomyces sp. L74 were shown to disrupt the antioxidant systems of Microcystis aeruginosa cells.

  11. A novel dihydroxy gymnemic triacetate isolated from Gymnema sylvestre possessing normoglycemic and hypolipidemic activity on STZ-induced diabetic rats.

    PubMed

    Daisy, Pitchai; Eliza, James; Mohamed Farook, Khanzan Abdul Majeed

    2009-11-12

    Gymnema sylvestre (Asclepiadaceae) is emerging as a potential treatment for the management of diabetes. The leaves are used in herbal medicine preparations. The present study was carried out to isolate and identify the putative antidiabetic compound based on bioassay-guided fractionation. An active compound dihydroxy gymnemic triacetate has been isolated from Gymnema sylvestre acetone extract and its optimum dose has been determined and patented. An optimum dose of dihydroxy gymnemic triacetate (20mg/kg body weight) was orally administered for 45 days to streptozotocin diabetic rats for the assessment of plasma glucose, insulin, glycated hemoglobin (HbA1c), tissue glycogen, lipid parameters such as triglycerides, total cholesterol, LDL-cholesterol, HDL-cholesterol and activities of hepatic marker enzymes, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and acid phosphatase (ACP) in normal and streptozotocin diabetic rats. Dihydroxy gymnemic triacetate at 20mg dose produced significant effects on all biochemical parameters studied compared to diabetic control group. These results indicate that dihydroxy gymnemic triacetate, the compound from Gymnema sylvestre, possessed hypoglycemic and hypolipidemic activity in long-term treatment and hence it could be used as a drug for treating diabetes.

  12. Algicidal activity of marine Alteromonas sp. KNS-16 and isolation of active compounds.

    PubMed

    Cho, Ji Young

    2012-01-01

    The KNS-16 algicidal strain was isolated from a harmful alga bloom (HAB) area and identified as Alteromonas sp. based on 16S rDNA sequencing. The KNS-16 strain was found to control HABs by producing algicidal compounds in an indirect interaction. Four active compounds were isolated from KNS-16 culture, and their structures were analyzed by interpreting nuclear magnetic resonance and mass spectroscopy data. The structures were identified as 2-undecen-1'-yl-4-quinolone (1), 2-undecyl-4-quinolone (2), 3-hexyl-6-pentyl-4-hydroxyl-2H-pyran-2-one (3), and 6-heptyl-3-hexyl-4-hydroxyl-2H-pyran-2-one (4). Compound 1 was most active against HABs such as Heterosigma akashiwo, Cochlodinium polykrikoides, and Alexandrium tamarense with LC(50) values of 0.5-1.1 µg/mL. The four compounds exhibited high LC(50) values against aquaculture algae such as Tetaselmis suecica, Isochrysis galbana, and Pavlova lutheri at 39-66 µg/mL. Based on toxicity tests on the brine shrimp Artemia salina and the rotifer Brachionus rotundiformis, the four compounds showed ranges of 409-608 and 189-224 µg/mL of LC(50) for the two organisms, respectively. The LC(50) values for juvenile fish of Sebastes schlegelii were 284-304 µg/mL.

  13. Antidiabetic effects of Justicia spicigera Schltdl (Acanthaceae).

    PubMed

    Ortiz-Andrade, Rolffy; Cabañas-Wuan, Angel; Arana-Argáez, Víctor E; Alonso-Castro, Angel Josabad; Zapata-Bustos, Rocio; Salazar-Olivo, Luis A; Domínguez, Fabiola; Chávez, Marco; Carranza-Álvarez, Candy; García-Carrancá, Alejandro

    2012-09-28

    Justicia spicigera is a plant species used for the Teenak (Huesteca Potosina) and Mayan (Yucatan peninsula) indigenous for the empirical treatment of diabetes, infections and as stimulant. To evaluate the cytotoxicity, antioxidant and antidiabetic properties of J. spicigera. The effects of ethanolic extracts of J. spicigera (JSE) on the glucose uptake in insulin-sensitive and insulin-resistant murine 3T3-F442A and human subcutaneous adipocytes was evaluated. The antioxidant activities of the extract of JSE was determined by ABTS and DPPH methods. Additionally, it was evaluated the antidiabetic properties of JSE on T2DM model. JSE stimulated 2-NBDG uptake by insulin-sensitive and insulin-resistant human and murine adipocytes in a concentration-dependent manner with higher potency than rosiglitazone 1mM. JSE showed antioxidant effects in vitro and induced glucose lowering effects in normoglycemic and STZ-induced diabetic rats. The antidiabetic effects of administration of J. spicigera are related to the stimulation of glucose uptake in both insulin-sensitive and insulin-resistant murine and human adipocytes and this evidence justify its empirical use in Traditional Medicine. In addition, J. spicigera exerts glucose lowering effects in normoglycemic and STZ-induced diabetic rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Bioactive compounds isolated from submerged fermentations of the Chilean fungus Stereum rameale.

    PubMed

    Aqueveque, Pedro; Céspedes, Carlos Leonardo; Becerra, José; Dávila, Marcelo; Sterner, Olov

    2015-01-01

    Liquid fermentations of the fungus Stereum rameale (N° 2511) yielded extracts with antibacterial activity. The antibacterial activity reached its peak after 216 h of stirring. Bioassay-guided fractionation methods were employed for the isolation of the bioactive metabolites. Three known compounds were identified: MS-3 (1), vibralactone (2) and vibralactone B (3). The three compounds showed antibacterial activity as a function of their concentration. Minimal bactericidal concentrations (MBC) of compound 1 against Gram-positive bacteria were as follows: Bacillus cereus (50 μg/mL), Bacillus subtilis (10 μg/mL) and Staphylococcus aureus (100 μg/mL). Compounds 2 and 3 were active only against Gram-negative bacteria. The MBC of compound 2 against Escherichia coli was 200 μg/mL. Compound 3 inhibited significantly the growth of E. coli and Pseudomonas aeruginosa, with MBC values of 50 and 100 μg/mL, respectively.

  15. Isolation and structure elucidation of bioactive compounds from the roots of the Tunisian Ononis angustissima L.

    PubMed

    Ghribi, Lotfi; Waffo-Téguo, Pierre; Cluzet, Stéphanie; Marchal, Axel; Marques, Jessica; Mérillon, Jean-Michel; Ben Jannet, Hichem

    2015-09-15

    A phytochemical investigation of the roots of Ononis angustissima L. (Fabaceae) offered to the bio-guided isolation of new isoflavone 3-(4-(glucopyranosyloxy)-5-hydroxy-2-methoxyphenyl)-7-hydroxy-4H-chromen-4-one 1, together with nine known compounds, ononin 2, formononetin 3, (+)-puerol A-2'-O-β-D-glucose 4, (-)-puerol B-2'-O-β-D-glucopyranose ((-)-sophoraside A) 5, (+)-puerol A 6, (-)-trifolirhizin 7, (-)-trifolirhizin-6'-O-malonate 8, (-)-maackiain 9 and (-)-medicarpin 10. Compounds 2-10 were isolated and identified for the first time in Ononis angustissima. We investigated antioxidant capacities of isolated molecules and results showed that compound 6 exhibited the highest antioxidant activity with IC50 values of 19.53 μg/mL, 28.29 μg/mL and 38.53 μg/mL by DPPH radical, ABTS radical cation and reducing power assay, respectively, and an interesting IC50 (20.45 μg/mL) of 1 against DPPH. In addition, the neuroprotective activity of six isolated molecules (4-7, 9, 10) were evaluated. Following the exposure of PC12 cells to Aβ25-35, compounds 9 and 10 triggered a significant increase of cell viability and in a dose dependent manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Isolation, Identification, and Xanthine Oxidase Inhibition Activity of Alkaloid Compound from Peperomia pellucida

    NASA Astrophysics Data System (ADS)

    Fachriyah, E.; Ghifari, M. A.; Anam, K.

    2018-04-01

    The research of the isolation and xanthine oxidation inhibition activity of alkaloid compound from Peperomia pellucida has been carried out. Alkaloid extract is isolated by column chromatography and preparative TLC. Alkaloid isolate is identified spectroscopically by UV-Vis spectrophotometer, FT-IR, and LC-MS/MS. Xanthine oxidase inhibition activity is carried out by in vitro assay. The result showed that the alkaloid isolated probably has piperidine basic structure. The alkaloid isolate has N-H, C-H, C = C, C = O, C-N, C-O-C groups and the aromatic ring. The IC50 values of ethanol and alkaloid extract are 71.6658 ppm and 76.3318 ppm, respectively. Alkaloid extract of Peperomia pellucida showed higher activity than ethanol extract.

  17. Hydrodistillation-adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials.

    PubMed

    Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L

    2008-08-15

    Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.

  18. Four new compounds isolated from Psoralea corylifolia and their diacylglycerol acyltransferase (DGAT) inhibitory activity.

    PubMed

    Lin, Xin; Li, Ban-Ban; Zhang, Le; Li, Hao-Ze; Meng, Xiao; Jiang, Yi-Yu; Lee, Hyun-Sun; Cui, Long

    2018-05-14

    A new bakuchiol compound Δ 11 -12-hydroxy-12-dimethyl bakuchiol (1), a new flavanone compound 2(S)-6-methoxy-7- hydroxymethylene-4'-hydroxyl-flavanone (8), and two new isoflavanone compounds 4',7-dihydroxy-3'-(6"β-hydroxy-3″,7″-dimethyl-,2″,7″-dibutenyl)-geranylisoflavone (9) and 4',7-dihydroxy-3'-(7″-hydroxy-7″-methyl-2″,5″-dibutenyl)-geranylisoflavone (10) together with eight known compounds (2-7, 11, 12) were isolated from the P. corylifolia. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1/2. Among them, compounds 3, 9 and 10 were found to exhibit selective inhibitory activity on DGAT1 with IC 50 values ranging from 93.7 ± 1.3 to 96.2 ± 1.1 μM. Compound 1 showed inhibition activity on DGAT1 with IC 50 values 73.4 ± 1.3 μM and inhibition of DGAT2 with IC 50 value 121.1 ± 1.3 μM. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus.

    PubMed

    Fang, Song-Chwan; Hsu, Chin-Lin; Yen, Gow-Chin

    2008-06-25

    Artocarpus heterophyllus Lam is a large evergreen tree cultivated throughout Southeast Asia for its fruits. Its leaves and roots have been used for medicinal purposes. The aim of this work was to study the in vitro anti-inflammatory effects of phenolic compounds isolated from the ethyl acetate extracts of the fruits of Artocarpus heterophyllus. Three phenolic compounds were characterized as artocarpesin [5,7,2',4'-tetrahydroxy-6-(3-methylbut-3-enyl) flavone] ( 1), norartocarpetin (5,7,2',4'-tetrahydroxyflavone) ( 2), and oxyresveratrol [ trans-2,4,3',5'-tetrahydroxystilbene] ( 3) by spectroscopic methods and through comparison with data reported in the literatures. The anti-inflammatory effects of the isolated compounds ( 1- 3) were evaluated by determining their inhibitory effects on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. These three compounds exhibited potent anti-inflammatory activity. The results indicated that artocarpesin ( 1) suppressed the LPS-induced production of nitric oxide (NO) and prostaglandin E 2 (PGE 2) through the down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions. Thus, artocarpesin ( 1) may provide a potential therapeutic approach for inflammation-associated disorders.

  20. H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease.

    PubMed

    Yang, Li-Yuan; Lin, Jun; Zhou, Bin; Liu, Yan-Gang; Zhu, Bao-Quan

    2016-04-01

    The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  1. Evaluation of Antioxidative and Antidiabetic Activity of Bark of Holarrhena Pubescens Wall

    PubMed Central

    Jamarkattel, Nirmala; Shrestha, Aasmin; Lamsal, Nisha Kiran; Shakya, Sangam; Rajbhandari, Sneha

    2014-01-01

    Objective: The objectives of the study are to screen out various phytochemicals and to evaluate the antioxidant and antidiabetic potential of the stem bark of Holarrhena pubescens Wall (Holarrhena antidysenterica). Materials and Methods: The antioxidant activity was determined by the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity where ascorbic acid was taken as positive control. The antioxidant property was later exploited and the methanolic extract of plant was tested for antihyperglycemic activity in glucose overloaded hyperglycemic mice. The extract was tested for its hypoglycemic activity at two-dose levels, 250 and 500 mg/kg respectively where Glipizide 5 mg/kg was taken as standard reference drug. All results are presented as mean ± SD (Standard Deviation). Significant differences between experimental groups were determined by Student’s t-test. Results: The methanolic and water extract showed strong antioxidant activity with inhibition of more than 90% DPPH free radicals at the concentration of 100μg/mL. The hypoglycemic activity of methanolic extract on glucose tolerance test were significant (p <0.05) for the effects of 500 mg/kg after 120 min of treatment and (p <0.01) for 250 mg/kg of extract after half hour of treatment compared to control. Conclusion: The presence of flavonoides, phenolic compounds suggested that they may be partially responsible for antioxidant and antidiabetic activity. PMID:25386454

  2. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles

    PubMed Central

    Russo, Daniela; Valentão, Patrícia; Andrade, Paula B.; Fernandez, Eloy C.; Milella, Luigi

    2015-01-01

    The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer’s disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙−) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities. PMID:26263984

  3. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles.

    PubMed

    Russo, Daniela; Valentão, Patrícia; Andrade, Paula B; Fernandez, Eloy C; Milella, Luigi

    2015-07-31

    The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer's disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙-) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities.

  4. Antidiabetic therapies and male reproductive function: where do we stand?

    PubMed

    Tavares, R S; Escada-Rebelo, S; Silva, A F; Sousa, M I; Ramalho-Santos, J; Amaral, S

    2018-01-01

    Diabetes mellitus has been increasing at alarming rates in recent years, thus jeopardizing human health worldwide. Several antidiabetic drugs have been introduced in the market to manage glycemic levels, and proven effective in avoiding, minimizing or preventing the appearance or development of diabetes mellitus-related complications. However, and despite the established association between such pathology and male reproductive dysfunction, the influence of these therapeutic interventions on such topics have been scarcely explored. Importantly, this pathology may contribute toward the global decline in male fertility, giving the increasing preponderance of diabetes mellitus in young men at their reproductive age. Therefore, it is mandatory that the reproductive health of diabetic individuals is maintained during the antidiabetic treatment. With this in mind, we have gathered the available information and made a critical analysis regarding the effects of several antidiabetic drugs on male reproductive function. Unlike insulin, which has a clear and fundamental role on male reproductive function, the other antidiabetic therapies' effects at this level seem incoherent. In fact, studies are highly controversial possibly due to the different experimental study approaches, which, in our opinion, suggests caution when it comes to prescribing such drugs to young diabetic patients. Overall, much is still to be determined and further studies are needed to clarify the safety of these antidiabetic strategies on male reproductive system. Aspects such as the effects of insulin levels variations, consequent of insulin therapy, as well as what will be the impact of the side effect hypoglycemia, common to several therapeutic strategies discussed, on the male reproductive system are still to be addressed. © 2018 Society for Reproduction and Fertility.

  5. Alkaline phosphatase activity-guided isolation of active compounds and new dammarane-type triterpenes from Cissus quadrangularis hexane extract.

    PubMed

    Pathomwichaiwat, Thanika; Ochareon, Pannee; Soonthornchareonnon, Noppamas; Ali, Zulfiqar; Khan, Ikhlas A; Prathanturarug, Sompop

    2015-02-03

    The stem of Cissus quadrangularis L. (CQ) is used in traditional medicine to treat bone fractures and swelling. Anti-osteoporotic activity of CQ hexane extract has been reported, but the active compounds in this extract remain unknown. Thus, we aimed to identify the active compounds in CQ hexane extract using bioassay-guided isolation. The CQ hexane extract was fractionated sequentially with benzene, dichloromethane, ethyl acetate, and methanol. The examination of CQ extract and its fractions was guided by bioassays for alkaline phosphatase (ALP) activity during the differentiation of MC3T3-E1 osteoblastic cells. The cells were treated with or without the CQ extract and its fractions for a period of time, and then the stimulatory effect of the alkaline phosphatase enzyme, a bone differentiation marker, was investigated. The compounds obtained were structurally elucidated using spectroscopic techniques and re-evaluated for activity during bone differentiation. A total of 29 compounds were isolated, viz., triterpenes, fatty acid methyl esters, glycerolipids, steroids, phytols, and cerebrosides. Four new dammarane-type triterpenes were isolated for the first time from nature, and this report is the first to identify this group of compounds from the Vitaceae family. Seven compounds, viz., glycerolipids and squalene, stimulated ALP activity at a dose of 10μg/mL. Moreover, the synergistic effect of these compounds on bone formation was demonstrated. This report describes, for the first time, the isolation of active compounds from CQ hexane extract; these active compounds will be useful for the quality control of extracts from this plant used to treat osteoporosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Antidiabetic activities of a cucurbitane‑type triterpenoid compound from Momordica charantia in alloxan‑induced diabetic mice.

    PubMed

    Jiang, Bowen; Ji, Mingli; Liu, Wei; Chen, Lili; Cai, Zhiyu; Zhao, Yuqing; Bi, Xiuli

    2016-11-01

    Momordica charantia has been used to treat a variety of diseases, including inflammation, diabetes and cancer. A cucurbitane‑type triterpenoid [(19R,23E)‑5β, 19‑epoxy‑19‑methoxy‑cucurbita‑6,23,25‑trien‑3 β‑o‑l] previously isolated from M. charantia was demonstrated to possess significant cytotoxicity against cancer cells. The current study investigated the effects of this compound (referred to as compound K16) on diabetes using an alloxan‑induced diabetic mouse model. C57BL/6J mice were intraperitoneally injected with alloxan (10 mg/kg body weight), and those with blood glucose concentration higher than 10 mM were selected for further experiments. Diabetic C57BL/6J mice induced by alloxan were administered 0.9% saline solution, metformine (10 mg/kg body weight), or K16 (25 or 50 mg/kg body weight) by gavage for 4 weeks, followed by analysis of blood glucose level, glucose tolerance, serum lipid levels and organ indexes. The results demonstrated that compound K16 significantly reduced blood glucose (31‑48.6%) and blood lipids (13.5‑42.8%; triglycerides and cholesterol), while improving glucose tolerance compared with diabetic mice treated with saline solution, suggesting a positive improvement in glucose and lipid metabolism following K16 treatment. Furthermore, similarly to metformine, compound K16 markedly upregulated the expression of a number of insulin signaling pathway‑associated proteins, including insulin receptor, insulin receptor substrate 1, glycogen synthase kinase 3β, Akt serine/threonine kinase, and the transcript levels of glucose transporter type 4 and AMP‑activated protein kinase α1. The results of the current study demonstrated that compound K16 alleviated diabetic metabolic symptoms in alloxan‑induced diabetic mice, potentially by affecting genes and proteins involved in insulin metabolism signaling.

  7. Diverse mechanisms of antidiabetic effects of the different procyanidin oligomer types of two different cinnamon species on db/db mice.

    PubMed

    Chen, Liang; Sun, Peng; Wang, Ting; Chen, Kaixian; Jia, Qi; Wang, Heyao; Li, Yiming

    2012-09-12

    The procyanidin oligomers are thought to be responsible for the antidiabetic activity of cinnamon. To investigate the hypoglycemic effects of different procyanidin oligomer types, the procyanidin oligomer-rich extracts were prepared from two different cinnamon species. Using high-performance liquid chromatography with purified procyanidin oligomers as reference compounds, we found that the Cinnamomum cassia extract (CC-E) and Cinnamomum tamala extract (CT-E) were rich in B- and A-type procyanidin oligomers, respectively. In the experiment, 8-week-old diabetic (db/db) mice were gavaged with CC-E and CT-E (both 200 mg/kg per day) for 4 weeks. Both CC-E and CT-E exhibited antidiabetic effects. Moreover, histopathological studies of the pancreas, liver, and adipose tissue showed that CC-E promoted lipid accumulation in the adipose tissue and liver, whereas CT-E mainly improved the insulin concentration in the blood and pancreas.

  8. [Use of new antidiabetics in the elderly population].

    PubMed

    Besse, Sarah; Besse, Arun; Jornayvaz, François R

    2016-06-01

    Over the last few years, we have noticed the arrival on the market of new antidiabetic treatments. These represent an potential advantage because of the increase in the prevalence of type 2 diabetes, particularly in the elderly population. Nevertheless, elderly patients have a number of frailties that should be considered in the treatment of this condition. There is a lack of literature in this population as elderly are frequently excluded from randomized controlled trials. Therefore, guidelines were developed based on the consensus of experts in geriatrics and diabetology for this specific population. We have to consider the potential benefits and adverse effects of the new antidiabetics in older patients.

  9. Gastroprotective effects and antimicrobial activity of Lithraea molleoides and isolated compounds against Helicobacter pylori.

    PubMed

    Garro, María Filomena; Salinas Ibáñez, Angel Gabriel; Vega, Alba Edith; Arismendi Sosa, Andrea Celeste; Pelzer, Lilian; Saad, José Roberto; Maria, Alejandra Olivia

    2015-12-24

    Lithraea molleoides (Vell.) Engl. (Anacardiaceae) is a medicinal plant traditionally used in South America to treat various ailments, including diseases of the digestive system. To evaluate the in vivo antiulcer and antimicrobial activities against Helicobacter pylori of L. molleoides and its isolated compounds. Methanolic extract 250 and 500 mg/kg, (LmE 250 and LmE 500, respectively) and infusions, 10 g and 20 g en 100mL (LmI 10 and LmI 20, respectively) of L. molleoides was evaluated for antiulcer activity against 0.6N HCl, 0.2N NaOH, 200mg/kg acetilsalicilic acid and absolute ethanol-induced gastric ulcers in rats. The degree of erosion in the glandular part of the stomach was assessed from a scoring system. Acute toxicity in mice was also evaluated. The antiulcer effect of the isolated compounds (catechol, mannitol, rutin, gallic acid, ferulic acid and caffeic acid, 100mg/kg) was evaluated against absolute ethanol-induced gastric ulcers in rats. The anti-Helicobacter pylori activity of L. molleoides and isolated compounds was performed using broth dilution methods. The LmE 250, LmE 500, LmI 10 and LmI 20 produced significant inhibition on the ulcer index in 0.6N HCl, 0.2N NaOH, 200mg/kg acetilsalicilic acid and absolute ethanol- induced gastric ulcers in rats. The isolated compounds, catechol, mannitol, rutin, ferulic acid and caffeic acid were active in absolute ethanol- induced gastric ulcers in rats. L. molleoides and different compounds showed antimicrobial activity in all strains tested. The lowest MIC value (0. 5 μg/mL) was obtained with catechol in six of eleven strains assayed. No signs of toxicity were observed with doses up to 2g/kg in an acute toxicity assay. These findings indicate that L. molleoides displays potential antiulcerogenic and antimicrobial activities and the identification of active principles could support the use of this plant for the treatment of digestive affections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose.

    PubMed

    Elias, Luciana M; Fortkamp, Diana; Sartori, Sérgio B; Ferreira, Marília C; Gomes, Luiz H; Azevedo, João L; Montoya, Quimi V; Rodrigues, André; Ferreira, Antonio G; Lira, Simone P

    2018-03-31

    Anthracnose is a crop disease usually caused by fungi in the genus Colletotrichum or Gloeosporium. These are considered one of the main pathogens, causing significant economic losses, such as in peppers and guarana. The current forms of control include the use of resistant cultivars, sanitary pruning and fungicides. However, even with the use of some methods of controlling these cultures, the crops are not free of anthracnose. Additionally, excessive application of fungicides increases the resistance of pathogens to agrochemicals and cause harm to human health and the environment. In order to find natural antifungal agents against guarana anthracnose, endophytic fungi were isolated from Amazon guarana. The compounds piliformic acid and cytochalasin D were isolated by chromatographic techniques from two Xylaria spp., guided by assays with Colletotrichum gloeosporioides. The isolated compounds were identified by spectrometric techniques, as NMR and mass spectrometry. This is the first report that piliformic acid and cytochalasin D have antifungal activity against C. gloeosporioides with MIC 2.92 and 2.46μmolmL -1 respectively. Captan and difenoconazole were included as positive controls (MIC 16.63 and 0.02μmolmL -1 , respectively). Thus, Xylaria species presented a biotechnological potential and production of different active compounds which might be promising against anthracnose disease. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Isolation and characterization of the compounds responsible for the antimutagenic activity of Combretum microphyllum (Combretaceae) leaf extracts.

    PubMed

    Makhafola, Tshepiso Jan; Elgorashi, Esameldin Elzein; McGaw, Lyndy Joy; Awouafack, Maurice Ducret; Verschaeve, Luc; Eloff, Jacobus Nicolaas

    2017-09-06

    Mutations play a major role in the pathogenesis and development of several chronic degenerative diseases including cancer. It follows, therefore that antimutagenic compound may inhibit the pathological process resulting from exposure to mutagens. Investigation of the antimutagenic potential of traditional medicinal plants and compounds isolated from plant extracts provides one of the tools that can be used to identify compounds with potential cancer chemopreventive properties. The aim of this study was to isolate and characterise the compounds responsible for the antimutagenic activity of Combretum microphyllum. The methanol leaf extract of C. microphyllum was evaluated for antimutagenicity in the Ames/microsome assay using Salmonella typhimurium TA98. TA100 and TA102. Solvent-solvent fractionation was used to partition the extracts and by using bioassay-guided fractionation, three compounds were isolated. The antimutagenic activity of the three compounds were determined in the Ames test using Salmonella typhimurium TA98, TA100 and TA102. The antioxidant activity of the three compounds were determined by the quantitative 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging method. The cytotoxicity was determined in the MTT assay using human hepatocytes. A bioassay-guided fractionation of the crude extracts for antimutagenic activity led to the isolation of three compounds; n-tetracosanol, eicosanoic acid and arjunolic acid. Arjunolic acid was the most active in all three tested strains with a antimutagenicity of 42 ± 9.6%, 36 ± 1.5% and 44 ± 0.18% in S. typhimurium TA98, TA100 and TA102 respectively at the highest concentration (500 μg/ml) tested, followed by eicosanoic acid and n-tetracosanol. The antioxidant activity of the compounds were determined using the quantitative 2,2 diphenyl-1-picryhydrazyl (DPPH)-free radical scavenging method. Only arjunolic acid had pronounced antioxidant activity (measured as DPPH-free scavenging activity) with an

  12. Cytotoxicity of isolated compounds from the extracts of Struchium sparganophora (Linn) Ktze asteraceae.

    PubMed

    Kasim, Lateef Saka; Ferro, Valerie; Odukoya, Oluwakemi A; Ukpo, Grace Eigbibhalu; Seidel, Veronique; Gray, Alexander I; Waigh, Roger

    2011-10-01

    Chemical investigation of the leaves of Struchium sparganophora by the application of VLC, CL and PTLC resulted in isolation of three compounds. The cytotoxicity activity of these compounds on malignant human cultured cells was examined. Vernodalin showed a significant cytotoxic activity on the melanoma and ovarian cancer cell lines (P<0.05) while the conjugated 3 methyl, 2, 6 hexacosedienol and luteolin caused cell death after 48h reculture without them. These compounds portend an effective remedy if subjected to structural modification to enhance its' efficacy and the dietary importance of this plant as a culinary herb in west Africa countries is evidence by the presence of these antitumour compounds in this plant.

  13. Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus

    USDA-ARS?s Scientific Manuscript database

    An isolate of the fungus Aspergillus candidus was tested for production of nematicidal compounds. Adults of the nematode Ditylenchus destructor were completely inactive after 24 hr exposure to soy medium in which A. candidus was cultured. Column, thin layer and preparative chromatographies, and spec...

  14. In Silico and In Vitro Anticancer Activity of Isolated Novel Marker Compound from Chemically Modified Bioactive Fraction from Curcuma longa (NCCL).

    PubMed

    Naqvi, Arshi; Malasoni, Richa; Gupta, Swati; Srivastava, Akansha; Pandey, Rishi R; Dwivedi, Anil Kumar

    2017-10-01

    Turmeric ( Curcuma longa ) is reported to possess wide array of biological activities. Herbal Medicament (HM) is a standardized hexane-soluble fraction of C. longa and is well known for its neuroprotective effect. In this study, we attempted to synthesize a novel chemically modified bioactive fraction from HM (NCCL) along with isolation and characterization of a novel marker compound (I). NCCL was prepared from HM. The chemical structure of the marker compound isolated from NCCL was determined from 1D/2D nuclear magnetic resonance, mass spectroscopy, and Fourier transform infrared. The compound so isolated was subjected to in silico and in vitro screenings to test its inhibitory effect on estrogen receptors. Molecular docking studies revealed that the binding poses of the compound I was energetically favorable. Among NCCL and compound I taken for in vitro studies, NCCL had exhibited good anti-cancer activity over compound I against MCF-7, MDA-MB-231, DU-145, and PC-3 cells. This is the first study about the synthesis of a chemically modified bioactive fraction which used a standardized extract since the preparation of the HM. It may be concluded that NCCL fraction having residual components induce more cell death than compound I alone. Thus, NCCL may be used as a potent therapeutic drug. In the present paper, a standardized hexane soluble fraction of Curcuma longa (HM) was chemically modified to give a novel bioactive fraction (NCCL). A novel marker compound was isolated from NCCL and was characerized using various spectral techniques. The compound so isolated was investigated for in-silico screenings. NCCL and isolated compound was subjected to in-vitro anti-cancer screenings against MCF 7, MDA MB 231 (breast adenocarcinoma) and DU 145 and PC 3 cell lines (androgen independent human prostate cancer cells). The virtual screenings reveals that isolated compound has shown favourable drug like properties. NCCL fraction having residual components induces more cell

  15. Isolation of furocoumarins from bergamot fruits as HL-60 differentiation-inducing compounds.

    PubMed

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-10-01

    The HL-60 differentiation-inducing compounds in bergamot fruits were isolated with column chromatography and identified as bergamottin, bergapten, and citropten by (1)H and (13)C NMR. Their HL-60 differentiation-inducing activity was measured by examining nitro blue tetrazolium (NBT) reducing, nonspecific acid esterase (NSE), specific esterase (SE), and phagocytic activities, and bergamottin showed the strongest activity among the coumarins isolated from bergamot fruits. The structure-activity relationship obtained from HL-60 differentiation assay suggests that hydrophobicity of furocoumarins is correlated with their activity.

  16. In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence.

    PubMed

    Abubacker, Maghdu Nainamohamed; Devi, Palaniyappan Kamala

    2014-09-01

    To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  17. Isolation and Antimicrobial Activity of Flavonoid Compounds from Mahagony Seeds (Swietenia macrophylla, King)

    NASA Astrophysics Data System (ADS)

    Mursiti, S.; Supartono

    2017-02-01

    Flavonoid is one of the secondary metabolites compounds in mahogany seeds. Mahogany seeds can be used as an antimicrobial. This study aims to determine the antimicrobial activity of flavonoid compounds from mahogany seeds against Escherichia coli (E.coli) and Bacillus cereus (B.cereus). Isolation of flavonoid compounds done step by step. First, the maceration using n-hexane, then with methanol. The methanol extract was dissolved in ethyl acetate and aquadest, then separated. Ethyl acetate extract evaporated Flavonoid compounds were. The testing of antimicrobial activity of flavonoid compounds using the absorption method. The results showed that the antimicrobial activity of flavonoid compounds from mahogany seeds shows the inhibitory activity and provide clear zone against bacteria E.coli with value Inhibitory Regional Diameter 18.50 mm respectively, and 14.50 mm to the bacteria. Based on the results of the study, it can be concluded that flavonoid compounds from mahogany seeds have antimicrobial activity against E.coli and B.cereus.

  18. Isolation and Quantification of Ginsenoside Rh23, a New Anti-Melanogenic Compound from the Leaves of Panax ginseng.

    PubMed

    Lee, Dae Young; Kim, Hyoung-Geun; Lee, Yeong-Geun; Kim, Jin Hee; Lee, Jae Won; Choi, Bo-Ram; Jang, In-Bae; Kim, Geum-Soog; Baek, Nam-In

    2018-01-29

    A new ginsenoside, named ginsenoside Rh23 ( 1 ), and 20- O -β-d-glucopyranosyl-3β,6α,12β,20β,25-pentahydroxydammar-23-ene ( 2 ) were isolated from the leaves of hydroponic Panax ginseng . Compounds were isolated by various column chromatography and their structures were determined based on spectroscopic methods, including high resolution quadrupole/time of flight mass spectrometry (HR-QTOF/MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. To determine anti-melanogenic activity, the change in the melanin content in melan-a cells treated with identified compounds was tested. Additionally, we investigated the melanin inhibitory effects of ginsenoside Rh23 on pigmentation in a zebrafish in vivo model. Compound 1 inhibited potent melanogenesis in melan-a cells with 37.0% melanogenesis inhibition at 80 µM and also presented inhibition on the body pigmentation in zebrafish model. Although compound 2 showed slightly lower inhibitory activity than compound 1 , it also showed significantly decreased melanogenesis in melan-a cell and in zebrafish model. These results indicated that compounds isolated from hydroponic P. ginseng may be used as new skin whitening compound through the in vitro and in vivo systems. Furthermore, this study demonstrated the utility of MS-based compound 1 for the quantitative analysis. Ginsenoside Rh23 ( 1 ) was found at a level of 0.31 mg/g in leaves of hydroponic P. ginseng .

  19. Evaluation of anti-diabetic and anti-tumoral activities of bioactive compounds from Phoenix dactylifera L's leaf: In vitro and in vivo approach.

    PubMed

    Chakroun, Mouna; Khemakhem, Bassem; Mabrouk, Hazem Ben; El Abed, Hanen; Makni, Mohamed; Bouaziz, Mohamed; Drira, Noureddine; Marrakchi, Naziha; Mejdoub, Hafedh

    2016-12-01

    Among various chronic disorders, cancer and diabetes mellitus are the most common disorders. This study was designed to evaluate the effectiveness of hydroalcoholic extract of Phoenix dactylifera L. leaves (HEPdL) in animal models of type II diabetes in vitro/in vivo and in a human melanoma-derived cell line (IGR-39). A liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was also performed to determine the amount of phenolic and flavonoid compounds in this plant. The physicochemical results by LC-MS/MS analysis of HEPdL showed the presence of 10 phenolic compounds. The in vitro study showed that the extract exhibited a more specific and potent inhibitor of α-glucosidase than α-amylase with an IC 50 value of 20±1μg/mL and 30±0.8μg/mL, respectively. More importantly, the in vivo study of the postprandial hyperglycemia activity with (20mg/kg) of HEPdL showed a decrease in plasma glucose levels after 60min in resemblance to the glucor (acarbose) (50mg/kg) effect. The oral administration of HEPdL (20mg/kg) in alloxan-induced diabetic mices for 28days showed a more significant anti-diabetic activity than that of the drug (50mg/kg). Moreover, cytotoxicity effects of HEPdL in IGR-39 cancer cell lines were tested by MTT assay. This extract was effective in inhibiting cancer cells growth (IGR-39) at dose 35 and 75μg/mL. These results confirm ethnopharmacological significance of the plant and could be taken further for the development of an effective pharmaceutical drug against diabetes and cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential.

    PubMed

    Mazlan, Farhaneen Afzal; Annuar, M Suffian M; Sharifuddin, Yusrizam

    2015-01-01

    Lactobacillus plantarum BET003 isolated from Momordica charantia fruit was used to ferment its juice. Momordica charantia fresh juice was able to support good growth of the lactic acid bacterium. High growth rate and cell viability were obtained without further nutrient supplementation. In stirred tank reactor batch fermentation, agitation rate showed significant effect on specific growth rate of the bacterium in the fruit juice. After the fermentation, initially abundant momordicoside 23-O-β-Allopyranosyle-cucurbita-5,24-dien-7α,3β,22(R),23(S)-tetraol-3-O-β-allopyranoside was transformed into its corresponding aglycone in addition to the emergence of new metabolites. The fermented M. charantia juice consistently reduced glucose production by 27.2%, 14.5%, 17.1% and 19.2% at 15-minute intervals respectively, when compared against the negative control. This putative anti-diabetic activity can be attributed to the increase in availability and concentration of aglycones as well as other phenolic compounds resulting from degradation of glycosidic momordicoside. Biotransformation of M. charantia fruit juice via lactic acid bacterium fermentation reduced its bitterness, reduced its sugar content, produced aglycones and other metabolites as well as improved its inhibition of α-glucosidase activity compared with the fresh, non-fermented juice.

  1. Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential

    PubMed Central

    Mazlan, Farhaneen Afzal; Annuar, M. Suffian M.

    2015-01-01

    Lactobacillus plantarum BET003 isolated from Momordica charantia fruit was used to ferment its juice. Momordica charantia fresh juice was able to support good growth of the lactic acid bacterium. High growth rate and cell viability were obtained without further nutrient supplementation. In stirred tank reactor batch fermentation, agitation rate showed significant effect on specific growth rate of the bacterium in the fruit juice. After the fermentation, initially abundant momordicoside 23-O-β-Allopyranosyle-cucurbita-5,24-dien-7α,3β,22(R),23(S)-tetraol-3-O-β-allopyranoside was transformed into its corresponding aglycone in addition to the emergence of new metabolites. The fermented M. charantia juice consistently reduced glucose production by 27.2%, 14.5%, 17.1% and 19.2% at 15-minute intervals respectively, when compared against the negative control. This putative anti-diabetic activity can be attributed to the increase in availability and concentration of aglycones as well as other phenolic compounds resulting from degradation of glycosidic momordicoside. Biotransformation of M. charantia fruit juice via lactic acid bacterium fermentation reduced its bitterness, reduced its sugar content, produced aglycones and other metabolites as well as improved its inhibition of α-glucosidase activity compared with the fresh, non-fermented juice. PMID:26539336

  2. Sulfated phenolic compounds from Limonium caspium: Isolation, structural elucidation, and biological evaluation

    USDA-ARS?s Scientific Manuscript database

    Three new compounds, 5-methyldihydromyricetin (1), 5-methyldihydromyricetin-3'-O-sulfate (2) and ß-D-glucopyranoside, 3-methyl, but-3-en-1-yl 4-O-a-L-rhamnopyranosyl (3) have been isolated from the Limonium caspium, together with dihydromyricetin (4), dihydromyricetin-3'-O-sulfate (5), myricetin-3'-...

  3. Combined genetic and bioactivity-based prioritization leads to the isolation of an endophyte-derived antimycobacterial compound.

    PubMed

    Alvin, A; Kalaitzis, J A; Sasia, B; Neilan, B A

    2016-05-01

    To initiate a genetic and bioactivity-based screening programme of culturable endophytes to identify micro-organisms capable of producing bioactive polyketides and peptides. Fungal endophytes were isolated from flowers, leaves and roots of Rhoeo spathacea, revealing a community consisting of Colletotrichum sp., Fusarium sp., Guignardia sp., Phomopsis sp., Phoma sp. and Microdochium sp. Genetic screening showed that all isolates had polyketide synthase (PKS) genes and most had nonribosomal peptide synthetase (NRPS) genes. Ethyl acetate extracts of the fungal isolates exhibited antiproliferative activity against at least one of the seven bacterial and mycobacterial test strains. Nuclear Magnetic Resonance -guided fractionation of the crude extract from a Fusarium sp. strain which exhibited strong antiproliferative activity against Mycobacterium tuberculosis resulted in the isolation of the polyketide javanicin. This compound was active against Myco. tuberculosis (MIC = 25 μg ml(-1)) and Mycobacterium phlei (MIC = 50 μg ml(-1)). The medicinal plant R. spathacea hosts a variety of fungal endophytes capable of producing antibacterial and antimycobacterial compounds. There is a positive correlation between the presence of PKS and/or NRPS encoding genes in endophytes and the bioactivity of their respective organic extracts. This is the first report on the fungal endophytic diversity of R. spathacea, and the isolation of an antimycobacterial compound from the plant which has been traditionally used for the treatment of tuberculosis symptoms. © 2016 The Society for Applied Microbiology.

  4. Isolation and identification of antibacterial compound from the leaves of Cassia auriculata.

    PubMed

    Senthilkumar, P K; Reetha, D

    2011-09-01

    Antimicrobial properties of medicinal plants and plant parts such as flowers, roots, fruits, seeds and oils are being used to cure some chronic and acute diseases throughout the world. In the present study, an attempt has been made to isolate and identify the antibacterial compound present in the leaves of the Cassia auriculata. A preliminary screening of antibacterial activity was carried out with fine different plant extracts viz., Aegle marmelos, Chloris Virgata, Clausena anisata, Feronia limonia and Cassia auriculata against different human pathogenic bacteriae such as Escherichia coil, Salmonella typhi, Proteus mirabilis and Klebsiella pneumoniae at different concentrations. Based on the results, the plant Cassia auriculata was selected as the efficient plant, which shows antibacterial activity against the tested organisms. Further compound responsible for its antibacterial activity was isolated and identified by IR spectrum, 1HNMR, 13CNMR and Mass spectrum studies, as oleanolic acid, which has the molecular formula of C30H48O3.

  5. Antileishmanial, antimalarial and antimicrobial activities of the extract and isolated compounds from Austroplenckia populnea (Celastraceae).

    PubMed

    Andrade, Sérgio F; da Silva Filho, Ademar A; de O Resende, Dimas; Silva, Márcio L A; Cunha, Wilson R; Nanayakkara, N P Dhammika; Bastos, Jairo Kenupp

    2008-01-01

    Austroplenckia populnea (Celastraceae), known as "marmelinho do campo", is used in Brazilian folk medicine as antimicrobial, anti-inflammatory, and antitumoural agent. The aim of the present work was to evaluate the antimicrobial, antileishmanial and antimalarial activities of the crude hydroalcoholic extract of A. populnea (CHE) and some of its isolated compounds. The phytochemical study of the CHE was carried out affording the isolation of methyl populnoate (1), populnoic acid (2), and stigmast-5-en-3-O-beta-(D-glucopyranoside) (3). This is the first time that the presence of compound 3 in A. populnea is reported. The results showed that the CHE presents antifungal and antibacterial activities, especially against Candida glabrata and Candida albicans, for which the CHE showed IC50 values of 0.7 microg mL(-1) and 5.5 microg mL(-1), respectively, while amphotericin B showed an IC50 value of 0.1 microg mL(-1) against both microorganisms. Compounds 1-3 were inactive against all tested microorganisms. In the antileishmanial activity test against Leishmania donovani, the CHE showed an IC50 value of 52 microg mL(-1), while compounds 2 and 3 displayed an IC50 value of 18 microg mL(-1) In the antimalarial assay against Plasmodium falciparum (D6 and W2 clones), it was observed that all evaluated samples were inactive. In order to compare the effect on the parasites with the toxicity to mammalian cells, the cytotoxicity activity of the isolated compounds was evaluated against Vero cells, showing that all evaluated samples exhibited no cytotoxicity at the maximum dose tested.

  6. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice.

    PubMed

    Lee, Jaemin; Liu, Junli; Feng, Xudong; Salazar Hernández, Mario Andrés; Mucka, Patrick; Ibi, Dorina; Choi, Jae Won; Ozcan, Umut

    2016-09-01

    The increasing global prevalence of obesity and its associated disorders points to an urgent need for the development of novel and effective therapeutic strategies that induce healthy weight loss. Obesity is characterized by hyperleptinemia and central leptin resistance. In an attempt to identify compounds that could reverse leptin resistance and thus promote weight loss, we analyzed a library of small molecules that have mRNA expression profiles similar to that of celastrol, a naturally occurring compound that we previously identified as a leptin sensitizer. Through this process, we identified another naturally occurring compound, withaferin A, that also acts as a leptin sensitizer. We found that withaferin-A treatment of mice with diet-induced obesity (DIO) resulted in a 20-25% reduction of body weight, while also decreasing obesity-associated abnormalities, including hepatic steatosis. Withaferin-A treatment marginally affected the body weight of ob/ob and db/db mice, both of which are deficient in leptin signaling. In addition, withaferin A, unlike celastrol, has beneficial effects on glucose metabolism that occur independently of its leptin-sensitizing effect. Our results show that the metabolic abnormalities of DIO can be mitigated by sensitizing animals to endogenous leptin, and they indicate that withaferin A is a potential leptin sensitizer with additional antidiabetic actions.

  7. Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae)

    PubMed Central

    2013-01-01

    Background The aim of this study was to evaluate the antimicrobial activity and the cytotoxicity of the ethanol crude extract, fractions and isolated compounds from the twigs of Eriosema robustum, a plant used for the treatment of coughs and skin diseases. Methods Column chromatographic and spectroscopic techniques were used to isolate and identify eight compounds, robusflavones A (1) and B (2), orostachyscerebroside A (3), stigmasterol (4), 1-O-heptatriacontanoyl glycerol (5), eicosanoic acid (6), 3-O-β-D-glucopyranoside of sitosterol (7) and 6-prenylpinocembrin (8), from E. robustum. A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against fungi and bacteria, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to evaluate the cytotoxicity. Results Fraction B had significant antimicrobial activity against Aspergillus fumigatus and Cryptoccocus neoformans (MIC 0.08 mg/ml), whilst the crude extract and fraction A had moderate activity against A. fumigatus and Candida albicans (MIC 0.16 mg/ml). Fraction A however had excellent activity against Staphylococcus aureus (MIC 0.02 mg/ml), Enterococcus faecalis and Escherichia coli (MIC 0.04 mg/ml). The crude extract had significant activity against S. aureus, E. faecalis and E. coli. Fraction B had good activity against E. faecalis and E. coli (MIC 0.08 mg/ml). All the isolated compounds had a relatively weak antimicrobial activity. An MIC of 65 μg/ml was obtained with robusflavones A (1) and B (2) against C. albicans and A. fumigatus, orostachyscerebroside A (3) against A. fumigatus, and robusflavone B (2) against C. neoformans. Compound 8 had the best activity against bacteria (average MIC 55 μg/ml). The 3 fractions and isolated compounds had LC50 values between 13.20 to > 100 μg/ml against Vero cells yielding selectivity indices between 0.01 and 1.58. Conclusion The isolated compounds generally had a much

  8. Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae).

    PubMed

    Awouafack, Maurice D; McGaw, Lyndy J; Gottfried, Sebastian; Mbouangouere, Roukayatou; Tane, Pierre; Spiteller, Michael; Eloff, Jacobus N

    2013-10-29

    The aim of this study was to evaluate the antimicrobial activity and the cytotoxicity of the ethanol crude extract, fractions and isolated compounds from the twigs of Eriosema robustum, a plant used for the treatment of coughs and skin diseases. Column chromatographic and spectroscopic techniques were used to isolate and identify eight compounds, robusflavones A (1) and B (2), orostachyscerebroside A (3), stigmasterol (4), 1-O-heptatriacontanoyl glycerol (5), eicosanoic acid (6), 3-O-β-D-glucopyranoside of sitosterol (7) and 6-prenylpinocembrin (8), from E. robustum. A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against fungi and bacteria, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to evaluate the cytotoxicity. Fraction B had significant antimicrobial activity against Aspergillus fumigatus and Cryptoccocus neoformans (MIC 0.08 mg/ml), whilst the crude extract and fraction A had moderate activity against A. fumigatus and Candida albicans (MIC 0.16 mg/ml). Fraction A however had excellent activity against Staphylococcus aureus (MIC 0.02 mg/ml), Enterococcus faecalis and Escherichia coli (MIC 0.04 mg/ml). The crude extract had significant activity against S. aureus, E. faecalis and E. coli. Fraction B had good activity against E. faecalis and E. coli (MIC 0.08 mg/ml). All the isolated compounds had a relatively weak antimicrobial activity. An MIC of 65 μg/ml was obtained with robusflavones A (1) and B (2) against C. albicans and A. fumigatus, orostachyscerebroside A (3) against A. fumigatus, and robusflavone B (2) against C. neoformans. Compound 8 had the best activity against bacteria (average MIC 55 μg/ml). The 3 fractions and isolated compounds had LC50 values between 13.20 to > 100 μg/ml against Vero cells yielding selectivity indices between 0.01 and 1.58. The isolated compounds generally had a much lower activity than expected based on the activity

  9. Quellenin, a new anti-Saprolegnia compound isolated from the deep-sea fungus, Aspergillus sp. YK-76.

    PubMed

    Takahashi, Konami; Sakai, Kazunari; Fukasawa, Wataru; Nagano, Yuriko; Sakaguchi, Sakiko Orui; Lima, Andre O; Pellizari, Vivian H; Iwatsuki, Masato; Takishita, Kiyotaka; Yoshida, Takao; Nonaka, Kenichi; Fujikura, Katsunori; Ōmura, Satoshi

    2018-04-23

    Saprolegnia parasitica, belonging to oomycetes, is one of virulent pathogen of fishes such as salmon and trout, and causes tremendous damage and losses in commercial aquacultures by saprolegniasis. Previously, malachite green, an effective medicine, had been used to control saprolegniasis. However, this drug has been banned around the world due to its mutagenicity. Therefore, novel anti-saprolegniasis compounds are urgently needed. As a new frontier to discover bioactive compounds, we focused on the deep-sea fungi for the isolation of anti-saprolegniasis compounds. In this paper, on the course of anti-saprolegniasis agents from 546 cultured broths of 91 deep-sea fungal strains, we report a new compound, named quellenin (1) together with three known compounds, diorcinol (2), violaceol-I (3) and violaceol-II (4), from deep-sea fungus Aspergillus sp. YK-76. This strain was isolated from an Osedax sp. annelid, commonly called bone-eating worm, collected at the São Paulo Ridge in off Brazil. Compounds 2, 3 and 4 showed anti-S. parasitica activity. Our results suggest that diorcinol and violaceol analogs and could be good lead candidates for the development of novel agents to prevent saprolegniasis.

  10. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats.

    PubMed

    Chen, Fufeng; Xiong, Hui; Wang, Jianxia; Ding, Xin; Shu, Guangwen; Mei, Zhinan

    2013-10-07

    Sanguis draxonis (SD) is a kind of red resin obtained from the wood of Dracaena cochinchinensis (Lour.) S. C. Chen (Dracaena cochinchinensis). It is a Chinese traditional herb that is prescribed for the handling of diabetic disorders, which is also supported by an array of scientific studies published in recent years. Although chemical constituents of this plant material have also been previously evaluated (Tang et al., 1995; Wei et al., 1998), it still remains poorly understood which constituent is the major contributor to its antidiabetic activities. Moreover, very little is known about the molecular mechanisms underlying antidiabetic activities of SD. Flavonoids exist at a high level in SD. The aim of this study is to evaluate the antidiabetic effects of total flavonoids from SD (SDF) in type 2 Diabetes mellitus (T2DM) rats. T2DM rats were induced by 4 weeks high-fat diet and a singular injection of streptozotocin (STZ) (35mg/kg). Then T2DM rats were treated with SDF for 21 days, using normal saline as the negative control. For comparison, a standard antidiabetic drug, metformin (200mg/kg), was used as a positive control. Three weeks later, relative biochemical indexes were determined and histopathological examinations were performed to assess the antidiabetic activities of SDF. SDF not only exhibited a significant hypoglycemic activity, but also alleviated dyslipidemia, tissue steatosis, and oxidative stress associated with T2DM. Moreover, considerable pancreatic islet protecting effects could be observed after SDF treatment. Further investigations revealed a potential anti-inflammation activity of SDF by determining serum levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP). This study demonstrates both hypoglycemic and hypolipidemic effects of SDF in T2DM rats, suggesting that flavonoids are the major active ingredients accounting for the antidiabetic activity of SD. Alleviating chronic inflammation responses and

  11. In vitro functional properties of crude extracts and isolated compounds from banana pseudostem and rhizome.

    PubMed

    Kandasamy, Saravanan; Ramu, Sasikala; Aradhya, Somaradhya Mallikarjuna

    2016-03-15

    Pseudostem and rhizome are the significant bio-waste generated (43.48%) from the banana plant post fruit harvest, which are usually left in the plantation or incinerated and wasted. Amounts used in production for consumption are negligible. However, the material has an important part to play in indigenous systems of medicine. Based on the huge volume of bio-waste generated and its traditional medicinal use, it is worth exploiting it as a source of natural bioactive compounds. In the current study, sequential extracts from banana pseudostem (BPS) and rhizome (BR), and isolated compounds including chlorogenic acid, 4-epicyclomusalenone and cycloeucalenol acetate, were tested for their antimicrobial activity, antiplatelet aggregation and cytotoxicity. Isolated compounds and crude extracts exhibited strong antimicrobial activity against a wide range of bacterial and fungal strains, platelet aggregation induced by collagen and cytotoxicity towards human liver cancer (HepG2) cells. Banana plant bio-waste, pseudostem and rhizome may serve as a potential source of multifunctional bioactive compounds and functional ingredient in food and other allied industries. © 2015 Society of Chemical Industry.

  12. Diabetic Complications and Insight into Antidiabetic Potentialities of Ethno-medicinal Plants: A review.

    PubMed

    Bilal, Muhammad; Iqbal, Muhammad Sarfaraz; Shah, Syed Bilal; Rasheed, Tahir; Iqbal, Hafiz M N

    2018-02-21

    The naturally inspired treatment options for several disease conditions and human-health related disorders such as diabetes mellitus have gained considerable research interest. In this context, naturally occurring plants and herbs with medicinal functionalities have gained special place than ever before in the current medicinal world. The objective of this review is to extend the current knowledge in the clinical field related to the diabetic complications. A special focus has also been given to the anti-diabetic potentialities of ethnomedicinal plants. Herein, we reviewed and compiled salient information from the authentic bibliographic databases including PubMed, Scopus, Elsevier, Springer, Bentham Science and other scientific databases. The patents were searched and reviewed from http://www.freepatentsonline.com. Diabetes mellitus is a group of metabolic disorders associated with the endocrine system that resulted in hyperglycemic conditions. Metabolic disorders can cause many complications such as neuropathy, retinopathy, nephropathy, ischemic heart disease, stroke, and microangiopathy. Traditional botanical therapies have been used around the world to treat diabetes. Among several medications and different medicines, various herbs are known to cure and control diabetes; also have no side effects. History has shown that medicinal plants have long been used for traditional healing around the world to treat diabetes. More than 800 plants around the world are shown by ethnobotanical information as traditional remedies for the treatment of diabetes. Several parts of these plants have been evaluated and appreciated for hypoglycemic activity. Medicinal plants have been found to be more effective than conventional drug compounds with no/fewer side effects and relatively inexpensive. In this review paper, we have reviewed plants with anti-diabetic and related beneficial medicinal effects. This review may be helpful for researchers, diabetic patient and decision makers

  13. Traditional Indian Medicines Used for the Management of Diabetes Mellitus

    PubMed Central

    Mishra, Neetu

    2013-01-01

    Plants have always been a source of drugs for humans since time immemorial. The Indian traditional system of medicine is replete with the use of plants for the management of diabetic conditions. According to the World Health Organization, up to 90% of population in developing countries use plants and its products as traditional medicine for primary health care. There are about 800 plants which have been reported to show antidiabetic potential. The present review is aimed at providing in-depth information about the antidiabetic potential and bioactive compounds present in Ficus religiosa, Pterocarpus marsupium, Gymnema sylvestre, Allium sativum, Eugenia jambolana, Momordica charantia, and Trigonella foenum-graecum. The review provides a starting point for future studies aimed at isolation, purification, and characterization of bioactive antidiabetic compounds present in these plants. PMID:23841105

  14. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 isolated from a marine tunicate.

    PubMed

    Shaala, Lamiaa A; Youssef, Diaa T A

    2015-03-25

    In the course of our continuous interest in identifying bioactive compounds from marine microbes, we have investigated a tunicate-derived fungus, Penicillium sp. CYE-87. A new compound with the 1,4-diazepane skeleton, terretrione D (2), together with the known compounds, methyl-2-([2-(1H-indol-3-yl)ethyl]carbamoyl)acetate (1), tryptamine (3), indole-3-carbaldehyde (4), 3,6-diisobutylpyrazin-2(1H)-one (5) and terretrione C (6), were isolated from Penicillium sp. CYE-87. The structures of the isolated compounds were established by spectral analysis, including 1D (1H, 13C) and 2D (COSY, multiplicity edited-HSQC and HMBC) NMR and HRESIMS, as well as comparison of their NMR data with those in the literature. The compounds were evaluated for their antimigratory activity against the human breast cancer cell line (MDA-MB-231) and their antiproliferation activity against HeLa cells. Compounds 2 and 6 showed significant antimigratory activity against MDA-MB-231, as well as antifungal activity against C. albicans.

  15. Identification and Bioactivity of Compounds from the Fungus Penicillium sp. CYE-87 Isolated from a Marine Tunicate

    PubMed Central

    Shaala, Lamiaa A.; Youssef, Diaa T. A.

    2015-01-01

    In the course of our continuous interest in identifying bioactive compounds from marine microbes, we have investigated a tunicate-derived fungus, Penicillium sp. CYE-87. A new compound with the 1,4-diazepane skeleton, terretrione D (2), together with the known compounds, methyl-2-([2-(1H-indol-3-yl)ethyl]carbamoyl)acetate (1), tryptamine (3), indole-3-carbaldehyde (4), 3,6-diisobutylpyrazin-2(1H)-one (5) and terretrione C (6), were isolated from Penicillium sp. CYE-87. The structures of the isolated compounds were established by spectral analysis, including 1D (1H, 13C) and 2D (COSY, multiplicity edited-HSQC and HMBC) NMR and HRESIMS, as well as comparison of their NMR data with those in the literature. The compounds were evaluated for their antimigratory activity against the human breast cancer cell line (MDA-MB-231) and their antiproliferation activity against HeLa cells. Compounds 2 and 6 showed significant antimigratory activity against MDA-MB-231, as well as antifungal activity against C. albicans. PMID:25815893

  16. Antidiabetic effects of extracts from Psidium guajava.

    PubMed

    Oh, Won Keun; Lee, Chul Ho; Lee, Myung Sun; Bae, Eun Young; Sohn, Cheon Bae; Oh, Hyuncheol; Kim, Bo Yeon; Ahn, Jong Seog

    2005-01-15

    During a screening of medicinal plants for inhibition of protein tyrosine phosphatase1B (PTP1B), an extract from Psidium guajava (Myrtaceae) leaves exhibited significant inhibitory effect on PTP1B. Thus, its antidiabetic effect on Lepr(db)/Lepr(db) mice was evaluated. Significant blood glucose lowering effects of the extract were observed after intraperitoneal injection of the extract at a dose of 10mg/kg in both 1- and 3-month-old Lepr(db)/Lepr(db) mice. In addition, histological analysis of the liver from the butanol-soluble fraction treated Lepr(db)/Lepr(db) mice revealed a significant decrease in the number of lipid droplets compared to the control mice. Taken together, it was suggested that the extract from Psidium guajava leaves possesses antidiabetic effect in type 2 diabetic mice model and these effect is, at least in part, mediated via the inhibition of PTP1B.

  17. Therapeutic potentials of Crataegus azarolus var. eu- azarolus Maire leaves and its isolated compounds.

    PubMed

    Abu-Gharbieh, Eman; Shehab, Naglaa Gamil

    2017-04-18

    Hyperglycemia is a complicated condition accompanied with high incidence of infection and dyslipidemia. This study aimed to explore the phyto-constituents of Crataegus azarolus var. eu- azarolus Maire leaves, and to evaluate the therapeutic potentials particularly antimicrobial, antihyperglycemic and antihyperlipidemic of the extract and the isolated compound (3β-O-acetyl ursolic acid). Total phenolics and flavonoidal contents were measured by RP-HPLC analysis. Free radicals scavenging activity of different extraction solvents was tested in-vitro on DPPH free radicals. The antimicrobial activity of the ethanolic extract and its fractions as well as the isolated compounds were evaluated in-vitro on variable microorganisms. Animal models were used to evaluate the antihyperglycemic and antihyperlipidemic activities of the ethanolic extract along with the isolated compound (3β-O acetyl ursolic acid). RP- HPLC analysis of the phenolics revealed high content of rutin, salicylic and ellagic acids. Six compounds belonging to triterpenes and phenolics were isolated from chloroform and n-butanol fractions namely: ursolic acid, 3β-O-acetyl ursolic acid, ellagic acid, quercetin 3-O-β methyl ether, rutin and apigenin7-O-rutinoside. Ethanolic extract showed the highest DPPH radical scavenger activity compared to other solvents. Ethanolic extract, hexane fraction, ursolic acid, 3β-O acetyl ursolic acid and quercetin 3-O-methyl ether showed variable antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Administration of the ethanolic extract or 3β-O acetyl ursolic acid orally to the mice reduced blood glucose significantly in a time- and dose-dependent manner. Ethanolic extract significantly reduced LDL-C, VLDL-C, TC and TG and increased HDL-C in rats. Ethanolic extract and 3β-O acetyl ursolic acid reduced in-vitro activity of pancreatic lipase. This study reveals that Crataegus azarolus var. eu- azarolus Maire has the efficiency to control

  18. Chemical and Biological Aspects of Extracts from Medicinal Plants with Antidiabetic Effects

    PubMed Central

    Gushiken, Lucas F.; Beserra, Fernando P.; Rozza, Ariane L.; Bérgamo, Patrícia L.; Bérgamo, Danilo A.; Pellizzon, Claudia H.

    2016-01-01

    Diabetes mellitus is a chronic disease and a leading cause of death in western countries. Despite advancements in the clinical management of the disease, it is not possible to control the late complications of diabetes. The main characteristic feature of diabetes is hyperglycemia, which reflects the deterioration in the use of glucose due to a faulty or poor response to insulin secretion. Alloxan and streptozotocin (STZ) are the chemical tools that are most commonly used to study the disease in rodents. Many plant species have been used in ethnopharmacology or to treat experimentally symptoms of this disease. When evaluated pharmacologically, most of the plants employed as antidiabetic substances have been shown to exhibit hypoglycemic and antihyperglycemic activities, and to contain chemical constituents that may be used as new antidiabetic agents. There are many substances extracted from plants that offer antidiabetic potential, whereas others may result in hypoglycemia as a side effect due to their toxicity, particularly their hepatotoxicity. In this article we present an updated overview of the studies on extracts from medicinal plants, relating the mechanisms of action by which these substances act and the natural principles of antidiabetic activity. PMID:28012277

  19. Bioassay-guided isolation and evaluation of antimicrobial compounds from Ixora megalophylla against some oral pathogens.

    PubMed

    Panyo, J; Matsunami, K; Panichayupakaranant, P

    2016-09-01

    Context Ixora megalophylla Chamch. (Rubiaceae) is a new plant species recently found in southern Thailand. Ethyl acetate extracts of its leaves and stems showed antimicrobial activities. Objectives To isolate and identify the antimicrobial compounds from I. megalophylla leaves and stems. Materials and methods The dried leaves (1.7 kg) and stems (3.5 kg) were consecutively extracted with petroleum ether (5 L × 4), ethyl acetate (5 L × 3) and ethanol (5 L × 4) under reflux conditions. The ethyl acetate extract was subjected to an antimicrobial assay guided isolation with Candida albicans and Streptococcus mutans. Compounds 1-10 were identified by (1)H NMR, (13)C NMR and EI-MS. Minimal lethal concentration (MLC) against C. albicans and Streptococcus spp. was determined using a broth microdilution method for 48 and 24 h, respectively. Results and discussion On the basis of the antimicrobial assay guided isolation, 10 known compounds, including vanillic acid (1), syringic acid (2), 4-hydroxy benzaldehyde (3), scopoletin (4), loliolide (5), syringaldehyde (6), sinapaldehyde (7), coniferaldehyde (8), syringaresinol (9) and 2,2'-dithiodipyridine (10), were identified. Compounds 1-5 were purified from the ethyl acetate extract of the leaves, while 6-9 and 10 were from the ethyl acetate and ethanol extracts of the stems, respectively. Among these isolates, 10 showed the strongest antibacterial activities against S. mutans and Streptococcus mitis, with minimum inhibitory concentrations (MICs) of 2-4 μg/mL, and MLC of 4 μg/mL, as well as having a weak antifungal activity against C. albicans (MIC of 125 μg/mL). This is the first report of the antimicrobial activities of 10.

  20. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria

    PubMed Central

    Mohamed, Magdy El-Said; Al-Yacoub, Zakariya H.; Vedakumar, John V.

    2015-01-01

    Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS) of thiophenic sulfur-containing compounds such as benzothiophene (BT) and dibenzothiophene (DBT) in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2) and accumulation of 2-hydroxybiphenyl (2-HBP). Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 μmol/g dry cell weight (DCW)/h and the maximum formation rate of 2-HBP formation was 4 μmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams. PMID:25762990

  1. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    PubMed Central

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  2. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2013-03-20

    Enzymatic browning is generally reported as the reaction between phenolic substances and enzymes. The quality of iceberg lettuce is directly linked to this discoloration. In particular, the color change of lettuce stems considerably reduces consumer acceptance and thus decreases sales revenue of iceberg lettuce. Ten phenolic compounds (caffeic acid, chlorogenic acid, phaseolic acid, chicoric acid, isochlorogenic acid, luteolin-7-O-glucuronide, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, and quercetin-3-O-(6″-malonyl)-glucoside) were isolated from Lactuca sativa var. capitata by multilayer countercurrent chromatography (MLCCC) and preparative high-performance liquid chromatography (HPLC). In addition, syringin was identified for the first time in iceberg lettuce. This polyphenolic ingredient was previously not mentioned for the family of Cichorieae in general. The purity and identity of isolated compounds were confirmed by different NMR experiments, HPLC-DAD-MS, and HR-MS techniques. Furthermore, the relationship between discoloration of iceberg lettuce and enzymatic browning was thoroughly investigated. Unexpectedly, the total concentration of phenolic compounds and the activity of polyphenol oxidase were not directly related to the browning processes. Results of model incubation experiments of plant extract solutions led to the conclusion that in addition to the typical enzymatic browning induced by polyphenol oxidases, further mechanisms must be involved to explain total browning of lettuce.

  3. Isolation and purification of antialgal compounds from the red alga Gracilaria lemaneiformis for activity against common harmful red tide microalgae.

    PubMed

    Sun, Ying-Ying; Meng, Kun; Su, Zhen-Xia; Guo, Gan-Lin; Pu, Yin-Fang; Wang, Chang-Hai

    2017-02-01

    Seven antialgal compounds (1-7) were successfully isolated from the red alga Gracilaria lemaneiformis through a combination of silica gel column chromatography and repeated preparative thin-layer chromatography. On the basis of the spectral data, the compounds were identified as gossonorol (1), 7,10-epoxy-ar-bisabol-11-ol (2), glycerol monopalmitate (3), stigmasterol (4), 15-hydroxymethyl-2, 6, 10, 18, 22, 26, 30-heptamethyl-14-methylene-17-hentriacontene (5), 4-hydroxyphenethyl alcohol (6), and margaric acid (7). These seven compounds were isolated from G. lemaneiformis for the first time, while the compounds 4, 6, and 7 were isolated from marine macroalgae for the first time. Furthermore, a quantitative relationship between the inhibition of algal growth and the concentration of each antialgal compound was determined and important parameters for future practical HAB control, e.g., EC 50-96h , were also obtained. The results indicated that isolated compounds 1-7 possess selective antialgal activity against the growth of several red tide microalgae (including Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globsa, Prorocentrum donghaiense, and Skeletonema costatum). Their antialgal activity against test red tide microalgae has not been previously reported. Furthermore, the EC 50-96h of one or more of the compounds towards the tested red microalgae was not only significantly less than 10 μg/mL but also was smaller than that of the characteristic antialgal agent potassium dichromate. The study demonstrates that compounds 1-7 possess significant application potential as antialgal agents against several harmful red tide microalgae.

  4. Compounds isolated from Eriobotrya deflexa leaves protect against ultraviolet radiation B-induced photoaging in human fibroblasts.

    PubMed

    Huang, Chung-Yu; Lin, Yi-Tzu; Kuo, Hsiang-Chun; Chiou, Wen-Fei; Lee, Mei-Hsien

    2017-10-01

    Ultraviolet (UV) irradiation leads to skin photoaging because of the upregulation of matrix metalloproteinase (MMP)-1 and downregulation of type I collagen and tissue inhibitor of metalloproteinase (TIMP)-1. Eriobotrya deflexa (Hemsl.) Nakai (Rosaceae) is a flowering plant endemic to Taiwan, and its leaves have been used as an expectorant and in antitussive folk remedy. Our previous studies have demonstrated that an E. deflexa leaf extract functions as a free radical scavenger. The current evaluated the antiphotoaging effect of partitioned fractions and specific compounds from the leaves of E. deflexa by using bioguided isolation, compound identification, and biological activity testing with UVB-irradiated human fibroblasts (WS-1 cells). E. deflexa leaves were extracted with 95% ethanol and then partitioned using a sequential treatment of n-hexane, ethyl acetate, and n-butanol (n-BuOH). The bioactive n-BuOH fraction was used for isolation and purification through chromatography. The compounds were identified by analyzing their physical and spectroscopic properties. We identified eight compounds from this fraction; of these compounds, 3-O-α-l-rhamnopyranosyl-(1‴→6″)-β-d-galactopyranoside (1), hyperin (2), afzelin (5), and cryptochlorogenic acid methyl ester (7) were isolated from E. deflexa for the first time, and they exhibited MMP-1 inhibition activity. The IC 50 values were 96.5, 89.5, 93.4, and 92.8μM for 1, 2, 5, and 7, respectively. These compounds also enhanced the expression of procollagen type I, and TIMP-1 and hyperin (2) were found to be most effective with IC 50 values of 56.7 and 70.3μM, respectively. Hyperin (2) could reduce intracellular reactive oxygen species production in UVB-irradiated WS-1 cells, with the corresponding IC 50 value being 80.7μM. Liquid chromatography triple-quadrupole mass spectrometry was used for the quantitative and chemical fingerprint analysis of active compounds. Quercetin 3-O-α-l-rhamnopyranosyl-(1‴→6

  5. Antidiabetic activities of aqueous and ethanolic extracts of Piper betle leaves in rats.

    PubMed

    Arambewela, L S R; Arawwawala, L D A M; Ratnasooriya, W D

    2005-11-14

    Leaves of Piper betle (Piperaceae) possess several bioactivities and are used in traditional medicinal systems. However, its antidiabetic activity has not been scientifically investigated so far. The aim of this study therefore, was to investigate the antidiabetic activity of Piper betle leaves. This was tested in normoglycaemic and strepozotocin (STZ)-induced diabetic rats using oral administration of hot water extract (HWE) and cold ethanolic extract (CEE). In normoglycaemic rats, both HWE and CEE significantly lowered the blood glucose level in a dose-dependent manner. In glucose tolerance test, both extracts markedly reduced the external glucose load. The antidiabetic activity of HWE is comparable to that of CEE. Moreover, HWE failed to inhibit the glucose absorption from the small intestine of rats. Both extracts were found to be non-toxic and well tolerated after following chronic oral administration (no overt signs of toxicity, hepatotoxicity or renotoxicity). However, the weight of the spleen had increased in treated groups possibly indicating lymphoproliferative activity. It is concluded that HWE and CEE of Piper betle leaves possess safe and strong antidiabetic activity.

  6. Analyzing the Chinese landscape in anti-diabetic drug research: leading knowledge production institutions and thematic communities.

    PubMed

    Deng, Junling; Sitou, Kaweng; Zhang, Yongping; Yan, Ru; Hu, Yuanjia

    2016-01-01

    for further anti-diabetic drug research. The correlation of -0.641 (P = 0.013) between degree centrality and the R sc value of non-core keywords indicates that communities concentrating on rare research fields are usually isolated by others and have a lower chance of collaboration. With a better understanding of the Chinese landscape in anti-diabetic drug research, researchers and scholars looking for experts and institutions in a specific research area can rapidly spot their target community, then select the most appropriate potential collaborator and suggest preferential research directions for future studies.

  7. Withaferin A is a Leptin Sensitizer with Strong Anti-Diabetic Properties in Mice

    PubMed Central

    Lee, Jaemin; Liu, Junli; Feng, Xudong; Salazar Hernández, Mario Andrés; Mucka, Patrick; Ibi, Dorina; Choi, Jae Won; Ozcan, Umut

    2018-01-01

    The increasing global prevalence of obesity and its associated disorders point to an urgent need for the development of novel and effective therapeutic strategies that induce healthy weight loss. Obesity is characterized by hyperleptinemia and central leptin resistance. In an attempt to identify compounds that could reverse leptin resistance and thus promote weight loss, we analyzed a library of small molecules with mRNA expression profiles similar to that of celastrol, a naturally-occurring compound we previously identified as a leptin sensitizer. By this process we identified another natural compound, withaferin A, that also acts as a leptin sensitizer. We found that withaferin A treatment of diet-induced obese mice resulted in a 20-25% reduction of body weight, while also decreasing obesity-associated abnormalities including hepatic steatosis. Withaferin A marginally affects the body weight of ob/ob and db/db mice, which are both deficient in leptin signaling. In addition, withaferin A, unlike celastrol, has beneficial effects on glucose metabolism independently from its leptin-sensitizing effect. Our results show that the metabolic abnormalities of diet-induced obesity can be mitigated by sensitizing animals to endogenous leptin, and indicate that withaferin A is a potential leptin sensitizer with additional anti-diabetic actions. PMID:27479085

  8. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico.

    PubMed

    Jhong, Chien-Hung; Riyaphan, Jirawat; Lin, Shih-Hung; Chia, Yi-Chen; Weng, Ching-Feng

    2015-01-01

    The alpha-glucosidase inhibitor is a common oral anti-diabetic drug used for controlling carbohydrates normally converted into simple sugars and absorbed by the intestines. However, some adverse clinical effects have been observed. The present study seeks an alternative drug that can regulate the hyperglycemia by down-regulating alpha-glucosidase and alpha-amylase activity by molecular docking approach to screen the hyperglycemia antagonist against alpha-glucosidase and alpha-amylase activities from the 47 natural compounds. The docking data showed that Curcumin, 16-hydroxy-cleroda-3,13-dine-16,15-olide (16-H), Docosanol, Tetracosanol, Antroquinonol, Berberine, Catechin, Quercetin, Actinodaphnine, and Rutin from 47 natural compounds had binding ability towards alpha-amylase and alpha-glucosidase as well. Curcumin had a better biding ability of alpha-amylase than the other natural compounds. Analyzed alpha-glucosidase activity reveals natural compound inhibitors (below 0.5 mM) are Curcumin, Actinodaphnine, 16-H, Quercetin, Berberine, and Catechin when compared to the commercial drug Acarbose (3 mM). A natural compound with alpha-amylase inhibitors (below 0.5 mM) includes Curcumin, Berberine, Docosanol, 16-H, Actinodaphnine/Tetracosanol, Catechin, and Quercetin when compared to Acarbose (1 mM). When taken together, the implication is that molecular docking is a fast and effective way to screen alpha-glucosidase and alpha-amylase inhibitors as lead compounds of natural sources isolated from medicinal plants. © 2015 International Union of Biochemistry and Molecular Biology.

  9. Preparation of S-Allylcysteine-Enriched Black Garlic Juice and Its Antidiabetic Effects in Streptozotocin-Induced Insulin-Deficient Mice.

    PubMed

    Kim, Jun Ho; Yu, Su Hyun; Cho, Yun Jeong; Pan, Jeong Hoon; Cho, Hyung Taek; Kim, Jeong Ho; Bong, Hyejin; Lee, Yeojin; Chang, Moon Han; Jeong, Ye Jin; Choi, Garam; Kim, Young Jun

    2017-01-18

    S-Allylcysteine (SAC), produced in large amounts during the aging process of garlic via enzymatic hydrolysis, is known as a key compound responsible for the multiple pharmacological activities of aged black garlic. This study investigated the effects of enzyme- and high hydrostatic pressure (HHP)-assisted extraction on the content of the bioactive compounds, including SAC, in black garlic juice (BGJ) and evaluated the antidiabetic effects of SAC-enriched BGJ in streptozotocin (STZ)-treated mice. The aging process increased the contents of SAC, total polyphenols, and total flavonoids in garlic juice. More importantly, pretreatment of pectinase cocktail with HHP resulted in a greater increase in those compounds during aging. Enzyme-treated BGJ reduced hyperglycemia and improved islet architecture and β-cell function in STZ-treated mice. Moreover, these effects were more potent than those of BGJ prepared by the conventional aging process. These findings provide useful information for the production of black garlic with improved bioactivities.

  10. Isolation of antimicrobial compounds from guava (Psidium guajava L.) and their structural elucidation.

    PubMed

    Arima, Hidetoshi; Danno, Gen-ichi

    2002-08-01

    Four antibacterial compounds were isolated from leaves of guava (Psidium guajava L.), and the structures of these compounds were established on the basis of chemical and spectroscopic evidence. Two new flavonoid glycosides, morin-3-O-alpha-L-lyxopyranoside and morin-3-O-alpha-L-arabopyranoside, and two known flavonoids, guaijavarin and quercetin, were identified. The minimum inhibition concentration of morin-3-O-alpha-L-lyxopyranoside and morin-3-O-alpha-L-arabopyranoside was 200 microg/ml for each against Salmonella enteritidis, and 250 microg/ml and 300 microg/ml against Bacillus cereus, respectively.

  11. The antibacterial activity of compounds isolated from oakmoss against Legionella pneumophila and other Legionella spp.

    PubMed

    Nomura, Harue; Isshiki, Yasunori; Sakuda, Keisuke; Sakuma, Katsuya; Kondo, Seiichi

    2012-01-01

    Oakmoss is a natural fragrance ingredient exhibiting highly specific, potent antibacterial activity against Legionella pneumophila, a causative agent of severe water-bone pneumonia. In the present study, the antibacterial activity of individual compounds isolated from oakmoss was investigated against L. pneumophila and other Legionella spp. A total of 18 known compounds and two minor novel compounds (i.e., 3-methoxy-5-methylphenyl-2,4-dihydroxy-6-methylbenzoate (compound 9) and 8-(2,4-dihydroxy-6-(2-oxoheptyl)-phenoxy)-6-hydroxy-3-pentyl-1H-isochromen-1-one (compound 20)) were purified from oakmoss. The minimum inhibitory concentrations (MICs) against clinical and environmental isolates of L. pneumophila, L. bozemanii, L. micdadei, L. longbeachae, and L. dumoffii for 11 of the 20 compounds were less than 100 µg/mL (range 0.8-64.0 µg/mL). Novel compounds 9 and 20 exhibited potent antibacterial activity against L. pneumophila strains (MIC ranges of 1.3-8.0 µg/mL and 3.3-13.3 µg/mL, respectively) and also against four other Legionella species (MIC ranges of 0.8-8.0 µg/mL and 3.3-21.3 µg/mL, respectively). Time-kill assays indicated that compounds 9 and 20 kill bacteria at a concentration equivalent to 2×MIC after 1 h and 6 h co-incubations, respectively. While oakmoss and the purified components exhibited antibacterial activity against Legionella spp., they were not active against other Gram-negative and -positive bacteria such as Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus.

  12. The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors.

    PubMed

    Cangoz, S; Chang, Y-Y; Chempakaseril, S J; Guduru, R C; Huynh, L M; John, J S; John, S T; Joseph, M E; Judge, R; Kimmey, R; Kudratov, K; Lee, P J; Madhani, I C; Shim, P J; Singh, S; Singh, S; Ruchalski, C; Raffa, R B

    2013-10-01

    A novel class of antidiabetic drugs - SGLT2 (Na(+) /glucose cotransporter type 2) inhibitors - target renal reabsorption of glucose and promote normal glucose levels, independent of insulin production or its action at receptors. We review this new mechanistic approach and the reported efficacy and safety of clinical testing of lead compounds. Information was obtained from various bibliographic sources, including PubMed and others, on the basic science and the clinical trials of SGLT2 inhibitors. The information was then summarized and evaluated from the perspective of contribution to a fuller understanding of the potential and current status of the lead clinical candidates. Diabetes mellitus is a spectrum of disorders that involves inadequate insulin function resulting in adverse health sequelae due to acute and chronic hyperglycaemia. Current antidiabetic pharmacotherapy primarily addresses either insulin production at the pancreatic β-cells or insulin action at insulin receptors. These drugs have less than full clinical effectiveness and sometimes therapy-limiting adverse effects. The third major component of glucose balance, namely elimination, has not been a significant therapeutic target to date. SGLT2 inhibitors are a novel approach. A sufficient number of clinical trials have been conducted on sufficiently chemically diverse SGLT2 inhibitors to reasonably conclude that they have efficacy (HbA1c reductions of 0·4-1%), and thus far, the majority of adverse effects have been mild and transitory or treatable, with the caveat of possible association with increased risk of breast cancer in women and bladder cancer in men. © 2013 John Wiley & Sons Ltd.

  13. Evaluation of antidiabetic, antioxidant and antiglycating activities of the Eysenhardtia polystachya

    PubMed Central

    Gutierrez, Rosa Martha Perez; Baez, Efren Garcia

    2014-01-01

    Background: Many diseases are associated with oxidative stress caused by free radicals. The aim of the present study was to evaluate the antidiabetic, antioxidant and antiglycation properties of Eysenhardtia polystachya (EP) bark methanol-water extract. Materials and Methods : The antioxidant capacities were evaluated by studying in vitro the scavenging of DPPH and ABTS free radical, reactive oxygen species such as RO2, O2·-, H2O2, OH., H2O2, ONOO-, NO, HOCl,1 O2, chelating ability, ORAC, β-carotene-bleaching and lipid peroxidation. The antiglycation activities of EP were evaluated by haemoglobin, bovine serum albumin (BSA)-glucose, BSA-methylglyoxal and BSA-glucose assays. Oral administration of EP at the doses of 100 mg/kg, 200 mg/kg and 400 mg/g was studied in normal, glucose-loaded and antidiabetic effects on streptozotocin-induced mildly diabetic (MD) and severely diabetic (SD) mice. Results: EP showed Hdonor activity, free radical scavenging activity, metal chelating ability and lipid peroxidation Antioxidant activity may be attributed to the presence of phenolic and flavonoid compounds. EP is an inhibitor of fluorescent AGE, methylglyoxal and the glycation of haemoglobin. In STZ-induced diabetic mice, EP reduced the blood glucose, increased serum insulin, body weight, marker enzymes of hepatic function, glycogen, HDL, GK and HK while there was reduction in the levels of triglyceride, cholesterol, TBARS, LDL and G6Pase. Conclusions: Eysenhardtia polystachya possesses considerable antioxidant activity with reactive oxygen species (ROS) scavenging activity and demonstrated an anti-AGEs and hepatoprotective role, inhibits hyperglycemic, hyperlipidemic and oxidative stress indicating that these effects may be mediated by interacting with multiple targets operating in diabetes mellitus. PMID:24991120

  14. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis.

    PubMed

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 μM) and a lower effect against CML cells (IC50 = 27.5-30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  15. A Retrospect Study on Thiazole Derivatives as the Potential Antidiabetic Agents in Drug Discovery & Developments.

    PubMed

    Khatik, Gopal L; Datusalia, Ashok Kumar; Ahsan, Waquar; Kaur, Paranjeet; Vyas, Manish; Mittal, Amit; Nayak, Surendra Kumar

    2017-09-15

    Heterocycles containing thiazole, a moiety with sulfur and nitrogen is a core structure which found in a number of biologically active compounds. The thiazole ring is notable as a component of the certain natural products, such as vitamin B1 (thiamine) and penicillins. Thiazole is also known as wonder nucleus and has versatile in different biological fields. A number of new compounds contain heterocycle thiazole moieties, thus it is one of the important areas of research. We searched the scientific database using relevant keywords. Among the searched literature only peer-reviewed papers were collected which addresses our questions. The retrieved quality research articles were screened and analyzed critically. The key findings of these studies were included along with their importance. The quality research articles included in this review, were selected for the life-threatening diseases i.e. diabetes, which is one of the serious issues all over the globe with an estimated worldwide prevalence in 2016 of 422 million people, which is expected to rise double by 2030. Since 1995, there has been an explosion of the introduction of new classes of pharmacological agents having thiazole moieties. However, most of the drugs can cause noncompliance, hypoglycemia, and obesity. Thus new antidiabetic drugs with thiazole moieties came up with improved compliance and reduced side effects such as pioglitazone (Actos), rosiglitazone (Avandia), netoglitazone, DRF-2189, PHT46, PMT13, DRF-2519. With such a great importance, research in thiazole is part of many academic and industrial laboratories worldwide. The present review describes the importance of thiazole nucleus and its derivatives as antidiabetic agents with an emphasis on the past as well as recent developments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Ursolic acid derivatives as potential antidiabetic agents: In vitro, in vivo, and in silico studies.

    PubMed

    Guzmán-Ávila, Ricardo; Flores-Morales, Virginia; Paoli, Paolo; Camici, Guido; Ramírez-Espinosa, Juan José; Cerón-Romero, Litzia; Navarrete-Vázquez, Gabriel; Hidalgo-Figueroa, Sergio; Yolanda Rios, Maria; Villalobos-Molina, Rafael; Estrada-Soto, Samuel

    2018-03-01

    Hit, Lead & Candidate Discovery Protein tyrosine phosphatase 1B (PTP-1B) has attracted interest as a novel target for the treatment of type 2 diabetes, this because its role in the insulin-signaling pathway as a negative regulator. Thus, the aim of current work was to obtain seven ursolic acid derivatives as potential antidiabetic agents with PTP-1B inhibition as main mechanism of action. Furthermore, derivatives 1-7 were submitted in vitro to enzymatic PTP-1B inhibition being 3, 5, and 7 the most active compounds (IC 50  = 5.6, 4.7, and 4.6 μM, respectively). In addition, results were corroborated with in silico docking studies with PTP-1B orthosteric site A and extended binding site B, showed that 3 had polar and Van der Waals interactions in both sites with Lys120, Tyr46, Ser216, Ala217, Ile219, Asp181, Phe182, Gln262, Val49, Met258, and Gly259, showing a docking score value of -7.48 Kcal/mol, being more specific for site A. Moreover, compound 7 showed polar interaction with Gln262 and Van der Waals interactions with Ala217, Phe182, Ile219, Arg45, Tyr46, Arg47, Asp48, and Val49 with a predictive docking score of -6.43 kcal/mol, suggesting that the potential binding site could be localized in the site B adjacent to the catalytic site A. Finally, derivatives 2 and 7 (50 mg/kg) were selected to establish their in vivo antidiabetic effect using a noninsulin-dependent diabetes mice model, showing significant blood glucose lowering compared with control group (p < .05). © 2018 Wiley Periodicals, Inc.

  17. Potential of Polygonum cuspidatum Root as an Antidiabetic Food: Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-HRMS and NMR for Identification of Antidiabetic Constituents.

    PubMed

    Zhao, Yong; Chen, Martin Xiaoyong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Staerk, Dan

    2017-06-07

    The worldwide increasing incidence of type 2 diabetes has fueled an intensified search for food and herbal remedies with preventive and/or therapeutic properties. Polygonum cuspidatum Siebold & Zucc. (Polygonaceae) is used as a functional food in Japan and South Korea, and it is also a well-known traditional antidiabetic herb used in China. In this study, dual high-resolution α-glucosidase and protein-tyrosine phosphatase 1B (PTP1B) inhibition profiling was used for the identification of individual antidiabetic constituents directly from the crude ethyl acetate extract and fractions of P. cuspidatum. Subsequent preparative-scale HPLC was used to isolate a series of α-glucosidase inhibitors, which after HPLC-HRMS and NMR analysis were identified as procyanidin B2 3,3″-O-digallate (3) and (-)-epicatechin gallate (5) with IC 50 values of 0.42 ± 0.02 and 0.48 ± 0.0004 μM, respectively, as well as a series of stilbene analogues with IC 50 value in the range from 6.05 ± 0.05 to 116.10 ± 2.04 μM. In addition, (trans)-emodin-physcion bianthrone (15b) and (cis)-emodin-physcion bianthrone (15c) were identified as potent PTP1B inhibitors with IC 50 values of 2.77 ± 1.23 and 7.29 ± 2.32 μM, respectively. These findings show that P. cuspidatum is a potential functional food for management of type 2 diabetes.

  18. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua.

    PubMed

    Nguyen, Van Thu; To, Dao Cuong; Tran, Manh Hung; Oh, Sang Ho; Kim, Jeong Ah; Ali, Md Yousof; Woo, Mi-Hee; Choi, Jae Sue; Min, Byung Sun

    2015-07-01

    Three new serratene-type triterpenoids (1-3) and a new hydroxy unsaturated fatty acid (13) together with nine known compounds (4-12) were isolated from Lycopodiella cernua. The chemical structures were established using NMR, MS, and Mosher's method. Compound 13 showed the most potent inhibitory activity against acetylcholinesterase (AChE) with an IC50 value of 0.22μM. For butyrylcholinesterase (BChE) inhibitory activity, 5 showed the most potent activity with an IC50 value of 0.42μM. Compound 2 showed the most potent activity with an IC50 of 0.23μM for BACE-1 inhibitory activity. The kinetic activities were investigated to determine the type of enzyme inhibition involved. The types of AChE inhibition shown by compounds 4, 5, and 13 were mixed; BChE inhibition by 5 was competitive, while 2 and 6 showed mixed-types. In addition, molecular docking studies were performed to investigate the interaction of these compounds with the pocket sites of AChE. The docking results revealed that the tested inhibitors 3, 4, and 13 were stably present in several pocket domains of the AChE residue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Ultimate biodegradability and ecotoxicity of orally administered antidiabetic drugs.

    PubMed

    Markiewicz, Marta; Jungnickel, Christian; Stolte, Stefan; Białk-Bielińska, Anna; Kumirska, Jolanta; Mrozik, Wojciech

    2017-07-05

    Hypoglycaemic pharmaceuticals are recently more and more frequently detected in the environment. In our previous study, we have shown that even though many of them undergo significant primary degradation some are transformed to stable products or undergo such transformation that a large part of the structure is still preserved. One of the main routes of elimination from wastewaters or surface waters is biodegradation and a lack thereof leads to accumulation in the environment. Within this work we tested the ultimate biodegradability of six oral antidiabetics: metformin and its main metabolite guanylurea, acarbose, glibenclamide, gliclazide, glimepiride and repaglinide. We also compared the experimental results obtained in this and accompanying work with models designed to predict biodegradability and showed that these models are only moderately successful. Additionally, we examined these compounds in acute Daphnia magna test to check if they might pose an ecotoxicological threat. Combining the results of biodegradability and toxicity tests allows a preliminary assessment of their potential environmental impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterization and structure elucidation of antibacterial compound of Streptomyces sp. ECR77 isolated from east coast of India.

    PubMed

    Thirumurugan, D; Vijayakumar, R

    2015-05-01

    Forty marine actinobacteria were isolated from the sediments of east coast (Bay of Bengal) region of Tamilnadu, India. Morphologically distinct colonies were primarily tested against fish pathogenic bacteria such as Vibrio cholerae, V. parahaemolyticus, V. alginolyticus, Pseudomonas fluorescens and Aeromonas hydrophila by cross-streak plate method. The secondary metabolites produced by the highly potential strain cultured on starch casein broth were extracted separately with various solvents such as alcohol, ethyl acetate, methanol, petroleum ether and chloroform. The antibacterial assay of the bioactive compounds was tested against the fish pathogenic bacteria by well diffusion method. Of the various solvents used, the ethyl acetate extract of the isolate had good antibacterial activity. The potential strain was identified as Streptomyces labedae by phenotypic, 16S rRNA gene sequence and phylogenetic analysis. Purification of the biologically active compounds by column chromatography led to isolation of 27 fractions. The biologically active fraction was re-chromatographed on a silica gel column to obtain a single active compound, namely N-isopentyltridecanamide. The structure of the compounds was elucidated on the basis of ultra violet, Fourier transform infrared and nuclear magnetic resonance spectra.

  1. Natural compounds isolated from Brazilian plants are potent inhibitors of hepatitis C virus replication in vitro.

    PubMed

    Jardim, A C G; Igloi, Z; Shimizu, J F; Santos, V A F F M; Felippe, L G; Mazzeu, B F; Amako, Y; Furlan, M; Harris, M; Rahal, P

    2015-03-01

    Compounds extracted from plants can provide an alternative approach to new therapies. They present characteristics such as high chemical diversity, lower cost of production and milder or inexistent side effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped, resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replication. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity. Initial screening of compounds was performed using the maximum non-toxic concentration and 4 compounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency) were selected for extra analysis. The compounds APS (EC50=2.3μM), a natural alkaloid isolated from Maytrenus ilicifolia, and the lignans 3(∗)43 (EC50=4.0μM), 3(∗)20 (EC50=8.2μM) and 5(∗)362 (EC50=38.9μM) from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activity and HCV protein expression in both the subgenomic and infectious systems. We further show that these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4 compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV activity and further analyses are being performed in order to investigate the mode of action of those compounds. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Isolation and structural elucidation of cytotoxic compounds from the root bark of Diospyros quercina (Baill.) endemic to Madagascar

    PubMed Central

    Ruphin, Fatiany Pierre; Baholy, Robijaona; Emmanuel, Randrianarivo; Amelie, Raharisololalao; Martin, Marie-Therese; Koto–te-Nyiwa, Ngbolua

    2014-01-01

    Objective To isolate and characterize the cytotoxic compounds from Diospyros quercina (Baill.) G.E. Schatz & Lowry (Ebenaceae). Methods An ethno-botanical survey was conducted in the south of Madagascar from July to August 2010. Bio-guided fractionation assay was carried out on the root bark of Diospyros quercina, using cytotoxicity bioassay on murine P388 leukemia cell lines as model. The structures of the cytotoxic compounds were elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Results Biological experiments resulted in the isolation of three bioactive pure compounds (named TR-21, TR-22, and TR-23) which exhibited very good in vitro cytotoxic activities with the IC50 values of (0.017 5±0.0060) µg/mL, (0.089±0.005) µg/mL and (1.027±0.070) µg/mL respectively. Thus, they support the claims of traditional healers and suggest the possible correlation between the chemical composition of this plant and its wide use in Malagasy folk medicine to treat cancer. Conclusions The ability of isolated compounds in this study to inhibit cell growth may represent a rational explanation for the use of Diospyros quercina root bark in treating cancer by Malagasy traditional healers. Further studies are, therefore, necessary to evaluate the in vivo anti-neoplastic activity of these cytotoxic compounds as effective anticancer drugs. PMID:25182433

  3. Bioactive Peptides Derived from Seaweed Protein and Their Health Benefits: Antihypertensive, Antioxidant, and Antidiabetic Properties.

    PubMed

    Admassu, Habtamu; Gasmalla, Mohammed Abdalbasit A; Yang, Ruijin; Zhao, Wei

    2018-01-01

    Cardiovascular diseases and diabetes are the biggest causes of death globally. Therefore, prevention of these diseases is a focus of pharmaceuticals and functional food manufacturers. This review summarizes recent research trends and scientific knowledge in seaweed protein-derived peptides with particular emphasis on production, isolation and potential health impacts in prevention of hypertension, diabetes and oxidative stress. The current status and future prospects of bioactive peptides are also discussed. Bioactive peptides have strong potential for use in therapeutic drug and functional food formulation in health management strategy, especially cardiovascular disease and diabetes. Seaweeds can be used as sustainable protein sources in the production of these peptide-based drugs and functional foods for preventing such diseases. Many studies have reported that peptides showing angiotensin converting enzyme inhibition, antihypertensive, antioxidative and antidiabetics activities, have been successfully isolated from seaweed. However, further research is needed in large-scale production of these peptides, efficient isolation methods, interactions with functional foods and other pharmaceuticals, and their ease to digestion in in vivo studies and safety to validate the health benefits of these peptides. © 2017 Institute of Food Technologists®.

  4. Antimutagenic Compounds of White Shrimp (Litopenaeus vannamei): Isolation and Structural Elucidation

    PubMed Central

    López-Saiz, Carmen-María; Hernández, Javier; Cinco-Moroyoqui, Francisco-Javier; Velázquez, Carlos; Ocaño-Higuera, Víctor-Manuel; Plascencia-Jatomea, Maribel; Robles-Sánchez, Maribel; Machi-Lara, Lorena; Burgos-Hernández, Armando

    2016-01-01

    According to the World Health Organization, cancer is the main cause of mortality worldwide; thus, the search of chemopreventive compounds to prevent the disease has become a priority. White shrimp (Litopenaeus vannamei) has been reported as a source of compounds with chemopreventive activities. In this study, shrimp lipids were extracted and then fractionated in order to isolate those compounds responsible for the antimutagenic activity. The antimutagenic activity was assessed by the inhibition of the mutagenic effect of aflatoxin B1 on TA98 and TA100 Salmonella tester strains using the Ames test. Methanolic fraction was responsible for the highest antimutagenic activity (95.6 and 95.9% for TA98 and TA100, resp.) and was further separated into fifteen different subfractions (M1–M15). Fraction M8 exerted the highest inhibition of AFB1 mutation (96.5 and 101.6% for TA98 and TA100, resp.) and, after further fractionation, four subfractions M8a, M8b, M8c, and M8d were obtained. Data from 1H and 13C NMR, and mass spectrometry analysis of fraction M8a (the one with the highest antimutagenic activity), suggest that the compound responsible for its antimutagenicity is an apocarotenoid. PMID:27006678

  5. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    PubMed Central

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4′-dihydroxy-3′-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM) and a lower effect against CML cells (IC50 = 27.5–30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  6. Anti-diabetic formulations of Nāga bhasma (lead calx): A brief review.

    PubMed

    Rajput, Dhirajsingh; Patgiri, B J; Galib, R; Prajapati, P K

    2013-07-01

    Ayurvedic formulations usually contain ingredients of herbal, mineral, metal or animal in origin. Nāga bhasma (lead calx) is a potent metallic formulation mainly indicated in the treatment of Prameha (~diabetes). Until date, no published information is available in compiled form on the formulations containing Nāga bhasma as an ingredient, their dose and indications. Therefore, in the present study, an attempt has been made to compile various formulations of Nāga bhasma indicated in treating Prameha. The present work aims to collect information on various formulations of Nāga bhasma mainly indicated in treating Prameha and to elaborate the safety and efficacy of Nāga bhasma as a Pramehaghna (antidiabetic) drug. Critical review of formulations of Nāga bhasma is compiled from various Ayurvedic texts and the therapeutic efficacy of Nāga bhasma is discussed on the basis of available data. Antidiabetic formulations of Nāga bhasma were discovered around 12(th) century CE. There are 44 formulations of Nāga bhasma mainly indicated for Prameha. Haridrā (Curcuma longa Linn), Āmalakī (Emblica officinalis), Guḍūci (Tinospora cordifolia) and Madhu (honey) enhance the antidiabetic action of Nāga bhasma and also help to prevent diabetic complications as well as any untoward effects of Nāga bhasma. On the basis of the reviewed research, it is concluded that Nāga bhasma possesses significant antidiabetic property.

  7. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency

    PubMed Central

    Joseph, Baby; Jini, D

    2013-01-01

    Diabetes mellitus is among the most common disorder in developed and developing countries, and the disease is increasing rapidly in most parts of the world. It has been estimated that up to one-third of patients with diabetes mellitus use some form of complementary and alternative medicine. One plant that has received the most attention for its anti-diabetic properties is bitter melon, Momordica charantia (M. charantia), commonly referred to as bitter gourd, karela and balsam pear. Its fruit is also used for the treatment of diabetes and related conditions amongst the indigenous populations of Asia, South America, India and East Africa. Abundant pre-clinical studies have documented in the anti-diabetic and hypoglycaemic effects of M. charantia through various postulated mechanisms. However, clinical trial data with human subjects are limited and flawed by poor study design and low statistical power. The present review is an attempt to highlight the antidiabetic activity as well as phytochemical and pharmacological reports on M. charantia and calls for better-designed clinical trials to further elucidate its possible therapeutic effects on diabetes.

  8. Lethality of cytochalasin B and other compounds isolated from fungus Aspergillus sp. (Trichocomaceae) endophyte of Bauhinia guianensis (Fabaceae).

    PubMed

    Feitosa, André de O; Dias, Amanda Cristina S; Ramos, Gisele da C; Bitencourt, Heriberto R; Siqueira, José Edson S; Marinho, Patrícia Santana B; Barison, Andersson; Ocampos, Fernanda M M; Marinho, Andrey Moacir do R

    Endophytic fungi are fungi that colonize internal tissues of plants; several biologically active compounds have been isolated from these fungi. There are few studies of compounds isolated from endophytic fungi of Amazon plants. Thus, this study aimed the isolation and structural identification of ergosterol (1), ergosterol peroxide (2), mevalonolactone (3), cytochalasin B (4) and cytochalasin H (5) from Aspergillus sp. EJC 04, an endophytic fungus from Bauhinia guianensis. The cytochalasin B (4) and the diacetate derivative of cytochalasin B (4a) showed high lethality in the brine shrimp assay. This is the first occurrence of cytochalasins in Amazonian endophytic fungi from B. guianensis. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. The Isolation of a New S-Methyl Benzothioate Compound from a Marine-Derived Streptomyces sp.

    PubMed Central

    Mahyudin, Nor Ainy; Blunt, John W.; Cole, Anthony L. J.; Munro, Murray H. G.

    2012-01-01

    The application of an HPLC bioactivity profiling/microtiter plate technique in conjunction with microprobe NMR instrumentation and access to the AntiMarin database has led to the isolation of a new 1. In this example, 1 was isolated from a cytotoxic fraction of an extract obtained from marine-derived Streptomyces sp. cultured on Starch Casein Agar (SCA) medium. The 1D and 2D 1H NMR and ESIMS data obtained from 20 μg of compound 1 fully defined the structure. The known 2 was also isolated and readily dereplicated using this approach. PMID:22291452

  10. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds.

    PubMed

    Tian, J-H; Pourcher, A-M; Peu, P

    2016-07-01

    In this study, we identified five strains isolated from soil and sediments able to degrade kraft lignin, aromatic dyes and lignin derivatives. Using 16S rRNA gene sequencing, the isolates were identified as Serratia sp. JHT01, Serratia liquefacien PT01, Pseudomonas chlororaphis PT02, Stenotrophomonas maltophilia PT03 and Mesorhizobium sp. PT04. All the isolates showed significant growth on lignin with no water-extractable compounds. Synthetic aromatic dyes were used to assess the presence of oxidative enzymes. All the isolates were able to use the thiazine dye Methylene blue and the anthraquinone dye Remazol Brilliant Blue R as the sole carbon source. Guaiacol, veratryl alcohol and biphenyl were also mineralized by all the strains isolated. These results suggest they could be used for the treatment of aromatic pollutants and for the degradation of the lignocellulosic biomass. The valorization of waste lignin and lignocellulosic biomass by biocatalysis opens up new possibilities for the production of value-added substituted aromatics, biofuel and for the treatment of aromatic pollutants. Bacteria with ligninolytic potential could be a source of novel enzymes for controlled lignin depolymerization. In this work, five soil bacteria were isolated and studied. Every isolate showed significant growth on lignin and was able to degrade several lignin monomers and ligninolytic indicator dyes. They could thus be a source of novel ligninolytic enzymes as well as candidates for a bacterial consortium for the delignification of lignocellulosic biomass. © 2016 The Society for Applied Microbiology.

  11. Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats

    PubMed Central

    Jain, Pankaj G.; Surana, Sanjay J.

    2016-01-01

    Prosopis cineraria (L.) Druce (Leguminosae) (syn. Prosopis spicigera L.) has antidiabetic and antioxidant potential. Earlier we reported its hypolipidemic activity obtained from ethanol extract (ET-PCF). Object of this work was to isolate ferulic acid (FA) from ET-PCF and evaluate hypolipidemic activity against high-fat diet (HFD)-induced hyperlipidemic laboratory rats. ET-PCF was subjected to flash column chromatography to isolate FA. The chemical structure of the isolated compound was elucidated by UV, IR, 1H NMR,13C NMR and LC-MS. Further, the antihyperlipidemic effect of FA (10, 20 and 40 mg/kg, p.o.) in HFD-induced hyperlipidemic rats was investigated. Hyperlipidemia was induced in male Sprague-Dawley rats by feeding with HFD for 60 days. Lipid parameters such as total cholesterol (TC), Low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) levels were measured in serum and hepatic tissue. Hepatic oxido-nitrosative stress (SOD, GSH, MDA and NO) were also determined. Histological evaluation of liver tissue was carried out. The structure of the isolated compound was characterized based on spectral data and confirmed as FA. HFD induced an alteration in serum, and hepatic lipid profile (triglyceride, cholesterol, HDL, and LDL) was significantly restored (p < 0.001) by administration of FA (20 and 40 mg/kg, p.o.). The elevated level of oxido-nitrosative stress in liver was significantly reduced (p < 0.001) by FA (20 and 40 mg/kg, p.o.). Histological aberration induced in the liver after HFD ingestion were restored by FA administration. Ferulic acid isolated from ET-PCF showed hypolipidemic effects in HFD-induced hyperlipidemic rats via modulation of elevated oxido-nitrosative stress. PMID:28096790

  12. Antidiabetic Effects of Aqueous Infusions of Artemisia herba-alba and Ajuga iva in Alloxan-Induced Diabetic Rats.

    PubMed

    Boudjelal, Amel; Siracusa, Laura; Henchiri, Cherifa; Sarri, Madani; Abderrahim, Benkhaled; Baali, Faiza; Ruberto, Giuseppe

    2015-06-01

    The aqueous infusions of the aerial parts of Artemisia herba-alba Asso and Ajuga iva Schreber, prepared in accordance with the traditional procedure used in the local folk medicine, have been analysed for their composition and content of phytochemical constituents and examined for their antidiabetic effectiveness in alloxan-induced diabetic rats. Oral administration of A. herba-alba and A. iva infusions was studied in normal and alloxan-induced diabetic rats, which were randomly divided into nine groups, each group consisting of six animals. The drug preparations (100, 200, and 300 mg/kg b. w.) of each plant were given orally to the rats of each group twice daily for 15 days. Compositional analysis of the aqueous infusions revealed the presence of several polyphenols as main components. A. herba-alba infusion was characterised by mono- and di-cinnamoylquinic acids, with 5-caffeoylquinic (chlorogenic) acid being the main compound, followed by 3,5-dicaffeoylquinic acid. Vicenin-2 (apigenin 6,8-di-C-glucoside) appeared to be the most abundant among flavonoids. On the other hand, A. iva showed the exclusive presence of flavonoids, with the flavanone naringin present in relatively high levels together with several apigenin (flavone) derivatives. Oral administration of 300 mg/kg b. w. of the aqueous infusions of A. herba-alba and A. iva exhibited a significant reduction in blood glucose content, showing a much more efficient antidiabetic activity compared to glibenclamide, the oral hypoglycaemic agent used as a positive control in this study. These results suggest that A. herba-alba and A. iva possess significant antidiabetic activity, as they were able to improve the biochemical damage in alloxan-induced diabetes in rats. Georg Thieme Verlag KG Stuttgart · New York.

  13. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    PubMed

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p < 0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion.

  14. Antidiabetic plant-derived nutraceuticals: a critical review.

    PubMed

    Naveen, Jayapal; Baskaran, Vallikannan

    2018-06-01

    Diabetes mellitus (DM) is one of the major health problems in the world, especially amongst the urban population. Chemically synthesized drugs used to decrease the ill effects of DM and its secondary complications cause adverse side effects, viz., weight gain, gastrointestinal disturbances, and heart failure. Currently, various other approaches, viz., diet control, physical exercise and use of antidiabetic plant-derived molecules/foods are advocated to manage DM, as they are economical with fewer or no side effects. This review mainly focuses on antidiabetic plants, chemically characterized plant molecules and plant-based foods in the treatment of DM. Very little science-based evidence is available on the mechanism of action of plant-derived food molecules on the DM targets. Critical DM targets include α-amylase, α-glucosidase, DPP-IV, aldose reductase, PPAR-γ, AMP kinase and GLUT4. In-depth studies carried out on a few of those targets with specific mechanisms of action are addressed in this review. This review may help future researchers in identifying a right plant molecule to treat DM or to develop food formulations for DM management.

  15. Acute and subacute antidiabetic studies of ENP-9, a new 1,5-diarylpyrazole derivative.

    PubMed

    Hernández-Vázquez, Eduardo; Young-Peralta, Sandra; Cerón-Romero, Litzia; García-Jiménez, Sara; Estrada-Soto, Samuel

    2018-05-17

    To explore the antihyperglycaemic and antidiabetic effects and to determine the acute toxicity of 5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (ENP-9). The antihyperglycaemic effect of ENP-9 (50 mg/kg) was determined by oral glucose tolerance test (OGTT). Also, the acute (16, 50 and 160 mg/kg) and subacute (50 mg/kg/day for 10 days) antidiabetic effects of ENP-9 were determined. After subacute treatment, blood samples were analysed to determine glucose and lipid profiles. Also, an acute toxicity determination of ENP-9 was conducted followed the OECD recommendation. Molecular docking was performed using AutoDock 4.2.6 at human cannabinoid receptor 1 (PDB code 5TGZ). Acute Administration of ENP-9 showed significant antidiabetic effect and decreased the maximum OGTT peak, compared to the control group (P < 0.05). Moreover, the 10 days treatment induced a decrease in plasma glucose levels, being significant at the end of the experiments (P < 0.05); however, triacylglycerols and cholesterol were not modified. Finally, LD 50 of ENP-9 was estimated to be greater than 2000 mg/kg. Molecular docking suggests that ENP-9 may act as rimonabant does. ENP-9 showed significant antihyperglycaemic and antidiabetic properties and also was demonstrated to be safety in the studied doses, which might allow future studies for its potential development as antidiabetic agent. © 2018 Royal Pharmaceutical Society.

  16. Development of an Isolator System for PET Drug Compounding with Sterilization and Dispensing Units.

    PubMed

    Waki, Atsuo; Hashimoto, Yuuki; Suzuki, Hisashi; Mizukawa, Yousuke; Kinoshita, Toshiaki; Ichihara, Hironobu; Kaneko, Izumi; Iwakuma, Kazuko; Kawamura, Kazuki; Zhang, Ming-Rong; Fujibayashi, Yasuhisa

    2016-01-01

    To maintain sterility of PET drug is the most important for in-house positron emission tomography (PET) drug manufacturing, and sanitary control of the laboratory to perform aseptic procedure is the key point for the sterility of PET drugs. However, rigorous sanitary control affects both the high cost and the low efficiency. To conquer those, we developed an isolator system especially for PET drug compounding including sterilization and dispensing units. This system consists of a HEPA unit for inlet and outlet, positive regulation of the ear inside isolator, a sterilizer with vapored hydrogen peroxide and a dispenser with self-shield for radiation. We set the materials for the dispenser through gloves, and the compounding such as sterilization and dispensing PET drugs to the containers is performed automatically without radiation. High level assurance of PET drug sterility is expected to be accomplished in the PET centers of the hospitals without high level sanitary control.

  17. Design, Synthesis and Pharmacological Evaluation of Novel Vanadium-Containing Complexes as Antidiabetic Agents

    PubMed Central

    Fedorova, Elena V.; Buryakina, Anna V.; Zakharov, Alexey V.; Filimonov, Dmitry A.; Lagunin, Alexey A.; Poroikov, Vladimir V.

    2014-01-01

    Based on the data about structure and antidiabetic activity of twenty seven vanadium and zinc coordination complexes collected from literature we developed QSAR models using the GUSAR program. These QSAR models were applied to 10 novel vanadium coordination complexes designed in silico in order to predict their hypoglycemic action. The five most promising substances with predicted potent hypoglycemic action were selected for chemical synthesis and pharmacological evaluation. The selected coordination vanadium complexes were synthesized and tested in vitro and in vivo for their hypoglycemic activities and acute rat toxicity. Estimation of acute rat toxicity of these five vanadium complexes was performed using a freely available web-resource (http://way2drug.com/GUSAR/acutoxpredict.html). It has shown that the selected compounds belong to the class of moderate toxic pharmaceutical agents, according to the scale of Hodge and Sterner. Comparison with the predicted data has demonstrated a reasonable correspondence between the experimental and predicted values of hypoglycemic activity and toxicity. Bis{tert-butyl[amino(imino)methyl]carbamato}oxovanadium (IV) and sodium(2,2′-Bipyridyl)oxo-diperoxovanadate(V) octahydrate were identified as the most potent hypoglycemic agents among the synthesized compounds. PMID:25057899

  18. β-cell regenerative efficacy of a polysaccharide isolated from methanolic extract of Tinospora cordifolia stem on streptozotocin -induced diabetic Wistar rats.

    PubMed

    Rajalakshmi, Manikkam; Anita, Roy

    2016-01-05

    The use of herbal supplements either as extracts or plant-derived individual molecules has significantly increased in the process of drug discovery and development for their potential efficacy or reduced risk in treating human disorders. Tinospora cordifolia (T. cordifolia) is a widely used herbal source to treat various human ailments, including diabetes mellitus. The present study was aimed on evaluating the antidiabetic property of a novel polysaccharide isolated from the methanolic extract of T. cordifolia stem. Bioassay guided fractionation was followed to isolate a compound from the methanol extract. The compound was administered orally at a dose of 20 mg/kg.b.wt for 60 days to control and STZ-induced diabetic male Wistar rats. It was found that plasma glucose was significantly (p < 0.05) reduced compared to normal. Oral administration of the compound significantly decreased HBA1c, triglycerides and total cholesterol and at the same time markedly increased hemoglobin, tissue glycogen and HDL cholesterol. Also the compounds restored the altered carbohydrate metabolizing enzymes, insulin, C-peptide, (14)C-glucose oxidation levels to near normal. In addition, the histological studies revealed that there was regeneration of β-cells in the pancreatic sections. The expression of Glut-4 mRNA and protein in the gasrtocnemius muscle were significantly enhanced after the compound treatment. These results confirm that the novel polysaccharide possesses hypoglycemic, glucose oxidizing, hypolipidemic and β-cell regenerative properties and hence it could be developed into potential oral hypoglycemic drug with lesser side effects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Antidiabetic and Beta Cell-Protection Activities of Purple Corn Anthocyanins

    PubMed Central

    Hong, Su Hee; Heo, Jee-In; Kim, Jeong-Hyeon; Kwon, Sang-Oh; Yeo, Kyung-Mok; Bakowska-Barczak, Anna M.; Kolodziejczyk, Paul; Ryu, Ok-Hyun; Choi, Moon-Ki; Kang, Young-Hee; Lim, Soon Sung; Suh, Hong-Won; Huh, Sung-Oh; Lee, Jae-Yong

    2013-01-01

    Antidiabetic and beta cell-protection activities of purple corn anthocyanins (PCA) were examined in pancreatic beta cell culture and db/db mice. Only PCA among several plant anthocyanins and polyphenols showed insulin secretion activity in culture of HIT-T15 cells. PCA had excellent antihyperglycemic activity (in terms of blood glucose level and OGTT) and HbA1c-decreasing activity when compared with glimepiride, a sulfonylurea in db/db mice. In addition, PCA showed efficient protection activity of pancreatic beta cell from cell death in HIT-T15 cell culture and db/db mice. The result showed that PCA had antidiabetic and beta cell-protection activities in pancreatic beta cell culture and db/db mice. PMID:24244813

  20. Antidiabetic effect of Sida cordata in alloxan induced diabetic rats.

    PubMed

    Shah, Naseer Ali; Khan, Muhammad Rashid

    2014-01-01

    Medicinal plants are efficient ameliorator of oxidative stress associated with diabetes mellitus. In this study, ethyl acetate fraction (SCEE) of Sida cordata was investigated for scientific validation of its folk use in diabetes. Antidiabetic effect of SCEE was confirmed by antihyperglycemic activity in normal glucose loaded and diabetic glucose loaded animals as well as normal off feed animals. Confirmation of antidiabetic activity and toxicity ameliorative role of S. cordata was investigated in a chronic multiple dose treatment study of fifteen days. A single dose of alloxan (120 mg/kg) produced a decrease in insulin level, hyperglycemia, elevated total lipids, triglycerides, and cholesterol and decreased the high-density lipoproteins. Concurrent with these changes, there was an increase in the concentration of lipid peroxidation (TBARS), H2O2, and nitrite in pancreas, liver, and testis. This oxidative stress was related to a decrease in glutathione content (GSH) and antioxidant enzymes. Administration of SCEE for 15 days after diabetes induction ameliorated hyperglycemia, restored lipid profile, blunted the increase in TBARS, H2O2, and nitrite content, and stimulated the GSH production in the organs of alloxan-treated rats. We suggested that SCEE could be used as antidiabetic component in case of diabetes mellitus. This may be related to its antioxidative properties.

  1. Characteristics of a newly isolated fungus Geotrichum candidum Dec 1 with broad degradation spectrum of xenobiotic compounds.

    PubMed

    Shoda, M

    2003-01-01

    A newly isolated fungus, Geotrichum candidum Dec 1 (abbreviated as Dec 1), was found to have the ability to degrade many xenobiotic compounds such as synthetic dyes, food coloring agents, molasses, organic halogens, lignin and kraft pulp effluents. The broad spectrum of the degradation of these compounds are associated mainly with peroxidases produced by the fungus.

  2. Antidiabetic Effects of Aronia melanocarpa and Its Other Therapeutic Properties.

    PubMed

    Banjari, Ines; Misir, Andreja; Šavikin, Katarina; Jokić, Stela; Molnar, Maja; De Zoysa, H K S; Waisundara, Viduranga Y

    2017-01-01

    Diabetes is a global pandemic which warrants urgent attention due to its rising prevalence and economic burden. Thus, many alternative therapies are being researched for antidiabetic properties, given the inefficacy of current medicinal treatments. From this perspective, Aronia melanocarpa or black chokeberry has been investigated for its therapeutic properties in many studies, especially for its ability to combat hyperglycemia-induced oxidative stress and the macrovascular complications of diabetes including cardiovascular disease. Though A. melanocarpa is native to the eastern areas of North America, it has been planted extensively in Europe and Asia as well. Several in vivo studies have displayed the antioxidant properties of A. melanocarpa berry juice and plant extract in rat models where oxidative stress markers were observed to have significant reductions. Some of the potent bioactive compounds present in the fruits and other parts of the plant were identified as (-)-epicatechin, chlorogenic acid, neochlorogenic acid, and cyanidin-3-galactoside. Overall, A. melanocarpa could be considered a good source of antioxidants which is effective in combating hyperglycemia-induced oxidative stress.

  3. Antidiabetic Effects of Aronia melanocarpa and Its Other Therapeutic Properties

    PubMed Central

    Banjari, Ines; Misir, Andreja; Šavikin, Katarina; Jokić, Stela; Molnar, Maja; De Zoysa, H. K. S.; Waisundara, Viduranga Y.

    2017-01-01

    Diabetes is a global pandemic which warrants urgent attention due to its rising prevalence and economic burden. Thus, many alternative therapies are being researched for antidiabetic properties, given the inefficacy of current medicinal treatments. From this perspective, Aronia melanocarpa or black chokeberry has been investigated for its therapeutic properties in many studies, especially for its ability to combat hyperglycemia-induced oxidative stress and the macrovascular complications of diabetes including cardiovascular disease. Though A. melanocarpa is native to the eastern areas of North America, it has been planted extensively in Europe and Asia as well. Several in vivo studies have displayed the antioxidant properties of A. melanocarpa berry juice and plant extract in rat models where oxidative stress markers were observed to have significant reductions. Some of the potent bioactive compounds present in the fruits and other parts of the plant were identified as (−)-epicatechin, chlorogenic acid, neochlorogenic acid, and cyanidin-3-galactoside. Overall, A. melanocarpa could be considered a good source of antioxidants which is effective in combating hyperglycemia-induced oxidative stress. PMID:29164127

  4. The use of microfluorometric method for activity-guided isolation of antiplasmodial compound from plant extracts.

    PubMed

    Shuaibu, M N; Wuyep, P A; Yanagi, T; Hirayama, K; Tanaka, T; Kouno, I

    2008-05-01

    In vitro antiplasmodial activity of methanolic extracts of 16 medicinal plants was evaluated by fluorometric assay using PicoGreen. The IC50s, as determined by parasite DNA concentration, ranged from <11 to >200 and <13 to >200 microg/ml for Plasmodium falciparum 3D7 and K1, respectively; and the most active extracts were those from Anogeissus leiocarpus and Terminalia avicennoides (<11-> or =14 microg/ml). Aqueous, butanolic, ethyl acetate, and methanolic fractions of these two extracts revealed butanolic fraction to have a relatively better activity (IC50, 10-12 microg/ml). Activity-guided chromatographic separation of the butanolic fraction on Sephadex LH-20 followed by nuclear magnetic resonance and correlation high-performance liquid chromatography revealed the presence of known hydrolysable tannins and some related compounds-castalagin, ellagic acid, flavogallonic acid, punicalagin, terchebulin, and two other fractions. The IC50s of all these compounds ranged between 8-21 microg/ml (8-40 microM) against both the strains. Toxicity assay with mouse fibroblasts showed all the extracts and isolated compounds to have IC50 > or = 1500 microg/ml, except for Momordica balsamina with <1500 microg/l. All the extracts and isolated compounds did not affect the integrity of human erythrocyte membrane at the observed IC50s. However, adverse effects manifest in a concentration-dependent fashion (from IC50 > or = 500 microg/ml).

  5. Novel members of quinoline compound family enhance insulin secretion in RIN-5AH beta cells and in rat pancreatic islet microtissue

    PubMed Central

    Orfi, Z.; Waczek, F.; Baska, F.; Szabadkai, I.; Torka, R.; Hartmann, J.; Orfi, L.; Ullrich, A.

    2017-01-01

    According to clinical data, some tyrosine kinase inhibitors (TKIs) possess antidiabetic effects. Several proposed mechanisms were assigned to them, however their mode of action is not clear. Our hypothesis was that they directly stimulate insulin release in beta cells. In our screening approach we demonstrated that some commercially available TKIs and many novel synthesized analogues were able to induce insulin secretion in RIN-5AH beta cells. Our aim was to find efficient, more selective and less toxic compounds. Out of several hits, we chose members from a compound family with quinoline core structure for further investigation. Here we present the studies done with these novel compounds and reveal structure activity relationships and mechanism of action. One of the most potent compounds (compound 9) lost its affinity to kinases, but efficiently increased calcium influx. In the presence of calcium channel inhibitors, the insulinotropic effect was attenuated or completely abrogated. While the quinoline TKI, bosutinib substantially inhibited tyrosine phosphorylation, compound 9 had no such effect. Molecular docking studies further supported our data. We confirmed that some TKIs possess antidiabetic effects, moreover, we present a novel compound family developed from the TKI, bosutinib and optimized for the modulation of insulin secretion. PMID:28272433

  6. Anti-diabetic formulations of Nāga bhasma (lead calx): A brief review

    PubMed Central

    Rajput, Dhirajsingh; Patgiri, B. J.; Galib, R; Prajapati, P. K.

    2013-01-01

    Introduction: Ayurvedic formulations usually contain ingredients of herbal, mineral, metal or animal in origin. Nāga bhasma (lead calx) is a potent metallic formulation mainly indicated in the treatment of Prameha (~diabetes). Until date, no published information is available in compiled form on the formulations containing Nāga bhasma as an ingredient, their dose and indications. Therefore, in the present study, an attempt has been made to compile various formulations of Nāga bhasma indicated in treating Prameha. Aim: The present work aims to collect information on various formulations of Nāga bhasma mainly indicated in treating Prameha and to elaborate the safety and efficacy of Nāga bhasma as a Pramehaghna (antidiabetic) drug. Materials and Methods Critical review of formulations of Nāga bhasma is compiled from various Ayurvedic texts and the therapeutic efficacy of Nāga bhasma is discussed on the basis of available data. Result and Conclusion: Antidiabetic formulations of Nāga bhasma were discovered around 12th century CE. There are 44 formulations of Nāga bhasma mainly indicated for Prameha. Haridrā (Curcuma longa Linn), Āmalakī (Emblica officinalis), Guḍūci (Tinospora cordifolia) and Madhu (honey) enhance the antidiabetic action of Nāga bhasma and also help to prevent diabetic complications as well as any untoward effects of Nāga bhasma. On the basis of the reviewed research, it is concluded that Nāga bhasma possesses significant antidiabetic property. PMID:25161332

  7. Isolation of the active compound in Mauria heterophylla, a Peruvian plant with antibacterial activity.

    PubMed

    Mori, Tatsuya; Chang, Cecilia; Maurtua, Dora; Hammond, Gerald B

    2006-02-01

    A fraction from the ethanol extract of the Peruvian medicinal plant Mauria heterophylla (Anacardiaceae) showed antibacterial activity against Escherichia coli 35992, Staphylococcus aureus 20213 and Pseudomonas aeruginosa 15442. Further fractionation led to the isolation and characterization of ethyl gallate as the antibacterial active compound. Copyright 2006 John Wiley & Sons, Ltd.

  8. Antifungal Compound Isolated from Catharanthus roseus L. (Pink) for Biological Control of Root Rot Rubber Diseases.

    PubMed

    Zahari, R; Halimoon, N; Ahmad, M F; Ling, S K

    2018-01-01

    Rigidoporus microporus, Ganoderma philippii, and Phellinus noxius are root rot rubber diseases and these fungi should be kept under control with environmentally safe compounds from the plant sources. Thus, an antifungal compound isolated from Catharanthus roseus was screened for its effectiveness in controlling the growth of these fungi. The antifungal compound isolated from C. roseus extract was determined through thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analysis. Each C. roseus of the DCM extracts was marked as CRD1, CRD2, CRD3, CRD4, CRD5, CRD6, and CRD7, respectively. TLC results showed that all of the C. roseus extracts peaked with red colour at Rf = 0.61 at 366 nm wavelength, except for CRD7. The CRD4 extract was found to be the most effective against R. microporus and G. philippii with inhibition zones of 3.5 and 1.9 mm, respectively, compared to that of other extracts. These extracts, however, were not effective against P. noxius. The CRD4 extract contained ursolic acid that was detected by NMR analysis and the compound could be developed as a biocontrol agent for controlling R. microporus and G. philippii. Moreover, little or no research has been done to study the effectiveness of C. roseus in controlling these fungi.

  9. Antidiabetic Drugs in Alzheimer's Disease: Mechanisms of Action and Future Perspectives

    PubMed Central

    Femminella, Grazia Daniela; Bencivenga, Leonardo; Petraglia, Laura; Visaggi, Lucia; Gioia, Lucia; Grieco, Fabrizio Vincenzo; de Lucia, Claudio; Komici, Klara; Edison, Paul

    2017-01-01

    Diabetes mellitus (DM) and Alzheimer's disease (AD) are two highly prevalent conditions in the elderly population and major public health burden. In the past decades, a pathophysiological link between DM and AD has emerged and central nervous system insulin resistance might play a significant role as a common mechanism; however, other factors such as inflammation and oxidative stress seem to contribute to the shared pathophysiological link. Both preclinical and clinical studies have evaluated the possible neuroprotective mechanisms of different classes of antidiabetic medications in AD, with some promising results. Here, we review the evidence on the mechanisms of action of antidiabetic drugs and their potential use in AD. PMID:28656154

  10. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC-PDA-qTOF-MS and chemometrics.

    PubMed

    Farag, Mohamed A; Sakna, Sarah T; El-Fiky, Nabaweya M; Shabana, Marawan M; Wessjohann, Ludger A

    2015-11-01

    Bauhinia L. (Fabaceae) comprises ca. 300-350 plant species, many of which are traditionally used in folk medicine for their antidiabetic, antioxidant and anti-inflammatory effects. Bauhinia s.l. recently has been subdivided into 9 genera based on phylogenetic data: Bauhinia s.str., Barklya, Brenierea, Gigasiphon, Lysiphyllum, Phanera, Piliostigma, Schnella (American Phanera) and Tylosema. The aerial parts of 8 species corresponding to 5 genera were analyzed: Bauhinia forficata, Bauhinia variegata, B. variegata var. candida, Bauhinia galpinii, Schnella glabra, Piliostigma racemosa, Phanera vahlii and Lysiphyllum hookeri. Leaves and shoots were subjected to metabolite profiling via UHPLC-PDA-qTOF-MS coupled to multivariate data analyzes to identify compound compositional differences. A total of 90 metabolites were identified including polyphenols and fatty acids; flavonoid conjugates accounted for most of the metabolite variation observed. This study provides a comprehensive map of polyphenol composition in Bauhinia and phytochemical species aggregations are consistent with recent Bauhinia genus taxonomic relationship derived from phylogenetic studies. DPPH radical scavenging and α-glucosidase inhibitory assays were also performed to assess selected aspects of the antioxidant and antidiabetic potential for the examined species with respect to metabolite profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria.

    PubMed

    Dos Santos, Fernanda M; de Souza, Maria Gorete; Crotti, Antônio E Miller; Martins, Carlos H G; Ambrósio, Sérgio R; Veneziani, Rodrigo C S; E Silva, Márcio L Andrade; Cunha, Wilson R

    2012-04-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis.

  12. Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria

    PubMed Central

    dos Santos, Fernanda M.; de Souza, Maria Gorete; Crotti, Antônio E. Miller; Martins, Carlos H. G.; Ambrósio, Sérgio R.; Veneziani, Rodrigo C. S.; e Silva, Márcio L. Andrade; Cunha, Wilson R.

    2012-01-01

    This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis. PMID:24031892

  13. Enzyme Assay Guided Isolation of an α-Amylase Inhibitor Flavonoid from Vaccinium arctostaphylos Leaves

    PubMed Central

    Nickavar, Bahman; Amin, Gholamreza

    2011-01-01

    The management of postprandial hyperglycemia is an important strategy in the control of diabetes mellitus and complications associated with the disease, especially in the diabetes type 2. Therefore, inhibitors of carbohydrate hydrolyzing enzymes can be useful in the treatment of diabetes and medicinal plants can offer an attractive strategy for the purpose. Vaccinium arctostaphylos leaves are considered useful for the treatment of diabetes mellitus in some countries. In our research for antidiabetic compounds from natural sources, we found that the methanol extract of the leaves of V. arctostaphylos displayed a potent inhibitory activity on pancreatic α-amylase activity (IC50 = 0.53 (0.53 – 0.54) mg/mL). The bioassay-guided fractionation of the extract resulted in the isolation of quercetin as an active α-amylase inhibitor. Quercetin showed a dose-dependent inhibitory effect with IC50 value 0.17 (0.16 – 0.17) mM. PMID:24250422

  14. Drug-class-specific changes in the volume and cost of antidiabetic medications in Poland between 2012 and 2015.

    PubMed

    Śliwczyński, Andrzej; Brzozowska, Melania; Jacyna, Andrzej; Iltchev, Petre; Iwańczuk, Tymoteusz; Wierzba, Waldemar; Marczak, Michał; Orlewska, Katarzyna; Szymański, Piotr; Orlewska, Ewa

    2017-01-01

    to investigate the drug-class-specific changes in the volume and cost of antidiabetic medications in Poland in 2012-2015. This retrospective analysis was conducted based on the National Health Fund database covering an entire Polish population. The volume of antidiabetic medications is reported according to ATC/DDD methodology, costs-in current international dollars, based on purchasing power parity. During a 4-year observational period the number of patients, consumption of antidiabetic drugs and costs increased by 17%, 21% and 20%, respectively. Biguanides are the basic diabetes medication with a 39% market share. The insulin market is still dominated by human insulins, new antidiabetics (incretins, thiazolidinediones) are practically absent. Insulins had the largest share in diabetes medications expenditures (67% in 2015). The increase in antidiabetic medications costs over the analysed period of time was mainly caused by the increased use of insulin analogues. The observed tendencies correspond to the evidence-based HTA recommendations. The reimbursement status, the ratio of cost to clinical outcomes and data on the long-term safety have a deciding impact on how a drug is used.

  15. Detection of Isolated Cerebrovascular β-Amyloid with Pittsburgh Compound B

    PubMed Central

    Greenberg, SM; Grabowski; Gurol, ME; Skehan, ME; Nandigam, RNK; Becker, JA; Garcia-Alloza, M; Prada, C; Frosch, MP; Rosand, J; Viswanathan, A; Smith, EE; Johnson, KA

    2008-01-01

    Imaging of cerebrovascular β-amyloid (cerebral amyloid angiopathy, CAA) is complicated by this pathology’s nearly universal overlap with Alzheimer pathology. We performed PET imaging with Pittsburgh Compound B (PiB) on 42-year old man with early manifestations of Iowa-type hereditary CAA, a form of the disorder with little or no plaque deposits of fibrillar β-amyloid. The results demonstrated elevated PiB retention selectively in occipital cortex, sparing regions typically labeled in Alzheimer disease. These results offer compelling evidence that PiB-PET can noninvasively detect isolated CAA prior to overt signs of tissue damage such as hemorrhage or white matter lesions. PMID:19067370

  16. Isolation and Characterization of the Anticancer Compound Piceatannol from Sophora Interrupta Bedd

    PubMed Central

    Mathi, Pardhasaradhi; Das, Snehasish; Nikhil, Kumar; Roy, Partha; Yerra, Srikanth; Ravada, Suryachandra Rao; Bokka, Venkata Raman; Botlagunta, Mahendran

    2015-01-01

    Background: Sophora belongs to the family of Fabaceae and the species in this genus are currently used as a folklore medicine for preventing a variety of ailments including cancer. Our aim was to identify and validate an anticancer compound from Sophora interrupta using multi-spectroscopic, anticancer screening, and molecular docking approach. Methods: The cytotoxicity of the various solvent extracts, petroleum ether, n-butanol, and ethyl acetate (EtOAc) of the S. interrupta root powder was evaluated in a breast cancer cell lines (MCF-7). The extract that had anticancer activity was subjected to column chromatography based on the polarity of the solvents. The anticancer activity of the elution fractions was validated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The isolated metabolite fraction with anticancer activity was run through a C18 column isocratic and gradient high-performance liquid chromatography (HPLC). The structure of the isolated compound was characterized using 1H nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometer methods. Results: The crude EtAOc extract effectively inhibited the proliferation of MCF-7 cells. The column eluted chloroform and EtOAc (4:6) fraction of the EtOAc extract showed significant anticancer activity in the MCF-7 cells compared with normal mesenchymal stem cells. This fraction showed three major peaks in the HPLC chromatogram and the first major peak with a retention time (RT) of 7.153 was purified using preparative-HPLC. The structure of the compound is a piceatannol, which is a metabolic product of resveratrol. Piceatannol formed direct two hydrogen bond interactions between Cys912 (2H), and Glu878 of vascular endothelial growth factor receptor 1 (VEGFR1) with a glide-score (G-score) of −10.193, and two hydrogen bond interactions between Cys919, and Asp1046 of VEGFR2, with a G-score of −8.359. The structure is

  17. Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum).

    PubMed

    Kimbaris, Athanasios C; Siatis, Nikolaos G; Daferera, Dimitra J; Tarantilis, Petros A; Pappas, Christos S; Polissiou, Moschos G

    2006-01-01

    A comparative study of traditional simultaneous distillation extraction (SDE), microwave assisted hydrodistillation extraction (MWHD) and ultrasound-assisted extraction (USE) is presented, for the extraction of essential oils from fresh garlic (Allium sativum) cloves. Each method is evaluated in terms of qualitative and quantitative composition of the isolated essential oil. The highly reactive sulfur molecules of the garlic volatile fraction show variable response to the different isolation methods. The application of ultrasound for the extraction of the essential oil is considered to cause a lesser damage of thermal-sensitive molecules, thus, providing a better approach of the compounds primarily responsible for the characteristic odor and taste of freshly chopped garlic. All heat-involving isolation procedures have been shown to differentiate the volatile-fraction profile as analyzed by GC-MS. Especially when grouping the compounds into cyclic and acyclic, the percentage concentrations drop from 77.4% to 8.7% for the acyclic while that of the cyclic compounds increase from 4.7% to 70.8%. The observed fact may be attributed to the effect of the heat applied, which changes from harsh thermal treatment (SDE) to short time thermal (MWHD) and room-temperature isolation (USE). The use of USE proves to be crucial in order to provide reliable insight into garlic's chemistry.

  18. Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet.

    PubMed

    Beidokhti, Maliheh Najari; Jäger, Anna K

    2017-04-06

    Type 2 diabetes is the most common type of diabetes and its prevalence is rapidly increasing throughout the world. Modifications of lifestyle such as suitable diet and exercise programs along with pharmacotherapy and education of patients are beneficial therapies for patients with type 2 diabetes. The ethnopharmacological use of herbal medicines, many of them part of our diet as spices, vegetables and fruits, has been developed for the treatment of diabetes due to inexpensiveness, easy availability and few side effects. Our aim is to present a review for researchers who are interested in the biologically active dietary plants traditionally utilized in the treatment of diabetes. Information was obtained from a literature search of electronic databases such as Google Scholar, Pubmed, Sci Finder and Cochrane. Common and scientific name of the fruits, vegetables, beverages, oils and spices and the words 'antidiabetic', 'hypoglycemic', 'anti-hyperglycemic', 'type 2 diabetes' were used as keywords for search. Certain fruits and vegetables are functional foods and their consumption reduces the incidence of type 2 diabetes. Hypoglycemic effects of fruits and vegetables may be due to their inducing nature on pancreatic β-cells for insulin secretion, or bioactive compounds such as flavonoids, alkaloids and anthocyanins, which act as insulin-like molecules or insulin secretagogues. This write-up covers hypoglycemic, anti-hyperglycemic and anti-diabetic activities of some dietary fruits, vegetables, beverages, oils and spices and their active hypoglycemic constituents. Including such plant species in the diet might improve management of type 2 diabetes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part II): In Silico Prediction in Antidiabetic Extracts

    PubMed Central

    Guasch, Laura; Sala, Esther; Ojeda, María José; Valls, Cristina; Bladé, Cinta; Mulero, Miquel; Blay, Mayte; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard

    2012-01-01

    Background Natural extracts play an important role in traditional medicines for the treatment of diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin could be, at least partially, explained by the inhibition of DPP-IV. Methodology/Principal Findings Using an initial set of 29,779 natural products that are annotated with their natural source and an experimentally validated virtual screening procedure previously developed in our lab (Guasch et al.; 2012) [1], we have predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that are known to have antidiabetic activity. Seven of these molecules are identical or similar to molecules with described antidiabetic activity (although their role as DPP-IV inhibitors has not been suggested as an explanation for their bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at least in part, for the antidiabetic activity of these extracts through their inhibitory effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 molecules from 6 different plants with no described antidiabetic activity but that share the same genus as plants with known antidiabetic properties. Moreover, none of the 18 molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a group of 2,342 known DPP-IV inhibitors. Conclusions/Significance Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts (12 of these plants have known antidiabetic properties, whereas, for the remaining 6, antidiabetic activity has been reported for other plant species from the same genus). Moreover, none of the 18 molecules exhibits chemical similarity with a large group of known DPP-IV inhibitors. PMID:23028712

  20. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action

    PubMed Central

    Mayer, Alejandro M.S.; Hamann, Mark T.

    2016-01-01

    During 2001–2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors’ 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001–2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories. PMID:15919242

  1. Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from Kenya.

    PubMed

    Kunyanga, Catherine Nkirote; Imungi, Jasper Kathenya; Okoth, Michael; Momanyi, Clare; Biesalski, Han Konrad; Vadivel, Vellingiri

    2011-05-01

    Recently, tannins have received considerable attention as health-promoting component in various plant foods and several studies have reported on its nutraceutical properties. However, no study has established the role of condensed tannins in indigenous foods of Kenya. Therefore, this study was designed to evaluate the antioxidant activity (DPPH and FRAP) and antidiabetic effects (α-amylase and α-glucosidase inhibition activities) of condensed tannins in some selected raw and traditionally processed indigenous cereals, legumes, oil seeds, and vegetables. The condensed tannin content of the grains and vegetables ranged between 2.55 and 4.35 g/100 g DM and 1.53 and 5.73 g/100 g DM, respectively. The scavenging effect of acetonic extract on DPPH radical ranged from 77% to 90% while the reducing power was found to be 31 to 574 mmol Fe(II)/g DM in all the investigated food ingredients. The condensed tannin extracts of the analyzed samples showed promising antidiabetic effects with potential α-amylase and α-glucosidase inhibition activities of 23% to 44% and 58% to 88%, respectively. Condensed tannins extracted from the amaranth grain, finger millet, field bean, sunflower seeds, drumstick, and amaranth leaves exerted significantly higher antioxidant and antidiabetic activities than other food ingredients. Among the traditional processing methods, roasting of grains and cooking of vegetables were found to be more suitable mild treatments for preserving the tannin compound and its functional properties as opposed to soaking + cooking and blanching treatments. The identified elite sources of optimally processed indigenous food ingredients with promising results could be used as health-promoting ingredients through formulation of therapeutic diets. © 2011 Institute of Food Technologists®

  2. Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats

    PubMed Central

    Sikarwar, Mukesh S.; Patil, M.B.

    2010-01-01

    The antidiabetic activity of Pongamia pinnata ( Family: Leguminosae) leaf extracts was investigated in alloxan-induced diabetic albino rats. A comparison was made between the action of different extracts of P. pinnata and a known antidiabetic drug glibenclamide (600 μg/kg b. wt.). An oral glucose tolerance test (OGTT) was also performed in experimental diabetic rats. The petroleum ether, chloroform, alcohol and aqueous extracts of P. pinnata were obtained by simple maceration method and were subjected to standardization using pharmacognostical and phytochemical screening methods. Dose selection was made on the basis of acute oral toxicity study (50-5000 mg/kg b. w.) as per OECD guidelines. P. pinnata ethanolic extract (PPEE) and aqueous extract (PPAE) showed significant (P < 0.001) antidiabetic activity. In alloxan-induced model, blood glucose levels of these extracts on 7th day of the study were 155.83 ± 11.211mg/dl (PPEE) and 132.00 ± 4.955mg/dl (PPAE) in comparison of diabetic control (413.50 ± 4.752mg/dl) and chloroform extract (210.83 ± 14.912mg/dl). In glucose loaded rats, PPEE exhibited glucose level of 164.50 ± 6.350mg/dl after 30 min and 156.50 ± 4.089mg/dl after 90 min, whereas the levels in PPAE treated animals were 176 ± 3.724mg/dl after 30 min and 110.33 ± 6.687mg/dl after 90 min. These extracts also prevented body weight loss in diabetic rats. The drug has the potential to act as an antidiabetic drug. PMID:21455444

  3. A Novel Benzoquinone Compound Isolated from Deep-Sea Hydrothermal Vent Triggers Apoptosis of Tumor Cells.

    PubMed

    Xu, Chenxi; Sun, Xumei; Jin, Min; Zhang, Xiaobo

    2017-06-26

    Microorganisms are important sources for screening bioactive natural products. However, natural products from deep-sea microbes have not been extensively explored. In this study, the metabolites of bacteriophage GVE2 -infected ( Geobacillus sp. E263 virus) thermophilic bacterium Geobacillus sp. E263, which was isolated from a deep-sea hydrothermal vent, were characterized. A novel quinoid compound, which had anti-tumor activity, was isolated from the phage-challenged thermophile. The chemical structure analysis showed that this novel quinoid compound was 2-amino-6-hydroxy-[1,4]-benzoquinone. The results indicated that 2-amino-6-hydroxy-[1,4]-benzoquinone and its two derivatives could trigger apoptosis of gastric cancer cells and breast cancer cells by inducing the accumulation of intracellular reactive oxygen species. Therefore, our study highlighted that the metabolites from the phage-challenged deep-sea microbes might be a kind of promising sources for anti-tumor drug discovery, because of the similarity of metabolic disorder between bacteriophage-infected microbes and tumor cells.

  4. Emodin, a compound with putative antidiabetic potential, deteriorates glucose tolerance in rodents.

    PubMed

    Abu Eid, Sameer; Adams, Michael; Scherer, Thomas; Torres-Gómez, Héctor; Hackl, Martina Theresa; Kaplanian, Mairam; Riedl, Rainer; Luger, Anton; Fürnsinn, Clemens

    2017-03-05

    Emodin is found in remedies from Traditional Chinese Medicine. Since antihyperglycaemic action was observed in rodents, non-scientific sources advertise emodin intake as a natural cure for diabetes. Emodin was admixed to high fat-food of obese mice at two doses (2 and 5g/kg; daily emodin uptake 103 and 229mg/kg). Comparison was made to ad libitum fed and to food restricted control groups, the latter showing the same weight gain as the corresponding emodin-treated groups. Emodin blunted food intake by 6% and 20% for the low and high dose, which was accompanied by proportionate reductions in weight gain. Emodin reduced blood glucose relative to freely feeding controls, but comparison to weight-matched controls unmasked deterioration, rather than improvement, of basal glycaemia (mmol/l: fed ad libitum, 9.5±0.4; low emodin, 9.4±0.3, weight-matched, 8.2±0.3; high emodin, 7.2±0.4, weight-matched, 6.1±0.3; P<0.01, emodin vs weight-matched) and glucose tolerance (area under the curve, min*mol/l: fed ad libitum, 2.01±0.08; low emodin, 1.97±0.12, weight-matched, 1.75±0.03; high emodin, 1.89±0.07, weight-matched, 1.65±0.05; P<0.0002, emodin vs weight-matched). An insulin tolerance test suggested insulin desensitisation by prolonged emodin treatment. Furthermore, a single oral emodin dose did not affect glucose tolerance in obese mice, whereas intravenous injection in rats suggested a potential of emodin to acutely impair insulin release. Our results show that the antihyperglycaemic action of emodin as well as associated biochemical alterations could be the mere consequences of a spoilt appetite. Published claims of antidiabetic potential via other mechanisms evoke the danger of misuse of natural remedies by diabetic patients. Copyright © 2017. Published by Elsevier B.V.

  5. Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn.

    PubMed

    Mishra, M R; Mishra, A; Pradhan, D K; Panda, A K; Behera, R K; Jha, S

    2013-09-01

    The hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on both in vitro and in vivo models along with determination of total extractable polyphenol. Methanol extract of Scoparia dulcis contains 4.9% and water extract contains 3.2% of total extractable polyphenol. The antioxidant activity showed very promising result in both the tested methods that is 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing capacity. The antioxidant activity is directly correlated to the antidiabetic potential of drug. The two enzymes (amylase and glycosidase) found in intestine are responsible for the increasing postprandial glucose in body. In vitro model was performed on these enzymes and the results showed that methanol extract of Scoparia dulcis was effective to check the postprandial glucose level. The in vivo hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on streptozotocin-induced diabetes mellitus showed significant inhibition of blood glucose level as compared to control and similar to that of standard glibenclamide. The overall data potentiates the traditional value of Scoparia dulcis as an antidiabetic drug.

  6. Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn.

    PubMed Central

    Mishra, M. R.; Mishra, A.; Pradhan, D. K.; Panda, A. K.; Behera, R. K.; Jha, S.

    2013-01-01

    The hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on both in vitro and in vivo models along with determination of total extractable polyphenol. Methanol extract of Scoparia dulcis contains 4.9% and water extract contains 3.2% of total extractable polyphenol. The antioxidant activity showed very promising result in both the tested methods that is 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing capacity. The antioxidant activity is directly correlated to the antidiabetic potential of drug. The two enzymes (amylase and glycosidase) found in intestine are responsible for the increasing postprandial glucose in body. In vitro model was performed on these enzymes and the results showed that methanol extract of Scoparia dulcis was effective to check the postprandial glucose level. The in vivo hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on streptozotocin-induced diabetes mellitus showed significant inhibition of blood glucose level as compared to control and similar to that of standard glibenclamide. The overall data potentiates the traditional value of Scoparia dulcis as an antidiabetic drug. PMID:24403665

  7. Antidiabetic Evaluation of Momordica charantia L Fruit Extracts

    PubMed Central

    Tahira, S; Hussain, F

    2014-01-01

    To investigate hypoglycaemic, hypolipidaemic and pancreatic beta cell regeneration activities of Momordica charantia L fruits (MC). Alloxan-induced diabetic rabbits were treated with methanolic and ethanolic MC extract. Effects of plant extracts and the drug glibenclamide on serum glucose, lipid profile and pancreatic beta cell were determined after two weeks of treatment. Serum glucose and lipid profiles were assayed by kit methods. Pancreatic tissue histopathology was performed to study pancreatic beta cell regeneration. Momordica charantia extracts produced significant hypoglycaemic effects (p < 0.05). Hypolipidaemic activity of MC was negligible. Momordica charantia supplementations were unable to normalize glucose and lipid profiles. Glibenclamide, a standard drug, not only lowered hyperglycaemia and hyperlipidaemia but also restored the normal levels. Regeneration of pancreatic beta cells by MC extracts was minimal, with fractional improvement produced by glibenclamide. The most significant finding of the present study was a 28% reduction in hyperglycaemia by MC ethanol extracts. To determine reliable antidiabetic potentials of MC, identification of the relevant antidiabetic components and underlying mechanisms is warranted. PMID:25429471

  8. Important Aspects of Post-Prandial Antidiabetic Drug, Acarbose.

    PubMed

    Singla, Rajeev Kumar; Singh, Radha; Dubey, Ashok Kumar

    2016-01-01

    Acarbose, a well known and efficacious α-amylase and α-glucosidase inhibitor, is a postprandial acting antidiabetic drug. DNS-based α-amylase inhibitory assays showed that use of acarbose at concentrations above 125 µg/ml resulted in release of reducing sugar in the reaction, an unexpected observation. Objective of the present study was to design experimental strategies to address this unusual finding. Acarbose was found to be susceptible to thermo-lysis. Further, besides being an inhibitor, it could also be hydrolyzed by porcine pancreatic α-amylase, but had weaker affinity for α - amylase compared to starch. GRIP docking was done for the mechanistic analysis of the active site in the enzyme for substrate, inhibitor and, inhibitor's metabolite (K2). Interaction between acarbose and α-amylase involved significant hydrogen binding compared to that of starch, producing a stronger enzyme-inhibitor complex. Further, docking analysis led us to predict the site on α-amylase where the inhibitor (acarbose) bound more tightly, which possibly affected the binding and hydrolysis of starch exerting its effective anti-diabetic function.

  9. A study on ethosomes as mode for transdermal delivery of an antidiabetic drug.

    PubMed

    Bodade, Siddhodhan S; Shaikh, Karimunnisa Sameer; Kamble, Meghana S; Chaudhari, Praveen D

    2013-01-01

    A transdermal delivery system is warranted for repaglinide (RPG) which possesses half-life of 1 h and oral bioavailability of 56%. Ethosomes are useful tools for transdermal drug delivery. To prepare and evaluate ethosomes as mode for transdermal delivery of RPG. Ethosomes loaded with RPG were prepared from dipalmitoyl phosphatidylcholine and ethanol by the cold method. They were characterized using Fourier transform infrared spectroscopy and differential scanning calorimetry. They were evaluated for vesicle size, entrapment efficiency and ex-vivo skin permeation. Ethosomal composition was optimized using the 3(2) factorial design. Gel containing optimzsed ethosomes was studied for antidiabetic activity in rats. RPG ethosomes possessing the size of 0.171-1.727 µm and entrapment efficiency of 75-92% were obtained. They demonstrated a significantly higher permeation (64-97% of the administered dose) across excised rat skin when compared to free drug and its hydro alcoholic solution. In-vivo, RPG ethosomal system caused sustained antidiabetic effect. The lipid and ethanol concentration affected the physicochemical attributes and performance of ethosomes. The flexible ethosomes permeated the stratum corneum and improvized the availability of RPG for antidiabetic action. They prolonged the antidiabetic effect of RPG over a significantly longer period of time in comparison with the equivalent oral dose. Ethosomal system can successfully deliver RPG transdermally; sustain its effect and thus reduce its dosing frequency. Ethosomes are useful for enhancing the efficacy of RPG in the treatment of diabetes.

  10. Non-coding RNAs and Berberine: A new mechanism of its anti-diabetic activities.

    PubMed

    Chang, Wenguang

    2017-01-15

    Type 2 Diabetes (T2D) is a metabolic disease with high mortality and morbidity. Non-coding RNAs, including small and long non-coding RNAs, are a novel class of functional RNA molecules that regulate multiple biological functions through diverse mechanisms. Studies in the last decade have demonstrated that non-coding RNAs may represent compelling therapeutic targets and play important roles in regulating the course of insulin resistance and T2D. Berberine, a plant-based alkaloid, has shown promise as an anti-hyperglycaemic, anti-hyperlipidaemic agent against T2D. Previous studies have primarily focused on a diverse array of efficacy end points of berberine in the pathogenesis of metabolic syndromes and inflammation or oxidative stress. Currently, an increasing number of studies have revealed the importance of non-coding RNAs as regulators of the anti-diabetic effects of berberine. The regulation of non-coding RNAs has been associated with several therapeutic actions of berberine in T2D progression. Thus, this review summarizes the anti-diabetic mechanisms of berberine by focusing on its role in regulating non-coding RNA, thus demonstrating that berberine exerts global anti-diabetic effects by targeting non-coding RNAs and that these effects involve several miRNAs, lncRNAs and multiple signal pathways, which may enhance the current understanding of the anti-diabetic mechanism actions of berberine and provide new pathological targets for the development of berberine-related drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs.

    PubMed

    Doucette, Kaitlin A; Hassell, Kelly N; Crans, Debbie C

    2016-12-01

    Improving efficacy and lowering resistance to metal-based drugs can be addressed by consideration of the coordination complex speciation and key reactions important to vanadium antidiabetic drugs or platinum anticancer drugs under biological conditions. The methods of analyses vary depending on the specific metal ion chemistry. The vanadium compounds interconvert readily, whereas the reactions of the platinum compounds are much slower and thus much easier to study. However, the vanadium species are readily differentiated due to vanadium complexes differing in color. For both vanadium and platinum systems, understanding the processes as the compounds, Lipoplatin and Satraplatin, enter cells is needed to better combat the disease; there are many cellular metabolites, which may affect processing and thus the efficacy of the drugs. Examples of two formulations of platinum compounds illustrate how changing the chemistry of the platinum will result in less toxic and better tolerated drugs. The consequence of the much lower toxicity of the drug, can be readily realized because cisplatin administration requires hospital stay whereas Lipoplatin can be done in an outpatient manner. Similarly, the properties of Satraplatin allow for development of an oral drug. These forms of platinum demonstrate that the direct consequence of more selective speciation is lower side effects and cheaper administration of the anticancer agent. Therefore we urge that as the community goes forward in development of new drugs, control of speciation chemistry will be considered as one of the key strategies in the future development of anticancer drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Impact of pioglitazone regulatory withdrawal on antidiabetic drug use and health in diabetic patients.

    PubMed

    Pariente, Antoine; Mansiaux, Yohann; Jarné, Ana; Salvo, Francesco; Pageot, Cécile; Bezin, Julien; Smith, Andy; Bégaud, Bernard

    2017-12-01

    In 2011, pioglitazone was withdrawn from the French market owing to a potential risk of bladder cancer. This study aimed at assessing the impact of this pioglitazone withdrawal (PW) considering (i) trends in antidiabetic uses and (ii) changes in hospitalization/death rates in diabetic patients following PW. We first considered the general population of the Echantillon Généraliste des Bénéficiaires (EGB), a 1/97th representative sample of the French healthcare insurance system beneficiaries, for the 2010-2014 period. In this, for each non-insulinic antidiabetic drug class, changes within the numbers of monthly supplied drug units for 1000 subjects were studied through times series and Unobserved Component Models. Second, we identified from the EGB a cohort of patients who were delivered a non-insulinic antidiabetic between 01 April 2011 and 01 August 2011 (date of PW). In this, post-withdrawal incidences of all-cause hospitalization and death were compared amongst pioglitazone users and non-users using proportional subdistribution hazards models. PW was accompanied by an increase in metformin (+ 11.7; 95% CI 1.1-22.3) and glinide (+ 11.0; 95% CI 1.2-20.8) numbers of monthly supplied units for 1000 subjects. No significant change was found for GLP-1 agonists, DPP-4 inhibitors, sulphonylureas or alpha-glucosidase inhibitors. In the cohort of non-insulinic antidiabetic users at the time of PW (1093 pioglitazone users, 17,900 non-users), being a pioglitazone user at PW was not associated with a subsequently higher rate of hospitalization. If PW was accompanied with significant changes in the use of some antidiabetics, no adverse impact of PW on hospitalization or death rates of diabetic type 2 patients was found.

  13. Anti-Diabetic Effects of Dung Beetle Glycosaminoglycan on db Mice and Gene Expression Profiling.

    PubMed

    Ahn, Mi Young; Kim, Ban Ji; Yoon, Hyung Joo; Hwang, Jae Sam; Park, Kun-Koo

    2018-04-01

    Anti-diabetes activity of Catharsius molossus (Ca, a type of dung beetle) glycosaminoglycan (G) was evaluated to reduce glucose, creatinine kinase, triglyceride and free fatty acid levels in db mice. Diabetic mice in six groups were administrated intraperitoneally: Db heterozygous (Normal), Db homozygous (CON), Heuchys sanguinea glycosaminoglycan (HEG, 5 mg/kg), dung beetle glycosaminoglycan (CaG, 5 mg/kg), bumblebee ( Bombus ignitus ) queen glycosaminoglycan (IQG, 5 mg/kg) and metformin (10 mg/kg), for 1 month. Biochemical analyses in the serum were evaluated to determine their anti-diabetic and anti-inflammatory actions in db mice after 1 month treatment with HEG, CaG or IQG treatments. Blood glucose level was decreased by treatment with CaG. CaG produced significant anti-diabetic actions by inhiting creatinine kinase and alkaline phosphatase levels. As diabetic parameters, serum glucose level, total cholesterol and triglyceride were significantly decreased in CaG5-treated group compared to the controls. Dung beetle glycosaminoglycan, compared to the control, could be a potential therapeutic agent with anti-diabetic activity in diabetic mice. CaG5-treated group, compared to the control, showed the up-regulation of 48 genes including mitochondrial yen coded tRNA lysine (mt-TK), cytochrome P450, family 8/2, subfamily b, polypeptide 1 (Cyp8b1), and down-regulation of 79 genes including S100 calcium binding protein A9 (S100a9) and immunoglobulin kappa chain complex (Igk), and 3-hydroxy-3-methylglutaryl-CoenzymeAsynthase1 (Hmgcs1). Moreover, mitochondrial thymidine kinase (mt-TK), was up-regulated, and calgranulin A (S100a9) were down-regulated by CaG5 treatment, indicating a potential therapeutic use for anti-diabetic agent.

  14. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae).

    PubMed

    Dzoyem, Jean P; Melong, Raduis; Tsamo, Armelle T; Tchinda, Alembert T; Kapche, Deccaux G W F; Ngadjui, Bonaventure T; McGaw, Lyndy J; Eloff, Jacobus N

    2017-03-06

    Entada abyssinica is a plant traditionally used against gastrointestinal bacterial infections. Eight compounds including three flavonoids, three terpenoids, a monoglyceride and a phenolic compound isolated from E. abyssinica were investigated for their cytotoxicity, antibacterial and antioxidant activity. Compounds 7 and 2 had remarkable activity against Salmonella typhimurium with the lowest respective minimum inhibitory concentration (MIC) values of 1.56 and 3.12 µg/mL. The antioxidant assay gave IC 50 values varied from 0.48 to 2.87 μg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, from 2.53 to 17.04 μg/mL in the 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay and from 1.43 to 103.98 µg/mL in the FRAP assay. Compounds had relatively low cytotoxicity (LC 50 values ranging from 22.42 to 80.55 µg/mL) towards Vero cells. Ursolic acid had the most potent cytotoxicity against THP-1 and RAW 264.7 cells with LC 50 values of 9.62 and 4.56 μg/mL respectively, and selectivity index values of 7.32 and 15.44 respectively. Our findings suggest that among the terpenoid and flavonoid compounds studied, entadanin (compound 7) possess tremendous antibacterial activity against S. typhimurium and could be developed for the treatment of bacterial diseases.

  15. Bioassay-guided isolation of novel compound from Paeonia suffruticosa Andrews roots as an IL-1β inhibitor.

    PubMed

    Choi, Yun-Hyeok; Yoo, Hee-Jung; Noh, Ill Chan; Lee, Jeong-Min; Park, Jae Won; Choi, Wahn Soo; Choi, Jung Ho

    2012-05-01

    The inhibition of Interleukin-1beta (IL-1β) is of substantial interest for the treatment of rheumatoid arthritis. Using an in vitro assay with RAW 264.7 cells, oxo-acetic acid 2-ethoxy-4-(3-hydroxy-2-oxopropyl) phenyl ester (1) was isolated from the roots of Paeonia suffruticosa Andrews as an inhibitor of IL-1β with an IC(50) value of 56 μM. Compound 1 is a novel phenylesteric compound from P. suffruticosa Andrews. Compound 1 was shown to inhibit the production of pro-inflammatory cytokines in RAW 264.7 cells. Thus, a possible new action of novel compound is provided explaining the anti-rheumatoid arthritic properties of P. suffruticosa Andrews.

  16. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats.

    PubMed

    Petchi, Ramesh R; Parasuraman, S; Vijaya, C

    2013-09-01

    To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats.

  17. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats

    PubMed Central

    Petchi, Ramesh R.; Parasuraman, S.; Vijaya, C.

    2013-01-01

    Objective: To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. Materials and Methods: The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. Results: The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. Conclusion: The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats. PMID:24808679

  18. Herbal Therapies for Type 2 Diabetes Mellitus: Chemistry, Biology, and Potential Application of Selected Plants and Compounds

    PubMed Central

    Chang, Cicero L. T.; Bartolome, Arlene P.; Chen, Yi-Ching; Chiu, Shao-Chih

    2013-01-01

    Diabetes mellitus has been recognized since antiquity. It currently affects as many as 285 million people worldwide and results in heavy personal and national economic burdens. Considerable progress has been made in orthodox antidiabetic drugs. However, new remedies are still in great demand because of the limited efficacy and undesirable side effects of current orthodox drugs. Nature is an extraordinary source of antidiabetic medicines. To date, more than 1200 flowering plants have been claimed to have antidiabetic properties. Among them, one-third have been scientifically studied and documented in around 460 publications. In this review, we select and discuss blood glucose-lowering medicinal herbs that have the ability to modulate one or more of the pathways that regulate insulin resistance, β-cell function, GLP-1 homeostasis, and glucose (re)absorption. Emphasis is placed on phytochemistry, anti-diabetic bioactivities, and likely mechanism(s). Recent progress in the understanding of the biological actions, mechanisms, and therapeutic potential of compounds and extracts of plant origin in type 2 diabetes is summarized. This review provides a source of up-to-date information for further basic and clinical research into herbal therapy for type 2 diabetes. Emerging views on therapeutic strategies for type 2 diabetes are also discussed. PMID:23662132

  19. CoMFA and CoMSIA studies on C-aryl glucoside SGLT2 inhibitors as potential anti-diabetic agents.

    PubMed

    Vyas, V K; Bhatt, H G; Patel, P K; Jalu, J; Chintha, C; Gupta, N; Ghate, M

    2013-01-01

    SGLT2 has become a target of therapeutic interest in diabetes research. CoMFA and CoMSIA studies were performed on C-aryl glucoside SGLT2 inhibitors (180 analogues) as potential anti-diabetic agents. Three different alignment strategies were used for the compounds. The best CoMFA and CoMSIA models were obtained by means of Distill rigid body alignment of training and test sets, and found statistically significant with cross-validated coefficients (q²) of 0.602 and 0.618, respectively, and conventional coefficients (r²) of 0.905 and 0.902, respectively. Both models were validated by a test set of 36 compounds giving satisfactory predicted correlation coefficients (r² pred) of 0.622 and 0.584 for CoMFA and CoMSIA models, respectively. A comparison was made with earlier 3D QSAR study on SGLT2 inhibitors, which shows that our 3D QSAR models are better than earlier models to predict good inhibitory activity. CoMFA and CoMSIA models generated in this work can provide useful information to design new compounds and helped in prediction of activity prior to synthesis.

  20. Gastroprotective activity of the hydroethanolic extract and isolated compounds from the leaves of Solanum cernuum Vell.

    PubMed

    Abreu Miranda, Mariza; Lemos, Marivane; Alves Cowart, Kamila; Rodenburg, Douglas; D McChesney, James; Radwan, Mohamed M; Furtado, Niege Araçari Jacometti Cardoso; Kenupp Bastos, Jairo

    2015-08-22

    Solanum cernuum Vell. (Solanaceae) is a Brazilian medicinal plant, traditionally known as "panaceia". Its folk name is probably due to its wide range of applications in traditional medicine including the treatment of ulcers. To evaluate the gastroprotective activities of the hydroethanolic extract (ESC) of S. cernuum and its major isolated compounds using in vivo gastric ulcer models. The ESC extract was obtained by maceration followed by percolation of the dried and powdered leaves of S. cernuum in ethanol:water (7:3). The major compounds in the extract were isolated by applying various preparative chromatographic techniques. The gastroprotective activity was evaluated in mice using different gastric ulcer-induced models. The anti-Helicobacter pylori activity was performed using the agar-well diffusion and broth microdilution methods. The ESC extract showed gastroprotective effects in the assay of acute gastric ulcer-induced by HCl/EtOH, nonsteroidal anti-inflammatory drug, and acetic acid-induced chronic ulcer protocols. The results also demonstrated that the gastroprotection induced by ESC extract is related to the activity of nitric oxide and endogenous sulfhydryls, which are important gastroprotective factors. The ESC extract and the alkaloid cernumidine did not show activity against H. pylori in the concentrations tested. The present study showed that the crude extract of S. cernuum possessed gastroprotective activity which corroborating the traditional use of this plant for the treatment of gastric ulcers. The isolated flavonoids, quercitrin and afzelin as well as the phenylpropanoid, isoferulic acid are suggested to be the compounds responsible for the gastroprotective activity of S. cernuum extract. Copyright © 2015. Published by Elsevier Ireland Ltd.

  1. Comparative Efficacy and Acceptability of Anti-Diabetic Agents for Alzheimer's Disease and Mild Cognitive Impairment: A Systematic Review and Network Meta-analysis.

    PubMed

    Cao, Bing; Rosenblat, Joshua D; Brietzke, Elisa; Park, Caroline; Lee, Yena; Musial, Natalie; Pan, Zihang; Mansur, Rodrigo B; McIntyre, Roger S

    2018-05-23

    The current meta-analysis compares the efficacy (i.e., pro-cognitive effects) and acceptability of anti-diabetic agents for Alzheimer's disease (AD) and mild cognitive impairment (MCI). Cochrane Library (CENTRAL), PubMed/MEDLINE, EMBASE and PsycINFO were searched from inception to January 15, 2018 for randomized controlled trials (RCTs) comparing anti-diabetic agents with placebo and/or another active anti-diabetic agent for the treatment of AD or MCI. Nineteen eligible studies (n = 4,855) evaluating the effects of six different anti-diabetic drugs (i.e., intranasal insulin, pioglitazone, rosiglitazone, metformin, sitagliptin and liraglutide) were included. The results of 29 pairwise comparisons indicated that cognition was significantly improved in subjects treated with anti-diabetic agents compared to placebo. Pioglitazone 15-30 mg demonstrated the greatest efficacy compared to placebo in network meta-analysis. No significant differences in acceptability were identified when comparing agents with each other and with placebo. The current findings indicate a pro-cognitive class effect of anti-diabetic agents in AD/MCI. Other anti-diabetic agents should also be investigated in future studies. This study is registered with PROSPERO (CRD42018085967). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Effectiveness and clinical inertia in patients with antidiabetic therapy.

    PubMed

    Machado-Duque, Manuel Enrique; Ramírez-Riveros, Adriana Carolina; Machado-Alba, Jorge Enrique

    2017-06-01

    To establish the effectiveness of antidiabetic therapy and the frequency of clinical inertia in the management of type 2 diabetes mellitus in Colombia. A cross-sectional study with follow-up of patients who had been treated for at least 1 year and were receiving medical consultation for antidiabetic treatment. Effectiveness was established when haemoglobin-A1c levels were <7% and when clinical inertia was reached, which was defined as no therapeutic modifications despite not achieving management controls. Sociodemographic, clinical and pharmacological variables were evaluated, and multivariate analyses were performed. In total, 363 patients with type 2 diabetes mellitus were evaluated, with a mean age of 62.0±12.2 years. A total of 1,016 consultations were evaluated, and the therapy was effective at the end of the follow-up in 57.9% of cases. Clinical inertia was found in 56.8% of patients who did not have metabolic control. The most frequently prescribed medications were metformin (84.0%), glibenclamide (23.4%) and insulin glargine (20.7%). Moreover, 57.6% of the patients were treated with two or more antidiabetic medications. Having metabolic control in the first consult of the follow-up was a protective factor against clinical inertia in the subsequent consultations (OR: 0.08; 95%CI: 0.04-0.15; P<.001). The effectiveness of treatment for patients with type 2 diabetes mellitus has increased in Colombia, and for the first time, clinical inertia was identifiable and quantifiable and found in similar proportions to other countries. Clinical inertia is a relevant condition given that it interferes with the possibility of controlling this pathology. © 2017 John Wiley & Sons Ltd.

  3. Evidence based study of antidiabetic potential of C. maxima seeds - In vivo.

    PubMed

    Kushawaha, Devesh Kumar; Yadav, Manjulika; Chatterji, Sanjukta; Srivastava, Amrita Kumari; Watal, Geeta

    2017-10-01

    In vitro antidiabetic efficacy of Cucurbita maxima seed extract (CMSE) has already been studied in our previous findings. Thus, in order to validate these findings in biological system, in vivo antidiabetic activity of aqueous extract was investigated in normal as well as diabetic experimental models. Variable doses of extract were administered orally to normal and STZ induced mild diabetic rats during fasting blood glucose (FBG) and glucose tolerance test (GTT) studies. In order to determine the extract's antidiabetic potential long-term FBG and post prandial glucose (PPG) studies were also carried out. Most effective dose of 200 mg kg -1 of CMSE decreases the blood glucose level (BGL) in normal rats by 29.02% at 6 h during FBG studies and 23.23% at 3 h during GTT. However, the maximum reduction observed in BGL of mild diabetic rats during GTT the same interval of time was 26.15%. Moreover, in case of severely diabetic rats a significant reduction of 39.33% was observed in FBG levels whereas, in case of positive control, rats treated with 2.5 mg kg -1 of glipizide, a fall of 42.9% in FBG levels was observed after 28 days. Results of PPG level also showed a fall of 33.20% in severely diabetic rats as compared to the positive control showing a fall of 44.2% at the end of the 28 days. Thus, the present study validate the hypoglycemic and antidiabetic effect of CMSE and hence this extract could be explored further for developing as a novel antidiabetic agent.

  4. Isolation of antiosteoporotic compounds from seeds of Sophora japonica.

    PubMed

    Abdallah, Hossam M; Al-Abd, Ahmed M; Asaad, Gihan F; Abdel-Naim, Ashraf B; El-halawany, Ali M

    2014-01-01

    Chemical investigation of Sophora japonica seeds resulted in the isolation of seven metabolites identified as: genistin (1), sophoricoside (2), sophorabioside (3), sophoraflavonoloside (4), genistein 7,4'-di-O-β-D-glucopyransoide (5), kaempferol 3-O-α-L-rhamnopyranosyl(1 → 6)β-D-glucopyranosyl(1 → 2)β-D-glucopyranoside (6) and rutin (7). Compounds 1, 2 and 5 showed significant estrogenic proliferative effect in MCF-7 cell in sub-cytotoxic concentration range. Compounds 1 and 2 showed minimal cell membrane damaging effect using LDH leakage assay. Accordingly, compound 2 (sophoricoside, (SPH)) was selected for further in-vivo studies as a potential anti-osteoporosis agent. The anti-osteoporotic effect of SPH was assessed in ovarectomized (OVX) rats after oral administration (15 mg/kg and 30 mg/kg) for 45 days compared to estradiol (10 µg/kg) as a positive control. Only in a dose of 30 mg/kg, SPH regained the original mechanical bone hardness compared to normal non-osteoporotic group. However, SPH (15 mg/kg) significantly increased the level of alkaline phosphatase (ALP) to normal level. Treatment with SPH (30 mg/kg) increased the level of ALP to be higher than normal group. SPH (15 mg/kg) did not significantly increase the serum level of osteocalcin (OC) compared to OVX group. On the other hand, treatment with SPH (30 mg/kg) significantly increased the level of OC to 78% higher than normal non-ovarectomized animals group. In addition, SPH (15 mg/kg) decreased the bone resorption marker, acid phosphatase (ACP) to normal level and SPH (30 mg/kg) further diminished the level of serum ACP. Histopathologically, sophoricoside ameliorated the ovarectomy induced osteoporosis in a dose dependent manner. The drug showed thicker bony trabeculae, more osteoid, and more osteoblastic rimming compared to OVX group.

  5. Isolation, characterization and antimicrobial evaluation of a novel compound N-octacosan 7β ol, from Fumaria parviflora Lam.

    PubMed

    Jameel, Mohammad; Islamuddin, Mohammad; Ali, Abuzer; Afrin, Farhat; Ali, Mohammed

    2014-03-12

    Fumaria parviflora Lam. (Fumaraceae) is widely used in traditional as well as folkloric system of medicine from ancient. It is commonly known as 'Pitpapra' or 'Shahtrah' in Indian traditional system of medicine and used for treating numerous ailments like diarrhea, fever, influenza, blood purifier and other complications. The object of the present study was to evaluate the Antileishmanial, antibacterial, antifungal and cytotoxic potential of isolated compound. Methanolic extract of whole plant of Fumaria parviflora was dried under reduced pressure to obtain a dark brown residue which was adsorbed on silica gel column grade (60-120 mesh) to obtain a slurry and chromatographed over silica gel loaded column in petroleum ether-chloroform (3:1, 1:1 and 1:3 v/v). The in vitro antileishmanial evaluation of isolated compound against Leishmania donovani promastigotes was investigated by growth kinetics assay, reversibility assay, analysis of cellular morphology, adverse toxicity and determination of 50% growth inhibitory concentration (GI50). Disc diffusion and broth micro dilution methods were used to study the antibacterial (Gram + Staphylococcus epidermidis and Bacillus subtilis; Gram - Escherichia coli and Salmonella typhimurium) and antifungal (Candida albicans and Aspergillus niger) potential in vitro. Structure elucidation by spectral data analysis revealed a novel compound, n-octacosan-7β-ol (OC), yield (0.471%), having significant antimicrobial activity against Leishmania donovani promastigotes, Staphylococcus epidermidis, Escherichia coli, Candida albicans and Aspergillus niger in vitro with GI50 = 5.35, MIC 250, MIC 250 and MFC 500 and MIC 250 μg ml(-1) respectively. The isolated compound did not show adverse effect against mammalian macrophages. The available evidence of compound suggested that it may be used as antimicrobial agent in future and may provide new platform for drug discovery programmes for leishmaniasis.

  6. Identification of a compound isolated from German chamomile (Matricaria chamomilla) with dermal sensitization potential.

    PubMed

    Avonto, Cristina; Rua, Diego; Lasonkar, Pradeep B; Chittiboyina, Amar G; Khan, Ikhlas A

    2017-03-01

    German chamomile is one of the most popular herbal ingredients used in cosmetics and personal care products. Allergic skin reactions following topical application of German chamomile have been occasionally reported, although it is not fully understood which of the chemical constituents is responsible for this adverse effect. In the present work, three candidate sensitizers were isolated from German chamomile based on activity-guided fractionation of chamomile extracts tested using the in vitro KeratinoSens™ assay. The compounds were identified as the polyacetylene tonghaosu (1), and both trans- and cis-glucomethoxycinnamic acids (2 and 3). These three compounds were classified as non- to weakly reactive using in chemico methods; however, aged tonghaosu was found to be more reactive when compared to freshly isolated tonghaosu. The polyacetylene (1) constituent was determined to be chemically unstable, generating a small electrophilic spirolactone, 1,6-dioxaspiro[4.4]non-3-en-2-one (4), upon aging. This small lactone (4) was strongly reactive in both in chemico HTS- and NMR-DCYA methods and further confirmed as a potential skin sensitizer by Local Lymph Node Assay (LLNA). Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities.

    PubMed

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Sassi, Aicha; Abed, Besma; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.

  8. Identification and evaluation of magnolol and chrysophanol as the principle protein tyrosine phosphatase-1B inhibitory compounds in a Kampo medicine, Masiningan.

    PubMed

    Onoda, Toshihisa; Li, Wei; Sasaki, Tatsunori; Miyake, Megumi; Higai, Koji; Koike, Kazuo

    2016-06-20

    Masiningan is a traditional medicine consisting of six crude drugs that have been used for treating constipation and diabetes mellitus in both Japan and China. Masiningan has been reported to have significant PTP1B inhibitory activity and to affect cells in the insulin-signaling pathway. The aim of the present study is to identify the PTP1B inhibitory compounds in Masiningan. Bioactivity peaks were identified by analytical HPLC profiling and PTP1B inhibitory activity profiling of sub-fractions from Masiningan extract. The bioactive compounds were isolated by tracking two identified bioactive peaks, and the chemical structures were determined by spectroscopic analyses. The bioactive compounds were further investigated for their inhibitory effect against PTP1B by enzymatic kinetic analysis, molecular docking simulation, inhibitory selectivity against other PTPs, and cellular activity in the insulin signal transduction pathway. From Masiningan, magnolol (1) and chrysophanol (2) were isolated as compounds that exhibited significant dose-dependent inhibitory activities against PTP1B, with IC50 values of 24.6 and 12.3μM, respectively. Kinetic analysis revealed that 1 is a non-competitive and that 2 is a competitive PTP1B inhibitor. In the molecular docking simulation, compound 2 was stably positioned in the active pocket of PTP1B, and the CDOCKER energy was calculated to be 24.3411kcal/mol. Both compounds demonstrated remarkably high selectivity against four PTPs and revealed cellular activity against the insulin signal transduction pathway. Magnolol (1) and chrysophanol (2) were identified as the principle PTP1B inhibitory active compounds in Masiningan, and their actions were investigated in detail. These findings demonstrated the effectiveness of Masiningan on diabetes mellitus through the inhibition of PTP1B at a molecular level as well as the potential of magnolol (1) and chrysophanol (2) as lead compounds in future anti-diabetes drug development. Copyright © 2016

  9. Sodium glucose co-transporter 2 (SGLT2) inhibitors: new among antidiabetic drugs.

    PubMed

    Opie, L H

    2014-08-01

    Type 2 diabetes is characterized by decreased insulin secretion and sensitivity. The available oral anti-diabetic drugs act on many different molecular sites. The most used of oral anti-diabetic agents is metformin that activates glucose transport vesicles to the cell surface. Others are: the sulphonylureas; agents acting on the incretin system; GLP-1 agonists; dipetidylpeptidase-4 inhibitors; meglinitide analogues; and the thiazolidinediones. Despite these many drugs acting by different mechanisms, glycaemic control often remains elusive. None of these drugs have a primary renal mechanism of action on the kidneys, where almost all glucose excreted is normally reabsorbed. That is where the inhibitors of glucose reuptake (sodium-glucose cotransporter 2, SGLT2) have a unique site of action. Promotion of urinary loss of glucose by SGLT2 inhibitors embodies a new principle of control in type 2 diabetes that has several advantages with some urogenital side-effects, both of which are evaluated in this review. Specific approvals include use as monotherapy, when diet and exercise alone do not provide adequate glycaemic control in patients for whom the use of metformin is considered inappropriate due to intolerance or contraindications, or as add-on therapy with other anti-hyperglycaemic medicinal products including insulin, when these together with diet and exercise, do not provide adequate glycemic control. The basic mechanisms are improved β-cell function and insulin sensitivity. When compared with sulphonylureas or other oral antidiabetic agents, SGLT2 inhibitors provide greater HbA1c reduction. Urogenital side-effects related to the enhanced glycosuria can be troublesome, yet seldom lead to discontinuation. On this background, studies are analysed that compare SGLT2 inhibitors with other oral antidiabetic agents. Their unique mode of action, unloading the excess glycaemic load, contrasts with other oral agents that all act to counter the effects of diabetic

  10. In vivo wound-healing activity of Euphorbia characias subsp. wulfenii: Isolation and quantification of quercetin glycosides as bioactive compounds.

    PubMed

    Özbilgin, Serkan; Acıkara, Özlem Bahadır; Akkol, Esra Küpeli; Süntar, Ipek; Keleş, Hikmet; İşcan, Gülçin Saltan

    2018-06-16

    The latex and the aerial parts of Euphorbia characias L. (Euphorbiaceae) have been used as medicinal plant to treat wounds and warts in traditional medicine. The effect of the plant extract was tested in vivo and in vitro with experimental models to find scientific evidence for traditional use in wound healing. Potentially active wound-healer compounds were isolated from the active fraction using fractionation procedures under the guidance of biological assay and the possible role of the compounds in the wound healing process was also determined. N-hexane, ethyl acetate, and methanol extracts were successively prepared from the aerial parts of E. characias subsp. wulfenii. The extracts were tested with linear incision, circular excision wound models and the hydroxyproline assay method to assess the wound-healing activity. The inhibition of the increase in capillary permeability induced by acetic acid, an acute inflammation model, was used to assay the anti-inflammatory activity. Different chromatographic separation techniques on sephadex and silica gel columns, and bioassay guided assay techniques have been used to isolate the active compounds of the plant. Moreover, hyaluronidase, collagenase and elastase enzymes inhibitory effect of active principle were investigated in vitro to find out the mechanism of action. The methanol (MeOH-ex) extract of the aerial parts of E. characias subsp. wulfenii showed significant wound healing activity (linear incision wound model: 43.04%; circular excision wound model 65.24%) and anti-inflammatory activity (34.74%). The methanol extract was separated into its fractions by column chromatography for isolation of efficient compounds. Biological activity of the fractions were assessed and further isolation and purification processes have been carried out in the active fraction. Isolation studies were carried out from the MeOH-ex fraction to obtain active constituents and their structures were elucidated to be quercetin-3-O

  11. A pharmacological perspective on the use of Brazilian Red Propolis and its isolated compounds against human diseases.

    PubMed

    Freires, Irlan Almeida; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2016-03-03

    Propolis is a complex resinous mixture collected by bees, with high medicinal, historical and economic value. The nutraceutical and pharmacological benefits of propolis have been extensively explored in several fields of medicine as an important resource for prevention and treatment of oral and systemic diseases. A relatively new type of propolis, named red propolis (in Brazil, Brazilian Red Propolis - BRP), has been arousing attention for the promising pharmacological properties of some of its isolated compounds (vestitol, neovestitol, quercetin, medicarpin, formononetin, etc). Due to a distinct chemical composition, BRP and its isolated compounds (mainly isoflavones) affect a wide range of biological targets and could have an impact against numerous diseases as an antimicrobial, anti-inflammatory and immunomodulatory, antioxidant and antiproliferative agent. In this review, we comprehensively address the main aspects related to BRP bioprospection, chemistry and therapeutic potential. Further information is provided on mechanisms of action discovered thus far as well as clinical use in humans and regulatory aspects. As of now, BRP and its isolated molecules remain a fascinating topic for further research and application in biomedical areas and dentistry. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. A pharmacological appraisal of medicinal plants with antidiabetic potential

    PubMed Central

    Khan, Vasim; Najmi, Abul Kalam; Akhtar, Mohd.; Aqil, Mohd.; Mujeeb, Mohd.; Pillai, K. K.

    2012-01-01

    Diabetes mellitus is a complicated metabolic disorder that has gravely troubled the human health and quality of life. Conventional agents are being used to control diabetes along with lifestyle management. However, they are not entirely effective and no one has ever been reported to have fully recovered from diabetes. Numerous medicinal plants have been used for the management of diabetes mellitus in various traditional systems of medicine worldwide as they are a great source of biological constituents and many of them are known to be effective against diabetes. Medicinal plants with antihyperglycemic activities are being more desired, owing to lesser side-effects and low cost. This review focuses on the various plants that have been reported to be effective in diabetes. A record of various medicinal plants with their established antidiabetic and other health benefits has been reported. These include Allium sativa, Eugenia jambolana, Panax ginseng, Gymnema sylvestre, Momrodica charantia, Ocimum sanctum, Phyllanthus amarus, Pterocarpus marsupium, Trigonella foenum graecum and Tinospora cordifolia. All of them have shown a certain degree of antidiabetic activity by different mechanisms of action. PMID:22368396

  13. Bioassay-guided isolation and identification of bioactive compound from aerial parts of Luffa acutangula against lung cancer cell line NCI-H460.

    PubMed

    Vanajothi, Ramar; Srinivasan, Pappu

    2015-01-01

    Luffa acutangula (Cucurbitaceae) is widely used as a traditional medicine in India and was reported to possess various pharmacological activities including its anti-proliferative effects. In this study, the bioactive compound of ethanolic extract of L. acutangula (LA) was isolated using bioassay-guided approach. Five major fractions were collected and evaluated for their anti-proliferative activity against non-small cell lung cancer cells (NCI-H460). Among the test fractions, the fraction LA/FII effectively decreased the growth of cancer cells with IC50 values of 10 µg/ml concentration. Furthermore, it significantly increased intracellular reactive oxygen species and decreased the mitochondrial membrane potential. The apoptogenic activity of fraction LA/FII was confirmed by cell shrinkage, membrane blebbing and formation of apoptotic bodies. A single bioactive compound was isolated from the active faction, LA/FII and subsequently identified as 1,8 dihydroxy-4-methylanthracene 9,10-dione (compound 1) by comparing its spectral data [Ultraviolet (UV), Infrared (IR), Nuclear magnetic resonance (NMR) and Electrospray Ionization-Mass Spectroscopy (ESI-MS)] with literature values. This is the first report on the isolation of compound 1 from this plant.

  14. Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern Brazil.

    PubMed

    Trojan-Rodrigues, M; Alves, T L S; Soares, G L G; Ritter, M R

    2012-01-06

    Plants are widely as antidiabetics. The study of these plants is essential because many of them may have undesirable effects, such as acute or chronic toxicity; or their use may even delay or discourage the adoption of the proper and effective treatment. The present study surveyed the plant species that are popularly used to treat diabetes mellitus in the state of Rio Grande do Sul in southern Brazil. Sixteen ethnobotanical surveys performed in the state were consulted, and the species used to treat diabetes were listed. For species cited in at least two of the studies, scientific data related to antidiabetic activity were searched in the ISI Knowledge database. The scientific binomial of each species was used as keywords, and data found in review papers were also included. A total of 81 species in 42 families were mentioned; the most important families were Asteraceae and Myrtaceae. Twenty eight species were cited at least twice as being used to treat diabetes in the state. For 11 of these, no scientific data regarding antidiabetic activity could be located. The species most frequently mentioned for use with diabetes were Syzygium cumini (Myrtaceae) and Bauhinia forficata (Fabaceae), in 12 studies each, followed by Sphagneticola trilobata (Asteraceae), in six studies; and Baccharis trimera (Asteraceae), Bidens pilosa (Asteraceae), Cynara scolymus (Asteraceae), and Leandra australis (Melastomataceae) in four studies each. Bauhinia forficata and Syzygium cumini have been studied in more detail for antidiabetic activity. A considerable number of plant species are traditionally used for the treatment of diabetes melitus in the Rio Grande do Sul State. The majority of those plants that have been studied for antidiabetic activity showed promising results, mainly for Bauhinia forficata and Syzygium cumini. However, for most of the plants mentioned, the studies are not sufficient to guarantee the efficacy and safety in the use of these plants in the treatment against

  15. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat.

    PubMed

    Abed, Raeid M M; Dobretsov, Sergey; Al-Fori, Marwan; Gunasekera, Sarath P; Sudesh, Kumar; Paul, Valerie J

    2013-07-01

    In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22-25 % and a maximum temperature of 45-60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-isoLeu), and cyclo(L-Pro-D-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(L-Pro-L-Phe) and cyclo(L-Pro-L-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.

  16. The Interaction of Anti-diabetic α-Glucosidase Inhibitors and Gut Bacteria α-Glucosidase.

    PubMed

    Tan, Kemin; Tesar, Christine; Wilton, Rosemarie; Jedrzejczak, Robert P; Joachimiak, Andrzej

    2018-05-15

    Carbohydrate hydrolyzing α-glucosidases are commonly found in microorganisms present in the human intestine microbiome. We have previously reported crystal structures of an α-glucosidase from the human gut bacterium Blaubia (Ruminococcus) obeum (Ro-αG1) and its substrate preference/specificity switch. This novel member of the GH31 family is a structural homolog of human intestinal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) with a highly conserved active site that is predicted to be common in Ro-αG1 homologs among other species that colonize the human gut. In this report, we present structures of Ro-αG1 in complex with the anti-diabetic α-glucosidase inhibitors voglibose, miglitol and acarbose and supporting binding data. The in vitro binding of these anti-diabetic drugs to Ro-αG1 suggests the potential for unintended in vivo cross-reaction of the α-glucosidase inhibitors to bacterial α-glucosidases that are present in gut microorganism communities. Moreover, analysis of these drug-bound enzyme structures could benefit further anti-diabetic drug development. This article is protected by copyright. All rights reserved. © 2018 The Protein Society.

  17. Inhibitory Activities of Phenolic Compounds Isolated from Adina rubella Leaves Against 5α-Reductase Associated with Benign Prostatic Hypertrophy.

    PubMed

    Yin, Jun; Heo, Jun Hyeok; Hwang, Yoon Jeong; Le, Thi Tam; Lee, Min Won

    2016-07-07

    Adina rubella Hance (AR), a plant native to Korea, has been used as traditional medicine for dysentery, eczema, intoxication, and external hemorrhages. Previous phytochemical studies of AR have reported several components, including terpenoids, phenolics, and alkaloids. The current study evaluated the anti-oxidative and anti-inflammatory activities and 5α-reductase inhibition of isolated compounds of AR leaves to find a potential therapeutic agent for benign prostatic hypertrophy (BPH). Repeated chromatographic isolation of an 80% acetone extract of AR leaves yielded seven phenolic compounds: caffeic acid (1), chlorogenic acid (2), methyl chlorogenate (3), quercetin-3-rutinoside (4), kaempferol-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (5), hyperoside (6), and grandifloroside (7). Compound 7 is a novel compound in AR. Caffeoyl derivatives 1-3 and 7 showed good anti-oxidative activities. In particular, caffeic acid (1) and grandifloroside (7) showed potent anti-inflammatory activities, and 7 also exhibited potent inhibitory activity against TNF-α and 5α-reductase. Our results show that the extract and grandifloroside (7) from leaves of AR might be developed as a source of potent anti-oxidative and anti-inflammatory agents and therapeutic agent for BPH.

  18. Evaluation of antioxidant, antibacterial, and antidiabetic potential of two traditional medicinal plants of India: Swertia cordata and Swertia chirayita.

    PubMed

    Roy, Priyanka; Abdulsalam, Fatima I; Pandey, D K; Bhattacharjee, Aniruddha; Eruvaram, Naveen Reddy; Malik, Tabarak

    2015-06-01

    Swertia cordata and Swertia chirayita are temperate Himalayan medicinal plants used as potent herbal drugs in Indian traditional systems of medicine (Ayurvedic, Unani and Siddha). Assessment of Antioxidant, antibacterial, and antidiabetic potential of Swertia cordata and Swertia chirayita. Phytochemicals of methanolic and aqueous extracts of the two Swertia species were analyzed. The antioxidant potential of all the extracts was assessed by measuring total phenolic content, total flavonoid content and free radical scavenging potential was assessed by 1,1-diphenyl-2-picrilhydrazyl (DPPH) assay, antibacterial activity was assessed against various pathogenic and nonpathogenic bacteria in vitro by Kirby-Bauer agar well diffusion method and antidiabetic activity was assessed by α-amylase inhibition. Methanolic leaf extracts of both the species of Swertia contain significant antibacterial as well as anti-diabetic potential, whereas methanolic root extracts of both species were found to have potential antioxidant activity. However, Swertia chirayita showed better activities than Swertia cordata although both species have good reputation in traditional Indian medicine. Both the species are having high medicinal potential in terms of their antioxidant, antibacterial and antidiabetic activities. Studies are required to further elucidate antioxidant, anti-diabetic and antibacterial potentials using various in-vitro, in-vivo biochemical and molecular biology techniques.

  19. Evaluation of antioxidant, antibacterial, and antidiabetic potential of two traditional medicinal plants of India: Swertia cordata and Swertia chirayita

    PubMed Central

    Roy, Priyanka; Abdulsalam, Fatima I.; Pandey, D. K.; Bhattacharjee, Aniruddha; Eruvaram, Naveen Reddy; Malik, Tabarak

    2015-01-01

    Background: Swertia cordata and Swertia chirayita are temperate Himalayan medicinal plants used as potent herbal drugs in Indian traditional systems of medicine (Ayurvedic, Unani and Siddha). Objective: Assessment of Antioxidant, antibacterial, and antidiabetic potential of Swertia cordata and Swertia chirayita. Materials and Methods: Phytochemicals of methanolic and aqueous extracts of the two Swertia species were analyzed. The antioxidant potential of all the extracts was assessed by measuring total phenolic content, total flavonoid content and free radical scavenging potential was assessed by 1,1-diphenyl-2-picrilhydrazyl (DPPH) assay, antibacterial activity was assessed against various pathogenic and nonpathogenic bacteria in vitro by Kirby-Bauer agar well diffusion method and antidiabetic activity was assessed by α-amylase inhibition. Results: Methanolic leaf extracts of both the species of Swertia contain significant antibacterial as well as anti-diabetic potential, whereas methanolic root extracts of both species were found to have potential antioxidant activity. However, Swertia chirayita showed better activities than Swertia cordata although both species have good reputation in traditional Indian medicine. Conclusion: Both the species are having high medicinal potential in terms of their antioxidant, antibacterial and antidiabetic activities. Studies are required to further elucidate antioxidant, anti-diabetic and antibacterial potentials using various in-vitro, in-vivo biochemical and molecular biology techniques. PMID:26109789

  20. Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents.

    PubMed

    Washburn, William N

    2012-05-01

    Maintenance of glucose homeostasis in healthy individuals involves SGLT2 (sodium glucose co-transporter 2)-mediated recovery of glucose from the glomerular filtrate which otherwise would be excreted in urine. Clinical studies indicate that SGLT2 inhibitors provide an insulin-independent means to reduce the hyperglycemia that is the hallmark of type 2 diabetes mellitus (T2DM) with minimal risk of hypoglycemia. The pharmacophore common to the SGLT2 inhibitors currently in development is a diarylmethane C-glucoside which is discussed in this review. The focus is how this pharmacophore was further modified as inferred from the patents publishing from 2009 to 2011. The emphasis is on the strategy that each group employed to circumvent the constraints imposed by prior art and how the resulting SGLT2 potency and selectivity versus SGLT1 compared with that of the lead clinical compound dapagliflozin. SGLT2 inhibitors offer a new fundamentally different approach for treatment of diabetes. To date, the clinical results suggest that for non-renally impaired patients this class of inhibitors could be safely used at any stage of T2DM either alone or in combination with other marketed antidiabetic medications.

  1. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

    PubMed Central

    Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno

    2017-01-01

    Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects. PMID:28701955

  2. Structure Analysis of Effective Chemical Compounds against Dengue Viruses Isolated from Isatis tinctoria.

    PubMed

    Gao, Bo; Zhang, Jianming; Xie, Lianhui

    2018-01-01

    The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria . In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR) spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria .

  3. Structure Analysis of Effective Chemical Compounds against Dengue Viruses Isolated from Isatis tinctoria

    PubMed Central

    Gao, Bo; Zhang, Jianming

    2018-01-01

    The history of Chinese herb research can be traced back to thousands of years ago, and the abundant knowledge accumulated for these herbs makes them good candidates for developing new natural drugs. Isatis tinctoria is probably the most well-studied Chinese herb, which has been identified to be effective against dengue fever. However, the underlying biological mechanisms are still unclear. In this study, we adopt combined methods of bioactive trace technology and phytochemical extraction and separation, to guide the isolation and purification of the effective chemical constituents on the water-soluble components of aerial parts of Isatis tinctoria. In addition, we apply polarimetry and 1D or 2D nuclear magnetic resonance (NMR) spectroscopy to identify their structures, which lay a foundation for further study on the biological mechanisms underlying medicinal effects of Isatis tinctoria using in vitro and in vivo experiments. Specifically, we identify and infer the structures of 27 types of chemical compounds named GB-1, GB-2, …, GB-27, respectively, among which GB-7 is a novel compound. Further study of these compounds is critical to reveal the secrets behind the medicinal effects of Isatis tinctoria. PMID:29808104

  4. The effect of compound 48/80 on contractions induced by toluene diisocyanate in isolated guinea-pig bronchus.

    PubMed

    Mapp, C E; Boniotti, A; Papi, A; Chitano, P; Coser, E; Di Stefano, A; Saetta, M; Ciaccia, A; Fabbri, L M

    1993-06-01

    We have investigated the ability of compound 48/80 and of histamine H1 and H2 receptor antagonists to inhibit toluene diisocyanate-induced contractions in isolated guinea-pig bronchi. Compound 48/80 (100 micrograms/ml) significantly inhibited toluene diisocyanate-induced contractions. By contrast, the two histamine H1 and H2 receptor antagonists, chlorpheniramine (10 microM) and cimetidine, (10 microM) did not affect toluene diisocyanate-induced contractions, but significantly inhibited contractions induced by exogenously applied histamine (100 microM) and by 48/80. We investigated which mechanisms 48/80 used to inhibit toluene diisocyanate-induced contractions, paying particular attention to the possible involvement of capsaicin-sensitive primary afferents. In vitro capsaicin desensitization (10 microM for 30 min followed by washing) significantly reduced compound 48/80-induced contractions. A capsaicin-resistant component of contraction was also evident. Ruthenium red (3 microM), an inorganic dye which acts as a selective functional antagonist of capsaicin, did not affect 48/80-induced contraction. MEN 10,207 (Tyr5,D-Trp6,8,9,Arg10)-neurokinin A (4-10) (3 microM) a selective antagonist of NK2-tachykinin receptors significantly reduced 48/80-induced contractions. These results show that compound 48/80 inhibits toluene diisocyanate-induced contractions in isolated guinea-pig bronchi. It is likely that two mechanisms are involved in the inhibition: (1) the release of mediators other than histamine by mast cells, (2) an effect of 48/80 on sensory nerves.

  5. Antibacterial and anti-inflammatory effects of Syzygium jambos L. (Alston) and isolated compounds on acne vulgaris

    PubMed Central

    2013-01-01

    Background Acne vulgaris is a chronic skin disorder leading to inflammation as a result of the production of reactive oxygen species due to the active involvement of Propionibacterium acnes (P. acnes) in the infection site of the skin. The current study was designed to assess the potential of the leaf extract of Syzygium jambos L. (Alston) and its compounds for antibacterial and anti-inflammatory activity against the pathogenic P. acnes. Methods The broth dilution method was used to assess the antibacterial activity. The cytotoxicity investigation on mouse melanocyte (B16-F10) and human leukemic monocyte lymphoma (U937) cells was done using sodium 3’-[1-(phenyl amino-carbonyl)-3,4-tetrazolium]-bis-[4-methoxy-6-nitrobenzene sulfonic acid hydrate (XTT) reagent. The non-toxic concentrations of the samples was investigated for the suppression of cytokines interleukin 8 (IL 8) and tumour necrosis factor (TNF α) by testing the supernatants in the co-culture of the human U937 cells and heat killed P. acnes using enzyme immunoassay kits (ELISA). The statistical analysis was done using the Graph Pad Prism 4 program. Results Bioassay guided isolation of ethanol extract of the leaves of S. jambos led to the isolation of three known compounds namely; squalene, an anacardic acid analogue and ursolic acid which are reported for the first time from this plant. The ethanol extract of S. jambos and one of the isolated compound namely, anacardic acid analogue were able to inhibit the growth of P. acnes with a noteworthy minimum inhibitory concentration (MIC) value of 31.3 and 7.9 μg/ml, respectively. The ethanol extract and three commercially acquired compounds namely; myricetin, myricitrin, gallic acid exhibited significant antioxidant activity with fifty percent inhibitory concentration (IC50) ranging between 0.8-1.9 μg/ml which was comparable to that of vitamin C, the reference antioxidant agent. The plant extract, compounds ursolic acid and myricitrin (commercially

  6. Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxan-induced diabetic mice.

    PubMed

    Tafesse, Tadesse Bekele; Hymete, Ariaya; Mekonnen, Yalemtsehay; Tadesse, Mekuria

    2017-05-02

    Ajuga remota Benth is traditionally used in Ethiopia for the management of diabetes mellitus. Since this claim has not been investigated scientifically, the aim of this study was to evaluate the antidiabetic effect and phytochemical screening of the aqueous and 70% ethanol extracts on alloxan-induced diabetic mice. After acute toxicity test, the Swiss albino mice were induced with alloxan to get experimental diabetes animals. The fasting mean blood glucose level before and after treatment for two weeks in normal, diabetic untreated and diabetic mice treated with aqueous and 70% ethanol extracts were performed. Data were statistically evaluated by using Statistical Package for the Social Sciences software version 20. P-value <0.05 was considered statistically significant. The medium lethal doses (LD 50 ) of both extracts were higher than 5000 mg/kg, indicating the extracts are not toxic under the observable condition. Aqueous extracts of A.remota (300 mg/kg and 500 mg/kg body weight) reduced elevated blood glucose levels by 27.83 ± 2.96% and 38.98 ± 0.67% (P < 0.0001), respectively while the 70% ethanol extract caused a reduction of 27.94 ± 1.92% (300 mg/kg) & 28.26 ± 1.82% (500 mg/kg). Treatment with the antidiabetic drug, Glibenclamide (10 mg/kg body weight) lowered blood glucose level by 51.06% (p < 0.05). Phytochemical screening of both extracts indicated the presence of phenolic compounds, flavonoids, saponins, tannins, and steroids, which might contribute to the antidiabetic activity. The extracts, however, did not contain alkaloids and anthraquinones. The aqueous extract (500 mg/kg) showed the highest percentage reduction in blood glucose levels and the ability of A. remota extracts in reducing blood glucose levels presumably due to the presence of antioxidant constituents such as flavonoids. The effect of the extract supported the traditional claim of the plant.

  7. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams.

    PubMed

    Kim, Young Joo; Park, Sung Yong; Lee, Hong Chul; Yoo, Seung Seok; Oh, Sejong; Kim, Kwang Hyun; Chin, Koo Bok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham.

  8. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams

    PubMed Central

    Yoo, Seung Seok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham. PMID:27499673

  9. Nanostructured Lipid Carriers Loaded with Baicalin: An Efficient Carrier for Enhanced Antidiabetic Effects.

    PubMed

    Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing

    2016-01-01

    Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of -31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. B-NLCs described in this study are well-suited for the delivery of baicalin. Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity Index, SD: Sprague-Dawley, SLNs: Solid lipid nanoparticles, STZ

  10. Anti-diabetic medications and risk of primary liver cancer in persons with type II diabetes.

    PubMed

    Hagberg, K W; McGlynn, K A; Sahasrabuddhe, V V; Jick, S

    2014-10-28

    Type II diabetes increases liver cancer risk but the risk may be mitigated by anti-diabetic medications. However, choice of medications is correlated with diabetes duration and severity, leading to confounding by indication. To address this association, we conducted a nested case-control study among persons with type II diabetes in the Clinical Practice Research Datalink. Cases had primary liver cancer and controls were matched on age, sex, practice, calendar time, and number of years in the database. Exposure was classified by type and combination of anti-diabetic prescribed and compared to non-use. Odds ratios (ORs) and 95% confidence intervals (95% CI) were calculated using conditional logistic regression. In 305 cases of liver cancer and 1151 controls, there was no association between liver cancer and anti-diabetic medication use compared to non-use (OR=0.74 (95% CI=0.45-1.20) for metformin-only, 1.10 (95% CI=0.66-1.84) for other oral hypoglycaemic (OH)-only, 0.89 (95% CI=0.58-1.37) for metformin+other OH, 1.11 (95% CI=0.60-2.05) for metformin+insulin, 0.81 (95% CI=0.23-2.85) for other OH+insulin, and 0.72 (95% CI=0.18-2.84) for insulin-only). Stratification by duration of diabetes did not alter the results. Use of any anti-diabetic medications in patients with type II diabetes was not associated with liver cancer, though there was a suggestion of a small protective effect for metformin.

  11. Screening of Luzula species native to the Carpathian Basin for anti-inflammatory activity and bioactivity-guided isolation of compounds from Luzula luzuloides (Lam.) Dandy & Wilmott.

    PubMed

    Tóth, Barbara; Chang, Fang-Rong; Hwang, Tsong-Long; Szappanos, Ádám; Mándi, Attila; Hunyadi, Attila; Kurtán, Tibor; Jakab, Gusztáv; Hohmann, Judit; Vasas, Andrea

    2017-01-01

    The present study focused on the anti-inflammatory screening of Luzula species native to the Carpathian Basin and bioactivity-guided isolation of compounds of Luzula luzuloides (Lam.) Dandy & Wilmott. The anti-inflammatory properties of extracts with different polarity prepared from Luzula species were determined. Among them, the CH 2 Cl 2 -soluble fraction of L. luzuloides possessed strong inhibitory effects on superoxide anion generation (99.39±0.37%) and elastase release (114.22±3.13%) in fMLP/CB-induced human neutrophils at concentration of 10μg/mL. From this fraction, six compounds (1-6) were isolated by the combination of different chromatographic methods. The structures of the compounds were determined by means of MS, 1D and 2D NMR spectroscopy. The results allowed the identification of the new 1,6-dihydroxy-2-keto-1,7-dimethyl-8-vinyl-1,2-dihydrophenanthrene (1) from the plant, named luzulin A. Chiral HPLC and HPLC-ECD analysis revealed that 1 possesses low enantiomeric excess and TDDFT-ECD calculations afforded the configurational assignment of the separated enantiomers. Three known phenanthrenes [juncuenin B (2), dehydrojuncuenin B (3) and juncusol (4)] and two flavonoids [apigenin (5) and luteolin (6)] were also isolated. The anti-inflammatory activity of the isolated compounds was tested and IC 50 values were determined. This was the first time that phenanthrenes were detected in a Luzula species. The oxidative transformation of juncuenin B (3) led to the isolation of its possible biometabolites, namely luzulin A (1), dehydrojuncuenin B (4), and juncuenin D (7). The isolated compounds (1-4) confirm that besides flavonoids, phenanthrenes could also serve as chemotaxonomic markers for Luzula species and prove the close relationship of Juncus and Luzula genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source.

    PubMed

    Sales, Paloma Michelle; Souza, Paula Monteiro; Simeoni, Luiz Alberto; Silveira, Damaris

    2012-01-01

    Inhibition of α-amylase, enzyme that plays a role in digestion of starch and glycogen, is considered a strategy for the treatment of disorders in carbohydrate uptake, such as diabetes and obesity, as well as, dental caries and periodontal diseases. Plants are an important source of chemical constituents with potential for inhibition of α-amylase and can be used as therapeutic or functional food sources. A review about crude extracts and isolated compounds from plant source that have been tested for α-amylase inhibitory activity has been done. The analysis of the results shows a variety of crude extracts that present α-amylase inhibitory activity and some of them had relevant activity when compared with controls used in the studies. Amongst the phyto-constituents that have been investigated, flavonoids are one of them that demonstrated the highest inhibitory activities with the potential of inhibition related to number of hydroxyl groups in the molecule of the compound. Several phyto-constituents and plant species as α-amylase inhibitors are being reported in this article. Majority of studies have focused on the anti-amylase phenolic compounds.

  13. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi.

    PubMed

    Ryu, Eun Hye; Yang, Eun Ju; Woo, Eun Rhan; Chang, Hae Choon

    2014-08-01

    Strain HD1 with antifungal activity was isolated from kimchi and identified as Lactobacillus plantarum. Antifungal compounds from Lb. plantarum HD1 were active against food- and feed-borne filamentous fungi and yeasts in a spot-on-the-lawn assay. Antifungal activity of Lb. plantarum HD1 was stronger against filamentous fungi than yeast. Antifungal compounds were purified using solid phase extraction (SPE) and recycling preparative-HPLC. Structures of the antifungal compounds were elucidated by electrospray ionization-mass spectrometry and nuclear magnetic resonance. Active compounds from Lb. plantarum HD1 were identified as 5-oxododecanoic acid (MW 214), 3-hydroxy decanoic acid (MW 188), and 3-hydroxy-5-dodecenoic acid (MW 214). To investigate the potential application of these antifungal compounds for reduction of fungal spoilage in foods, Korean draft rice wine was used as a food model. White film-forming yeasts were observed in control draft rice wine after 11 days of incubation. However, film-forming yeasts were not observed in draft rice wine treated with SPE-prepared culture supernatant of Lb. plantarum HD1 (equivalent to 2.5% addition of culture supernatant) until 27 days of incubation. The addition of antifungal compounds to Korean draft rice wine extended shelf-life up to 27 days at 10 °C without any sterilization process. Therefore, the antifungal activity of Lb. plantarum HD1 may lead to the development of powerful biopreservative systems capable of preventing food- and feed-borne fungal spoilage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Screening and identification of low temperature-adapted antagonistic Bacillus isolated from Kekexili region of West China and the analysis of the isolates lipopeptide compounds].

    PubMed

    Xie, Yong-Li; Gao, Xue-Wen

    2013-01-01

    The research and exploitation of special microbial resources in extreme environment is of scientific significance and has broad applied prospect. In this paper, eight Bacillus strains isolated from the vegetation rhizospheres in Kekexili extreme region of Qinghai Province and presented good growth status at low temperature 4 and 10 degrees C were identified. Through physiological and biochemical analysis, rep-PCR fingerprinting, and 16S rDNA and gyrB partial sequence analyses, the eight strains were identified as Bacillus mojavensis (3 isolates), Bacillus amyloliquefaciens (1 isolate), and Bacillus simplex (4 isolates). The agar plate antagonistic test showed that four of the isolates presented distinct antagonistic activity to Sclerotinia sclerotiorum and Xanthomonas oryzae pv. oryzae. The MALDI-TOF-MS analysis showed that the strain KKD1 (B. mojavensis) produced fengycin and surfactin, whereas the strain KKD2 (B. amyloliquefaciens) produced iturin A, surfactin and fengycin, suggesting that the bio-control efficacy of the Bacillus strains could be related to the synthesis and excretion of the antifungal lipopeptide compounds. This study provided the bacterial resources for the research and exploitation of low temperature-adapted Bacillus bio-fertilizers and bio-pesticides.

  15. In Vitro Antidiabetic Effects and Antioxidant Potential of Cassia nemophila Pods

    PubMed Central

    Rehman, Gauhar; Hamayun, Muhammad; Ul Islam, Saif; Arshad, Saba; Zaman, Khair; Ahmad, Ayaz; Shehzad, Adeeb; Hussain, Anwar

    2018-01-01

    The antidiabetic and antioxidant potential of ethanolic extract of Cassia nemophila pod (EECNP) was evaluated by three in vitro assays, including yeast glucose uptake assay, glucose adsorption assay, and DPPH radical scavenging activity. The result revealed that the extracts have enhanced the uptake of glucose through the plasma membrane of yeast cells. A linear increase in glucose uptake by yeast cells was noticed with gradual increase in the concentration of the test samples. Moreover, the adsorption capacity of the EECNP was directly proportional to the molar concentration of glucose. Also, the DPPH radical scavenging capacity of the extract was increased to a maximum value of 43.3% at 80 μg/ml, which was then decreased to 41.9% at 100 μg/ml. From the results, it was concluded that EECNP possess good antidiabetic and antioxidant properties as shown by in vitro assays. PMID:29607313

  16. Chrysin Induces Antidiabetic, Antidyslipidemic and Anti-Inflammatory Effects in Athymic Nude Diabetic Mice.

    PubMed

    Ramírez-Espinosa, Juan José; Saldaña-Ríos, Johann; García-Jiménez, Sara; Villalobos-Molina, Rafael; Ávila-Villarreal, Gabriela; Rodríguez-Ocampo, Angélica Nallelhy; Bernal-Fernández, Germán; Estrada-Soto, Samuel

    2017-12-28

    Extensive knowledge of diabetes and its complications is helpful to find new drugs for proper treatment to stop degenerative changes derived from this disease. In this context, chrysin (5,7-dihydroxyflavone) is a natural product that occurs in a variety of flowers and fruits with anti-inflammatory and antidiabetic effects, among others. Thus, a diabetic model in athymic nude mice was developed and used to establish the ability of chrysin to decrease the secretion of pro-inflammatory cytokines. Also, it was determined the acute (50 mg/kg) and sub-acute (50 mg/kg/day/10 days) antidiabetic and antihyperlipidemic activities after the period of time treatment. Results indicate that chrysin has significant acute antihyperglycemic and antidiabetic effects in nude diabetic mice ( p < 0.05). Moreover, triglyceride blood levels were reduced and IL-1β and TNF-α were diminished after 10 days' treatment compared with control group ( p < 0.05). In conclusion, it was found that chrysin could produce similar effects as metformin, a drug used for the treatment of diabetes, since both test samples decreased glucose and triglycerides levels, they impaired the generation of pro-inflammatory cytokines involved in the development of diabetes and its consequences, such as atherosclerosis and other cardiovascular diseases.

  17. Two novel assays for the detection of haemin-binding properties of antimalarials evaluated with compounds isolated from medicinal plants.

    PubMed

    Steele, J C P; Phelps, R J; Simmonds, M S J; Warhurst, D C; Meyer, D J

    2002-07-01

    Forty-two compounds isolated from nine plants used within South America for the treatment of malaria were tested for haemin binding using two novel, rapid screening methods. The data obtained were analysed with respect to IC(50) values for in vitro toxicity to Plasmodium falciparum trophozoites. One method, a multiwell assay based on the inhibition of the interaction of haemin with glutathione (GSH), is sensitive in the 10 microM range, takes c. 1 h and is suitable for either a high throughput screen or rapid assay during natural product isolation. Of 19 compounds showing antiplasmodial activity (IC(50) < 40 microM), 16 (84%) showed >40% inhibition of GSH-haemin reaction. The sensitivity and specificity of the assay were 0.85 and 0.82, respectively. The positive predictive value was 0.81 and the negative predictive value 0.86. A more sensitive assay (0.1 microM range) is based on the reversal by haemin-binding compounds of the haemin inhibition of the L-dopachrome-methyl ester tautomerase activity of human macrophage migration inhibitory factor. This assay gives a better idea of the affinity of interaction and uses very small amounts of test compound. The log[RI(50)] of eight of the compounds that tested positive in the above assays together with those of quinine and chloroquine showed a positive correlation with log[antiplasmodial IC(50)] for strain T9-96 (r = 0.824) and strain K1 (r = 0.904). Several of the antimalarial compounds that bind haemin are isoquinolines, a class not shown previously to interact with haemin.

  18. Isolated lower brachial plexus (Klumpke) palsy with compound arm presentation: case report.

    PubMed

    Buchanan, Edward P; Richardson, Randal; Tse, Raymond

    2013-08-01

    Klumpke palsy has yet to be clearly documented in the newborn, because previous reports lack any description of the obstetrical history, clinical progression, or outcome. Based on a high incidence of breach presentation in the few clinical series that report Klumpke palsy, hyperabduction with arm overhead during delivery has been the presumed mechanism. We report a child with isolated lower brachial plexus palsy and Horner syndrome who presented at birth with a vertex compound arm presentation. Recognition of this condition and details of the clinical progression and outcome are important, because guidelines for management are currently not available. Copyright © 2013. Published by Elsevier Inc.

  19. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice.

    PubMed

    Xu, Xin; Shan, Bin; Liao, Cai-Hu; Xie, Jian-Hua; Wen, Ping-Wei; Shi, Jia-Yi

    2015-11-01

    A water-soluble polysaccharide (MCP) was isolated from the fruits of Momordica charantia L., and the hypoglycemic effects of MCP were investigated in both normal healthy and alloxan-induced diabetic mice. MCP was orally administered once a day after 3 days of alloxan-induction at 100, 200 and 300mg/kg body weight for 28 day. Results showed that fasting blood glucose level (BGL) was significantly decreased, whereas the glucose tolerance was marked improvement in alloxan-induced diabetic mice, and loss in body weight was also prevented in diabetic mice compared to the diabetic control group. The dosage of 300mg/kg body weight exhibited the best effects. In addition, MCP did not exhibit any toxic symptoms in the limited toxicity evaluation in mice. The results suggest that MCP possess significantly dose-dependent anti-diabetic activity on alloxan-induced diabetic mice. Hence, MCP can be incorporated as a supplement in health-care food, drugs and/or combined with other hypoglycemic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Antidiabetics and diuretics show phototoxicity in HaCaT cells

    NASA Astrophysics Data System (ADS)

    Selvaag, Edgar; Petersen, Anita B.; Gniadecki, Robert; Thorn, Tine; Wulf, Hans Christian

    2001-10-01

    The antidiabetics tolbutamide, glibenclamide, and glipizide, and the diuretics bendroflumethiazide, butizide, furosemide, hydrochlorothiazide, and trichlormethiazide were investigated for potential phototoxicity in the HaCaT cell line. The cells were incubated with the drugs and then exposed to UVA1 irradiation. The effects of the antioxidants L-ascorbic acid, and (alpha) -tocopherol on oxidative DNA damage were assessed. Bendroflumethiazide, furosemide, hydrochlorothiazide, trichlormethiazide, or tolbutamide induced dose-dependent phototoxicity. Cells incubated with bendroflumethiazide, tolbutamide, and glibenclamide, and irradiated with UVA1 demonstrated an increased oxidative DNA damage. Pre-treatment with L-ascorbic acid, or (alpha) -tocopherol, suppressed the UVA-induced DNA damage in cells incubated with 1 mM of bendroflumethiazide, furosemide, glibenclamide, glipizide, tolbutamide, and trichloromethiazide, further implying the involvement of reactive oxygen species in the phototoxic DNA damage. These results may indicate a link between phototoxic and photocancerogenic potential of the sulfonamide-derived oral antidiabetic and diuretic drugs, as it has previously been recognized for psoralen, chlorpromazine, and fluoroquinolones. Excessive exposure to UV light may be deleterious for patients treated with these drugs.

  1. Anti-diabetic potential of peptides: Future prospects as therapeutic agents.

    PubMed

    Marya; Khan, Haroon; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2018-01-15

    Diabetes mellitus is a metabolic disorder in which the glucose level in blood exceeds beyond the normal level. Persistent hyperglycemia leads to diabetes late complication and obviously account for a large number of morbidity and mortality worldwide. Numerous therapeutic options are available for the treatment of diabetes including insulin for type I and oral tablets for type II, but its effective management is still a dream. To date, several options are under investigation in various research laboratories for efficacious and safer agents. Of them, peptides are currently amongst the most widely investigated potential therapeutic agents whose design and optimal uses are under development. A number of natural and synthetic peptides have so far been found with outstanding antidiabetic effect mediated through diverse mechanisms. The applications of new emerging techniques and drug delivery systems further offer opportunities to achieve the desired target outcomes. Some outstanding peptides in preclinical and clinical studies with better efficacy and safety profile have already been identified. Further detail studies on these peptides may therefore lead to significant clinically useful antidiabetic agents. Copyright © 2017. Published by Elsevier Inc.

  2. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders.

    PubMed

    Imran, Muhammad; Arshad, Muhammad Sajid; Butt, Masood Sadiq; Kwon, Joong-Ho; Arshad, Muhammad Umair; Sultan, Muhammad Tauseef

    2017-05-02

    The current review article is an attempt to explain the therapeutic potential of mangiferin, a bioactive compound of the mango, against lifestyle-related disorders. Mangiferin (2-β-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one) can be isolated from higher plants as well as the mango fruit and their byproducts (i.e. peel, seed, and kernel). It possesses several health endorsing properties such as antioxidant, antimicrobial, antidiabetic, antiallergic, anticancer, hypocholesterolemic, and immunomodulatory. It suppresses the activation of peroxisome proliferator activated receptor isoforms by changing the transcription process. Mangiferin protects against different human cancers, including lung, colon, breast, and neuronal cancers, through the suppression of tumor necrosis factor α expression, inducible nitric oxide synthase potential, and proliferation and induction of apoptosis. It also protects against neural and breast cancers by suppressing the expression of matrix metalloproteinase (MMP)-9 and MMP-7 and inhibiting enzymatic activity, metastatic potential, and activation of the β-catenin pathway. It has the capacity to block lipid peroxidation, in order to provide a shielding effect against physiological threats. Additionally, mangiferin enhances the capacity of the monocyte-macrophage system and possesses antibacterial activity against gram-positive and gram-negative bacteria. This review summarizes the literature pertaining to mangiferin and its associated health claims.

  3. Isolation, Identification, and Biological Evaluation of Phenolic Compounds from a Traditional North American Confectionery, Maple Sugar.

    PubMed

    Liu, Yongqiang; Rose, Kenneth N; DaSilva, Nicholas A; Johnson, Shelby L; Seeram, Navindra P

    2017-05-31

    Maple sap, collected from the sugar maple (Acer saccharum) tree, is boiled to produce the popular plant-derived sweetener, maple syrup, which can then be further evaporated to yield a traditional North American confectionery, maple sugar. Although maple sap and maple syrup have been previously studied, the phytochemical constituents of maple sugar are unknown. Herein, 30 phenolic compounds, 1-30, primarily lignans, were isolated and identified (by HRESIMS and NMR) from maple sugar. The isolates included the phenylpropanoid-based lignan tetramers (erythro,erythro)-4″,4‴-dihydroxy-3,3',3″,3‴,5,5'-hexamethoxy-7,9';7',9-diepoxy-4,8″;4',8‴-bisoxy-8,8'-dineolignan-7″,7‴,9″,9‴-tetraol, 29, and (threo,erythro)-4″,4‴-dihydroxy-3,3',3″,3‴,5,5'-hexamethoxy-7,9';7',9-diepoxy-4,8″;4',8‴-bisoxy-8,8'-dineolignan-7″,7‴,9″,9‴-tetraol, 30, neither of which have been identified from maple sap or maple syrup before. Twenty of the isolates (selected on the basis of sample quantity available) were evaluated for their potential biological effects against lipopolysaccharide-induced inflammation in BV-2 microglia in vitro and juglone-induced oxidative stress in Caenorhabditis elegans in vivo. The current study increases scientific knowledge of possible bioactive compounds present in maple-derived foods including maple sugar.

  4. Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br.

    PubMed

    Parthasarathy, Ramalingam; Sathiyabama, Muthukrishnan

    2014-03-01

    Gymnema sylvestre is a plant containing the triterpenoid gymnemagenin, which is used in the pharmaceutical industry as an antidiabetic agent. The objective of this study was to determine whether endophytic fungi, isolated from G. sylvestre, produce gymnemagenin. We isolated an endophytic fungal strain from the leaves of G. sylvestre which produces gymnemagenin in the medium. The fungus was identified as Penicillium oxalicum based on morphological and molecular methods. The strain had a component with the same TLC Rf value and HPLC retention time as authentic gymnemagenin. The presence of gymnemagenin was further confirmed by FTIR, UV, and (1)H NMR analyses.

  5. Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds.

    PubMed

    Pérez-González, Mariana Z; Gutiérrez-Rebolledo, Gabriel A; Yépez-Mulia, Lilián; Rojas-Tomé, Irma S; Luna-Herrera, Julieta; Jiménez-Arellanes, María A

    2017-05-01

    Cnidoscolus chayamansa is a medicinal and edible plant known as Chaya, is commonly used as an anti-inflammatory, antiprotozoal, antibacterial agent and as a remedy for respiratory illness, gastrointestinal disorders, and vaginal infections related with the inflammation process. In this paper, we describe the plant's phytochemical analysis and biological activities (antimycobacterial, antibacterial, antiprotozoal, and anti-inflammatory properties) of the CHCl 3 :MeOH (1:1) leaves extract and isolated compounds, as well as the acute and sub-acute toxic effects. Chemical identification of isolated compounds was performed by 1 H- and 13 C NMR spectra data. In vitro antibacterial and antimycobacterial activities were determined by disc diffusion and MABA assays, respectively; antiprotozoal test by means of the sub-culture test. Topical and systemic anti-inflammatory effects were tested by TPA and carrageenan assay on BALB/c mice. Moretenol, moretenyl acetate, kaempferol-3,7-dimethyl ether, and 5-hydroxy-7-3',4'-trimethoxyflavanone were the main compounds isolated. The CHCl 3 :MeOH extract showed antiprotozoal (IC 50 ≤65.29μg/mL), antimycobacterial (MIC≤50μg/mL), and anti-inflammatory activities (ED 50 =1.66mg/ear and 467.73mg/kg), but was inactive against the bacterial strains tested. The LD 50 for extract was >2g/kg. In the sub-acute toxicity test, the extract was administered at 1g/kg for 28days and did not cause lethality or any alteration in hematological and biochemical parameters; in addition, liver, kidney, and spleen histological analysis exhibited no structural changes. Moretenol and moretenyl acetate showed MIC=25μg/mL against Mycobacterium tuberculosis H37Rv and against four monoresistant strains of M. tuberculosis H37Rv. Both compounds exhibited moderate activity against Entamoeba histolytica and Giardia lamblia (IC 50 ≤71.70μg/mL). Kaempferol-3,7-dimethyl ether and 5-hydroxy-7-3',4'-trimethoxy-flavanone were more active than the extract against E

  6. Glycemic control and antidiabetic drugs in type 2 diabetes mellitus patients with renal complications

    PubMed Central

    Huri, Hasniza Zaman; Lim, Lay Peng; Lim, Soo Kun

    2015-01-01

    Background Good glycemic control can delay the progression of kidney diseases in type 2 diabetes mellitus (T2DM) patients with renal complications. To date, the association between antidiabetic agents and glycemic control in this specific patient population is not well established. Purpose This study aimed to identify antidiabetic regimens as well as other factors that associated with glycemic control in T2DM patients with different stages of chronic kidney disease (CKD). Patients and methods This retrospective, cross-sectional study involved 242 T2DM inpatients and outpatients with renal complications from January 2009 to March 2014 and was conducted in a tertiary teaching hospital in Malaysia. Glycated hemoglobin (A1C) was used as main parameter to assess patients’ glycemic status. Patients were classified to have good (A1C <7%) or poor glycemic control (A1C ≥7%) based on the recommendations of the American Diabetes Association. Results Majority of the patients presented with CKD stage 4 (43.4%). Approximately 55.4% of patients were categorized to have poor glycemic control. Insulin (57.9%) was the most commonly prescribed antidiabetic medication, followed by sulfonylureas (43%). Of all antidiabetic regimens, sulfonylureas monotherapy (P<0.001), insulin therapy (P=0.005), and combination of biguanides with insulin (P=0.038) were found to be significantly associated with glycemic control. Other factors including duration of T2DM (P=0.004), comorbidities such as anemia (P=0.024) and retinopathy (P=0.033), concurrent medications such as erythropoietin therapy (P=0.047), α-blockers (P=0.033), and antigouts (P=0.003) were also correlated with A1C. Conclusion Identification of factors that are associated with glycemic control is important to help in optimization of glucose control in T2DM patients with renal complication. PMID:26300627

  7. Piper aduncum against Haemonchus contortus isolates: cross resistance and the research of natural bioactive compounds.

    PubMed

    Gaínza, Yousmel Alemán; Fantatto, Rafaela Regina; Chaves, Francisco Celio Maia; Bizzo, Humberto Ribeiro; Esteves, Sérgio Novita; Chagas, Ana Carolina de Souza

    2016-01-01

    The anthelminthic activity of the essential oil (EO) of Piper aduncum L. was tested in vitro on eggs and larvae of resistant (Embrapa2010) and susceptible (McMaster) isolates of Haemonchus contortus. The EO was obtained by steam distillation and its components identified by chromatography. EO concentrations of 12.5 to 0.02 mg/mL were used in the egg hatch test (EHT) and concentrations of 3.12 to 0.01 mg/mL in the larval development test (LDT). Inhibition concentrations (IC) were determined by the SAS Probit procedure, and significant differences assessed by ANOVA followed by Tukey's test. In the EHT, the IC50 for the susceptible isolate was 5.72 mg/mL. In the LDT, the IC50 and IC90 were, respectively, 0.10 mg/mL and 0.34 mg/mL for the susceptible isolate, and 0.22 mg/mL and 0.51 mg/mL for the resistant isolate. The EO (dillapiole 76.2%) was highly efficacious on phase L1. Due to the higher ICs obtained for the resistant isolate, it was raised the hypothesis that dillapiole may have a mechanism of action that resembles those of other anthelmintic compounds. We further review and discuss studies, especially those conducted in Brazil, that quantified the major constituents of P. aduncum-derived EO.

  8. Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract.

    PubMed

    Ojewole, John A O

    2005-05-13

    In order to scientifically appraise some of the ethnomedical uses of Bryophyllum pinnatum leaves, the present study was undertaken to investigate the antinociceptive, anti-inflammatory and antidiabetic properties of the plant's leaf aqueous extract in experimental animal models. The antinociceptive effect of the herb's leaf extract was evaluated by the 'hot-plate' and 'acetic acid' test models of pain in mice. The anti-inflammatory and antidiabetic effects of the plant's extract were investigated in rats, using fresh egg albumin-induced pedal (paw) oedema, and streptozotocin (STZ)-induced diabetes mellitus. Diclofenac (DIC, 100 mg/kg) and chlorpropamide (250 mg/kg) were used respectively as reference drugs for comparison. Bryophyllum pinnatum leaf aqueous extract (BPE, 25-800 mg/kg i.p.) produced significant (P<0.05-0.001) antinociceptive effects against thermally- and chemically-induced nociceptive pain stimuli in mice. The plant extract (BPE, 25-800 mg/kg p.o. or i.p.) also significantly (P<0.05-0.001) inhibited fresh egg albumin-induced acute inflammation and caused significant (P<0.05-0.001) hypoglycaemia in rats. The results of this experimental animal study suggest that Bryophyllum pinnatum leaf aqueous extract possesses antinociceptive, anti-inflammatory and hypoglycaemic properties. The different flavonoids, polyphenols, triterpenoids and other chemical constituents of the herb are speculated to account for the observed antinociceptive, anti-inflammatory and antidiabetic properties of the plant.

  9. Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica

    PubMed Central

    Choi, Jae-Suk; Seo, Hyo Ju; Lee, Yu-Ri; Kwon, Su-Jung; Moon, Sun Hwa; Park, Sun-Mee; Sohn, Jae Hak

    2014-01-01

    New in vitro anti-diabetes makgeolli was produced from rice by adding various quantities of Laminaria japonica, and the fermentation characteristics of the L. japonica makgeolli during the fermentation process were investigated. The contents of alcohol and reducing sugar, and viable count of yeast, of L. japonica makgeolli were not significantly changed when the proportion of L. japonica was increased. The total acid content decreased with an increase in L. japonica concentration; the pH and total bacterial cell count increased in proportion with the increase in L. japonica concentration. The L. japonica makgeolli contents of free sugars, such as fructose, glucose, and sucrose, and of organic acids, such as acetic acid, citric acid, succinic acid, and lactic acid, were altered during fermentation and showed various patterns. The effects of the quantity of L. japonica added on the acceptability and anti-diabetes activities of L. japonica makgeolli were also investigated. In a sensory evaluation, L. japonica makgeolli brewed by adding 2.5 or 5% L. japonica to the mash showed the best overall acceptability; the 12.5% L. japonica sample was least favored due to its seaweed flavor. L. japonica addition did not increase the peroxynitrite-scavenging activity of makgeolli. L. japonica makgeolli showed potent anti-diabetes activity, particularly that containing >7.5% L. japonica. Therefore, L. japonica makgeolli may represent a new functional makgeolli with anti-diabetes properties. PMID:25054108

  10. Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica.

    PubMed

    Choi, Jae-Suk; Seo, Hyo Ju; Lee, Yu-Ri; Kwon, Su-Jung; Moon, Sun Hwa; Park, Sun-Mee; Sohn, Jae Hak

    2014-06-01

    New in vitro anti-diabetes makgeolli was produced from rice by adding various quantities of Laminaria japonica, and the fermentation characteristics of the L. japonica makgeolli during the fermentation process were investigated. The contents of alcohol and reducing sugar, and viable count of yeast, of L. japonica makgeolli were not significantly changed when the proportion of L. japonica was increased. The total acid content decreased with an increase in L. japonica concentration; the pH and total bacterial cell count increased in proportion with the increase in L. japonica concentration. The L. japonica makgeolli contents of free sugars, such as fructose, glucose, and sucrose, and of organic acids, such as acetic acid, citric acid, succinic acid, and lactic acid, were altered during fermentation and showed various patterns. The effects of the quantity of L. japonica added on the acceptability and anti-diabetes activities of L. japonica makgeolli were also investigated. In a sensory evaluation, L. japonica makgeolli brewed by adding 2.5 or 5% L. japonica to the mash showed the best overall acceptability; the 12.5% L. japonica sample was least favored due to its seaweed flavor. L. japonica addition did not increase the peroxynitrite-scavenging activity of makgeolli. L. japonica makgeolli showed potent anti-diabetes activity, particularly that containing >7.5% L. japonica. Therefore, L. japonica makgeolli may represent a new functional makgeolli with anti-diabetes properties.

  11. Isolation, identification, and antibacterial activity of chemical compounds from ethanolic extract of suji leaf (Pleomele angusifolia NE Brown)

    NASA Astrophysics Data System (ADS)

    Faridah; Natalia; Lina, Maria; W, Hendig

    2014-03-01

    Suji (Pleomele angustifolia NE Brown) is one of the medicinal plants of the tribe of Liliaceae, empirically useful to treat coughs and respiratory diseases such as tuberculosis (TB) and pneumonia. In this study, ethanolic extract of suji leaves was tested its activity against bacteria that attacks the respiratory organs, namely Mycobacterium tuberculosis and Streptococcus pneumoniae, using a paper disc diffusion and dilution agar method. These extracts have activity in inhibiting the growth of M. tuberculosis at a concentration of 8 mg and against S. pneumoniae at a concentration of 4 mg. The fractions were tested their antibacterial activity against Streptococcus pneumoniae using paper disc diffusion method. The most active fraction was chosen based on the inhibition diameter. The fractions contained flavonoids, steroids, and essential oils. The precipitate isolated from the extraction process shows needle-shaped, white, cold and tasteless crystals. Moreover, the HPLC analysis of isolate revealed a single peak with a retention time of 7.183 minutes. The exact compounds in the isolate could not be determined but it was known the compounds contained the functional groups of alkene, alkane, C=O, -OH. Test results obtained from UV-Vis spectrophotometer provides maximum absorption at a wavelength of 203.0 nm.

  12. Nanostructured Lipid Carriers Loaded with Baicalin: An Efficient Carrier for Enhanced Antidiabetic Effects

    PubMed Central

    Shi, Feng; Wei, Zheng; Zhao, Yingying; Xu, Ximing

    2016-01-01

    Context: Recent studies have demonstrated that baicalin has antihyperglycemic effects by inhibiting lipid peroxidation. Baicalin is low hydrophilic and poorly absorbed after oral administration. Thus, a suitable formulation is highly desired to overcome the disadvantages of baicalin. Objective: The objective of this work was to prepare baicalin-loaded nanostructured lipid carriers (B-NLCs) for enhanced antidiabetic effects. Materials and Methods: B-NLCs were prepared by high-pressure homogenization method using Precirol as the solid lipid and Miglyol as the liquid lipid. The properties of the NLCs, such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE), were investigated. The morphology of NLCs was observed by transmission electron microscopy. In addition, drug release and antidiabetic activity were also studied. Results: The results revealed that B-NLCs particles were uniformly in the nanosize range and of spherical morphology with a mean size of 92 ± 3.1 nm, a ZP of −31.35 ± 3.08 mV, and an EE of 85.29 ± 3.42%. Baicalin was released from NLCs in a sustained manner. In addition, B-NLCs showed a significantly higher antidiabetic efficacy compared with baicalin. Conclusion: B-NLCs described in this study are well-suited for the delivery of baicalin. SUMMARY Currently, herbal medicines have attracted increasing attention as a complementary approach for type 2 diabetesBaicalin has antihyperglycemic effects by inhibiting lipid peroxidationA suitable formulation is highly desired to overcome the disadvantages (poor solubility and low bioavailability) of baicalinNanostructured lipid carriers could enhance the antidiabetic effects of baicalin. Abbreviations used: B-NLCs: Baicalin-Loaded Nanostructured Lipid Carriers, B-SUS: Baicalin Water Suspension, EE: Encapsulation Efficiency, FBG: Fasting Blood Glucose, HbAlc: Glycosylated Hemoglobin, HPLC: High-performance Liquid Chromatography; NLCs: Nanostructured Lipid Carriers, PI: Polydispersity

  13. Identification and Characterization of an Anti-Fibrotic Benzopyran Compound Isolated from Mangrove-Derived Streptomyces xiamenensis

    PubMed Central

    Xu, Min-Juan; Liu, Xiao-Jin; Zhao, Yi-Lei; Liu, Dong; Xu, Zhen-Hao; Lang, Xiao-Meng; Ao, Ping; Lin, Wen-Han; Yang, Song-Lin; Zhang, Zhi-Gang; Xu, Jun

    2012-01-01

    An anti-fibrotic compound produced by Streptomycesn xiamenensis, found in mangrove sediments, was investigated for possible therapeutic effects against fibrosis. The compound, N-[[3,4-dihydro-3S-hydroxy-2S-methyl-2-(4′R-methyl-3′S-pentenyl)-2H-1-benzopyran-6-yl]carbonyl]-threonine (1), was isolated from crude extracts and its structure, including the absolute configuration was determined by extensive spectroscopic data analyses, Mosher’s method, Marfey’s reagent and quantum mechanical calculations. In terms of biological effects, this compound inhibits the proliferation of human lung fibroblasts (WI26), blocks adhesion of human acute monocytic leukemia cells (THP-1) to a monolayer of WI26 cells, and reduces the contractile capacity of WI26 cells in three-dimensional free-floating collagen gels. Altogether, these data indicate that we have identified a bioactive alkaloid (1) with multiple inhibitory biological effects on lung excessive fibrotic characteristics, that are likely involved in fibrosis, suggesting that this molecule might indeed have therapeutic potential against fibrosis. PMID:22611360

  14. Comparison of the Chemical Profiles and Antioxidant and Antidiabetic Activities of Extracts from Two Ganoderma Species (Agaricomycetes).

    PubMed

    Tang, Xiaoqing; Cai, Weixi; Xu, Baojun

    2016-01-01

    The objective of this study was to compare the mycochemical profiles, antioxidant activities, and antidiabetic effects of 2 species of genus Ganoderma, the red lingzhi (G. lucidum) and purple lingzhi (G. sinense) mushrooms. In Chinese medicinal practice, hot water and ethanol are used as solvents to extract samples. In this study, a total of 4 extracts (ethanol and hot water extracts from G. lucidum and G. sinense) were prepared for further assays. Hot water extracts presented much higher values for total phenolic content and ferric-reducing antioxidant power than the ethanol extracts. Ethanol (70%) extract of G. lucidum had the strongest α-glycosidase inhibitory capacity, but the lingzhi polysaccharides showed no inhibitory effect. It also had the largest amount of total ganoderic acids. The results indicated that ethanol extracts from both G. lucidum and G. sinense showed better antidiabetic effects than the hot water extracts. Ganoderic acids, rather than polysaccharides, may contribute the antidiabetic effects of both the Ganoderma species.

  15. Beliefs related to adherence to oral antidiabetic treatment according to the Theory of Planned Behavior.

    PubMed

    Jannuzzi, Fernanda Freire; Rodrigues, Roberta Cunha Matheus; Cornélio, Marilia Estevam; São-João, Thaís Moreira; Gallani, Maria Cecília Bueno Jayme

    2014-01-01

    to identify salient behavioral, normative, control and self-efficacy beliefs related to the behavior of adherence to oral antidiabetic agents, using the Theory of Planned Behavior. cross-sectional, exploratory study with 17 diabetic patients in chronic use of oral antidiabetic medication and in outpatient follow-up. Individual interviews were recorded, transcribed and content-analyzed using pre-established categories. behavioral beliefs concerning advantages and disadvantages of adhering to medication emerged, such as the possibility of avoiding complications from diabetes, preventing or delaying the use of insulin, and a perception of side effects. The children of patients and physicians are seen as important social references who influence medication adherence. The factors that facilitate adherence include access to free-of-cost medication and taking medications associated with temporal markers. On the other hand, a complex therapeutic regimen was considered a factor that hinders adherence. Understanding how to use medication and forgetfulness impact the perception of patients regarding their ability to adhere to oral antidiabetic agents. medication adherence is a complex behavior permeated by behavioral, normative, control and self-efficacy beliefs that should be taken into account when assessing determinants of behavior.

  16. Contrasting ex vivo efficacies of "reversed chloroquine" compounds in chloroquine-resistant Plasmodium falciparum and P. vivax isolates.

    PubMed

    Wirjanata, Grennady; Sebayang, Boni F; Chalfein, Ferryanto; Prayoga; Handayuni, Irene; Noviyanti, Rintis; Kenangalem, Enny; Poespoprodjo, Jeanne Rini; Burgess, Steven J; Peyton, David H; Price, Ric N; Marfurt, Jutta

    2015-09-01

    Chloroquine (CQ) has been the mainstay of malaria treatment for more than 60 years. However, the emergence and spread of CQ resistance now restrict its use to only a few areas where malaria is endemic. The aim of the present study was to investigate whether a novel combination of a CQ-like moiety and an imipramine-like pharmacophore can reverse CQ resistance ex vivo. Between March to October 2011 and January to September 2013, two "reversed chloroquine" (RCQ) compounds (PL69 and PL106) were tested against multidrug-resistant field isolates of Plasmodium falciparum (n = 41) and Plasmodium vivax (n = 45) in Papua, Indonesia, using a modified ex vivo schizont maturation assay. The RCQ compounds showed high efficacy against both CQ-resistant P. falciparum and P. vivax field isolates. For P. falciparum, the median 50% inhibitory concentrations (IC50s) were 23.2 nM for PL69 and 26.6 nM for PL106, compared to 79.4 nM for unmodified CQ (P < 0.001 and P = 0.036, respectively). The corresponding values for P. vivax were 19.0, 60.0, and 60.9 nM (P < 0.001 and P = 0.018, respectively). There was a significant correlation between IC50s of CQ and PL69 (Spearman's rank correlation coefficient [r s] = 0.727, P < 0.001) and PL106 (rs = 0.830, P < 0.001) in P. vivax but not in P. falciparum. Both RCQs were equally active against the ring and trophozoite stages of P. falciparum, but in P. vivax, PL69 and PL106 showed less potent activity against trophozoite stages (median IC50s, 130.2 and 172.5 nM) compared to ring stages (median IC50s, 17.6 and 91.3 nM). RCQ compounds have enhanced ex vivo activity against CQ-resistant clinical isolates of P. falciparum and P. vivax, suggesting the potential use of reversal agents in antimalarial drug development. Interspecies differences in RCQ compound activity may indicate differences in CQ pharmacokinetics between the two Plasmodium species. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion's Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds.

    PubMed

    Friedman, Mendel

    2015-08-19

    The culinary and medicinal mushroom Hericium erinaceus is widely consumed in Asian countries, but apparently not in the United States, for its nutritional and health benefits. To stimulate broader interest in the reported beneficial properties, this overview surveys and consolidates the widely scattered literature on the chemistry (isolation and structural characterization) of polysaccharides and secondary metabolites such as erinacines, hericerins, hericenones, resorcinols, steroids, mono- and diterpenes, and volatile aroma compounds, nutritional composition, food and industrial uses, and exceptional nutritional and health-promoting aspects of H. erinaceus. The reported health-promoting properties of the mushroom fruit bodies, mycelia, and bioactive pure compounds include antibiotic, anticarcinogenic, antidiabetic, antifatigue, antihypertensive, antihyperlipodemic, antisenescence, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties and improvement of anxiety, cognitive function, and depression. The described anti-inflammatory, antioxidative, and immunostimulating properties in cells, animals, and humans seem to be responsible for the multiple health-promoting properties. A wide range of research advances and techniques are described and evaluated. The collated information and suggestion for further research might facilitate and guide further studies to optimize the use of the whole mushrooms and about 70 characterized actual and potential bioactive secondary metabolites to help prevent or treat human chronic, cognitive, and neurological diseases.

  18. The effects of marine carbohydrates and glycosylated compounds on human health.

    PubMed

    Kang, Hee-Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-03-16

    Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed.

  19. Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats.

    PubMed

    Singh, Santosh Kumar; Kesari, Achyut Narayan; Gupta, Rajesh Kumar; Jaiswal, Dolly; Watal, Geeta

    2007-11-01

    This study was undertaken to investigate the hypoglycemic and antidiabetic effect of single and repeated oral administration of the aqueous extract of Cynodon dactylon (Family: Poaceae) in normal and streptozotocin induced diabetic rats, respectively. The effect of repeated oral administration of aqueous extract on serum lipid profile in diabetic rats was also examined. A range of doses, viz. 250, 500 and 1000mg/kg bw of aqueous extract of Cynodon dactylon were evaluated and the dose of 500mg/kg was identified as the most effective dose. It lowers blood glucose level around 31% after 4h of administration in normal rats. The same dose of 500mg/kg produced a fall of 23% in blood glucose level within 1h during glucose tolerance test (GTT) of mild diabetic rats. This dose has almost similar effect as that of standard drug tolbutamide (250mg/kg bw). Severely diabetic rats were also treated daily with 500mg/kg bw for 14 days and a significant reduction of 59% was observed in fasting blood glucose level. A reduction in the urine sugar level and increase in body weight of severe diabetic rats were additional corroborating factors for its antidiabetic potential. Total cholesterol (TC), low density lipoprotein (LDL) and triglyceride (TG) levels were decreased by 35, 77 and 29%, respectively, in severely diabetic rats whereas, cardioprotective, high density lipoprotein (HDL) was increased by 18%. These results clearly indicate that aqueous extract of Cynodon dactylon has high antidiabetic potential along with significant hypoglycemic and hypolipidemic effects.

  20. Detoxification of Aflatoxin B1 by Antifungal Compounds from Lactobacillus brevis and Lactobacillus paracasei, Isolated from Dairy Products.

    PubMed

    Gomaa, Eman Zakaria; Abdelall, Manal Farouk; El-Mahdy, Omima Mohammed

    2018-06-01

    Aflatoxins are a large group of highly toxic, mutagenic, and carcinogenic mycotoxins produced by specific species of fungi. Potential contamination of food commodities by these compounds causes extensive damage that lead to great economic losses. This study explored the potential use of antifungal compounds, produced by Lactobacillus brevis and Lactobacillus paracasei, for growth inhibition and subsequent aflatoxin B1 production from select strains of Aspergillus flavus and Aspergillus parasiticus. Lactobacilli strains were isolated from traditional Egyptian dairy products, whereas fungal strains were isolated from infected cereal seeds. There were noticeable decreases in mycelium biomass and aflatoxin production as well. L. brevis exhibited the highest reduction of aflatoxin B1 production by A. flavus and A. parasiticus, 96.31 and 90.43%, respectively. The concentrations of amino acids of the antifungal compound produced by L. brevis were significantly higher than that produced by L. paracasei. Asparagine, glutamine, glycine, alanine, and leucine were the most concentrated amino acids for both strains. The antifungal compounds produced by L. brevis and L. paracasei were active in a wide range of pH, heat stable and inactivated by proteolytic enzymes (protease K and trypsin A). The expression of Omt-A gene that involved in the later step of aflatoxin production was evaluated by real-time PCR. There was a vigorous reduction at transcriptional level of Omt-A gene observed in A. flavus that is treated by L. brevis and L. paracasei (80 and 70%, respectively). However, the reduction of Omt-A gene observed in A. parasiticus that is treated by L. brevis and L. paracasei was 64.5 and 52%, respectively. Treating maize seeds with antifungal compounds exhibited great efficiency in controlling fungal infection and increasing seed germination. The results confirmed that lactic acid bacteria are a promising strategy to control food contamination of fermented food and dairy

  1. Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model.

    PubMed

    Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk

    2017-12-01

    Red ginseng (heat-processed Panax ginseng) is a well-known alternative medicine with pharmacological antidiabetic activity. It exerts pharmacological effects through the transformation of saponin into metabolites by the intestinal microbiota. Given that intestinal conditions and intestinal microflora vary among individuals, the pharmacological effects of orally administered red ginseng likely may vary among individuals. To overcome this variation and produce homogeneously effective red ginseng, we evaluated the antidiabetic effects of probiotic-fermented red ginseng in a mouse model. The antidiabetic efficacy of orally administered probiotic-fermented red ginseng was assessed in ICR mice after induction of diabetes using streptozotocin (170 mg/kg body weight). Samples were given orally for 8 weeks, and indicators involved in diabetic disorders such as body weight change, water intake, blood glucose, glucose tolerance and various biochemical parameters were determined. Oral administration of probiotic-fermented red ginseng significantly decreased the level of blood glucose of about 62.5% in the fasting state and induced a significant increase in glucose tolerance of about 10.2% compared to the control diabetic mice. Additionally, various indicators of diabetes and biochemical data (e.g., blood glycosylated haemoglobin level, serum concentrations of insulin, and α-amylase activity) showed a significant improvement in the diabetic conditions of the mice treated with probiotic-fermented red ginseng in comparison with those of control diabetic mice. Our results demonstrate the antidiabetic effects of probiotic-fermented red ginseng in the streptozotocin-induced mouse diabetes model and suggest that probiotic-fermented red ginseng may be a uniformly effective red ginseng product.

  2. Isolation, characterization and chromatography based purification of antibacterial compound isolated from rare endophytic actinomycetes Micrococcus yunnanensis.

    PubMed

    Ranjan, Ravi; Jadeja, Vasantba

    2017-10-01

    Endophytic actinomycetes are considered as one of the relatively unexplored potential sources in search of antibiotic producer against antibiotic resistant pathogens. A potent strain isolated from Catharanthus roseus that displays antibacterial potential against antibiotic resistant human pathogen Staphylococcus aureus was characterized and designated as Micrococcus yunnanensis strain rsk5. Rsk5 is capable of producing optimum antibacterial metabolites on starch casein medium at 30 °C, pH 5 and 2% NaCl condition. The crude antibacterial agent was extracted from fermentation broth by ethyl acetate and separated by TLC using chloroform-methanol (24:1, v/v) solvent system with R f value of 0.26. It was partially purified by flash chromatography, followed by HPLC and analyzed by ultraviolet visible spectrophotometer to get absorption maxima at 208.4 nm. The ESI-MS spectra showed molecular ion peaks at m / z 472.4 [M-H], which does not match with any known antibacterial compound.

  3. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa

    PubMed Central

    Yue, Grace G. L.; Chan, Ben C. L.; Hon, Po-Ming; Lee, Mavis Y. H.; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B. S.

    2010-01-01

    The rhizome of Curcuma longa (CL) has been commonly used in Asia as a potential candidate for the treatment of different diseases, including inflammatory disorders and cancers. The present study evaluated the anti-proliferative activities of the isolated compounds (3 curcuminoids and 2 turmerones) from CL, using human cancer cell lines HepG2, MCF-7 and MDA-MB-231. The immunomodulatory activities of turmerones (α and aromatic) isolated from CL were also examined using human peripheral blood mononuclear cells (PBMC). Our results showed that the curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) and α-turmerone significantly inhibited proliferation of cancer cells in dose-dependent manner. The IC50 values of these compounds in cancer cells ranged from 11.0–41.8 μg/ml. Alpha-turmerone induced MDA-MB-231 cells to undergo apoptosis, which was confirmed by annexin-V & propidium iodide staining, and DNA fragmentation assay. The caspase cascade was activated as shown by a significant decrease of procaspases-3, -8 and -9 in α-turmerone treated cells. Both α-turmerone and aromatic-turmerone showed stimulatory effects on PBMC proliferation and cytokine production. The anti-proliferative effect of α-turmerone and immunomodulatory activities of ar-turmerone were shown for the first time. The findings revealed the potential use of CL crude extract (containing curcuminoids and volatile oil including turmerones) as chemopreventive agent. PMID:20438793

  4. Screening of the in vitro antileishmanial activities of compounds and secondary metabolites isolated from Maytenus guianensis Klotzsch ex Reissek (Celastraceae) chichuá Amazon.

    PubMed

    Meneguetti, Dionatas Ulises de Oliveira; Lima, Renato Abreu; Hurtado, Fernanda Bay; Passarini, Guilherme Matos; Macedo, Sharon Rose Aragão; Barros, Neuza Biguinati de; Oliveira, Flávio Augusto de Souza; Medeiros, Patrícia Soares de Maria de; Militão, Júlio Sancho Linhares Teixeira; Nicolete, Roberto; Facundo, Valdir Alves

    2016-01-01

    Maytenus guianensis is a member of the Celastraceae family that is used in traditional medicine, particularly for its anti-parasitic and anti-cancer effects. To explore the ethnopharmacological potential of this plant, the present study was designed to screen the in vitro antileishmanial activities of extracts and compounds isolated from M. guianensis. Maytenus guianensis stems and leaves were extracted in acetone, followed by the preparation of eluates and isolation of secondary metabolites using chromatography on a glass column with silica gel as the fixed phase. The chemical components were identified using spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance of hydrogen-1 and carbon-13, mass spectroscopy, and infrared spectroscopy. The anti-Leishmania amazonensis activities of these eluates and compounds were evaluated by direct promastigote counting and viability assays. It was found that the hexane bark eluate produced the strongest anti-L. amazonensis effect, with 90-100% inhibition of the promastigote form. The isolated metabolite that produced the best result was tingenone B, followed by a compound formed by the union of tingenone and tingenone B (80-90% inhibition). Maytenus guianensis shows anti-parasite activity that warrants further investigation to determine the mechanisms underlying this antileishmanial effect and to evaluate the pharmacological potential of these eluates and isolated secondary metabolites, while minimizing any adverse effects.

  5. Test for Non-Synergistic Interactions in Phytomedicine, Just as You Do for Isolated Compounds

    PubMed Central

    Patel, Areeba; Mondal, Amit

    2018-01-01

    Phytomedicine has often been used as “alternative therapy,” which in our opinion is unfortunate as it prevents its main actions being systematically studied, side effects explored, and toxicity tested, like all single-compound-based medicine. Our group is interested in finding which traditional or modern phytomedicines actually work and which are simply “working” through placebo, standardizing phytomedicine preparations, studying their toxicity, and finding active molecules in plants for modification and chemical synthesis as single compounds. Although fluctuation in efficacy due to seasonal and geographical variations in phytomedicine remains a concern, if well regulated, even plant extracts without isolated compounds can serve medicinal needs where single-compound options are currently not great. A potential concern with such phytomedicine is frequent mixing of ingredients in commercial formulations without test of synergism. Our study on the use of 2 traditional plants for Parkinson disease shows a clear lack of synergism, and to study nonsynergism better, we developed a new visualization approach. In this commentary, using our study on Parkinson disease as an example, we make a case for better evaluation of phytomedicines, especially testing for synergistic interactions. We also critique our own exploration of oxidative stress and few behavioral parameters alone to lay grounds for what we and hopefully others can do in future to extract more information from their phytomedicine studies. We hope this commentary acts as a good warning for anyone mixing 2 phytomedicines without testing. PMID:29706766

  6. Test for Non-Synergistic Interactions in Phytomedicine, Just as You Do for Isolated Compounds.

    PubMed

    Patel, Areeba; Khan, Farooq Ali; Sikdar, Arindam; Mondal, Amit; Shukla, Sunil Dutt; Khurana, Sukant

    2018-01-01

    Phytomedicine has often been used as "alternative therapy," which in our opinion is unfortunate as it prevents its main actions being systematically studied, side effects explored, and toxicity tested, like all single-compound-based medicine. Our group is interested in finding which traditional or modern phytomedicines actually work and which are simply "working" through placebo, standardizing phytomedicine preparations, studying their toxicity, and finding active molecules in plants for modification and chemical synthesis as single compounds. Although fluctuation in efficacy due to seasonal and geographical variations in phytomedicine remains a concern, if well regulated, even plant extracts without isolated compounds can serve medicinal needs where single-compound options are currently not great. A potential concern with such phytomedicine is frequent mixing of ingredients in commercial formulations without test of synergism. Our study on the use of 2 traditional plants for Parkinson disease shows a clear lack of synergism, and to study nonsynergism better, we developed a new visualization approach. In this commentary, using our study on Parkinson disease as an example, we make a case for better evaluation of phytomedicines, especially testing for synergistic interactions. We also critique our own exploration of oxidative stress and few behavioral parameters alone to lay grounds for what we and hopefully others can do in future to extract more information from their phytomedicine studies. We hope this commentary acts as a good warning for anyone mixing 2 phytomedicines without testing.

  7. Anti-Diabetic, Anti-Oxidant and Anti-Hyperlipidemic Activities of Flavonoids from Corn Silk on STZ-Induced Diabetic Mice.

    PubMed

    Zhang, Yan; Wu, Liying; Ma, Zhongsu; Cheng, Jia; Liu, Jingbo

    2015-12-23

    Corn silk is a well-known ingredient frequently used in traditional Chinese herbal medicines. This study was designed to evaluate the anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of crude flavonoids extracted from corn silk (CSFs) on streptozotocin (STZ)-induced diabetic mice. The results revealed that treatment with 300 mg/kg or 500 mg/kg of CSFs significantly reduced the body weight loss, water consumption, and especially the blood glucose (BG) concentration of diabetic mice, which indicated their potential anti-diabetic activities. Serum total superoxide dismutase (SOD) and malondialdehyde (MDA) assays were also performed to evaluate the anti-oxidant effects. Besides, several serum lipid values including total cholesterol (TC), triacylglycerol (TG), low density lipoprotein cholesterol (LDL-C) were reduced and the high density lipoprotein cholesterol level (HDL-C) was increased. The anti-diabetic, anti-oxidant and anti-hyperlipidemic effect of the CSFs suggest a potential therapeutic treatment for diabetic conditions.

  8. Evaluation of the anti-diabetic properties of Mucuna pruriens seed extract.

    PubMed

    Majekodunmi, Stephen O; Oyagbemi, Ademola A; Umukoro, Solomon; Odeku, Oluwatoyin A

    2011-08-01

    To explore the antidiabetic properties of Mucuna pruriens(M. pruriens). Diabetes was induced in Wistar rats by single intravenous injection of 120 mg/kg of alloxan monohydrate and different doses of the extract were administered to diabetic rats. The blood glucose level was determined using a glucometer and results were compared with normal and untreated diabetic rats. The acute toxicity was also determined in albino mice. Results showed that the administration of 5, 10, 20, 30, 40, 50, and 100 mg/kg of the crude ethanolic extract of M. pruriens seeds to alloxan-induced diabetic rats (plasma glucose > 450 mg/dL) resulted in 18.6%, 24.9%, 30.8%, 41.4%, 49.7%, 53.1% and 55.4% reduction, respectively in blood glucose level of the diabetic rats after 8h of treatment while the administration of glibenclamide (5 mg/kg/day) resulted in 59.7% reduction. Chronic administration of the extract resulted in a significant dose dependent reduction in the blood glucose level (P<0.001). It also showed that the antidiabetic activity of M. pruriens seeds resides in the methanolic and ethanolic fractions of the extract. Acute toxicity studies indicated that the extract was relatively safe at low doses, although some adverse reactions were observed at higher doses (8-32 mg/kg body weight), no death was recorded. Furthermore, oral administration of M. pruriens seed extract also significantly reduced the weight loss associated with diabetes. The study clearly supports the traditional use of M. pruriens for the treatment of diabetes and indicates that the plant could be a good source of potent antidiabetic drug. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  9. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion*

    PubMed Central

    Bao, Tao; Wang, Ye; Li, Yu-ting; Gowd, Vemana; Niu, Xin-he; Yang, Hai-ying; Chen, Li-shui; Chen, Wei; Sun, Chong-de

    2016-01-01

    Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography (HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazy (DPPH) radical, and ferric reducing antioxidant power (FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. Flavonoids from both groups significantly inhibited reactive oxygen species (ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in HepG2 cells. Tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. Tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties. PMID:27921399

  10. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    NASA Astrophysics Data System (ADS)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2016-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy-(6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy- β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  11. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative.

    PubMed

    Ahmad Rather, I; Seo, B J; Rejish Kumar, V J; Choi, U-H; Choi, K-H; Lim, J H; Park, Y-H

    2013-07-01

    Korean kimchi is known for its myriad of lactic acid bacteria (LAB) with diverse bioactive compounds. This study was undertaken to isolate an efficient antifungal LAB strain among the isolated kimchi LABs. One thousand and four hundred LABs isolated from different kimchi samples were initially screened against Aspergillus niger. The strain exhibiting the highest antifungal activity was identified as Lactobacillus plantarum YML007 by 16S rRNA sequencing and biochemical assays using API 50 CHL kit. Lact. plantarum YML007 was further screened against Aspergillus oryzae, Aspergillus flavus, Fusarium oxysporum and other pathogenic bacteria. The morphological changes during the inhibition were assessed by scanning electron microscopy. Preliminary studies on the antifungal compound demonstrated its proteinaceous nature with a molecular weight of 1256·617 Da, analysed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF). The biopreservative activity of Lact. plantarum YML007 was evaluated using dried soybeans. Spores of A. niger were observed in the negative control after 15 days of incubation. However, fungal growth was not observed in the soybeans treated with fivefold concentrated cell-free supernatant of Lact. plantarum YML007. The broad activity of Lact. plantarum YML007 against various food spoilage moulds and bacteria suggests its scope as a food preservative. After screening 1400 kimchi bacterial isolates, strain Lactobacillus plantarum YML007 was selected with strong antifungal activity against various foodborne pathogens. From the preliminary studies, it was found that the bioactive compound is a low molecular weight novel protein of 1256·617 Da. Biopreservative potential of Lact. plantarum YML007 was demonstrated on soybean grains, and the results point out YML007 as a potent biopreservative having broad antimicrobial activity against various foodborne pathogens. © 2013 The Society for Applied Microbiology.

  12. Development and Phytochemical Characterization of High Polyphenol Red Lettuce with Anti-Diabetic Properties

    PubMed Central

    Cheng, Diana M.; Pogrebnyak, Natalia; Kuhn, Peter; Krueger, Christian G.; Johnson, William D.; Raskin, Ilya

    2014-01-01

    Polyphenol-rich Rutgers Scarlet Lettuce (RSL) (Lactuca sativa L.) was developed through somaclonal variation and selection in tissue culture. RSL may contain among the highest reported contents of polyphenols and antioxidants in the category of common fruits and vegetables (95.6 mg/g dry weight and 8.7 mg/g fresh weight gallic acid equivalents and 2721 µmol/g dry weight and 223 µmol/g fresh weight Trolox equivalents). Three main compounds accumulate at particularly high levels in RSL: chlorogenic acid, up to 27.6 mg/g dry weight, cyanidin malonyl-glucoside, up to 20.5 mg/g dry weight, and quercetin malonyl-glucoside, up to 35.7 mg/g dry weight. Major polyphenolic constituents of RSL have been associated with health promotion as well as anti-diabetic and/or anti-inflammatory activities. Daily oral administration of RSL (100 or 300 mg/kg) for up to eight days acutely reduced hyperglycemia and improved insulin sensitivity in high fat diet-induced obese hyperglycemic mice compared to vehicle (water) control. Data presented here support possible use of RSL as a functional food for the dietary management of diabetes. PMID:24637790

  13. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices.

    PubMed

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-06-09

    Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.

  14. Identification of compounds inhibiting the C-S lyase activity of a cell extract from a Staphylococcus sp. isolated from human skin.

    PubMed

    Egert, M; Höhne, H-M; Weber, T; Simmering, R; Banowski, B; Breves, R

    2013-12-01

    The C-S lyase activity of bacteria in the human armpit releases highly malodorous, volatile sulfur compounds from nonvolatile precursor molecules. Such compounds significantly contribute to human body odour. Hence, C-S lyase represents an attractive target for anti-body-odour cosmetic products. Here, aiming at a final use in an ethanol-based deodorant formulation, 267 compounds and compound mixtures were screened for their ability to inhibit the C-S lyase activity of a Stapyhlococcus sp. crude extract. Staphylococcus sp. Isolate 128, closely related to Staphylococcus hominis, was chosen as the test bacterium, as it showed a reproducibly high specific C-S lyase activity on three different culturing media. Using a photometric assay and benzylcysteine as substrate, six rather complex, plant-derived compound mixtures and five well defined chemical compounds or compound mixtures were identified as inhibitors, leading to an inhibition of ≥70% at concentrations of ≤0·5% in the assay. The inhibition data have demonstrated that compounds with two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue are characteristic for the inhibition. The substances identified as C-S lyase inhibitors have the potential to improve the performance of anti-body-odour cosmetic products, for example, ethanol-based deodorants. Bacterial C-S lyase represents one of the key enzymes involved in human body odour formation. The aim of this study was to identify compounds inhibiting the C-S lyase activity of a Staphylococcus sp. isolate from the human skin. The compounds identified as the best inhibitors are characterized by the following features: two vicinal hydroxyl groups or one hydroxyl and one keto group bound to an aryl residue. They might be used to improve the performance of cosmetic products aiming to prevent the formation of microbially caused human body odour, for example, ethanol-based deodorants. © 2013 The Society for Applied Microbiology.

  15. Solid-state studies and antioxidant properties of the γ-cyclodextrin·fisetin inclusion compound.

    PubMed

    Pais, Joana M; Barroca, Maria João; Marques, Maria Paula M; Almeida Paz, Filipe A; Braga, Susana S

    2017-01-01

    Fisetin is a natural antioxidant with a wide range of nutraceutical properties, including antidiabetic, neuroprotecting, and suppression or prevention of tumors. The present work describes the preparation of a water-soluble, solid inclusion compound of fisetin with gamma-cyclodextrin (γ-CD), a cyclic oligosaccharide approved for human consumption. A detailed physicochemical analysis of the product is carried out using elemental analysis, powder X-ray diffraction (PXRD), Raman, infrared and 13 C{ 1 H} CP-MAS NMR spectroscopies, and thermal analysis (TGA) to verify fisetin inclusion and to present a hypothetical structural arrangement for the host-guest units. The antioxidant activity of the γ-CD·fisetin inclusion compound is evaluated by the DPPH assay.

  16. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential

    USDA-ARS?s Scientific Manuscript database

    Black beans contain anthocyanins that could be used as colorants in foods with associated health benefits. The objective was to optimize anthocyanins extraction from black bean coats and evaluate their physicochemical stability and antidiabetes potential. Optimal extraction conditions were 24% ethan...

  17. Isolation, purification, and characterization of antimicrobial compound 6-[1,2-dimethyl-6-(2-methyl-allyloxy)-hexyl]-3-(2-methoxy-phenyl)-chromen-4-one from Penicillium sp. HT-28.

    PubMed

    Kaur, Harpreet; Arora, Daljit Singh; Sharma, Vishal

    2014-08-01

    A fungal culture (Penicillium sp., HT-28), isolated from soil has been evaluated for its bioactivity, which showed broad spectrum antimicrobial activity and was effective against methicillin-resistant Staphylococcus aureus (MRSA) also. Statistical optimization of the medium by response surface methodology (RSM) enhanced the antimicrobial activity up to 1.8-fold. Column chromatography was used to isolate the active compound (A), which was characterized to be 6-[1,2-dimethyl-6-(2-methyl-allyloxy)-hexyl]-3-(2-methoxy-phenyl)-chromen-4-one by various spectroscopic techniques such as infrared (IR), (1)H and (13)C nuclear magnetic resonance (NMR) spectra, and mass spectroscopy. Minimum inhibitory concentration (MIC) of the active compound (A) ranged from 0.5 to 15 μg/mL. Viable cell count studies of the active compound (A) showed S. aureus, Escherichia coli, Staphylococcus epidermidis, and Salmonella typhimurium 1 to be the most sensitive. The compound retained its bioactivity after treating it at 100 °C for 1 h. Furthermore, the compound (A) when tested for its biosafety was found neither to be cytotoxic nor mutagenic. The study demonstrated that an apparently novel compound isolated from Penicillium sp. (HT-28) seems to be a stable and potent antimicrobial.

  18. Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus.

    PubMed

    Orbán-Gyapai, Orsolya; Liktor-Busa, Erika; Kúsz, Norbert; Stefkó, Dóra; Urbán, Edit; Hohmann, Judit; Vasas, Andrea

    2017-04-01

    Plants belonging to the genus Rumex (family Polygonaceae) are used worldwide in traditional medicine for the treatment of various diseases caused by different microorganisms (e.g. bacteria-related dermatologic conditions, dysentery and enteritis). The present study focused on the antibacterial screening of Rumex species native to the Carpathian Basin, and isolation of compounds from one of the most efficient species, Rumex aquaticus. The antibacterial effects of n-hexane, chloroform and aqueous fractions of methanol extracts prepared from different parts of 14 Rumex species (R. acetosella, R. acetosa, R. alpinus, R. aquaticus, R. conglomeratus, R. crispus, R. hydrolapathum, R. obtusifolius subsp. obtusifolius, R. obtusifolius subsp. subalpinus, R. patientia, R. pulcher, R. scutatus, R. stenophyllus and R. thyrsiflorus) were investigated against Staphylococcus epidermidis, S. aureus, MRSA, Bacillus subtilis, Moraxella catarrhalis, Streptococcus pyogenes, S. pneumoniae, S. agalactiae, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae using the disc diffusion method. Mainly the n-hexane and chloroform extracts prepared from the roots of the plants displayed high antibacterial activity (inhibition zones>15mm) against one or more bacterial strains. The highly active extracts of the aerial part and root of R. aquaticus were subjected to a multistep separation procedure. 19 Compounds, among them naphthalenes (musizin, and its glucoside, torachrysone-glucoside, 2-methoxystypandrone), anthraquinones (emodin, chrysophanol, physcion, citreorosein, chrysophanol-8-O-glucoside), flavonoids (quercetin, quercetin-3,3'-dimethylether, isokaempferide, quercetin 3-O-arabinoside, quercetin 3-O-galactoside, catechin), stilbenes (resveratrol, piceid), and 1-stearoylglycerol were isolated from the plant. The antibacterial activities of isolated compounds were determined, and it was observed that especially naphthalenes exerted remarkable antibacterial effects against

  19. Association between glycemic control and antidiabetic drugs in type 2 diabetes mellitus patients with cardiovascular complications

    PubMed Central

    Huri, Hasniza Zaman; Ling, Doris Yew Hui; Ahmad, Wan Azman Wan

    2015-01-01

    Purpose Cardiovascular disease (CVD) is a macrovascular complication in patients with type 2 diabetes mellitus (T2DM). To date, glycemic control profiles of antidiabetic drugs in cardiovascular (CV) complications have not been clearly elucidated. Therefore, this study was conducted retrospectively to assess the association of antidiabetic drugs and glycemic control with CV profiles in T2DM patients. The association of concurrent medications and comorbidities with glycemic control was also investigated. Methods A total of 220 T2DM patients from the University of Malaya Medical Centre, Malaysia, who had at least one CV complication and who had been taking at least one antidiabetic drug for at least 3 months, were included. The associations of antidiabetics, cardiovascular diseases, laboratory parameters, concurrent medications, comorbidities, demographics, and clinical characteristics with glycemic control were investigated. Results Sulfonylureas in combination (P=0.002) and sulfonylurea monotherapy (P<0.001) were found to be associated with good glycemic control, whereas insulin in combination (P=0.051), and combination biguanides and insulin therapy (P=0.012) were found to be associated with poor glycemic control. Stroke (P=0.044) was the only type of CVD that seemed to be significantly associated with good glycemic control. Other factors such as benign prostatic hyperplasia (P=0.026), elderly patients (P=0.018), low-density lipoprotein cholesterol levels (P=0.021), and fasting plasma glucose (P<0.001) were found to be significantly correlated with good glycemic control. Conclusion Individualized treatment in T2DM patients with CVDs can be supported through a better understanding of the association between glycemic control and CV profiles in T2DM patients. PMID:26316711

  20. Phospholipid complex enriched micelles: A novel drug delivery approach for promoting the antidiabetic effect of repaglinide.

    PubMed

    Kassem, Ahmed Alaa; Abd El-Alim, Sameh Hosam; Basha, Mona; Salama, Abeer

    2017-03-01

    To enhance the oral antidiabetic effect of repaglinide (RG), a newly emerging approach, based on the combination of phospholipid complexation and micelle techniques, was employed. Repaglinide-phospholipid complex (RG-PLC) was prepared by the solvent-evaporation method then characterized using Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction (XPRD). The results revealed obvious disappearance of the characteristic peaks of the prepared RG-PLCs confirming the formation of drug-phospholipid complex. RG-PLC enriched micelles (RG-PLC-Ms) were prepared by the solvent-evaporation technique employing poloxamer 188 as surfactant. The prepared RG-PLC-Ms showed high drug encapsulation efficiencies (93.81-99.38%), with nanometric particle diameters (500.61-665.32nm) of monodisperse distribution and high stability (Zeta potential < -29.8mV). The in vitro release of RG from RG-PLC-Ms was pH-dependant according to the release media. A higher release pattern was reported in pH=1.2 compared to a more retarded release in pH=6.8 owing to two different kinetics of drug release. Oral antidiabetic effect of two optimized RG-PLC-M formulations was evaluated in an alloxan-induced diabetic rat model for 7-day treatment protocol. The two investigated formulations depicted normal blood glucose, serum malondialdehyde and insulin levels as well as an improved lipid profile, at the end of daily oral treatment, in contrast to RG marketed tablets implying enhanced antidiabetic effect of the drug. Hence, phospholipid-complex enriched micelles approach holds a promising potential for promoting the antidiabetic effect of RG. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Beliefs related to adherence to oral antidiabetic treatment according to the Theory of Planned Behavior1

    PubMed Central

    Jannuzzi, Fernanda Freire; Rodrigues, Roberta Cunha Matheus; Cornélio, Marilia Estevam; São-João, Thaís Moreira; Gallani, Maria Cecília Bueno Jayme

    2014-01-01

    OBJECTIVE: to identify salient behavioral, normative, control and self-efficacy beliefs related to the behavior of adherence to oral antidiabetic agents, using the Theory of Planned Behavior. METHOD: cross-sectional, exploratory study with 17 diabetic patients in chronic use of oral antidiabetic medication and in outpatient follow-up. Individual interviews were recorded, transcribed and content-analyzed using pre-established categories. RESULTS: behavioral beliefs concerning advantages and disadvantages of adhering to medication emerged, such as the possibility of avoiding complications from diabetes, preventing or delaying the use of insulin, and a perception of side effects. The children of patients and physicians are seen as important social references who influence medication adherence. The factors that facilitate adherence include access to free-of-cost medication and taking medications associated with temporal markers. On the other hand, a complex therapeutic regimen was considered a factor that hinders adherence. Understanding how to use medication and forgetfulness impact the perception of patients regarding their ability to adhere to oral antidiabetic agents. CONCLUSION: medication adherence is a complex behavior permeated by behavioral, normative, control and self-efficacy beliefs that should be taken into account when assessing determinants of behavior. PMID:25296135

  2. Antidiabetic effect of gomisin N via activation of AMP-activated protein kinase.

    PubMed

    Jung, Dae Young; Kim, Ji-Hyun; Lee, Hoyoung; Jung, Myeong Ho

    2017-12-16

    Gomisin N (GN) is a lignan derived from Schisandra chinensis. AMP-activated kinase (AMPK) has gained attention as a therapeutic target for the treatment of metabolic syndrome. Previously, we reported that GN activated the AMPK pathway and ameliorated high-fat diet (HFD)-induced hepatic steatosis. In this study, we investigated the anti-diabetic effects of GN in C2C12 myotubes and HFD obese mice. GN enhanced the phosphorylation of AMPK/acetyl-CoA carboxylase (ACC) and Akt. In addition, GN promoted glucose uptake in C2C12 myotubes, which was accompanied by the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Treatment with compound C, an AMPK inhibitor, suppressed GN-mediated stimulation of glucose uptake. Furthermore, GN increased the expression of mitochondria biogenesis and fatty acid oxidation genes in C2C12 myotubes. In the in vivo study, administration of GN to HFD mice decreased the levels of fasting blood glucose and insulin, and improved glucose tolerance in HFD obese mice. GN administration rescued the decreased phosphorylation of AMPK and Akt and stimulated the expression of mitochondria biogenesis genes in the skeletal muscle of HFD mice. These findings suggested that GN exerted anti-hyperglycemic effects through AMPK activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products.

    PubMed

    Yen, Hsiu-Fang; Hsieh, Chi-Ting; Hsieh, Tusty-Jiuan; Chang, Fang-Rong; Wang, Chin-Kun

    2015-03-01

    Twenty-nine commercial essential oil (EO) products that were purchased from the Taiwan market, including three different company-made Melissa officinalis essential oils, were assayed on their glucose consumption activity and lipid accumulation activity on 3T3-L1 adipocytes. The EOs of M. officinalis were significantly active in both model assays. By contrast, EOs of peppermint, lavender, bergamot, cypress, niaouli nerolidol, geranium-rose, and revensara did not increase glucose consumption activity from media, but displayed inhibited lipid accumulation activity (65-90% of lipid accumulation vs. the control 100%). Because of the promising activity of M. officinalis EOs, three different products were collected and compared for their gas chromatography chemical profiles and bioactivity. The Western blot data suggest that the key factors of the adenosine monophosphate-activated protein kinase/acetyl-CoA carboxylase pathway can be mediated by M. officinalis EOs. Together with biodata, gas chromatography-mass spectrometry profiles suggested mixtures of citrals and minor compounds of M. officinalis EOs may play an important role on effect of antidiabetes. Copyright © 2014. Published by Elsevier B.V.

  4. Effect of malondialdehyde modification on the binding of aroma compounds to soy protein isolates.

    PubMed

    Wang, Juan; Zhao, Mouming; Qiu, Chaoying; Sun, Weizheng

    2018-03-01

    The interactions of soy protein isolate (SPI) and flavor compounds (hexanal, trans-2-hexenal, 1-octen-3-ol, trans-2-octenal, nonanal, and trans-2-nonenal) were investigated. The influence of SPI structure modified by malondialdehyde (MDA) and flavor compound structure on the interactions were determined by using headspace solid-phase microextraction (SPME) and gas chromatography (GC) combined with mass spectrometry (MS). The binding of native SPI to the flavor compounds decreased in the order trans-2-nonenal>nonanal>trans-2-octenal>trans-2-hexenal>hexanal>1-octen-3-ol. It might be attributed to that aldehydes are more hydrophobic than alcohols. The former is more conducive to hydrophobic binding with the SPI. Furthermore, the aldehydes, in particular trans-s-undecenal, could also react covalently. The effect of MDA modification on protein-flavor interactions depended on the structure of the flavor compound. Upon low concentration of MDA (≤1mM), the binding of all six flavors to SPI increased. However, a further increase in the extent of MDA (≥2.5mM), more soluble and even insoluble aggregates formed, which reduced the binding of hexanal and nonanal to SPI. The other four flavors with double bond revealed little changes in binding (trans-2-octenal, and trans-2-nonenal) or even an increase in binding (trans-2-hexenal, and 1-octen-3-ol). The results suggested that hydrophobic interactions were weakened upon high extent of oxidation, whereas covalent interactions were enhanced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Antidiabetic, antidyslipidemic and toxicity profile of ENV-2: A potent pyrazole derivative against diabetes and related diseases.

    PubMed

    Hernández-Vázquez, Eduardo; Ocampo-Montalban, Hugo; Cerón-Romero, Litzia; Cruz, Miguel; Gómez-Zamudio, Jaime; Hiriart-Valencia, Guadalupe; Villalobos-Molina, Rafael; Flores-Flores, Angelica; Estrada-Soto, Samuel

    2017-05-15

    Diabetes is a major health problem and a predisposition factor for further degenerative complications and, therefore, novel therapies are urgently needed. Currently, cannabinoid receptor 1 (CB 1 receptor) antagonists have been considered as promissory entities for metabolic disorders treatment. Accordingly, the purpose of this work was the evaluation of the sub-acute antidiabetic, anti-hyperglycemic, antidyslipidemic and toxicological profile of ENV-2, a potent hypoglycemic and antioxidant CB 1 receptor antagonist. In this study, ENV-2 showed a pronounced anti-hyperglycemic effect even at a dose of 5mg/kg (P<0.05) in a glucose tolerance test on normoglycemic rats. Moreover, after administration of ENV-2 (16mg/kg) to diabetic rats, a prominent antidiabetic activity was observed (P<0.05), which was higher than glibenclamide. Sub-acute treatment (10 days) of ENV-2 resulted in a significant reduction of plasma glucose (P<0.05). Also, the levels of peripheral lipids were improved; blood triacylglycerols (TG) and cholesterol (CHOL) were diminished (P<0.05). In addition, it was found that ENV-2 reduced IL-1β and IL-18 mRNA expression in adipose tissue (P<0.05). Due to the satisfactory outcomes, we were interested in evaluating the toxicity of ENV-2 in both acute and sub-chronic approaches. Regarding the acute administration, the compound resulted to be non-toxic and was grouped in category 5 according to OECD. It was also found that sub-chronic administration did not increase the size of the studied organs, while no structural damage was observed in heart, lung, liver and kidney tissues. Finally, neither AST nor ALT damage hepatic markers were augmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evaluation of Antidiabetic and Antihyperlipidemic Effects of Hydroalcoholic Extract of Leaves of Ocimum tenuiflorum (Lamiaceae) and Prediction of Biological Activity of its Phytoconstituents

    PubMed Central

    Parasuraman, Subramani; Balamurugan, Subramani; Christapher, Parayil Varghese; Petchi, Rajendran Ramesh; Yeng, Wong Yeng; Sujithra, Jeyabalan; Vijaya, Chockalingam

    2015-01-01

    Objective: The aim was to evaluate the anti-diabetic and anti-hyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activities of its phytoconstituents using in vivo anti-diabetic model and in silico analysis respectively. Materials and Methods: The leaves of O. tenuiflorum were extracted with 60% ethanol, and the extract was used for further pharmacological screening. The acute toxicity of the extract was evaluated as per the guidelines set by the Organization for Economic Co-operation and Development, revised draft guidelines 423. The oral anti-diabetic activity of the hydroalcoholic extract of O. tenuiflorum (125, 250 and 500 mg/kg) was studied against streptozotocin (STZ) (50 mg/kg; i.p.) + nicotinamide (120 mg/kg; i.p.) induced diabetes mellitus. The animals were treated with the investigational plant extract and standard drug (glibenclamide) for 21 consecutive days and the effect of hydroalcoholic extract of O. tenuiflorum on blood glucose levels was measured at regular intervals. At the end of the study, blood samples were collected from all the animals for biochemical estimation, then the animals were sacrificed and the liver and kidney were collected for organ weight analysis. Prediction for pharmacological and toxicological properties of phytoconstituents of O. tenuiflorum was carried out using online web tools such as online pass prediction and lazar toxicity prediction. Results: The hydroalcoholic extract of O. tenuiflorum showed significant anti-diabetic and anti-hyperlipidemic activity at 250 and 500 mg/kg, and this effect was comparable with that of glibenclamide. Predicted biological activities of phytoconstituents of O. tenuiflorum showed presence of various pharmacological actions, which includes anti-diabetic and anti-hyperlipidemic activities. Prediction of toxicological properties of phytoconstituents of O. tenuiflorum did not show any major toxic effects. Conclusion: The

  7. In vitro antidiabetic activity of various crude extracts of Boletus variipes

    NASA Astrophysics Data System (ADS)

    Muniandy, Sutha; Fazry, Shazrul; Daud, Fauzi; Senafi, Sahidan

    2015-09-01

    Diabetes mellitus is a complex metabolic disease that progressively spread worldwide and difficult to treat due to various physical and metabolic complications. Current treatment using synthetic drugs has lead to various undesirable side effects. Here we determined the effect of Boletus variipes extracts on diabetes related enzymes. In this study, hot water, cold water and methanol extracts of B. variipes were utilized in order to assess their in vitro antidiabetic activity by measuring the effect on α-amylase and α-glucosidase enzyme. Hot water extract possessed the highest inhibition activity of α-amylase and α-glucosidase in a concentration dependent manner with the IC50 value 87 mg/mL and 89 mg/mL respectively. The methanol extract also showed inhibition activity of α-amylase and α-glucosidase but significantly lower than the hot water extract. Whereas cold water extract did not show any inhibition activity towards both the enzymes. Therefore, it is hypothesized that the hot water extract of Boletus variipes contains bioactive compound that can inhibit alpha-amylase and alpha-glucosidase enzyme activity. At the request of all authors of the paper an updated version was published on 11 May 2016. The original version identified the species of mushroom as Boletus variipes, but new findings have proved the species of mushroom to be Boletus qriseipurpureus. The species name has been updated throughout the revised version of this paper.

  8. Potent Insulin Secretagogue from Scoparia dulcis Linn of Nepalese Origin.

    PubMed

    Sharma, Khaga Raj; Adhikari, Achyut; Hafizur, Rahman M; Hameed, Abdul; Raza, Sayed Ali; Kalauni, Surya Kant; Miyazaki, Jun-Ichi; Choudhary, M Iqbal

    2015-10-01

    Ethno-botanical inspired isolation from plant Scoparia dulcis Linn. (Sweet Broomweed) yielded six compounds, coixol (1), glutinol (2), glutinone (3), friedelin (4), betulinic acid (5), and tetratriacontan-1-ol (6). There structures were identified using mass and 1D- and 2D-NMR spectroscopy techniques. Compounds 1-6 were evaluated for their insulin secretory activity on isolated mice islets and MIN-6 pancreatic β-cell line, and compounds 1 and 2 were found to be potent and mildly active, respectively. Compound 1 was further evaluated for insulin secretory activity on MIN-6 cells. Compound 1 was subjected to in vitro cytotoxicity assay against MIN-6, 3T3 cell lines, and islet cells, and in vivo acute toxicity test in mice that was found to be non-toxic. The insulin secretory activity of compounds 1 and 2 supported the ethno-botanic uses of S. dulcis as an anti-diabetic agent. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Oral anti-diabetics in Ramadan.

    PubMed

    Islam, Najmul

    2015-05-01

    A large proportion of Muslim patients with type 2 diabetes fast during the month of Ramadan worldwide. Hypoglycaemia is one of the major complications associated with long periods without food during the fasting hours. There is also a risk of hyperglycaemia due to over indulgence in food during the two main meals of Suhur and Iftar. Healthcare providers need to be cognizant of the risk of fasting and be competent to provide Ramadan adjusted diabetes care particularly adjustment of oral anti diabetics. This review article has taken into consideration observational studies, randomized trial data, pathophysiology and practical experience in recommending adjustment in oral anti-diabetics during fasting in type-2 diabetics. Metformin and Thiazolidinediones (TZD'S) being insulin sensitizers need minimum adjustment with low risk of hypoglycaemia. Older generation Sulphonylureas (SU) pose a high risk of hypoglycaemia but the newer generations of Sulphonylureas have a reasonable safety profile. Alpha- Glucosidase inhibitors are safe during fasting but their use is limited due to the side effects.

  10. Radical scavenging ability of some compounds isolated from Piper cubeba towards free radicals.

    PubMed

    Aboul-Enein, Hassan Y; Kładna, Aleksandra; Kruk, Irena

    2011-01-01

    The purpose of this study was to identify the antioxidant activity of 16 compounds isolated from Piper cubeba (CNCs) through the extent of their capacities to scavenge free radicals, hydroxyl radical (HO(•)), superoxide anion radical O•(2)(-) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)), in different systems. Electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide, DMPO, as the spin trap, and chemiluminescence techniques were applied. Using the Fenton-like reaction [Fe(II) + H(2)O(2)], CNCs were found to inhibit DMPO-OH radical formation ranging from 5 to 57% at 1.25 mmol L(-1) concentration. The examined CNCs also showed a high DPPH antiradical activity (ranging from 15 to 99% at 5 mmol L(-1) concentration). Furthermore, the results indicated that seven of the 16 tested compounds may catalyse the conversion of superoxide radicals generated in the potassium superoxide/18-crown-6 ether system, thus showing superoxide dismutase-like activity. The data obtained suggest that radical scavenging properties of CNCs might have potential application in many plant medicines. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Effects of antidiabetic drugs on the incidence of macrovascular complications and mortality in type 2 diabetes mellitus: a new perspective on sodium-glucose co-transporter 2 inhibitors.

    PubMed

    Rahelić, Dario; Javor, Eugen; Lucijanić, Tomo; Skelin, Marko

    2017-02-01

    Elevated hemoglobin A 1c (HbA 1c ) values correlate with microvascular and macrovascular complications. Thus, patients with type 2 diabetes mellitus (T2DM) are at an increased risk of developing macrovascular events. Treatment of T2DM should be based on a multifactorial approach because of its evidence regarding reduction of macrovascular complications and mortality in T2DM. It is well known that intensive glucose control reduces the risk of microvascular complications in T2DM, but the effects of antidiabetic drugs on macrovascular complications and mortality in T2DM are less clear. The results of recent trials have demonstrated clear evidence that empagliflozin and liraglutide reduce cardiovascular (CV) and all-cause mortality in T2DM, an effect that is absent in other members of antidiabetic drugs. Empagliflozin is a member of a novel class of antidiabetic drugs, the sodium-glucose co-transporter 2 (SGLT2) inhibitors. Two ongoing randomized clinical trials involving other SGLT2 inhibitors, canagliflozin and dapagliflozin, will provide additional evidence of the beneficial effects of SGLT2 inhibitors in T2DM population. The aim of this paper is to systematically present the latest evidence regarding the usage of antidiabetic drugs, and the reduction of macrovascular complications and mortality. A special emphasis is put on the novel class of antidiabetic drugs, of SGLT2 inhibitors. Key messages Macrovascular complications and mortality are best clinical trial endpoints for evaluating the efficacy of antidiabetic drugs. The first antidiabetic drug that demonstrated a reduction in mortality in the treatment of type 2 diabetes mellitus (T2DM) was empagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor. SGLT2 inhibitors are novel class of antidiabetic drugs that play a promising role in the treatment of T2DM.

  12. Gedunin and Azadiradione: Human Pancreatic Alpha-Amylase Inhibiting Limonoids from Neem (Azadirachta indica) as Anti-Diabetic Agents.

    PubMed

    Ponnusamy, Sudha; Haldar, Saikat; Mulani, Fayaj; Zinjarde, Smita; Thulasiram, Hirekodathakallu; RaviKumar, Ameeta

    2015-01-01

    Human pancreatic α-amylase (HPA) inhibitors offer an effective strategy to lower postprandial hyperglycemia via control of starch breakdown. Limonoids from Azadirachta indica known for their therapeutic potential were screened for pancreatic α-amylase inhibition, a known anti-diabetic target. Studies were carried out to reveal their mode of action so as to justify their hypoglycemic potential. Of the nine limonoids isolated/semi-synthesized from A.indica and screened for α-amylase inhibition, azadiradione and exhibited potential inhibition with an IC50 value of 74.17 and 68.38 μM, respectively against HPA under in vitro conditions. Further screening on AR42J α-amylase secretory cell line for cytotoxicity and bioactivity revealed that azadiradione and gedunin exhibited cytotoxicity with IC50 of 11.1 and 13.4μM. Maximal secreted α-amylase inhibition of 41.8% and 53.4% was seen at 3.5 and 3.3μM, respectively. Michaelis-Menten kinetics suggested a mixed mode of inhibition with maltopentaose (Ki 42.2, 18.6 μM) and starch (Ki' 75.8, 37.4 μM) as substrate with a stiochiometry of 1:1 for both azadiradione and gedunin, respectively. The molecular docking simulation indicated plausible π-alkyl and alkyl-alkyl interactions between the aromatic amino acids and inhibitors. Fluorescence and CD confirmed the involvement of tryptophan and tyrosine in ligand binding to HPA. Thermodynamic parameters suggested that binding is enthalpically and entropically driven with ΔG° of -21.25 kJ mol-1 and -21.16 kJ mol-1 for azadiradione and gedunin, respectively. Thus, the limonoids azadiradione and gedunin could bind and inactivate HPA (anti-diabetic target) and may prove to be lead drug candidates to reduce/control post-prandial hyperglycemia.

  13. The Effects of Marine Carbohydrates and Glycosylated Compounds on Human Health

    PubMed Central

    Kang, Hee-Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-01

    Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed. PMID:25785562

  14. Pattern of pharmaceutical retailing of anti-diabetic products in Ibadan, Nigeria.

    PubMed

    Famuyiwa, O O

    1991-01-01

    Twenty-four pharmacists in the city of Ibadan were surveyed through a self-administered structured questionnaire as to the extent of their involvement in the pharmaceutical retailing of antidiabetic products and their cost. Oral hypoglycemic agents especially, chlorpropamide (Diabenese) and glibenclamide (Daonil) were the most readily available drugs being obtainable from 21 (87.5%) pharmacies. Insulin was stocked regularly by only 14 (58.3%) of the pharmacists and insulin syringes and needles could be obtained from only 10 (41.6%) of the pharmacies. Among materials for urine testing, clinistix strip was the most readily available and fully one-third of the pharmacies did not stock any such material. The prices of all the products were disturbingly high and between 1983 and 1986 when retail prices were re-assessed, the cost of some materials had escalated by as much as 400%. Scarcity of antidiabetic products and their high cost pose serious challenges for those involved in the care of diabetic patients in Nigeria. Some suggestions have been made as to what steps both the government and the pharmaceutical industry can take in ensuring the availability of these life sustaining products for the increasingly large Nigerian diabetic population.

  15. [Inhibitory effects of Spartina anglica on Heterosigma akashiwo and Prorocenrum micans and the isolation and identification of the algicidal compounds].

    PubMed

    Xu, Nian-Jun; Tang, Jun; Zhang, Ze-Wei; Yan, Xiao-Jun

    2009-10-01

    Taking Heterosigma akashiwo and Prorocenrum micans as test materials, the algicidal activity of Spartina anglica against the growth of the two harmful microalgae were investigated, with the algicidal compounds isolated and identified. Lower concentration S. anglica stimulated the growth of H. akashiwo, while high concentration S. anglica inhibited the H. akashiwo growth significantly. The lethal concentration of S. anglica fresh tissue, dry powder, and extracts to H. akashiwo was 4.8 mg x ml(-1), 0.8 mg x ml(-1), and 0.5 mg x ml(-1), respectively. All test concentration S. anglica had obvious inhibitory effects on the growth of P. micans, and the lethal concentration of S. anglica fresh material, dry powder, and extracts was 9.6 mg x ml(-1), 1.6 mg x ml(-1), and 1.25 mg x ml(-1), respectively. Two algicidal compounds in S. anglica were isolated, and identified as isohamnetin-3-O-sophoroside-7-O-rhamnoside and syringetin-3-O-galactoside.

  16. Characterization and identification of mycosporines-like compounds in cyanolichens. Isolation of mycosporine hydroxyglutamicol from Nephroma laevigatum Ach.

    PubMed

    Roullier, Catherine; Chollet-Krugler, Marylène; Pferschy-Wenzig, Eva-Maria; Maillard, Anne; Rechberger, Gerald N; Legouin-Gargadennec, Béatrice; Bauer, Rudolf; Boustie, Joël

    2011-08-01

    Mycosporine-like compounds, comprising mycosporines and mycosporine-like amino acids (MAAs) are UV protecting secondary metabolites described in organisms such as fungi, algae, cyanobacteria or animals. Lichens however, were only poorly investigated for such constituents so far. Here, a method for the characterization of mycosporines and MAAs in purified aqueous extracts, involving HPTLC coupled to spectrophotodensitometry, HPLC-DAD-MS(n) and UPLC-HRMS analysis, is described. This optimized protocol was validated on three algae and one cyanolichen containing known MAAs and mycosporines, and then applied to 18 cyanolichen species. Analyses revealed the presence of five already described mycosporine-like compounds in the investigated species, including mycosporine serinol in Lichina and Peltigera species and mycosporine glutamicol in Degelia plumbea. Apart from that, eight unknown mycosporine-like compounds were detected and tentatively characterized on the basis of their DAD spectra and their MS(n) and HRMS data: two in the alga Porphyra dioica and six in cyanolichen species belonging to the genera Degelia, Nephroma and Stereocaulon. From Nephroma laevigatum, the mycosporine hydroxyglutamicol was preparatively isolated and identified through HRMS, 1D and 2D NMR spectroscopic data. The optimized analytical protocol allowed the characterization of mycosporine-like compounds in small amounts of material and confirmed the potential of cyanolichens as a source of mycosporine compounds. It should also be applicable to investigate lichen species with green algae photobionts for mycosporine-like compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Piperine, a Natural Bioenhancer, Nullifies the Antidiabetic and Antioxidant Activities of Curcumin in Streptozotocin-Diabetic Rats

    PubMed Central

    Arcaro, Carlos Alberto; Gutierres, Vânia Ortega; Assis, Renata Pires; Moreira, Thais Fernanda; Costa, Paulo Inácio; Baviera, Amanda Martins; Brunetti, Iguatemy Lourenço

    2014-01-01

    Knowing that curcumin has low bioavailability when administered orally, and that piperine has bioenhancer activity by inhibition of hepatic and intestinal biotransformation processes, the aim of this study was to investigate the antidiabetic and antioxidant activities of curcumin (90 mg/kg) and piperine (20 or 40 mg/kg), alone or co-administered, incorporated in yoghurt, in streptozotocin (STZ)-diabetic rats. The treatment for 45 days of STZ-diabetic rats with curcumin-enriched yoghurt improved all parameters altered in this experimental model of diabetes: the body weight was increased in association with the weight of skeletal muscles and white adipose tissues; the progressive increase in the glycemia levels was avoided, as well as in the glycosuria, urinary urea, dyslipidemia, and markers of liver (alanine and aspartate aminotransferases and alkaline phosphatase) and kidney (urinary protein) dysfunction; the hepatic oxidative stress was decreased, since the activities of the antioxidant enzymes superoxide dismutase, catalase and gluthatione peroxidase were increased, and the levels of malondialdehyde and protein carbonyl groups were reduced. The dose of 20 mg/kg piperine also showed antidiabetic and antioxidant activities. The treatment of STZ-diabetic rats with both curcumin and 20 mg/kg piperine in yoghurt did not change the antidiabetic and antioxidant activities of curcumin; notably, the treatment with both curcumin and 40 mg/kg piperine abrogated the beneficial effects of curcumin. In addition, the alanine aminotransferase levels were further increased in diabetic rats treated with curcumin and 40 mg/kg piperine in comparison with untreated diabetic rats. These findings support that the co-administration of curcumin with a bioenhancer did not bring any advantage to the curcumin effects, at least about the antidiabetic and antioxidant activities, which could be related to changes on its biotransformation. PMID:25469699

  18. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats

    PubMed Central

    2013-01-01

    Background The available drugs for diabetes, Insulin or Oral hypoglycemic agents have one or more side effects. Search for new antidiabetic drugs with minimal or no side effects from medicinal plants is a challenge according to WHO recommendations. In this aspect, the present study was undertaken to evaluate the antihyperglycemic and antihyperlipidemic effects of Piper longum root aqueous extract (PlrAqe) in streptozotocin (STZ) induced diabetic rats. Methods Diabetes was induced in male Wister albino rats by intraperitoneal administration of STZ (50 mg/kg.b.w). Fasting blood glucose (FBG) levels were measured by glucose-oxidase & peroxidase reactive strips. Serum biochemical parameters such as glycosylated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), very low density lipoprotein (VLDL), low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol were estimated. The activities of liver and kidney functional markers were measured. The statistical analysis of results was carried out using Student t-test and one-way analysis (ANOVA) followed by DMRT. Results During the short term study the aqueous extract at a dosage of 200 mg/kg.b.w was found to possess significant antidiabetic activity after 6 h of the treatment. The administration of aqueous extract at the same dose for 30 days in STZ induced diabetic rats resulted in a significant decrease in FBG levels with the corrections of diabetic dyslipidemia compared to untreated diabetic rats. There was a significant decrease in the activities of liver and renal functional markers in diabetic treated rats compared to untreated diabetic rats indicating the protective role of the aqueous extract against liver and kidney damage and its non-toxic property. Conclusions From the above results it is concluded that the plant extract is capable of managing hyperglycemia and complications of diabetes in STZ induced diabetic rats. Hence this plant may be considered as one of the potential sources

  19. Isolation of Bioactive Compounds from Sunflower Leaves (Helianthus annuus L.) Extracted with Supercritical Carbon Dioxide.

    PubMed

    El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A

    2015-07-22

    The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide.

  20. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats.

    PubMed

    Nazarizadeh, Ali; Asri-Rezaie, Siamak

    2016-08-01

    In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.

  1. Antidiabetic activity of flower buds of Michelia champaca Linn

    PubMed Central

    Jarald, E. Edwin; Joshi, S.B.; Jain, D.C.

    2008-01-01

    Objective: To identify the antihyperglycemic activity of various extracts, petroleum ether (60-80°), chloroform, acetone, ethanol, aqueous and crude aqueous, of the flower buds of Michelia champaca, and to identify the antidiabetic activity of active antihyperglycemic extract. Materials and Methods: Plant extracts were tested for antihyperglycemic activity in glucose overloaded hyperglycemic rats. The effective antihyperglycemic extract was tested for its hypoglycemic activity at two-dose levels, 200 and 400 mg/kg respectively. To confirm its utility in the higher model, the effective extract of M. champaca was subjected to antidiabetic study in alloxan induced diabetic model at two dose levels, 200 and 400 mg/kg respectively. The biochemical parameters, glucose, urea, creatinine, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, hemoglobin and glycosylated hemoglobin were also assessed in the experimental animals. Results: The ethanolic extract of M. champaca exhibited significant antihyperglycemic activity but did not produce hypoglycemia in fasted normal rats. Apart from this extract, the crude aqueous and petroleum ether extracts were found active only at the end of the first hour. Treatment of diabetic rats with ethanolic extract of this plant restored the elevated biochemical parameters significantly (P<0.05) (P<0.01) and the activity was found dose dependent. Conclusion: This study supports the traditional claim and the ethanolic extract of this plant could be added in traditional preparations for the ailment of various diabetes-associated complications. PMID:21279181

  2. Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake.

    PubMed

    Saetae, Donlaporn; Suntornsuk, Worapot

    2010-12-28

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  3. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    PubMed Central

    Saetae, Donlaporn; Suntornsuk, Worapot

    2011-01-01

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications. PMID:21339978

  4. Berberine enhances antidiabetic effects and attenuates untoward effects of canagliflozin in streptozotocin-induced diabetic mice.

    PubMed

    Tian, Cai-Ming; Jiang, Xin; Ouyang, Xiao-Xi; Zhang, Ya-Ou; Xie, Wei-Dong

    2016-07-01

    The present study aimed at determining whether berberine can enhance the antidiabetic effects and alleviate the adverse effects of canagliflozin in diabetes mellitus. Streptozotocin-induced diabetic mice were introduced, and the combined effects of berberine and canagliflozin on glucose metabolism and kidney functions were investigated. Our results showed that berberine combined with canagliflozin (BC) increased reduction of fasting and postprandial blood glucose, diet, and water intake compared with berberine or canagliflozin alone. Interestingly, BC showed greater decrease in blood urea nitrogen and creatinine levels and lower total urine glucose excretion than canagliflozin alone. In addition, BC showed increased phosphorylated 5' AMP-activated protein kinase (pAMPK) expression and decreased tumor necrosis factor alpha (TNFα) levels in kidneys, compared with berberine or canagliflozin alone. These results indicated that BC was a stronger antidiabetic than berberine or canagliflozin alone with less negative side effects on the kidneys in the diabetic mice. The antidiabetic effect was likely to be mediated by synergically promoting the expression of pAMPK and reducing the expression of TNFα in kidneys. The present study represented the first report that canagliflozin combined with berberine was a promising treatment for diabetes mellitus. The exact underlying mechanisms of action should be investigated in future studies. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments.

    PubMed

    Yang, Na; Song, Fuhang

    2018-02-01

    Marine actinomycetes are less investigated compared to terrestrial strains as potential sources of natural products. To date, few investigations have been performed on culturable actinomycetes associated with South China Sea sediments. In the present study, twenty-eight actinomycetes were recovered from South China Sea sediments after dereplication by traditional culture-dependent method. The 16S rRNA gene sequences analyses revealed that these strains related to five families and seven genera. Twelve representative strains possessed at least one of the biosynthetic genes coding for polyketide synthase I, II, and nonribosomal peptide synthetase. Four strains had anti-Mycobacterium phlei activities and five strains had activities against methicillin-resistant Staphylococcus aureus. 10 L-scale fermentation of strains Salinispora sp. NHF45, Nocardiopsis sp. NHF48, and Streptomyces sp. NHF86 were carried out for novel and bioactive compounds discovery. Finally, we obtained a novel α-pyrone compound from marine Nocardiopsis sp. NHF48, an analogue of paulomenol from marine Streptomyces sp. NHF86 and a new source of rifamycin B, produced by Salinispora sp. NHF45. The present study concluded that marine actinomycetes, which we isolated from South China Sea sediments, will be a suitable source for the development of novel and bioactive compounds.

  6. Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS.

    PubMed

    Ramírez, María Rosario; Estévez, Mario; Morcuende, David; Cava, Ramón

    2004-12-15

    The effect of the type of frying culinary fat (olive oil, sunflower oil, butter, and pig lard) on volatile compounds isolated from fried pork loin chops (m. Longissimus dorsi) was measured by SPME-GC-MS. Frying modified the fatty acid composition of lipids from pork loin chops, which tended to be similar to that of the culinary fat used to fry. Volatile compounds formed from the oxidation of fatty acids increased, such as aldehydes, ketones, alcohols, and hydrocarbons. Besides, each culinary fat used modified the volatile profiles in fried meat differently. Sunflower oil-fried pork loin chops presented the highest aldehyde aliphatic content, probably due to their highest content of polyunsaturated acids. Hexanal, the most abundant aldehyde in fried samples, presented the most elevated content in sunflower oil-fried pork loin chops. In addition, these samples presented more heterocyclic compounds from the Maillard reaction than other fried samples. Volatiles detected in olive oil-fried pork loin chops were mainly lipid-derived compounds such as pentan-1-ol, hexanal, hept-2-enal, nonanal, decanal, benzaldehyde, and nonan-2-one. Butter-fried pork loins were abundant in ketones with a high number of carbons (heptan-2-one, nonan-2-one, undecan-2-one, tridecanone, and heptadecan-2-one). Pig lard-fried pork loin chops presented some Strecker aldehydes isolated in only these samples, such as 2-methylbutanal and 3-(methylthio)propanal, and a sulfur compound (dimethyl disulfide) related to Strecker aldehydes.

  7. Anti-diabetic effects of rice hull smoke extract in alloxan-induced diabetic mice

    USDA-ARS?s Scientific Manuscript database

    We investigated the protective effect of a liquid rice hull smoke extract (RHSE) against diabetes in alloxan-induced diabetic mice. Anti-diabetic effects of RHSE were evaluated in both the rat insulinoma-1 cell line (INS-1) and diabetic ICR mice induced by inraperitoneal (ip) injection of alloxan. ...

  8. In Vitro and In Vivo Antidiabetic Evaluation of Selected Culinary-Medicinal Mushrooms (Agaricomycetes).

    PubMed

    Singh, Varinder; Bedi, Gurleen Kaur; Shri, Richa

    2017-01-01

    Management of type 2 diabetes by delaying or preventing glucose absorption using natural products is gaining significant attention. Edible mushrooms are well documented for their nutritional and medicinal properties. This investigation was designed to evaluate the antidiabetic activity of aqueous extracts of selected culinary-medicinal mushrooms, namely, Pleurotus ostreatus, Calocybe indica, and Volvariella volvacea, using in vitro models (α-amylase inhibition assay, glucose uptake by yeast cells, and glucose adsorption capacity). The most active extract was subsequently examined in vivo using the oral starch tolerance test in mice. All prepared extracts showed dose-dependent inhibition of α-amylase and an increase in glucose transport across yeast cells. C. indica extract was the most active α-amylase inhibitor (half-maximal inhibitory concentration, 18.07 ± 0.75 mg/mL) and exhibited maximum glucose uptake by yeast cells (77.53 ± 0.97% at 35 mg/mL). All extracts demonstrated weak glucose adsorption ability. The positive in vitro tests for C. indica paved the way for in vivo studies. C. indica extract (200 and 400 mg/kg) significantly (P < 0.05) reduced postprandial blood glucose peaks in mice challenged with starch. The extract (400 mg/kg) and acarbose normalized blood glucose levels at 180 minutes, when they were statistically similar to values in normal mice. Thus, it may be concluded that the antidiabetic effect of C. indica is mediated by inhibition of starch metabolism (α-amylase inhibition), increased glucose uptake by peripheral cells (promotion of glucose uptake by yeast cells), and mild entrapment (adsorption) of glucose. Hence, C. indica can be developed as antidiabetic drug after detailed pharmacological studies.

  9. Actinobacteria Isolated from an Underground Lake and Moonmilk Speleothem from the Biggest Conglomeratic Karstic Cave in Siberia as Sources of Novel Biologically Active Compounds

    PubMed Central

    Tokovenko, Bogdan T.; Protasov, Eugeniy S.; Gamaiunov, Stanislav V.; Rebets, Yuriy V.; Luzhetskyy, Andriy N.; Timofeyev, Maxim A.

    2016-01-01

    Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans. PMID:26901168

  10. Isolation and identification of plant phenolic compounds in birch leaves: Air pollution stress and leaf phenolics

    NASA Astrophysics Data System (ADS)

    Loponen, Jyrki Mikael

    Chromatographic (analytical and preparative HPLC), chemical (hydrolysis) and spectroscopic (UV, 1H NMR, 13C NMR and MS) techniques proved to be suitable tools for the structure identification of plant phenolic compounds. More than 30 individual phenolic compounds were detected and quantified. Detailed information of the structures of individual compounds was determined after isolation from birch leaves. Ten flavonoid glycosides were identified. Two of them, myricetin-3-O-α-L-(acetyl)-rhamnopyranoside and quercetin-3-O-α-L-(4/prime'-O-acetyl)- rhamnopyranoside, have been rarely found in birch leaves. Further, some characterized major phenolics with non- flavonoid structures in our study were 1-O-galloyl- β-D-(2-O-acetyl)-glucopyranose, gallic, chlorogenic, neochlorogenic, cis- and trans-forms of 3- and 5-p-coumaroylquinic acids. The presence of gallotannin group was evidenced by strong positive correlations between concentrations of these gallotannins (preliminary identified by HPLC and UV spectra) and the protein precipitation capacity of extracts. Content of gallotannins decreased with leaf growth and maturation. It is known that concentrations of phenolic compounds regularly increase in slowly growing stressed plants and therefore, it is natural that they are also sensitive to different forms of air pollution. Total content and the contents of some individual phenolics correlated negatively with the distance from the pollution source in our study area. In addition to comparing absolute concentrations of compounds in question, the within-tree correlations or within-tree variations of the relevant compounds between polluted and control areas were an alternative approach. Differences in pairwise correlations between the investigated leaf phenolic compounds indicated the competition between some gallotannins and p-coumaroylquinic acids on the polluted but not on the control site. Air pollution seems to be a stress factor for birch trees associated with

  11. A stewardship intervention program for safe medication management and use of antidiabetic drugs.

    PubMed

    Zhao, Rui-yi; He, Xiao-wen; Shan, Yan-min; Zhu, Ling-ling; Zhou, Quan

    2015-01-01

    Diabetes patients are complex due to considerations of polypharmacy, multimorbidities, medication adherence, dietary habits, health literacy, socioeconomic status, and cultural factors. Meanwhile, insulin and oral hypoglycemic agents are high-alert medications. Therefore it is necessary to require a multidisciplinary team's integrated endeavors to enhance safe medication management and use of antidiabetic drugs. A 5-year stewardship intervention program, including organizational measures and quality improvement activities in storage, prescription, dispensing, administration, and monitoring, was performed in the Second Affiliated Hospital of Zhejiang University, People's Republic of China, a 3,200-bed hospital with 3.5 million outpatient visits annually. The Second Affiliated Hospital of Zhejiang University has obtained a 100% implementation rate of standard storage of antidiabetic drugs in the Pharmacy and wards since August 2012. A zero occurrence of dispensing errors related to highly "look-alike" and "sound-alike" NovoMix 30(®) (biphasic insulin aspart) and NovoRapid(®) (insulin aspart) has been achieved since October 2011. Insulin injection accuracy among ward nurses significantly increased from 82% (first quarter 2011) to 96% (fourth quarter 2011) (P<0.05). The number of medication administration errors related to insulin continuously decreased from 20 (2011) to six (2014). The occurrence rate of hypoglycemia in non-endocrinology ward diabetes inpatients during 2011-2013 was significantly less than that in 2010 (5.03%-5.53% versus 8.27%) (P<0.01). Percentage of correct management of hypoglycemia by nurses increased from 41.5% (April 2014) to 67.2% (August 2014) (P<0.01). The percentage of outpatient diabetes patients receiving standard insulin injection education increased from 80% (April 2012) to 95.2% (October 2012) (P<0.05). Insulin injection techniques among diabetes outpatients who started to receive insulin were better than indicated in data from two

  12. Cyanidin-3-glucoside isolated from mulberry fruits protects pancreatic β-cells against glucotoxicity-induced apoptosis.

    PubMed

    Lee, Jong Seok; Kim, Young Rae; Park, Jun Myoung; Kim, Young Eon; Baek, Nam In; Hong, Eock Kee

    2015-04-01

    The present study investigated the cytoprotective effects of cyanidin‑3‑glucoside (C3G), isolated from mulberry fruits, on the glucotoxicity‑induced apoptosis of pancreatic β‑cells to evaluate the antidiabetic effects of this compound. MIN6N pancreatic β‑cells were used to investigate the cytoprotective effects of C3G. In addition, the effects of C3G on the glucotoxicity‑induced apoptosis of pancreatic β‑cells was evaluated using MTT assay, immunofluorescent staining, flow cytometric and western blot analyses. The pancreatic β‑cells cultured under high glucose conditions exhibited distinct apoptotic features. C3G decreased the generation of intracellular reactive oxygen species, DNA fragmentation and the rate of apoptosis. C3G also prevented pancreatic β‑cell apoptosis induced by high glucose conditions by interfering with the intrinsic apoptotic pathways. In addition, C3G treatment resulted in increased insulin secretion compared with treatment with high glucose only. In conclusion, the results of the present study suggested that C3G obtained from mulberry fruits may be a potential phytotherapeutic agent for the prevention of diabetes.

  13. Anti-methicillin Resistant Staphylococcus aureus Compound Isolation from Halophilic Bacillus amyloliquefaciens MHB1 and Determination of Its Mode of Action Using Electron Microscope and Flow Cytometry Analysis.

    PubMed

    Jeyanthi, Venkadapathi; Velusamy, Palaniyandi

    2016-06-01

    The aim of this study was to purify, characterize and evaluate the antibacterial activity of bioactive compound against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA compound was produced by a halophilic bacterial strain designated as MHB1. The MHB1 strain exhibited 99 % similarity to Bacillus amyloliquefaciens based on 16S rRNA gene analysis. The culture conditions of Bacillus amyloliquefaciens MHB1 were optimized using nutritional and environmental parameters for enhanced anti-MRSA compound production. The pure bioactive compound was isolated using silica gel column chromatography and Semi-preparative High-performance liquid chromatography (Semi-preparative HPLC). The Thin layer chromatography, Fourier transform infrared spectroscopy and proton NMR ((1)H NMR) analysis indicated the phenolic nature of the compound. The molecular mass of the purified compound was 507 Da as revealed by Liquid chromatography-mass spectrometry (LC-MS) analysis. The compound inhibited the growth of MRSA with minimum inhibitory concentration (MIC) of 62.5 µg mL(-1). MRSA bacteria exposed to 4× MIC of the compound and the cell viability was determined using flow cytometric analysis. Scanning electron microscope and Transmission electron microscope analysis was used to determine the ultrastructural changes in bacteria. This is the first report on isolation of anti-MRSA compound from halophilic B. amyloliquefaciens MHB1 and could act as a promising biocontrol agent.

  14. Rosmarinic acid content in antidiabetic aqueous extract from ocimum canum sims in Ghana

    USDA-ARS?s Scientific Manuscript database

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical TLC was used to examine the compos...

  15. The uterotonic activity of compounds isolated from the supercritical fluid extract of Ekebergia capensis.

    PubMed

    Sewram, V; Raynor, M W; Mulholland, D A; Raidoo, D M

    2000-12-01

    The wood of Ekebergia capensis Sparrm. is used by the local Zulu community in KwaZulu-Natal Province, South Africa to facilitate childbirth. In this investigation, the uterotonic properties of extracts from this tree were evaluated using both pregnant and non-pregnant guinea pig uterine smooth muscle in vitro. The extracts were prepared using water modified supercritical carbon dioxide at 400 atm and 80 degrees C. As samples of these extracts displayed positive results when screened for uterotonic activity, gravity column chromatography followed by NMR spectroscopy was performed in an attempt to isolate and elucidate the structures of the compounds that were present in the extract. The extract yielded five known compounds of which only two, viz. oleanonic acid and 3-epioleanolic acid, displayed uterotonic activity. Receptor binding assays were subsequently performed with 3-epioleanolic acid to ascertain its mode of action. Bradykinin (30 ng/100 microl) and acetylcholine (1 microg/100 microl) were used as the B2 and cholinergic receptor agonists respectively with icatibant (HOE 140) (30 ng/100 microl) and atropine (60 micro/100 microl) as their corresponding antagonists. 3-epioleanolic acid was observed to mediate its effect through the cholinergic receptor. The results of this study show that two compounds from the extract of this tree possess varying degrees of agonist activity on uterine smooth muscle with minor changes in the molecular structure affecting its intrinsic activity on uterine muscle.

  16. Comparison of anti-diabetic drug prescribing in children and adolescents in seven European countries.

    PubMed

    Neubert, Antje; Hsia, Yingfen; de Jong-van den Berg, Lolkje T W; Janhsen, Katrin; Glaeske, Gerd; Furu, Kari; Kieler, Helle; Nørgaard, Mette; Clavenna, Antonio; Wong, Ian C K

    2011-12-01

    The aim of this study was to compare the prevalence of diabetes in children across seven European countries, when using prescribing of anti-diabetics as a proxy for diabetes. A secondary aim was to assess the potential for collaboration between countries using different databases in diabetes research. Data were obtained from population-based clinical databases in seven European countries. The study population comprised children aged 0-18 years. Prescriptions were categorized using the Anatomic Therapeutic Chemical (ATC) classification. The one-year user prevalence in 2008 was calculated for each country and stratified by age and sex. We studied a total of 5.8 million children and adolescents. The prevalence of insulin prescribing varied between 1.1 and 3.5 per 1000 population, being highest in Sweden and lowest in Italy. In all countries, novel insulin analogues were the most commonly used insulins. The prevalence of oral anti-diabetic prescribing ranged from 0.08 per 1000 individuals in Sweden and Germany to 0.21 per 1000 population in the UK. Overall, the absolute number of oral anti-diabetic users was very low. This study shows that there is a varying frequency of type 1 diabetes in children and adolescents across Europe. We also demonstrated that it is possible to obtain similar information from different clinical databases within Europe, which would allow continuous monitoring of type 1 diabetes. Owing to the lack of indications in most of the databases, this approach is less suitable for type 2 diabetes. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  17. Antidiabetic and antioxidant functionality associated with phenolic constituents from fruit parts of indigenous black jamun (Syzygium cumini L.) landraces.

    PubMed

    Gajera, H P; Gevariya, Shila N; Hirpara, Darshna G; Patel, S V; Golakiya, B A

    2017-09-01

    Fruit phenolics are important dietary antioxidant and antidiabetic constituents. The fruit parts (pulp, seed, seed coat, kernel) of underutilized indigenous six black jamun landraces ( Syzygium cumini L.), found in Gir forest region of India and differed in their fruit size, shape and weight, are evaluated and correlated with antidiabetic, DPPH radical scavenging and phenolic constituents. The α-amylase inhibitors propose an efficient antidiabetic strategy and the levels of postprandial hyperglycemia were lowered by restraining starch breakdown. The sequential solvent systems with ascending polarity-petroleum ether, ethyl acetate, methanol and water were performed for soxhlet extraction by hot percolation method and extractive yield was found maximum with methanolic fruit part extracts of six landraces. The methanolic extracts of fruit parts also evidenced higher antidiabetic activity and hence utilized for further characterization. Among the six landraces, pulp and kernel of BJLR-6 (very small, oblong fruits) evidenced maximum 53.8 and 98.2% inhibition of α-amylase activity, respectively. The seed attained inhibitory activity mostly contributed by the kernel fraction. The inhibition of DPPH radical scavenging activity was positively correlated with phenol constituents. An HPLC-PDA technique was used to quantify the seven individual phenolics. The seed and kernel of BJLR-6 exhibited higher individual phenolics-gallic, catechin, ellagic, ferulic acids and quercetin, whereas pulp evidenced higher with gallic acid and catechin as α-amylase inhibitors. The IC 50 value indicates concentration of fruit extracts exhibiting ≥50% inhibition on porcine pancreatic α-amylase (PPA) activity. The kernel fraction of BJLR6 evidenced lowest (8.3 µg ml -1 ) IC 50 value followed by seed (12.9 µg ml -1 ), seed coat (50.8 µg ml -1 ) and pulp (270 µg ml -1 ). The seed and kernel of BJLR-6 inhibited PPA at much lower concentrations than standard acarbose (24.7

  18. Anti-diabetic activity of Holothuria thomasi saponin.

    PubMed

    El Barky, Amira R; Hussein, Samy A; Alm-Eldeen, Abeer A; Hafez, Yehia A; Mohamed, Tarek M

    2016-12-01

    Diabetes mellitus represents a global health problem. It characterized by hyperglycemia that induces oxidative stress leading to a generation of free radicals. A wide variety of natural products in plants and other marine animals represent antioxidant activity and other health benefits like those of sea cucumber. Therefore, this study aimed to investigate the antidiabetic activity of glycosidic compound - saponin - derived from the Egyptian sea cucumber, Holothuria thomasi. Saponin has been extracted from the Egyptian sea cucumber and confirmed by hemolysis, Salkowski tests, FT/IR, UV and GC-MS analysis. Eighty white female albino rats were divided into four equal groups. The first two groups of rats; control normal and control normal saponin-treated groups. The last two groups which were made diabetic by intraperitoneal injection of streptozotocin had one diabetic control and the other diabetic group that got 300mg/kg B.wt. of saponin extract after Thirty-five days after diabetes induction and lasted for six weeks. The functional group of saponin extract which established with FT/IR spectroscopy demonstrated the presence of saponin in the extracted materials as shown in the peak of the functional group in relevance to the standard one. The UV spectra revealed that λ max of saponin extract was 282nm which in accordance to the standard saponin. Also, GC-MS analysis indicated that the aglycone part of saponin was methyl esters of octadecanoic acid. Saponin extract significantly decreased serum glucose, α-amylase activity, adiponectin, IL-6, TNF-α concentrations and liver L-MDA. However, serum insulin and liver glycogen levels were significantly increased as compared with the diabetic non-treated groups. The histopathological results supported that saponin extract markedly reduced the degenerative change in β-cells. This study, therefore, depicts that the Egyptian Holothuria thomasi, sea cucumber saponin as a hypoglycemic agent with the potential to normalize

  19. Anti-diabetic effects of Sargassum oligocystum on Streptozotocin-induced diabetic rat

    PubMed Central

    Akbarzadeh, Samad; Gholampour, Hossein; Farzadinia, Parviz; Daneshi, Adel; Ramavandi, Bahman; Moazzeni, Ali; Keshavarz, Mojtaba; Bargahi, Afshar

    2018-01-01

    Objective(s): Diabetes is a metabolic syndrome which is associated with the worldwide major public health problems. There are many natural compounds from the sea-market, as a valuable aquatic source, along with the variety of health and therapeutic benefits. In the present research, with respect to the traditional and ethnic uses of Sargassum oligocystum algae for healing of some diseases which have similar metabolic mechanism to the diabetes, its anti-diabetic effects in animal model was proposed. Materials and Methods: The animals (rat) were divided into the normal control, diabetic control, positive control and, the test groups. The test groups were gavaged with oral doses of 150 and 300 mg/kg of algae hydroalcoholic extracts. After 30 days of intervention the serum glucose, cholesterol, triglyceride, HDLC, LDLC, insulin, insulin resistance, β-cells function and, the histopathology of pancreatic tissue were evaluated. Results: In animals that were fed with algae extracts a significant decrease in the fasting blood glucose, triglyceride and HOMA-IR and an increase in the HOMA-B with no significant impacts on the insulin, cholesterol and HDL were observed. Also, the histopathology evaluations in the groups which were treated with algae extract revealed the regeneration and reconstitution of damaged pancreatic β-cells. Conclusion: The results give evidence that, the S. oligocystum algae extract has a healing effect on diabetes which can be considered as a new research prospect for the natural therapy of diabetes. PMID:29511502

  20. Anti-diabetic effects of Sargassum oligocystum on Streptozotocin-induced diabetic rat.

    PubMed

    Akbarzadeh, Samad; Gholampour, Hossein; Farzadinia, Parviz; Daneshi, Adel; Ramavandi, Bahman; Moazzeni, Ali; Keshavarz, Mojtaba; Bargahi, Afshar

    2018-03-01

    Diabetes is a metabolic syndrome which is associated with the worldwide major public health problems. There are many natural compounds from the sea-market, as a valuable aquatic source, along with the variety of health and therapeutic benefits. In the present research, with respect to the traditional and ethnic uses of Sargassum oligocystum algae for healing of some diseases which have similar metabolic mechanism to the diabetes, its anti-diabetic effects in animal model was proposed. The animals (rat) were divided into the normal control, diabetic control, positive control and, the test groups. The test groups were gavaged with oral doses of 150 and 300 mg/kg of algae hydroalcoholic extracts. After 30 days of intervention the serum glucose, cholesterol, triglyceride, HDL C , LDL C , insulin, insulin resistance, β-cells function and, the histopathology of pancreatic tissue were evaluated. In animals that were fed with algae extracts a significant decrease in the fasting blood glucose, triglyceride and HOMA-IR and an increase in the HOMA-B with no significant impacts on the insulin, cholesterol and HDL were observed. Also, the histopathology evaluations in the groups which were treated with algae extract revealed the regeneration and reconstitution of damaged pancreatic β-cells. The results give evidence that, the S. oligocystum algae extract has a healing effect on diabetes which can be considered as a new research prospect for the natural therapy of diabetes.

  1. Chemical compounds from Chenopodium album Linn.

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2017-06-01

    Bioactive components from Chenopodium album Linn. were isolated and identified in this research. Light petroleum, dichloromethane and n-BuOH were firstly applied to partition the 75% EtOH extract of Chenopodium album Linn. which were then subjected to normal-phase silica, ODS silica gel column chromatography and semi-preparative HPLC chromatography. By the employment of NMR method in this study, chemical structures of the compounds were elucidated. Three known compounds were isolated from Chenopodium album Linn., and identified as Isolariciresinol 4-O-β-D-glucopyranoside (1), (7’S, 8R, 8’R)-Isolariciresinol (2) and (7’S, 8R, 8’S)-Isolariciresinol (3) by comparison of their spectral data with references. This is the first time that isolation of the compounds mentioned above from Chenopodium album Linn. was achieved.

  2. Efficacy and safety profile evaluation of acarbose alone and in association with other antidiabetic drugs: a systematic review.

    PubMed

    Derosa, Giuseppe; Maffioli, Pamela

    2012-06-01

    Epidemiologic studies have revealed that postprandial hyperglycemia significantly contributes to high glycated hemoglobin concentrations and could be linked to the development of chronic diabetic complications. The purpose of our review was to evaluate the clinical efficacy and safety profile of treatment with acarbose alone and combined with other antidiabetic drugs. A systematic search strategy was developed to identify randomized controlled trials included in MEDLINE and the Cochrane Register of Controlled Trials. The terms acarbose, α-glucosidase inhibitors, type 2 diabetes, adverse events, combination therapy, and postprandial glucose were incorporated into an electronic search strategy that included the Dickersin filter for randomized controlled trials. To qualify for inclusion, clinical trials had to be randomized trials comparing treatment with acarbose at any dosage with any other antidiabetic drug in patients with type 2 diabetes mellitus or impaired glucose tolerance. Eligible trials had to present results on glycemic control or adverse events. Trial participants needed to be affected by type 2 diabetes mellitus or have impaired glucose tolerance, and the intervention had to include acarbose at any dosage as monotherapy or combined with other antidiabetic drugs. A validated 3-item scale was used to evaluate the overall reporting quality of the trials selected for inclusion in the present review. Nineteen trials were included. Treatment with acarbose significantly reduced glycated hemoglobin levels when given as monotherapy and as an add-on to other antidiabetic drug treatment (P < 0.0001). Acarbose treatment was effective in patients with uncontrolled type 2 diabetes and in patients with apparently good metabolic control owing to its positive effect on postprandial hyperglycemia (P < 0.0001). Treatment with acarbose seemed to improve the lipid profile (P < 0.05), reduce circulating levels of cell adhesion molecules (P < 0.05), reduce intima

  3. Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats.

    PubMed

    Akhtar, Muhammad Tayyab; Bin Mohd Sarib, Mohamad Syakir; Ismail, Intan Safinar; Abas, Faridah; Ismail, Amin; Lajis, Nordin Hj; Shaari, Khozirah

    2016-08-09

    Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese-diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.

  4. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides.

    PubMed

    Bajpai, Vivek K; Sharma, Ajay; Kang, Sun Chul; Baek, Kwang-Hyun

    2014-01-01

    To investigate the antioxidant efficacy of a biologically active diterpenoid compound sugiol isolated from Metasequoia glyptostroboides (M. glyptostroboides) in various antioxidant models. An abietane type diterpenoid sugiol, isolated from ethyl acetate extract of M. glyptostroboides cones, was analyzed for its antioxidant efficacy as reducing power ability and lipid peroxidation inhibition as well as its ability to scavenge free radicals such as 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl radicals. The sugiol showed significant and concentration-dependent antioxidant and free radical scavenging activities. Consequently, the sugiol exerted lipid peroxidation inhibitory effect by 76.5% as compared to α-tocopherol (80.13%) and butylated hydroxyanisole (76.59%). In addition, the sugiol had significant scavenging activities of 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl free radicals in a concentration-dependent manner by 78.83%, 72.42%, 72.99% and 85.04%, when compared to the standard compound ascorbic acid (81.69%, 74.62%, 73.00% and 73.79%) and α-tocopherol/butylated hydroxyanisole (84.09%, 78.61%, 74.45% and 70.02%), respectively. These findings justify the biological and traditional uses of M. glyptostroboides or its secondary metabolites as confirmed by its promising antioxidant efficacy. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. A comparative study on the potential of epiphytic yeasts isolated from tropical fruits to produce flavoring compounds.

    PubMed

    Grondin, Eric; Shum Cheong Sing, Alain; Caro, Yanis; Raherimandimby, Marson; Randrianierenana, Ando Lalaniaina; James, Steve; Nueno-Palop, Carmen; François, Jean Marie; Petit, Thomas

    2015-06-16

    In recent years, there has been an increasing interest in identifying and characterizing the yeast flora associated with diverse types of habitat because of the many potential desirable technological properties of these microorganisms, especially in food applications. In this study, a total of 101 yeast strains were isolated from the skins of tropical fruits collected in several locations in the South West Indian Ocean. Sequence analysis of the D1/D2 domains of the large subunit (LSU) ribosomal RNA gene identified 26 different species. Among them, two species isolated from the skins of Cape gooseberry and cocoa beans appeared to represent putative new yeast species, as their LSU D1/D2 sequence was only 97.1% and 97.4% identical to that of the yeasts Rhodotorula mucilaginosa and Candida pararugosa, respectively. A total of 52 Volatile Organic Compounds (VOCs) were detected by Head Space Solid Phase Micro Extraction coupled to Gas Chromatography and Mass Spectroscopy (HS-SPME-GC/MS) from the 26 yeast species cultivated on a glucose rich medium. Among these VOCs, 6 uncommon compounds were identified, namely ethyl but-2-enoate, ethyl 2-methylbut-2-enoate (ethyl tiglate), ethyl 3-methylbut-2-enoate, 2-methylpropyl 2-methylbut-2-enoate, butyl 2-methylbut-2-enoate and 3-methylbutyl 2-methylbut-2-enoate, making them possible yeast species-specific markers. In addition, statistical methods such as Principal Component Analysis allowed to associate each yeast species with a specific flavor profile. Among them, Saprochaete suaveolens (syn: Geotrichum fragrans) turned to be the best producer of flavor compounds, with a total of 32 out of the 52 identified VOCs in its flavor profile. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Studies on the Antidiabetic Activities of Cordyceps militaris Extract in Diet-Streptozotocin-Induced Diabetic Sprague-Dawley Rats

    PubMed Central

    Dong, Yuan; Jing, Tianjiao; Meng, Qingfan; Liu, Chungang; Hu, Shuang; Ma, Yihang; Liu, Yan; Lu, Jiahui; Cheng, Yingkun; Teng, Lirong

    2014-01-01

    Due to substantial morbidity and high complications, diabetes mellitus is considered as the third “killer” in the world. A search for alternative antidiabetic drugs from herbs or fungi is highly demanded. Our present study aims to investigate the antidiabetic activities of Cordyceps militaris on diet-streptozotocin-induced type 2 diabetes mellitus in rats. Diabetic rats were orally administered with water extract or alcohol extract at 0.05 g/kg and 2 g/kg for 3 weeks, and then, the factors levels related to blood glucose, lipid, free radicals, and even nephropathy were determined. Pathological alterations on liver and kidney were examined. Data showed that, similar to metformin, Cordyceps militaris extracts displayed a significant reduction in blood glucose levels by promoting glucose metabolism and strongly suppressed total cholesterol and triglycerides concentration in serum. Cordyceps militaris extracts exhibit antioxidative effects indicated by normalized superoxide dismutase and glutathione peroxidase levels. The inhibitory effects on blood urea nitrogen, creatinine, uric acid, and protein revealed the protection of Cordyceps militaris extracts against diabetic nephropathy, which was confirmed by pathological morphology reversion. Collectively, Cordyceps militaris extract, a safe pharmaceutical agent, presents excellent antidiabetic and antinephropathic activities and thus has great potential as a new source for diabetes treatment. PMID:24738047

  7. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro

    PubMed Central

    Keller, Amy C.; Ma, Jun; Kavalier, Adam; He, Kan; Brillantes, Anne-Marie B.; Kennelly, Edward J.

    2012-01-01

    The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p= 0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay. PMID:22133295

  8. Assessment of resistomycin, as an anticancer compound isolated and characterized from Streptomyces aurantiacus AAA5.

    PubMed

    Vijayabharathi, Rajendran; Bruheim, Per; Andreassen, Trygve; Raja, Duraisamy Senthil; Devi, Palanisamy Bruntha; Sathyabama, Sathyaseelan; Priyadarisini, Venkatesan Brindha

    2011-12-01

    A new actinomycete strain, isolated from humus soils in the Western Ghats, was found to be an efficient pigment producer. The strain, designated AAA5, was identified as a putative Streptomyces aurantiacus strain based on cultural properties, morphology, carbon source utilization, and analysis of the 16S rRNA gene. The strain produced a reddish-brown pigmented compound during the secondary metabolites phase. A yellow compound was derived from the extracted pigment and was identified as the quinone-related antibiotic resistomycin based on ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, liquid chromatography and mass spectroscopy, and nuclear magnetic resonance analyses. The AAA5 strain was found to produce large quantities of resistomycin (52.5 mg/L). It showed potent cytotoxic activity against cell lines viz. HepG2 (hepatic carcinoma) and HeLa (cervical carcinoma) in vitro, with growth inhibition (GI(50)) of 0.006 and 0.005 μg/ml, respectively. The strain also exhibited broad antimicrobial activities against both Gram-positive and Gram-negative bacteria. Therefore, AAA5 may have great potential as an industrial resistomycin-producing strain.

  9. [Isolation and purification of seven catechin compounds from fresh tea leaves by semi-preparative liquid chromatography].

    PubMed

    Gong, Zhihong; Chen, Si; Gao, Jiangtao; Li, Meihong; Wang, Xiaxia; Lin, Jun; Yu, Xiaomin

    2017-11-08

    An effective and simple method was established to simultaneously purify seven tea catechins (gallocatechin (GC), epigallocatechin (EGC), catechin (C), epigallocatechin-3- O -gallate (EGCG), epicatechin (EC), epigallocatechin-3- O -(3- O -methyl)-gallate (EGCG3"Me) and epicatechin-3- O -gallate (ECG)) from fresh tea leaves by semi-preparative high performance liquid chromatography (HPLC). Fresh leaves of Tieguanyin tea were successively extracted with methanol and chloroform. Then crude catechins were precipitated from the aqueous fraction of chloroform extraction by adding lead subacetate. Crude catechins were used for the isolation of the seven target catechin compounds by semi-preparative HPLC. Methanol-water and acetonitrile-water were sequentially used as mobile phases. After two rounds of semi-preparative HPLC, all target compounds were achieved with high purities (>90%). The proposed method was tested on two additional tea cultivars and showed similar results. This method demonstrated a simple and efficient strategy based on solvent extraction, ion precipitation and semi-preparative HPLC for the preparation of multiple catechins from tea leaves.

  10. Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae)

    PubMed Central

    2013-01-01

    Background Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia generally associated with oxidative stress. The present study aims at evaluating the antioxidant and antidiabetic potential of methanol and hydroethanol extracts of the stem bark and leaves of Pricralima nitida and the Sonchus oleraceus whole plant respectively. Methods The in vitro antioxidant activity was assessed using 1,1-Diphenyl-2-picrilhydrazyl (DPPH) for free radical-scavenging properties of the extracts, and the Folin-Ciocalteu method in determining their phenol contents. The antidiabetic activity was tested in mice following streptozotocin diabetes induction, and selected oxidative stress markers (Malondialdehyde, Hydrogen peroxides and Catalase) were measured in order to evaluate the level of oxidative stress in treated animals. Results The in vitro antioxidant activity using DPPH showed IC50 ranging from 0.19 ± 0.08 to 1.00 ± 0.06 mg/mL. The highest activity was obtained with the hydroethanol extracts of S. oleraceus (0.19 mg/mL and P. nitida (0.24 mg/mL). Polyphenol contents ranged from 182.25 ± 16.76 to 684.62 ± 46.66 μg Eq Cat/g. The methanol extract of P. nitida showed the highest activity, followed by the hydroethanol extract of S. oleraceus (616.89 ± 19.20 μEq Cat/g). The hydroethanol extract of whole plants (150 mg/Kg) and methanol leave extract of P. nitida (300 mg/Kg) exhibited significant antidiabetic activities with 39.40% and 38.48% glycaemia reduction, respectively. The measurement of stress markers in plasma, liver and kidney after administration of both extracts showed significant reduction in MDA and hydrogen peroxide levels, coupled with a substantial increase in catalase activity. Conclusions These findings suggest that S. oleraceus whole plant and P. nitida leaves possess both antidiabetic and antioxidant properties, and therefore could be used as starting point for the development of herbal medicines and

  11. Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae).

    PubMed

    Teugwa, Clautilde Mofor; Mejiato, Pascaline Chouadeu; Zofou, Denis; Tchinda, Bruno Tugnoua; Boyom, Fabrice Fekam

    2013-07-15

    Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia generally associated with oxidative stress. The present study aims at evaluating the antioxidant and antidiabetic potential of methanol and hydroethanol extracts of the stem bark and leaves of Pricralima nitida and the Sonchus oleraceus whole plant respectively. The in vitro antioxidant activity was assessed using 1,1-Diphenyl-2-picrilhydrazyl (DPPH) for free radical-scavenging properties of the extracts, and the Folin-Ciocalteu method in determining their phenol contents. The antidiabetic activity was tested in mice following streptozotocin diabetes induction, and selected oxidative stress markers (Malondialdehyde, Hydrogen peroxides and Catalase) were measured in order to evaluate the level of oxidative stress in treated animals. The in vitro antioxidant activity using DPPH showed IC50 ranging from 0.19 ± 0.08 to 1.00 ± 0.06 mg/mL. The highest activity was obtained with the hydroethanol extracts of S. oleraceus (0.19 mg/mL and P. nitida (0.24 mg/mL). Polyphenol contents ranged from 182.25 ± 16.76 to 684.62 ± 46.66 μg Eq Cat/g. The methanol extract of P. nitida showed the highest activity, followed by the hydroethanol extract of S. oleraceus (616.89 ± 19.20 μEq Cat/g). The hydroethanol extract of whole plants (150 mg/Kg) and methanol leave extract of P. nitida (300 mg/Kg) exhibited significant antidiabetic activities with 39.40% and 38.48% glycaemia reduction, respectively. The measurement of stress markers in plasma, liver and kidney after administration of both extracts showed significant reduction in MDA and hydrogen peroxide levels, coupled with a substantial increase in catalase activity. These findings suggest that S. oleraceus whole plant and P. nitida leaves possess both antidiabetic and antioxidant properties, and therefore could be used as starting point for the development of herbal medicines and/or source of new drug molecules against

  12. Metabolite profiling and isolation of biologically active compounds from Scadoxus puniceus, a highly traded South African medicinal plant.

    PubMed

    Naidoo, Devashan; Slavětínská, Lenka Poštová; Aremu, Adeyemi O; Gruz, Jiri; Biba, Ondrej; Doležal, Karel; Van Staden, Johannes; Finnie, Jeffrey F

    2018-04-01

    Scadoxus puniceus (Amaryllidaceae), a medicinal plant of high value in South Africa, is used as a component of a traditional herbal tonic prescribed to treat several ailments. Ultra-high performance liquid chromatography-tandem mass spectrometry quantified the phenolic compounds in different organs of S. puniceus. Gravity column chromatography was used to separate fractions and active compounds. The structure of these compounds was determined using 1D and 2D nuclear magnetic resonance and mass spectroscopic techniques. A microplate technique was used to determine the acetylcholinesterase inhibitory activity of the pure compounds. Metabolite profiling revealed a greater profusion of hydroxycinnamic acids (69.5%), as opposed to hydroxybenzoic acids (30.5%). Chlorogenic acid was the most abundant (49.6% of hydroxycinnamic acids) compound. In addition to chlorogenic acid, the study is the first to report the presence of sinapic, gallic, and m-hydroxybenzoic acids in the Amaryllidaceae. Chromatographic separation of S. puniceus led to the isolation of haemanthamine (1), haemanthidine (2), and a rare chlorinated amide, metolachlor (3), the natural occurrence of which is described for the first time. Haemanthamine, haemanthidine, and metolachlor displayed strong acetylcholinesterase inhibitory activity (IC 50 ; 23.1, 23.7, and 11.5 μM, respectively). These results substantiate the frequent use of S. puniceus as a medicinal plant and hold much promise for further pharmaceutical development. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Neuroprotective compounds of Tilia amurensis

    PubMed Central

    Lee, Bohyung; Weon, Jin Bae; Eom, Min Rye; Jung, Youn Sik; Ma, Choong Je

    2015-01-01

    Background: Tilia amurensis (Tiliacese) has been used for anti-tumor and anti-inflammatory in Korea, China, and Japan. Objective: In this study, we isolated five compounds from T. amurensis and determined whether protected neuronal cells against glutamate-induced oxidative stress in HT22 cells. Materials and Methods: Compounds were isolated using chromatographic techniques including silica gel, Sephadex LH-20 open column and high performance liquid chromatography analysis, and evaluated neuroprotective effect in HT22 cells by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: β-D-fructofuranosyl α-D-glucopyranoside (1), (-)-epicatechin (2), nudiposide (3), lyoniside (4), and scopoletin (5) were isolated by bioactivity-guided fractionation from the ethyl acetate fraction of T. amurensis. Among them, (-)-epicatechin, nudiposide, lyoniside, and scopoletin had significant neuroprotective activities against glutamate-injured neurotoxicity in HT22 cells. Conclusion: These results demonstrated that compound two, three, four, and five have a pronounced protective effect against glutamate-induced neurotoxicity in HT22 cells. PMID:26664019

  14. Antifouling Compounds from Marine Macroalgae

    PubMed Central

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-01-01

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way. PMID:28846625

  15. Antifouling Compounds from Marine Macroalgae.

    PubMed

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  16. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum Sims grown in Ghana

    USDA-ARS?s Scientific Manuscript database

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O.canum are used as an antidiabetic herbal medicine in Ghana. Interestingly, rosmarinic acid content and p...

  17. Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice.

    PubMed

    Son, Myoung Jin; Miura, Yutaka; Yagasaki, Kazumi

    2015-08-01

    There have been studies on health beneficial effects of ginger and its components. However, there still remain certain aspects that are not well defined in their anti-hyperglycemic effects. Our aims were to find evidence of possible mechanisms for antidiabetic action of [6]-gingerol, a pungent component of ginger, employing a rat skeletal muscle-derived cell line, a rat-derived pancreatic β-cell line, and type 2 diabetic model animals. The antidiabetic effect of [6]-gingerol was investigated through studies on glucose uptake in L6 myocytes and on pancreatic β-cell protective ability from reactive oxygen species (ROS) in RIN-5F cells. Its in vivo effect was also examined using obese diabetic db/db mice. [6]-Gingerol increased glucose uptake under insulin absent condition and induced 5' adenosine monophosphate-activated protein kinase phosphorylation in L6 myotubes. Promotion by [6]-gingerol of glucose transporter 4 (GLUT4) translocation to plasma membrane was visually demonstrated by immunocytochemistry in L6 myoblasts transfected with glut4 cDNA-coding vector. [6]-Gingerol suppressed advanced glycation end product-induced rise of ROS levels in RIN-5F pancreatic β-cells. [6]-Gingerol feeding suppressed the increases in fasting blood glucose levels and improved glucose intolerance in db/db mice. [6]-Gingerol regulated hepatic gene expression of enzymes related to glucose metabolism toward decreases in gluconeogenesis and glycogenolysis as well as an increase in glycogenesis, thereby contributing to reductions in hepatic glucose production and hence blood glucose concentrations. These in vitro and in vivo results strongly suggest that [6]-gingerol has antidiabetic potential through multiple mechanisms.

  18. Antiosteoporotic compounds from seeds of Cuscuta chinensis.

    PubMed

    Yang, Lijuan; Chen, Qianfeng; Wang, Fei; Zhang, Guolin

    2011-05-17

    The seeds of Cuscuta chinensis (Tu-Si-Zi, TSZ) have long been used for the treatment of osteoporosis in China and some Asian countries. The compounds in TSZ responsible for the antiosteoporotic activity are still poorly understood. The present study was designed to investigate the osteogenic compounds in TSZ, and to evaluate their antiosteoporotic effects in osteoblastic cells. Osteoblast-like UMR-106 cells were used for bioactivity-guided isolation of the active compounds. The activity of alkaline phosphatase (ALP) in UMR-106 cells was measured by p-nitrophenyl sodium phosphate assay. The proliferation of UMR-106 cells was assayed by Alamar-Blue method. Estrogenic activity of the extracts and isolated compounds was evaluated by activation of estrogen response element (ERE) luciferase reporter expression in HeLa cells co-transfected with human estrogen receptor subtypes (ERα or ERβ) expression vectors and 5×ERE luciferase reporter plasmid. Antiestrogenic activity of the extracts and isolated compounds were evaluated by activation of activator protein-1 (AP-1) luciferase reporter expression in HeLa cells co-transfected with human estrogen receptor subtypes (ERα or ERβ) expression vectors and 6×AP-1 luciferase reporter plasmid. ALP-guided fractionation led to the isolation of five known flavonoids, quercetin, kaempferol, isorhamnetin, hyperoside and astragalin from the crude ethanolic extract of TSZ. Further study showed that kaempferol and hyperoside significantly increased the ALP activity in UMR-106 cells. Astragalin promoted the proliferation of UMR-106 cells whereas other compounds had no such effect. The isolated compounds showed estrogenic activity but quercetin, kaempferol and isorhamnetin showed more potent ERβ agonist activity. However, compared with their ER agonist activity, only quercetin and kaempferol showed potent ER antagonist activity by activating ERα/β-mediated AP-1 reporter expression. Our findings validated the clinical use of TSZ in

  19. Antisecretory actions of Baccharis trimera (Less.) DC aqueous extract and isolated compounds: analysis of underlying mechanisms.

    PubMed

    Biondo, Thais Maíra A; Tanae, Mirtes M; Coletta, Eliana Della; Lima-Landman, Maria Teresa R; Lapa, Antonio J; Souccar, Caden

    2011-06-22

    Baccharis trimera (Less.) DC. (Asteraceae) is a species native to South America used in Brazilian folk medicine to treat gastrointestinal and liver diseases, kidney disorders and diabetes. Previous studies from this laboratory confirmed the antacid and antiulcer activities of the plant aqueous extract (AE) in rat and mouse models. To investigate the mechanisms involved in the antacid action of AE and isolated compounds from Baccharis trimera. AE was assayed in vivo in cold-restraint stress gastric ulcers and in pylorus-ligated mice. Nine fractions (F2-F10) previously isolated from AE were assayed in vitro on acid secretion measured as [(14)C]-aminopyrine ([(14)C]-AP) accumulation in rabbit gastric glands, and on gastric microsomal H(+), K(+)-ATPase preparations. Chlorogenic acids (F2, F3, F6, F7), flavonoids (F9), an ent-clerodane diterpene (F8) and a dilactonic neo-clerodane diterpene (F10) have been identified in these fractions. Intraduodenal injection of AE (1.0 and 2.0 g/kg) in 4h pylorus-ligated mice decreased the volume (20 and 50%) and total acidity (34 and 50%) of acid secretion compared to control values. Administered orally at the same doses AE protected against gastric mucosal lesions induced in mice by restraint at 4°C. Exposure of isolated rabbit gastric glands to fractions F8 (10-100 μM) and F9 (10-300 μg/ml) decreased the basal [(14)C]-AP uptake by 50 and 60% of control (Ratio=6.2±1.1), whereas the remaining fractions were inactive. In the presence of the secretagogues F2 and F4 (30-300 μg/ml) decreased the [(14)C]-AP uptake induced by histamine (His) with a 100-fold lower potency than that of ranitidine. F5 and F6 reduced the [(14)C]-AP uptake stimulated by carbachol (CCh), but they were 10 to 20-fold less potent than atropine. F8 (diterpene 2) and F9 (flavonoids) decreased both the His- and CCh-induced [(14)C]-AP uptake, whereas F10 (diterpene 1) was inactive against the [(14)C]-AP uptake stimulated by secretagogues. Diterpene 2 was the most

  20. Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose

    PubMed Central

    Zhang, Jinhui; Li, Li; Kim, Sung-Hoon; Hagerman, Ann E.; Lü, Junxuan

    2010-01-01

    1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose (PGG) is a polyphenolic compound highly enriched in a number of medicinal herbals. Several in vitro and a handful of in vivo studies have shown that PGG exhibits multiple biological activities which implicate a great potential for PGG in the therapy and prevention of several major diseases including cancer and diabetes. Chemically and functionally, PGG appears to be distinct from its constituent gallic acid or tea polyphenols. For anti-cancer activity, three published in vivo preclinical cancer model studies with PGG support promising efficacy to selectively inhibit malignancy without host toxicity. Potential mechanisms include anti-angiogenesis, anti-proliferative actions through inhibition of DNA replicative synthesis and S-phase arrest and also G1 arrest, induction of apoptosis, anti-inflammation and anti-oxidation. Putative molecular targets include p53, Stat3, Cox-2, VEGFR1, AP-1, SP-1, Nrf-2 and MMP-9. For anti-diabetic activity, PGG and analogues appear to improve glucose uptake. However, very little is known about the absorption, pharmacokinetics and metabolism of PGG, nor its toxicity profile. The lack of large quantity of highly pure PGG has been a bottleneck limiting in vivo validation of cancer preventive and therapeutic efficacies in clinically relevant models. PMID:19575286

  1. Heterocyclic Compounds: Effective α-Amylase and α-Glucosidase Inhibitors.

    PubMed

    Saeedi, Mina; Hadjiakhondi, Abbas; Nabavi, Seyed Mohammad; Manayi, Azadeh

    2017-01-01

    Diabetes Mellitus (DM) is a metabolic disease characterized by high blood sugar levels. Recently, it has emerged as an important and global health problem with long-term complications and high economic burden. α-Amylase (α-Amy) and α-glucosidase (α-Gls) are two enzymes which are involved in the hydrolysis of starch into sugars and disaccharides leading to the increase of blood glucose level. Hence, inhibition of α-amylase and α-glucosidase plays key role in the treatment of type 2 diabetes. Heterocyclic compounds -both synthetic and naturally occurring derivatives- possess efficient biological properties. At this juncture, they have demonstrated potent inhibitory activity against α-Amy and α-Gls and were found to be versatile tools for the development of novel anti-diabetic agents.

  2. Examinations of the matrix isolation fourier transform infrared spectra of organic compounds: Part XII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, W. M., III; Gordon, B. M.; Lawrence, B. M.

    1989-02-01

    Matrix isolation Fourier transform infrared spectra (MI/FT-IR), massspectra (MS), carbon-13 Nuclear Magnetic Resonance (/sup 13/C-NMR) spectra,condensed-phase infrared spectra, and vapor-phase infrared (IR)spectra are presented for a series of terpene compounds. Subtle differencesin positional and configurational isomers commonly found withterpenes could be easily detected by the MI/FT-IR spectra. The resultsare comparable in some aspects to those obtainable from /sup 13/C-NMR andthin-film IR; however, most importantly, they are acquired at the lownanogram level for MI/FT-IR, as compared to the milligram level forthe other techniques. These results represent an advance in the technologyavailable for the analysis of complex mixtures such as essential oilscontainingmore » terpene-like molecules.« less

  3. Bioassay-guided isolation of wound healing active compounds from Echium species growing in Turkey.

    PubMed

    Eruygur, Nuraniye; Yılmaz, Gülderen; Kutsal, Osman; Yücel, Gözde; Üstün, Osman

    2016-06-05

    The roots and root barks of Echium sp. have been used to treat ulcers, burns and wounds in traditional Turkish medicine. On the basis of them traditional use and literature references, four Echium species were selected for evaluation of them wound healing potential. Isolation of active component(s) from the active extracts through the bioassay guided fractionation procedures. In vivo the wound healing activity of the plants was evaluated by linear incision experimental models. The chloroform extract of Echium italicum L. was fractionated by successive chromatographic techniques. Wound healing activity of each fraction was investigated following the bioassay-guided fractionation procedures. Moreover, the tissue samples of isolated compounds were examined histopathologically. The healing potential was comparatively assessed with a reference ointment Madecassol®, which contains 1% extract of Centella asiatica. Significant wound healing activity was observed from the ointment prepared with ethanol extract at 1% concentration. The ethanol root extract treated in groups of animals showed a significant increase (37.38%, 40.97% and 35.29% separately for E. italicum L, Echium vulgare L. and Echium angustifolium Miller) wound tensile strength in the incision wound model. Subfractions showed significant but reduced wound healing activity on in vivo wound models. Shikonin derivatives "Acetylshikonin", "Deoxyshikonin" and "2-methyl-n-butyrylshikonin+Isovalerylshikonin", were isolated and determined as active components of active final subfraction from E. italicum L. roots. The results of histopathological examination supported the outcome of linear incision wound models. The experimental study revealed that Echium species display remarkable wound healing activity. Copyright © 2016. Published by Elsevier Ireland Ltd.

  4. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds

    PubMed Central

    Bounda, Guy-Armel; Feng, YU

    2015-01-01

    Polygonum multiflorum Thunb. (PMT), officially listed in the Chinese Pharmacopoeia, is one of the most popular perennial Chinese traditional medicines known as He shou wu in China and East Asia, and as Fo-ti in North America. Mounting pharmacological studies have stressed out its key benefice for the treatment of various diseases and medical conditions such as liver injury, cancer, diabetes, alopecia, atherosclerosis, and neurodegenerative diseases as well. International databases such as PubMed/Medline, Science citation Index and Google Scholar were searched for clinical studies recently published on P. multiflorum. Various clinical studies published articles were retrieved, providing information relevant to pharmacokinetics-pharmacodynamics analysis, sleep disorders, dyslipidemia treatment, and neurodegenerative diseases. This review is an effort to update the clinical picture of investigations ever carried on PMT and/or its isolated bio-compounds and to enlighten its therapeutic assessment. PMID:26130933

  5. Bio-guided isolation of antioxidant compounds from Chrysophyllum perpulchrum, a plant used in the Ivory Coast pharmacopeia.

    PubMed

    Philippe, Bidie Alain; Karine, Ndjoko; Barthélemy, Attioua Koffi; Noél, Zirihi Guédé; David, N'guessan Jean; Joseph, Djaman Allico; Hosttetmann, Kurt

    2010-09-13

    Chrysophyllum perpulchrum (Sapotaceae) is used in the traditional Ivory Coast pharmacopeia to cure fevers. The extract of C. perpulchrum used for this study was the powdered form obtained from the maceration of the dried plant bark in 96% methanol, followed by evaporation to dryness. In the present study, the antioxidative and radical-scavenging activities of the methanolic extract were studied with three standard biological tests: DPPH reduction, ferric thiocyanate (FTC) lipidic peroxidation inhibition and thiobarbituric acid reacting substances (TBARS). Gallic acid and quercetin were used as references. The total amount of phenolic compounds in the extract was determined by ultraviolet (UV) spectrometry and calculated as gallic acid equivalents. Catechin and two dimeric procyanidins were found to be the compounds responsible for the activities. They were chemically dereplicated in the extract by LC-MS. For quantitation purposes, they were isolated by successive chromatographic methods and characterized by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectrometry. The quantities of these compounds in C. perpulchrum were 5.4% for catechin (P1), and 5.6 and 9.2% for dimers (compounds 2 (P2) and 3 (P3)), respectively. They displayed antioxidant activity with IC(50) values of 2.50 ± 0.15 µg/mL (P1), 2.10 ± 0.2 µg/mL (P2) and 2.10 ± 0.1 µg/mL (P3). The total extract, the active fractions and the pure compounds inhibited the lipid peroxidation by the FTC method and the TBARS method in the range of 60%. These values were comparable to those seen for quercetin.

  6. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity

    PubMed Central

    Patel, DK; Kumar, R; Laloo, D; Hemalatha, S

    2012-01-01

    Diabetes mellitus is not a single disease but is a group of metabolic disorders affecting a huge number of population in the world. It is mainly characterized by chronic hyperglycemia, resulting from defects in insulin secretion or insulin action. It is predicated that the number of diabetes person in the world could reach upto 366 million by the year 2030. Even though the cases of diabetes are increasing day by day, except insulin and oral hypoglycemic drugs no other way of treatment has been successfully developed so far. Thus, the objective of the present review is to provide an insight over the pathophysiological and etiological aspects of diabetes mellitus along with the remedies available for this metabolic disorder. The review also contains brief idea about diabetes mellitus and the experimental screening model with their relevant mechanism and significance mainly used nowadays. Alloxan and streptozotocin are mainly used for evaluating the antidiabetic activity of a particular drug. This review contain list of medicinal plants which have been tested for their antidiabetic activity in the alloxan induced diabetic rat model. From the available data in the literature, it was found that plant having antidiabetic activity is mainly due to the presence of the secondary metabolite. Thus, the information provided in this review will help the researchers for the development of an alternative methods rather than insulin and oral hypoglycemic agents for the treatment of diabetes mellitus, which will minimize the complication associated with the diabetes and related disorder. PMID:23569941

  7. The melanin synthesis inhibition and radical scavenging activities of compounds isolated from the aerial part of Lespedeza cyrtobotrya.

    PubMed

    Lee, Mi Yeon; Kim, Jin Hee; Choi, Jung Nam; Kim, Jiyoung; Hwang, Geum Sook; Lee, Choonghwan

    2010-06-01

    The EtOAc fraction of Lespedeza cyrtobotrya showed mushroom tyrosinase inhibitory and radical scavenging activity. Four active compounds were isolated based on LH-20 chromatography and HPLC, and the structures were elucidated on the basis of their LC-MS and NMR spectral data, as 2-(2,4-Dihydroxyphenyl)-6-hydroxybenzofuran (1), eriodictyol-7-O-glucopyranoside (2), haginin A (3), and dalbergioidin (4), respectively. 2-(2,4-Dihydroxyphenyl)-6-hydroxybenzofuran (1) showed mushroom tyrosinase inhibitory activity with an IC50 value of 5.2 micronM and acted as a competitive inhibitor. Furthermore, 37.3 micronM of compound 1 reduced 50 % of the melanin content on a human melanoma (MNT-1) cells. The radical scavenging activity of 2-(2,4-dihydroxyphenyl)-6-hydroxybenzofuran (1), eriodictyol-7-O-glucopyranoside (2), haginin A (3), and dalbergioidin (4) was shown with IC50 values of 11.0, 24.5, 9.0 and 36.5 micronM in an ABTS system and with IC50 values of 42.7, 36.0, 37.7 and 61.7 micronM in a DPPH system, respectively. The mushroom tyrosinase inhibitory activity of EtOAc fraction of Lespedeza cyrtobotrya was contributed by compound 1, 3 and 4, and radical scavenging activity of it was contributed by compound 1-4.

  8. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    PubMed

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  9. Glycaemic control and antidiabetic therapy in patients with diabetes mellitus and chronic kidney disease - cross-sectional data from the German Chronic Kidney Disease (GCKD) cohort.

    PubMed

    Busch, Martin; Nadal, Jennifer; Schmid, Matthias; Paul, Katharina; Titze, Stephanie; Hübner, Silvia; Köttgen, Anna; Schultheiss, Ulla T; Baid-Agrawal, Seema; Lorenzen, Johan; Schlieper, Georg; Sommerer, Claudia; Krane, Vera; Hilge, Robert; Kielstein, Jan T; Kronenberg, Florian; Wanner, Christoph; Eckardt, Kai-Uwe; Wolf, Gunter

    2016-06-11

    Diabetes mellitus (DM) is the leading cause of end-stage renal disease. Little is known about practice patterns of anti-diabetic therapy in the presence of chronic kidney disease (CKD) and correlates with glycaemic control. We therefore aimed to analyze current antidiabetic treatment and correlates of metabolic control in a large contemporary prospective cohort of patients with diabetes and CKD. The German Chronic Kidney Disease (GCKD) study enrolled 5217 patients aged 18-74 years with an estimated glomerular filtration rate (eGFR) between 30-60 mL/min/1.73 m(2) or proteinuria >0.5 g/d. The use of diet prescription, oral anti-diabetic medication, and insulin was assessed at baseline. HbA1c, measured centrally, was the main outcome measure. At baseline, DM was present in 1842 patients (35 %) and the median HbA1C was 7.0 % (25(th)-75(th) percentile: 6.8-7.9 %), equalling 53 mmol/mol (51, 63); 24.2 % of patients received dietary treatment only, 25.5 % oral antidiabetic drugs but not insulin, 8.4 % oral antidiabetic drugs with insulin, and 41.8 % insulin alone. Metformin was used by 18.8 %. Factors associated with an HbA1C level >7.0 % (53 mmol/mol) were higher BMI (OR = 1.04 per increase of 1 kg/m(2), 95 % CI 1.02-1.06), hemoglobin (OR = 1.11 per increase of 1 g/dL, 95 % CI 1.04-1.18), treatment with insulin alone (OR = 5.63, 95 % CI 4.26-7.45) or in combination with oral antidiabetic agents (OR = 4.23, 95 % CI 2.77-6.46) but not monotherapy with metformin, DPP-4 inhibitors, or glinides. Within the GCKD cohort of patients with CKD stage 3 or overt proteinuria, antidiabetic treatment patterns were highly variable with a remarkably high proportion of more than 50 % receiving insulin-based therapies. Metabolic control was overall satisfactory, but insulin use was associated with higher HbA1C levels.

  10. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity.

    PubMed

    Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W; Arshadi, Sattar; Nikan, Marjan

    2016-01-01

    α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by (1)H NMR and (13)C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations.

  11. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity

    PubMed Central

    Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W.; Arshadi, Sattar; Nikan, Marjan

    2016-01-01

    α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by 1H NMR and 13C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations. PMID:27051429

  12. Diversity, bioactivities, and metabolic potentials of endophytic actinomycetes isolated from traditional medicinal plants in Sichuan, China.

    PubMed

    Qiu, Peng; Feng, Zhi-Xiang; Tian, Jie-Wei; Lei, Zu-Chao; Wang, Lei; Zeng, Zhi-Gang; Chu, Yi-Wen; Tian, Yong-Qiang

    2015-12-01

    The present study was designed to determine the taxonomic diversity and metabolic activity of the actinomycetes community, including 13 traditional medicinal plants collected in Sichuan province, China, using multiple approaches such as morphological and molecular identification methods, bioactivity assays, and PCR screening for genes involved in antibiotics biosynthesis. 119 endophytic actinomycetes were recovered; 80 representative strains were chosen for 16S rRNA gene partial sequence analyses, with 66 of them being affiliated to genus Streptomyces and the remaining 14 strains being rare actinomycetes. Antimicrobial tests showed that 12 (15%) of the 80 endophytic actinomycetes displayed inhibitory effects against at least one indicator pathogens, which were all assigned to the genus Streptomyces. In addition, 87.5% and 58.8% of the isolates showed anticancer and anti-diabetic activities, respectively. Meanwhile, the anticancer activities of the isolates negatively correlated with their anti-diabetic activities. Based on the results of PCR screening, five genes, PKS-I, PKS-II, NRPS, ANSA, and oxyB, were detected in 55.0%, 58.8%, 90.0%, 18.8% and 8.8% of the 80 actinomycetes, respectively. In conclusion, the PCR screening method employed in the present study was conducive for screening and selection of potential actinomycetes and predicting potential secondary metabolites, which could overcome the limitations of traditional activity screening models. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. Piperolein B and piperchabamide D isolated from black pepper (Piper nigrum L.) as larvicidal compounds against the diamondback moth (Plutella xylostella).

    PubMed

    Hwang, Ki Seon; Kim, Young Kook; Park, Kee Woong; Kim, Young Tae

    2017-08-01

    There is growing demand for the development of alternative pest control agents that are effective as well as non-toxic to human health and the environment. Plant protection products derived from plant extracts are an eco-friendly alternative to synthetic pesticides. The aim of this study was to identify larvicidal compounds isolated from a natural source against Plutella xylostella L. In a larvicidal activity assay, several solvent fractions from the methanol extract of Piper nigrum L. fruit showed larvicidal effects against P. xylostella. Screening results indicated that chloroform extract was the most effective against P. xylostella larvae. Two compounds with insecticidal activity in the chloroform fraction were identified as piperolein B and piperchabamide D by spectroscopic analyses, including mass spectrometry and NMR, and by comparison to published data. At applications of 0.1 mg mL -1 concentration, piperolein B and piperchabamide D, respectively, induced 96.7 ± 5.8% and 79.2 ± 16.6% mortality rates of P. xylostella larvae 4 days post-application. Our results demonstrate that piperolein B and piperchabamide D isolated from P. nigrum are the major constituents of the extract demonstrating insecticidal properties for the control of P. xylostella larvae. These plant-derived compounds should become useful alternatives to synthetic chemicals after studying their insecticidal mechanisms. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Natural Prenylchalconaringenins and Prenylnaringenins as Antidiabetic Agents: α-Glucosidase and α-Amylase Inhibition and in Vivo Antihyperglycemic and Antihyperlipidemic Effects.

    PubMed

    Sun, Hua; Wang, Dong; Song, Xiaotong; Zhang, Yazhou; Ding, Weina; Peng, Xiaolin; Zhang, Xiaoting; Li, Yashan; Ma, Ying; Wang, Runling; Yu, Peng

    2017-03-01

    Inhibition of α-glucosidase and α-amylase decreases postprandial blood glucose levels and delays glucose absorption, making it a treatment strategy for type 2 diabetes. This study examined in vivo and in vitro antidiabetic activities of natural prenylchalconaringenins 1 and 2 and prenylnaringenins 3 and 4, found in hops and beer. 3'-Geranylchalconaringenin (2) competitively and irreversibly inhibited α-glucosidase (IC 50 = 1.08 μM) with activity 50-fold higher than that of acarbose (IC 50 = 51.30 μM) and showed moderate inhibitory activity against α-amylase (IC 50 = 20.46 μM). Docking analysis substantiated these findings. In addition, compound 2 suppressed the increase in postprandial blood glucose levels and serum levels of total cholesterol and triglycerides in streptozotocin-induced diabetic mice. Taken together, these results suggest that 2 has dual inhibitory activity against α-glucosidase and α-amylase and alleviates diabetic hyperglycemia and hyperlipidemia, making it a potential functional food ingredient and drug candidate for management of type 2 diabetes.

  15. A method of isolating organic compounds present in water

    NASA Technical Reports Server (NTRS)

    Calder, G. V.; Fritz, J.; Junk, G. A.

    1972-01-01

    Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent.

  16. Spectroscopic, structural characterizations and antioxidant capacity of the chromium (III) niacinamide compound as a diabetes mellitus drug model

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Megharbel, Samy M.; Hussien, M. A.; Hamza, Reham Z.; Al-Omar, Mohamed A.; Naglah, Ahmed M.; Afifi, Walid M.; Kobeasy, Mohamed I.

    2017-02-01

    New binuclear chromium (III) niacinamide compound with chemical formula [Cr2(Nic)(Cl)6(H2O)4]·H2O was obtained upon the reaction of chromium (III) chloride with niacinamide (Nic) in methanol solvent at 60 °C. The proposed structure was discussed with the help of microanalytical analyses, conductivity, spectroscopic (FT-IR and UV-vis.), magnetic calculations, thermogravimetric analyses (TG/TGA), and morphological studies (X-ray of solid powder and scan electron microscopy. The infrared spectrum of free niacinamide in comparison with its chromium (III) compound indicated that the chelation mode occurs via both nitrogen atoms of pyridine ring and primary -NH2 group. The efficiency of chromium (III) niacinamide compound in decreasing of glucose level of blood and HbA1c in case of diabetic rats was checked. The ameliorating gluconeogenic enzymes, lipid profile and antioxidant defense capacities are considered as an indicator of the efficiency of new chromium (III) compound as antidiabetic drug model.

  17. Antidiabetic potential of Caesalpinia sumatrana, a medicinal herbs traditionally used by local tribe in East Kalimantan

    NASA Astrophysics Data System (ADS)

    Wicaksono, D. A.; Rosamah, E.; Kusuma, I. W.

    2018-04-01

    The aims of the research was to analyze the content of phytochemicals, to examine the antioxidant and antidiabeticpotentials of n-hexane, chloroform, ethyl acetate, and ethanol extracts of Caesalpinia sumatrana. Method to measure antioxidant capacity of sample involves the use of the free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH) which is widely used to test the ability of compounds to act as free radical. Analysis the potential of antidiabeticactivity of the extracts was determined by α-glucosidase and α-amylase inhibitory assay. Of all extracts obtained by successive maceration, ethanol maceration gave the highest extract by 2.63% of extract on the dry weigh basis. The result of phytochemicals showed that all extracts contain alkaloid and flavonoid. The highest antioxidant activity was 82.32% with IC50 value of 5.00 µg/ml obtained by ethanol extract. The results of enzyme inhibitory assay of α-glucosidase showed that ethanol extract of C. sumatrana had IC50 value 17.16 µg/mL to inhibit ɑ-glucosidase activity and IC50 value 16.78 µg/mL for ɑ-amylase. The present result displayed potential of the plant to be developed as natural antidiabetic and antioxidant agents.

  18. Morphological and molecular identification of filamentous Aspergillus flavus and Aspergillus parasiticus isolated from compound feeds in South Africa.

    PubMed

    Iheanacho, Henry E; Njobeh, Patrick B; Dutton, Francis M; Steenkamp, Paul A; Steenkamp, Lucia; Mthombeni, Julian Q; Daru, Barnabas H; Makun, Anthony H

    2014-12-01

    Isolation of filamentous species of two Aspergillum genera from compound feeds produced in South Africa, and subsequent extraction of their individual DNA in this study, presents a simple but rapid molecular procedure for high through-put analysis of the individual morphological forms. DNA was successfully isolated from the Aspergillus spp. from agar cultures by use of a commercial kit. Agarose gel electrophoresis fractionation of the fungi DNA, showed distinct bands. The DNA extracted by this procedure appears to be relatively pure with a ratio absorbance at 260 and 280 nm. However, the overall morphological and molecular data indicated that 67.5 and 51.1% of feed samples were found to be contaminated with Aspergillus flavus and Aspergillus parasiticus, respectively, with poultry feed having the highest contamination mean level of 5.7 × 105 CFU/g when compared to cattle (mean: 4.0 × 106 CFU/g), pig (mean: 2.7 × 104 CFU/g) and horse (1.0 × 102 CFU) feed. This technique presents a readily achievable, easy to use method in the extraction of filamentous fungal DNA and it's identification. Hence serves as an important tool towards molecular study of these organisms for routine analysis check in monitoring and improving compound feed quality against fungal contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Inhibition of matrix metalloproteinase-1 and type-I procollagen expression by phenolic compounds isolated from the leaves of Quercus mongolica in ultraviolet-irradiated human fibroblast cells.

    PubMed

    Kim, Han Hyuk; Kim, Dong Hee; Oh, Myeong Hwan; Park, Kwang Jun; Heo, Jun Hyeok; Lee, Min Won

    2015-01-01

    The aim of this study was to investigate the effect of Quercus mongolica (QM) which induce anti-photoaging process of skin in vitro. Bioassay-guided isolation of 80 % Me2CO extract of the leaves of QM led to the isolation and identification of six known phenolic compounds: pedunculagin (1), (-)-epigallocatechin (2), (+)-catechin (3), quercetin 3-O-(6″-O-galloyl)-β-D-glucopyranoside (4), kaempferol-3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (5) and kaempferol 3-O-(6″-galloyl)-β-D-glucopyranoside (6). The effects of compounds 1-6 on expression of matrix metalloproteinase-1 (MMP-1) and type-I procollagen were further evaluated. Among them, compound 1 showed potent inhibitory effect on MMP-1 and the increased type-I procollagen synthesis in ultraviolet B-induced human fibroblast. These results suggest that pedunculagin, an ellagitannin, is a potential candidate for the prevention and treatment of skin aging.

  20. Isolation, purification and chemical characterization of a new angucyclinone compound produced by a new halotolerant Nocardiopsis sp. HR-4 strain.

    PubMed

    Hadj Rabia-Boukhalfa, Yamina; Eveno, Yannick; Karama, Solange; Selama, Okba; Lauga, Béatrice; Duran, Robert; Hacène, Hocine; Eparvier, Véronique

    2017-06-01

    A halotolerant Actinobacteria strain HR-4 was isolated from a salt lake soil sample in Algerian Sahara. Analysis of 16S rDNA gene sequence showed that strain HR-4 belonged to the genus Nocardiopsis. The similarity level ranges between 97.45 and 99.20% with Nocardiopsis species and Nocardiopsis rosea being the most closely related one. Morphological, physiological and phylogenetic characteristics comparisons showed significant differences with the nearest species. These data strongly suggest that strain HR-4 represents novel species. The antimicrobial activity of strain HR-4 showed an antibacterial activity against Gram-positive bacteria as well as an antifungal one. Two major natural products including a new one were isolated from the culture broth using various separation and purification procedures. The chemical structure established on the basis of spectroscopic studies NMR and by comparing with spectroscopic data from the literature of the two compounds affirm that they are classified in the group of Angucyclinones. This is the first report of a production of this type of molecules by the genus Nocardiopsis. The new natural compound was established as (-)-7-deoxy-8-O-methyltetrangomycin with a new configuration.

  1. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey

    PubMed Central

    Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma

    2014-01-01

    Objective(s): Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. Materials and Methods: α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. Results: H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Conclusion: Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes. PMID:25140204

  2. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey.

    PubMed

    Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma

    2014-06-01

    Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes.

  3. Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds.

    PubMed

    Yoshida, Shigenobu; Hiradate, Syuntaro; Koitabashi, Motoo; Kamo, Tsunashi; Tsushima, Seiya

    2017-02-01

    Microbes inhabiting the phyllosphere encounter harmful ultraviolet rays, and must develop adaptive strategies against this irradiation. In this study, we screened bacterial isolates originating from the phyllosphere of various plants which harbored absorbers of ultraviolet A (UVA), a wavelength range which is recognized as harmful to human skin. Of the 200 phyllosphere bacterial isolates we screened, methanol extracts from bacterial cells of seventeen isolates absorbed wavelengths in the range of 315-400nm. All of the UVA-absorbing strains belonged to Methylobacterium species based on 16S ribosomal RNA gene sequences, suggesting that cells of this bacterial genus contain specific UVA-absorbing compounds. When cells of a representative Methylobacterium strain were extracted using various solvents, UVA absorption was observed in the extracts obtained using several aqueous solvents, indicating that the UVA-absorbing compounds were highly polar. A compound was purified using solid columns and HPLC separation, and comparative analysis revealed that the absorption strength and spectrum of the compound were similar to those of the known UVA filter, avobenzone. The compound was also verified to be stable under UVA exposure for at least 480min. Based on these results, the UVA-absorbing compound harbored by Methylobacterium has potential to be used as a novel sunscreen ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Rapid identification of illegal synthetic adulterants in herbal anti-diabetic medicines using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Yanchun; Lei, Deqing; Hu, Changqin

    We created a rapid detection procedure for identifying herbal medicines illegally adulterated with synthetic drugs using near infrared spectroscopy. This procedure includes a reverse correlation coefficient method (RCCM) and comparison of characteristic peaks. Moreover, we made improvements to the RCCM based on new strategies for threshold settings. Any tested herbal medicine must meet two criteria to be identified with our procedure as adulterated. First, the correlation coefficient between the tested sample and the reference must be greater than the RCCM threshold. Next, the NIR spectrum of the tested sample must contain the same characteristic peaks as the reference. In this study, four pure synthetic anti-diabetic drugs (i.e., metformin, gliclazide, glibenclamide and glimepiride), 174 batches of laboratory samples and 127 batches of herbal anti-diabetic medicines were used to construct and validate the procedure. The accuracy of this procedure was greater than 80%. Our data suggest that this protocol is a rapid screening tool to identify synthetic drug adulterants in herbal medicines on the market.

  5. 1,2,3,4,6 Penta-O-galloyl-β-d-glucose, a bioactivity guided isolated compound from Mangifera indica inhibits 11β-HSD-1 and ameliorates high fat diet-induced diabetes in C57BL/6 mice.

    PubMed

    Mohan, C G; Viswanatha, G L; Savinay, G; Rajendra, C E; Halemani, Praveen D

    2013-03-15

    Methanolic leaf extract of Mangifera indica (MEMI) was subjected to bioactivity guided fractionation in order to identify the active antidiabetic constituent. 32 fractions were evaluated for possible 11β-HSD-1 inhibition activity under in vitro conditions. The EA-7/8-9/10-4 fraction was evolved as a most potent fraction among all the fractions and it was identified as well known gallotannin compound 1,2,3,4,6 penta-O-galloyl-β-d-glucose (PGG) by spectral analysis. Based on these results the PGG was further evaluated in ex vivo 11β-HSD-1 inhibition assay and high fat diet (HFD)-induced diabetes in male C57BL/6 mice. Single dose (10, 25, 50 and 100mg/kg) of PGG and carbenoxolone (CBX) have dose dependently inhibited the 11β-HSD-1 activity in liver and adipose tissue. Furthermore, HFD appraisal to male C57BL/6 mice caused severe hyperglycemia, hypertriglyceridemia, elevated levels of plasma corticosterone and insulin, increased liver and white adipose mass with increase in body weight was observed compare to normal control. Also, oral glucose tolerance was significantly impaired compare to normal control. Interestingly, post-treatment with PGG for 21 days had alleviated the HFD-induced biochemical alterations and improved oral glucose tolerance compare to HFD-control. In conclusion, the PGG isolated from MEMI inhibits 11β-HSD-1 activity and ameliorates HFD-induced diabetes in male C57BL/6 mice. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Mechanism of antihypertensive effect of Mucuna pruriens L. seed extract and its isolated compounds.

    PubMed

    Khan, Mohammad Yaseen; Kumar, Vimal

    2017-06-21

    Background In the search of safe and effective lead molecules from natural sources, Mucuna pruriens (MP) L. (Fabaceae) seeds were utilized for exploring the antihypertensive potential. Traditionally, it is used as diuretic and hypotensive. Methods Bioassay-guided fractions were utilized for the isolation of active compounds by column chromatography. IC50 value, enzyme kinetics and inhibition mechanism were determined. In vivo time and dose-dependent hypotensive study followed by changes in mean arterial pressure (MAP) induced by angiotensin I (3 nmol/kg), angiotensin II (3 nmol/kg), and bradykinin (10 nmol/kg) in anesthetized rats was done. Plasma and tissue angiotensin I-converting enzyme (ACE) activities were also determined. Results Phytochemical analysis by spectroscopic techniques revealed the presence of known compounds like genistein, ursolic acid and L-DOPA from the ethyl acetate and water fraction, respectively. In vitro study revealed MP ethyl acetate (MPEA) fraction and genistein as the most active fraction (IC50 156.45 µg/mL) and compound (IC50 253.81 µM), respectively. Lineweaver-Burk plots revealed a non-competitive mode of inhibition. ACE protein precipitation was the suggested mechanism for inhibition. The extract showed a time- and dose-dependent decrease in MAP. Genistein was able to dose-dependently reduce the MAP, up to 53±1.5 mmHg (40 mg/kg, i.v.). As compared to control, it showed a dose-dependent decrease in plasma ACE activity of 40.61 % and 54.76 % at 10 mg/kg and 20 mg/kg, respectively. It also decreased the ACE activity in the aorta (107.67nM/ml min at 10 mg, p<0.001; 95.33nM/ml min at 20 mg p<0.001). Captopril was used as a standard for various in vitro and in vivo assays. Conclusions The study revealed the antihypertensive potential of MP seed compounds via ACE inhibition.

  7. Extraction, isolation and characterization of bioactive compounds from chloroform extract of Carica papaya seed and it's in vivo antibacterial potentiality in Channa punctatus against Klebsiella PKBSG14.

    PubMed

    Ghosh, Subarna; Saha, Mandira; Bandyopadhyay, Probir Kumar; Jana, Monoranjan

    2017-10-01

    The relative efficacy of the isolated pure compound, extracted from Carica papaya seed has been tested against live fish, Channa punctatus infected with pathogenic strains of KlebsiellaPKBSG14 (gene bank accession no.KJ162158) at a dose of 0.75 CFU/ml in vivo. The isolated compound has been characterized by chromatography and mass spectroscopy studies using FTIR, 1 HNMR and 13c NMR to identify as well as to determine the nature of the pure compound. This study revealed the extracted biological molecule is oleic acid, a long chained saturated fatty acid (LFAs) with a molecular formula C 18 H 34 O 2 . Later this compound was analyzed for its efficacy as an antibacterial agent in vivo through cytotoxicological and genotoxicological assays. A dose of 0.5 mg/kg and 1 mg/kg b.w of isolated pure oleic acid has been tested and it showed effective result in regard to DNA fragmentation, comet tail length and toxicity biomarkers like ROS generation. The results of in vivo studies showed similar effects on spleen cells with regard to cell viability by PI staining, cell cycle analysis and also Annexin-FITC assay. Thus, the overall results suggest that oleic acid increases drug bioavailability and thereby has a better chemo-preventive action against bacterial infection in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Isolation and characterisation of 13 pterosins and pterosides from bracken (Pteridium aquilinum (L.) Kuhn) rhizome.

    PubMed

    Mohammad, Rizgar Hassan; Nur-E-Alam, Mohammad; Lahmann, Martina; Parveen, Ifat; Tizzard, Graham J; Coles, Simon J; Fowler, Mark; Drake, Alex F; Heyes, Derren; Thoss, Vera

    2016-08-01

    Systematic phytochemical investigations of the underground rhizome of Pteridium aquilinum (L.) Kuhn (Dennstaedtiaceae) afforded thirty-five pterosins and pterosides. By detailed analysis of one- and two-dimensional nuclear magnetic resonance spectroscopy, circular dichroism (CD) and high-resolution mass spectrometric data, thirteen previously undescribed pterosins and pterosides have been identified. Interestingly, for the first time 12-O-β-D-glucopyranoside substituted pterosins, rhedynosides C and D, and the sulfate-containing pterosin, rhedynosin H, alongside the two known compounds, histiopterosin A and (2S)-pteroside A2, were isolated from the rhizomes of subsp. aquilinum of bracken. In addition, six-membered cyclic ether pterosins and pterosides, rhedynosin A and rhedynoside A, are the first examples of this type of pterosin-sesquiterpenoid. Additionally, the three previously reported compounds (rhedynosin I, (2S)-2-hydroxymethylpterosin E and (2S)-12-hydroxypterosin A) were obtained for the first time from plants as opposed to mammalian metabolic products. Single crystal X-ray diffraction analysis was applied to the previously undescribed compounds (2R)-rhedynoside B, (2R)-pteroside B and (2S)-pteroside K, yielding the first crystal structures for pterosides, and three known pterosins, (2S)-pterosin A, trans-pterosin C and cis-pterosin C. Rhedynosin C is the only example of the cyclic lactone pterosins with a keto group at position C-14. Six selected pterosins ((2S)-pterosin A, (2R)-pterosin B and trans-pterosin C) and associated glycosides ((2S)-pteroside A, (2R)-pteroside B and pteroside Z) were assessed for their anti-diabetic activity using an intestinal glucose uptake assay; all were found to be inactive at 300 μM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon.

    PubMed

    Joffraud, J J; Leroi, F; Roy, C; Berdagué, J L

    2001-06-15

    This study investigated the volatile compounds produced by bacteria belonging to nine different bacterial groups: Lactobacillus sake, L. farciminis, L. alimentarius, Carnobacterium piscicola, Aeromonas sp., Shewanella putrefaciens, Brochothrix thermosphacta, Photobacterium phosphoreum and Enterobacteriaceae isolated from cold-smoked salmon. Each bacterial group was represented by several strains. In addition, combinations of the groups were examined as well. Sterile blocks of cold-smoked salmon were inoculated, vacuum-packed and stored at 6 degrees C. After 40 days of storage at 6 degrees C, aerobic viable count and pH were recorded, the volatile fraction of the samples was analysed by gas chromatography-mass spectrometry (GC-MS), and spoilage was assessed by sensory evaluation. Among the 81 volatile compounds identified by GC-MS, 30 appeared to be released as a result of bacterial metabolism. Some of the effects of inoculated bacterial strains on the composition of the volatile fraction seemed to be characteristic of certain bacterial species. Sensory analysis showed relationships between bacteria, the composition of the volatile fraction and the organoleptic quality of smoked salmon.

  10. Mycochemical Investigation of the Turkey Tail Medicinal Mushroom Trametes versicolor (Higher Basidiomycetes): A Potential Application of the Isolated Compounds in Documented Pharmacological Studies.

    PubMed

    Habibi, Emran; Sadat-Ebrahimi, Seyed Esmaeel; Mousazadeh, Saeed Ali; Amanzadeh, Yaghoub

    2015-01-01

    The purpose of this study was to elucidate the chemical properties of the n-hexane, chloroform, and ethyl acetate extracts of the fruiting body of the medicinal mushroom Trametes versicolor. The study led to the isolation of 5 sterols, 2 triterpene derivatives, 1 hydroquinone-derived aromatic compound, and, finally, 1 cerebroside and 1 triglyceride derivative. These compounds were identified for first time in T. versicolor and were named as follows: 4-isobutoxyphenyl palmitate (5), N-D-2'-hydroxyheptanoic-1-O-β-D-glucopyranosyl-9-methyl-4,8-sphinga-dienine(cerebroside) (6), 3β-linoleyloxyergosta-7,22-diene (7), 3β-linoleyloxyergosta-7-ene (8), and betulinic acid (9). Other compounds elucidated in our study were ergosterol (1), ergosterol peroxide (2), trilinolein (3), ergosta-7, 22-dien-3β-ol (4), and betuline (10). These compounds were obtained via column or thin-layer chromatography before being identified by nuclear magnetic resonance spectroscopic analyses and infrared data. In addition, the beneficial pharmacological effects of the compounds are described here.

  11. How much could be saved in Chinese hospitals in procurement of anti-hypertensives and anti-diabetics?

    PubMed

    Sun, Jing; Ren, Luo; Wirtz, Veronika

    2016-09-01

    Efficient use of government funding has been increasingly relevant for the success and sustainability of ongoing health-system reform in China; however, as there is no generic substitution policy, patients and basic health-insurance programs pay more for public-preferred brand originators. Such phenomenon is especially typical in public hospitals. The objective of this study is to estimate the potential cost savings in procurement by Chinese public hospitals when switching from brand originators of anti-hypertensive and anti-diabetic medications to their generic equivalents between 2012-2014. IMS Health volume and value consumption data (IMS China Hospitals Audit system 2012-2014) were used, which covered all Chinese hospitals with 100 beds and above. The top 60% IMS volume consumption of respective anti-hypertensive and anti-diabetic medication with unique dosage form and strength were included. The potential cost savings were calculated from a switch of brand originators with their generic equivalents on the Chinese and international market. An independent sample t-test was conducted to compare the difference of proportion of cost savings in value between the Chinese and international market. An average of 44% (US$44 million) and 87% (US$90 million) and a total of US$1.4 and 2.8 billion (2014 US$) could be saved from a switch from originator brand anti-hypertensives and anti-diabetics to domestically and internationally available generic equivalents, respectively. The differences of cost savings (in proportion) between domestic and international market were statistically significant (α = 0.005, p = 0.003, p = 0.002, p = 0.000). Expensive brand originators dominated the anti-hypertensive and anti-diabetic market in Chinese hospitals between 2012-2014. Preference of brand originators wastes a huge amount of health resources in China and these limited resources could have been used more efficiently. As one of the world's key generic suppliers, if

  12. Medicinal plants of the genus Anthocleista--A review of their ethnobotany, phytochemistry and pharmacology.

    PubMed

    Anyanwu, Gabriel O; Nisar-ur-Rehman; Onyeneke, Chukwu E; Rauf, Khalid

    2015-12-04

    The genus Anthocleista of the Gentianaceae family contains 14 species of trees and shrub-like plants distributed in tropical Africa, in Madagascar and on the Comoros. Traditionally, they are commonly used in the treatment of diabetes, hypertension, malaria, typhoid fever, obesity, diarrhea, dysentery, hyperprolactinemia, abdominal pain, ulcer, jaundice, asthma, hemorrhoids, hernia, cancer, wounds, chest pains, inflammations, rheumatism, STDs, infertility and skin diseases. They serve as an anthelmintic, laxative, diuretic and contraceptive. This review aims to provide for the first time a repository of ethnopharmacological information while critically evaluating the relation between the traditional medicinal uses, chemical constituents and pharmacological activities of the Anthocleista species so as to unveil opportunities for future research. A search for relevant information on Anthocleista species was performed on scientific databases (Pubmed, Google Scholar, SciFinder, Web of Science, Scopus, PubChem and other web sources such as The Plant List, Kew Botanical Garden and PROTA) and books, PhD and MSc dissertations for un-published resources. Out of the 14 species of Anthocleista, 6 have been reported in literature to be widely used in traditional medicine for the treatment of various ailments. The six species include: A. djalonensis, A. vogelii, A. nobilis, A. grandiflora, A. schweinfurthii, and A. liebrechtsiana. The chemical compounds isolated from Anthocleista species fall into the class of phytochemicals such as secoiridoids, nor-secoiridoids, xanthones, phytosterols, triterpenes, alkaloids, and others of which majority of the compounds were isolated from A. djalonensis and A. vogelii. The in vitro and in vivo pharmacological studies on the crude extracts, fractions and few isolated compounds of Anthocleista species showed antidiabetic, antiplasmodial, antimicrobial, hypotensive, spasmogenic, anti-obesity, antiulcerogenic, analgesic, anti

  13. Impact of long-term antihypertensive and antidiabetic medications on the prognosis of post-surgical colorectal cancer: the Fujian prospective investigation of cancer (FIESTA) study.

    PubMed

    Peng, Feng; Hu, Dan; Lin, Xiandong; Liang, Binying; Chen, Ying; Zhang, Hejun; Xia, Yan; Lin, Jinxiu; Zheng, Xiongwei; Niu, Wenquan

    2018-05-24

    Hypertension and diabetes mellitus are common comorbidities of colorectal cancer. We designed a prospective cohort study aiming to investigate the impact of long-term antihypertensive and antidiabetic medications on colorectal cancer-specific survival and recurrence among 713 post-surgical patients. All participants received radical resection for colorectal cancer during 2000-08, and they were followed up until July 2017. Colorectal cancer patients without hypertension had better survival than those with hypertension (median survival time [MST]: 190.3 months versus 99.0 months, p <0.001). The impact of antidiabetic medications on prolonging colorectal cancer survival was statistically significant, that is, patients receiving antidiabetic medications had longer survival time than untreated diabetic patients (MST: 135.8 months versus 80.2 months, p : 0.007), whereas the prognosis was greatly improved in colorectal cancer patients without diabetes mellitus ( p <0.001). Medical treatment for hypertension and diabetes mellitus was associated with 28% (hazard ratio [HR]: 0.72; 95% confidence interval [CI]: 0.47-1.10; p : 0.131) and 57% (HR: 0.43; 95% CI: 0.22-0.82; p : 0.010) reduced risk of dying from colorectal cancer relative to those without medications, respectively. Our data indicate that long-term antidiabetic medications can significantly prolong the survival and improve the prognosis of post-surgical colorectal cancer.

  14. Uptake, translocation and possible biodegradation of the antidiabetic agent metformin by hydroponically grown Typha latifolia.

    PubMed

    Cui, Hao; Schröder, Peter

    2016-05-05

    The increasing load of pharmaceutical compounds has raised concerns about their potential residues in aquatic environments and ecotoxicity. Metformin (MET), a widely prescribed antidiabetic II medicine, has been detected in high concentration in sewage and in wastewater treatment effluents. An uptake and translocation study was carried out to assess the ultimate fate of MET in phytoremediation. MET was removed from media by Typha latifolia, and the removal processes followed first order kinetics. After 28 days, the removal efficiencies were in a range of 74.0±4.1-81.1±3.3%. In roots, MET concentration was increasing during the first two weeks of the experiment but thereafter decreasing. In contrast, MET concentration was continuously increasing in rhizomes and leaves. Bioaccumulation of MET in roots was much higher than in leaves and rhizomes. As degradation product of metformin in the plant, methylbiguanide (MBG) was detected whereas guanylurea was undetectable. Moreover, MBG concentration in roots was increasing with exposure time. An enzymatic degradation experiment showed the degradation rate followed the order of MET

  15. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans.

    PubMed

    Friedman, Mendel

    2016-11-29

    More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.

  16. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans

    PubMed Central

    Friedman, Mendel

    2016-01-01

    More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases. PMID:28231175

  17. Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.

    PubMed

    Sampath, Chethan; Zhu, Yingdong; Sang, Shengmin; Ahmedna, Mohamed

    2016-02-15

    Methylglyoxal (MGO) is known to be a major precursor of advanced glycation end products (AGEs) which are linked to diabetes and its related complications. Naturally occurring bioactive compounds could play an important role in countering AGEs thereby minimizing the risk associated with their formation. In this study, eight specific bioactive compounds isolated from apple, tea and ginger were evaluated for their AGEs scavenging activity using Human Retinal Pigment Epithelial (H-RPE) cells treated with MGO. Among the eight specific compounds evaluated, (-)-epigallocatechin 3-gallate (EGCG) from tea, phloretin in apple, and [6]-shogaol and [6]-gingerol from ginger were found to be most effective in preventing MGO-induced cytotoxicity in the epithelial cells. Investigation of possible underlying mechanisms suggests that that these compounds could act by modulating key regulative detoxifying enzymes via modifying nuclear factor-erythroid 2-related factor 2 (Nrf2) function. MGO-induced cytotoxicity led to increased levels of AGEs causing increase in Nε-(Carboxymethyl) lysine (CML) and glutathione (GSH) levels and over expression of receptor for advanced glycation end products (RAGE). Data also showed that translocation of Nrf2 from cytosol to nucleus was inhibited, which decreased the expression of detoxifying enzyme like heme oxygenase-1 (HO-1). The most potent bioactive compounds scavenged dicarbonyl compounds, inhibited AGEs formation and significantly reduced carbonyl stress by Nrf2 related pathway and restoration of HO-1 expression. These findings demonstrated the protective effect of bioactive compounds derived from food sources against MGO-induced carbonyl stress through activation of the Nrf2 related defense pathway, which is of significant importance for therapeutic interventions in complementary treatment/management of diabetes-related complications. Copyright © 2016. Published by Elsevier GmbH.

  18. Antidiabetic Mechanisms of Rosa canina Fruits

    PubMed Central

    Fattahi, Ali; Niyazi, Fatemeh; Shahbazi, Behzad; Farzaei, Mohammad Hosein; Bahrami, Gholamreza

    2016-01-01

    Rosa canina fruits have been used traditionally for the treatment of diabetes mellitus and its complications. The aim of current study was to evaluate the in vitro mechanism of action of R canina in managing diabetes mellitus. Cell proliferation and cytotoxicity assay were performed on pancreatic β-cells, βTC6. The protective activity of the extract on streptozotocin-induced death in βTC6 cells was studied. The effect of R canina on the metabolism of glucose in HepG2, a hepatocellular carcinoma cell line, was evaluated. The effect of the extract on glucose diffusion across the dialysis membrane, which is a comfortable model for assessing cellular glucose absorption, was evaluated. The results obtained from current study confirmed that R canina extract can act as a growth factor for pancreatic β-cell line providing a novel mechanism for the observed antidiabetic effect of this natural agent. Further preclinical studies are necessary to evaluate the perfect mechanism of action of R canina in diabetes mellitus. PMID:27352916

  19. SDE and SPME Analysis of Flavor Compounds in Jin Xuan Oolong Tea.

    PubMed

    Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; O'Keefe, Sean F

    2016-02-01

    Simultaneous distillation-extraction (SDE) and solid phase micro extraction (SPME) are procedures used for the isolation of flavor compounds in foods. The purpose of this study was to optimize SDE conditions (solvent and time) and to compare SDE with SPME for the isolation of flavor compounds in Jin Xuan oolong tea using GC-MS and GC-O. The concentration of volatile compounds isolated with diethyl ether was higher (P < 0.05) than for dichloromethane and concentration was higher at 40 min (P < 0.05) than 20 or 60 min extractions. For SDE, 128 volatiles were identified using GC-MS and 45 aroma active compounds using GC-O. Trans-nerolidol was the most abundant compound in oolong tea. The number of volatiles identified using GC-MS was lower in SPME than SDE. For SPME, 59 volatiles and 41 aroma active compounds were identified. The composition of the volatiles isolated by the 2 methods differed considerably but provided complementary information. © 2016 Institute of Food Technologists®

  20. Study on antidiabetic activity of wheat and barley starch using asymmetrical flow field-flow fractionation coupled with multiangle light scattering.

    PubMed

    Dou, Haiyang; Zhou, Bing; Jang, Hae-Dong; Lee, Seungho

    2014-05-02

    The ability of asymmetrical flow field-flow fractionation (AF4) coupled online with multiangle light scattering (MALS) and refractive index detector (RI) (AF4-MALS-RI) for monitoring of change in molecular conformation of wheat and barley starch during germination process was evaluated. AF4 provides separation of starch molecules based on their hydrodynamic sizes, and MALS yields the molar mass and molecular size (radius of gyration, Rg). In vitro and in vivo anti-hyperglycemic effect of germinated wheat and barley was studied. The relationship between antidiabetic activity and molecular conformation was, for the first time, investigated. The ratio of Rg to the hydrodynamic radius (Rh) and the apparent density were proven to be important parameters as they offer an insight into molecular conformation. Results showed that, when geminated, the apparent density and the antidiabetic activity of barley were significantly increased, suggesting germination makes the molecules more compact which could contribute to enhancement of their antidiabetic activity. The information obtained by AF4-MALS-RI is valuable for understanding of germination mechanism, and thus for developing functional foods. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Isolation of Mn(I) Compounds Featuring a Reduced Bis(imino)pyridine Chelate and Their Relevance to Electrocatalytic Hydrogen Production.

    PubMed

    Mukhopadhyay, Tufan K; MacLean, Nicholas L; Flores, Marco; Groy, Thomas L; Trovitch, Ryan J

    2018-05-21

    We report the preparation and electronic structure determination of chelate-reduced Mn(I) compounds that are relevant to electrocatalytic proton reduction mediated by [( Ph2PPr PDI)Mn(CO)][Br]. Reducing [( Ph2PPr PDI)Mn(CO)][Br] with excess Na-Hg afforded a neutral paramagnetic complex, ( Ph2PPr PDI)Mn(CO). This compound was found to feature a low spin Mn(I) center and a PDI radical anion as determined by magnetic susceptibility measurement (1.97 μ B ), EPR spectroscopy ( S = 1 / 2 ), and density functional theory calculations. When [( Ph2PPr PDI)Mn(CO)][Br] was reduced with K-Hg, Mn(I) complexes with highly activated CO ligands were obtained. Recrystallization of the reduced product from diethyl ether solution allowed for the isolation of dimeric [(κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 1 ,η 2 -CO)K(Et 2 O)] 2 (ν CO = 1710 cm -1 , 1656 cm -1 ), while methyl tert-butyl ether treatment afforded dimeric [(κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 1 -CO)K(MTBE) 2 ] 2 (ν CO = 1695 cm -1 , MTBE = methyl tert-butyl ether). Addition of 18-crown-6 to these products, or conducting the K-Hg reduction of [( Ph2PPr PDI)Mn(CO)][Br] in the presence of 18-crown-6, allowed for the isolation of a monomeric example, (κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 2 -CO)K(18-crown-6) (ν CO = 1697 cm -1 ). All three complexes were found to be diamagnetic and were characterized thoroughly by multinuclear 1D and 2D NMR spectroscopy and single crystal X-ray diffraction. Detailed analysis of the metrical parameters and spectroscopic properties suggest that all three compounds possess a Mn(I) center that is supported by a PDI dianion. Importantly, (κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 2 -CO)K(18-crown-6) was found to react instantaneously with either HBF 4 ·OEt 2 or HOTf to evolve H 2 and generate the corresponding Mn(I) complex, [( Ph2PPr PDI)Mn(CO)][BF 4 ] or [( Ph2PPr PDI)Mn(CO)][OTf], respectively. These products are spectroscopically and electrochemically similar to previously reported [( Ph2PPr PDI

  2. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.

    PubMed

    Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick

    2016-03-10

    The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.

  3. Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities.

    PubMed

    Chávez-Silva, Fabiola; Cerón-Romero, Litzia; Arias-Durán, Luis; Navarrete-Vázquez, Gabriel; Almanza-Pérez, Julio; Román-Ramos, Rubén; Ramírez-Ávila, Guillermo; Perea-Arango, Irene; Villalobos-Molina, Rafael; Estrada-Soto, Samuel

    2018-02-15

    Achillea millefolium L. (Asteraceae) is a perennial herb used in Mexican folk medicine for treatment of several pathologies, including inflammatory and spasmodic gastrointestinal disorders, hepatobiliary complaints, overactive cardiovascular, respiratory ailments and diabetes. To evaluate the potential antidiabetic effect in vivo and to establish the potential mode of action through in vitro approaches of Achillea millefolium. The antidiabetic effect of hydroalcoholic extract of Achillea millefolium (HAEAm) was evaluated on the oral glucose tolerance tests, in normoglycemic and experimental Type 2 diabetic mice models. In addition, we evaluated the possible mode of action in in vitro assays to determine α-glucosidases inhibition, the insulin secretion and calcium mobilization in RINm5F cells and PPARγ and GLUT4 expression in 3T3-L1 cells. HAEAm showed significant glucose diminution on oral glucose tolerance test and in acute experimental Type 2 diabetic assay with respect to the control (p < 0.05). In addition, HAEAm promoted the α-glucosidases inhibition by 55% at 1mg/ml respect to control. On the other hand, HAEAm increased the PPARγ (five-times) and GLUT4 (two-fold) relative expression than control (p < 0.05). Finally, HAEAm significantly increased the insulin secretion and [Ca 2+ ] i compared with control. The HAEAm possesses in vivo antidiabetic effect, having such effect through multitarget modes of action that involve antihyperglycemic (α-glucosidases inhibition), hypoglycemic (insulin secretion) and potential insulin sensitizer (PPARγ/GLUT4 overexpression) actions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In Vitro and In Silico Antidiabetic and Antimicrobial Evaluation of Constituents from Kickxia ramosissima (Nanorrhinum ramosissimum)

    PubMed Central

    Amin, Adnan; Tuenter, Emmy; Foubert, Kenn; Iqbal, Jamhsed; Cos, Paul; Maes, Louis; Exarchou, Vassiliki; Apers, Sandra; Pieters, Luc

    2017-01-01

    Background and Aims: Kickxia ramosissima (Wall.) Janch (or Nanorrhinum ramosissimum (Wall.) Betsche is a well-known medicinal plant in Pakistan that is traditionally used in diabetic and inflammatory conditions. Because little information is available on its phytochemical composition, a range of constituents were isolated and evaluated in vitro in assays related to the traditional use. Methods: Dried whole plant material was extracted and chromatographically fractionated. Isolated constituents were evaluated in silico and in vitro in assays related to the traditional use against diabetes (inhibition of α-glucosidase activity; inhibition of advanced glycation endproducts) and in inflammatory conditions (inhibition of AAPH induced linoleic acid peroxidation, inhibition of 15-LOX, antimicrobial activity). Results: Phytochemical analysis of the extracts and fractions led to isolation of 7 compounds, including the iridoids kickxiasine (being a new compound), mussaenosidic acid, mussaenoside and linarioside; the flavonoids pectolinarigenin and pectolinarin; and 4-hydroxy-benzoic acid methyl ester. The iridoids showed weak antiglycation activity. The flavonoids, however, showed interesting results as pectolinarigenin was highly active compared to pectolinarin. In the α-glucosidase inhibition assay, only weak activity was observed for the iridoids. However, the flavonoid pectolinarigenin showed good activity, followed by pectolinarin. In the 15-LOX experiment, moderate inhibition was recorded for most compounds, the iridoids mussaenosidic acid and mussaenoside being the most active. In the AAPH assay, weak or no inhibition was recorded for all compounds. The in silico assays for the α-glucosidase and 15-LOX assays confirmed the results of respective in vitro assays. Pectolinarigenin showed moderate antimicrobial activity against Staphylococcus aureus, Plasmodium falciparum K1, and Trypanosoma cruzi, but it was not cytotoxic on a human MRC-5 cell line. Conclusion: Our

  5. Evaluation of Antioxidant, Anticholinesterase, and Antidiabetic Potential of Dry Leaves and Stems in Tamarix aphylla Growing Wild in Tunisia.

    PubMed

    Mahfoudhi, Adel; Grosso, Clara; Gonçalves, Rui F; Khelifi, Eltaief; Hammami, Saoussen; Achour, Sami; Trabelsi-Ayadi, Malika; Valentão, Patrícia; Andrade, Paula B; Mighri, Zine

    2016-12-01

    Tamarix aphylla (L.) Karst. has a wide geographic distribution and was employed in traditional medicine as astringent, anti-rheumatic and to treat fever. T. aphylla leaves and stems extracts were studied from both chemical and biological points of view to assess the antidiabetic, anticholinesterase and antioxidant potential of this species. The HPLC/Diode Array Detector (DAD) analysis showed the presence of 14 phenolic compounds (gallic, caffeic, p-coumaric, ferulic and ellagic acids, kaempferol, quercetin, quercetin 3-O-galactoside and six flavonol derivatives). This is the first study reporting a comparative study of the biological activities of different extracts from T. aphylla. High activities were obtained against DPPH radical, superoxide anion radical (O2∙-) and nitric oxide radical ( • NO) in a concentration-dependent manner, the most active extracts being the polar ones. T. aphylla also showed moderate protective effects against acetylcholinesterase, but no effects were observed against butyrylcholinesterase. Against α-glucosidase the MeOH extracts displayed IC 50 values from 8.41 to 24.81 μg/ml. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  6. Isolation and Characterization of “Terrein” an Antimicrobial and Antitumor Compound from Endophytic Fungus Aspergillus terreus (JAS-2) Associated from Achyranthus aspera Varanasi, India

    PubMed Central

    Goutam, Jyoti; Sharma, Gunjan; Tiwari, Vinod K.; Mishra, Amrita; Kharwar, Ravindra N.; Ramaraj, Vijayakumar; Koch, Biplob

    2017-01-01

    The present study aimed at characterizing biological potentials of endophyte Aspergillus terreus JAS-2 isolated from Achyranthus aspera. Crude extracted from endophytic fungus JAS-2 was purified and chemically characterized by chromatographic and spectroscopic studies respectively. Spectral assignment of NMR (nuclear magnetic resonance) data, 1H proton and 13C carbon analysis along with FTIR data elucidated the structure of compound as 4,5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one. After purification and identification a set of experiment was conducted to explore efficacy of compound. Results revealed that on accessing the antifungal activity of compound, growth diameter of tested phytopathogenic fungi was reduced to 50% at higher concentration taken (10 μgμl−1). Compound exhibited in-vitro bacterial cell inhibition at 20 μgml−1 concentration along with moderate antioxidant behavior. Evaluation of anticancer activity against human lung cancer cell line (A-549) exhibited its IC50 value to be 121.9 ± 4.821 μgml−1. Further cell cycle phase distribution were analyzed on the basis of DNA content and evaluated by FACS (Fluorescence Activated Cell Sorting) and it was revealed that at 150 μgml−1 of compound maximum cells were found in sub G1 phase which represents apoptotic dead cells. Terrein (4, 5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one) a multi-potential was isolated from endophytic fungus JAS-2, from well recognized medicinal herb A. aspera. To best of our knowledge, this is the first report of “Terrein” from endophytic derived fungus. This compound had also exhibited anticancer and antifungal activity against human lung cancer cell line A-549 and Bipolaris sorokiniana respectively which is causal organism of many plants disease. Hence endophytes are serving as alternative sources of drug molecules. PMID:28790982

  7. Antidiabetic effects of scoparic acid D isolated from Scoparia dulcis in rats with streptozotocin-induced diabetes.

    PubMed

    Latha, Muniappan; Pari, Leelavinothan; Ramkumar, Kunga Mohan; Rajaguru, Palanisamy; Suresh, Thangaraj; Dhanabal, Thangavel; Sitasawad, Sandhya; Bhonde, Ramesh

    2009-01-01

    We evaluated the antihyperglycaemic effect of scoparic acid D (SAD), a diterpenoid isolated from the ethanol extract of Scoparia dulcis in streptozotocin (STZ)-induced diabetic male Wistar rats. SAD was administered orally at a dose of 10, 20 and 40 mg kg(-1) bodyweight for 15 days. At the end of the experimental period, the SAD-treated STZ diabetic rats showed decreased levels of glucose as compared with diabetic control rats. The improvement in blood glucose levels of SAD-treated rats was associated with a significant increase in plasma insulin levels. SAD at a dose of 20 mg kg(-1) bodyweight exhibited a significant effect when compared with other doses. Further, the effect of SAD was tested on STZ-treated rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. SAD at a dose of 20 microg mL(-1) evoked two-fold stimulation of insulin secretion from isolated islets, indicating its insulin secretagogue activity. Further, SAD protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. The present study thus confirms the antihyperglycaemic effect of SAD and also demonstrated the consistently strong cytoprotective properties of SAD.

  8. Real-world antidiabetic drug use and fracture risk in 12,277 patients with type 2 diabetes mellitus: a nested case-control study.

    PubMed

    Losada, E; Soldevila, B; Ali, M S; Martínez-Laguna, D; Nogués, X; Puig-Domingo, M; Díez-Pérez, A; Mauricio, D; Prieto-Alhambra, D

    2018-06-02

    We conducted a nested case-control study to study the association between antidiabetic treatments (alone or in combination) use and fracture risk among incident type 2 Diabetes mellitus patients. We found an increased risk of bone fracture with insulin therapy compared to metformin monotherapy. Patients with type 2 diabetes mellitus (T2DM) have an increased risk of fragility fractures, to which antidiabetic therapies may contribute. We aimed to characterize the risk of fracture associated with different antidiabetic treatments as usually prescribed to T2DM patients in actual practice conditions. A case-control study was nested within a cohort of incident T2DM patients registered in 2006-2012 in the Information System for Research Development in Primary Care (Catalan acronym, SIDIAP), a database which includes records for > 5.5 million patients in Catalonia (Spain). Each case (incident major osteoporotic fracture) was risk-set matched with up to five same-sex controls by calendar year of T2DM diagnosis and year of birth (± 10 years). Study exposure included previous use of all antidiabetic medications (alone or in combination), as dispensed in the 6 months before the index date, with metformin (MTF) monotherapy, the most commonly used drug, as a reference group (active comparator). Data on 12,277 T2DM patients (2049 cases and 10,228 controls) were analyzed. Insulin use was associated with increased fracture risk (adjusted OR 1.63 (95% CI 1.30-2.04)), as was the combination of MTF and sulfonylurea (SU) (adjusted OR 1.29 (1.07-1.56)), compared with MTF monotherapy. Sensitivity analyses suggest possible causality for insulin therapy but not for the MTF + SU combination association. No significant association was found with any other antidiabetic medications. Insulin monotherapy was associated with an increased fracture risk compared to MTF monotherapy in T2DM patients. Fracture risk should be taken into account when starting a glucose-lowering drug as part

  9. The Antimicrobial Activity of Annona emarginata (Schltdl.) H. Rainer and Most Active Isolated Compounds against Clinically Important Bacteria.

    PubMed

    Dolab, Juan G; Lima, Beatriz; Spaczynska, Ewelina; Kos, Jiri; Cano, Natividad H; Feresin, Gabriela; Tapia, Alejandro; Garibotto, Francisco; Petenatti, Elisa; Olivella, Monica; Musiol, Robert; Jampilek, Josef; Enriz, Ricardo D

    2018-05-16

    Annona emarginata (Schltdl.) H. Rainer, commonly known as "arachichú", "araticú", "aratigú", and "yerba mora", is a plant that grows in Argentina. Infusions and decoctions are used in folk medicine as a gargle against throat pain and for calming toothache; another way to use the plant for these purposes is chewing its leaves. Extracts from bark, flowers, leaves, and fruits from A. emarginata were subjected to antibacterial assays against a panel of Gram (+) and Gram (-) pathogenic bacteria according to Clinical and Laboratory Standards Institute protocols. Extracts from the stem bark and leaves showed moderate activity against the bacteria tested with values between 250⁻1000 µg/mL. Regarding flower extracts, less polar extracts (hexane, dichloromethane) showed very strong antibacterial activity against methicillin-sensitive Staphylococcus aureus ATCC 25923 and methicillin-resistant S. aureus ATCC 43300 with values between 16⁻125 µg/mL. Additionally, hexane extract showed activity against Klebsiella pneumoniae (MIC = 250 µg/mL). The global methanolic extract of the fruits (MeOHGEF) was also active against the three strains mentioned above, with MICs values 250⁻500 µg/mL. Bioassay-guided fractionation of MeOHGEF led to the isolation of a new main compound-( R )-2-(4-methylcyclohex-3-en-1-yl)propan-2-yl ( E )-3-(4-hydroxyphenyl)acrylate ( 1 ). The structure and relative configurations have been determined by means of 1D and 2D NMR techniques, including COSY, HMQC, HMBC, and NOESY correlations. Compound 1 showed strong antimicrobial activity against all Gram (+) species tested (MICs = 3.12⁻6.25 µg/mL). In addition, the synthesis and antibacterial activity of some compounds structurally related to compound 1 (including four new compounds) are reported. A SAR study for these compounds was performed based on the results obtained by using molecular calculations.

  10. The enhancement of oxidative DNA damage by anti-diabetic metformin, buformin, and phenformin, via nitrogen-centered radicals.

    PubMed

    Ohnishi, Shiho; Mizutani, Hideki; Kawanishi, Shosuke

    2016-08-01

    Metformin (N,N-dimethylbiguanide), buformin (1-butylbiguanide), and phenformin (1-phenethylbiguanide) are anti-diabetic biguanide drugs, expected to having anti-cancer effect. The mechanism of anti-cancer effect by these drugs is not completely understood. In this study, we demonstrated that these drugs dramatically enhanced oxidative DNA damage under oxidative condition. Metformin, buformin, and phenformin enhanced generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in isolated DNA reacted with hydrogen peroxide (H2O2) and Cu(II), although these drugs did not form 8-oxodG in the absence of H2O2 or Cu(II). An electron paramagnetic resonance (EPR) study, utilizing alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide as spin trapping agents, showed that nitrogen-centered radicals were generated from biguanides in the presence of Cu(II) and H2O2, and that these radicals were decreased by the addition of DNA. These results suggest that biguanides enhance Cu(II)/H2O2-mediated 8-oxodG generation via nitrogen-centered radical formation. The enhancing effect on oxidative DNA damage may play a role on anti-cancer activity.

  11. Bioassay-guided fractionation and identification of α-amylase inhibitors from Syzygium cumini leaves.

    PubMed

    Poongunran, Jeyakumaran; Perera, Handunge Kumudu Irani; Jayasinghe, Lalith; Fernando, Irushika Thushari; Sivakanesan, Ramaiah; Araya, Hiroshi; Fujimoto, Yoshinori

    2017-12-01

    Pancreatic α-amylase and α-glucosidase inhibitors serve as important strategies in the management of blood glucose. Even though Syzygium cumini (L.) Skeels (Myrtaceae) (SC) is used extensively to treat diabetes; scientific evidence on antidiabetic effects of SC leaves is scarce. SC leaf extract was investigated for α-amylase inhibitory effect and continued with isolation and identification of α-amylase inhibitors. Bioassay-guided fractionation was conducted using in vitro α-amylase inhibitory assay (with 20-1000 μg/mL test material) to isolate the inhibitory compounds from ethyl acetate extract of SC leaves. Structures of the isolated inhibitory compounds were elucidated using 1 H NMR and 13 C NMR spectroscopic analysis and direct TLC and HPLC comparison with authentic samples. Study period was from October 2013 to October 2015. An active fraction obtained with chromatographic separation of the extract inhibited porcine pancreatic α-amylase with an IC 50 of 39.9 μg/mL. Furthermore, it showed a strong inhibition on α-glucosidase with an IC 50 of 28.2 μg/mL. The active fraction was determined to be a 3:1 mixture of ursolic acid and oleanolic acid. Pure ursolic acid and oleanolic acid showed IC 50 values of 6.7 and 57.4 μg/mL, respectively, against α-amylase and 3.1 and 44.1 μg/mL respectively, against α-glucosidase. The present study revealed strong α-amylase and α-glucosidase inhibitory effects of ursolic acid and oleanolic acid isolated from SC leaves for the first time validating the use of SC leaves in antidiabetic therapy.

  12. Antidiabetic potential of some less commonly used plants in traditional medicinal systems of India and Nigeria

    PubMed Central

    Mohammed, Abubakar; Kumar, Dileep; Rizvi, Syed Ibrahim

    2015-01-01

    The incidence of diabetes mellitus continue to rise annually all over the world with India and Nigeria having recorded cases of 65.1 and 3.9 million respectively in 2013 and expected to increase by a large amount in 2035. Hyperglycemia is a pre-condition for the development of diabetic complications and is accompanied by an increase in the production of free radicals. The present available treatment option for diabetes like sulfonylurea, metformin and alpha-glucosidase are restricted by their limited actions, secondary failure rates, and side-effects; and unaffordable to the majority of the population. Hence, the need to screen for more medicinal plants with antidiabetic ability due to the fact that plants are; biodegradable, safe and cheap with fewer side-effects. In this review article, we have presented the current status of diabetes in India and Nigeria and the role of some less commonly used medicinal plants from both countries that have antidiabetic potential. PMID:26401390

  13. [Isolation and identification of diterpenoids from Pinus koraiensis].

    PubMed

    Yang, Xin; Zhang, Ying-chun; Zhang, Hua; Wang, Jing

    2008-01-01

    To study chemical compounds from Pinus koraiensis. The constituents were isolated by chromatographic method and the structures were identified on the basis of spectral alanlysis. Eight compounds were identified as 8 (14)-podocarpen-13-on-18-oic acid (1), 15-hydroxydehydroabietic acid (2), 12-hydroxyabietic acid (3), lambertianic acid (4), dehydroabietic acid (5), sandaracopimaric acid (6), beta-sitosterol (7), daucosterol (8). Compounds 1--6 are isolated from this plant for the first time.

  14. Data set on the characterization of the phytoestrogenic extract and isolated compounds of the roots of Inula racemosa Hook F (Asteraceae).

    PubMed

    Kalachaveedu, Mangathayaru; Raghavan, Divya; Telapolu, Srivani; Kuruvilla, Sarah; Kedike, Balakrishna

    2018-04-01

    The data presented in this article are related to the research article entitled ' Phyto estrogenic effect of Inula racemosa Hook. f - A cardio protective root drug in traditional medicine, (Mangathayaru K, Divya R, Srivani T et al., 2018) [1]. It describes the characterization details of the root extract and the compounds isolated from them that were shown to be phytoestrogenic in vivo and in vitro respectively.

  15. Prescribing of Antidiabetic Medicines before, during and after Pregnancy: A Study in Seven European Regions.

    PubMed

    Charlton, Rachel A; Klungsøyr, Kari; Neville, Amanda J; Jordan, Sue; Pierini, Anna; de Jong-van den Berg, Lolkje T W; Bos, H Jens; Puccini, Aurora; Engeland, Anders; Gini, Rosa; Davies, Gareth; Thayer, Daniel; Hansen, Anne V; Morgan, Margery; Wang, Hao; McGrogan, Anita; Nybo Andersen, Anne-Marie; Dolk, Helen; Garne, Ester

    2016-01-01

    To explore antidiabetic medicine prescribing to women before, during and after pregnancy in different regions of Europe. A common protocol was implemented across seven databases in Denmark, Norway, The Netherlands, Italy (Emilia Romagna/Tuscany), Wales and the rest of the UK. Women with a pregnancy starting and ending between 2004 and 2010, (Denmark, 2004-2009; Norway, 2005-2010; Emilia Romagna, 2008-2010), which ended in a live or stillbirth, were identified. Prescriptions for antidiabetic medicines issued (UK) or dispensed (non-UK) during pregnancy and/or the year before or year after pregnancy were identified. Prescribing patterns were compared across databases and over calendar time. 1,082,673 live/stillbirths were identified. Pregestational insulin prescribing during the year before pregnancy ranged from 0.27% (CI95 0.25-0.30) in Tuscany to 0.45% (CI95 0.43-0.47) in Norway, and increased between 2004 and 2009 in all countries. During pregnancy, insulin prescribing peaked during the third trimester and increased over time; third trimester prescribing was highest in Tuscany (2.2%) and lowest in Denmark (0.5%). Of those prescribed an insulin during pregnancy, between 50.5% in Denmark and 88.8% in the Netherlands received an insulin analogue alone or in combination with human insulin, this proportion increasing over time. Oral products were mainly metformin and prescribing was highest in the 3 months before pregnancy. Metformin use during pregnancy increased in some countries. Pregestational diabetes is increasing in many areas of Europe. There is considerable variation between and within countries in the choice of medication for treating pregestational diabetes in pregnancy, including choice of insulin analogues and oral antidiabetics, and very large variation in the treatment of gestational diabetes despite international guidelines.

  16. Anti-diabetic effects of the ethanol extract of a functional formula diet in mice fed with a fructose/fat-rich combination diet.

    PubMed

    Cheng, Qian; Zhang, Xiaofeng; Wang, Ou; Liu, Jia; Cai, Shengbao; Wang, Ruojun; Zhou, Feng; Ji, Baoping

    2015-01-01

    Rhizoma dioscorea, Lycium barbarum, Prunella vulgaris and hawthorn are well known in both traditional food and folk medicine. Each of these plants reportedly possesses beneficial effects in the treatment of diabetes. In this study an anti-diabetic health-promoting diet was formulated by mixing the herbs in a ratio of 6:4:2:3, and the anti-diabetic effect and underlying mechanism were elucidated in vivo. Compared with the model control group, the formula, especially its ethanol extract (EF), could improve glucose intolerance and normalize the lipid profile. The mechanisms responsible for the amelioration of glucose and lipid metabolism in mice were an increase in peripheral and hepatic insulin sensitivity, a decrease in serum free fatty acid level, enhanced hepatic glucokinase activity and glycogen content and improved serum antioxidant activity. Hepatic histopathological examination also showed that EF administration markedly decreased fatty deposits in the liver of mice. The results of the present study demonstrated that the prepared functional formula diet is a potent alternative as an anti-diabetic health-promoting diet. © 2014 Society of Chemical Industry.

  17. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    PubMed

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.

  18. Purple Corn (Zea mays L.) Phenolic Compounds Profile and Its Assessment as an Agent Against Oxidative Stress in Isolated Mouse Organs

    PubMed Central

    Ramos-Escudero, Fernando; Muñoz, Ana María; Alvarado-Ortíz, Carlos; Alvarado, Ángel

    2012-01-01

    Abstract This study was designed to determine the contents of total polyphenols, flavonoids, flavonols, flavanols, and anthocyanins of purple corn (Zea mays L.) extracts obtained with different methanol:water concentrations, acidified with 1% HCl (1 N). Another objective was to determine the antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and deoxyribose assay, individual phenolic compounds by high-performance liquid chromatography (HPLC), and endogenous antioxidant enzyme (superoxide dismutase [SOD], catalase [CAT], and total peroxidase [TPX]) activity and lipid peroxidation activity (thiobarbituric acid–reactive substances [TBARS] assay) in isolated mouse organs. Overall, the highest total content of polyphenols, anthocyanins, flavonoids, flavonols, and flavanols was obtained with the 80:20 methanol:water extract, acidified with 1% HCl (1 N). The 50% inhibitory concentration values obtained by the DPPH and ABTS assays with this extract were 66.3 μg/mL and 250 μg/mL, respectively. The antioxidant activity by the FRAP assay was 26.1 μM Trolox equivalents/g, whereas the deoxyribose assay presented 93.6% inhibition. Because of these results, the 80:20 methanol:water extract, acidified with 1% HCl (1 N), was used for the remaining tests. Eight phenolic compounds were identified by HPLC: chlorogenic acid, caffeic acid, rutin, ferulic acid, morin, quercetin, naringenin, and kaempferol. Furthermore, it was observed that the purple corn extract was capable of significantly reducing lipid peroxidation (lower malondialdehyde [MDA] concentrations by the TBARS assay) and at the same time increasing endogenous antioxidant enzyme (CAT, TPX, and SOD) activities in isolated mouse kidney, liver, and brain. On the basis of the results, it was concluded that the purple corn extract contained various bioactive phenolic compounds that exhibited

  19. Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs.

    PubMed

    Ramos-Escudero, Fernando; Muñoz, Ana María; Alvarado-Ortíz, Carlos; Alvarado, Ángel; Yáñez, Jaime A

    2012-02-01

    This study was designed to determine the contents of total polyphenols, flavonoids, flavonols, flavanols, and anthocyanins of purple corn (Zea mays L.) extracts obtained with different methanol:water concentrations, acidified with 1% HCl (1 N). Another objective was to determine the antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and deoxyribose assay, individual phenolic compounds by high-performance liquid chromatography (HPLC), and endogenous antioxidant enzyme (superoxide dismutase [SOD], catalase [CAT], and total peroxidase [TPX]) activity and lipid peroxidation activity (thiobarbituric acid-reactive substances [TBARS] assay) in isolated mouse organs. Overall, the highest total content of polyphenols, anthocyanins, flavonoids, flavonols, and flavanols was obtained with the 80:20 methanol:water extract, acidified with 1% HCl (1 N). The 50% inhibitory concentration values obtained by the DPPH and ABTS assays with this extract were 66.3 μg/mL and 250 μg/mL, respectively. The antioxidant activity by the FRAP assay was 26.1 μM Trolox equivalents/g, whereas the deoxyribose assay presented 93.6% inhibition. Because of these results, the 80:20 methanol:water extract, acidified with 1% HCl (1 N), was used for the remaining tests. Eight phenolic compounds were identified by HPLC: chlorogenic acid, caffeic acid, rutin, ferulic acid, morin, quercetin, naringenin, and kaempferol. Furthermore, it was observed that the purple corn extract was capable of significantly reducing lipid peroxidation (lower malondialdehyde [MDA] concentrations by the TBARS assay) and at the same time increasing endogenous antioxidant enzyme (CAT, TPX, and SOD) activities in isolated mouse kidney, liver, and brain. On the basis of the results, it was concluded that the purple corn extract contained various bioactive phenolic compounds that exhibited considerable in vitro

  20. [Isolation and characterization of polyphenols in seed of Litchi chinensis].

    PubMed

    Yan, Ren-Liang; Liu, Zhi-Gang

    2009-04-01

    To study the chemical constituents of polyphenols in seed of Litchi chinensis. The seeds of Litchi chinensis were extracted by 65% ethanol, then the compounds were separated by repeated silica gel, polyamide and preparative TLC. The structures of polyphones isolated were identified by analysis of their spectral datas and chemical properties. Four polyphones compounds were isolated as protocatechuic aldehyde (I), protocatechuic acid (II), daucosterol (III) and (-) -epicatichin (IV). Compounds I , III and IV are isolated from this plant for the first time.

  1. Analyzing volatile compounds in dairy products

    USDA-ARS?s Scientific Manuscript database

    Volatile compounds give the first indication of the flavor in a dairy product. Volatiles are isolated from the sample matrix and then analyzed by chromatography, sensory methods, or an electronic nose. Isolation may be performed by solvent extraction or headspace analysis, and gas chromatography i...

  2. Chemical and Biological insights of Ouratea hexasperma (A. St.-Hil.) Baill.: a source of bioactive compounds with multifunctional properties.

    PubMed

    Fidelis, Queli Cristina; Faraone, Immacolata; Russo, Daniela; Aragão Catunda, Francisco Eduardo; Vignola, Lisiana; de Carvalho, Mario Geraldo; de Tommasi, Nunziatina; Milella, Luigi

    2018-01-16

    The study aimed to evaluate in vitro antioxidant, anticholinesterase and antidiabetic properties of Ouratea hexasperma (A. St.-Hil.) Baill. The inflorescence methanol extract and the ethyl acetate fraction of leaves and stems reported the highest Relative Antioxidant Capacity Index (RACI), whereas the dichloromethane fraction of leaves was the best inhibitor of α-amylase and α-glucosidase. Trans-3-O-methyl-resveratrol-2-C-β-glucoside, lithospermoside, 2,5-dimethoxy-p-benzoquinone, lup-20(30)-ene-3β,28-diol, 7-O-methylgenistein, apigenin and luteolin and amentoflavone were isolated from O. hexasperma. Resveratrol derivative was isolated for the first time in Ochnaceae family. Luteolin, followed by apigenin, reported the highest Relative Antioxidant Capacity Index and they were also the best inhibitors of α-glucosidase enzyme.

  3. Impact of long-term antihypertensive and antidiabetic medications on the prognosis of post-surgical colorectal cancer: the Fujian prospective investigation of cancer (FIESTA) study

    PubMed Central

    Peng, Feng; Hu, Dan; Lin, Xiandong; Liang, Binying; Chen, Ying; Zhang, Hejun; Xia, Yan

    2018-01-01

    Hypertension and diabetes mellitus are common comorbidities of colorectal cancer. We designed a prospective cohort study aiming to investigate the impact of long-term antihypertensive and antidiabetic medications on colorectal cancer-specific survival and recurrence among 713 post-surgical patients. All participants received radical resection for colorectal cancer during 2000-08, and they were followed up until July 2017. Colorectal cancer patients without hypertension had better survival than those with hypertension (median survival time [MST]: 190.3 months versus 99.0 months, p <0.001). The impact of antidiabetic medications on prolonging colorectal cancer survival was statistically significant, that is, patients receiving antidiabetic medications had longer survival time than untreated diabetic patients (MST: 135.8 months versus 80.2 months, p: 0.007), whereas the prognosis was greatly improved in colorectal cancer patients without diabetes mellitus (p <0.001). Medical treatment for hypertension and diabetes mellitus was associated with 28% (hazard ratio [HR]: 0.72; 95% confidence interval [CI]: 0.47-1.10; p: 0.131) and 57% (HR: 0.43; 95% CI: 0.22-0.82; p: 0.010) reduced risk of dying from colorectal cancer relative to those without medications, respectively. Our data indicate that long-term antidiabetic medications can significantly prolong the survival and improve the prognosis of post-surgical colorectal cancer. PMID:29846174

  4. Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase, α -glucosidase and PTP1B inhibitors, and β pancreatic cells cytoprotective agents - a comparative study.

    PubMed

    Zakłos-Szyda, Małgorzata; Majewska, Iwona; Redzynia, Małgorzata; Koziołkiewicz, Maria

    2015-01-01

    Type 2 diabetes mellitus, which is usually a result of wrong dietary habits and reduced physical activity, represents 85-95% of all diabetes cases and among other diet related diseases is the major cause of deaths. The disease is characterized mainly by hyperglycemia, which is associated with attenuated insulin sensitivity or beta cells dysfunction caused by multiple stimuli, including oxidative stress and loss of insulin secretion. Since polyphenols possess multiple biological activities and constitute an important part of the human diet, they have recently emerged as critical phytochemicals in type 2 diabetes prevention and treatment. Their hypoglycemic action results from their antioxidative effect involved in recovering of altered antioxidant defenses and restoring insulin secreting machinery in pancreatic cells, or abilities to inhibit the activity of carbohydrates hydrolyzing enzymes (α-amylase and α-glucosidase) or protein tyrosine phosphatase 1B (PTP1B), which is known as the major negative regulator in insulin signaling. This study investigates the total phenolic content (Folin-Ciocalteu and HPLC methods) and antioxidant capacity (ABTS) of 20 polyphenolic extracts obtained from selected edible plants, which were screened in terms of α -amylase, α - glucosidase and protein tyrosine phosphatase 1B inhibitors or protective agents against oxidative stress induced by tertbutylhydroperoxide (t-BOOH) in βTC3 pancreatic beta cells used as a model target for antidiabetes drugs. The study concludes that Chaenomeles japonica, Oenothera paradoxa and Viburnum opulus may be promising natural sources for active compounds with antidiabetic properties.

  5. Antidiabetic and antihyperlipidemic effects of the stem of Musa sapientum Linn. in streptozotocin-induced diabetic rats.

    PubMed

    Dikshit, Piyush; Shukla, Kirtikar; Tyagi, Mool Kumar; Garg, Piyush; Gambhir, Jasvindar K; Shukla, Rimi

    2012-12-01

    Musa sapientum Linn. is a herbaceous plant of the Musaceae family. It has been used in India for the treatment of gastric ulcer, hypertension, diarrhea, dysentery, and diabetes. The antidiabetic effect of the fruit, root, and flower has been demonstrated. The aim of the present study was to assess the antidiabetic and antihyperlipidemic effects of the stem of M. sapientum Linn. Diabetes was induced in rats by streptozotocin injection (45 mg/kg, i.p.). Diabetic rats were treated for 2 weeks with different doses of lyophilized stem juice of M. sapientum Linn. (25, 50, and 100 mg/kg) to select the most effective dose. The effects of 4 weeks treatment with this dose (50 mg/kg) on fasting and postprandial plasma glucose (FPG, PPG) levels, body weight, lipid profile, HbA1c, insulin, liver enzymes (i.e. glucokinase, glucose-6-phosphatase and 3-hydroxy-3-methylglutaryl coenzyme A [HMG-CoA] reductase) and muscle and liver glycogen were evaluated. The most effective dose of lyophilized stem juice of M. sapientum Linn. was 50 mg/kg. Four weeks treatment with this dose resulted in significant decreases in FPG and PPG (P < 0.05). Serum insulin increased (P < 0.05) whereas HbA1c decreased (P < 0.05). Diabetes-induced changes to the lipid profile, muscle and liver glycogen, and enzyme activity (i.e. glucokinase, glucose-6-phosphatase, and HMG-CoA reductase) were restored near to normal levels (P < 0.05). Diabetic rats responded favorably to treatment with lyophilized stem juice of M. sapientum Linn., which exhibits antidiabetic and antihyperlipidemic effects. © 2012 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  6. Drug-drug interactions between immunosuppressants and antidiabetic drugs in the treatment of post-transplant diabetes mellitus.

    PubMed

    Vanhove, Thomas; Remijsen, Quinten; Kuypers, Dirk; Gillard, Pieter

    2017-04-01

    Post-transplant diabetes mellitus is a frequent complication of solid organ transplantation that generally requires treatment with lifestyle interventions and antidiabetic medication. A number of demonstrated and potential pharmacokinetic drug-drug interactions (DDIs) exist between commonly used immunosuppressants and antidiabetic drugs, which are comprehensively summarized in this review. Cyclosporine (CsA) itself inhibits the cytochrome P450 (CYP) 3A4 enzyme and a variety of drug transporters. As a result, it increases exposure to repaglinide and sitagliptin, will likely increase the exposure to nateglinide, glyburide, saxagliptin, vildagliptin and alogliptin, and could theoretically increase the exposure to gliquidone and several sodium-glucose transporter (SGLT)-2 inhibitors. Currently available data, although limited, suggest that these increases are modest and, particularly with regard to gliptins and SGLT-2 inhibitors, unlikely to result in hypoglycemia. The interaction with repaglinide is more pronounced but does not preclude concomitant use if repaglinide dose is gradually titrated. Mycophenolate mofetil and azathioprine do not engage in DDIs with any antidiabetic drug. Although calcineurin inhibitors (CNIs) and mammalian target of rapamycin inhibitors (mTORi) are intrinsically prone to DDIs, their disposition is not influenced by metformin, pioglitazone, sulfonylureas (except possibly glyburide) or insulin. An effect of gliptins on the disposition of CNIs and mTORi is unlikely, but has not been definitively ruled out. Based on their disposition profiles, glyburide and canagliflozin could affect CNI and mTORi disposition although this requires further study. Finally, delayed gastric emptying as a result of glucagon-like peptide-1 agonists seems to have a limited, but not necessarily negligible effect on CNI disposition. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Two new compounds from the flowers of Rhododendron molle.

    PubMed

    Chen, Shao-Nong; Bao, Guan-Hu; Wang, Li-Quan; Qin, Guo-Wei

    2013-09-01

    To study the chemical constituents of the flowers of Rhododendron molle. Compounds were isolated by repeated chromatography over silica gel and Sephadex LH-20. Structures were elucidated based on spectral techniques, mainly 1D- and 2D-NMR and mass spectrometric analyses. Two compounds (1 and 2) were isolated. Compounds 1 and 2 were identified as two new compounds: 2α, 10α-epoxy-3β, 5β, 6β, 14β, 16α-hexahydroxy-grayanane and benzyl 2, 6-dihydroxybenzoate-6-O-α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranoside, respectively. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  8. Infrared Matrix-Isolation Study of New Noble-Gas Compounds

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Räsänen, Markku; Khriachtchev, Leonid

    2016-06-01

    We identify new noble-gas compounds in solid matrices using IR spectroscopy. The compounds under study belong to two types: HNgY and YNgY' where Ng is a noble-gas atom and Y and Y' are electronegative fragments. The experimental assignments are supported by ab initio calculations at the MP2(full) and CCSD(T) levels of theory with the def2-TZVPPD basis set. We have prepared and characterized two new HNgY compounds (noble-gas hydrides): HKrCCCl in a Kr matrix and HXeCCCl in a Xe matrix.I The synthesis of these compounds includes two steps: UV photolysis of HCCCl in a noble-gas matrix to form the H + CCCl fragments and annealing of the matrix to mobilize H atoms and to promote the H + Ng + CCCl = HNgCCCl reaction. An interesting observation in the experiments on HXeCCCl in a Xe matrix is the temperature-induced transformation of the three H-Xe stretching bands. This observation is explained by temperature-induced changes of local matrix morphology around the embedded HXeCCCl molecule. In these experiments, we have also obtained the IR spectrum of the CCCl radical, which is produced by photodecomposition of HCCCl. We have identified three new YNgY' compounds (fluorinated noble-gas cyanides): FKrCN in a Kr matrix and FXeCN and FXeNC in a Xe matrix.II These molecule are formed by photolysis of FCN in a noble-gas matrix due to locality of this process. The amount of these molecules increases upon thermal mobilization of the F atoms in the photolyzed matrix featuring the F + Ng + CN reaction.

  9. Two new compounds from Ganoderma lucidum.

    PubMed

    Wang, Xin-Fang; Yan, Yong-Ming; Wang, Xin-Long; Ma, Xiu-Jing; Fu, Xue-Yan; Cheng, Yong-Xian

    2015-01-01

    Two pairs of new enantiomers, lucidulactones A and B (1 and 2), and two known compounds were isolated from Ganoderma lucidum. Their structures were determined by means of spectroscopic methods. The chiral HPLC was used to separate the ( - )- and (+)-antipodes of the new compounds.

  10. [The compounds from n-butanol fraction of Alpinia oxyphylla].

    PubMed

    Xie, Bin-Bin; Hou, Lei; Guo, Bao-Lin; Huang, Wen-Hua; Yu, Jing-Guang

    2014-11-01

    Nine compounds were isolated from the n-butanol fraction of 95% ethanol extract of the fruit of Alpinia oxyphylla Miq. with a combination of various chromatographic approaches, including MDS resin, silica gel, reverse phase C18 and preparative HPLC. On the basis of spectroscopic data analysis, they were elucidated as (1R, 4R, 10R)-1β, 4α-dihydroxy-11, 12, 13-trinor-5, 6-eudesmen-7-one (1), 1β, 4β-dihydroxy-11, 12, 13-trinor-8, 9-eudesmen-7-one (2), oxyphyllenone A (3), oxyphyllenone B (4), rhamnocitrin (5), staphylionoside D (6), benzyl-1-O-β-D-glucopyranoside (7), 2-O-β-D-glucopyranosyl-(1S)-phenylethylene glycol (8), and (S)-1-phenylethyl-β-D-glucopyranoside (9). Among them, compound 1 is a new sesquiterpene, named as oxyphyllenone C; compounds 8 and 9 are new natural products; compounds 2 and 6 were isolated from the genus Alpinia for the first time, and compound 7 was isolated from A. oxyphylla for the first time.

  11. Antiinflammatory and lipoxygenase inhibitory compounds from Vitex agnus-castus.

    PubMed

    Choudhary, M Iqbal; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Tareen, Rasool Bakhsh

    2009-09-01

    Several secondary metabolites, artemetin (1), casticin (2), 3,3'-dihydroxy-5,6,7,4'-tetramethoxy flavon (3), penduletin (4), methyl 4-hydroxybenzoate (5), p-hydroxybenzoic acid (6), methyl 3,4-dihydroxybenzoate (7), 5-hydroxy-2-methoxybenzoic acid (8), vanillic acid (9) and 3,4-dihydroxybenzoic acid (10) were isolated from a folkloric medicinal plant, Vitex agnus-castus. The structures of compounds 1-10 were identified with the help of spectroscopic techniques. Compounds 3-10 were isolated for the first time from this plant. These compounds were screened for their antiinflammatory and lipoxygenase inhibitory activities. Compounds 6, 7 and 10 were found to have significant antiinflammatory activity in a cell-based contemporary assay, whereas compounds 1 and 2 exhibited a potent lipoxygenase inhibition.

  12. Imidazopyridine Compounds Inhibit Mycobacterial Growth by Depleting ATP Levels.

    PubMed

    O'Malley, Theresa; Alling, Torey; Early, Julie V; Wescott, Heather A; Kumar, Anuradha; Moraski, Garrett C; Miller, Marvin J; Masquelin, Thierry; Hipskind, Philip A; Parish, Tanya

    2018-06-01

    The imidazopyridines are a promising new class of antitubercular agents with potent activity in vitro and in vivo We isolated mutants of Mycobacterium tuberculosis resistant to a representative imidazopyridine; the mutants had large shifts (>20-fold) in MIC. Whole-genome sequencing revealed mutations in Rv1339, a hypothetical protein of unknown function. We isolated mutants resistant to three further compounds from the series; resistant mutants isolated from two of the compounds had single nucleotide polymorphisms in Rv1339 and resistant mutants isolated from the third compound had single nucleotide polymorphisms in QcrB, the proposed target for the series. All the strains were resistant to two compounds, regardless of the mutation, and a strain carrying the QcrB T313I mutation was resistant to all of the imidazopyridine derivatives tested, confirming cross-resistance. By monitoring pH homeostasis and ATP generation, we confirmed that compounds from the series were targeting QcrB; imidazopyridines disrupted pH homeostasis and depleted ATP, providing further evidence of an effect on the electron transport chain. A representative compound was bacteriostatic against replicating bacteria, consistent with a mode of action against QcrB. The series had a narrow inhibitory spectrum, with no activity against other bacterial species. No synergy or antagonism was seen with other antituberculosis drugs under development. In conclusion, our data support the hypothesis that the imidazopyridine series functions by reducing ATP generation via inhibition of QcrB. Copyright © 2018 O'Malley et al.

  13. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-A; Shim, Sang Hee; Ahn, Hong Ryul

    2013-06-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca{sup 2+}more » was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by

  14. Draft Genome Sequence of Pseudomonas sp. EpS/L25, Isolated from the Medicinal Plant Echinacea purpurea and Able To Synthesize Antimicrobial Compounds.

    PubMed

    Presta, Luana; Bosi, Emanuele; Fondi, Marco; Maida, Isabel; Perrin, Elena; Miceli, Elisangela; Maggini, Valentina; Bogani, Patrizia; Firenzuoli, Fabio; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Fani, Renato

    2016-05-05

    We announce here the draft genome sequence of Pseudomonas sp. strain EpS/L25, isolated from the stem/leaves of the medicinal plant Echinacea purpurea This genome will allow for comparative genomics in order to identify genes associated with the production of bioactive compounds and antibiotic resistance. Copyright © 2016 Presta et al.

  15. Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea.

    PubMed

    Fernandes, Elizabeth S; Passos, Giselle F; Medeiros, Rodrigo; da Cunha, Fernanda M; Ferreira, Juliano; Campos, Maria M; Pianowski, Luiz F; Calixto, João B

    2007-08-27

    This study evaluated the anti-inflammatory properties of two sesquiterpenes isolated from Cordia verbenacea's essential oil, alpha-humulene and (-)-trans-caryophyllene. Our results revealed that oral treatment with both compounds displayed marked inhibitory effects in different inflammatory experimental models in mice and rats. alpha-humulene and (-)-trans-caryophyllene were effective in reducing platelet activating factor-, bradykinin- and ovoalbumin-induced mouse paw oedema, while only alpha-humulene was able to diminish the oedema formation caused by histamine injection. Also, both compounds had important inhibitory effects on the mouse and rat carrageenan-induced paw oedema. Systemic treatment with alpha-humulene largely prevented both tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) generation in carrageenan-injected rats, whereas (-)-trans-caryophyllene diminished only TNFalpha release. Furthermore, both compounds reduced the production of prostaglandin E(2) (PGE(2)), as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) expression, induced by the intraplantar injection of carrageenan in rats. The anti-inflammatory effects of alpha-humulene and (-)-trans-caryophyllene were comparable to those observed in dexamethasone-treated animals, used as positive control drug. All these findings indicate that alpha-humulene and (-)-trans-caryophyllene, derived from the essential oil of C. verbenacea, might represent important tools for the management and/or treatment of inflammatory diseases.

  16. How to fight obesity with antidiabetic drugs: targeting gut or kidney?

    PubMed

    Baretić, M; Troskot, R

    2015-03-01

    The increased prevalence of type 2 diabetes follows the increased prevalence of obesity. Both diseases share common pathophysiological pathways; obesity is in most cases the first step, whereas diabetes is the second one. Weight gain occurs during the treatment of diabetes with drugs causing endogenous or exogenous hyperinsulinemia. Insulin and sulfonylurea are making patients more obese and more insulin resistant. Glucagon-like peptide-1 receptor agonists (GLP-1 agonists) and sodium/glucose cotransporter 2 inhibitors (SGLT2 inhibitors) are antidiabetic drugs with weight loss property. GLP-1 agonists mimic an incretin action. They release insulin after a meal during hyperglycemia and suppress glucagon. The weight loss effect is a consequence of central action increased satiety. Some of GLP-1 agonists weight loss is a result of decelerated gastric emptying rate. SGLT2 inhibitors block sodium glucose cotransporter in proximal tubule brush border and produce glucose excretion with urinary loss. Urinary glucose leak results in calories and weight loss. Even a modest weight loss has positive outcome on metabolic features of diabetic patient; such drugs have important role in treatment of type 2 diabetic patients. However, there are some still unresolved questions. The weight loss they produce is modest. Those drugs are expensive and not available to many diabetic patients, they are significantly more expensive compared to "traditional" hypoglycemic drugs. The hypoglycemic endpoint of GLP-1 agonists and SGLT2 inhibitors often requires adding another antidiabetic drug. The most radical and most effective therapy of type 2 diabetes and obesity is bariatric surgery having significant number of diabetes remission.

  17. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats.

    PubMed

    Mahmoud, Mona F; El Ashry, Fatma El Zahraa Z; El Maraghy, Nabila N; Fahmy, Ahmed

    2017-12-01

    Momordica charantia Linn (Cucurbitaceae) (MC) is used in folk medicine to treat various diseases including diabetes mellitus. This study investigates the antidiabetic activities of Momordica charantia (bitter gourd) on streptozotocin-induced type 2 diabetes mellitus in rats. Male Wister rats were randomly assigned to 4 groups. Group I, Normal control; Group II, STZ diabetic; Group III and IV, Momordica charantia fruit juice was orally administered to diabetic rats (10 mL/kg/day either as prophylaxis for 14 days before induction of diabetes then 21 days treatment, or as treatment given for 21 days after induction of diabetes). The effects of MC juice were studied both in vivo and in vitro by studying the glucose uptake of isolated rat diaphragm muscles in the presence and absence of insulin. Histopathological examination of pancreas was also performed. This study showed that MC caused a significant reduction of serum glucose (135.99 ± 6.27 and 149.79 ± 1.90 vs. 253.40* ± 8.18) for prophylaxis and treatment respectively, fructosamine (0.99 ± 0.01 and 1.01 ± 0.04 vs. 3.04 ± 0.07), total cholesterol, triglycerides levels, insulin resistance index (1.13 ± 0.08 and 1.19 ± 0.05 vs. 1.48 ± 1.47) and pancreatic malondialdehyde content (p < 0.05). While it induced a significant increase of serum insulin (3.41 ± 0.08 and 3.28 ± 0.08 vs. 2.39 ± 0.27), HDL-cholesterol, total antioxidant capacity levels, β cell function percent, and pancreatic reduced glutathione (GSH) content (p < 0.05) and improved histopathological changes of the pancreas. It also increased glucose uptake by diaphragms of normal (12.17 ± 0.60 vs. 9.07 ± 0.66) and diabetic rats (8.37 ± 0.28 vs. 4.29 ± 0.51) in the absence and presence of insulin (p < 0.05). Momordica charantia presents excellent antidiabetic and antioxidant activities and thus has great potential as a new source for diabetes treatment whether it is

  18. Cardiovascular effects of anti-diabetes drugs

    PubMed Central

    Younk, Lisa M.; Lamos, Elizabeth M.

    2016-01-01

    Introduction Cardiovascular disease remains the major contributor to morbidity and mortality in diabetes. From the need to reduce cardiovascular risk in diabetes and to ensure that such risk is not exacerbated by drug treatments, governmental regulators and drug manufacturers have focused on clinical trials evaluating cardiovascular outcomes. Areas covered Findings from mechanistic and clinical trials of biguanides, sulfonylureas, thiazolidinediones, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and sodium-glucose transporter 2 (SGLT-2) inhibitors will be reviewed. These drug classes will be compared within the context of available cardiovascular outcomes data. Clinical implications of new study regulations will be examined. Expert opinion Recent cardiovascular studies provide a more comprehensive evaluation of specific anti-diabetes therapy in individuals with high cardiovascular risk. Long-term effects of anti-hyperglycemic agents in patients with lower cardiovascular risk are still speculative. Historical data supports continued use of metformin as a first-line agent. DPP-4 inhibitors and GLP-1 receptor agonists appear to have neutral effects on cardiovascular outcomes. The significantly decreased cardiovascular risk associated with empagliflozin SGLT-2 inhibitor therapy is impressive and may change how practitioners prescribe add-on therapy to metformin. PMID:27268470

  19. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice.

    PubMed

    Xiao, Chun; Wu, Qingping; Zhang, Jumei; Xie, Yizhen; Cai, Wen; Tan, Jianbin

    2017-01-20

    Ganoderma lucidum (Lin Zhi) has been used to treat diabetes in Chinese folk for centuries. Our laboratory previously demonstrated that Ganoderma lucidum polysaccharides (GLPs) had hypoglycemic effects in diabetic mice. Our aim was to identify the main bioactives in GLPs and corresponding mechanism of action. Four polysaccharide-enriched fraction were isolated from GLPs and the antidiabetic activities were evaluated by type 2 diabetic mice. Fasting serum glucose (FSG), fasting serum insulin (FSI) and epididymal fat/BW ratio were measured at the end of the experiment. In liver, the mRNA levels of hepatic glucose regulatory enzymes were determined by quantitative polymerase chain reaction (qPCR) and the protein levels of phospho-AMP-activated protein kinase (p-AMPK)/AMPK were determined by western blotting test. In epididymal fat tissue, the mRNA and protein levels GLUT4, resistin, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC1) were determined by qPCR and immuno-histochemistry. The structure of polysaccharide F31 was obtained from GPC, FTIR NMR and GC-MS spectroscopy, RESULTS: F31 significantly decreased FSG (P<0.05), FSI and epididymal fat/BW ratio (P<0.01). In liver, F31 decreased the mRNA levels of hepatic glucose regulatory enzymes, and up-regulated the ratio of phospho-AMP-activated protein kinase (p-AMPK)/AMPK. In epididymal fat tissue, F31 increased the mRNA levels of GLUT4 but decreased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1) and resistin. Immuno-histochemistry results revealed F31 increased the protein levels of GLUT4 and decreased resistin. Data suggested that the main bioactives in GLPs was F31, which was determined to be a β-heteropolysaccharide with the weight-average molecular weight of 15.9kDa. The possible action mechanism of F31 may be associated with down-regulation of the hepatic glucose regulated enzyme mRNA levels via AMPK activation, improvement of insulin resistance and decrease of epididymal fat/BW ratio. These

  20. Isolation and anti-HIV-1 integrase activity of lentzeosides A-F from extremotolerant lentzea sp. H45, a strain isolated from a high-altitude Atacama Desert soil.

    PubMed

    Wichner, Dominik; Idris, Hamidah; Houssen, Wael E; McEwan, Andrew R; Bull, Alan T; Asenjo, Juan A; Goodfellow, Michael; Jaspars, Marcel; Ebel, Rainer; Rateb, Mostafa E

    2017-04-01

    The extremotolerant isolate H45 was one of several actinomycetes isolated from a high-altitude Atacama Desert soil collected in northwest Chile. The isolate was identified as a new Lentzea sp. using a combination of chemotaxonomic, morphological and phylogenetic properties. Large scale fermentation of the strain in two different media followed by chromatographic purification led to the isolation of six new diene and monoene glycosides named lentzeosides A-F, together with the known compound (Z)-3-hexenyl glucoside. The structures of the new compounds were confirmed by HRESIMS and NMR analyses. Compounds 1-6 displayed moderate inhibitory activity against HIV integrase.

  1. Formation of harmful compounds in biotransformation of lilial by microorganisms isolated from human skin.

    PubMed

    Esmaeili, Akbar; Afshari, Shima; Esmaeili, Davood

    2015-01-01

    The biotransformation of lilial results in an acid that is used in the dairy industry, in perfumery, as an intermediate in the manufacture of pharmaceuticals and cosmetics, and as a food additive for enhancing taste. This study investigates the biotransformation of lilial by Staphylococcus aureus and Staphylococcus epidermidis, two bacterial species isolated from human skin. Both species of Staphylococcus were isolated in samples taken from the skin of individuals living in a rural area of Iran. The pH of the culture medium was optimized, and after culturing the microorganisms, the bacteria were added to a flask containing a nutrient broth and incubated for several hours. The flasks of bacteria were combined with lilial, and various biochemical tests and diagnostics were performed, including Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectrophotometry (UV-Vis), and gas chromatography-mass spectroscopy (GC-MS). The S. aureus produced isobutyric acid (2-methylpropanoic acid) after 72 h (71% of the total products yielded during biotransformation), whereas the S. epidermidis produced terpenoid alcoholic media after 24 h (90% of total products obtained). The results obtained indicate that biotransformation of lilial by S. aureus is more desirable than by S. epidermidis due to the highly efficient production of a single product. Bourgeonal and liliol were two toxic compounds produced during biotransformation, which indicates that the use of lilial in cosmetics can be harmful to the skin.

  2. Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum

    PubMed Central

    Singh, Vineeta; Praveen, Vandana; Tripathi, Divya; Haque, Shafiul; Somvanshi, Pallavi; Katti, S. B.; Tripathi, C. K. M.

    2015-01-01

    During the search for a potent antifungal drug, a cell-permeable metabolite was isolated from a soil isolate taxonomically identified as Penicillium radicum. The strain was found to be a potent antifungal agent. Production conditions of the active compound were optimized and the active compound was isolated, purified, characterized and identified as a phosphoinositide 3-kinase (PI3K) inhibitor, commonly known as wortmannin (Wtmn). This is very first time we are reporting the production of Wtmn from P. radicum. In addition to its previously discovered anticancer properties, the broad spectrum antifungal property of Wtmn was re-confirmed using various fungal strains. Virtual screening was performed through molecular docking studies against potential antifungal targets, and it was found that Wtmn was predicted to impede the actions of these targets more efficiently than known antifungal compounds such as voriconazole and nikkomycin i.e. 1) mevalonate-5-diphosphate decarboxylase (1FI4), responsible for sterol/isoprenoid biosynthesis; 2) exocyst complex component SEC3 (3A58) where Rho- and phosphoinositide-dependent localization is present and 3) Kre2p/Mnt1p a Golgi alpha1,2-mannosyltransferase (1S4N) involved in the biosynthesis of yeast cell wall glycoproteins). We conclude that Wtmn produced from P. radicum is a promising lead compound which could be potentially used as an efficient antifungal drug in the near future after appropriate structural modifications to reduce toxicity and improve stability. PMID:26159770

  3. Inhibitory effects of compounds isolated from the dried branches and leaves of murta (Myrceugenia euosma) on lipid accumulation in 3T3-L1 cells.

    PubMed

    Oikawa, Naoki; Nobushi, Yasuhito; Wada, Taira; Sonoda, Kumiko; Okazaki, Yuzo; Tsutsumi, Shigetoshi; Park, Yong Kun; Kurokawa, Masahiko; Shimba, Shigeki; Yasukawa, Ken

    2016-07-01

    As obesity is a global health concern the demand for anti-obesity drugs is high. In this study, we investigated the anti-obesity effect of the dried branches and leaves of murta (Myrceugenia euosma Legrand, Myrtaceae). A methanol extract of the dried branches and leaves of murta inhibited adipogenesis in 3T3-L1 cells. Three known flavanones-cryptostrobin (1), pinocembrin (4), and 5,7-dihydroxy-6,8-dimethylflavanone (6), and three chalcones-2',6'-dihydroxy-3'-methyl-4'-methoxychalcone (2), pinostrobin chalcone (3), and 2',6'-dihydroxy-4'-methoxy-3',5'-dimethylchalcone (5) were isolated from the active fraction. Structures of these compounds were identified using various spectral data. Each of these compounds also inhibited adipogenesis in 3T3-L1 cells. In particular, compound 3 was a more potent inhibitor of triglyceride accumulation than the positive control berberine. Gene expression studies revealed that treatment of 3T3-L1 cells with 3 lowers the expression levels of CCAAT/enhancer-binding protein α and peroxisome proliferator activator γ2 during adipogenesis without affecting cell viability. Treatment of 3T3-L1 cells with 3 reduced the expression levels of mRNAs encoding sterol regulatory element-binding protein 1c and several lipogenic enzymes, including fatty acid synthase and stearoyl CoA desaturase-1. These results indicate that the methanol extract and compounds isolated from the dried branches and leaves of murta exert their anti-obesity effects through the inhibition of adipogenesis.

  4. Studies on the production and purification of an antimicrobial compound and taxonomy of the producer isolated from the marine environment of the Sundarbans.

    PubMed

    Saha, M; Ghosh, D; Ghosh, D; Garai, D; Jaisankar, P; Sarkar, K K; Dutta, P K; Das, S; Jha, T; Mukherjee, J

    2005-02-01

    A microorganism isolated from the Sundarbans region of the Bay of Bengal, India, showed potent antimicrobial activity against gram-positive and gram-negative bacteria, molds, yeast and several multiple-drug-resistant (MDR) bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The isolate grew in the presence of 20% (w/v) NaCl, antibiotic production being maximum with 5% (w/v) NaCl in the production medium. Natural seawater stimulated antibiotic biosynthesis. The absence of catabolite repression during the synthesis of the antimicrobial substance was demonstrated by the utilization of glucose by this isolate. The 16S rRNA gene of this aerobic, gram-positive, mycelium- and spore-forming microorganism was amplified, and molecular phylogenetic analysis of the DNA sequence showed less than 93% similarity with its closest relative, indicating differentiation at the genus level. The highly stable, active principle was purified by butyl acetate extraction and silica-gel chromatography and a single compound was found to posses the broad-spectrum activity. Molecular characterization showed that the active compound is a lipid. Bioreactor studies demonstrated that antibiotic production is strongly dependent on the scale of operation and there is a definite relation between the dissolved oxygen concentration, medium pH, glucose utilization, cell differentiation and antibiotic production. Maximum production in 30 h could be obtained by regulation of the medium pH in the alkaline range by a combination of controlled addition of NaOH, regulation of the air supply and changes in the reactor configuration. Considering all of the above evidences and based on comparison with the current literature, a novel antimicrobial appears to have been isolated.

  5. Phytotoxic Potential of Secondary Metabolites and Semisynthetic Compounds from Endophytic Fungus Xylaria feejeensis Strain SM3e-1b Isolated from Sapium macrocarpum.

    PubMed

    García-Méndez, Marbella Claudia; Macías-Ruvalcaba, Norma A; Lappe-Oliveras, Patricia; Hernández-Ortega, Simón; Macías-Rubalcava, Martha Lydia

    2016-06-01

    Bioactivity-directed fractionation of the combined culture medium and mycelium extract of the endophytic fungus Xylaria feejeensis strain SM3e-1b, isolated from Sapium macrocarpum, led to the isolation of three known natural products: (4S,5S,6S)-4-hydroxy-3-methoxy-5-methyl-5,6-epoxycyclohex-2-enone or coriloxine, 1; 2-hydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, 2; and 2,6-dihydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione or fumiquinone B, 3. This is the first report of compound 3 being isolated from this species. Additionally, four new derivatives of coriloxine were prepared: (4R,5S,6R)-6-chloro-4,5-dihydroxy-3-methoxy-5-methylcyclohex-2-enone, 4; 6-hydroxy-5-methyl-3-(methylamino)cyclohexa-2,5- diene-1,4-dione, 5; (4R,5R,6R)-4,5-dihydroxy-3-methoxy-5-methyl-6-(phenylamino)cyclohex-2-enone, 6; and 2-((4-butylphenyl)amino)-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, 7. X-ray analysis allowed us to unambiguously determine the structures and absolute configuration of semisynthetic derivatives 4, 5, and 6. The phytotoxic activity of the three isolated natural products and the coriloxine derivatives is reported. Germination of the seed, root growth, and oxygen uptake of the seedlings of Trifolium pratense, Medicago sativa, Panicum miliaceum, and Amaranthus hypochondriacus were significantly inhibited by all of the tested compounds. In general, they were more effective inhibiting root elongation than suppressing the germination and seedling oxygen uptake processes as shown by their IC50 values.

  6. Isolation and characterization of antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties.

    PubMed

    Valan Arasu, M; Jung, M-W; Ilavenil, S; Jane, M; Kim, D-H; Lee, K-D; Park, H-S; Hur, T-Y; Choi, G-J; Lim, Y-C; Al-Dhabi, N A; Choi, K-C

    2013-11-01

    The purpose of this study was to isolate, identify and characterize an antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties. The 16S rRNA gene-based phylogenetic affiliation was determined using bioinformatic tools and identified as Lactobacillus sp. KCC-10 with 100% sequence similarity to L. plantarum. The antifungal substances were extracted with ethyl acetate from spent medium in which Lactobacillus sp. KCC-10 was cultivated. Antifungal activity was assessed using the broth microdilution technique. The compounds were obtained by eluting the crude extract with various concentrations of solvents followed by chromatographic purification. Based on the infrared, (13) C nuclear magnetic resonance (NMR) and (1) H NMR spectral data, the compound was identified as a phenolic-related antibiotic. The minimum inhibitory concentration of the compound against Aspergillus clavatus, A. oryzae, Botrytis elliptica and Scytalidium vaccinii was 2.5 mg ml(-1) and that against A. fumigatus, A. niger and S. fusca was 5.0 mg ml(-1) , respectively. In addition, Lactobacillus sp. KCC-10 was highly sensitive towards oxgall (0.3%) but grew well in the presence of sodium taurocholate (0.3%). An antimicrobial susceptibility pattern was an intrinsic feature of this strain; thus, consumption does not represent a health risk to humans or animals. Novel L. plantarum KCC-10 with antifungal and potential probiotic properties was characterized for use in animal food. This study revealed that L. plantarum KCC-10 exhibited good antifungal activity similar to that of probiotic Lactobacillus strains. © 2013 The Society for Applied Microbiology.

  7. Prescription patterns and costs of antidiabetic medications in a large group of patients.

    PubMed

    Gaviria-Mendoza, Andrés; Sánchez-Duque, Jorge Andrés; Medina-Morales, Diego Alejandro; Machado-Alba, Jorge Enrique

    2018-04-01

    To determine the prescription patterns of antidiabetic medications and the variables associated with their use in a Colombian population. A cross-sectional study using a systematized database of approximately 3.5 million affiliates of the Colombian Health System. Patients of both genders and all ages treated uninterruptedly with antidiabetic medications for three months (June-August 2015) were included. A database was designed that included sociodemographic, pharmacological, comedication, and cost variables. A total of 47,532 patients were identified; the mean age was 65.5 years, and 56.3% were women. Among the patients, 56.2% (n=26,691) received medication as monotherapy. The most prescribed medications were metformin, 81.3% (n=38,664), insulins, 33.3% (n=15,848), and sulfonylureas, 21.8% (n=10,370). Among the patients, 92.8% received comedications, including antihypertensives (79.7%), hypolipemiants (65.5%), antiplatelet drugs (56.3%), analgesics (33.9%), antiulcerants (33.1%), and thyroid hormone (17.3%). The cost per 1000 inhabitants/day was $1.21 USD for metformin, $3.89 USD for insulins, and $0.02 USD for glibenclamide. Generally, rational prescription habits predominated, however in some cases an overuse of comedications (such as antiulcer drugs) and a large group of patients with high cost formulations were observed. Subsequent effectiveness and cost-benefit analyzes are required. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  8. Prospective Source of Antimicrobial Compounds From Pigment Produced by Bacteria associated with Brown Alga ( Phaeophyceae ) Isolated from Karimunjawa island, Indonesia

    NASA Astrophysics Data System (ADS)

    Lunggani, A. T.; Darmanto, Y. S.; Radjasa, O. K.; Sabdono, A.

    2018-02-01

    Brown algae or Phaeophyceae characterized by their natural pigments that differ from other important algal classes. Several publications proves that brown algae - associated bacteria have great potential in developing marine pharmaceutical industry since they are capable to synthesized numerous bioactive metabolite compounds. However the potency of marine pigmented microbes associated with brown alga to produce natural pigments and antimicrobials has been less studied. Marine pigmented bacteria associated with brown algae collected from Karimunjawa Island were successfully isolated and screened for antimicrobial activity. The aim of this research was evaluated of the antimicrobial activity of pigments extracted from culturable marine pigmented bacteria on some pathogenic bacteria and yeast. The results showed that all isolates had antimicrobial activity and could be prospectively developed as antimicrobial agent producing pigments. The 6 marine pigmented bacteria was identified to genus level as Pseudoalteromonas, Sphingomonas, Serratia, Paracoccus, Vibrio.

  9. Neuroprotective Compound from an Endophytic Fungus, Colletotrichum sp. JS-0367.

    PubMed

    Song, Ji Hoon; Lee, Changyeol; Lee, Dahae; Kim, Soonok; Bang, Sunghee; Shin, Myoung-Sook; Lee, Jun; Kang, Ki Sung; Shim, Sang Hee

    2018-05-23

    Colletotrichum sp. JS-0367 was isolated from Morus alba (mulberry), identified, and cultured on a large scale for chemical investigation. One new anthraquinone (1) and three known anthraquinones (2-4) were isolated and identified using spectroscopic methods including 1D/2D-NMR and HRESIMS. Although the neuroprotective effects of some anthraquinones have been reported, the biological activities of the four anthraquinones isolated in this study have not been reported. Therefore, the neuroprotective effects of these compounds were determined against murine hippocampal HT22 cell death induced by glutamate. Compound 4, evariquinone, showed strong protective effects against HT22 cell death induced by glutamate by the inhibition of intracellular ROS accumulation and Ca 2+ influx triggered by glutamate. Immunoblot analysis revealed that compound 4 reduced the phosphorylation of MAPKs (JNK, ERK1/2, and p38) induced by glutamate. Furthermore, compound 4 strongly attenuated glutamate-mediated apoptotic cell death.

  10. Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Pandhare, Ramdas B.; Sangameswaran, B.; Mohite, Popat B.; Khanage, Shantaram G.

    2011-01-01

    The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats. PMID:23407749

  11. Isolation of Bioactive Compounds That Relate to the Anti-Platelet Activity of Cymbopogon ambiguus

    PubMed Central

    Grice, I. Darren; Rogers, Kelly L.; Griffiths, Lyn R.

    2011-01-01

    Infusions and decoctions of Cymbopogon ambiguus have been used traditionally in Australia for the treatment of headache, chest infections and muscle cramps. The aim of the present study was to screen and identify bioactive compounds from C. ambiguus that could explain this plant's anti-headache activity. A dichloromethane extract of C. ambiguus was identified as having activity in adenosine-diphosphate-induced human platelet aggregation and serotonin-release inhibition bioassays. Subsequent fractionation of this extract led to the isolation of four phenylpropenoids, eugenol, elemicin, eugenol methylether and trans-isoelemicin. While both eugenol and elemicin exhibited dose-dependent inhibition of ADP-induced human platelet serotonin release, only eugenol displayed potent inhibitory activity with an IC50 value of 46.6 μM, in comparison to aspirin, with an IC50 value of 46.1 μM. These findings provide evidence to support the therapeutic efficacy of C. ambiguus in the non-conventional treatment of headache and inflammatory conditions. PMID:20047890

  12. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    PubMed Central

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  13. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  14. Antibacterial and anti-inflammatory activities of an extract, fractions, and compounds isolated from Gochnatia pulchra aerial parts

    PubMed Central

    Lucarini, R.; Tozatti, M.G.; Silva, M.L.A.; Gimenez, V.M.M.; Pauletti, P.M.; Groppo, M.; Turatti, I.C.C.; Cunha, W.R.; Martins, C.H.G.

    2015-01-01

    This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1. PMID:26200228

  15. Neurologically Potent Molecules from Crataegus oxyacantha; Isolation, Anticholinesterase Inhibition, and Molecular Docking

    PubMed Central

    Ali, Mumtaz; Muhammad, Sultan; Shah, Muhammad R.; Khan, Ajmal; Rashid, Umer; Farooq, Umar; Ullah, Farhat; Sadiq, Abdul; Ayaz, Muhammad; Ali, Majid; Ahmad, Manzoor; Latif, Abdul

    2017-01-01

    Crataegus oxyacantha is an important herbal supplement and famous for its antioxidant potential. The antioxidant in combination with anticholinesterase activity can be considered as an important target in the management of Alzheimer’s disease. The compounds isolated from C. oxyacantha were evaluated for cholinesterases inhibitory activity using Ellman’s assay with Galantamine as standard drug. Total of nine (1–9) compounds were isolated. Compounds 1 and 2 were isolated for the first time from natural source. Important natural products like β-Sitosterol-3-O-β-D-Glucopyranoside (3), lupeol (4), β-sitosterol (5), betulin (6), betulinic acid (7), oleanolic acid (8), and chrysin (9) have also been isolated from C. oxyacantha. Overall, all the compounds exhibited an overwhelming acetylcholinesterase (AChE) inhibition potential in the range 5.22–44.47 μM. The compound 3 was prominent AChE inhibitor with IC50 value of 5.22 μM. Likewise, all the compounds were also potent in butyrylcholinesterase (BChE) inhibitions with IC50s of up to 0.55–15.36 μM. All the compounds, except 3, were selective toward BChE. Mechanism of the inhibition of both the enzymes were further studied by docking procedures using Genetic Optimization for Ligand Docking suit v5.4.1. Furthermore, computational blood brain barrier prediction of the isolated compounds suggest that these are BBB+. PMID:28638340

  16. Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: characterization by high-performance liquid chromatography-diode array detection-electrospray tandem mass spectrometry.

    PubMed

    Magalhães, Paulo J; Vieira, Joana S; Gonçalves, Luís M; Pacheco, João G; Guido, Luís F; Barros, Aquiles A

    2010-05-07

    The aim of the present work was the development of a suitable methodology for the separation and determination of phenolic compounds in the hop plant. The developed methodology was based on the sample purification by adsorption of phenolic compounds from the matrix to polyvinylpolypyrrolidone (PVPP) and subsequent desorption of the adsorbed polyphenols with acetone/water (70:30, v/v). At last, the extract was analyzed by HPLC-DAD and HPLC-ESI-MS/MS. The first phase of this work consisted of the study of the adsorption behavior of several classes of phenolic compounds (e.g. phenolic acids, flavonols, and flavanols) by PVPP in model solutions. It has been observed that the process of adsorption of the different phenolic compounds to PVPP (at low concentrations) is differentiated, depending on the structure of the compound (number of OH groups, aromatic rings, and stereochemistry hindrance). For example, within the phenolic acids class (benzoic, p-hydroxybenzoic, protocatechuic and gallic acids) the PVPP adsorption increases with the number of OH groups of the phenolic compound. On the other hand, the derivatization of OH groups (methylation and glycosylation) resulted in a greatly diminished binding. The use of PVPP revealed to be very efficient for adsorption of several phenolic compounds such as catechin, epicatechin, xanthohumol and quercetin, since high adsorption and recovery values were obtained. The methodology was further applied for the extraction and isolation of phenolic compounds from hops. With this methodology, it was possible to obtain high adsorption values (>or=80%) and recovery yield values (>or=70%) for the most important phenolic compounds from hops such as xanthohumol, catechin, epicatechin, quercetin and kaempferol glycosides, and in addition it allows the identification of about 30 phenolic compounds by HPLC-DAD and HPLC-ESI-MS/MS. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  17. Chrysophyllum cainito leaves are effective against pre-clinical chronic pain models: Analysis of crude extract, fraction and isolated compounds in mice.

    PubMed

    Meira, Nicole Anzanelo; Rocha, Lilian W; da Silva, Gislaine F; Quintal, Zhelmy Martin; Delle Monache, Franco; Cechinel Filho, Valdir; Quintão, Nara Lins Meira

    2016-05-26

    Chrysophyllum cainito L. (Sapotaceae), commonly known as caimito or star apple, is a neotropical tree valued for its ornamental quality and edible fruits. Besides its culinary use, the leaves are also popularly used to treat diabetes mellitus and several inflammatory diseases. This study aimed to complement previous data obtained about the anti-hypersensitivity effects of the crude methanol extract (CME), CHCl3 fraction and isolated compounds obtained from C. cainito. The CME, CHCl3 fraction and two isolated triterpenes identified as 3β-Lup-20(29)-en-3-yl acetate (1) and Lup-20(29)-en-3β-O-hexanoate (2) were evaluated regarding their effects using clinical pain models, such as post-operative, inflammatory and neuropathic pain. Acute inflammatory pain models induced by PGE2, epinephrine, LPS and CFA were also used to improve the knowledge about the mechanism of action. The animals treated with the CME and submitted to PGE2, epinephrine, LPS or CFA had the mechanical hypersensitivity significantly reduced. When repeatedly administered, the CME enhanced the mechanical withdrawal threshold of mice submitted to post-operative pain model, CFA-induced chronic inflammatory pain and two different models of neuropathic pain. In turn, the CHCl3 fraction presented anti-hypersensitivity effect against epinephrine- or LPS-induced hypersensitivity, with a more prominent activity in both the neuropathic pain models. The compound 1 seems to present the same profile of the CHCl3, whereas compound 2 exhibited activity similar to the CME. This data suggests that the CME effect involves interference in the production, release or action of some chemical mediators, such as PGE2, sympathetic amines, cytokines, etc. Part of these effects was observed with the CHCl3 fraction, emphasizing the prominent inhibition of neuropathic pain. The results also demonstrated that part of the CME effects are due to the presence of the triterpenes 1 and 2, but it is important to mention that we cannot

  18. Hypoglycaemia and accident risk in people with type 2 diabetes mellitus treated with non-insulin antidiabetes drugs

    PubMed Central

    Signorovitch, J E; Macaulay, D; Diener, M; Yan, Y; Wu, E Q; Gruenberger, J-B; Frier, B M

    2013-01-01

    Aims To assess associations between hypoglycaemia and risk of accidents resulting in hospital visits among people with type 2 diabetes receiving antidiabetes drugs without insulin. Methods People with type 2 diabetes who were not treated with insulin were identified from a US-based employer claims database (1998–2010). Following initiation of an antidiabetes drug, the occurrence of accidents resulting in hospital visits was compared between people with, and without, claims for hypoglycaemia using multivariable Cox proportional hazard models adjusted for demographics, comorbidities, prior treatments and prior medical service use. Additional analyses were stratified by age 65 years or older. Results A total of N = 5582 people with claims for hypoglycaemia and N = 27 910 with no such claims were included. Accidents resulting in hospital visits occurred in 5.5 and 2.8% of people with, and without, hypoglycaemia, respectively. After adjusting for baseline characteristics, hypoglycaemia was associated with significantly increased hazards for any accident [hazard ratio (HR) 1.39, 95% CI 1.21–1.59, p < 0.001], accidental falls (HR 1.36, 95% CI 1.13–1.65, p < 0.001) and motor vehicle accidents (HR 1.82, 95% CI 1.18–2.80, p = 0.007). In age-stratified analyses, hypoglycaemia was associated with greater hazards of driving-related accidents in people younger than age 65 and falls in people aged 65 or older. Conclusions In people with type 2 diabetes receiving antidiabetes drugs without insulin, hypoglycaemia was associated with a significantly higher risk of accidents resulting in hospital visits, including accidents related to driving and falls. PMID:23121373

  19. Micro-Environmental Signature of The Interactions between Druggable Target Protein, Dipeptidyl Peptidase-IV, and Anti-Diabetic Drugs.

    PubMed

    Chakraborty, Chiranjib; Mallick, Bidyut; Sharma, Ashish Ranjan; Sharma, Garima; Jagga, Supriya; Doss, C George Priya; Nam, Ju-Suk; Lee, Sang-Soo

    2017-01-01

    Druggability of a target protein depends on the interacting micro-environment between the target protein and drugs. Therefore, a precise knowledge of the interacting micro-environment between the target protein and drugs is requisite for drug discovery process. To understand such micro-environment, we performed in silico interaction analysis between a human target protein, Dipeptidyl Peptidase-IV (DPP-4), and three anti-diabetic drugs (saxagliptin, linagliptin and vildagliptin). During the theoretical and bioinformatics analysis of micro-environmental properties, we performed drug-likeness study, protein active site predictions, docking analysis and residual interactions with the protein-drug interface. Micro-environmental landscape properties were evaluated through various parameters such as binding energy, intermolecular energy, electrostatic energy, van der Waals'+H-bond+desolvo energy (E VHD ) and ligand efficiency (LE) using different in silico methods. For this study, we have used several servers and software, such as Molsoft prediction server, CASTp server, AutoDock software and LIGPLOT server. Through micro-environmental study, highest log P value was observed for linagliptin (1.07). Lowest binding energy was also observed for linagliptin with DPP-4 in the binding plot. We also identified the number of H-bonds and residues involved in the hydrophobic interactions between the DPP-4 and the anti-diabetic drugs. During interaction, two H-bonds and nine residues, two H-bonds and eleven residues as well as four H-bonds and nine residues were found between the saxagliptin, linagliptin as well as vildagliptin cases and DPP-4, respectively. Our in silico data obtained for drug-target interactions and micro-environmental signature demonstrates linagliptin as the most stable interacting drug among the tested anti-diabetic medicines.

  20. Amorfrutins are potent antidiabetic dietary natural products

    PubMed Central

    Weidner, Christopher; de Groot, Jens C.; Prasad, Aman; Freiwald, Anja; Quedenau, Claudia; Kliem, Magdalena; Witzke, Annabell; Kodelja, Vitam; Han, Chung-Ting; Giegold, Sascha; Baumann, Matthias; Klebl, Bert; Siems, Karsten; Müller-Kuhrt, Lutz; Schürmann, Annette; Schüler, Rita; Pfeiffer, Andreas F. H.; Schroeder, Frank C.; Büssow, Konrad; Sauer, Sascha

    2012-01-01

    Given worldwide increases in the incidence of obesity and type 2 diabetes, new strategies for preventing and treating metabolic diseases are needed. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a central role in lipid and glucose metabolism; however, current PPARγ-targeting drugs are characterized by undesirable side effects. Natural products from edible biomaterial provide a structurally diverse resource to alleviate complex disorders via tailored nutritional intervention. We identified a family of natural products, the amorfrutins, from edible parts of two legumes, Glycyrrhiza foetida and Amorpha fruticosa, as structurally new and powerful antidiabetics with unprecedented effects for a dietary molecule. Amorfrutins bind to and activate PPARγ, which results in selective gene expression and physiological profiles markedly different from activation by current synthetic PPARγ drugs. In diet-induced obese and db/db mice, amorfrutin treatment strongly improves insulin resistance and other metabolic and inflammatory parameters without concomitant increase of fat storage or other unwanted side effects such as hepatoxicity. These results show that selective PPARγ-activation by diet-derived ligands may constitute a promising approach to combat metabolic disease. PMID:22509006