Science.gov

Sample records for antiepileptic compound valproic

  1. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate): Evidence in Humans and Experimental Models

    PubMed Central

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides III; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress. PMID:24454986

  2. Modulation of antioxidant enzymatic activities by certain antiepileptic drugs (valproic acid, oxcarbazepine, and topiramate): evidence in humans and experimental models.

    PubMed

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress.

  3. Preclinical evaluation of 2,2,3,3-tetramethylcyclopropanecarbonyl-urea, a novel, second generation to valproic acid, antiepileptic drug.

    PubMed

    Sobol, Eyal; Yagen, Boris; Steve White, H; Wilcox, Karen S; Lamb, John G; Pappo, Orit; Wlodarczyk, Bogdan J; Finnell, Richard H; Bialer, Meir

    2006-09-01

    2,2,3,3-Tetramethylcyclopropanecarbonylurea (TMCU) is an amide derivative of a tetramethylcyclopropyl analogue of valproic acid (VPA), one of the leading antiepileptic drugs. Structural considerations used in the design of TMCU aimed to enhance the anticonvulsant potency of VPA and to prevent its two life-threatening side effects; i.e., teratogenicity and hepatotoxicity. The anticonvulsant activity of TMCU was evaluated in the MES, scMet, 6-Hz, scBic and scPic tests, and also in the hippocampal kindling model of partial seizures and lamotrigine-resistant amygdala kindling model of therapy-resistant seizures. Minimal motor impairment was determined using the rotorod test in mice and the positional sense test, muscle tone test, and gait and stance test in rats. The antinociceptive effect of TMCU was evaluated in the mouse formalin model of acute-tonic pain. The molecular mechanisms of action of TMCU were investigated in electrophysiological studies using the whole-cell patch-clamp technique. Teratogenicity studies were performed in a SWV/Fnn-mouse model of VPA-induced teratogenicity. TMCU hepatotoxicity was evaluated following 1-week intraperitoneal and oral administration of 50, 250 and 500 mg/kg doses to rats. In the hepatotoxicity study the blood levels of TMCU were evaluated at day 1 and day 7 of the treatment. TMCU mutagenicity was evaluated in the Ames test.

  4. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores.

    PubMed

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called "cryptic," often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these "cryptic" metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of "cryptic" antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity against antibiotic

  5. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  6. The effects of antiepileptic drugs on the growth of glioblastoma cell lines.

    PubMed

    Lee, Ching-Yi; Lai, Hung-Yi; Chiu, Angela; Chan, She-Hung; Hsiao, Ling-Ping; Lee, Shih-Tseng

    2016-05-01

    To determine the effects of antiepileptic drug compounds on glioblastoma cellular growth, we exposed glioblastoma cell lines to select antiepileptic drugs. The effects of selected antiepileptic drugs on glioblastoma cells were measured by MTT assay. For compounds showing significant inhibition, cell cycle analysis was performed. Statistical analysis was performed using SPSS. The antiepileptic compounds selected for screening included carbamazepine, ethosuximide, gabapentin, lamotrigine, levetiracetam, magnesium sulfate, oxcarbazepine, phenytoin, primidone, tiagabine, topiramate, valproic acid, and vigabatrin. Dexamethasone and temozolomide were used as a negative and positive control respectively. Our results showed temozolomide and oxcarbazepine significantly inhibited glioblastoma cell growth and reached IC50 at therapeutic concentrations. The other antiepileptic drugs screened were unable to reach IC50 at therapeutic concentrations. The metabolites of oxcarbazepine were also unable to reach IC50. Dexamethasone, ethosuximide, levetiracetam, and vigabatrin showed some growth enhancement though they did not reach statistical significance. The growth enhancement effects of ethosuximide, levetiracetam, and vigabatrin found in the study may indicate that these compounds should not be used for prophylaxis or short term treatment of epilepsy in glioblastoma. While valproic acid and oxcarbazepine were effective, the required dose of valproic acid was far above that used for the treatment of epilepsy and the metabolites of oxcarbazepine failed to reach significant growth inhibition ruling out the use of oral oxcarbazepine or valproic acid as monotherapy in glioblastoma. The possibility of using these compounds as local treatment is a future area of study. PMID:26758059

  7. The Anti-Epileptic Drug Valproic Acid (VPA) Inhibits Steroidogenesis in Bovine Theca and Granulosa Cells In Vitro

    PubMed Central

    Glister, Claire; Satchell, Leanne; Michael, Anthony E.; Bicknell, Andrew B.; Knight, Philip G.

    2012-01-01

    Valproic acid (VPA) is used widely to treat epilepsy and bipolar disorder. Women undergoing VPA treatment reportedly have an increased incidence of polycystic ovarian syndrome (PCOS)-like symptoms including hyperandrogenism and oligo- or amenorrhoea. To investigate potential direct effects of VPA on ovarian steroidogenesis we used primary bovine theca (TC) and granulosa (GC) cells maintained under conditions that preserve their ‘follicular’ phenotype. Effects of VPA (7.8–500 µg/ml) on TC were tested with/without LH. Effects of VPA on GC were tested with/without FSH or IGF analogue. VPA reduced (P<0.0001) both basal (70% suppression; IC50 67±10 µg/ml) and LH-induced (93% suppression; IC50 58±10 µg/ml) androstenedione secretion by TC. VPA reduced CYP17A1 mRNA abundance (>99% decrease; P<0.0001) with lesser effects on LHR, STAR, CYP11A1 and HSD3B1 mRNA (<90% decrease; P<0.05). VPA only reduced TC progesterone secretion induced by the highest (luteinizing) LH dose tested; TC number was unaffected by VPA. At higher concentrations (125–500 µg/ml) VPA inhibited basal, FSH- and IGF-stimulated estradiol secretion (P<0.0001) by GC without affecting progesterone secretion or cell number. VPA reversed FSH-induced upregulation of CYP19A1 and HSD17B1 mRNA abundance (P<0.001). The potent histone deacetylase (HDAC) inhibitors trichostatin A and scriptaid also suppressed TC androstenedione secretion and granulosal cell oestrogen secretion suggesting that the action of VPA reflects its HDAC inhibitory properties. In conclusion, these findings refute the hypothesis that VPA has a direct stimulatory action on TC androgen output. On the contrary, VPA inhibits both LH-dependent androgen production and FSH/IGF-dependent estradiol production in this in vitro bovine model, likely by inhibition of HDAC. PMID:23152920

  8. Antiepileptic Drugs and Pregnancy Outcomes

    PubMed Central

    Wlodarczyk, Bogdan J.; Palacios, Ana M.; George, Timothy M.; Finnell, Richard H.

    2012-01-01

    The treatment of epilepsy in women of reproductive age remains a clinical challenge. While most women with epilepsy require anticonvulsant drugs for adequate control of their seizures, the teratogenicity associated with some antiepileptic drugs is a risk that needs to be carefully addressed. Antiepileptic medications are also used to treat an ever broadening range of medical conditions such as bipolar disorder, migraine prophylaxis, cancer and neuropathic pain. Despite the fact that the majority of pregnancies of women with epilepsy who are receiving pharmacological treatment are normal, studies have demonstrated that the risk of having a pregnancy complicated by a major congenital malformation is doubled when comparing the risk of untreated pregnancies. Furthermore, when antiepileptic drugs (AEDs) are used in polytherapy regimens, the risk is tripled, especially when valproic acid (VPA) is included. However, it should be noted that the risks are specific for each anticonvulsant drug. Some investigations have suggested that the risk of teratogenicity is increased in a dose-dependent manner. More recent studies have reported that in utero exposure to AEDs can have detrimental effects on the cognitive functions and language skills in later stages of life. In fact, the FDA just issued a safety announcement on the impact of VPA on cognition (Safety Announcement 6-30-2011). The purpose of this document is to review the most commonly used compounds in the treatment of women with epilepsy, and to provide information on the latest experimental and human epidemiological studies of the effects of antiepileptic drugs in the exposed embryos. PMID:22711424

  9. In silico inhibition of GABARAP activity using antiepileptic medicinal derived compounds

    PubMed Central

    Mathew, Shilu; Faheem, Muhammad; Al-Malki, Abdulrahman L; Kumosani, Taha A; Qadri, Ishtiaq

    2015-01-01

    Epilepsy is a neurological disorder affecting more than 50 million people worldwide. It can be controlled by antiepileptic drugs (AEDs) but more than 30% patients are still resistant to AEDs. To overcome this problem, researchers are trying to develop novel approaches to treat epilepsy including the use of herbal medicines. The γ-amino butyric acid type-A receptor associated protein (GABARAP) is ubiquitin-like modifier implicated in the intracellular trafficking of GABAAR. An in silico mutation was created at 116 amino acid position G116A, and an in silico study was carried out to identify the potential binding inhibitors (with antiepileptic properties) against the active sites of GABARAP. Five different plant derived compounds namely (a) Aconitine (b) Berberine (c) Montanine (d) Raubasine (e) Safranal were selected, and their quantitative structure-activity relationships (QSAR) have been conducted to search the inhibitory activity of the selected compounds. The results have shown maximum number of hydrogen bond (H-bond) interactions of Raubasine with highest interaction energy among all of the five compounds. So, Raubasine could be the best fit ligand of GABARAP but in vitro, and in vivo studies are necessary for further confirmation. PMID:26124559

  10. Antiepileptic Drugs with Mood Stabilizing Properties and Their Relation with Psychotropic Drug Use in Institutionalized Epilepsy Patients with Intellectual Disability

    ERIC Educational Resources Information Center

    Leunissen, C. L. F.; de la Parra, N. M.; Tan, I. Y.; Rentmeester, Th. W.; Vader, C. I.; Veendrick-Meekes, M. J. B. M.; Aldenkamp, A. P.

    2011-01-01

    A large number of patients with epilepsy and intellectual disability take medication, amongst which antiepileptic and psychotropic drugs, often simultaneously. Certain antiepileptic drugs have mood-stabilizing properties, e.g. carbamazepine, valproic acid and lamotrigine. The aim of this study was to investigate whether the use of these…

  11. Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs.

    PubMed

    Zaccara, Gaetano; Perucca, Emilio

    2014-12-01

    Interactions between antiepileptic drugs, or between antiepileptic drugs and other drugs, can be pharmacokinetic or pharmacodynamic in nature. Pharmacokinetic interactions involve changes in absorption, distribution or elimination, whereas pharmacodynamic interactions involve synergism and antagonism at the site of action. Most clinically important interactions of antiepileptic drugs result from induction or inhibition of drug metabolism. Carbamazepine, phenytoin, phenobarbital and primidone are strong inducers of cytochrome P450 and glucuronizing enzymes (as well as P-glycoprotein) and can reduce the efficacy of co-administered medications such as oral anticoagulants, calcium antagonists, steroids, antimicrobial and antineoplastic drugs through this mechanism. Oxcarbazepine, eslicarbazepine acetate, felbamate, rufinamide, topiramate (at doses ≥ 200 mg/day) and perampanel (at doses ≥ 8 mg/day) have weaker inducing properties, and a lower propensity to cause interactions mediated by enzyme induction. Unlike enzyme induction, enzyme inhibition results in decreased metabolic clearance of the affected drug, the serum concentration of which may increase leading to toxic effects. Examples of important interactions mediated by enzyme inhibition include the increase in the serum concentration of phenobarbital and lamotrigine caused by valproic acid. There are also interactions whereby other drugs induce or inhibit the metabolism of antiepileptic drugs, examples being the increase in serum carbamazepine concentration by erythromycin, and the decrease in serum lamotrigine concentration by oestrogen-containing contraceptives. Pharmacodynamic interactions between antiepileptic drugs may also be clinically important. These interactions can have potentially beneficial effects, such as the therapeutic synergism of valproic acid combined with lamotrigine, or adverse effects, such as the reciprocal potentiation of neurotoxicity observed in patients treated with a combination of

  12. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells.

    PubMed

    Göttlicher, M; Minucci, S; Zhu, P; Krämer, O H; Schimpf, A; Giavara, S; Sleeman, J P; Lo Coco, F; Nervi, C; Pelicci, P G; Heinzel, T

    2001-12-17

    Histone deacetylases (HDACs) play important roles in transcriptional regulation and pathogenesis of cancer. Thus, HDAC inhibitors are candidate drugs for differentiation therapy of cancer. Here, we show that the well-tolerated antiepileptic drug valproic acid is a powerful HDAC inhibitor. Valproic acid relieves HDAC-dependent transcriptional repression and causes hyperacetylation of histones in cultured cells and in vivo. Valproic acid inhibits HDAC activity in vitro, most probably by binding to the catalytic center of HDACs. Most importantly, valproic acid induces differentiation of carcinoma cells, transformed hematopoietic progenitor cells and leukemic blasts from acute myeloid leukemia patients. More over, tumor growth and metastasis formation are significantly reduced in animal experiments. Therefore, valproic acid might serve as an effective drug for cancer therapy. PMID:11742974

  13. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells

    PubMed Central

    Göttlicher, Martin; Minucci, Saverio; Zhu, Ping; Krämer, Oliver H.; Schimpf, Annemarie; Giavara, Sabrina; Sleeman, Jonathan P.; Lo Coco, Francesco; Nervi, Clara; Pelicci, Pier Giuseppe; Heinzel, Thorsten

    2001-01-01

    Histone deacetylases (HDACs) play important roles in transcriptional regulation and pathogenesis of cancer. Thus, HDAC inhibitors are candidate drugs for differentiation therapy of cancer. Here, we show that the well-tolerated antiepileptic drug valproic acid is a powerful HDAC inhibitor. Valproic acid relieves HDAC-dependent transcriptional repression and causes hyperacetylation of histones in cultured cells and in vivo. Valproic acid inhibits HDAC activity in vitro, most probably by binding to the catalytic center of HDACs. Most importantly, valproic acid induces differentiation of carcinoma cells, transformed hematopoietic progenitor cells and leukemic blasts from acute myeloid leukemia patients. More over, tumor growth and metastasis formation are significantly reduced in animal experiments. Therefore, valproic acid might serve as an effective drug for cancer therapy. PMID:11742974

  14. Valproic Acid and Pregnancy

    MedlinePlus

    ... in the treatment of epilepsy, and to treat bipolar disorder and migraines. I have been taking valproic acid ... that women with seizure disorders and women with bipolar disorder might have menstrual problems and difficulty getting pregnant. ...

  15. Direct Determination of a Small-Molecule Drug, Valproic Acid, by an Electrically-Detected Microcantilever Biosensor for Personalized Diagnostics

    PubMed Central

    Huang, Long-Sun; Gunawan, Christian; Yen, Yi-Kuang; Chang, Kai-Fung

    2015-01-01

    Direct, small-molecule determination of the antiepileptic drug, valproic acid, was investigated by a label-free, nanomechanical biosensor. Valproic acid has long been used as an antiepileptic medication, which is administered through therapeutic drug monitoring and has a narrow therapeutic dosage range of 50–100 μg·mL−1 in blood or serum. Unlike labeled and clinically-used measurement techniques, the label-free, electrical detection microcantilever biosensor can be miniaturized and simplified for use in portable or hand-held point-of-care platforms or personal diagnostic tools. A micromachined microcantilever sensor was packaged into the micro-channel of a fluidic system. The measurement of the antiepileptic drug, valproic acid, in phosphate-buffered saline and serum used a single free-standing, piezoresistive microcantilever biosensor in a thermally-controlled system. The measured surface stresses showed a profile over a concentration range of 50–500 μg·mL−1, which covered the clinically therapeutic range of 50–100 μg·mL−1. The estimated limit of detection (LOD) was calculated to be 45 μg·mL−1, and the binding affinity between the drug and the antibody was measured at around 90 ± 21 μg·mL−1. Lastly, the results of the proposed device showed a similar profile in valproic acid drug detection with those of the clinically-used fluorescence polarization immunoassay. PMID:25632826

  16. Quantitative determination of valproic acid in postmortem blood samples--evidence of strong matrix dependency and instability.

    PubMed

    Kiencke, Verena; Andresen-Streichert, Hilke; Müller, Alexander; Iwersen-Bergmann, Stefanie

    2013-11-01

    Most of the daily work of forensic toxicologists deals with fatal cases resulting from overdoses of licit and illicit drugs. However, another reason for fatalities in patients suffering from epilepsy can be undetectable or subtherapeutic levels of antiepileptic drugs. Some studies have shown a correlation between "sudden unexpected death in epilepsy" (SUDEP) and the ineffective treatment of epilepsy. Low levels of antiepileptic drugs may be a risk factor for SUDEP. The death of a psychiatric patient also suffering from epilepsy inspired the investigation. Subsequent to the death of the patient, the doctor was accused of providing inadequate therapy for epilepsy. The patient was to be treated with valproic acid. We developed and validated a simple method of determining valproic acid levels by gas chromatography-mass spectrometry for serum, but a transfer of the method from serum to postmortem whole blood failed. The method had to be modified and revalidated for postmortem whole blood specimens. A stability study of valproic acid in postmortem blood was conducted, showing a decline of valproic acid levels by 85 % after storage at room temperature for 28 days. During the storage time, the blood samples showed changes in consistency. Depending on the stage of decomposition, it is necessary to perform a determination by standard addition with an equilibration time of 4 h before extraction to achieve reliable results. For a proper interpretation of quantitative results, it is necessary to keep the postmortem decline of valproic acid concentrations in mind.

  17. Chemical properties of antiepileptic drugs (AEDs).

    PubMed

    Bialer, Meir

    2012-07-01

    Between 1990 and 2011 the following fifteen new antiepileptic drugs (AEDs) were approved: eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, retigabine, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin, and zonisamide. These AEDs (except felbamate) offer appreciable advantages in terms of their favorable pharmacokinetics, improved tolerability and lower potential for drug interactions. All AEDs introduced after 1990 that are not second generation drugs (with the exception of vigabatrin and tiagabine) were developed empirically (sometimes serendipitously) utilizing mechanism-unbiased anticonvulsant animal models. The empirical nature of the discovery of new AEDs in the last three decades coupled with their multiple mechanisms of action explains their diverse chemical structures. The availability of old and new AEDs with various activity spectra and different tolerability profiles enables clinicians to better tailor drug choice to the characteristics of individual patients. With fifteen new AEDs having entered the market in the past 20years the antiepileptic market is crowded. Consequently, epilepsy alone is not attractive in 2011 to the pharmaceutical industry even though the clinical need of refractory epilepsy remains unmet. Due to this situation, future design of new AEDs must also have a potential in non-epileptic CNS disorders such as neuropathic pain, migraine prophylaxis and bipolar disorder or fibromyalgia as demonstrated by the sales revenues of pregabalin, topiramate and valproic acid. This review analyzes the effect that the emerging knowledge on the chemical properties of the old AEDs starting from phenobarbital (1912) has had on the design of subsequent AEDs and new therapeutics as well as the current approach to AED discovery. PMID:22210279

  18. Valproic acid inhibits excess dopamine release in response to a fear-conditioned stimulus in the basolateral complex of the amygdala of methamphetamine-sensitized rats.

    PubMed

    Miyagi, Junko; Oshibuchi, Hidehiro; Kasai, Akiko; Inada, Ken; Ishigooka, Jun

    2014-05-01

    Valproic acid, an established antiepileptic and antimanic drug, has recently emerged as a promising emotion-stabilizing agent for patients with psychosis. Although dopamine transmission in the amygdala plays a key role in emotional processing, there has been no direct evidence about how valproic acid acts on the dopaminergic system in the brain during emotional processing. In the present study, we tested the effect of valproic acid on a trait marker of vulnerability to emotional stress in psychosis, which is excess dopamine release in response to a fear-conditioned stimulus (CS) in the basolateral complex of the amygdala of methamphetamine-sensitized rats. Extracellular dopamine was collected from the amygdala of freely moving methamphetamine-sensitized rats by in vivo microdialysis and was measured using high-performance liquid chromatography. During microdialysis, valproic acid was intraperitoneally injected followed by CS exposure. Valproic acid treatment decreased baseline levels of dopamine and also attenuated the excess dopamine release in response to the CS in the amygdala of methamphetamine-sensitized rats. The results prove that valproic acid inhibits spontaneous dopamine release and also attenuates excess dopaminergic signaling in response to emotional stress in the amygdala. These findings suggest that the mechanisms of the emotion-stabilizing effect of valproic acid in psychosis involve modulation of dopaminergic transmission in emotional processing.

  19. Antiepileptic drugs, sex hormones, and PCOS.

    PubMed

    Verrotti, Alberto; D'Egidio, Claudia; Mohn, Angelika; Coppola, Giangennaro; Parisi, Pasquale; Chiarelli, Francesco

    2011-02-01

    Reproductive endocrine dysfunction in women with epilepsy is an important issue, and in recent years there is growing evidence to support the effect on sex hormones of both epilepsy per se and various antiepileptic drugs (AEDs). Focal epileptic discharges from the temporal lobe may have a direct influence on the function of the hypothalamic-pituitary axis, thereby altering the release of sex steroid hormones. The role of laterality and severity of epilepsy is still conflicting. The use of the liver enzyme-inducing AEDs--such as phenobarbital, phenytoin, and carbamazepine--can increase serum sex hormone-binding globulin concentrations, leading to diminished bioactivity of testosterone (T) and estradiol. Valproic acid, an enzyme inhibitor, has been associated with the occurrence of reproductive endocrine disorders characterized by high serum T, free androgen index, androstenedione, dehydroepiandrosterone sulfate concentrations, and with polycystic changes in ovaries and menstrual disorders. A better understanding of the effects of AEDs on sex hormones is key to selecting the appropriate AEDs and is crucial for reproductive health in female patients.

  20. Withdrawal syndrome and hypomagnesaemia and in a newborn exposed to valproic acid and carbamazepine during pregnancy.

    PubMed

    Satar, Mehmet; Ortaköylü, Kadir; Batun, İnci; Yıldızdaş, Hacer Y; Özlü, Ferda; Demir, Hüsnü; Topaloğlu, Ali Kemal

    2016-06-01

    The usage of drugs during pregnancy affect the fetus and the newborn. In this report, we present findings from a newborn baby, whose mother was epileptic, and was under the treatment of valproic acid and carbamazepine during pregnancy. We have found symptoms of withdrawal syndrome, hyponatremia and feeding problem, which was most probably related to exposure to the mentioned drugs. We have also diagnosed hypomagnesaemia and atrial septal defect 4 milimeters in diameter. There are already many reports about the side effects of valproic acid and carbamazepine usage during pregnancy. To the best of our knowledge, hypomagnesaemia has not yet been reported as a side effect. We think that hypomagnesaemia is also related to the usage of antiepileptics. PMID:27489470

  1. Valproic Acid Teratogenicity: A Toxicogenomics Approach

    PubMed Central

    Kultima, Kim; Nyström, Anna-Maja; Scholz, Birger; Gustafson, Anne-Lee; Dencker, Lennart; Stigson, Michael

    2004-01-01

    Embryonic development is a highly coordinated set of processes that depend on hierarchies of signaling and gene regulatory networks, and the disruption of such networks may underlie many cases of chemically induced birth defects. The antiepileptic drug valproic acid (VPA) is a potent inducer of neural tube defects (NTDs) in human and mouse embryos. As with many other developmental toxicants however, the mechanism of VPA teratogenicity is unknown. Using microarray analysis, we compared the global gene expression responses to VPA in mouse embryos during the critical stages of teratogen action in vivo with those in cultured P19 embryocarcinoma cells in vitro. Among the identified VPA-responsive genes, some have been associated previously with NTDs or VPA effects [vinculin, metallothioneins 1 and 2 (Mt1, Mt2), keratin 1-18 (Krt1-18)], whereas others provide novel putative VPA targets, some of which are associated with processes relevant to neural tube formation and closure [transgelin 2 (Tagln2), thyroid hormone receptor interacting protein 6, galectin-1 (Lgals1), inhibitor of DNA binding 1 (Idb1), fatty acid synthase (Fasn), annexins A5 and A11 (Anxa5, Anxa11)], or with VPA effects or known molecular actions of VPA (Lgals1, Mt1, Mt2, Id1, Fasn, Anxa5, Anxa11, Krt1-18). A subset of genes with a transcriptional response to VPA that is similar in embryos and the cell model can be evaluated as potential biomarkers for VPA-induced teratogenicity that could be exploited directly in P19 cell–based in vitro assays. As several of the identified genes may be activated or repressed through a pathway of histone deacetylase (HDAC) inhibition and specificity protein 1 activation, our data support a role of HDAC as an important molecular target of VPA action in vivo. PMID:15345369

  2. Teratogenic potential of antiepileptic drugs in the zebrafish model.

    PubMed

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data.

  3. N-valproyl-L-phenylalanine as new potential antiepileptic drug: synthesis, characterization and in vitro studies on stability, toxicity and anticonvulsant efficacy.

    PubMed

    De Caro, Viviana; Scaturro, Anna Lisa; Sutera, Flavia Maria; Avellone, Giuseppe; Schiera, Gabriella; Ferrantelli, Evelina; Carafa, Maria; Rizzo, Valerio; Carletti, Fabio; Sardo, Pierangelo; Giannola, Libero Italo

    2014-01-01

    Valproic acid (VPA) is considered first-line drug in treatment of generalized idiopathic seizures such as absence, generalized tonic-clonic and myoclonic seizures. Among major antiepileptic drugs, VPA is also considered effective in childhood epilepsies and infantile spasms. Due to its broad activity, VPA acts as a mood stabilizer in bipolar disorder and it is useful in migraine prophylaxis. Despite its long-standing usage, severe reactions to VPA, such as liver toxicity and teratogenicity, are reported. To circumvent side effects due to structural characteristics of VPA, we synthesized in good yield a new VPA-aminoacid conjugate, the N-valproyl-L-Phenylalanine, and characterized by FT-IR, MS, (13)C and (1)H- NMR analyses. The Log D(pH7.4) value (0.19) indicated that new molecule was potentially able to cross biological membranes. The resistance to chemical and enzymatic hydrolysis of N-valproyl-L-phenylalanine was also assessed. All trials suggested that the compound, at the pH conditions of the entire gastro-intestinal tract, remained unmodified. Furthermore, the new compound did not undergo enzymatic cleavage both in plasma and in cerebral medium up to 24 h. The toxicity assay on primary cultures of astrocytes indicated that the synthetized conjugate was less toxic than both free VPA and L-Phenylalanine. In this paper, the anticonvulsant activity of the new compound against epileptic burst discharges evoked in vitro in rat hippocampal slices was also evaluated. These preliminary results underline that N-valproyl-L-phenylalanine as new potential antiepileptic agent could represent a good candidate to further investigations.

  4. Antiepileptic drugs with histone deacetylase inhibition activity and prostate cancer risk: a population-based case-control study.

    PubMed

    Salminen, Jukka K; Tammela, Teuvo L J; Auvinen, Anssi; Murtola, Teemu J

    2016-05-01

    Previous studies suggest that antiepileptic drugs with histone deacetylase (HDAC) inhibitor properties may have prostate cancer preventive effects. We evaluated the association between antiepileptic drug use and prostate cancer risk in a population-based case-control study. The study included all new prostate cancer cases diagnosed in Finland in 1995-2002 and matched controls (24,657 case-control pairs) identified from the Finnish Cancer Registry and the Population Register Center, respectively. Information on antiepileptic drug purchases was obtained from the national prescription reimbursement database. Odds ratios and their 95 % confidence intervals were estimated using age-adjusted and multivariable-adjusted conditional logistic regression analysis. Compared to never-users of antiepileptic drugs, the overall prostate cancer risk was decreased among users of phenobarbital, carbamazepine, and valproic acid (multivariable-adjusted odds ratio (OR) 0.47, 95 % CI 0.24-0.92; OR 0.82, 95 % CI 0.71-0.94, and OR 0.62, 95 % CI 0.42-0.92, respectively), but not among users of other antiepileptic drugs. Overall prostate cancer risk decreased in a dose-dependent manner by cumulative amount, duration and yearly dosage (intensity) of HDAC inhibitors valproic acid and carbamazepine. The risk of advanced prostate cancer was decreased only among carbamazepine users (OR 0.65, 95 % CI 0.44-0.96). Our results support possible prostate cancer preventive effects of HDAC inhibitors. However, also phenobarbital use was associated with decreased prostate cancer risk, despite not having HDAC inhibiting activity. The mechanism of action for antiepileptic drugs in prostate cancer deserves further study. PMID:27038166

  5. Teratogenicity of Antiepileptic Medications

    PubMed Central

    Kluger, Benzi M.; Meador, Kimford J.

    2009-01-01

    Antiepileptic drugs (AEDs) are frequently used to treat several conditions that are common in women of childbearing age, including epilepsy, headaches, and mood disorders. Moreover, as in the case of epilepsy and severe psychiatric disease, clinicians frequently do not have the option of stopping these medications or switching to another class of drugs. Overall, AEDs have been associated with an increased risk of major congenital malformations, minor anomalies, specific congenital syndromes, and developmental disorders seen in childhood. However, the differential effects of individual AEDs remain uncertain. Data are accumulating which strongly suggest that these risks are highest in patients receiving polypharmacy and valproate. There is also modest evidence to suggest an increased risk for phenobarbital. While other older AEDs appear to carry some teratogenic risk, there is not adequate evidence to further stratify their risk. Clinical and basic science research regarding newer AEDs suggests equivalent, if not safer, profiles compared with older AEDs, but these data are inconclusive. Management of women with epilepsy should include a discussion of these risks, prophylactic treatment with folic acid, and the minimal use of polypharmacy and valproate needed to maintain optimum seizure control. PMID:18777479

  6. Standard dose valproic acid does not cause additional cognitive impact in a rodent model of intractable epilepsy.

    PubMed

    Jellett, Adam P; Jenks, Kyle; Lucas, Marcella; Scott, Rod C

    2015-02-01

    Children with epilepsy face significant cognitive and behavioral impairments. These impairments are due to a poorly characterized interaction between the underlying etiology, the effect of seizures and the effect of medication. The large variation in these factors make understanding the main drivers of cognitive impairment in humans extremely difficult. Therefore, we investigated the cognitive effect of seizures and the antiepileptic drug valproic acid in a rodent model of cortical dysplasia. Rats were divided into seizure-receiving and non-receiving groups. Rats experienced frequent early life seizures using the flurothyl inhalation method: 50 seizures between postnatal day 5 and 15 and then one seizure a day following that. Rats were further divided into drug-treated and vehicle treated groups. Valproic acid treated animals were treated from 5 days preceding behavioral testing in the Morris water maze at a clinically relevant concentration. We show here that the main driver of cognitive impairments are the brain malformations, and that persistent seizures in animals with brain malformations and valproic acid caused no additional impact. These findings suggest that neither an appropriate dose of a standard antiepileptic drug or intractable seizures worsen cognition associated with a malformation of cortical development and that alternative treatment strategies to improve cognition are required.

  7. Use of hexadeuterated valproic acid and gas chromatography-mass spectrometry to determine the pharmacokinetics of valproic acid

    SciTech Connect

    Acheampong, A.A.; Abbott, F.S.; Orr, J.M.; Ferguson, S.M.; Burton, R.W.

    1984-04-01

    Di-(( 3,3,3-/sup 2/H3)propyl)acetic acid, a hexadeuterated analogue of valproic acid, was synthesized and its pharmacokinetic properties compared with valproic acid. Concentrations of valproic acid and (/sup 2/H)valproic acid in serum and saliva were determined by GC-MS using selected-ion monitoring. Saliva drug levels were measured with good precision down to 0.1 microgram/mL. Kinetic equivalence of valproic acid and (/sup 2/H)valproic acid was demonstrated in a single-dose study in a human volunteer. An isotope effect was observed for omega-oxidation, but the difference in metabolism was not sufficient to make (/sup 2/H)valproic acid biologically nonequivalent. The application of (/sup 2/H)valproic acid to determine the kinetics of valproic acid under steady-state concentrations was evaluated in the same volunteer. The kinetic data obtained with (/sup 2/H)valproic acid was consistent with previously reported values for valproic acid including kinetic differences observed between single-dose and steady-state experiments. Saliva levels of valproic acid were found to give a good correlation with total serum valproic acid under multiple-dose conditions. A concentration dependence was found for the ratio of saliva valproic acid to free valproic acid in serum, low ratios being observed at high serum concentrations of valproic acid.

  8. Antiepileptic drugs in the treatment of anxiety disorders: role in therapy.

    PubMed

    Van Ameringen, Michael; Mancini, Catherine; Pipe, Beth; Bennett, Mark

    2004-01-01

    Pharmacotherapy for anxiety disorders is an active area of research. A variety of drug groups have been shown to be effective in treating many of the anxiety disorders, with selective serotonin reuptake inhibitors (SSRIs) being considered first-line agents for virtually all anxiety disorders. There is a clinical need for alternative drug treatments, as many patients do not achieve a complete response and experience significant adverse effects. The successful use of antiepileptic drugs in mood disorders has led clinicians and researchers to investigate their potential efficacy in other psychiatric disorders, particularly in anxiety disorders. There have been a number of investigations conducted in the form of case reports, case series and open-label trials, suggesting the potential usefulness of antiepileptic drug treatment in a variety of anxiety disorders. More reliable evidence for the use of antiepileptic drugs in anxiety disorders can be gleaned from recent placebo-controlled trials. Thus far, the strongest placebo-controlled evidence has demonstrated the efficacy of pregabalin in treating social phobia and generalised anxiety disorder, while smaller or less robust controlled trials have suggested the potential efficacy of gabapentin in social phobia, lamotrigine in post-traumatic stress disorder, and valproic acid in panic disorder. Antiepileptic drugs may have a place in the treatment of anxiety disorders; however, further investigation is warranted to determine in what circumstances they should be used as monotherapy or as augmenting agents in individuals who are partially or non-responsive to conventional therapy.

  9. [Endocrine effects of antiepileptic drugs].

    PubMed

    Leśkiewicz, Monika; Budziszewska, Bogusława; Lasoń, Władysław

    2008-01-01

    Both seizures and antiepileptic drugs may induce disturbances in hormonal system. Regarding endocrine effects of anticonvulsants, an interaction of these drugs with gonadal, thyroid, and adrenal axis deserves attention. Since majority of antiepileptic drugs block voltage dependent sodium and calcium channels, enhance GABAergic transmission and/or antagonize glutamate receptors, one may expect that similar neurochemical mechanisms are engaged in the interaction of these drugs with synthesis of hypothalamic neurohormones such as gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), corticotropin-releasing hormone (CRH) and growth hormone releasing hormone (GHRH). Moreover some antiepileptic drugs may affect hormone metabolism via inhibiting or stimulating cytochrome P-450 iso-enzymes. An influence of antiepileptic drugs on hypothalamic-pituitary-gonadal axis appears to be sex-dependent. In males, valproate decreased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) but elevated dehydroepiandrosterone sulfate (DHEAS) concentrations. Carbamazepine decreased testosterone/sex-hormone binding globulin (SHBG) ratio, whereas its active metabolite--oxcarbazepine--had no effect on androgens. In females, valproate decreased FSH-stimulated estradiol release and enhanced testosterone level. On the other hand, carbamazepine decreased testosterone level but enhanced SHBG concentration. It has been reported that carbamazepine, oxcarbazepine or joined administration of carbamazepine and valproate decrease thyroxine (T4) level in patients with no effect on thyrotropin (TSH). While valproate itself has no effect on T4, phenytoin, phenobarbital and primidone, as metabolic enzyme inducers, can decrease the level of free and bound thyroxine. On the other hand, new antiepileptics such as levetiracetam, tiagabine, vigabatrine or lamotrigine had no effect on thyroid hormones. With respect to hormonal regulation of metabolic processes, valproate was

  10. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis

    SciTech Connect

    Van Beneden, Katrien; Geers, Caroline; Pauwels, Marina; Mannaerts, Inge; Wissing, Karl M.; Van den Branden, Christiane; Grunsven, Leo A. van

    2013-09-01

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as did the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors. - Highlights: • Valproic acid is a potent antiproteinuric drug, whereas trichostatin A is not. • Trichostatin A and valproic acid reduce kidney fibrosis in doxorubicin nephropathy. • Both valproic acid and trichostatin A attenuate renal inflammation.

  11. Hyperammonemia Associated with Valproic Acid Concentrations

    PubMed Central

    Alvariza, Silvana; Magallanes, Laura

    2014-01-01

    Valproic acid, a branched short-chain fatty acid, has numerous action mechanisms which turn it into a broad spectrum anticonvulsant drug and make its use possible in some other pathologies such as bipolar disorder. It is extensively metabolized in liver, representing β-oxidation in the mitochondria one of its main metabolic route (40%). Carnitine is responsible for its entry into the mitochondria as any other fatty acid. Long-term high-dose VPA therapy or acute VPA overdose induces carnitine depletion, resulting in high levels of ammonia in blood. As a high correlation between salivary valproic acid levels and plasma ultrafiltrate levels was found in humans, saliva becomes a promising monitoring fluid in order to study valproic acid pharmacokinetics and its toxic effect. Extended-release (twice daily) formulations of valproic acid or carnitine supplementation are the proposed two therapeutic strategies in order to reverse hyperammonemia. PMID:24868521

  12. Epilepsy, sex hormones and antiepileptic drugs in female patients.

    PubMed

    Verrotti, Alberto; D'Egidio, Claudia; Coppola, Giangennaro; Parisi, Pasquale; Chiarelli, Francesco

    2009-12-01

    Women with epilepsy have a higher incidence of reproductive endocrine disorders than the general female population. These alterations include polycystic ovary syndrome, hyperandrogenemia, infertility, hypothalamic amenorrhea and hyperprolactinemia. Reproductive dysfunction is attributed both to epilepsy itself and to antiepileptic drugs (AEDs). Focal epileptic discharges from the temporal lobe may have a direct influence on the function of the hypothalamic-pituitary axis, thus altering the release of sex steroid hormones, including the production of luteinizing hormone, follicle-stimulating hormone, gonadotropin-releasing hormone and prolactin. AEDs may modulate hormone release from the hypothalamic-pituitary-gonadal axis and they may alter the metabolism of sex hormones and their binding proteins. Hepatic enzyme-inducing AEDs, such as carbamazepine and phenytoin, may be most clearly linked to altered metabolism of sex steroid hormones, but valproic acid, an enzyme inhibitor, has also been associated with a frequent occurrence of polycystic ovary syndrome and hyperandrogenism in women with epilepsy. Therefore, treatment of epilepsy and selection of AEDs are important for reproductive health in female patients. The aim of the present review is to critically evaluate the recently published data concerning the interactions between sex hormones, epilepsy and AEDs.

  13. Antiepileptic Activity of Preferential Inhibitors of Persistent Sodium Current

    PubMed Central

    Anderson, Lyndsey L.; Thompson, Christopher H.; Hawkins, Nicole A.; Nath, Ravi D.; Petersohn, Adam A.; Rajamani, Sridharan; Bush, William S.; Frankel, Wayne N.; Vanoye, Carlos G.; Kearney, Jennifer A.; George, Alfred L.

    2014-01-01

    Objective Evidence from basic neurophysiology and molecular genetics has implicated persistent sodium current conducted by voltage-gated sodium (NaV) channels as a contributor to the pathogenesis of epilepsy. Many antiepileptic drugs target NaV channels and modulate neuronal excitability mainly by a use-dependent block of transient sodium current, although suppression of persistent current may also contribute to the efficacy of these drugs. We hypothesized that a drug or compound capable of preferential inhibition of persistent sodium current would have antiepileptic activity. Methods We examined the antiepileptic activity of two selective persistent sodium current blockers ranolazine, an FDA-approved drug for treatment of angina pectoris, and GS967, a novel compound with more potent effects on persistent current, in the epileptic Scn2aQ54 mouse model. We also examined the effect of GS967 in the maximal electroshock model and evaluated effects of the compound on neuronal excitability, propensity for hilar neuron loss, development of mossy fiber sprouting and survival of Scn2aQ54 mice. Results We found that ranolazine was capable of reducing seizure frequency by ~50% in Scn2aQ54 mice. The more potent persistent current blocker GS967 reduced seizure frequency by greater than 90% in Scn2aQ54 mice and protected against induced seizures in the maximal electroshock model. GS967 greatly attenuated abnormal spontaneous action potential firing in pyramidal neurons acutely isolated from Scn2aQ54 mice. In addition to seizure suppression in vivo, GS967 treatment greatly improved the survival of Scn2aQ54 mice, prevented hilar neuron loss, and suppressed the development of hippocampal mossy fiber sprouting. Significance Our findings indicate that the selective persistent sodium current blocker GS967 has potent antiepileptic activity and this compound could inform development of new agents. PMID:24862204

  14. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism

    PubMed Central

    Fan, Hueng-Chuen; Lee, Herng-Shen; Chang, Kai-Ping; Lee, Yi-Yen; Lai, Hsin-Chuan; Hung, Pi-Lien; Lee, Hsiu-Fen; Chi, Ching-Shiang

    2016-01-01

    Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs) are always the first choice for treatment. However, more than 50% of patients with epilepsy who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine (CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450 isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam (LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and bone metabolism and emphasizes the need for caution and timely withdrawal of these medications to avoid serious disabilities. PMID:27490534

  15. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism.

    PubMed

    Fan, Hueng-Chuen; Lee, Herng-Shen; Chang, Kai-Ping; Lee, Yi-Yen; Lai, Hsin-Chuan; Hung, Pi-Lien; Lee, Hsiu-Fen; Chi, Ching-Shiang

    2016-01-01

    Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs) are always the first choice for treatment. However, more than 50% of patients with epilepsy who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine (CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450 isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam (LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and bone metabolism and emphasizes the need for caution and timely withdrawal of these medications to avoid serious disabilities. PMID:27490534

  16. Topiramate increases the risk of valproic acid-induced encephalopathy.

    PubMed

    Noh, Young; Kim, Dong Wook; Chu, Kon; Lee, Soon-Tae; Jung, Keun-Hwa; Moon, Hye-Jin; Lee, Sang Kun

    2013-01-01

    Metabolic encephalopathy is a rare but serious complication of valproic acid (VPA) therapy that usually presents with impaired consciousness or increased seizure frequency. Although it has been suggested that topiramate (TPM) increases the risk of VPA-induced encephalopathy, the additional risk in patients receiving TPM therapy has not been evaluated. We reviewed all adult patients who took VPA between January 2005 and February 2009 at the Seoul National University Hospital and identified patients with VPA-induced encephalopathy based on clinical and electroencephalography (EEG) data. Information on sex, age, serum ammonia level, serum VPA level, liver function test, and EEG was collected from patient registry and medical data. We enrolled 8,372 patients who received VPA therapy and 1,236 patients who received VPA/TPM combination therapy. We identified 11 patients with VPA-induced encephalopathy (0.13%), 7 of whom received a combination therapy of VPA and TPM. The odds ratio of VPA-induced encephalopathy with TPM over that without TPM was 10.16. There were no significant differences in sex distribution, number of antiepileptic agents, ammonia level, VPA serum level, underlying diseases, dosage of VPA, duration of VPA treatment, treatment of encephalopathy, and outcomes between the two groups. Our study showed that the prevalence of VPA-induced encephalopathy is approximately 0.1% among patients treated with VPA and that the risk of this condition, although still low, can increase by approximately 10 times in the presence of TPM therapy. Based on these results, we suggest that TPM should be carefully used in patients receiving VPA treatment.

  17. Clinically significant pharmacokinetic drug interactions of antiepileptic drugs with new antidepressants and new antipsychotics.

    PubMed

    Spina, Edoardo; Pisani, Francesco; de Leon, Jose

    2016-04-01

    Antiepileptic drugs (AEDs) are frequently co-prescribed with new antidepressants (ADs) or new antipsychotics (APs). A PubMed search with no time limit was used to update the review of the clinically significant pharmacokinetic (PK) drug interactions DIs (DIs) between AEDs with new ADs and APs. Our best interpretation of what to expect regarding dosing changes in the average patient after combining AEDs with new ADs or new APs is summarized on updated tables that integrate the information on in vitro metabolism studies, therapeutic drug monitoring (TDM) studies, case report/series and prospective studies. There will be a need to periodically update these dose correction factors as new knowledge becomes available. These tables will provide some orientation to clinicians with no TDM access and may also encourage clinicians to further study TDM. The clinical relevance of the inductive properties of carbamazepine, phenytoin, phenobarbital and primidone on new ADs and new APs and the inhibitory properties of valproic acid and some new ADs, are relatively well understood. On the other hand, PK DI studies combining new AEDs with weak inductive properties (particularly oxcarbazepine doses≥1200mg/day), topiramate doses≥400mg/day, clobazam, eslicarbazepine, and rufinamide), with new ADs and new APs are needed. Valproic acid may be 1) an inhibitor and/or inducer of clozapine and olanzapine with potential for clinically relevant DIs, 2) an inhibitor of paliperidone, and 3) a weak inducer of aripiprazole. Fluoxetine and fluvoxamine are relevant inhibitors of phenytoin and valproic acid and possibly of clobazam, lacosamide, phenobarbital, or primidone. PMID:26896788

  18. Comparative persistence of antiepileptic drugs in patients with epilepsy: A STROBE-compliant retrospective cohort study.

    PubMed

    Lai, Edward Chia-Cheng; Hsieh, Cheng-Yang; Su, Chien-Chou; Yang, Yea-Huei Kao; Huang, Chin-Wei; Lin, Swu-Jane; Setoguchi, Soko

    2016-08-01

    We compared persistence of antiepileptic drugs (AEDs) including carbamazepine, oxcarbazepine, gabapentin, lamotrigine, topiramate, valproic acid, and phenytoin in an Asian population with epilepsy.A retrospective cohort study was conducted by analyzing Taiwan's National Health Insurance Research Database (NHIRD). Adult epilepsy patients newly prescribed with AEDs between 2005 and 2009 were included. The primary outcome was persistence, defined as the treatment duration from the date of AED initiation to the date of AED discontinuation, switching, hospitalization due to seizure or disenrollment from databases, whichever came first. Cox proportional hazard models were used to estimate the risk of non-persistence with AEDs.Among the 13,061 new users of AED monotherapy (mean age: 58 years; 60% men), the persistence ranged from 218.8 (gabapentin) to 275.9 (oxcarbazepine) days in the first treatment year. The risks of non-persistence in patients receiving oxcarbazepine (adjusted hazard ratio [HR], 0.78; 95% CI, 0.74-0.83), valproic acid (0.88; 0.85-0.92), lamotrigine (0.72; 0.65-0.81), and topiramate (0.90; 0.82-0.98) were significantly lower than in the carbamazepine group. Compared with carbamazepine users, the non-persistence risk was higher in phenytoin users (1.10; 1.06-1.13), while gabapentin users (1.03; 0.98-1.09) had similar risk. For risk of hospitalization due to seizure and in comparison with carbamazepine users, oxcarbazepine (0.66; 0.58-0.74) and lamotrigine (0.46; 0.35-0.62) users had lower risk, while phenytoin (1.35; 1.26-1.44) users had higher risk. The results remained consistent throughout series of sensitivity and stratification analyses.The persistence varied among AEDs and was better for oxcarbazepine, valproic acid, lamotrigine, and topiramate, but worse for phenytoin when compared with carbamazepine. PMID:27583857

  19. Interactions between non-vitamin K oral anticoagulants and antiepileptic drugs.

    PubMed

    Stöllberger, Claudia; Finsterer, Josef

    2016-10-01

    Atrial fibrillation (AF) is a frequent cause of stroke. Secondary prophylaxis by oral anticoagulants (OAC) is recommended after stroke in AF-patients. OAC can be achieved by vitamin-K antagonists (VKAs) or non-vitamin K antagonist oral anticoagulants (NOACs) like dabigatran, rivaroxaban, apixaban or edoxaban. Seizures are frequent after stroke, and antiepileptic drugs (AEDs) are indicated. The review, based on a literature research, aims to give an overview about pharmacokinetic knowledge and clinical data about drug-drug interactions (DDIs) between NOACs and AED. Carbamazepine, levetiracetam, phenobarbital, phenytoin and valproic acid might decrease the effect of NOACs by inducing P-glycoprotein (P-gp) activity. Carbamazepine, oxcarbazepine, phenytoin, phenobarbital and topiramate might decrease the effect of NOACs by inducing CYP3A4 activity. Controversial data - inhibition as well as induction of CYP3A4 - were found about valproic acid. The relevance of these DDIs is largely unknown since there are only sporadic case reports available. To increase the knowledge about DDIs between NOACs and AEDs we suggest subgroup analyses addressing effects and safety of VKAs versus NOACs in patients with AF on AEDs, in case they have been included in previously completed or still ongoing trials or registries. This could be easily feasible and would be desirable in view of the large data already accumulated. PMID:27450623

  20. Neurodevelopmental effects of antiepileptic drugs.

    PubMed

    Meador, Kimford J

    2002-07-01

    Although the vast majority of children born to women with epilepsy are normal, these children are at increased risk for both anatomic and cognitive impairments. Current evidence suggests that the defects are the result of in utero antiepileptic drug (AED) exposure combined with a genetic predispositon. However, the exact mechanisms underlying these effects remain to be delineated. AED polytherapy increases the risk, but it remains uncertain if specific AEDs pose an overall greater threat. Most women with epilepsy cannot avoid AEDs during pregnancy because of the greater risks posed by seizures to the mother and fetus. Therefore, current recommendations emphasize definitive diagnosis and the use of AED monotherapy at the lowest effective dose if treatment is indicated. Prenatal folate and multivitamins should also be given routinely to women of childbearing age who require AED therapy. PMID:12044257

  1. Teratogenic effects of antiepileptic drugs

    PubMed Central

    Hill, Denise S; Wlodarczyk, Bogdan J; Palacios, Ana M; Finnell, Richard H

    2010-01-01

    Many antiepileptic drugs (AEDs) have therapeutic applications that extend beyond epilepsy to include neuropathic pain, migraine headaches and psychiatric disorders. The risk of some AEDs has been clearly established, but for newer drugs, small sample sizes and polytherapy exposures preclude a conclusive determination of their teratogenic potential. Most women with epilepsy will require AED therapy throughout their entire pregnancy to control seizures; the vast majority of pregnancies in women with epilepsy have positive outcomes. A conservative estimate suggests that AED monotherapy doubles, and polytherapy triples, the risk for major congenital malformations. Furthermore, while evidence is still accruing, recent investigations suggest that exposure to select AEDs results in altered cognitive function later in development. There is no evidence to suggest that additional folic acid supplementation ameliorates the increased risk of congenital malformations conferred by in utero AED exposure. PMID:20518610

  2. Therapeutic drug monitoring of antiepileptic drugs by use of saliva.

    PubMed

    Patsalos, Philip N; Berry, Dave J

    2013-02-01

    Blood (serum/plasma) antiepileptic drug (AED) therapeutic drug monitoring (TDM) has proven to be an invaluable surrogate marker for individualizing and optimizing the drug management of patients with epilepsy. Since 1989, there has been an exponential increase in AEDs with 23 currently licensed for clinical use, and recently, there has been renewed and extensive interest in the use of saliva as an alternative matrix for AED TDM. The advantages of saliva include the fact that for many AEDs it reflects the free (pharmacologically active) concentration in serum; it is readily sampled, can be sampled repetitively, and sampling is noninvasive; does not require the expertise of a phlebotomist; and is preferred by many patients, particularly children and the elderly. For each AED, this review summarizes the key pharmacokinetic characteristics relevant to the practice of TDM, discusses the use of other biological matrices with particular emphasis on saliva and the evidence that saliva concentration reflects those in serum. Also discussed are the indications for salivary AED TDM, the key factors to consider when saliva sampling is to be undertaken, and finally, a practical protocol is described so as to enable AED TDM to be applied optimally and effectively in the clinical setting. Overall, there is compelling evidence that salivary TDM can be usefully applied so as to optimize the treatment of epilepsy with carbamazepine, clobazam, ethosuximide, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, primidone, topiramate, and zonisamide. Salivary TDM of valproic acid is probably not helpful, whereas for clonazepam, eslicarbazepine acetate, felbamate, pregabalin, retigabine, rufinamide, stiripentol, tiagabine, and vigabatrin, the data are sparse or nonexistent. PMID:23288091

  3. Progress report on new antiepileptic drugs: a summary of the Seventh Eilat Conference (EILAT VII).

    PubMed

    Bialer, Meir; Johannessen, Svein I; Kupferberg, Harvey J; Levy, René H; Perucca, Emilio; Tomson, Torbjörn

    2004-01-01

    The Seventh Eilat Conference on New Antiepileptic Drugs (AEDs) (EILAT VII) took place in Villasimius, Sardinia, Italy from the 9th to 13th May 2004. Basic scientists, clinical pharmacologists and neurologists from 24 countries attended the conference,whose main themes included advances in pathophysiology of drug resistance, new AEDs in pediatric epilepsy syndromes, modes of AED action and spectrum of adverse effects and a re-appraisal of comparative responses to AED combinations. Consistent with previous formats of this conference, the central part of the conference was devoted to a review of AEDs in development, as well as updates on second-generation AEDs. This article summarizes the information presented on drugs in development, including atipamezole, BIA-2-093, fluorofelbamate, NPS 1776, pregabalin, retigabine, safinamide, SPM 927, stiripentol, talampanel,ucb 34714 and valrocemide (TV 1901). Updates on felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine,topiramate, vigabatrin, zonisamide, new oral and parenteral formulations of valproic acid and SPM 927 and the antiepileptic vagal stimulator device are also presented.

  4. Efficacy of New Antiepileptic Drugs

    PubMed Central

    Schmidt, Dieter

    2011-01-01

    Regarding efficacy of new antiepileptic drugs (AEDs) for seizure control, there are three important clinical questions. How effective are new AEDs when corrected for the efficacy of placebo? And even more important: How do new AEDs fare in terms of seizure remission compared with established agents? And finally: Have patients seizure-free on new AEDs a better chance for lasting remission after withdrawal versus those withdrawing from older agents? The answers raise concerns. Although add-on therapy with marketed new AEDs is more effective than placebo, as expected, the treatment difference for becoming seizure-free is disappointingly small (6%; 95% CI: 4–8%; z = 6.47; p < 0.001). Although many, but not all, new AEDs have comparable efficacy to old standard drugs in well-controlled trials, none of the new AEDs is superior to old drugs in terms of seizure remission. So far, we have no antiepileptogenic treatments that prevent the development of epilepsy or modify its detrimental course. The sobering results suggest the need for novel experimental and clinical strategies for the development of more effective new AEDs that interrupt ictogenesis more effectively and prevent or abort epileptogenesis. Ideally, we need new drugs that block both ictogenesis and epileptogenesis, resulting in complete cure of epilepsy. PMID:21461260

  5. Design and synthesis of chroman derivatives with dual anti-breast cancer and antiepileptic activities.

    PubMed

    Rawat, Pinki; Verma, Saurabh Manaswita

    2016-01-01

    A series of chroman derivatives was designed, prepared, and examined for their anti-breast cancer and antiepileptic activities. All synthesized compounds yielded results that were in good agreement with spectral data. The bioassay showed that some of the resultant compounds exerted remarkable inhibitory effects on growth of human breast cancer cell line MCF-7. In particular, compound 6i (the concentration required for 50% inhibition of cell growth [GI50] =34.7 µM) exerted promising anticancer activity toward MCF-7 cell line. Additionally, compounds 6b, 6c, 6d, 6e, 6g, 6i, and 6l showed advanced antiepileptic activity than reference drugs. None of the compounds showed neurotoxicity, as determined by the rotarod test. The obtained results proved that these distinctive compounds could be relevant as models for future discovery and research, as well as for the production of more number of active derivatives. PMID:27621598

  6. Design and synthesis of chroman derivatives with dual anti-breast cancer and antiepileptic activities

    PubMed Central

    Rawat, Pinki; Verma, Saurabh Manaswita

    2016-01-01

    A series of chroman derivatives was designed, prepared, and examined for their anti-breast cancer and antiepileptic activities. All synthesized compounds yielded results that were in good agreement with spectral data. The bioassay showed that some of the resultant compounds exerted remarkable inhibitory effects on growth of human breast cancer cell line MCF-7. In particular, compound 6i (the concentration required for 50% inhibition of cell growth [GI50] =34.7 µM) exerted promising anticancer activity toward MCF-7 cell line. Additionally, compounds 6b, 6c, 6d, 6e, 6g, 6i, and 6l showed advanced antiepileptic activity than reference drugs. None of the compounds showed neurotoxicity, as determined by the rotarod test. The obtained results proved that these distinctive compounds could be relevant as models for future discovery and research, as well as for the production of more number of active derivatives. PMID:27621598

  7. Design and synthesis of chroman derivatives with dual anti-breast cancer and antiepileptic activities

    PubMed Central

    Rawat, Pinki; Verma, Saurabh Manaswita

    2016-01-01

    A series of chroman derivatives was designed, prepared, and examined for their anti-breast cancer and antiepileptic activities. All synthesized compounds yielded results that were in good agreement with spectral data. The bioassay showed that some of the resultant compounds exerted remarkable inhibitory effects on growth of human breast cancer cell line MCF-7. In particular, compound 6i (the concentration required for 50% inhibition of cell growth [GI50] =34.7 µM) exerted promising anticancer activity toward MCF-7 cell line. Additionally, compounds 6b, 6c, 6d, 6e, 6g, 6i, and 6l showed advanced antiepileptic activity than reference drugs. None of the compounds showed neurotoxicity, as determined by the rotarod test. The obtained results proved that these distinctive compounds could be relevant as models for future discovery and research, as well as for the production of more number of active derivatives.

  8. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors

    PubMed Central

    Kang, Jaeseung; Kim, Eunjoon

    2015-01-01

    Animals prenatally exposed to valproic acid (VPA), an antiepileptic agent, have been used as a model for autism spectrum disorders (ASDs). Previous studies have identified enhanced NMDA receptor (NMDAR) function in the brain of VPA rats, and demonstrated that pharmacological suppression of NMDAR function normalizes social deficits in these animals. However, whether repetitive behavior, another key feature of ASDs, can be rescued by NMDAR inhibition remains unknown. We report here that memantine, an NMDAR antagonist, administered to VPA mice rescues both social deficits and repetitive behaviors such as self-grooming and jumping. These results suggest that suppression of elevated NMDAR function in VPA animals normalizes repetitive behaviors in addition to social deficits. PMID:26074764

  9. Advances in anti-epileptic drug testing.

    PubMed

    Krasowski, Matthew D; McMillin, Gwendolyn A

    2014-09-25

    In the past twenty-one years, 17 new antiepileptic drugs have been approved for use in the United States and/or Europe. These drugs are clobazam, ezogabine (retigabine), eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, perampanel, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. Therapeutic drug monitoring is often used in the clinical dosing of the newer anti-epileptic drugs. The drugs with the best justifications for drug monitoring are lamotrigine, levetiracetam, oxcarbazepine, stiripentol, and zonisamide. Perampanel, stiripentol and tiagabine are strongly bound to serum proteins and are candidates for monitoring of the free drug fractions. Alternative specimens for therapeutic drug monitoring are saliva and dried blood spots. Therapeutic drug monitoring of the new antiepileptic drugs is discussed here for managing patients with epilepsy. PMID:24925169

  10. A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons

    PubMed Central

    Fujiki, R; Sato, A; Fujitani, M; Yamashita, T

    2013-01-01

    Valproic acid (VPA) is a branched-chain saturated fatty acid with a long history of clinical use as an antiepileptic drug (AED). VPA is also known to inhibit histone deacetylases (HDACs) and to cause diverse effects on neural progenitor cells (NPCs) and neurons. Although the neuroprotective or neurodestructive effects of VPA have been investigated in heterogeneous cell populations, in this study, we used homogeneous populations of NPCs and glutamatergic cortical pyramidal neurons, which were differentiated from embryonic stem (ES) cells. At therapeutic concentrations, VPA had a proapoptotic effect on ES cell-derived NPCs of glutamatergic neurons, but not on their progeny. This effect of VPA most likely occurred through the inhibition of HDACs, because similar phenotypes were observed following treatment with other HDAC inhibitors (HDACis) such as trichostatin A and sodium butyrate. The proapoptotic phenotype was not observed when cells were exposed to a structural analog of VPA, valpromide (VPM), which has the same antiepileptic effect as VPA, but does not inhibit HDACs. Western blotting confirmed that treatment with HDACis, but not VPM, significantly increased the levels of histone H3 acetylation in NPCs. HDACi treatments did not affect the survival of neurons, although the acetylation levels were increased to a limited extent. These results, which are based on a homogeneous culture system, suggest that VPA inhibits HDAC activity and induces the apoptosis of NPCs that are fated to differentiate into glutamatergic neurons. The dose-dependent effects of VPA both on apoptosis and hyperacetylation of histone H3 in NPCs supported this notion. These cell type- and differentiation stage-specific effects of VPA imply that dysfunction of HDACs during pregnancy significantly increase the risk of congenital malformations associated with VPA administration. PMID:23788034

  11. Haematological toxicity of Valproic acid compared to Levetiracetam in patients with glioblastoma multiforme undergoing concomitant radio-chemotherapy: a retrospective cohort study.

    PubMed

    Tinchon, Alexander; Oberndorfer, Stefan; Marosi, Christine; Gleiss, Andreas; Geroldinger, Angelika; Sax, Cornelia; Sherif, Camillo; Moser, Walter; Grisold, Wolfgang

    2015-01-01

    Patients with glioblastoma multiforme (GBM) and symptomatic seizures are in need of a sufficient antiepileptic treatment. Haematological toxicity is a limiting side effect of both, first line radio-chemotherapy with temozolomide (TMZ) and co-medication with antiepileptic drugs. Valproic acid (VPA) and levetiracetam (LEV) are considered favourable agents in brain tumor patients with seizures, but are commonly reported to induce haematological side effects on their own. We hypothesized, that antiepileptic treatment with these agents has no increased impact on haematological side effects during radio-chemotherapy in the first line setting. We included 104 patients from two neuro-oncologic centres with GBM and standard radio-chemotherapy in a retrospective cohort study. Patients were divided according to their antiepileptic treatment with either VPA, LEV or without antiepileptic drug therapy (control group). Declines in haemoglobin levels and absolute blood cell counts for neutrophil granulocytes, lymphocytes and thrombocytes were analyzed twice during concomitant and once during adjuvant phase. A comparison between the examined groups was performed, using a linear mixed model. Neutrophil granulocytes, lymphocytes and thrombocytes significantly decreased over time in all three groups (all p < 0.012), but there was no significant difference between the compared groups. A significant decline in haemoglobin was observed in the LEV treated group (p = 0.044), but did not differ between the compared groups. As a novel finding, this study demonstrates that co-medication either with VPA or LEV in GBM patients undergoing first line radio-chemotherapy with TMZ has no additional impact on medium-term haematological toxicity.

  12. Evidence-based guideline: Antiepileptic drug selection for people with HIV/AIDS

    PubMed Central

    Birbeck, G.L.; French, J.A.; Perucca, E.; Simpson, D.M.; Fraimow, H.; George, J.M.; Okulicz, J.F.; Clifford, D.B.; Hachad, H.; Levy, R.H.

    2012-01-01

    Objective: To develop guidelines for selection of antiepileptic drugs (AEDs) among people with HIV/AIDS. Methods: The literature was systematically reviewed to assess the global burden of relevant comorbid entities, to determine the number of patients who potentially utilize AEDs and antiretroviral agents (ARVs), and to address AED-ARV interactions. Results and Recommendations: AED-ARV administration may be indicated in up to 55% of people taking ARVs. Patients receiving phenytoin may require a lopinavir/ritonavir dosage increase of ∼50% to maintain unchanged serum concentrations (Level C). Patients receiving valproic acid may require a zidovudine dosage reduction to maintain unchanged serum zidovudine concentrations (Level C). Coadministration of valproic acid and efavirenz may not require efavirenz dosage adjustment (Level C). Patients receiving ritonavir/atazanavir may require a lamotrigine dosage increase of ∼50% to maintain unchanged lamotrigine serum concentrations (Level C). Coadministration of raltegravir/atazanavir and lamotrigine may not require lamotrigine dosage adjustment (Level C). Coadministration of raltegravir and midazolam may not require midazolam dosage adjustment (Level C). Patients may be counseled that it is unclear whether dosage adjustment is necessary when other AEDs and ARVs are combined (Level U). It may be important to avoid enzyme-inducing AEDs in people on ARV regimens that include protease inhibitors or nonnucleoside reverse transcriptase inhibitors, as pharmacokinetic interactions may result in virologic failure, which has clinical implications for disease progression and development of ARV resistance. If such regimens are required for seizure control, patients may be monitored through pharmacokinetic assessments to ensure efficacy of the ARV regimen (Level C). PMID:22218281

  13. Comparison of body composition in persons with epilepsy on conventional & new antiepileptic drugs

    PubMed Central

    Sarangi, Sudhir Chandra; Tripathi, Manjari; Kakkar, Ashish Kumar; Gupta, Yogendra Kumar

    2016-01-01

    Background & objectives: Certain antiepileptic drugs (AEDs) such as valproic acid (VPA) are known to affect body weight, and lipid profile. However, evidences regarding effects of AEDs on the body composition are deficient. This cross-sectional study compared the body composition and lipid profile among patients with epilepsy on newer and conventional AEDs. Methods: The patients with epilepsy (n=109) on treatment with conventional and newer AEDs (levetiracetam, lamotrigine and clobazam) for > 6 months were enrolled. Of these, 70 were on monotherapy: levetiracetam (n=12), VPA (n=16), carbamazepine (n=20) and phenytoin (n=22) and the remaining on polytherapy. Their body composition [body fat mass, lean dry mass (LDM), total body water (TBW), intracellular water (ICW), extracellular water (ECW) and basal metabolic rate (BMR) was estimated and biochemical parameters were assessed. Results: Levetiracetam group had no significant difference with VPA, carbamazepine, phenytoin and control groups, except low LDM (17.8±2.4) than VPA groups (20.2±2.7, P<0.05). In comparison with control, AEDs monotherapy groups had no significant difference, except higher LDM and ECW in VPA group. Among groups based on conventional and newer AEDs, there was no significant difference in body composition parameters except for higher LDM (as % of BW) in conventional AEDs only treated group than control (P<0.01). Interpretation & conclusions: The alterations observed in body composition with valproic acid in contrast to other AEDs like levetiracetam, carbamazepine and phenytoin could affect treatment response in epilepsy especially in subjects with already altered body composition status like obese and thin frail patients, which needs to be established by prospective studies (CTRI/2013/05/003701). PMID:27241646

  14. [Objectives and practical aspects of antiepileptic medication].

    PubMed

    Auvin, Stéphane

    2015-01-01

    Antiepileptics are a group of drugs with various pharmacological properties and mechanisms of action. They are grouped together due to the fact that they are used to treat epilepsy. There are around twenty molecules in this group. Particular care needs to be taken when prescribing them for children as they carry risks.

  15. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient

    PubMed Central

    Seide, Margaret; Stern, Robert G.

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  16. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient.

    PubMed

    Aiyer, Rohit; Seide, Margaret; Stern, Robert G

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  17. Comparative persistence of antiepileptic drugs in patients with epilepsy: A STROBE-compliant retrospective cohort study

    PubMed Central

    Lai, Edward Chia-Cheng; Hsieh, Cheng-Yang; Su, Chien-Chou; Yang, Yea-Huei Kao; Huang, Chin-Wei; Lin, Swu-Jane; Setoguchi, Soko

    2016-01-01

    Abstract We compared persistence of antiepileptic drugs (AEDs) including carbamazepine, oxcarbazepine, gabapentin, lamotrigine, topiramate, valproic acid, and phenytoin in an Asian population with epilepsy. A retrospective cohort study was conducted by analyzing Taiwan's National Health Insurance Research Database (NHIRD). Adult epilepsy patients newly prescribed with AEDs between 2005 and 2009 were included. The primary outcome was persistence, defined as the treatment duration from the date of AED initiation to the date of AED discontinuation, switching, hospitalization due to seizure or disenrollment from databases, whichever came first. Cox proportional hazard models were used to estimate the risk of non-persistence with AEDs. Among the 13,061 new users of AED monotherapy (mean age: 58 years; 60% men), the persistence ranged from 218.8 (gabapentin) to 275.9 (oxcarbazepine) days in the first treatment year. The risks of non-persistence in patients receiving oxcarbazepine (adjusted hazard ratio [HR], 0.78; 95% CI, 0.74–0.83), valproic acid (0.88; 0.85–0.92), lamotrigine (0.72; 0.65–0.81), and topiramate (0.90; 0.82–0.98) were significantly lower than in the carbamazepine group. Compared with carbamazepine users, the non-persistence risk was higher in phenytoin users (1.10; 1.06–1.13), while gabapentin users (1.03; 0.98–1.09) had similar risk. For risk of hospitalization due to seizure and in comparison with carbamazepine users, oxcarbazepine (0.66; 0.58–0.74) and lamotrigine (0.46; 0.35–0.62) users had lower risk, while phenytoin (1.35; 1.26–1.44) users had higher risk. The results remained consistent throughout series of sensitivity and stratification analyses. The persistence varied among AEDs and was better for oxcarbazepine, valproic acid, lamotrigine, and topiramate, but worse for phenytoin when compared with carbamazepine. PMID:27583857

  18. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury.

  19. Withdrawal of valproic acid treatment during pregnancy and seizure outcome: Observations from EURAP.

    PubMed

    Tomson, Torbjörn; Battino, Dina; Bonizzoni, Erminio; Craig, John; Lindhout, Dick; Perucca, Emilio; Sabers, Anne; Thomas, Sanjeev V; Vajda, Frank

    2016-08-01

    Based on data from the EURAP observational International registry of antiepileptic drugs (AEDs) and pregnancy, we assessed changes in seizure control and subsequent AED changes in women who underwent attempts to withdraw valproic acid (VPA) during the first trimester of pregnancy. Applying Bayesian statistics, we compared seizure control in pregnancies where VPA was withdrawn (withdrawal group, n = 93), switched to another AED (switch group, n = 38), or maintained (maintained-therapy group, n = 1,588) during the first trimester. The probability of primarily or secondarily generalized tonic-clonic seizures (GTCS) was lower in the maintained-therapy group compared with the other two groups, both in the first trimester and for the entire duration of pregnancy. GTCS were twice as common during pregnancy in the withdrawal (33%) and switch groups (29%) compared with the maintained-treatment group (16%). Limitations in the data and study design do not allow to establish a cause-effect relationship between treatment changes and seizure outcome, but these observations provide a signal that withdrawal of, or switch from, VPA during the first trimester could lead to loss of seizure control, and highlight the need for a specifically designed prospective observational study. PMID:27319360

  20. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury. PMID:26476347

  1. Effects of chronic administration of valproic acid to epileptic patients on coagulation tests and primary hemostasis.

    PubMed

    Zighetti, Maddalena L; Fontana, Gessica; Lussana, Federico; Chiesa, Valentina; Vignoli, Aglaia; Canevini, Maria Paola; Cattaneo, Marco

    2015-05-01

    Valproic acid (VPA) is an antiepileptic drug that has been associated with impaired hemostasis and increased risk for postsurgical bleeding. However, the published reports provide controversial results. We measured parameters of primary hemostasis in VPA-treated patients with epilepsy, focusing on adenosine nucleotide-dependent platelet responses, which play a central role in primary hemostasis. We enrolled 20 cases (epileptic patients receiving treatment with VPA) and 20 controls (12 epileptic patients receiving treatment with drugs different from VPA and 8 healthy subjects). Measurements included prothrombin time (PT), activated partial thromboplastin time (APTT), platelet count, platelet function analyzer (PFA)-100 closure times, plasma von Willebrand factor levels, platelet content of ADP, ATP, and serotonin (all stored in platelet dense granules), and platelet shape change and aggregation induced by ADP and other platelet agonists, including the ATP analog α,β-methylene-ATP. The plasma concentration of VPA was in the therapeutic range in 17 patients and slightly above the upper limit in 3 patients. There were no statistically significant differences in any of the studied parameters in cases versus controls. Our thorough controlled study failed to show that chronic treatment with VPA induces significant abnormalities of coagulation and primary hemostasis. Therefore, VPA, when present in the circulation in the therapeutic range, does not impair hemostasis.

  2. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem.

    PubMed

    Dubiel, A; Kulesza, R J

    2016-06-01

    Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions characterized by difficulties in communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Notably, the vast majority of individuals with ASD experience some degree of auditory dysfunction and we have recently reported consistent hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is employed as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology of auditory brainstem centers. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal neuronal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4- or 16-kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these exposures, we identified significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Additionally, we observed a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD. PMID:27094734

  3. Case Report: Valproic Acid and Risperidone Treatment Leading to Development of Hyperammonemia and Mania

    ERIC Educational Resources Information Center

    Carlson, Teri; Reynolds, Charles A.; Caplan, Rochelle

    2007-01-01

    This case report describes two children who developed hyperammonemia together with frank manic behavior during treatment with a combination of valproic acid and risperidone. One child had been maintained on valproic acid for years and risperidone was added. In the second case, valproic acid was introduced to a child who had been treated with…

  4. Effects of antiepileptic drugs in electrophysiological tests.

    PubMed

    Rump, S; Kowalczyk, M

    1987-01-01

    Methods of the study of antiepileptic drugs activity by means of analysis of their effects on bioelectrical ictal phenomena in the animal brain are described. The paper deals especially with EEG signal processing methods. Application of various nonparametric models (e.g. interval-amplitude scatter plots, power spectra analysis) as well as parametric models (e.g. autoregressive model, segmentation analysis) is discussed. A discriminative approach to some of these methods (especially to autoregressive model) is also presented. Special attention is stressed on the value of these methods for the study of anticonvulsant drugs activity.

  5. Ethosuximide, Valproic Acid, and Lamotrigine in Childhood Absence Epilepsy

    PubMed Central

    Glauser, Tracy A.; Cnaan, Avital; Shinnar, Shlomo; Hirtz, Deborah G.; Dlugos, Dennis; Masur, David; Clark, Peggy O.; Capparelli, Edmund V.; Adamson, Peter C.

    2010-01-01

    BACKGROUND Childhood absence epilepsy, the most common pediatric epilepsy syndrome, is usually treated with ethosuximide, valproic acid, or lamotrigine. The most efficacious and tolerable initial empirical treatment has not been defined. METHODS In a double-blind, randomized, controlled clinical trial, we compared the efficacy, tolerability, and neuropsychological effects of ethosuximide, valproic acid, and lamotrigine in children with newly diagnosed childhood absence epilepsy. Drug doses were incrementally increased until the child was free of seizures, the maximal allowable or highest tolerable dose was reached, or a criterion indicating treatment failure was met. The primary outcome was freedom from treatment failure after 16 weeks of therapy; the secondary outcome was attentional dysfunction. Differential drug effects were determined by means of pairwise comparisons. RESULTS The 453 children who were randomly assigned to treatment with ethosuximide (156), lamotrigine (149), or valproic acid (148) were similar with respect to their demographic characteristics. After 16 weeks of therapy, the freedom-from-failure rates for ethosuximide and valproic acid were similar (53% and 58%, respectively; odds ratio with valproic acid vs. ethosuximide, 1.26; 95% confidence interval [CI], 0.80 to 1.98; P = 0.35) and were higher than the rate for lamotrigine (29%; odds ratio with ethosuximide vs. lamotrigine, 2.66; 95% CI, 1.65 to 4.28; odds ratio with valproic acid vs. lamotrigine, 3.34; 95% CI, 2.06 to 5.42; P<0.001 for both comparisons). There were no significant differences among the three drugs with regard to discontinuation because of adverse events. Attentional dysfunction was more common with valproic acid than with ethosuximide (in 49% of the children vs. 33%; odds ratio, 1.95; 95% CI, 1.12 to 3.41; P = 0.03). CONCLUSIONS Ethosuximide and valproic acid are more effective than lamotrigine in the treatment of childhood absence epilepsy. Ethosuximide is associated with

  6. Emerging Antiepileptic Drugs for Severe Pediatric Epilepsies.

    PubMed

    Mudigoudar, Basanagoud; Weatherspoon, Sarah; Wheless, James W

    2016-05-01

    The medical management of the epilepsy syndromes of early childhood (eg, infantile spasms, Dravet syndrome, and Lennox-Gastaut syndrome) is challenging; and requires careful evaluation, classification, and treatment. Pharmacologic therapy continues to be the mainstay of management for these children, and as such it is important for the clinician to be familiar with the role of new antiepileptic drugs. This article reports the clinical trial data and personal experience in treating the severe epilepsies of childhood with the recently Food and Drug Administration-approved new antiepileptic drugs (vigabatrin, rufinamide, perampanel, and clobazam) and those in clinical trials (cannabidiol, stiripentol, and fenfluramine). Genetic research has also identified an increasing number of pediatric developmental and seizure disorders that are possibly treatable with targeted drug therapies, focused on correcting underlying neural dysfunction. We highlight recent genetic advances, and how they affect our treatment of some of the genetic epilepsies, and speculate on the use of targeted genetic treatment (precision medicine) in the future. PMID:27544474

  7. Interactions between antiepileptic drugs and hormones.

    PubMed

    Svalheim, Sigrid; Sveberg, Line; Mochol, Monika; Taubøll, Erik

    2015-05-01

    Antiepileptic drugs (AEDs) are known to have endocrine side effects in both men and women. These can affect fertility, sexuality, thyroid function, and bone health, all functions of major importance for well-being and quality of life. The liver enzyme inducing antiepileptic drugs (EIAEDs), like phenobarbital, phenytoin, and carbamazepine, and also valproate (VPA), a non-EIAED, are most likely to cause such side effects. AED treatment can alter the levels of different sex hormones. EIAEDs increase sex hormone binding globulin (SHBG) concentrations in both men and women. Over time, this elevation can lead to lower levels of bioactive testosterone and estradiol, which may cause menstrual disturbances, sexual problems, and eventually reduced fertility. VPA can cause weight gain in both men and women. In women, VPA can also lead to androgenization with increased serum testosterone concentrations, menstrual disturbances, and polycystic ovaries. Lamotrigine has not been shown to result in endocrine side effects. The newer AEDs have not yet been thoroughly studied, but case reports indicate that some of these drugs could also be suspected to cause such effects if endocrine changes commence after treatment initiation. It is important to be aware of possible endocrine side effects of AEDs as they can have a major impact on quality of life, and are, at least partly, reversible after AED discontinuation.

  8. Interactions between antiepileptic drugs and hormones.

    PubMed

    Svalheim, Sigrid; Sveberg, Line; Mochol, Monika; Taubøll, Erik

    2015-05-01

    Antiepileptic drugs (AEDs) are known to have endocrine side effects in both men and women. These can affect fertility, sexuality, thyroid function, and bone health, all functions of major importance for well-being and quality of life. The liver enzyme inducing antiepileptic drugs (EIAEDs), like phenobarbital, phenytoin, and carbamazepine, and also valproate (VPA), a non-EIAED, are most likely to cause such side effects. AED treatment can alter the levels of different sex hormones. EIAEDs increase sex hormone binding globulin (SHBG) concentrations in both men and women. Over time, this elevation can lead to lower levels of bioactive testosterone and estradiol, which may cause menstrual disturbances, sexual problems, and eventually reduced fertility. VPA can cause weight gain in both men and women. In women, VPA can also lead to androgenization with increased serum testosterone concentrations, menstrual disturbances, and polycystic ovaries. Lamotrigine has not been shown to result in endocrine side effects. The newer AEDs have not yet been thoroughly studied, but case reports indicate that some of these drugs could also be suspected to cause such effects if endocrine changes commence after treatment initiation. It is important to be aware of possible endocrine side effects of AEDs as they can have a major impact on quality of life, and are, at least partly, reversible after AED discontinuation. PMID:25797888

  9. Epilepsy, sex hormones, and antiepileptic drugs.

    PubMed

    Mattson, R H; Cramer, J A

    1985-01-01

    Many factors associated with hormone function have an impact on the course of epilepsy. Patients with epilepsy may have disturbances in sexual function such as anovulatory cycles in women and decreased libido and potency in men. Data indicate seizures, especially those arising in the limbic system, may influence the hypothalamic pituitary axis. Antiepileptic drugs also influence sexual function through direct brain effects as well as through induced changes in pharmacokinetics of the sex steroid hormones. Pregnancy has been reported to be a time of increased seizures; however, this has often been associated with low drug levels, for reasons that include inadequate drug dose, possible changes in pharmacokinetics, and noncompliance. Some evidence suggests that hormones affect seizure frequency. Changes in seizures during the menstrual cycle (catamenial epilepsy) have been found in some women: seizures were fewer during the luteal phase but increased when progesterone levels declined. Some improvement in seizure frequency has been shown in pilot studies using medroxyprogesterone acetate, a synthetic progesterone. Current concepts of the interrelationship among epilepsy, sex hormones, and antiepileptic drugs are discussed.

  10. Antiepileptic Drug Withdrawal in Dogs with Epilepsy

    PubMed Central

    Gesell, Felix Kaspar; Hoppe, Sonja; Löscher, Wolfgang; Tipold, Andrea

    2015-01-01

    Epilepsy is one of the most common neurological disorders in dogs and is treated by chronic administration of antiepileptic drugs (AEDs). In human beings with epilepsy, it is common clinical practice to consider drug withdrawal after a patient has been in remission (seizure free) for three or more years, but withdrawal is associated with the risk of relapse. In the present study, the consequences of AED withdrawal were studied in dogs with epilepsy. Therefore, 200 owners of dogs with idiopathic or presumed idiopathic epilepsy were contacted by telephone interview, 138 cases could be enrolled. In 11 cases, the therapy had been stopped after the dogs had become seizure free for a median time of 1 year. Reasons for AED withdrawal were appearance or fear of adverse side effects, financial aspects, and the idea that the medication could be unnecessary. Following AED withdrawal, four of these dogs remained seizure free, seven dogs suffered from seizure recurrence, of which only three dogs could regain seizure freedom after resuming AED therapy. Due to the restricted case number, an exact percentage of dogs with seizure recurrence after AED withdrawal cannot be given. However, the present study gives a hint that similar numbers as in human patients are found, and the data can help owners of epileptic dogs and the responsible clinician to decide when and why to stop antiepileptic medication. PMID:26664952

  11. Antiepileptic Drug Withdrawal in Dogs with Epilepsy.

    PubMed

    Gesell, Felix Kaspar; Hoppe, Sonja; Löscher, Wolfgang; Tipold, Andrea

    2015-01-01

    Epilepsy is one of the most common neurological disorders in dogs and is treated by chronic administration of antiepileptic drugs (AEDs). In human beings with epilepsy, it is common clinical practice to consider drug withdrawal after a patient has been in remission (seizure free) for three or more years, but withdrawal is associated with the risk of relapse. In the present study, the consequences of AED withdrawal were studied in dogs with epilepsy. Therefore, 200 owners of dogs with idiopathic or presumed idiopathic epilepsy were contacted by telephone interview, 138 cases could be enrolled. In 11 cases, the therapy had been stopped after the dogs had become seizure free for a median time of 1 year. Reasons for AED withdrawal were appearance or fear of adverse side effects, financial aspects, and the idea that the medication could be unnecessary. Following AED withdrawal, four of these dogs remained seizure free, seven dogs suffered from seizure recurrence, of which only three dogs could regain seizure freedom after resuming AED therapy. Due to the restricted case number, an exact percentage of dogs with seizure recurrence after AED withdrawal cannot be given. However, the present study gives a hint that similar numbers as in human patients are found, and the data can help owners of epileptic dogs and the responsible clinician to decide when and why to stop antiepileptic medication.

  12. Early physical and motor development of mouse offspring exposed to valproic acid throughout intrauterine development.

    PubMed

    Podgorac, Jelena; Pešić, Vesna; Pavković, Željko; Martać, Ljiljana; Kanazir, Selma; Filipović, Ljupka; Sekulić, Slobodan

    2016-09-15

    Clinical research has identified developmental delay and physical malformations in children prenatally exposed to the antiepileptic drug (AED) valproic acid (VPA). However, the early signs of neurodevelopmental deficits, their evolution during postnatal development and growth, and the dose effects of VPA are not well understood. The present study aimed to examine the influence of maternal exposure to a wide dose range (50, 100, 200 and 400mg/kg/day) of VPA during breeding and gestation on early physical and neuromotor development in mice offspring. Body weight gain, eye opening, the surface righting reflex (SRR) and tail suspension test (TST) were examined in the offspring at postnatal days 5, 10 and 15. We observed that: (1) all tested doses of VPA reduced the body weight of the offspring and the timing of eye opening; (2) offspring exposed to VPA displayed immature forms of righting and required more time to complete the SRR; (3) latency for the first immobilization in the TST is shorter in offspring exposed to higher doses of VPA; however, mice in all groups exposed to VPA exhibited atypical changes in this parameter during the examined period of maturation; (4) irregularities in swinging and curling activities were observed in animals exposed to higher doses of VPA. This study points to delayed somatic development and postponed maturation of the motor system in all of the offspring prenatally exposed to VPA, with stronger effects observed at higher doses. The results implicate that the strategy of continuous monitoring of general health and achievements in motor milestones during the early postnatal development in prenatally VPA-exposed offspring, irrespectively of the dose applied, could help to recognize early developmental irregularities.

  13. Vitamin U, a novel free radical scavenger, prevents lens injury in rats administered with valproic acid.

    PubMed

    Tunali, S; Kahraman, S; Yanardag, R

    2015-09-01

    Valproic acid (2-propyl-pentanoic acid, VPA) is the most widely prescribed antiepileptic drug due to its ability to treat a broad spectrum of seizure types. VPA exhibits various side effects such as organ toxicity, teratogenicity, and visual disturbances. S-Methylmethioninesulfonium is a derivative of the amino acid methionine and it is widely referred to as vitamin U (Vit U). This study was aimed to investigate the effects of Vit U on lens damage parameters of rats exposed to VPA. Female Sprague Dawley rats were divided into four groups. Group I comprised control animals. Group II included control rats supplemented with Vit U (50 mg/kg/day) for 15 days. Group III was given only VPA (500 mg/kg/day) for 15 days. Group IV was given VPA + Vit U (in same dose and time). Vit U was given to rats by gavage and VPA was given intraperitoneally. On the 16th day of experiment, all the animals which were fasted overnight were killed. Lens was taken from animals, homogenized in 0.9% saline to make up to 10% (w/v) homogenate. The homogenates were used for protein, glutathione, lipid peroxidation levels, and antioxidant enzymes activities. Lens lipid peroxidation levels and aldose reductase and sorbitol dehydrogenase activities were increased in VPA group. On the other hand, glutathione levels, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and paraoxonase activities were decreased in VPA groups. Treatment with Vit U reversed these effects. This study showed that Vit U exerted antioxidant properties and may prevent lens damage caused by VPA.

  14. Design, synthesis and anticonvulsant activity of new hybrid compounds derived from N-phenyl-2-(2,5-dioxopyrrolidin-1-yl)-propanamides and -butanamides.

    PubMed

    Kamiński, Krzysztof; Rapacz, Anna; Filipek, Barbara; Obniska, Jolanta

    2016-07-01

    The focused library of 21 new N-phenyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide, 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)propanamide, and 2-(2,5-dioxopyrrolidin-1-yl)butanamide derivatives as potential new hybrid anticonvulsant agents was synthesized. These hybrid molecules were obtained as close analogs of previously described N-benzyl derivatives and fuse the chemical fragments of clinically relevant antiepileptic drugs such as ethosuximide, levetiracetam, and lacosamide. The initial anticonvulsant screening was performed in mice (ip) using the 'classical' maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) tests, as well as in the six-Hertz (6Hz) model of pharmacoresistant limbic seizures. Applying the rotarod test, the acute neurological toxicity was determined. The broad spectra of activity across the preclinical seizure models in mice (ip) displayed compounds 4, 5, 11, and 19. The most favorable anticonvulsant properties demonstrated 4 (ED50 MES=96.9mg/kg, ED50scPTZ=75.4mg/kg, ED50 6Hz=44.3mg/kg) which showed TD50=335.8mg/kg in the rotarod test that yielded satisfying protective indexes (PI MES=3.5, PI scPTZ=4.4, PI 6Hz=7.6). Consequently, compound 4 revealed comparable or better safety profile than model antiepileptic drugs (AEDs): ethosuximide, lacosamide, and valproic acid. In the in vitro assays, compound 4 was observed as relatively effective binder to the neuronal voltage-sensitive sodium and diltiazem site of L-type calcium channels. PMID:27211245

  15. [New antiepileptic drugs: characteristics and clinical applications].

    PubMed

    Ohtsuka, Yoko

    2014-05-01

    New antiepileptic drugs (AEDs) that have been used in many other countries for more than 10 years have only recently became available for use in Japan. Gabapentin, topiramate, lamotrigine and levetiracetam were licensed for use in Japan between 2006 and 2010. Stiripentol for Dravet syndrome and rufinamide for Lennox-Gastaut syndrome were also approved in 2012 and 2013 as orphan drugs. Clinical trials of other new AEDs such as oxcarbazepine, vigabatrin, lacosamide, and perampanel are in progress. In this review, the general characteristics of the new AEDs are discussed with regards to their effectiveness, tolerability, drug interaction, safety and mechanisms of action. The effectiveness, of the new AEDs compared with established AEDs is also discussed. Clinical applications of the new AEDs, focusing on gabapentin, topiramate, lamotrigine and levetiracetam are also discussed based on our domestic experience as well as overseas reports. PMID:24912297

  16. Reflex sympathetic dystrophy associated with antiepileptic drugs.

    PubMed

    Falasca, G F; Toly, T M; Reginato, A J; Schraeder, P L; O'Connor, C R

    1994-01-01

    Reflex sympathetic dystrophy syndrome (RSDS) complicating antiepileptic drug (AED) therapy is not well acknowledged in the neurologic literature. We report 4 patients with reflex sympathetic dystrophy that occurred while they were receiving AEDs. All patients had shoulder and hand involvement, which in 2 was bilateral, and 1 had ipsilateral foot involvement. Two patients did not respond to a change in AEDs, but all improved with a course of prednisone. One patient with phenobarbital (PB)-associated RSDS relapsed on inadvertent rechallenge with secobarbital. A review of the literature showed that several other fibrosing disorders are associated with AED administration, including Dupuytren's contractures, frozen shoulder, plantar and hand nodules, and Peyronie's disease. RSD associated with AEDs is important to recognize because it may result in permanent disability if treatment is delayed.

  17. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    PubMed

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods.

  18. The measurement of ammonia blood levels in patients taking valproic acid: looking for problems where they do not exist?

    PubMed

    Chicharro, Ada V; de Marinis, Alejandro J; Kanner, Andres M

    2007-11-01

    Hyperammonemia (HA) commonly occurs with the use of valproic acid (VPA); while it has no clinical significance in most cases, the Physician Desk Reference recommends its discontinuation in the presence of HA. The purpose of this study is to review the literature in order to estimate the prevalence and magnitude of HA in VPA treated patients, to establish any association with hepatotoxicity and encephalopathy and to identify any factors associated with its occurrence. A search of MEDLINE and Cochrane Database of Systematic Reviews, between 1980 and 2005 was performed. Out of 183 studies, 24 met our inclusion criteria. The prevalence of HA in the prospective studies ranged between 70% and 100%, while in cross-sectional studies it varied between 16% and 100%. Ammonia (NH(3)) blood levels increased by a two-fold average relative to the baseline levels. There was no association between HA and clinical symptoms. Concomitant administration of other antiepileptic drugs (AEDs) was the factor most frequently associated with HA.

  19. Dried blood spots for monitoring and individualization of antiepileptic drug treatment.

    PubMed

    Milosheska, Daniela; Grabnar, Iztok; Vovk, Tomaž

    2015-07-30

    Therapeutic drug monitoring (TDM) is a multi-disciplinary clinical specialty used for optimization and individualization of drug therapy in the general and special populations. Since most antiepileptic drugs (AEDs) are characterized by pronounced intra- and inter-individual variability, it can be especially valuable as an aid for dosing adjustments in patients with epilepsy. Dried blood spots (DBS) sampling technique is recognized as a suitable alternative for conventional sampling methods as TDM interventions should be applied in the most cost-effective, rational and clinically useful manner. In the present review we summarize the latest trends and applications of DBS in TDM of epilepsy. Quantification of AEDs in DBS was employed in various clinical settings and has been already reported for phenobarbital, phenytoin, valproic acid, clonazepam, clobazam, carbamazepine, topiramate, rufinamide, lamotrigine, 10-hydroxycarbazepine and levetiracetam. The major limitation of the published studies are restricted evaluation of critical parameters such as the impact of spotted blood volume, spot homogeneity and haematocrit effect, limited clinical validation and non-established correlations between the DBS and plasma concentrations of AEDs. Standardization of critical technical aspects for appropriate sampling, sample preparation and validation of the analytical procedures for quantification of the drugs, as well as appropriate interpretation of the results are the fields which should get more attention in upcoming studies. Limited data on clinical validation and the fact that this technique has been used in practice only for a few AEDs makes the routine implementation of TDM of AEDs using DBS method a big challenge that should be faced by the pharmaceutical scientists in the future. PMID:25896371

  20. Use of antiepileptic drugs during pregnancy and lactation: Type of information provided by searching Google.

    PubMed

    Lavi-Blau, Tal; Ekstein, Dana; Neufeld, Miri Y; Eyal, Sara

    2016-02-01

    Surveys among women with epilepsy (WWE) show that they receive their essential pregnancy-related information from many sources, including the internet. Our aim was to assess the types of websites provided by searching Google for the use of four antiepileptic drugs (AEDs) during pregnancy and lactation. The search was performed on 40 computers used by health-care professionals, on 40 computers used by nonhealth-care professionals, and on 5 computers used by WWE in Israel and on 8 computers used by nonhealth-care professionals in the U.S. On each computer, a Google search was conducted for term combinations that included one AED name ("carbamazepine","valproic acid", "lamotrigine", "levetiracetam", or "Keppra") and "Pregnancy", "Lactation", or "Breastfeeding". The top three and top ten websites retrieved in every search were mapped (a total of 45 and 150 websites, respectively, from each computer). Across all searches in English, on both U.S. and Israeli computers, the majority of websites listed among the first three and first ten results were those of independent health portals. The representation of the Epilepsy Foundation website was 10% or less, and only a few results were obtained from the NIH's general public-oriented MedlinePlus. In Hebrew, results included almost exclusively Israeli or Hebrew-translated websites. As in English, results from public-oriented, professionally-written websites in Hebrew accounted for less than 50% of entries. Overall, the availability of readable and high-quality information on AEDs used by pregnant and breastfeeding women is limited. Guiding patients towards accurate web resources can help them navigate among the huge amount of available online information. PMID:26773680

  1. Use of antiepileptic drugs during pregnancy and lactation: Type of information provided by searching Google.

    PubMed

    Lavi-Blau, Tal; Ekstein, Dana; Neufeld, Miri Y; Eyal, Sara

    2016-02-01

    Surveys among women with epilepsy (WWE) show that they receive their essential pregnancy-related information from many sources, including the internet. Our aim was to assess the types of websites provided by searching Google for the use of four antiepileptic drugs (AEDs) during pregnancy and lactation. The search was performed on 40 computers used by health-care professionals, on 40 computers used by nonhealth-care professionals, and on 5 computers used by WWE in Israel and on 8 computers used by nonhealth-care professionals in the U.S. On each computer, a Google search was conducted for term combinations that included one AED name ("carbamazepine","valproic acid", "lamotrigine", "levetiracetam", or "Keppra") and "Pregnancy", "Lactation", or "Breastfeeding". The top three and top ten websites retrieved in every search were mapped (a total of 45 and 150 websites, respectively, from each computer). Across all searches in English, on both U.S. and Israeli computers, the majority of websites listed among the first three and first ten results were those of independent health portals. The representation of the Epilepsy Foundation website was 10% or less, and only a few results were obtained from the NIH's general public-oriented MedlinePlus. In Hebrew, results included almost exclusively Israeli or Hebrew-translated websites. As in English, results from public-oriented, professionally-written websites in Hebrew accounted for less than 50% of entries. Overall, the availability of readable and high-quality information on AEDs used by pregnant and breastfeeding women is limited. Guiding patients towards accurate web resources can help them navigate among the huge amount of available online information.

  2. Modifications of Antiepileptic Drugs for Improved Tolerability and Efficacy

    PubMed Central

    Landmark, Cecilie Johannessen; Johannessen, Svein I.

    2008-01-01

    Introduction A large number of antiepileptic drugs (AEDs) are available today, but they may not be satisfactory regarding clinical efficacy, tolerance, toxicity or pharmacokinetic properties. The purpose of this review is to focus upon the rationale behind the chemical modifications of several recently marketed AEDs or drugs in development and to categorize them according to the main purposes for the improvements: better efficacy or tolerability accompanied by improved pharmacokinetic properties. Material and Method AEDs that have been chemically modified to new derivatives during the last years are reviewed based on recent publications and PubMed-searches. Results and Discussion Improvement in pharmacokinetic parameters may affect both tolerability and efficacy. Modifications to improve tolerability include various valproate analogues, divided into aliphatic amides, cyclic derivatives or amino acid conjugates. Furthermore, there are the carbamazepine analogues oxcarbazepine and eslicarbazepine, the felbamate analogues fluorofelbamate and carisbamate (RWJ 33369), and the lamotrigine analogue JZP-4. The levetiracetam analogues brivaracetam and seletracetam and the derivatives of gabapentin, pregabalin and XP13512, have improved selectivity compared to their parent compounds. Other new drugs have new mechanisms of action related to GABA and glutamate receptors; the glutamate antagonists like topiramate (talampanel and NS-1209), and GABAA receptor agonists, benzodiazepine or progesterone analogues (ELB-139 and ganaxolone). Conclusion Further challenges for development of new AEDs include investigations of target molecules affected by pathophysiological processes and detailed structure-activity relationships with focus on stereoselectivity. These potential drugs may become of importance in future drug therapy in epilepsy and other CNS disorders. PMID:19787095

  3. Hemicrania continua evolving from cluster headache responsive to valproic acid.

    PubMed

    Lambru, Giorgio; Castellini, Paola; Bini, Annamaria; Evangelista, Andrea; Manzoni, Gian Camillo; Torelli, Paola

    2008-10-01

    Hemicrania continua (HC) is a rare type of primary headache characterized by a prompt and enduring response to indomethacin. We describe a patient who suffered from cluster headache evolving into ipsilateral HC, who does not tolerate a long-term indomethacin therapy. The case was complex in terms of diagnosis, associated comorbidity, and choice of treatment; after several trials with different therapeutic regimens, we started the patient on a therapy with valproic acid and obtained an improvement of her HC.

  4. Neurodevelopmental effects of fetal antiepileptic drug exposure.

    PubMed

    Velez-Ruiz, Naymee J; Meador, Kimford J

    2015-03-01

    Many studies investigating cognitive outcomes in children of women with epilepsy report an increased risk of mental impairment. Verbal scores on neuropsychometric measures may be selectively more involved. While a variety of factors contribute to the cognitive problems of children of women with epilepsy, antiepileptic drugs (AEDs) appear to play a major role. The mechanisms by which AEDs affect neurodevelopmental outcomes remain poorly defined. Animal models suggest that AED-induced apoptosis, altered neurotransmitter environment, and impaired synaptogenesis are some of the mechanisms responsible for cognitive and behavioral teratogenesis. AEDs that are known to induce apoptosis, such as valproate, appear to affect children's neurodevelopment in a more severe fashion. Fetal valproate exposure has dose-dependent associations with reduced cognitive abilities across a range of domains, and these appear to persist at least until the age of 6. Some studies have shown neurodevelopmental deficiencies associated with the use of phenobarbital and possibly phenytoin. So far, most of the investigations available suggest that fetal exposures to lamotrigine or levetiracetam are safer with regard to cognition when compared with other AEDs. Studies on carbamazepine show contradictory results, but most information available suggests that major poor cognitive outcomes should not be attributed to this medication. Overall, children exposed to polytherapy prenatally appear to have worse cognitive and behavioral outcomes compared with children exposed to monotherapy, and with the unexposed. There is an increase risk of neurodevelopmental deficits when polytherapy involves the use of valproate versus other agents. PMID:25693658

  5. Antiepileptic drug treatment strategies in neonatal epilepsy.

    PubMed

    Hernan, A E; Holmes, G L

    2016-01-01

    The highest risk of seizures across the lifespan is in the neonatal period. The enhanced excitability of the immature brain compared to the mature brain is related to the sequential development and expression of essential neurotransmitter signaling pathways. During the neonatal period there is an overabundance of excitatory receptors, and γ-amino-butyric acid (GABA) is potentially depolarizing, as opposed to hyperpolarizing in the older brain. While this enhanced excitability is required for regulation of activity-dependent synapse formation and refining of synaptic connections that are necessary for normal brain development, enhanced excitability predisposes the immature brain to seizures. In addition to being common, neonatal seizures are very difficult to treat; antiepileptic drugs used in older children and adults are less efficacious, and possibly detrimental to brain development. In an effort to target the unique features of neurotransmission in the neonate, bumetanide, an NKCC1 inhibitor which reduces intraneuronal Cl(-) and induces a significant shift of EGABA toward more hyperpolarized values in vitro, has been used to treat neonatal seizures. As the understanding of the pathophysiology of genetic forms of neonatal epilepsy has evolved there have been a few successful attempts to pharmacologically target the mutated protein. This approach, while promising, is challenging due to the findings that the genetic syndromes presenting in infancy demonstrate genetic heterogeneity in regard to both the mutated gene and its function. PMID:27323943

  6. Availability of antiepileptic drugs across Europe.

    PubMed

    Baftiu, Arton; Johannessen Landmark, Cecilie; Nikaj, Valent; Neslein, Inger-Lise; Johannessen, Svein I; Perucca, Emilio

    2015-12-01

    Europe consists of 53 countries with widely different economic conditions and different political, educational, and health care systems. This study was aimed at determining the availability of antiepileptic drugs (AEDs) across Europe. An electronic questionnaire was submitted to all 43 European chapters of the International League Against Epilepsy (ILAE). Outcome measures were availability of older, newer, and newest AEDs, generic products, indications, reimbursement rules, and reasons for lack of availability of AEDs. Countries were divided according to economic status as defined by the World Bank. Thirty-four chapters (79%) provided data. There were large differences in AED availability across countries, especially between high-income countries and the other countries. The newest AEDs were not available in any of the 12 non-high-income countries. Availability was higher in countries with public reimbursement systems. Reimbursement policies ranged from full reimbursement for all AEDs to complete lack of reimbursement. Main hurdles for poor access to AEDs included lack of regulatory approval, high prices and reimbursement restrictions. The availability of AEDs differs across European countries, with many hurdles hampering access to epilepsy medicines, particularly to new medications. These findings raise major concerns on the quality of epilepsy care in many countries. PMID:26477534

  7. The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part I: A summary of the current state for clinicians.

    PubMed

    de Leon, Jose

    2015-01-01

    The literature on inducers in epilepsy and bipolar disorder is seriously contaminated by false negative findings. This is part i of a comprehensive review on antiepileptic drug (AED) inducers using both mechanistic pharmacological and evidence-based medicine to provide practical recommendations to neurologists and psychiatrists concerning how to control for them. Carbamazepine, phenobarbital and phenytoin, are clinically relevant AED inducers; correction factors were calculated for studied induced drugs. These correction factors are rough simplifications for orienting clinicians, since there is great variability in the population regarding inductive effects. As new information is published, the correction factors may need to be modified. Some of the correction factors are so high that the drugs (e.g., bupropion, quetiapine or lurasidone) should not co-prescribed with potent inducers. Clobazam, eslicarbazepine, felbamate, lamotrigine, oxcarbazepine, rufinamide, topiramate, vigabatrin and valproic acid are grouped as mild inducers which may (i)be inducers only in high doses; (ii)frequently combine with inhibitory properties; and (iii)take months to reach maximum effects or de-induction, definitively longer than the potent inducers. Potent inducers, definitively, and mild inducers, possibly, have relevant effects in the endogenous metabolism of (i)sexual hormones, (ii) vitamin D, (iii)thyroid hormones, (iv)lipid metabolism, and (v)folic acid. PMID:25745819

  8. Efficacy of Anti-Epileptic Drugs in the Treatment of Tumor and Its Associated Epilepsy: An in vitro Perspective.

    PubMed

    Kaur, Taranjeet; Manchanda, Shaffi; Saini, Vedangana; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2016-03-01

    The change in the therapeutic targets from neuron to glia has proved beneficial in the treatment of many psychiatric disorders. The anti-epileptic drugs (AEDs) have been widely prescribed for the treatment of partial and complete seizures, bipolar disorder among others. The current study was carried out to explore the efficacy of some conventional and novel AEDs for the treatment of tumor-associated epilepsy which develops in 29-49% of the patients diagnosed with brain tumors. We used C6 glioma cell line as model system to study the effect of selected AEDs, viz., gabapentin (GBP), valproic acid (VPA) and topiramate (TPM). Morphometry, cell cycle analysis, apoptosis, expression of different protein markers, viz., GFAP, HSP70 and nuclear factor-κB (NFκB) were studied in AED-treated cultures. The study was further extended to rat hypothalamic primary explant cultures, and cell migration and expression of plasticity markers - neural cell adhesion molecule (NCAM) and polysialylation of NCAM (PSA-NCAM) - were studied in the explants. TPM was observed to show more pronounced increase in apoptosis of glioblastoma cells accompanied by significant downregulation in the expression of HSP70 and NFκB. TPM-treated explants also showed highest process ramification and cellular migration accompanied by intense expression of the plasticity markers as compared to those treated with GBP and VPA. Among the 3 AEDs tested, TPM was observed to show more promising effects on cytoprotection and plasticity of C6 glioma cells.

  9. The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part I: A summary of the current state for clinicians.

    PubMed

    de Leon, Jose

    2015-01-01

    The literature on inducers in epilepsy and bipolar disorder is seriously contaminated by false negative findings. This is part i of a comprehensive review on antiepileptic drug (AED) inducers using both mechanistic pharmacological and evidence-based medicine to provide practical recommendations to neurologists and psychiatrists concerning how to control for them. Carbamazepine, phenobarbital and phenytoin, are clinically relevant AED inducers; correction factors were calculated for studied induced drugs. These correction factors are rough simplifications for orienting clinicians, since there is great variability in the population regarding inductive effects. As new information is published, the correction factors may need to be modified. Some of the correction factors are so high that the drugs (e.g., bupropion, quetiapine or lurasidone) should not co-prescribed with potent inducers. Clobazam, eslicarbazepine, felbamate, lamotrigine, oxcarbazepine, rufinamide, topiramate, vigabatrin and valproic acid are grouped as mild inducers which may (i)be inducers only in high doses; (ii)frequently combine with inhibitory properties; and (iii)take months to reach maximum effects or de-induction, definitively longer than the potent inducers. Potent inducers, definitively, and mild inducers, possibly, have relevant effects in the endogenous metabolism of (i)sexual hormones, (ii) vitamin D, (iii)thyroid hormones, (iv)lipid metabolism, and (v)folic acid.

  10. Efficacy of Anti-Epileptic Drugs in the Treatment of Tumor and Its Associated Epilepsy: An in vitro Perspective.

    PubMed

    Kaur, Taranjeet; Manchanda, Shaffi; Saini, Vedangana; Lakhman, Sukhwinder S; Kaur, Gurcharan

    2016-03-01

    The change in the therapeutic targets from neuron to glia has proved beneficial in the treatment of many psychiatric disorders. The anti-epileptic drugs (AEDs) have been widely prescribed for the treatment of partial and complete seizures, bipolar disorder among others. The current study was carried out to explore the efficacy of some conventional and novel AEDs for the treatment of tumor-associated epilepsy which develops in 29-49% of the patients diagnosed with brain tumors. We used C6 glioma cell line as model system to study the effect of selected AEDs, viz., gabapentin (GBP), valproic acid (VPA) and topiramate (TPM). Morphometry, cell cycle analysis, apoptosis, expression of different protein markers, viz., GFAP, HSP70 and nuclear factor-κB (NFκB) were studied in AED-treated cultures. The study was further extended to rat hypothalamic primary explant cultures, and cell migration and expression of plasticity markers - neural cell adhesion molecule (NCAM) and polysialylation of NCAM (PSA-NCAM) - were studied in the explants. TPM was observed to show more pronounced increase in apoptosis of glioblastoma cells accompanied by significant downregulation in the expression of HSP70 and NFκB. TPM-treated explants also showed highest process ramification and cellular migration accompanied by intense expression of the plasticity markers as compared to those treated with GBP and VPA. Among the 3 AEDs tested, TPM was observed to show more promising effects on cytoprotection and plasticity of C6 glioma cells. PMID:27536020

  11. Efficacy of Anti-Epileptic Drugs in the Treatment of Tumor and Its Associated Epilepsy: An in vitro Perspective

    PubMed Central

    Kaur, Taranjeet; Manchanda, Shaffi; Saini, Vedangana; Lakhman, Sukhwinder S.; Kaur, Gurcharan

    2016-01-01

    The change in the therapeutic targets from neuron to glia has proved beneficial in the treatment of many psychiatric disorders. The anti-epileptic drugs (AEDs) have been widely prescribed for the treatment of partial and complete seizures, bipolar disorder among others. The current study was carried out to explore the efficacy of some conventional and novel AEDs for the treatment of tumor-associated epilepsy which develops in 29-49% of the patients diagnosed with brain tumors. We used C6 glioma cell line as model system to study the effect of selected AEDs, viz., gabapentin (GBP), valproic acid (VPA) and topiramate (TPM). Morphometry, cell cycle analysis, apoptosis, expression of different protein markers, viz., GFAP, HSP70 and nuclear factor-κB (NFκB) were studied in AED-treated cultures. The study was further extended to rat hypothalamic primary explant cultures, and cell migration and expression of plasticity markers - neural cell adhesion molecule (NCAM) and polysialylation of NCAM (PSA-NCAM) - were studied in the explants. TPM was observed to show more pronounced increase in apoptosis of glioblastoma cells accompanied by significant downregulation in the expression of HSP70 and NFκB. TPM-treated explants also showed highest process ramification and cellular migration accompanied by intense expression of the plasticity markers as compared to those treated with GBP and VPA. Among the 3 AEDs tested, TPM was observed to show more promising effects on cytoprotection and plasticity of C6 glioma cells. PMID:27536020

  12. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the

  13. Idiosyncratic adverse reactions to antiepileptic drugs.

    PubMed

    Zaccara, Gaetano; Franciotta, Diego; Perucca, Emilio

    2007-07-01

    Idiosyncratic drug reactions may be defined as adverse effects that cannot be explained by the known mechanisms of action of the offending agent, do not occur at any dose in most patients, and develop mostly unpredictably in susceptible individuals only. These reactions are generally thought to account for up to 10% of all adverse drug reactions, but their frequency may be higher depending on the definition adopted. Idiosyncratic reactions are a major source of concern because they encompass most life-threatening effects of antiepileptic drugs (AEDs), as well as many other reactions requiring discontinuation of treatment. Based on the underlying mechanisms, idiosyncratic reactions can be differentiated into (1) immune-mediated hypersensitivity reactions, which may range from benign skin rashes to serious conditions such as drug-related rash with eosinophilia and systemic symptoms; (2) reactions involving unusual nonimmune-mediated individual susceptibility, often related to abnormal production or defective detoxification of reactive cytotoxic metabolites (as in valproate-induced liver toxicity); and (3) off-target pharmacology, whereby a drug interacts directly with a system other than that for which it is intended, an example being some types of AED-induced dyskinesias. Although no AED is free from the potential of inducing idiosyncratic reactions, the magnitude of risk and the most common manifestations vary from one drug to another, a consideration that impacts on treatment choices. Serious consequences of idiosyncratic reactions can be minimized by knowledge of risk factors, avoidance of specific AEDs in subpopulations at risk, cautious dose titration, and careful monitoring of clinical response.

  14. Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo).

    PubMed

    Ushigome, F; Takanaga, H; Matsuo, H; Tsukimori, K; Nakano, H; Ohtani, H; Sawada, Y

    2001-04-13

    Valproic acid is an anticonvulsant widely used for the treatment of epilepsy. However, valproic acid is known to show fetal toxicity, including teratogenicity. In the present study, to elucidate the mechanisms of valproic acid transport across the blood-placental barrier, we carried out transcellular transport and uptake experiments with human placental choriocarcinoma epithelial cells (BeWo cells) in culture. The permeability coefficient of [3H]valproic acid in BeWo cells for the apical-to-basolateral flux was greater than that for the opposite flux, suggesting a higher unidirectional transport in the fetal direction. The uptake of [3H]valproic acid from the apical side was temperature-dependent and enhanced under acidic pH. In the presence of 50 microM carbonyl cyanide p-trifluoromethoxylhydrazone, the uptake of [3H]valproic acid was significantly reduced. A metabolic inhibitor, 10 mM sodium azide, also significantly reduced the uptake of [3H]valproic acid. Therefore, valproic acid is actively transported in a pH-dependent manner on the brush-border membrane of BeWo cells. Kinetic analysis of valproic acid uptake revealed the involvement of a non-saturable component and a saturable component. The Michaelis constant for the saturable transport (K(t)) was smaller under acidic pH, suggesting a proton-linked active transport mechanism for valproic acid in BeWo cells. In the inhibitory experiments, some short-chain fatty acids, such as acetic acid, lactic acid, propanoic acid and butyric acid, and medium-chain fatty acids, such as hexanoic acid and octanoic acid, inhibited the uptake of [3H]valproic acid. The uptake of [3H]valproic acid was also significantly decreased in the presence of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, salicylic acid and furosemide, which are well-known inhibitors of the anion exchange system. Moreover, p-aminohippuric acid significantly reduced the uptake of [3H]valproic acid. These results suggest that an active transport

  15. Analysis of nocebo effects of antiepileptic drugs across different conditions.

    PubMed

    Zaccara, Gaetano; Giovannelli, Fabio; Giorgi, Filippo Sean; Franco, Valentina; Gasparini, Sara

    2016-07-01

    The aim of this study was to assess the nocebo effect in all randomised controlled trials (RCTs) exploring the effect of antiepileptic drugs (AEDs) in the clinical conditions in which these compounds have been studied with the exception of epilepsy. We searched for all double-blind, placebo-controlled trials performed in adult patients, testing AEDs in any clinical condition except epilepsy. The following data were extracted from the placebo arms: the number of randomized patients, the number of patients withdrawing because of adverse effects (AEs), and the number of patients with 11 predefined AEs (dizziness, ataxia/coordination abnormal, diplopia, somnolence, fatigue, headache, memory impairment, tremor, abnormal thinking, anxiety and depression). Outcome measures were the percentages of patients whithdrawing due to AEs and reporting the selected AEs. RCTs included in the analysis were grouped in six main categories of clinical conditions (pain, movement disorders, psychiatric disorders, substance abuse, obesity and binge eating disorders, and miscellanea). Proportions of patients with 95 % confidence intervals (CIs) have been calculated for all reported outcome measures. Thirteen AEDs were studied and the total number of selected RCTs was 157. Significant percentages of placebo-treated patients withdrawing due to AEs and with specific AEs were observed in several cases. Significant differences emerged across different conditions. Comparisons with results of a previous meta-analysis on all RCTs in patients with drug-resistant epilepsies showed that ataxia, diplopia and fatigue were significantly more frequent, and patients withdrawing were significantly less frequent, in placebo-treated epileptic patients. Significant differences have been identified in the AEDs-induced nocebo effect across different conditions. Placebo-treated epilepsy patients have significantly more frequent neurological AEs. PMID:26810717

  16. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma

    PubMed Central

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133− populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133− cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2’-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  17. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  18. Milk Transfer and Toxicokinetics of Valproic Acid in Lactating Cynomolgus Monkeys

    PubMed Central

    Lee, Jong-Hwa; Yu, Wook-Joon; Jeong, Eun Ju

    2013-01-01

    Studies on milk transfer of drugs in non-human primates (NHPs) are among the crucial components in the assessment of peri- and postnatal toxicity because of the similarity between NHPs and humans. To evaluate the milk transfer of valproic acid (VPA) in NHPs, the toxicokinetics of VPA, an antiepileptic drug, were studied in pregnant cynomolgus monkeys. VPA was administered once daily to pregnant cynomolgus monkeys at doses of 0, 30, 90, and 270 mg/kg by oral gavage from Day 100 of gestation (GD 100) to Day 31 of lactation (LD 31). Concentrations of VPA and its metabolite, 4-ene-VPA, in the maternal plasma on GD 100, GD 140, and LD 30, and concentrations of VPA and 4-ene-VPA in the offspring plasma and milk on LDs 30 and 31, respectively, were quantified using liquid chromatography tandem mass spectrometry (LC/MS/MS). After administration of a single oral dose of VPA to pregnant monkeys on GD 100, the concentrations of VPA and 4-ene-VPA were generally quantifiable in the plasma of all treatment groups up to 24 hr after administration, which showed that VPA was absorbed and that the monkeys were systemically exposed to VPA and 4-ene-VPA. After administration of multiple doses of VPA to the monkeys, VPA was detected in the pup’s plasma and in milk taken on LD 30 and LD 31, respectively, which showed that VPA was transferred via milk, and the pup was exposed to VPA. Further, the concentration of VPA in the milk increased with an increase in the dose. Extremely low concentrations of 4-ene VPA were detected in the milk and in the pup plasma. In conclusion, pregnant monkeys were exposed to VPA and 4-ene-VPA after oral administration of VPA at doses of 30, 90, and 270 mg/kg/day from GD 100 to LD 31. VPA was transferred via milk, and the VPA exposure to the pup increased with an increase in the dose of VPA. The metabolite, 4-ene VPA, was present in extremely low concentrations (< 0.5 μg/ml) in the milk and in the pup plasma. In this study, we established methods to

  19. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  20. Use of antiepileptic drugs in hepatic and renal disease.

    PubMed

    Asconapé, Jorge J

    2014-01-01

    The use of antiepileptic drugs in patients with renal or hepatic disease is common in clinical practice. Since the liver and kidney are the main organs involved in the elimination of most drugs, their dysfunction can have important effects on the disposition of antiepileptic drugs. Renal or hepatic disease can prolong the elimination of the parent drug or an active metabolite leading to accumulation and clinical toxicity. It can also affect the protein binding, distribution, and metabolism of a drug. The protein binding of anionic acidic drugs, such as phenytoin and valproate, can be reduced significantly by renal failure, causing difficulties in the interpretation of total serum concentrations commonly used in clinical practice. Dialysis can further modify the pharmacokinetic parameters or result in significant removal of the antiepileptic drugs. Antiepileptic drugs that are eliminated unchanged by the kidneys or undergo minimal metabolism include gabapentin, pregabalin, vigabatrin, and topiramate when used as monotherapy. Drugs eliminated predominantly by biotransformation include phenytoin, valproate, carbamazepine, tiagabine, and rufinamide. Drugs eliminated by a combination of renal excretion and biotransformation include levetiracetam, lacosamide, zonisamide, primidone, phenobarbital, ezogabine/retigabine, oxcarbazepine, eslicarbazepine, ethosuximide, and felbamate. Drugs in the latter group can be used cautiously in patients with either renal or liver failure. Antiepileptic drugs that are at high risk of being extracted by hemodialysis include ethosuximide, gabapentin, lacosamide, levetiracetam, pregabalin and topiramate. The use of antiepileptic drugs in the presence of hepatic or renal disease is complex and requires great familiarity with the pharmacokinetics of these agents. Closer follow-up of the patients and more frequent monitoring of serum concentrations are required to optimize clinical outcomes. PMID:24365310

  1. Valproic acid sensitizes human glioma cells to gefitinib-induced autophagy.

    PubMed

    Chang, Cheng-Yi; Li, Jian-Ri; Wu, Chih-Cheng; Ou, Yen-Chuan; Chen, Wen-Ying; Kuan, Yu-Hsiang; Wang, Wen-Yi; Chen, Chun-Jung

    2015-11-01

    Autophagy and apoptosis represent important cellular processes involved in cancer cell killing mechanisms. Epidermal growth factor receptor inhibitor gefitinib and valproic acid have been implicated in the treatment of malignancies including glioma involving autophagic and apoptotic mechanisms. Therefore, it is interesting to investigate whether a combination of gefitinib and valproic acid shows better cancer cell killing effect on human glioma cells. We found that a nontoxic concentration of valproic acid sensitized U87 and T98G glioma cells to gefitinib cytotoxicity by inhibiting cell growth and long-term clonogenic survival. The augmented consequences were accompanied by the formation of autophagic vacuoles, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), and degradation of p62. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 but not broad-spectrum caspase inhibitor attenuated gefitinib/valproic acid-induced growth inhibition. Gefitinib/valproic acid-induced autophagy was accompanied by the activation of liver kinase-B1 (LKB1)/AMP-activated protein kinase (AMPK)/ULK1. Silencing of AMPK and ULK1 suppressed gefitinib/valproic acid-induced autophagy and growth inhibition. Mechanistic studies showed that gefitinib/valproic acid increased intracellular reactive oxygen species generation and N-acetyl cysteine attenuated gefitinib/valproic acid-caused autophagy and growth inhibition. In addition to demonstrating the autophagic mechanisms of gefitinib/valproic acid, the results of this study further suggest that intracellular oxidative stress and the LKB1/AMPK signaling might be a potential target for the development of therapeutic strategy against glioma. PMID:26488897

  2. Does Valproic Acid or Levetiracetam Improve Survival in Glioblastoma? A Pooled Analysis of Prospective Clinical Trials in Newly Diagnosed Glioblastoma

    PubMed Central

    Happold, Caroline; Gorlia, Thierry; Chinot, Olivier; Gilbert, Mark R.; Nabors, L. Burt; Wick, Wolfgang; Pugh, Stephanie L.; Hegi, Monika; Cloughesy, Timothy; Roth, Patrick; Reardon, David A.; Perry, James R.; Mehta, Minesh P.; Stupp, Roger

    2016-01-01

    Purpose Symptomatic epilepsy is a common complication of glioblastoma and requires pharmacotherapy. Several uncontrolled retrospective case series and a post hoc analysis of the registration trial for temozolomide indicated an association between valproic acid (VPA) use and improved survival outcomes in patients with newly diagnosed glioblastoma. Patients and Methods To confirm the hypothesis suggested above, a combined analysis of survival association of antiepileptic drug use at the start of chemoradiotherapy with temozolomide was performed in the pooled patient cohort (n = 1,869) of four contemporary randomized clinical trials in newly diagnosed glioblastoma: AVAGlio (Avastin in Glioblastoma; NCT00943826), CENTRIC (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Methylated Gene Promoter Status; NCT00689221), CORE (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Unmethylated Gene Promoter Status; NCT00813943), and Radiation Therapy Oncology Group 0825 (NCT00884741). Progression-free survival (PFS) and overall survival (OS) were compared between: (1) any VPA use and no VPA use at baseline or (2) VPA use both at start of and still after chemoradiotherapy. Results of Cox regression models stratified by trial and adjusted for baseline prognostic factors were analyzed. The same analyses were performed with levetiracetam (LEV). Results VPA use at start of chemoradiotherapy was not associated with improved PFS or OS compared with all other patients pooled (PFS: hazard ratio [HR], 0.91; 95% CI, 0.77 to 1.07; P = .241; OS: HR, 0.96; 95% CI, 0.80 to 1.15; P = .633). Furthermore, PFS and OS of patients taking VPA both at start of and still after chemoradiotherapy were not different from those without antiepileptic drug use at both time points (PFS: HR, 0.92; 95% CI, 0.74 to 1.15; P = .467; OS: HR, 1.10; 95% CI, 0.86 to 1.40; P = .440). Similarly, no

  3. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes.

    PubMed

    Glauser, Tracy; Ben-Menachem, Elinor; Bourgeois, Blaise; Cnaan, Avital; Guerreiro, Carlos; Kälviäinen, Reetta; Mattson, Richard; French, Jacqueline A; Perucca, Emilio; Tomson, Torbjorn

    2013-03-01

    The purpose of this report was to update the 2006 International League Against Epilepsy (ILAE) report and identify the level of evidence for long-term efficacy or effectiveness for antiepileptic drugs (AEDs) as initial monotherapy for patients with newly diagnosed or untreated epilepsy. All applicable articles from July 2005 until March 2012 were identified, evaluated, and combined with the previous analysis (Glauser et al., 2006) to provide a comprehensive update. The prior analysis methodology was utilized with three modifications: (1) the detectable noninferiority boundary approach was dropped and both failed superiority studies and prespecified noninferiority studies were analyzed using a noninferiority approach, (2) the definition of an adequate comparator was clarified and now includes an absolute minimum point estimate for efficacy/effectiveness, and (3) the relationship table between clinical trial ratings, level of evidence, and conclusions no longer includes a recommendation column to reinforce that this review of efficacy/evidence for specific seizure types does not imply treatment recommendations. This evidence review contains one clarification: The commission has determined that class I superiority studies can be designed to detect up to a 20% absolute (rather than relative) difference in the point estimate of efficacy/effectiveness between study treatment and comparator using an intent-to-treat analysis. Since July, 2005, three class I randomized controlled trials (RCT) and 11 class III RCTs have been published. The combined analysis (1940-2012) now includes a total of 64 RCTs (7 with class I evidence, 2 with class II evidence) and 11 meta-analyses. New efficacy/effectiveness findings include the following: levetiracetam and zonisamide have level A evidence in adults with partial onset seizures and both ethosuximide and valproic acid have level A evidence in children with childhood absence epilepsy. There are no major changes in the level of evidence

  4. Infantile Spasms and Cytomegalovirus Infection: Antiviral and Antiepileptic Treatment

    ERIC Educational Resources Information Center

    Dunin-Wasowicz, Dorota; Kasprzyk-Obara, Jolanta; Jurkiewicz, Elzbieta; Kapusta, Monika; Milewska-Bobula, Bogumila

    2007-01-01

    From 1 January 1995 to 31 December 2004, 22 patients (13 males, nine females; age range 2-12mo) with infantile spasms and cytomegalovirus (CMV) infection were treated with intravenous ganciclovir (GCV) and antiepileptic drugs. GCV was given for 3 to 12 weeks with a 1-month interval (one, two, or three courses). Epileptic spasms occurred before…

  5. Hypoactive sexual desire disorder caused by antiepileptic drugs

    PubMed Central

    Singh, M.; Bathla, Manish; Martin, A.; Aneja, J.

    2015-01-01

    Female sexual dysfunction is common but poorly understood sexual problem in women. Sexual dysfunction in female is multi-factorial in origin and also observed with intake of drug acting on central nervous system. This case report describes a female epileptic patient who developed sexual dysfunction with intake of antiepileptic drugs. PMID:26157303

  6. Effects of valproic acid on the placental barrier in the pregnant mouse: Optical imaging and transporter expression studies.

    PubMed

    Meir, Michal; Bishara, Ameer; Mann, Aniv; Udi, Shiran; Portnoy, Emma; Shmuel, Miri; Eyal, Sara

    2016-06-01

    Our aim was to evaluate the effects of valproic acid (VPA) on the function of the placental barrier in vivo, in pregnant mice. Studies were conducted on gestational days 12.5 (mid-gestation) or 17.5 (late gestation), following intraperitoneal treatment with 200 mg/kg VPA or the vehicle. Indocyanine green (ICG; 0.167 mg, i.v.) was used as a marker for the placental barrier permeability. Transporter expression was evaluated by quantitative -PCR. VPA treatment was associated with a 40% increase (p < 0.05) in accumulation of ICG in maternal liver in mid-pregnancy and a decrease by one fifth (p < 0.05) in late pregnancy. Ex vivo, VPA treatment led to a 20% increase (p < 0.05) in fetal ICG emission in mid-pregnancy. Also in mid-pregnancy, the placental expression of the L-type amino acid transporter, the organic anion-transporting polypeptide (Oatp)4a1 (thyroid hormone transporter), and the reduced folate carrier was lower in VPA-treated mice (p < 0.05). In late pregnancy, hepatic Oatp4a1 levels were 40% less than in controls (p > 0.05). The observed changes in placental transporter expression and function support further research into the potential role of the placenta in the adverse pregnancy outcomes of VPA. Near-infrared imaging provides a noninvasive, nonradioactive tool for future studies on the effects of epilepsy and antiepileptic drugs on tissue transport functions. PMID:27142887

  7. The Proteomic and Genomic Teratogenicity Elicited by Valproic Acid Is Preventable with Resveratrol and α-Tocopherol

    PubMed Central

    Chen, Yeh; Lin, Ping-Xiao; Hsieh, Chiu-Lan; Peng, Chiung-Chi; Peng, Robert Y.

    2014-01-01

    Background Previously, we reported that valproic acid (VPA), a common antiepileptic drug and a potent teratogenic, dowregulates RBP4 in chicken embryo model (CEM) when induced by VPA. Whether such teratogenicity is associated with more advanced proteomic and genomic alterations, we further performed this present study. Methodology/Principal Findings VPA (60 µM) was applied to 36 chicken embryos at HH stage 10 (day-1.5). Resveratrol (RV) and vitamin E (vit E) (each at 0.2 and 2.0 µM) were applied simultaneously to explore the alleviation effect. The proteins in the cervical muscles of the day-1 chicks were analyzed using 2D-electrophoresis and LC/MS/MS. While the genomics associated with each specific protein alteration was examined with RT-PCR and qPCR. At earlier embryonic stage, VPA downregulated PEBP1 and BHMT genes and at the same time upregulated MYL1, ALB and FLNC genes significantly (p<0.05) without affecting PKM2 gene. Alternatively, VPA directly inhibited the folate-independent (or the betaine-dependent) remethylation pathway. These features were effectively alleviated by RV and vit E. Conclusions VPA alters the expression of PEBP1, BHMT, MYL1, ALB and FLNC that are closely related with metabolic myopathies, myogenesis, albumin gene expression, and haemolytic anemia. On the other hand, VPA directly inhibits the betaine-dependent remethylation pathway. Taken together, VPA elicits hemorrhagic myoliposis via these action mechanisms, and RV and vit E are effective for alleviation of such adverse effects. PMID:25551574

  8. TrkB/BDNF-Dependent Striatal Plasticity and Behavior in a Genetic Model of Epilepsy: Modulation by Valproic Acid

    PubMed Central

    Ghiglieri, Veronica; Sgobio, Carmelo; Patassini, Stefano; Bagetta, Vincenza; Fejtova, Anna; Giampà, Carmela; Marinucci, Silvia; Heyden, Alexandra; Gundelfinger, Eckart D; Fusco, Francesca R; Calabresi, Paolo; Picconi, Barbara

    2010-01-01

    In mice lacking the central domain of the presynaptic scaffold Bassoon the occurrence of repeated cortical seizures induces cell-type-specific plasticity changes resulting in a general enhancement of the feedforward inhibition within the striatal microcircuit. Early antiepileptic treatment with valproic acid (VPA) reduces epileptic attacks, inhibits the emergence of pathological form of plasticity in fast-spiking (FS) interneurons and restores physiological striatal synaptic plasticity in medium spiny (MS) neurons. Brain-derived neurotrophic factor (BDNF) is a key factor for the induction and maintenance of synaptic plasticity and it is also implicated in the mechanisms underlying epilepsy-induced adaptive changes. In this study, we explore the possibility that the TrkB/BDNF system is involved in the striatal modifications associated with the Bassoon gene (Bsn) mutation. In epileptic mice abnormal striatum-dependent learning was paralleled by higher TrkB levels and an altered distribution of BDNF. Accordingly, subchronic intrastriatal administration of k252a, an inhibitor of TrkB receptor tyrosine kinase activity, reversed behavioral alterations in Bsn mutant mice. In addition, in vitro manipulations of the TrkB/BDNF complex by k252a, prevented the emergence of pathological plasticity in FS interneurons. Chronic treatment with VPA, by reducing seizures, was able to rebalance TrkB to control levels favoring a physiological redistribution of BDNF between MS neurons and FS interneurons with a concomitant recovery of striatal plasticity. Our results provide the first indication that BDNF is involved in determining the striatal alterations occurring in the early-onset epileptic syndrome associated with the absence of presynaptic protein Bassoon. PMID:20200504

  9. TrkB/BDNF-dependent striatal plasticity and behavior in a genetic model of epilepsy: modulation by valproic acid.

    PubMed

    Ghiglieri, Veronica; Sgobio, Carmelo; Patassini, Stefano; Bagetta, Vincenza; Fejtova, Anna; Giampà, Carmela; Marinucci, Silvia; Heyden, Alexandra; Gundelfinger, Eckart D; Fusco, Francesca R; Calabresi, Paolo; Picconi, Barbara

    2010-06-01

    In mice lacking the central domain of the presynaptic scaffold Bassoon the occurrence of repeated cortical seizures induces cell-type-specific plasticity changes resulting in a general enhancement of the feedforward inhibition within the striatal microcircuit. Early antiepileptic treatment with valproic acid (VPA) reduces epileptic attacks, inhibits the emergence of pathological form of plasticity in fast-spiking (FS) interneurons and restores physiological striatal synaptic plasticity in medium spiny (MS) neurons. Brain-derived neurotrophic factor (BDNF) is a key factor for the induction and maintenance of synaptic plasticity and it is also implicated in the mechanisms underlying epilepsy-induced adaptive changes. In this study, we explore the possibility that the TrkB/BDNF system is involved in the striatal modifications associated with the Bassoon gene (Bsn) mutation. In epileptic mice abnormal striatum-dependent learning was paralleled by higher TrkB levels and an altered distribution of BDNF. Accordingly, subchronic intrastriatal administration of k252a, an inhibitor of TrkB receptor tyrosine kinase activity, reversed behavioral alterations in Bsn mutant mice. In addition, in vitro manipulations of the TrkB/BDNF complex by k252a, prevented the emergence of pathological plasticity in FS interneurons. Chronic treatment with VPA, by reducing seizures, was able to rebalance TrkB to control levels favoring a physiological redistribution of BDNF between MS neurons and FS interneurons with a concomitant recovery of striatal plasticity. Our results provide the first indication that BDNF is involved in determining the striatal alterations occurring in the early-onset epileptic syndrome associated with the absence of presynaptic protein Bassoon.

  10. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case

    PubMed Central

    Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-01-01

    Valproic acid is the most widely used anti-epilep­tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up. PMID:26366333

  11. Large-Scale Phenotype-Based Antiepileptic Drug Screening in a Zebrafish Model of Dravet Syndrome1,2,3

    PubMed Central

    Dinday, Matthew T.

    2015-01-01

    Abstract Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1Lab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ∼1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy. PMID:26465006

  12. Design, synthesis and antiepileptic properties of novel 1-(substituted benzylidene)-3-(1-(morpholino/piperidino methyl)-2,3-dioxoindolin-5-yl)urea derivatives.

    PubMed

    Prakash, Chinnasamy Rajaram; Raja, Sundararajan

    2011-12-01

    Twenty new 1-(substituted benzylidene)-3-(1-(morpholino/piperidino methyl)-2,3-dioxoindolin-5-yl) urea derivatives were designed and synthesized. Antiepileptic screening was performed using MES and scPTZ seizures tests. The neurotoxicity was determined by rotorod test. In the preliminary screening, compounds 5c, 5g, 5j and 5n were found active in MES model, while 5o showed significant antiepileptic activity in scPTZ model. Further all these five compounds were administered orally to rats, 5c, 5g and 5n showed better activity than Phenytoin in oral route. Among these compounds 5c revealed protection in MES at a dose of 30 mg/kg and 100 mg/kg 0.5 h and 4 h after i.p. administration respectively. This molecule provided also protection in the scPTZ at a dose of 300 mg/kg in both time intervals. PMID:22037252

  13. Targeting γ-aminobutyric acid (GABA) carriers to the brain: potential relevance as antiepileptic pro-drugs.

    PubMed

    Semreen, Mohammad H; El-Shorbagi, Abdel-Nasser; Al-Tel, Taleb H; Alsalahat, Izzeddin M M

    2010-05-01

    The search for antiepileptic compounds with more selective activity continues to be an area of intensive investigation in medicinal chemistry. 3,5-Disubstituted tetrahydro-2H-1,3,5-thiadiazine-2-thione (THTT) derivatives, 3a-g, potential prodrugs incorporating the neurotransmitter GABA were synthesized and studied for crossing the blood-brain barrier (BBB). Compounds were prepared from primary amines and carbon disulfide to give dithiocarbamates 2a-g which upon reaction in situ with formaldehyde provided the intermediates Ia-g. Addition of Ia-g onto GABA furnished the title compounds 3a-g. The structures were verified by spectral data and the amounts of the compounds in the brain were investigated by using HPLC. The concentration profiles of the tested compounds in mice brain were determined and the in vivo anticonvulsant activity was measured. PMID:20632978

  14. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  15. Valproic Acid Increases the Hepatic Differentiation Potential of Salivary Gland Cells.

    PubMed

    Petrakova, O S; Ashapkin, V V; Shtratnikova, V Y; Kutueva, L I; Vorotelyak, E A; Borisov, M A; Terskikh, V V; Gvazava, I G; Vasiliev, A V

    2015-01-01

    The studies of cell plasticity and differentiation abilities are important problems in modern cellular biology. The use of histone deacetylase inhibitor - valproic acid is a promising approach to increasing the differentiation efficiency of various cell types. In this paper we investigate the ability of mouse submandibular salivary gland cells to differentiate into the hepatic direction and the effect of valproic acid on the efficiency of this differentiation. It was shown that the gene expression levels of hepatocyte markers (Aat, Afp, G6p, Pepck, Tat, Cyp3a13) and liver-enriched transcription factors (Hnf-3α, Hnf-3β, Hnf-4α, Hnf-6) were increased after differentiation in salivary gland cells. Valproic acid increases the specificity of hepatic differentiation, reducing the expression levels of the ductal (Krt19, Hhex1, Cyp7a1) and acinar (Ptf1a) markers. After valproic acid exposure, the efficiency of hepatic differentiation also increases, as evidenced by the increase in the gene expression level of Alb and Tdo, and increase in urea production by differentiated cells. No change was found in DNA methylation of the promoter regions of the genes; however, valproic acid treatment and subsequent hepatic differentiation largely affected the histone H3 methylation of liver-enriched genes. Thus, mouse submandibular salivary gland cells are capable of effective differentiation in the hepatic direction. Valproic acid increases the specificity and efficiency of the hepatic differentiation of these cells.

  16. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. PMID:26551768

  17. Valproic acid, a histone deacetylase inhibitor, decreases proliferation of and induces specific neurogenic differentiation of canine adipose tissue-derived stem cells.

    PubMed

    Kurihara, Yasuhiro; Suzuki, Takehito; Sakaue, Motoharu; Murayama, Ohoshi; Miyazaki, Yoko; Onuki, Atsushi; Aoki, Takuma; Saito, Miyoko; Fujii, Yoko; Hisasue, Masaharu; Tanaka, Kazuaki; Takizawa, Tatsuya

    2014-01-01

    Adipose tissue-derived stem cells (ADSCs) isolated from adult tissue have pluripotent differentiation and self-renewal capability. The tissue source of ADSCs can be obtained in large quantities and with low risks, thus highlighting the advantages of ADSCs in clinical applications. Valproic acid (VPA) is a widely used antiepileptic drug, which has recently been reported to affect ADSC differentiation in mice and rats; however, few studies have been performed on dogs. We aimed to examine the in vitro effect of VPA on canine ADSCs. Three days of pretreatment with VPA decreased the proliferation of ADSCs in a dose-dependent manner; VPA concentrations of 4 mM and above inhibited the proliferation of ADSCs. In parallel, VPA increased p16 and p21 mRNA expression, suggesting that VPA attenuated the proliferative activity of ADSCs by activating p16 and p21. Furthermore, the effects of VPA on adipogenic, osteogenic or neurogenic differentiation were investigated morphologically. VPA pretreatment markedly promoted neurogenic differentiation, but suppressed the accumulation of lipid droplets and calcium depositions. These modifications of ADSCs by VPA were associated with a particular gene expression profile, viz., an increase in neuronal markers, that is, NSE, TUBB3 and MAP2, a decrease in the adipogenic marker, LPL, but no changes in osteogenic markers, as estimated by reverse transcription-PCR analysis. These results suggested that VPA is a specific inducer of neurogenic differentiation of canine ADSCs and is a useful tool for studying the interaction between chromatin structure and cell fate determination.

  18. Differentiation of rat adipose tissue-derived stem cells into neuron-like cells by valproic acid, a histone deacetylase inhibitor.

    PubMed

    Okubo, Takumi; Hayashi, Daiki; Yaguchi, Takayuki; Fujita, Yudai; Sakaue, Motoharu; Suzuki, Takehito; Tsukamoto, Atsushi; Murayama, Ohoshi; Lynch, Jonathan; Miyazaki, Yoko; Tanaka, Kazuaki; Takizawa, Tatsuya

    2016-01-01

    Valproic acid (VPA) is a widely used antiepileptic drug, which has recently been reported to modulate the neuronal differentiation of adipose tissue-derived stem cells (ASCs) in humans and dogs. However, controversy exists as to whether VPA really acts as an inducer of neuronal differentiation of ASCs. The present study aimed to elucidate the effect of VPA in neuronal differentiation of rat ASCs. One or three days of pretreatment with VPA (2 mM) followed by neuronal induction enhanced the ratio of immature neuron marker βIII-tubulin-positive cells in a time-dependent manner, where the majority of cells also had a positive signal for neurofilament medium polypeptide (NEFM), a mature neuron marker. RT-PCR analysis revealed increases in the mRNA expression of microtubule-associated protein 2 (MAP2) and NEFM mature neuron markers, even without neuronal induction. Three-days pretreatment of VPA increased acetylation of histone H3 of ASCs as revealed by immunofluorescence staining. Chromatin immunoprecipitation assay also showed that the status of histone acetylation at H3K9 correlated with the gene expression of TUBB3 in ASCs by VPA. These results indicate that VPA significantly promotes the differentiation of rat ASCs into neuron-like cells through acetylation of histone H3, which suggests that VPA may serve as a useful tool for producing transplantable cells for future applications in clinical treatments. PMID:26411320

  19. Exploring the Validity of Valproic Acid Animal Model of Autism

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Ji-woon; Kim, Ki Chan

    2015-01-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  20. Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease

    PubMed Central

    Esteves, Sofia; Duarte-Silva, Sara; Naia, Luana; Neves-Carvalho, Andreia; Teixeira-Castro, Andreia; Rego, Ana Cristina; Silva-Fernandes, Anabela; Maciel, Patrícia

    2015-01-01

    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics. PMID:26505994

  1. Protective effect of vitamin E on sperm motility and oxidative stress in valproic acid treated rats.

    PubMed

    Ourique, Giovana M; Saccol, Etiane M H; Pês, Tanise S; Glanzner, Werner G; Schiefelbein, Sun Hee; Woehl, Viviane M; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Long-term administration of valproic acid (VPA) is known to promote reproductive impairment mediated by increase in testicular oxidative stress. Vitamin E (VitE) is a lipophilic antioxidant known to be essential for mammalian spermatogenesis. However, the capacity of this vitamin to abrogate the VPA-mediated oxidative stress has not yet been assessed. In the current study, we evaluated the protective effect of VitE on functional abnormalities related to VPA-induced oxidative stress in the male reproductive system. VPA (400 mg kg(-1)) was administered by gavage and VitE (50 mg kg(-1)) intraperitoneally to male Wistar rats for 28 days. Analysis of spermatozoa from the cauda epididymides was performed. The testes and epididymides were collected for measurement of oxidative stress biomarkers. Treatment with VPA induced a decrease in sperm motility accompanied by an increase in oxidative damage to lipids and proteins, depletion of reduced glutathione and a decrease in total reactive antioxidant potential on testes and epididymides. Co-administration of VitE restored the antioxidant potential and prevented oxidative damage on testes and epididymides, restoring sperm motility. Thus, VitE protects the reproductive system from the VPA-induced damage, suggesting that it may be a useful compound to minimize the reproductive impairment in patients requiring long-term treatment with VPA.

  2. Protective effect of vitamin E on sperm motility and oxidative stress in valproic acid treated rats.

    PubMed

    Ourique, Giovana M; Saccol, Etiane M H; Pês, Tanise S; Glanzner, Werner G; Schiefelbein, Sun Hee; Woehl, Viviane M; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Long-term administration of valproic acid (VPA) is known to promote reproductive impairment mediated by increase in testicular oxidative stress. Vitamin E (VitE) is a lipophilic antioxidant known to be essential for mammalian spermatogenesis. However, the capacity of this vitamin to abrogate the VPA-mediated oxidative stress has not yet been assessed. In the current study, we evaluated the protective effect of VitE on functional abnormalities related to VPA-induced oxidative stress in the male reproductive system. VPA (400 mg kg(-1)) was administered by gavage and VitE (50 mg kg(-1)) intraperitoneally to male Wistar rats for 28 days. Analysis of spermatozoa from the cauda epididymides was performed. The testes and epididymides were collected for measurement of oxidative stress biomarkers. Treatment with VPA induced a decrease in sperm motility accompanied by an increase in oxidative damage to lipids and proteins, depletion of reduced glutathione and a decrease in total reactive antioxidant potential on testes and epididymides. Co-administration of VitE restored the antioxidant potential and prevented oxidative damage on testes and epididymides, restoring sperm motility. Thus, VitE protects the reproductive system from the VPA-induced damage, suggesting that it may be a useful compound to minimize the reproductive impairment in patients requiring long-term treatment with VPA. PMID:27424124

  3. Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease.

    PubMed

    Esteves, Sofia; Duarte-Silva, Sara; Naia, Luana; Neves-Carvalho, Andreia; Teixeira-Castro, Andreia; Rego, Ana Cristina; Silva-Fernandes, Anabela; Maciel, Patrícia

    2015-01-01

    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics. PMID:26505994

  4. The Impact of Psychoactive Drugs on Seizures and Antiepileptic Drugs.

    PubMed

    Habibi, Mitra; Hart, Felecia; Bainbridge, Jacquelyn

    2016-08-01

    Psychiatric comorbidities are very common in patients with epilepsy, and in fact, a bidirectional relationship between epilepsy and some psychiatric disorders have been identified. However, despite their high prevalence, these comorbidities are not routinely recognized or adequately treated causing a significant burden for these patients. Atypical presentations of some of these psychiatric comorbidities in epilepsy, the concern that some psychotropic drugs may lower seizure threshold worsening frequency of seizures, possibility of many drug-drug interactions, and the negative impact of some antiepileptic drugs on psychiatric conditions are some of the challenges faced by clinicians. Although the main focus in epilepsy has remained on treatment of seizures, acknowledgment of these comorbidities and their timely diagnosis and appropriate treatment not only can impact patients' quality of life but also may improve their response to antiepileptic therapies. PMID:27315249

  5. Current approaches to the use of generic antiepileptic drugs.

    PubMed

    Krämer, G; Biraben, A; Carreno, M; Guekht, A; de Haan, G J; Jedrzejczak, J; Josephs, D; van Rijckevorsel, K; Zaccara, G

    2007-08-01

    Generic substitution is encouraged as a cost containment strategy for the management of health care resources. However, in epilepsy, the consequences of loss of symptom control are important, and antiepileptic drugs have narrow therapeutic indices. For this reason, generic substitution may be problematic, and certain health authorities have excluded antiepileptic drugs from overall policy recommendations on generic prescribing. The absence of bioequivalence data among generic forms and the relatively broad criteria for bioequivalence with the branded drug allow differences in drug exposure to arise that may be clinically relevant and necessitate monitoring of plasma levels when switching formulations to avoid loss of seizure control or emergence of side effects. Management of these issues carries a significant cost, which should be weighed carefully against the cost savings acquired when purchasing the drug. Both physicians and patients have a right to be informed and approve before pharmacists make a generic substitution or switch between generics.

  6. Modulation of Cytokine Production by Drugs with Antiepileptic or Mood Stabilizer Properties in Anti-CD3- and Anti-CD40-Stimulated Blood In Vitro

    PubMed Central

    Hamer, Hajo; Schönherr, Jeremias; Petersein, Charlotte; Munzer, Alexander; Kirkby, Kenneth Clifford; Bauer, Katrin; Sack, Ulrich

    2014-01-01

    Increased cytokine production possibly due to oxidative stress has repeatedly been shown to play a pivotal role in the pathophysiology of epilepsy and bipolar disorder. Recent in vitro and animal studies of valproic acid (VPA) report antioxidative and anti-inflammatory properties, and suppression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. We tested the effect of drugs with antiepileptic or mood stabilizer properties, namely, primidone (PRM), carbamazepine (CBZ), levetiracetam (LEV), lamotrigine (LTG), VPA, oxcarbazepine (OXC), topiramate (TPM), phenobarbital (PB), and lithium on the production of the following cytokines in vitro: interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-17, IL-22, and TNF-α. We performed a whole blood assay with stimulated blood of 14 healthy female subjects. Anti-human CD3 monoclonal antibody OKT3, combined with 5C3 antibody against CD40, was used as stimulant. We found a significant reduction of IL-1 and IL-2 levels with all tested drugs other than lithium in the CD3/5C3-stimulated blood; VPA led to a decrease in IL-1β, IL-2, IL-4, IL-6, IL-17, and TNF-α production, which substantiates and adds knowledge to current hypotheses on VPA's anti-inflammatory properties. PMID:24757498

  7. Transcriptomic concentration-response evaluation of valproic acid, cyproconazole, and hexaconazole in the neural embryonic stem cell test (ESTn).

    PubMed

    Theunissen, Peter T; Robinson, Joshua F; Pennings, Jeroen L A; de Jong, Esther; Claessen, Sandra M H; Kleinjans, Jos C S; Piersma, Aldert H

    2012-02-01

    Alternative developmental toxicity assays are urgently needed to reduce animal use in regulatory developmental toxicology. We previously designed an in vitro murine neural embryonic stem cell test (ESTn) as a model for neurodevelopmental toxicity testing (Theunissen et al., 2010). Toxicogenomic approaches have been suggested for incorporation into the ESTn to further increase predictivity and to provide mechanistic insights. Therefore, in this study, using a transcriptomic approach, we investigated the concentration-dependent effects of three known (neuro) developmental toxicants, two triazoles, cyproconazole (CYP) and hexaconazole (HEX), and the anticonvulsant valproic acid (VPA). Compound effects on gene expression during neural differentiation and corresponding regulated gene ontology (GO) terms were identified after 24 h of exposure in relation to morphological changes on day 11 of culture. Concentration-dependent responses on individual gene expression and on biological processes were determined for each compound, providing information on mechanism and concentration-response characteristics. All compounds caused enrichment of the embryonic development process. CYP and VPA but not HEX significantly enriched the neuron development process. Furthermore, specific responses for triazole compounds and VPA were observed within the GO-term sterol metabolic process. The incorporation of transcriptomics in the ESTn was shown to enable detection of effects, which precede morphological changes and provide a more sensitive measure of concentration-dependent effects as compared with classical morphological assessments. Furthermore, mechanistic insight can be instrumental in the extrapolation of effects in the ESTn to human hazard assessment.

  8. Valproic acid protects neurons and promotes neuronal regeneration after brachial plexus avulsion

    PubMed Central

    Li, Qiang; Wu, Dianxiu; Li, Rui; Zhu, Xiaojuan; Cui, Shusen

    2013-01-01

    Valproic acid has been shown to exert neuroprotective effects and promote neurite outgrowth in several peripheral nerve injury models. However, whether valproic acid can exert its beneficial effect on neurons after brachial plexus avulsion injury is currently unknown. In this study, brachial plexus root avulsion models, established in Wistar rats, were administered daily with valproic acid dissolved in drinking water (300 mg/kg) or normal water. On days 1, 2, 3, 7, 14 and 28 after avulsion injury, tissues of the C5–T1 spinal cord segments of the avulsion injured side were harvested to investigate the expression of Bcl-2, c-Jun and growth associated protein 43 by real-time PCR and western blot assay. Results showed that valproic acid significantly increased the expression of Bcl-2 and growth associated protein 43, and reduced the c-Jun expression after brachial plexus avulsion. Our findings indicate that valproic acid can protect neurons in the spinal cord and enhance neuronal regeneration following brachial plexus root avulsion. PMID:25206605

  9. The rise and fall of borax as an antiepileptic drug.

    PubMed

    Jensen, John P A

    2006-04-01

    Five hundred eighty-six patients with epilepsy were treated with borax (hydrated sodium tetraborate) between 1912 and 1948 at the Kolonien Filadelfia Epilepsy Hospital, Dianalund, Denmark. A rough estimation shows that less than 5% experienced a more than 50% reduction in the total number of seizures. Charts were reviewed to find a connection between the concept of Bacillus epilepticus (1916) and the so-called renaissance of borax treatment described in 1923, and to find an explanation for the popularity of this seemingly ineffective antiepileptic drug.

  10. Recent and future antiepileptic drugs and their impact on cognition: what can we expect?

    PubMed

    Mula, Marco

    2012-06-01

    Cognitive problems are frequently observed in patients with epilepsy and the relative contribution of antiepileptic drugs (AEDs) in this respect is determinant. During the past few years, a number of new AEDs have been introduced, and new compounds will be probably available in the forthcoming years. The ideal AED would be the one characterized by good efficacy with no negative effects on cognitive functions, mood and behavior. This paper is aimed at discussing the potential impact on cognition of a number of new compounds, namely lacosamide, rufinamide, retigabine, eslicarbazepine acetate, brivaracetam, perampanel and ganaxolone. In almost all cases, specific data on cognitive functions are not yet available, and it is possible only to speculate on their potential impact considering the mechanism of action and the adverse event profile in placebo-controlled studies. Lacosamide, eslicarbazepine acetate and probably brivaracetam are promising and will probably exhibit very limited impact on cognition. Conversely, retigabine may be more problematic, needing low starting doses and slow titration rates to improve cognitive tolerability. Data on rufinamide are restricted to special populations such as Lennox-Gastaut syndrome. Perampanel and ganaxolone are still in Phase III development, but the mechanism of action of these compounds is in line with a more sedative than neutral profile. PMID:22650169

  11. Study of Valproic Acid-Enhanced Hepatocyte Steatosis.

    PubMed

    Chang, Renin; Chou, Mei-Chia; Hung, Li-Ying; Wang, Mu-En; Hsu, Meng-Chieh; Chiu, Chih-Hsien

    2016-01-01

    Valproic acid (VPA) is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA-) induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG) synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36), low-density lipoprotein receptor-related protein 1 (Lrp1), diacylglycerol acyltransferase 2 (Dgat2), and perilipin 2 (Plin2) were increased, that of carnitine palmitoyltransferase I a (Cpt1a) was not affected, and those of acetyl-Co A carboxylase α (Acca) and fatty acid synthase (Fasn) were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ) nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation. PMID:27034954

  12. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid For Patients With Glioblastoma

    PubMed Central

    Krauze, Andra V.; Myrehaug, Sten D.; Chang, Michael G.; Holdford, Diane J.; Smith, Sharon; Shih, Joanna; Tofilon, Philip J.; Fine, Howard A.; Camphausen, Kevin

    2015-01-01

    Purpose Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in pre-clinical models. We evaluated the addition of VPA to standard radiation therapy (RT) and temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/day over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21–63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8–51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis results were significant for both OS and PFS. VPA levels were not correlated with grade 3/4 toxicity levels. Conclusions Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study. PMID:26194676

  13. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma

    SciTech Connect

    Krauze, Andra V.; Chang, Michael G.; Holdford, Diane J.; Smith, Sharon; Shih, Joanna; Tofilon, Philip J.; Camphausen, Kevin

    2015-08-01

    Purpose: Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in preclinical models. We evaluated the addition of VPA to standard radiation therapy (RT) plus temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials: Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/day over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results: A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21-63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8-51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis (RPA) results were significant for both OS and PFS. VPA levels were not correlated with grade 3 or 4 toxicity levels. Conclusions: Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study.

  14. Valproic Acid and Hepatic Steatosis: A Possible Link? About a Case Report

    PubMed Central

    Mnif, Leila; Sellami, Rim; Masmoudi, Jawaher

    2016-01-01

    Background Valproic acid is a mood-stabilizing anticonvulsant. Hepatic injuries are among the occasionally observed adverse effects of this medication. Case presentation We present the case of a 47-year-old man who had bipolar disorder for ten years and treated with valproic acid. He demonstrated elevated serum aminotransferases and ultrasonography revealed that hepatomegaly was suggestive of hepatic steatosis. Conclusion This case report stresses the importance of a complete drug history and the need for clinicians to be aware of the delayed onset of hepatic injuries.

  15. The New Antiepileptic Drugs: Their Neuropharmacology and Clinical Indications

    PubMed Central

    HANAYA, Ryosuke; ARITA, Kazunori

    2016-01-01

    The administration of antiepileptic drugs (AEDs) is the first treatment of epilepsy, one of the most common neurological diseases. Therapeutic guidelines include newer AEDs as front-line drugs; monotherapy with new AEDs is delivered in Japan. While about 70% of patients obtain good seizure control by taking one to three AEDs, about 60% experience adverse effects and 33% have to change drugs. Compared to traditional AEDs, the prolonged administration of new AEDs elicits fewer adverse effects and fewer drug interactions and their teratogenicity may be lower. These characteristics increase drug compliance and allow combination therapy for drug-resistant epilepsy, although the antiepileptic effects of the new AEDs are not greater than of traditional AEDs. Comorbidities are not rare in epileptics; many adult patients present with stroke and brain tumors. In stroke patients requiring risk control and in chemotherapy-treated brain tumor patients, their fewer drug interactions render the new AEDs advantageous. Also, new AEDs offer favorable side benefits for concurrent diseases and conditions. Patients with stroke and traumatic brain injury often present with psychiatric/behavioral symptoms and cognitive impairment and some new AEDs alleviate such symptoms. This review presents an outline of the new AEDs used to treat adult patients based on the pharmacological activity of the drugs and discusses possible clinical indications from the perspective of underlying causative diseases and comorbidities. PMID:26935782

  16. The New Antiepileptic Drugs: Their Neuropharmacology and Clinical Indications.

    PubMed

    Hanaya, Ryosuke; Arita, Kazunori

    2016-05-15

    The administration of antiepileptic drugs (AEDs) is the first treatment of epilepsy, one of the most common neurological diseases. Therapeutic guidelines include newer AEDs as front-line drugs; monotherapy with new AEDs is delivered in Japan. While about 70% of patients obtain good seizure control by taking one to three AEDs, about 60% experience adverse effects and 33% have to change drugs. Compared to traditional AEDs, the prolonged administration of new AEDs elicits fewer adverse effects and fewer drug interactions and their teratogenicity may be lower. These characteristics increase drug compliance and allow combination therapy for drug-resistant epilepsy, although the antiepileptic effects of the new AEDs are not greater than of traditional AEDs. Comorbidities are not rare in epileptics; many adult patients present with stroke and brain tumors. In stroke patients requiring risk control and in chemotherapy-treated brain tumor patients, their fewer drug interactions render the new AEDs advantageous. Also, new AEDs offer favorable side benefits for concurrent diseases and conditions. Patients with stroke and traumatic brain injury often present with psychiatric/behavioral symptoms and cognitive impairment and some new AEDs alleviate such symptoms. This review presents an outline of the new AEDs used to treat adult patients based on the pharmacological activity of the drugs and discusses possible clinical indications from the perspective of underlying causative diseases and comorbidities.

  17. Choleretic effect of valproic acid in the rat.

    PubMed

    Watkins, J B; Klaassen, C D

    1981-01-01

    Valproic acid (VPA) is an anticonvulsant agent which produced marked choleresis in the rat. Bile flow rate increased from 50 to 60 microliter per min per kg to 120 to 145 microliter per min per kg immediately after i.v. injection of VPA (37.5 to 150 mg per kg; 2 ml per kg) in male Sprague-Dawley rats. The duration of maximal bile flow was dose-dependent and increased from 30 min (37.5 mg VPA per kg) to approximately 2 hr (150 mg VPA per kg). Choleresis diluted the biliary concentrations of bile acids, Cl-, cholesterol, and phospholipids. VPA did not change the bile/plasma ratio for erythritol suggesting that the increased bile flow is of canalicular origin. VPA did not influence the excretion of bile acids or their osmotic activity, whereas bile salt-independent flow doubled in rats treated with 150 mg VPA per kg. The bile/plasma, bile/liver, and liver/plasma concentration ratios for VPA were 11.7, 1.6, and 7.3, respectively. Approximately 90% of VPA appearing in bile was biotransformed, primarily as a glucuronide. Bile flow correlated with VPA excretion; 16 microliter of bile was produced per micromole VPA which suggests that choleresis is primarily due to the osmotic activity of VPA metabolites in bile. VPA enhanced the excretion of inorganic ions which may also contribute to choleresis. Biliary excretion of phenol-3,6-dibromophthalein disulfonate and ouabain was unaffected. Thus, VPA is an effective choleretic which stimulates bile salt-independent flow of canalicular origin largely as a consequence of the osmotic properties of VPA conjugates in bile.

  18. Epigenetic modifications in valproic acid-induced teratogenesis

    SciTech Connect

    Tung, Emily W.Y.; Winn, Louise M.

    2010-11-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400 mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24 h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3 h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  19. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  20. Effectiveness and Cost of Generic versus Brand-Name Valproic Acid.

    ERIC Educational Resources Information Center

    Coulter, David L.

    1997-01-01

    This commentary on a study comparing use of the brand-name drug Depakene with generic valproic acid to control seizures in people with mental retardation notes the importance of distinguishing between Depakene and Depakote, which is an enteric-coated formulation for which there is no generic form currently available. (DB)

  1. Old versus New: Why Do We Need New Antiepileptic Drugs?

    PubMed Central

    Lee, Sang Kun

    2014-01-01

    Achieving complete seizure remission without adverse events is the goal of epilepsy treatment. Recently, many new antiepileptic drugs (AEDs) have been developed. Even though the efficacy of new AEDs is not stronger than that of old AEDs, there are advantages in using new AEDs. They have unique or different mechanisms of action that enable the creation of possible synergistic combinations. They usually exhibit fewer or no pharmacokinetic drug interactions. Furthermore, the response to AEDs varies individually. A similar efficacy does not imply a similar response from all patients. Many new AEDs have fewer adverse events, including induction of congenital malformations. Other concerns about the long-term effects of established AEDs, such as bone health and development of atherosclerosis, may be alleviated by the use of new AEDs. New AEDs are needed to achieve better care of patients with epilepsy. PMID:25625087

  2. Neurological teratogenic effects of antiepileptic drugs during pregnancy

    PubMed Central

    Nie, Qingmei; Su, Baohua; Wei, Jianping

    2016-01-01

    Epilepsy is one of the few neurologic disorders that requires a constant treatment during pregnancy. Epilepsy affects 0.3–0.8% of pregnant women. Prescription of antiepileptic drugs (AEDs) to pregnant women with epilepsy requires monitoring and maintaining a balance between limiting seizures and decreasing fetal exposure to the potential teratogenic effects. AEDs are also commonly used for psychiatric disorders, pain disorders, and migraines. The types of malformations that can result in fetuses exposed to AEDs include minor anomalies, major congenital malformations, intrauterine growth retardation, cognitive dysfunction, low IQ, microcephaly, and infant mortality. In the present review, we analyzed and summarized the current understanding of neurological development in fetuses that are exposed to various AEDs administered to pregnant epileptic women. PMID:27698740

  3. Neurological teratogenic effects of antiepileptic drugs during pregnancy

    PubMed Central

    Nie, Qingmei; Su, Baohua; Wei, Jianping

    2016-01-01

    Epilepsy is one of the few neurologic disorders that requires a constant treatment during pregnancy. Epilepsy affects 0.3–0.8% of pregnant women. Prescription of antiepileptic drugs (AEDs) to pregnant women with epilepsy requires monitoring and maintaining a balance between limiting seizures and decreasing fetal exposure to the potential teratogenic effects. AEDs are also commonly used for psychiatric disorders, pain disorders, and migraines. The types of malformations that can result in fetuses exposed to AEDs include minor anomalies, major congenital malformations, intrauterine growth retardation, cognitive dysfunction, low IQ, microcephaly, and infant mortality. In the present review, we analyzed and summarized the current understanding of neurological development in fetuses that are exposed to various AEDs administered to pregnant epileptic women.

  4. Simultaneous determination of ten antiepileptic drugs in human plasma by liquid chromatography and tandem mass spectrometry with positive/negative ion-switching electrospray ionization and its application in therapeutic drug monitoring.

    PubMed

    Yin, Lei; Wang, Tingting; Shi, Meiyun; Zhang, Ying; Zhao, Xiaojun; Yang, Yan; Gu, Jingkai

    2016-03-01

    A simple, rapid, and high-throughput liquid chromatography with tandem mass spectrometry method for the simultaneous quantitation of ten antiepileptic drugs in human plasma has been developed and validated. The method required only 10 μL of plasma. After simple protein precipitation using acetonitrile, the analytes and internal standard diphenhydramine were separated on a Zorbax SB-C18 column (50 × 4.6 mm, 2.7 μm) using acetonitrile/water as the mobile phase at a flow rate of 0.9 mL/min. The total run time was 6 min for each sample. The validation results of specificity, matrix effects, recovery, linearity, precision, and accuracy were satisfactory. The lower limit of quantification was 0.04 μg/mL for carbamazepine, 0.02 μg/mL for lamotrigine, 0.01 μg/mL for oxcarbazepine, 0.4 μg/mL for 10-hydroxycarbazepine, 0.1 μg/mL for carbamazepine-10,11-epoxide, 0.15 μg/mL for levetiracetam, 0.06 μg/mL for phenytoin, 0.3 μg/mL for valproic acid, 0.03 μg/mL for topiramate, and 0.15 μg/mL for phenobarbital. The intraday precision and interday precision were less than 7.6%, with the accuracy ranging between -8.1 and 7.9%. The method was successfully applied to therapeutic drug monitoring of 1237 patients with epilepsy after administration of standard antiepileptic drugs. The method has been proved to meet the high-throughput requirements in therapeutic drug monitoring. PMID:26711223

  5. Ethosuximide, Valproic Acid and Lamotrigine in Childhood Absence Epilepsy: Initial Monotherapy Outcomes at 12 months

    PubMed Central

    Glauser, Tracy A.; Cnaan, Avital; Shinnar, Shlomo; Hirtz, Deborah G.; Dlugos, Dennis; Masur, David; Clark, Peggy O.; Adamson, Peter C.

    2012-01-01

    Purpose Determine the optimal initial monotherapy for children with newly diagnosed childhood absence epilepsy based on 12 months of double blind therapy. Methods A double-blind, randomized controlled clinical trial compared the efficacy, tolerability and neuropsychological effects of ethosuximide, valproic acid and lamotrigine in children with newly diagnosed childhood absence epilepsy. Study medications were titrated to clinical response and subjects remained in the trial unless they reached a treatment failure criterion. Maximal target doses were ethosuximide 60 mg/kg/day or 2000 mg/day, valproic acid 60 mg/kg/day or 3000 mg/day and lamotrigine 12 mg/kg/day or 600 mg/day. Original primary outcome was at 16–20 weeks and included a video EEG assessment. For this report, the main effectiveness outcome was the freedom from failure rate 12 months after randomization and included a video EEG assessment; differential drug effects were determined by pairwise comparisons. The main cognitive outcome was the percentage of subjects experiencing attentional dysfunction at the Month 12 visit. Key Findings A total of 453 children were enrolled and randomized; seven were deemed ineligible and 446 subjects comprised the overall efficacy cohort. There were no demographic differences between the three cohorts. By 12 months after starting therapy, only 37% of all enrolled subjects were free from treatment failure on their first medication. At the Month 12 visit, the freedom-from-failure rates for ethosuximide and valproic acid were similar (45% and 44%, respectively; odds ratio with valproic acid vs. ethosuximide, 0.94; 95% confidence interval [CI], 0.60 to 1.48; P = 0.82) and were higher than the rate for lamotrigine (21%; odds ratio with ethosuximide vs. lamotrigine, 3.09; 95% CI, 1.86 to 5.13; odds ratio with valproic acid vs. lamotrigine, 2.90; 95% CI, 1.74 to 4.83; P<0.001 for both comparisons). The frequency of treatment failures due to lack of seizure control (p < 0

  6. Evaluation of the relationship between C677T variants of methylenetetrahydrofolate reductase gene and hyperhomocysteinemia in children receiving antiepileptic drug therapy.

    PubMed

    Vurucu, Sebahattin; Demirkaya, Erkan; Kul, Mustafa; Unay, Bulent; Gul, Davut; Akin, Ridvan; Gokçay, Erdal

    2008-04-01

    Homocysteine (Hcy) is a sulfur-containing amino acid involved in methionine metabolism. Elevated plasma Hcy concentration is a possible risk factor for vascular disease. Folate and vitamin B-12 are vitamins that are necessary for remethylization of Hcy to methionine. The methylenetetrahydrofolate reductase (MTHFR) is the key enzyme in remethylation of Hcy to methionine and supplies the required 5-methyltetrahydrofolate as the methyl donor for this reaction. It is well known that some antiepileptic drugs (AED) can lead to hyperhomocysteinemia by affecting the levels of folate and vitamin B-12. The C677T variant of MTHFR gene can also lead to hyperhomocysteinemia particularly when serum folate level is decreased. In this study, we investigated the levels of serum folate, vitamin B-12 and Hcy in epileptic patients receiving carbamazepine (CBZ) or valproic acid (VPA) as monotherapy, and we also evaluated the probable contribution of the C677T variant of MTHFR gene in hyperhomocysteinemia. A total of 93 patients with idiopathic epilepsy receiving CBZ or VPA as monotherapy were included in this study. CBZ and VPA groups consisted of 29 and 64 patients, respectively. The control group comprised 62 healthy children. We measured serum folate, vitamin B-12 and Hcy levels in each group. We found that mean serum folate level was statistically lower and mean Hcy level was higher in epileptic patients receiving CBZ or VPA when compared with those of controls'. We also determined the C677T variants of MTHFR gene (as normal, heterozygote or homozygote) in epileptic patients. We compared the variant groups for serum folate, vitamin B-12 and Hcy levels and found no significant differences among them. In conclusion, C677T variants of MTHFR gene have no contribution in hyperhomocysteinemia in epileptic patients receiving CBZ or VPA. PMID:18234410

  7. Simultaneous analysis of 22 antiepileptic drugs in postmortem blood, serum and plasma using LC-MS-MS with a focus on their role in forensic cases.

    PubMed

    Deeb, Shaza; McKeown, Denise A; Torrance, Hazel J; Wylie, Fiona M; Logan, Barry K; Scott, Karen S

    2014-10-01

    In recent years, there has been a growth in reports of antiepileptic drugs (AEDs) being misused on their own or in combination with other drugs of abuse in a variety of toxicological case types such as drug abuse, suicide, overdose and drug facilitated crime. To our knowledge, there are no simultaneous quantification methods for the analysis of the most commonly encountered AEDs in postmortem whole blood and clinical plasma/serum samples at the same time. A simple, accurate and cost-effective liquid chromatography-tandem mass spectrometric (LC-MS-MS) method has been developed and validated for the simultaneous quantification of carbamazepine (CBZ) and its metabolite CBZ-10,11-epoxide, eslicarbazepine acetate, oxcarbazepine and S-licarbazepine as a metabolite, gabapentin, lacosamide, lamotrigine, levetiracetam, pregabalin, phenobarbital, phenytoin and its metabolite 5-(p-hydroxyphenyl)-5-phenylhydantoin, retigabine (ezogabine) and its metabolite N-acetyl retigabine, rufinamide, stiripentol, topiramate, tiagabine, valproic acid, vigabatrin and zonisamide in postmortem whole blood, serum and plasma which would be suitable for routine forensic toxicological analysis and therapeutic drug monitoring. All AEDs were detected and quantified within 17 min without endogenous interferences. The correlation coefficient (R(2)) was >0.995 for all AEDs with accuracy ranging from 90 to 113% and precision <13% for all analytes. The recovery ranged from 70 to 98%. No carryover was observed in a blank control injected after the highest standard and the matrix effect was acceptable and ranged from 90 to 120%. The method has been successfully verified using authentic case samples that had previously been quantified using different methods. PMID:25217536

  8. Evaluation of neurotoxic and neuroprotective pathways affected by antiepileptic drugs in cultured hippocampal neurons.

    PubMed

    Morte, Maria I; Carreira, Bruno P; Falcão, Maria J; Ambrósio, António F; Soares-da-Silva, Patrício; Araújo, Inês M; Carvalho, Caetana M

    2013-12-01

    In this study we evaluated the neurotoxicity of eslicarbazepine acetate (ESL), and of its in vivo metabolites eslicarbazepine (S-Lic) and R-licarbazepine (R-Lic), as compared to the structurally-related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), in an in vitro model of cultured rat hippocampal neurons. The non-related antiepileptic drugs (AEDs) lamotrigine (LTG) and sodium valproate (VPA) were also studied. We assessed whether AEDs modulate pro-survival/pro-apoptotic pathways, such as extracellular-regulated kinase (ERK1/2), Akt and stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). We found that neither ESL nor its metabolites, CBZ or LTG, up to 0.3mM, for 24h of exposure, decreased cell viability. OXC was the most toxic drug decreasing cell viability in a concentration-dependent manner, leading to activation of caspase-3 and PARP cleavage. VPA caused the appearance of the apoptotic markers, but did not alter cell viability. ESL, S-Lic and OXC decreased the levels of phospho-ERK1/2 and of phospho-Akt, when compared to basal levels, whereas CBZ decreased phospho-SAPK/JNK and phospho-Akt levels. LTG and VPA increased the phosphorylation levels of SAPK/JNK. These results suggest that ESL and its main metabolite S-Lic, as well as CBZ, LTG and VPA, are less toxic to hippocampal neurons than OXC, which was the most toxic agent.

  9. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    PubMed

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo.

  10. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis

    PubMed Central

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  11. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    PubMed

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  12. Cognitive side-effects of antiepileptic drugs in children.

    PubMed

    Ijff, Dominique M; Aldenkamp, Albert P

    2013-01-01

    Although the causes of cognitive impairment in patients with epilepsy have not been completely elucidated, three factors are clearly involved: the underlying etiology of epilepsy, the effects of seizures or the epileptiform EEG discharges themselves, and the central nervous system effects of antiepileptic drugs (AEDs). All commonly used AEDs have some effect on cognitive function, and the effect may be substantial when crucial functions are involved, such as learning in children. With phenobarbital, there is a high risk for serious cognitive effects impacting attention and memory. Phenytoin may affect mental speed, mainly in higher dosing and polytherapy. Moderate monotherapy doses do not seem to induce much effect. Valproate does not seem to impair cognition if sufficiently controlled for hyperammonemia. For carbamazepine, there are conflicting reports, which may be due to selection bias or dosing. For oxcarbazepine, there is no evidence for any detrimental change compared to valproate but mild improvements on attentional tests. For topiramate, there is clear evidence for topiramate-induced cognitive impairment (attention, memory, and language function) in adults and children. Although data is sketchy, levetiracetam does not seem to have a negative impact on cognition. For lamotrigine, there is evidence of a cognitive-enhancing effect on attention. No evidence for cognitive side-effects has been found for vigabatrin. Ethosuximide is not associated with cognitive impairment although the evidence is sketchy. For gabapentin, tiagabine, zonisamide, and rufinamide no studies in children are available. PMID:23622218

  13. Cutaneous Adverse Drug Reactions in Dogs Treated with Antiepileptic Drugs

    PubMed Central

    Koch, Tina; Mueller, Ralf S.; Dobenecker, Britta; Fischer, Andrea

    2016-01-01

    Epilepsy is one of the most common neurologic disorders in dogs and life-long treatment with antiepileptic drugs (AED) is frequently required. Adverse events of AED targeting the skin are only rarely reported in veterinary medicine and the true incidence and spectrum of cutaneous reactions in epileptic dogs remains unknown. In this study, we hypothesized that cutaneous reactions commonly occur in epileptic dogs and are related to AED treatment. A retrospective case review of 185 dogs treated for epilepsy identified 20.0% with simultaneous appearance of dermatologic signs. In a subsequent prospective case investigation (n = 137), we identified newly appearing or distinct worsening of skin lesions following initiation of AED therapy in 10.9% of dogs treated for epilepsy (95% CI 6.8–17.7%). Cutaneous lesions were classified as probably drug-induced in 40.0% of these cases. Patch testing and intradermal testing were further investigated as potential diagnostic methods to confirm AED hypersensitivity. They were of high specificity but sensitivity and positive predictive value appeared inappropriate to recommend their routine use in clinical practice. PMID:27148543

  14. Epilepsy, Antiepileptic Drugs, and Aggression: An Evidence-Based Review

    PubMed Central

    Besag, Frank; Ettinger, Alan B.; Mula, Marco; Gobbi, Gabriella; Comai, Stefano; Aldenkamp, Albert P.; Steinhoff, Bernhard J.

    2016-01-01

    Antiepileptic drugs (AEDs) have many benefits but also many side effects, including aggression, agitation, and irritability, in some patients with epilepsy. This article offers a comprehensive summary of current understanding of aggressive behaviors in patients with epilepsy, including an evidence-based review of aggression during AED treatment. Aggression is seen in a minority of people with epilepsy. It is rarely seizure related but is interictal, sometimes occurring as part of complex psychiatric and behavioral comorbidities, and it is sometimes associated with AED treatment. We review the common neurotransmitter systems and brain regions implicated in both epilepsy and aggression, including the GABA, glutamate, serotonin, dopamine, and noradrenaline systems and the hippocampus, amygdala, prefrontal cortex, anterior cingulate cortex, and temporal lobes. Few controlled clinical studies have used behavioral measures to specifically examine aggression with AEDs, and most evidence comes from adverse event reporting from clinical and observational studies. A systematic approach was used to identify relevant publications, and we present a comprehensive, evidence-based summary of available data surrounding aggression-related behaviors with each of the currently available AEDs in both adults and in children/adolescents with epilepsy. A psychiatric history and history of a propensity toward aggression/anger should routinely be sought from patients, family members, and carers; its presence does not preclude the use of any specific AEDs, but those most likely to be implicated in these behaviors should be used with caution in such cases. PMID:27255267

  15. Effects of the antiepileptic drug carbamazepine on human erythrocytes.

    PubMed

    Suwalsky, Mario; Mennickent, Sigrid; Norris, Beryl; Villena, Fernando; Sotomayor, Carlos P

    2006-12-01

    The structural effects of the antiepileptic drug carbamazepine (CBZ) on the human erythrocyte membrane and molecular models have been investigated in the present work. This report presents the following evidence that CBZ interacts with red cell membranes: (a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that CBZ perturbed a class of lipids found in the outer moiety of the erythrocyte membrane; (b) in isolated unsealed human erythrocytes (IUM) the drug induced a disordering effect on the polar head groups and acyl chains of the membrane lipid bilayer; (c) in scanning electron microscopy (SEM) studies on human erythrocytes the formation of echinocytes was observed, due to the preferential insertion of CBZ in the outer monolayer of the red cell membrane. The effects of the drug detected in the present work were observed at concentrations of the order of those currently appearing in serum when it is therapeutically administered. This is the first time that toxic effects of carbamazepine on the human erythrocyte membrane have been described. PMID:16844339

  16. The antiepileptic drug carbamazepine affects sodium transport in toad epithelium.

    PubMed

    Suwalsky, Mario; Mennickent, Sigrid; Norris, Beryl; Cardenas, Hernán

    2006-09-01

    The present work investigates the effects of the antiepileptic drug carbamazepine (CBZ) on sodium transport in the isolated skin of the toad Pleurodema thaul. A submaximal concentration of the drug (0.2 mM) applied to the outer surface of the epithelium increased the electrical parameters short-circuit current (Isc) and potential difference (PD) by over 28%, whereas only a higher concentration (1 mM) induced over a 45% decrease in these parameters when applied to the inner surface. The amiloride test showed that the outer surface stimulatory effect was accompanied by an increase and the inner surface inhibitory effect by a decrease in the sodium electromotive force (ENa). Exploration of these effects of CBZ on the outer surface showed that 0.2 mM increased net Na+ (22Na) influx by 20% and 0.6 mM CBZ decreased Na+ mucosa-serosa flux by 19%, a result in agreement with the finding that higher concentrations of CBZ applied to the inner surface not only decreased ENa but also sodium conductance (GNa). PMID:16542818

  17. The antiepileptic drug phenytoin affects sodium transport in toad epithelium.

    PubMed

    Suwalsky, Mario; Mennickent, Sigrid; Norris, Beryl; Cárdenas, Hernan

    2006-01-01

    The effects of phenytoin on isolated Pleurodema thaul toad skin were investigated. Low (micromolar) concentrations of the antiepileptic agent applied to the outside surface of the toad epithelium increased the electrical parameters (short-circuit current and potential difference) by over 40%, reflecting stimulation of Na(+) transport, whereas higher (millimolar concentrations, outside and inside surface) decreased both electric parameters, the effect being greater at the inside surface (40% and 80% decrease, respectively). The amiloride test showed that the stimulatory effect was accompanied by an increase and the inhibitory effect by a decrease in the sodium electromotive force (ENa). It is concluded that the drug interaction with membrane lipid bilayers might result in a distortion of the lipid-protein interface contributing to disturbance of Na(+) epithelial channel activity. After applying the Na(+)-K(+)-ATPase blocker ouabain and replacing the Na(+) ions in the outer Ringer's solution by choline, it was concluded that both active and passive transport are involved in sodium absorption, although active transport predominates. PMID:16314149

  18. Epilepsy, Antiepileptic Drugs, and Aggression: An Evidence-Based Review.

    PubMed

    Brodie, Martin J; Besag, Frank; Ettinger, Alan B; Mula, Marco; Gobbi, Gabriella; Comai, Stefano; Aldenkamp, Albert P; Steinhoff, Bernhard J

    2016-07-01

    Antiepileptic drugs (AEDs) have many benefits but also many side effects, including aggression, agitation, and irritability, in some patients with epilepsy. This article offers a comprehensive summary of current understanding of aggressive behaviors in patients with epilepsy, including an evidence-based review of aggression during AED treatment. Aggression is seen in a minority of people with epilepsy. It is rarely seizure related but is interictal, sometimes occurring as part of complex psychiatric and behavioral comorbidities, and it is sometimes associated with AED treatment. We review the common neurotransmitter systems and brain regions implicated in both epilepsy and aggression, including the GABA, glutamate, serotonin, dopamine, and noradrenaline systems and the hippocampus, amygdala, prefrontal cortex, anterior cingulate cortex, and temporal lobes. Few controlled clinical studies have used behavioral measures to specifically examine aggression with AEDs, and most evidence comes from adverse event reporting from clinical and observational studies. A systematic approach was used to identify relevant publications, and we present a comprehensive, evidence-based summary of available data surrounding aggression-related behaviors with each of the currently available AEDs in both adults and in children/adolescents with epilepsy. A psychiatric history and history of a propensity toward aggression/anger should routinely be sought from patients, family members, and carers; its presence does not preclude the use of any specific AEDs, but those most likely to be implicated in these behaviors should be used with caution in such cases. PMID:27255267

  19. Initial treatment of epilepsy with antiepileptic drugs: pediatric issues.

    PubMed

    Sankar, Raman

    2004-11-23

    The selection of an antiepileptic drug (AED) for initial treatment of epilepsy in infancy, childhood, and adolescence should ideally be made after a clear syndromic diagnosis of the patient's seizure disorder. A common cause of failure of the first AED is erroneous diagnosis. The availability of new-generation AEDs has expanded the choice of available agents with comparable efficacy for most syndromes. Efficacy data based on class I or II evidence are not available for many syndromes of childhood, and selection must therefore be based on the best data available. It is also important to assess the relative toxicity and tolerability of AEDs in making the selection. It is especially important to appreciate age-specific organ toxicities. Moreover, the use of AEDs in childhood requires an understanding of their neurobehavioral effects. Important neuropsychiatric co-morbidities in children with epilepsy include attention deficit/hyperactivity disorder, autistic spectrum disorders, depression and anxiety, and thought disorders. These problems can be exacerbated or ameliorated by specific AEDs. The effect of AEDs on body weight, insulin sensitivity, lipid profile, and bone health is becoming better appreciated. Newer AEDs may offer significant advantages in this regard. Co-morbid migraine in children with epilepsy may benefit from some AEDs. There remains a continuing need for the development of newer AEDs that are targeted for the developing brain to improve the efficacy and tolerability of treatment in childhood seizure disorders. PMID:15557549

  20. The antiepileptic primidone impairs male rat sexual behavior.

    PubMed

    Westerman, Ashley T; Roma, Peter G; Creed, Evan T; Hurwitz, Zachary E; Dominguez, Juan M

    2009-08-01

    Many antiepileptic drugs (AEDs) produce sexual impairments. Of commonly prescribed AEDs, primidone produces the greatest impairments. Here we examined the effects of primidone on male rat sexual behavior. Sexually-experienced male rats received administration of either vehicle or primidone. After baseline measures were obtained, the effects of daily primidone treatment on home cage sexual performance were assessed three times over the course of 14 days. Motor activity and sucrose preference were also assessed during this time period. Results indicate that primidone impaired copulation but not sexual motivation. Specifically, animals receiving primidone displayed fewer ejaculations, required more time to achieve an intromission, and displayed fewer intromissions per attempted mount as evidenced by a lower intromission ratio. However, animals treated with primidone also chose a goal box containing a sexually-receptive female in an x-maze as often as animals receiving vehicle. The lower intromission ratio suggests an inability to achieve intromissions perhaps as a result of impaired erectile function. Primidone did not affect motor activity or sucrose consumption, an additional measure of natural reward. Together, these data indicate that primidone impairs male sexual activity and suggest that these impairments result primarily from changes in erectile function and not changes to mechanisms mediating motivation.

  1. Modulating Behavior in C. elegans Using Electroshock and Antiepileptic Drugs

    PubMed Central

    Jia, Kailiang; Grill, Brock; Dawson-Scully, Ken

    2016-01-01

    The microscopic nematode Caenorhabditis elegans has emerged as a valuable model for understanding the molecular and cellular basis of neurological disorders. The worm offers important physiological similarities to mammalian models such as conserved neuron morphology, ion channels, and neurotransmitters. While a wide-array of behavioral assays are available in C. elegans, an assay for electroshock/electroconvulsion remains absent. Here, we have developed a quantitative behavioral method to assess the locomotor response following electric shock in C. elegans. Electric shock impairs normal locomotion, and induces paralysis and muscle twitching; after a brief recovery period, shocked animals resume normal locomotion. We tested electric shock responses in loss-of-function mutants for unc-25, which encodes the GABA biosynthetic enzyme GAD, and unc-49, which encodes the GABAA receptor. unc-25 and unc-49 mutants have decreased inhibitory GABAergic transmission to muscles, and take significantly more time to recover normal locomotion following electric shock compared to wild-type. Importantly, increased sensitivity of unc-25 and unc-49 mutants to electric shock is rescued by treatment with antiepileptic drugs, such as retigabine. Additionally, we show that pentylenetetrazol (PTZ), a GABAA receptor antagonist and proconvulsant in mammalian and C. elegans seizure models, increases susceptibility of worms to electric shock. PMID:27668426

  2. Valproic acid improves second-line regimen of small cell lung carcinoma in preclinical models

    PubMed Central

    Hubaux, Roland; Vandermeers, Fabian; Cosse, Jean-Philippe; Crisanti, Cecilia; Kapoor, Veena; Albelda, Steven M.; Mascaux, Céline; Delvenne, Philippe; Hubert, Pascale

    2015-01-01

    With 5-year survival rates below 5%, small cell lung carcinoma (SCLC) has very poor prognosis and requires improved therapies. Despite an excellent overall response to first-line therapy, relapses are frequent and further treatments are disappointing. The goal of the study was to improve second-line therapy of SCLC. The effect of chemotherapeutic agents was evaluated in cell lines (apoptosis, reactive oxygen species, and RNA and protein expression) and in mouse models (tumour development). We demonstrate here that valproic acid, a histone deacetylase inhibitor, improves the efficacy of a second-line regimen (vindesine, doxorubicin and cyclophosphamide) in SCLC cells and in mouse models. Transcriptomic profiling integrating microRNA and mRNA data identifies key signalling pathways in the response of SCLC cells to valproic acid, opening new prospects for improved therapies. PMID:27730151

  3. Hyperactivity and alopecia associated with ingestion of valproic acid in a cat.

    PubMed

    Zoran, D L; Boeckh, A; Boothe, D M

    2001-05-15

    A 1-year-old castrated male cat was evaluated because of alopecia of approximately 4 to 5 months' duration as well as hyperactive behavior. It was later determined that the cat was ingesting valproic acid by eating food to which it had been added for daily administration to a child in the household who had cerebral palsy. The clinical signs slowly resolved after the source of valproic acid was removed. This emphasizes the sensitivity of cats to drugs that are commonly used in humans. It was not determined whether the clinical signs that developed in this cat were caused by an adverse reaction or from toxicosis as a result of prolonged hepatic elimination of valproic acid, which requires glucuronide metabolism for disposition. However, the cat recovered completely following removal of the drug and prevention of further exposure. This report emphasizes the importance of obtaining a careful and complete history from the owner regarding an animal and its environment. In the cat of this report, the owner had not considered the impact of the presence of the drug in the child's food.

  4. Valproic acid poisoning: an evidence-based consensus guideline for out-of-hospital management.

    PubMed

    Manoguerra, Anthony S; Erdman, Andrew R; Woolf, Alan D; Chyka, Peter A; Caravati, E Martin; Scharman, Elizabeth J; Booze, Lisa L; Christianson, Gwenn; Nelson, Lewis S; Cobaugh, Daniel J; Troutman, William G

    2008-08-01

    A review of US poison center data for 2004 showed over 9000 ingestions of valproic acid. A guideline that determines the conditions for emergency department referral and prehospital care could potentially optimize patient outcome, avoid unnecessary emergency department visits, reduce health care costs, and reduce life disruption for patients and caregivers. An evidence-based expert consensus process was used to create the guideline. Relevant articles were abstracted by a trained physician researcher. The first draft of the guideline was created by the lead author. The entire panel discussed and refined the guideline before distribution to secondary reviewers for comment. The panel then made changes based on the secondary review comments. The objective of this guideline is to assist poison center personnel in the appropriate out-of-hospital triage and initial out-of-hospital management of patients with a suspected ingestion of valproic acid by 1) describing the process by which an ingestion of valproic acid might be managed, 2) identifying the key decision elements in managing cases of valproic acid ingestion, 3) providing clear and practical recommendations that reflect the current state of knowledge, and 4) identifying needs for research. This guideline applies to the acute ingestion and acute-on-chronic ingestion of immediate-release and extended-release dosage forms of valproic acid, divalproex, and valproate sodium alone. Co-ingestion of additional substances could require different referral and management recommendations depending on the combined toxicities of the substances. This review focuses on the ingestion of more than a single therapeutic dose and the effects of an overdose. Although therapeutic doses of valproic acid can cause adverse effects in adults and children, some idiosyncratic and some dose-dependent, these cases are not considered. This guideline is based on an assessment of current scientific and clinical information. The expert consensus

  5. Assessment of the role of in situ generated (E)-2,4-diene-valproic acid in the toxicity of valproic acid and (E)-2-ene-valproic acid in sandwich-cultured rat hepatocytes

    SciTech Connect

    Surendradoss, Jayakumar; Chang, Thomas K.H.; Abbott, Frank S.

    2012-11-01

    Valproic acid (VPA) undergoes cytochrome P450-mediated desaturation to form 4-ene-VPA, which subsequently yields (E)-2,4-diene-VPA by β-oxidation. Another biotransformation pathway involves β-oxidation of VPA to form (E)-2-ene-VPA, which also generates (E)-2,4-diene-VPA by cytochrome P450-mediated desaturation. Although the synthetic form of (E)-2,4-diene-VPA is more hepatotoxic than VPA as shown in various experimental models, there is no conclusive evidence to implicate the in situ generated (E)-2,4-diene-VPA in VPA hepatotoxicity. The present study investigated the effects of modulating the in situ formation of (E)-2,4-diene-VPA on markers of oxidative stress (formation of 2′,7′-dichlorofluorescein; DCF), steatosis (accumulation of BODIPY 558/568 C{sub 12}), necrosis (release of lactate dehydrogenase; LDH), and on cellular total glutathione (GSH) levels in sandwich-cultured rat hepatocytes treated with VPA or (E)-2-ene-VPA. Treatment with either of these chemicals alone increased each of the toxicity endpoints. In VPA-treated hepatocytes, (E)-2,4-diene-VPA was detected only at trace levels, even after phenobarbital (PB) pretreatment and there was no effect on the toxicity of VPA. Furthermore, pretreatment with a cytochrome P450 enzyme inhibitor, 1-aminobenzotriazole (1-ABT), did not influence the extent of VPA toxicity in both PB-pretreated and vehicle-pretreated hepatocytes. However, in (E)-2-ene-VPA-treated hepatocytes, PB pretreatment greatly enhanced the levels of (E)-2,4-diene-VPA and this was accompanied by a further enhancement of the effects of (E)-2-ene-VPA on DCF formation, BODIPY accumulation, LDH release, and GSH depletion. Pretreatment with 1-ABT reduced the concentrations of (E)-2,4-diene-VPA and the extent of (E)-2-ene-VPA toxicity; however, this occurred in PB-pretreated hepatocytes, but not in control hepatocytes. In conclusion, in situ generated (E)-2,4-diene-VPA is not responsible for the hepatocyte toxicity of VPA, whereas it

  6. Role of antiepileptic drugs in the management of eating disorders.

    PubMed

    McElroy, Susan L; Guerdjikova, Anna I; Martens, Brian; Keck, Paul E; Pope, Harrison G; Hudson, James I

    2009-01-01

    Growing evidence suggests that antiepileptic drugs (AEDs) may be useful in managing some eating disorders. In the present paper, we provide a brief overview of eating disorders, the rationale for using AEDs in the treatment of these disorders and review the data supporting the effectiveness of specific AEDs in the treatment of patients with eating disorders. In addition, the potential mechanisms of action of AEDs in these conditions are discussed. Of the available AEDs, topiramate appears to have the broadest spectrum of action as an anti-binge eating, anti-purging and weight loss agent, as demonstrated in two placebo-controlled studies in bulimia nervosa and three placebo-controlled studies in binge-eating disorder (BED) with obesity. Topiramate may also have beneficial effects in night-eating syndrome and sleep-related eating disorder, but controlled trials in these conditions are needed. The results of one small controlled study suggest that zonisamide may have efficacy in BED with obesity. However, both topiramate and zonisamide are associated with adverse effect profiles that may limit their use in patients with eating disorders. Phenytoin may be effective in some patients with compulsive binge eating, particularly if co-morbid EEG abnormalities are present, but available data are too varied to allow definitive conclusions to be made. Carbamazepine and valproate may be effective in treating patients with bulimia nervosa or anorexia nervosa when they are used to treat an associated psychiatric (e.g. mood) or neurological (e.g. seizure) disorder; otherwise, both agents, particularly valproate, are associated with weight gain. In conclusion, AEDs have an emerging role in the management of some eating disorders.

  7. The long-term safety of antiepileptic drugs.

    PubMed

    Gaitatzis, Athanasios; Sander, Josemir W

    2013-06-01

    Antiepileptic drugs (AEDs) are used by millions of people worldwide for the treatment of epilepsy, as well as in many other neurological and psychiatric conditions. They are frequently associated with adverse effects (AEs), which have an impact on the tolerability and success of treatment. Half the people who develop intolerable AEs discontinue treatment early on after initiation, while the majority of people will continue to be exposed to their effects for long periods of time. The long-term safety of AEDs reflects their potential for chronic, cumulative dose effects; rare, but potentially serious late idiosyncratic effects; late, dose-related effects; and delayed, teratogenic or neurodevelopmental effects. These AEs can affect every body system and are usually insidious. With the exception of delayed effects, most other late or chronic AEs are reversible. To date, there is no clear evidence of a carcinogenic effect of AEDs in humans. While physicians are aware of the long-term AEs of old AEDs (the traditional liver enzyme-inducing AEDs and valproate), information about AEs of new AEDs (such as lamotrigine, levetiracetam, oxcarbazepine, topiramate or zonisamide), particularly of their teratogenic effects, has emerged over the years. Sporadic publications have raised issues about AEs of the newer AEDs eslicarbazepine, retigabine, rufinamide, lacosamide and perampanel but their long-term safety profiles may take years to be fully appreciated. Physicians should not only be aware of the late and chronic AEs of AEDs but should systematically enquire and screen for these according to the individual AED AE profile. Care should be taken for individuals with comorbid conditions that may render them more susceptible to specific AEs. Prevention and appropriate management of long-term AED AEs is expected to improve adherence to treatment, quality of life and control of epilepsy. PMID:23673774

  8. Polycystic ovary syndrome in patients on antiepileptic drugs

    PubMed Central

    Viswanathan, Lakshminarayanapuram G.; Satishchandra, Parthasarathy; Bhimani, Bipin C.; Reddy, Janardhan YC; Rama Murthy, Batchu S.; Subbakrishna, Doddaballapura K.; Sinha, Sanjib

    2016-01-01

    Objective: This study aims to discuss the prevalence of polycystic ovary (PCO) and Polycystic ovary syndrome (PCOS) in women with epilepsy (WWE) on valproate (VPA), carbamazepine (CBZ), or phenobarbitone (PB), drug naive WWE and women with bipolar affective disorder (BPAD) on VPA. Materials and Methods: This prospective study included 190 women aged 18–45 years, who had epilepsy or BPAD (on VPA), and consented for study. Patients were grouped as Group 1 (n = 40): WWE on VPA, Group 2 (n = 50): WWE on CBZ, Group 3 (n = 50): WWE on PB, Group 4 (n = 30): drug naïve WWE, and Group 5 (n = 20): women with BPAD on VPA. All women were interviewed for medical, menstrual, drug and treatment history, nature of epilepsy, and seizure control. Chi-square test and Fisher's exact test were done to compare results between the groups. Results: Fifty-two women (52/190; 27.4%) had menstrual disturbances, in which oligomenorrhea was the most common (55.8%). There was a significant difference in the occurrence of PCOS in patients on VPA versus normal population (P = 0.05) and patients on other antiepileptic drugs (AEDs) (P = 0.02). There was, however, no significant difference in the occurrence of PCO between patients on VPA and the untreated epileptic women. VPA group (Epilepsy + BPAD) had a significantly higher occurrence of obesity than other treatment groups (P = 0.043, OR = 2.11). Conclusions: The study observed significantly higher occurrence of PCO in patients on VPA compared to other AEDs and the normal population. The importance of proper clinical evaluation before initiating VPA is highlighted. PMID:27570385

  9. Antiepileptic drugs in the treatment of psychiatric disorders.

    PubMed

    Kaufman, Kenneth R

    2011-05-01

    The clinical interface between psychiatry and neurology is epilepsy; the pharmacological expression of this interface is antiepileptic drugs (AEDs), as they are used to treat both epilepsy and psychiatric disorders, especially bipolar disorders. The prevalence of psychiatric comorbidity and the risk of suicidal behavior/ideation/suicide are markedly increased in patients with epilepsy (PWE). Though AEDs receive initial indications for the treatment of epilepsy, currently the majority of AEDs are used to treat pain and psychiatric disorders. Thus in selecting the appropriate AEDs for treatment of PWE, consideration should be given to which AEDs best treat the epileptic disorder and the psychiatric comorbidity. This review is an overview of 21 AEDs in which negative psychotropic properties, approved indications in psychiatry, off-label studied uses in psychiatry, and principal uses in psychiatry are presented with literature review. A total of 40 psychiatric uses have been identified. Of the 21 AEDs reviewed, only 5 have U.S. Food and Drug Administration and/or European Medicines Agency psychiatric approval for limited uses; the majority of AEDs are used off-label. Many of these off-label uses are based on case reports, open-label studies, and poorly controlled or small-sample-size studies. In some instances, off-label use persists in the face of negative pivotal trials. Further placebo-controlled (augmentation and monotherapy) parallel-arm research with active comparators is required in the complex field of AED treatment of psychiatric disorders to minimize the treatment gap not only for PWE with psychiatric disorders, but also for psychiatric patients who would benefit from properly studied AEDs while minimizing adverse effects.

  10. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    SciTech Connect

    Zhai, Yingying; Chen, Xi; Yu, Dehai; Li, Tao; Cui, Jiuwei; Wang, Guanjun; Hu, Ji-Fan; Li, Wei

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  11. Histone Deacetylase Inhibitor Valproic Acid Promotes the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like Cells

    PubMed Central

    Kondo, Yuki; Iwao, Takahiro; Yoshihashi, Sachimi; Mimori, Kayo; Ogihara, Ruri; Nagata, Kiyoshi; Kurose, Kouichi; Saito, Masayoshi; Niwa, Takuro; Suzuki, Takayoshi; Miyata, Naoki; Ohmori, Shigeru; Nakamura, Katsunori; Matsunaga, Tamihide

    2014-01-01

    In this study, we aimed to elucidate the effects and mechanism of action of valproic acid on hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. Human induced pluripotent stem cells were differentiated into endodermal cells in the presence of activin A and then into hepatic progenitor cells using dimethyl sulfoxide. Hepatic progenitor cells were matured in the presence of hepatocyte growth factor, oncostatin M, and dexamethasone with valproic acid that was added during the maturation process. After 25 days of differentiation, cells expressed hepatic marker genes and drug-metabolizing enzymes and exhibited drug-metabolizing enzyme activities. These expression levels and activities were increased by treatment with valproic acid, the timing and duration of which were important parameters to promote differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells into hepatocytes. Valproic acid inhibited histone deacetylase activity during differentiation of human induced pluripotent stem cells, and other histone deacetylase inhibitors also enhanced differentiation into hepatocytes. In conclusion, histone deacetylase inhibitors such as valproic acid can be used to promote hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. PMID:25084468

  12. Association of Interictal Epileptiform Discharges with Sleep and Anti-Epileptic Drugs

    PubMed Central

    Mohan, Latika; Singh, Jayvardhan; Singh, Yogesh; Kathrotia, Rajesh; Goel, Arun

    2016-01-01

    Background The presence of interictal epileptiform discharges (IEDs) in electroencephalogram (EEG) is diagnostic of epilepsy. Latent IEDs are activated during sleep. Anti-epileptic drugs (AEDs) improve sleep. AEDs, sleep, and IEDs may interact and affect epilepsy management. Purpose To explore the occurrence of IEDs and its association with sleep and AED status in suspected patients of epilepsy. Methods EEG records were collected of suspected patients of epilepsy who reported to the electrophysiology laboratory of a tertiary care hospital during 1 year. The anthropometric details, clinical presentations, and AED status of the patients were recorded from the EEG records. Patients were divided into 2 categories based on whether AEDs had been started prior to the EEG evaluation (category-I) or not (category-II). The occurrences of IEDs in EEG recordings in both categories were analyzed. Results In 1 year, 138 patients were referred for diagnostic EEG evaluation. One-hundred-two patients fulfilled the inclusion criteria, of which 57 patients (53%) belonged to category-I and 45 patients (47%) belonged to category-II. Incidence of IEDs, suggestive of definite diagnosis of epilepsy in category-I was 88% and in category-II was 69%, and this difference was statistically significant (p = 0.02). Conclusion The increased proportion of IEDs in category-I patients may be due to high clinical suspicion or compounding interaction of AEDs and sleep. More extensive studies are required to delineate the complex interaction of AEDs, sleep, and IEDs so that judicious yet prompt management of epilepsy can be carried out. PMID:27780990

  13. Adjusting to a seizure-free "new normal" life following discontinuation of antiepileptic drugs during adolescence.

    PubMed

    Chiu, Ya-Ping; Lee, Tzu-Ying; Lin, Kuang-Lin; Laadt, Virginia L

    2014-04-01

    This qualitative study sought to understand how children in adolescence adjust to their newly acquired normal life without epilepsy, following discontinuation of antiepileptic drugs during this dynamic period of growth and development. Three major themes with subthemes were identified: 1) setting the body and mind free; 2) engaging in self-regulation; and 3) protection by significant others. A sense of relief from constraints related to treatment schedules, special diets, and avoiding seizure-provoking activities was expressed by all participants. Freedom from side effects of the antiepileptic drugs improved life at home and school. Most of the participants said that they were not worried about seizure recurrence but would use caution against a possible relapse. Family members also must adjust to a new lifestyle. Medical staff needs to provide support and adequate care to adolescents during their period of identity adjustment following antiepileptic drug discontinuation. PMID:24632354

  14. Breastfeeding in Children of Women Taking Antiepileptic Drugs

    PubMed Central

    Meador, Kimford J.; Baker, Gus A.; Browning, Nancy; Cohen, Morris J.; Bromley, Rebecca L.; Clayton-Smith, Jill; Kalayjian, Laura A.; Kanner, Andres; Liporace, Joyce D.; Pennell, Page B.; Privitera, Michael; Loring, David W.

    2014-01-01

    IMPORTANCE Breastfeeding is known to have beneficial effects, but concern exists that breastfeeding during maternal antiepileptic drug (AED) therapy may be harmful. We previously noted no adverse effects of breastfeeding associated with AED use on IQ at age 3 years, but IQ at age 6 years is more predictive of school performance and adult abilities. OBJECTIVES To examine the effects of AED exposure via breastfeeding on cognitive functions at age 6 years. DESIGN, SETTING, AND PARTICIPANTS Prospective observational multicenter study of long-term neurodevelopmental effects of AED use. Pregnant women with epilepsy receiving monotherapy (ie, carbamazepine, lamotrigine, phenytoin, or valproate) were enrolled from October 14, 1999, through April 14, 2004, in the United States and the United Kingdom. At age 6 years, 181 children were assessed for whom we had both breastfeeding and IQ data. All mothers in this analysis continued taking the drug after delivery. MAIN OUTCOMES AND MEASURES Differential Ability Scales IQ was the primary outcome. Secondary measures included measures of verbal, nonverbal, memory, and executive functions. For our primary analysis, we used a linear regression model with IQ at age 6 years as the dependent variable, comparing children who breastfed with those who did not. Similar secondary analyses were performed for the other cognitive measures. RESULTS In total, 42.9% of children were breastfed a mean of 7.2 months. Breastfeeding rates and duration did not differ across drug groups. The IQ at age 6 years was related to drug group (P italic> .001 [adjusted IQ worse by 7–13 IQ points for valproate compared to other drugs]), drug dosage (regression coefficient, −0.1; 95% CI, −0.2 to 0.0; P = .01 [higher dosage worse]), maternal IQ (regression coefficient, 0.2; 95% CI, 0.0 to 0.4; P = .01 [higher child IQ with higher maternal IQ]), periconception folate use (adjusted IQ 6 [95% CI, 2–10] points higher for folate, P = .005), and breastfeeding

  15. Current Status of the New Antiepileptic Drugs in Chronic Pain.

    PubMed

    Sidhu, Harpreet S; Sadhotra, Akshay

    2016-01-01

    Antiepileptic drugs (AEDs) are extensively used worldwide to treat a wide range of disorders other than epilepsy, such as neuropathic pain, migraine, and bipolar disorder. Due to this situation more than 20 new third-generation AEDs have been introduced in the market recently. The future design of new AEDs must also have potential to help in the non-epileptic disorders. The wide acceptance of second generation AEDs for the management of various non-epileptic disorders has caused the emergence of generics in the market. The wide use of approved AEDs outside epilepsy is based on both economic and scientific reasons. Bipolar disorders, migraine prophylaxis, fibromyalgia, and neuropathic pain represent the most attractive indication expansion opportunities for anticonvulsant developers, providing blockbuster revenues. Strong growth in non-epilepsy conditions will see Pfizer's Lyrica become the market leading brand by 2018. In this review, we mainly focus on the current status of new AEDs in the treatment of chronic pain and migraine prophylaxis. AEDs have a strong analgesic potential and this is demonstrated by the wide use of carbamazepine in trigeminal neuralgia and sodium valproate in migraine prophylaxis. At present, data on the new AEDs for non-epileptic conditions are inconclusive. Not all AEDs are effective in the management of neuropathic pain and migraine. Only those AEDs whose mechanisms of action are match with pathophysiology of the disease, have potential to show efficacy in non-epileptic disorder. For this better understanding of the pathophysiology of the disease and mechanisms of action of new AEDs are essential requirement before initiating pre-clinical and clinical trials. Many new AEDs show good results in the animal model and open-label studies but fail to provide strong evidence at randomized, placebo-controlled trials. The final decision regarding the clinical efficacy of the particular AEDs in a specific non-epileptic disorder should be

  16. Current Status of the New Antiepileptic Drugs in Chronic Pain

    PubMed Central

    Sidhu, Harpreet S.; Sadhotra, Akshay

    2016-01-01

    Antiepileptic drugs (AEDs) are extensively used worldwide to treat a wide range of disorders other than epilepsy, such as neuropathic pain, migraine, and bipolar disorder. Due to this situation more than 20 new third-generation AEDs have been introduced in the market recently. The future design of new AEDs must also have potential to help in the non-epileptic disorders. The wide acceptance of second generation AEDs for the management of various non-epileptic disorders has caused the emergence of generics in the market. The wide use of approved AEDs outside epilepsy is based on both economic and scientific reasons. Bipolar disorders, migraine prophylaxis, fibromyalgia, and neuropathic pain represent the most attractive indication expansion opportunities for anticonvulsant developers, providing blockbuster revenues. Strong growth in non-epilepsy conditions will see Pfizer’s Lyrica become the market leading brand by 2018. In this review, we mainly focus on the current status of new AEDs in the treatment of chronic pain and migraine prophylaxis. AEDs have a strong analgesic potential and this is demonstrated by the wide use of carbamazepine in trigeminal neuralgia and sodium valproate in migraine prophylaxis. At present, data on the new AEDs for non-epileptic conditions are inconclusive. Not all AEDs are effective in the management of neuropathic pain and migraine. Only those AEDs whose mechanisms of action are match with pathophysiology of the disease, have potential to show efficacy in non-epileptic disorder. For this better understanding of the pathophysiology of the disease and mechanisms of action of new AEDs are essential requirement before initiating pre-clinical and clinical trials. Many new AEDs show good results in the animal model and open-label studies but fail to provide strong evidence at randomized, placebo-controlled trials. The final decision regarding the clinical efficacy of the particular AEDs in a specific non-epileptic disorder should be

  17. Neuroactive Peptides as Putative Mediators of Antiepileptic Ketogenic Diets

    PubMed Central

    Giordano, Carmela; Marchiò, Maddalena; Timofeeva, Elena; Biagini, Giuseppe

    2014-01-01

    mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis. PMID:24808888

  18. Current Status of the New Antiepileptic Drugs in Chronic Pain

    PubMed Central

    Sidhu, Harpreet S.; Sadhotra, Akshay

    2016-01-01

    Antiepileptic drugs (AEDs) are extensively used worldwide to treat a wide range of disorders other than epilepsy, such as neuropathic pain, migraine, and bipolar disorder. Due to this situation more than 20 new third-generation AEDs have been introduced in the market recently. The future design of new AEDs must also have potential to help in the non-epileptic disorders. The wide acceptance of second generation AEDs for the management of various non-epileptic disorders has caused the emergence of generics in the market. The wide use of approved AEDs outside epilepsy is based on both economic and scientific reasons. Bipolar disorders, migraine prophylaxis, fibromyalgia, and neuropathic pain represent the most attractive indication expansion opportunities for anticonvulsant developers, providing blockbuster revenues. Strong growth in non-epilepsy conditions will see Pfizer’s Lyrica become the market leading brand by 2018. In this review, we mainly focus on the current status of new AEDs in the treatment of chronic pain and migraine prophylaxis. AEDs have a strong analgesic potential and this is demonstrated by the wide use of carbamazepine in trigeminal neuralgia and sodium valproate in migraine prophylaxis. At present, data on the new AEDs for non-epileptic conditions are inconclusive. Not all AEDs are effective in the management of neuropathic pain and migraine. Only those AEDs whose mechanisms of action are match with pathophysiology of the disease, have potential to show efficacy in non-epileptic disorder. For this better understanding of the pathophysiology of the disease and mechanisms of action of new AEDs are essential requirement before initiating pre-clinical and clinical trials. Many new AEDs show good results in the animal model and open-label studies but fail to provide strong evidence at randomized, placebo-controlled trials. The final decision regarding the clinical efficacy of the particular AEDs in a specific non-epileptic disorder should be

  19. Changes in Antiepileptic Drug Prescribing Patterns in Large Institutions: Preliminary Results of a Five-Year Experience.

    ERIC Educational Resources Information Center

    Poindexter, Ann R.; And Others

    1993-01-01

    Antiepileptic drug prescriptions were analyzed for 337 institutionalized individuals with mental retardation, over 54 months. Results indicated decreasing numbers of individuals receiving (1) more than 2 antiepileptic drugs concurrently, and (2) barbiturates. Over 90% of a group undergoing barbiturate taper maintained the same or improved seizure…

  20. Use of antiepileptic drugs during pregnancy and risk of spontaneous abortion and stillbirth: population based cohort study

    PubMed Central

    Kjaersgaard, Maiken Ina Siegismund; Pedersen, Henrik Søndergaard; Howards, Penelope P; Sørensen, Merete Juul; Olsen, Jørn; Parner, Erik Thorlund; Pedersen, Lars Henning; Vestergaard, Mogens; Christensen, Jakob

    2014-01-01

    Objective To determine whether use of antiepileptic drugs during pregnancy may increase the risk of spontaneous abortion or stillbirth. Design Population based cohort study. Setting Register based study in Denmark, 1997-2008. Participants 983 305 pregnancies identified in the Danish medical birth register and the Danish national hospital discharge register from 1 February 1997 to 31 December 2008 were linked to the Danish Register of Medicinal Product Statistics to obtain information on use of antiepileptic drugs. Main outcome measures Risk ratio of spontaneous abortion and stillbirth after use of antiepileptic drugs during pregnancy, estimated by using binomial regression adjusting for potential confounders of maternal age, cohabitation, income, education, history of severe mental disorder, and history of drug misuse. Results Antiepileptic drugs were used in a total of 4700 (0.5%) pregnancies. 16 out of 100 pregnant women using antiepileptics and 13 out of 100 pregnant women not using antiepileptics experienced a spontaneous abortion. After adjusting for potential confounders pregnant women using antiepileptics had a 13% higher risk of spontaneous abortions than pregnant women not using antiepileptics (adjusted risk ratio 1.13, 95% confidence interval 1.04 to 1.24). However, the risk of spontaneous abortion was not increased in women with an epilepsy diagnosis (0.98, 0.87 to 1.09), only in women without a diagnosis of epilepsy (1.30, 1.14 to 1.49). In an analysis including women with at least two pregnancies with discordant antiepileptic drug use (for example, use in the first pregnancy but not in the second), the adjusted hazard ratio for spontaneous abortion was 0.83 (0.69 to 1.00) for exposed pregnancies compared with unexposed pregnancies. Stillbirth was identified in 18 women who used antiepileptic drugs (unadjusted risk ratio 1.29, 0.80 to 2.10). Conclusion Among women with epilepsy and when analysing the risk in antiepileptic drug discordant pregnancies

  1. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    PubMed

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  2. Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid

    PubMed Central

    Vázquez-Calvo, Ángela; Martín-Acebes, Miguel A.; Sáiz, Juan-Carlos; Ngo, Nhi; Sobrino, F.; de la Torre, Juan Carlos

    2013-01-01

    Valproic acid (VPA), a short chain fatty acid commonly used for treatment of neurological disorders, has been shown to inhibit production of infectious progeny of different enveloped viruses including the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In this study we have investigated the mechanisms by which VPA inhibits LCMV multiplication in cultured cells. VPA reduced production of infectious LCMV progeny and virus propagation without exerting a major blockage on either viral RNA or protein synthesis, but rather affecting the cell release and specific infectivity of LCMV progeny from infected cells. Our results would support the repurposing of VPA as a candidate antiviral drug to combat arenavirus infections. PMID:23735299

  3. What We Have Learned about Autism Spectrum Disorder from Valproic Acid

    PubMed Central

    Hu, Bin

    2013-01-01

    Two recent epidemiological investigations in children exposed to valproic acid (VPA) treatment in utero have reported a significant risk associated with neurodevelopmental disorders and autism spectrum disorder (ASD) in particular. Parallel to this work, there is a growing body of animal research literature using VPA as an animal model of ASD. In this focused review we first summarize the epidemiological evidence linking VPA to ASD and then comment on two important neurobiological findings linking VPA to ASD clinicopathology, namely, accelerated or early brain overgrowth and hyperexcitable networks. Improving our understanding of how the drug VPA can alter early development of neurological systems will ultimately improve our understanding of ASD. PMID:24381784

  4. Antiepileptic drugs for the treatment of neuropathic pain: A systematic review

    PubMed Central

    Vargas-Espinosa, Maríam L.; Sanmartí-García, Gemma; Vázquez-Delgado, Eduardo

    2012-01-01

    Many therapies have been proposed for the management of neuropathic pain, and they include the use of different antiepileptic drugs. However, the lack of high quality studies indicates that results on the different neuropathic disorders under study do not recommend a particular drug treatment. This study makes a systematic review of the published literature on the use of several antiepileptic drugs to treat neuropathic pain, and has the objective of considering both its clinical characteristics and pharmacological use, which will depend on their level of scientific evidence and will follow the principles of evidence-based dentistry. The articles were stratified according to their scientific evidence using the SORT criteria (Strength of Recommendation Taxonomy), and it included those articles that only have level 1 or 2. Randomized clinical trials were stratified according to their level of quality using the JADAD scale, an instrument described by Jadad et al. (7). to assess the quality of clinical trials, while studies with a level below 3 were discarded. Recently, type A or B recommendations are given in favor or against the use of antiepileptic drugs to treat neuropathic pain on the basis of their scientific quality. Key words:Neuropathic pain, antiepileptic drugs (AEDs), trigeminal neuralgia, glossopharyngeal neuralgia, post- herpetic neuralgia, burning mouth syndrome, persistent idiopathic facial pain. PMID:22549682

  5. Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth

    PubMed Central

    Dean, J; Hailey, H; Moore, S; Lloyd, D; Turnpenny, P; Little, J

    2002-01-01

    Objective: To investigate the frequency of neonatal and later childhood morbidity in children exposed to antiepileptic drugs in utero. Design: Retrospective population based study. Setting: Population of the Grampian region of Scotland. Participants: Mothers taking antiepileptic drugs in pregnancy between 1976 and 2000 were ascertained from hospital obstetric records and 149 (58% of those eligible) took part. They had 293 children whose health and neurodevelopment were assessed. Main outcome measures: Frequencies of neonatal withdrawal, congenital malformations, childhood onset medical problems, developmental delay, and behaviour disorders. Results: Neonatal withdrawal was seen in 20% of those exposed to antiepileptic drugs. Congenital malformations occurred in 14% of exposed pregnancies, compared with 5% of non-exposed sibs, and developmental delay in 24% of exposed children, compared with 11% of non-exposed sibs. After excluding cases with a family history of developmental delay, 19% of exposed children and 3% of non-exposed sibs had developmental delay, 31% of exposed children had either major malformations or developmental delay, 52% of exposed children had facial dysmorphism compared with 25% of those not exposed, 31% of exposed children had childhood medical problems (13% of non-exposed sibs), and 20% had behaviour disorders (5% of non-exposed). Conclusion: Prenatal antiepileptic drug exposure in the setting of maternal epilepsy is associated with developmental delay and later childhood morbidity in addition to congenital malformation. PMID:11950853

  6. Antiepileptic Medications in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Hirota, Tomoya; Veenstra-VanderWeele, Jeremy; Hollander, Eric; Kishi, Taro

    2014-01-01

    Electroencephalogram-recorded epileptiform activity is common in children with autism spectrum disorder (ASD), even without clinical seizures. A systematic literature search identified 7 randomized, placebo-controlled trials of antiepileptic drugs (AEDs) in ASD (total n = 171), including three of valproate, and one each of lamotrigine,…

  7. Foetal Antiepileptic Drug Exposure and Verbal versus Non-Verbal Abilities at Three Years of Age

    ERIC Educational Resources Information Center

    Meador, Kimford J.; Baker, Gus A.; Browning, Nancy; Cohen, Morris J.; Clayton-Smith, Jill; Kalayjian, Laura A.; Kanner, Andres; Liporace, Joyce D.; Pennell, Page B.; Privitera, Michael; Loring, David W.

    2011-01-01

    We previously reported that foetal valproate exposure impairs intelligence quotient. In this follow-up investigation, we examined dose-related effects of foetal antiepileptic drug exposure on verbal and non-verbal cognitive measures. This investigation is an ongoing prospective observational multi-centre study in the USA and UK, which has enrolled…

  8. Human placental perfusion method in the assessment of transplacental passage of antiepileptic drugs

    SciTech Connect

    Myllynen, Paeivi . E-mail: paivi.k.myllynen@oulu.fi; Pienimaeki, Paeivi; Vaehaekangas, Kirsi

    2005-09-01

    Epilepsy is one of the most common neurological diseases, affecting about 0.5 to 1% of pregnant women. It is commonly accepted that older antiepileptic drugs bear teratogenic potential. So far, no agreement has been reached about the safest antiepileptic drug during pregnancy. It is known that nearly all drugs cross the placenta at least to some extent. Nowadays, there is very little information available of the pharmacokinetics of drugs in the feto-placental unit. Detailed information about drug transport across the placenta would be valuable for the development of safe and effective treatments. For reasons of safety, human studies on placental transfer are restricted to a limited number of drugs. Interspecies differences limit the extrapolation of animal data to humans. Several in vitro methods for the study of placental transfer have been developed over the past decades. The placental perfusion method is the only experimental method that has been used to study human placental transfer of substances in organized placental tissue. The aim of this article is to review human placental perfusion data on antiepileptic drugs. According to perfusion data, it seems that most of the antiepileptic drugs are transferred across the placenta meaning significant fetal exposure.

  9. The Relationship among Side Effects Associated with Anti-Epileptic Medications in Those with Intellectual Disability

    ERIC Educational Resources Information Center

    Sipes, Megan; Matson, Johnny L.; Belva, Brian; Turygin, Nicole; Kozlowski, Alison M.; Horovitz, Max

    2011-01-01

    Seizures are fairly common in those with intellectual disabilities. In order to treat these seizures, antiepileptic drugs (AEDs) are often used and in many cases are effective. However, these medications often create a variety of associated side effects. In order to monitor these side effects, measures such as the SEIZES-B have been used. While…

  10. Psychotropic and Antiepileptic Drug Treatment in Early Childhood Special Education. Final Report.

    ERIC Educational Resources Information Center

    Gadow, Kenneth D.

    The effectiveness of psychotropic and antiepileptic drug treatment was investigated with approximately 2500 children receiving educational services in early childhood special education programs. The study consisted of three phases: phase 1 in which all teachers were surveyed to determine the prevalence of drug therapy and patterns of usage, phase…

  11. [Social aspects of epilepsy: marriage, pregnancy, driving, antiepileptic drug withdrawal and against social stigma].

    PubMed

    Tsuji, Sadatoshi

    2004-11-01

    Persons with epilepsy need adequate advice and effective counselling about issues such as marriage, pregnancy, risks of inheriting epilepsy, driving, employment and antiepileptic drug withdrawal, because these persons are not receiving important information and education about their condition and possible adverse effects of treatment. Furthermore, women with epilepsy have increased rates of pregnancy complications and poor fetal outcomes including congenital malformations and developmental delay related to both their epilepsy and antiepileptic drugs. However, approximately 90% of all women with epilepsy undergo normal pregnancy and give birth to children free of birth defects. Pregnancy is generally safe in women with epilepsy. The study of long-term prognosis of childhood-onset epilepsy in Japan shows that the majority of these patients have lower levels of educational background as well as employment and marital status compared with the general population (Wakamoto H. et al). Of patients with epilepsy, 60% to 70% achieve control with antiepileptic medication. However, several antiepileptic drug withdrawal studies show variable rates of success, with relapse rates ranging from 12% to 63% (Britton J.W.). Driving is listed as major problem in persons with epilepsy. However, the patients with seizure-free more than two years have been able to get the driver's license since June, 2002. Social attitudes towards epilepsy cause more distress to the patient than the disease itself. We should realize that persons with epilepsy are normal or near-normal. To ameliorate the social stigma against epilepsy, continuous and repetitive educational efforts would be needed.

  12. VAC chemotherapy with valproic acid for refractory/relapsing small cell lung cancer: a phase II study

    PubMed Central

    Lafitte, Jean-Jacques; Scherpereel, Arnaud; Ameye, Lieveke; Paesmans, Marianne; Meert, Anne-Pascale; Colinet, Benoit; Tulippe, Christian; Willems, Luc; Leclercq, Nathalie; Sculier, Jean-Paul

    2015-01-01

    Salvage chemotherapy (CT) for relapsing or refractory small cell lung cancer (SCLC) remains disappointing. In vitro experiments showed that valproic acid increases apoptosis of SCLC cell lines exposed to doxorubicin, vindesine and bis(2-chloroethyl)amine. The primary objective of this phase II study was to determine whether epigenetic modulation with valproic acid in addition to a doxorubicin, vindesine and cyclophosphamide (VAC) regimen improves 6-month progression-free survival (PFS). Patients with pathologically proven SCLC refractory to prior platinum derivatives and etoposide were eligible. After central registration, patients received VAC plus daily oral valproic acid. 64 patients were registered, of whom six were ineligible. Seven patients did not receive any CT, leaving 51 patients assessable for the primary end-point. The objective response rate was 19.6%. Median PFS was 2.8 months (95% CI 2.5–3.6 months) and 6-month PFS was 6%. Median survival time was 5.9 months (95% CI 4.7–7.5 months). Toxicity was mainly haematological, with 88% and 26% grade 3–4 neutropenia and thrombopenia, respectively. Despite an interesting response rate, the addition of valproic acid to VAC did not translate into adequate PFS in relapsing SCLC or SCLC refractory to platinum–etoposide. PMID:27730152

  13. Valproic acid-induced acute pancreatitis in pediatric age: case series and review of literature

    PubMed Central

    COFINI, M.; QUADROZZI, F.; FAVORITI, P.; FAVORITI, M.; COFINI, G.

    2015-01-01

    Valproic acid (VPA) is commonly prescribed medication for epilepsy, migraine and bipolar disorder. Although the common adverse effect associated with VPA are typically benign, less common adverse effect can occur; these include hepatotixicity, teratogenicity and acute pancreatitis (AP). VPA-induced pancreatitis does not depend on valproic acid serum level and may occur anytime after onset of therapy. Re-challenge with VPA is dangerous and should be avoided. The diagnosis of VPA-induced pancreatitis seems to be underestimated because of difficulties in determining the causative agent and the need for a retrospective re-evaluation of the causative factor. More of idiopathic pancreatitis should be a drug-induced pancreatitis. We report four cases of VPA-induced AP found in a group of 52 cases of AP in children come to our attention from January 2008 to December 2012. The aim of these reports is to point out our experience about clinical presentation, diagnosis, management, outcome in children with VPA-induced AP and review of literature. PMID:26712070

  14. Choleretic effect of structural analogs of valproic acid in the rat.

    PubMed

    Watkins, J B; Klaassen, C D

    1983-03-01

    A comparison of structure-choleretic activity relationship has been made for several branched- and straight-chain carboxylic acids including valproic acid. Cumulative bile flow was 13.8, 23.8, 29.4 and 14.9 ml/4hr/kg body weight for dimethyl-, diethyl-, dipropyl- (valproic acid), and dibutyl-acetic acid, respectively, after iv administration of approximately equimolar doses (1100 mumoles/kg). Except for dibutylacetic acid, maximal bile flow increased from control rates of 50-60 to 120-140 microliters/min/kg. Administration of higher doses of 2,2-dimethylbutanoic acid and 2-ethylbutanoic acid did not increase maximal bile flow above 125-140 microliters/min/kg but did prolong the duration of choleresis. Maximal and cumulative bile flows increased with length of carboxylic acid chain for 2,2-dimethyl substituted acids (2,2-dimethylacetic acid to 2,2-dimethylbutanoic acid). If the two methyl groups were on C-3 (3-methylbutanoic acid), no change in bile flow was observed. Straight-chain acids from C-5 to C-11 and pent-4-enoic acid did not alter bile flow. Thus, the effectiveness of several branched-chain carboxylic acids as choleretics parallel their ability as anticonvulsants. In contrast, the straight-chain acids which cause central nervous system depression have no choleretic activity.

  15. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    SciTech Connect

    Li, Xiaofei; Zhu, Yanshuang; He, Huabin; Lou, Lianqing; Ye, Weiwei; Chen, Yongxin; Wang, Jinghe

    2013-06-28

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.

  16. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity.

  17. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity. PMID:25732953

  18. EPR studies of free radicals in A-2058 human melanoma cells treated by valproic acid and 5,7-dimethoxycoumarin.

    PubMed

    Zdybel, Magdalena; Chodurek, Ewa; Pilawa, Barbara

    2014-01-01

    Free radicals in A-2058 human melanoma cells were studied by the use of electron paramagnetic resonance (EPR) spectroscopy. The aim of this work was to determine the changes in relative free radical concentrations in tumor A-2058 cells after treatment by valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC). The influences of VPA and DMC on free radicals in A-2058 cells were compared with those for human melanoma malignum A-375 and G-361 cells, which were tested by us earlier. Human malignant melanoma A-2058 cells were exposed to interactions with VPA, DMC, and both VPA and DMC. The tumor cells A-2058 were purchased from LGC Standards (Lomianki, Poland), and they were grown in the standard conditions: at 37°C and in an atmosphere containing 95% air and 5% CO2, in the Minimum Essential Medium Eagle (MEM, Sigma-Aldrich). The A-2058 cells were incubated with VPA (1 mM) and DMC (10 μM) for 4 days. The first-derivative EPR spectra of the control A-2058 cells, and the cells treated with VPA, DMC, and both VPA and DMC, were measured by the electron paramagnetic resonance spectrometer of Radiopan (Poznań, Poland) with microwaves from an X-band (9.3 GHz). The parameters of the EPR lines: amplitudes (A), integral intensities (I), line widths (ΔBpp), and g-factors, were analyzed. The changes of amplitudes and line widths with microwave power increasing from 2.2 to 70 mW were drawn evaluated, o-Semiquinone free radicals of melanin biopolymer are mainly responsible for the EPR lines of A-2058 melanoma malignum cells. The amounts of free radicals in A-2058 cells treated with VPA, and both VPA and DMC, were lower than in the untreated control cells. Application of the tested substances (VPA, and both VPA and DMC) as the antitumor compounds was discussed. DMC without VPA did not decrease free radicals concentration in A-2058 cells. The studies con-firmed that EPR spectroscopy may be used to examine interactions of free radicals with antitumor compounds.

  19. New avenue in the treatment of temporal lobe epilepsy by classical anti-epileptics: A hypothetical establishment of executioner Caspase 3 inactivation by molecular modeling

    PubMed Central

    Aanandhi, M. Vijey; Bhattacherjee, Debojit; Ray, Anirban; George, P. Samuel Gideon

    2015-01-01

    Patients with temporal lobe epilepsy (TLE) are prescribed first-line antiepileptic drugs and surgery to the management of this disorder. Unfortunately, the surgical treatment has been shown to be beneficial for the selected patients but fails to provide a seizure-free outcome in 20–30% of TLE patients. In our present study, we investigate the possibilities of marketed antiepileptic drugs in a different manner to improve the present situation in TLE. Molecular docking simulation study and various open source computational tools were used to perform the study. AutoDock 4.2 MGL tools, Pymol visualize tools, Patch dock server, and Swarm Dock servers (protein-protein docking) were used to perform the molecular modeling. FTsite and computed atlas of surface topography of protein open source server were used to understand the pocket and ligand binding information respectively. Toxtree application was used to determine the toxicity profile of the drug by Cramers rule. The obtained molecular docking models (Caspase 3, Procaspase 8, and Fas-associated death domain [FADD]) with selected compounds (Clonazepam, Clobazepam, and Retigabine) showed promising trio blocking event of FADD, Caspase 3, and Procaspase 8 (−6.66 kcal, −8.1 kcal, 6.46 kcal) by Clonazepam respectively. Protein-protein interaction study (Swarm Dock, Patch Dock server) indicated promising results that helped to establish our hypothesis. Toxtree showed a quantitative structure toxicity relationship report that helps to clarify the toxicity of the selected compounds. Clonazepam showed a trio inhibition property that may lead to develop a new era of the new generation benzodiazepine prototype drugs in the future. Filtered compounds will further process for higher in vitro, in vivo models for better understanding of the mechanism. PMID:25878976

  20. Antiepileptic drug use in a nursing home setting: a retrospective study in older adults

    PubMed Central

    Callegari, Camilla; Ielmini, Marta; Bianchi, Lucia; Lucano, Melissa; Bertù, Lorenza; Vender, Simone

    2016-01-01

    Summary The authors set out to examine qualitatively the use of antiepileptic drugs (AEDs) in a population of older adults in a nursing home setting, evaluating aspects such as specialist prescriptions and changes in dosage. This retrospective prevalence study was carried out in a state-funded nursing home that provides care and rehabilitation for elderly people. The first objective of the study was to determine the prevalence of AED use in this population. The second objective was to monitor AED dosage modifications during the fifteen-month study period, focusing on the safety and the tolerability of AEDs. In the period of time considered, 129 of 402 monitored patients received at least one anti-epileptic therapy. The prevalence of AED use was therefore 32%. Gabapentin was found to be the most commonly prescribed drug, with a frequency of 29%, and it was used mainly for anxiety disorders, psychosis, neuropathic pain and mood disorders. PMID:27358221

  1. Role of adenosine in the antiepileptic effects of deep brain stimulation

    PubMed Central

    Miranda, Maisa F.; Hamani, Clement; de Almeida, Antônio-Carlos G.; Amorim, Beatriz O.; Macedo, Carlos E.; Fernandes, Maria José S.; Nobrega, José N.; Aarão, Mayra C.; Madureira, Ana Paula; Rodrigues, Antônio M.; Andersen, Monica L.; Tufik, Sergio; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine. PMID:25324724

  2. The involvement of neuronal nitric oxide synthase in the anti-epileptic action of curcumin on pentylenetetrazol-kindled rats.

    PubMed

    Zhu, Wenting; Su, Jing; Liu, Jing; Jiang, Changbin

    2015-01-01

    In this study, it was investigated whether a NO signaling pathway is involved in the anti-epileptic effect of curcumin on pentylenetetrazol (PTZ)-kindled rats. PTZ-kindled rats received different doses of curcumin that were administered intraperitoneally for 24 days. Either a non-selective inhibitor of nitric oxide synthase (NOS) (N-nitro-L-arginine methyl ester (L-NAME)), a selective inhibitor of neuronal NOS (7-Nitroindazole (7-NI)), a selective inhibitor of inducible NOS (aminoguanidine (AG)), or a NO precursor (L-arginine (L-ARG)) was administered chronically to evaluate the role of NO in curcumin's anti-seizure effect. A chronic administration of curcumin (200 mg/kg) was most effective for decreasing the mean frequency of epileptiform discharge. Furthermore, a pretreatment with L-NAME or 7-NI augmented the anti-epileptic effect of curcumin. In contrast, AG failed to significantly alter the anti-epileptic effect of curcumin. A pretreatment with L-ARG temporally reversed the anti-epileptic effect of curcumin in the early stage, but in the late stage, it potentiated curcumin's anti-epileptic effect. These findings suggest that the L-arginine-nitric oxide pathway may be involved in the anti-epileptic properties of curcumin, and that the role of nNOS (and not iNOS) is prominent in this neuroprotective feature. PMID:26406082

  3. Inhibition of Enveloped Virus Infection of Cultured Cells by Valproic Acid▿ †

    PubMed Central

    Vázquez-Calvo, Ángela; Saiz, Juan-Carlos; Sobrino, Francisco; Martín-Acebes, Miguel A.

    2011-01-01

    Valproic acid (VPA) is a short-chain fatty acid commonly used for treatment of neurological disorders. As VPA can interfere with cellular lipid metabolism, its effect on the infection of cultured cells by viruses of seven viral families relevant to human and animal health, including eight enveloped and four nonenveloped viruses, was analyzed. VPA drastically inhibited multiplication of all the enveloped viruses tested, including the zoonotic lymphocytic choriomeningitis virus and West Nile virus (WNV), while it did not affect infection by the nonenveloped viruses assayed. VPA reduced vesicular stomatitis virus infection yield without causing a major blockage of either viral RNA or protein synthesis. In contrast, VPA drastically abolished WNV RNA and protein synthesis, indicating that this drug can interfere the viral cycle at different steps of enveloped virus infection. Thus, VPA can contribute to an understanding of the crucial steps of viral maturation and to the development of future strategies against infections associated with enveloped viruses. PMID:21106740

  4. Resveratrol prevents oxidative damage and loss of sperm motility induced by long-term treatment with valproic acid in Wistar rats.

    PubMed

    Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Finamor, Isabela A; Glanzner, Werner G; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Valproic acid (VPA) is a drug widely use for the treatment of epilepsy in both children and adults. Evidence suggests that long-term use of VPA may lead to an impairment in the male reproductive function. Oxidative stress is considered to play a major role in VPA associated toxicity. In the present work, we demonstrated that the natural antioxidant compound resveratrol (RSV) can be use to prevent VPA oxidative damage. Wistar rats treated with VPA (400mgkg(-1)) by gavage for 28days showed decrease in sperm motility accompanied by increase in oxidative damage to lipids and proteins. Additionally, VPA administration leaded to depletion of reduced glutathione and decrease in total antioxidant potential in testes and epididymides of Wistar rats. The co-administration of RSV (10mgkg(-1)) efficiently prevented VPA pro-oxidant effects. In summary, RSV was shown to protect the reproductive system from the damage induced by VPA. Altogether, our data strongly suggests that RSV administration might be a valuable strategy to minimize reproductive impairment in patients requiring long-term VPA treatment.

  5. Resveratrol prevents oxidative damage and loss of sperm motility induced by long-term treatment with valproic acid in Wistar rats.

    PubMed

    Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Finamor, Isabela A; Glanzner, Werner G; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Valproic acid (VPA) is a drug widely use for the treatment of epilepsy in both children and adults. Evidence suggests that long-term use of VPA may lead to an impairment in the male reproductive function. Oxidative stress is considered to play a major role in VPA associated toxicity. In the present work, we demonstrated that the natural antioxidant compound resveratrol (RSV) can be use to prevent VPA oxidative damage. Wistar rats treated with VPA (400mgkg(-1)) by gavage for 28days showed decrease in sperm motility accompanied by increase in oxidative damage to lipids and proteins. Additionally, VPA administration leaded to depletion of reduced glutathione and decrease in total antioxidant potential in testes and epididymides of Wistar rats. The co-administration of RSV (10mgkg(-1)) efficiently prevented VPA pro-oxidant effects. In summary, RSV was shown to protect the reproductive system from the damage induced by VPA. Altogether, our data strongly suggests that RSV administration might be a valuable strategy to minimize reproductive impairment in patients requiring long-term VPA treatment. PMID:27432062

  6. Pharmacodynamic and pharmacokinetic analysis of CNS-active constitutional isomers of valnoctamide and sec-butylpropylacetamide--Amide derivatives of valproic acid.

    PubMed

    Mawasi, Hafiz; Shekh-Ahmad, Tawfeeq; Finnell, Richard H; Wlodarczyk, Bogdan J; Bialer, Meir

    2015-05-01

    Valnoctamide (VCD) and sec-butylpropylacetamide (SPD) are CNS-active closely related amide derivatives of valproic acid with unique anticonvulsant activity. This study evaluated how small chemical changes affect the pharmacodynamics (PD; anticonvulsant activity and teratogenicity) and pharmacokinetics (PK) of three constitutional isomers of SPD [sec-butylisopropylacetamide (SID) and tert-butylisopropylacetamide (TID)] and of VCD [tert-butylethylacetamide (TED)]. The anticonvulsant activity of SID, TID, and TED was comparatively evaluated in several rodent anticonvulsant models. The PK-PD relationship of SID, TID, and TED was evaluated in rats, and their teratogenicity was evaluated in a mouse strain highly susceptible to teratogen-induced neural tube defects (NTDs). sec-Butylisopropylacetamide and TID have a similar PK profile to SPD which may contribute to their similar anticonvulsant activity. tert-Butylethylacetamide had a better PK profile than VCD (and SPD); however, this did not lead to a superior anticonvulsant activity. sec-Butylisopropylacetamide and TED did not cause NTDs at doses 4-7 times higher than their anticonvulsant ED50 values. In rats, SID, TID (ip), and TED exhibited a broad spectrum of anticonvulsant activity. However, combined anticonvulsant analysis in mice and rats shows SID as the most potent compound with similar activity to that of SPD, demonstrating that substitution of the isobutyl moiety in the SPD or VCD molecule by tert-butyl as well as a propyl-to-isopropyl replacement in the SPD molecule did not majorly affect the anticonvulsant activity.

  7. Modular glass chip system measuring the electric activity and adhesion of neuronal cells--application and drug testing with sodium valproic acid.

    PubMed

    Koester, Philipp Julian; Buehler, Sebastian Moritz; Stubbe, Marco; Tautorat, Carsten; Niendorf, Mathias; Baumann, Werner; Gimsa, Jan

    2010-06-21

    We developed a modular neurochip system by combining a small (16x16 mm2) glass neurochip (GNC) with a homemade head stage and commercial data acquisition hardware and software. The system is designed for the detection of the electric activity of cultivated nerve or muscle cells by a 52-microelectrode array (MEA). In parallel, cell adhesion can be registered from the electric impedance of an interdigitated electrode structure (IDES). The GNC was tested with various cell lines and primary cells. It is fully autoclavable and re-useable. Murine embryonic primary cells were used as a model system to correlate the electric activity and adhesion of neuronal networks in a drug test with sodium valproic acid. The test showed the advantage of the parallel IDES and MEA measurements, i.e. the parallel detection of cytotoxic and neurotoxic effects. Toxic exposure of the cells during neuronal network formation allows for the characterization of developmental neurotoxic effects even at drug concentrations below the EC50-value for acute neurotoxic effects. At high drug concentrations, the degree of cytotoxic damage can still be assessed from the IDES data in the event that no electric activity develops. The GNC provides optimal cell culture conditions for up to months in combination with full microscopic observability. The 4'' glass wafer technology allows for a high precision of the GNC structures and an economic production of our new system that can be applied in general and developmental toxicity tests as well as in the search for neuro-active compounds.

  8. Evaluation of antiepileptic activity of chloroform extract of Acalypha fruticosa in mice

    PubMed Central

    Govindu, Sumalatha; Adikay, Sreedevi

    2014-01-01

    Aim: The aim of the present study is to evaluate the antiepileptic activity of chloroform extract of aerial parts of Acalypha fruticosa in mice. Materials and Methods: The antiepileptic activity of chloroform extract of A. fruticosa at the doses of 30, 100 and 300 mg/kg, p.o. was evaluated by maximum electroshock (MES), pentylenetetrazole (PTZ) and isoniazid (INH)-induced convulsions in mice. Statistical analysis was carried out by one-way analysis of variance followed by Dunnett's test. Results: In MES method, the chloroform extract significantly protected the mice from convulsions induced by electroshock method in a dose-dependent manner and exhibited more activity at the dose of 300 mg/kg when compared with diazepam treated animals. In PTZ method, the extract inhibited convulsions in mice potent than phenobarbitone sodium. In INH method, it delayed the latency of convulsions in mice in a dose-dependent manner but failed to protect the mice against mortality. Conclusion: The chloroform extract exhibited significant and dose-dependent antiepileptic activity, which may be due to the presence of antioxidant principles like flavanoids. PMID:24761113

  9. Mexiletine and its Interactions with Classical Antiepileptic Drugs: An Isobolographic Analysis.

    PubMed

    Borowicz-Reutt, Kinga K; Banach, Monika; Piskorska, Barbara

    2016-05-01

    Using the mouse maximal electroshock test, the reference model of tonic-clonic seizures, the aim of the present study was to determine the type of interaction between mexiletine (a class IB antiarrhythmic drug) and classical antiepileptics: valproate, carbamazepine, phenytoin, and phenobarbital. Isobolographic analysis of obtained data indicated antagonistic interactions between mexiletine and valproate (for fixed ratio combinations of 1:1 and 3:1). Additivity was observed between mexiletine and valproate applied in proportion of 1:3 as well as between mexiletine and remaining antiepileptics for the fixed ratios of 1:3, 1:1, and 3:1. Neither motor performance nor long-term memory were impaired by mexiletine or antiepileptic drugs regardless of whether they were administered singly or in combination. Mexiletine did not significantly affected brain concentrations of carbamazepine, phenobarbital or phenytoin. In contrast, the antiarrhythmic drug decreased by 23 % the brain level of valproate. This could be, at least partially, the reason of antagonistic interaction between the two drugs. In conclusion, the observed additivity suggests that mexiletine can be safely applied in epileptic patients treated with carbamazepine, phenytoin or phenobarbital. Because of undesirable pharmacodynamics and pharmacokinetic interactions with valproate, mexiletine should not be used in such combinations. PMID:26738990

  10. Brain Graph Topology Changes Associated with Anti-Epileptic Drug Use.

    PubMed

    Haneef, Zulfi; Levin, Harvey S; Chiang, Sharon

    2015-06-01

    Neuroimaging studies of functional connectivity using graph theory have furthered our understanding of the network structure in temporal lobe epilepsy (TLE). Brain network effects of anti-epileptic drugs could influence such studies, but have not been systematically studied. Resting-state functional MRI was analyzed in 25 patients with TLE using graph theory analysis. Patients were divided into two groups based on anti-epileptic medication use: those taking carbamazepine/oxcarbazepine (CBZ/OXC) (n=9) and those not taking CBZ/OXC (n=16) as a part of their medication regimen. The following graph topology metrics were analyzed: global efficiency, betweenness centrality (BC), clustering coefficient, and small-world index. Multiple linear regression was used to examine the association of CBZ/OXC with graph topology. The two groups did not differ from each other based on epilepsy characteristics. Use of CBZ/OXC was associated with a lower BC. Longer epilepsy duration was also associated with a lower BC. These findings can inform graph theory-based studies in patients with TLE. The changes observed are discussed in relation to the anti-epileptic mechanism of action and adverse effects of CBZ/OXC.

  11. Valproic Acid

    MedlinePlus

    ... tablet, a sprinkle capsule (capsule that contains small beads of medication that can be sprinkled on food), ... you can open the capsules and sprinkle the beads they contain on a teaspoonful of soft food, ...

  12. Valproic acid mediates miR-124 to down-regulate a novel protein target, GNAI1.

    PubMed

    Oikawa, Hirotaka; Goh, Wilson W B; Lim, Vania K J; Wong, Limsoon; Sng, Judy C G

    2015-12-01

    Valproic acid (VPA) is an anti-convulsant drug that is recently shown to have neuroregenerative therapeutic actions. In this study, we investigate the underlying molecular mechanism of VPA and its effects on Bdnf transcription through microRNAs (miRNAs) and their corresponding target proteins. Using in silico algorithms, we predicted from our miRNA microarray and iTRAQ data that miR-124 is likely to target at guanine nucleotide binding protein alpha inhibitor 1 (GNAI1), an adenylate cyclase inhibitor. With the reduction of GNAI1 mediated by VPA, the cAMP is enhanced to increase Bdnf expression. The levels of GNAI1 protein and Bdnf mRNA can be manipulated with either miR-124 mimic or inhibitor. In summary, we have identified a novel molecular mechanism of VPA that induces miR-124 to repress GNAI1. The implication of miR-124→GNAI1→BDNF pathway with valproic acid treatment suggests that we could repurpose an old drug, valproic acid, as a clinical application to elevate neurotrophin levels in treating neurodegenerative diseases.

  13. Determination of a selection of anti-epileptic drugs and two active metabolites in whole blood by reversed phase UPLC-MS/MS and some examples of application of the method in forensic toxicology cases.

    PubMed

    Karinen, Ritva; Vindenes, Vigdis; Hasvold, Inger; Olsen, Kirsten Midtbøen; Christophersen, Asbjørg S; Øiestad, Elisabeth

    2015-07-01

    Quantitative determination of anti-epileptic drug concentrations is of great importance in forensic toxicology cases. Although the drugs are not usually abused, they are important post-mortem cases where the question of both lack of compliance and accidental or deliberate poisoning might be raised. In addition these drugs can be relevant for driving under the influence cases. A reversed phase ultra-performance liquid chromatography-tandem mass spectrometry method has been developed for the quantitative analysis of the anti-epileptic compounds carbamazepine, carbamazepine-10,11-epoxide, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, 10-OH-carbazepine, phenobarbital, phenytoin, pregabalin, and topiramate in whole blood, using 0.1 mL sample volume with methaqualone as internal standard. Sample preparation was a simple protein precipitation with acetonitrile and methanol. The diluted supernatant was directly injected into the chromatographic system. Separation was performed on an Acquity UPLC® BEH Phenyl column with gradient elution and a mildly alkaline mobile phase. The mass spectrometric detection was performed in positive ion mode, except for phenobarbital, and multiple reaction monitoring was used for drug quantification. The limits of quantification for the different anti-epileptic drugs varied from 0.064 to 1.26 mg/L in blood, within-day and day-to-day relative standard deviations from 2.2 to 14.7% except for phenobarbital. Between-day variation for phenobarbital was 20.4% at the concentration level of 3.5 mg/L. The biases for all compounds were within ±17.5%. The recoveries ranged between 85 and 120%. The corrected matrix effects were 88-106% and 84-110% in ante-mortem and post-mortem whole blood samples, respectively.

  14. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  15. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET

    PubMed Central

    Kim, Sung Won; Hooker, Jacob M.; Otto, Nicola; Win, Khaing; Muench, Lisa; Shea, Colleen; Carter, Pauline; King, Payton; Reid, Alicia E.; Volkow, Nora D.; Fowler, Joanna S.

    2013-01-01

    The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profile. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using 11CO2 and the appropriate Grignard reagents. [11C]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity was the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low (<0.006%ID/cc, BA>VPA>PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [11C]BA showed relatively high uptake in spleen and pancreas whereas [11C]PBA showed high uptake in liver and heart. Notably, [11C]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of relevance in understanding their therapeutic and side effect profile including their teratogenic effects. PMID:23906667

  16. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies. PMID:27635203

  17. Antiepileptic potential of matrine via regulation the levels of gamma-aminobutyric acid and glutamic acid in the brain.

    PubMed

    Xiang, Jun; Jiang, Yugang

    2013-12-05

    Our present study aimed to determine the antiepileptic activity of matrine, and explore the possible molecular mechanism. To evaluate the antiepileptic activity of matrine, seizures in mice induced by PTZ and MES were established, then the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests in mice were also carried out. For the molecular mechanism investigations, contents of aspartic acid (Asp), gamma-aminobutyric acid (GABA), glutamic acid (Glu), glycine (Gly) in seizures mice were determined; then, the chronic seizures rats induced by PTZ were prepared, and western blotting was used to determine the expressions of GAD 65, GABAA and GABAB in the brains. In the results, matrine showed significant antiepileptic effects on seizures mice induced by MES and PTZ. Moreover, the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests were also demonstrated that matrine had obvious antiepileptic effects. Additionally, our results revealed that after treatment with matrine, contents of GABA can be elevated, and the contents of Glu were obviously decreased. Furthermore, western blotting revealed that the mechanism regarding the antiepileptic effect of may be related to the up-regulations of GAD 65 and GABAA in the brain. Collectively, we suggested that matrine can be developed as an effective antiseptic drug.

  18. Antiepileptic Potential of Matrine via Regulation the Levels of Gamma-Aminobutyric Acid and Glutamic Acid in the Brain

    PubMed Central

    Xiang, Jun; Jiang, Yugang

    2013-01-01

    Our present study aimed to determine the antiepileptic activity of matrine, and explore the possible molecular mechanism. To evaluate the antiepileptic activity of matrine, seizures in mice induced by PTZ and MES were established, then the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests in mice were also carried out. For the molecular mechanism investigations, contents of aspartic acid (Asp), gamma-aminobutyric acid (GABA), glutamic acid (Glu), glycine (Gly) in seizures mice were determined; then, the chronic seizures rats induced by PTZ were prepared, and western blotting was used to determine the expressions of GAD 65, GABAA and GABAB in the brains. In the results, matrine showed significant antiepileptic effects on seizures mice induced by MES and PTZ. Moreover, the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests were also demonstrated that matrine had obvious antiepileptic effects. Additionally, our results revealed that after treatment with matrine, contents of GABA can be elevated, and the contents of Glu were obviously decreased. Furthermore, western blotting revealed that the mechanism regarding the antiepileptic effect of may be related to the up-regulations of GAD 65 and GABAA in the brain. Collectively, we suggested that matrine can be developed as an effective antiseptic drug. PMID:24317434

  19. Effect of the Anti-depressant Sertraline, the Novel Anti-seizure Drug Vinpocetine and Several Conventional Antiepileptic Drugs on the Epileptiform EEG Activity Induced by 4-Aminopyridine.

    PubMed

    Sitges, Maria; Aldana, Blanca Irene; Reed, Ronald Charles

    2016-06-01

    Seizures are accompanied by an exacerbated activation of cerebral ion channels. 4-aminopyridine (4-AP) is a pro-convulsive agent which mechanism of action involves activation of Na(+) and Ca(2+) channels, and several antiepileptic drugs control seizures by reducing these channels permeability. The antidepressant, sertraline, and the anti-seizure drug vinpocetine are effective inhibitors of cerebral presynaptic Na(+) channels. Here the effectiveness of these compounds to prevent the epileptiform EEG activity induced by 4-AP was compared with the effectiveness of seven conventional antiepileptic drugs. For this purpose, EEG recordings before and at three intervals within the next 30 min following 4-AP (2.5 mg/kg, i.p.) were taken in anesthetized animals; and the EEG-highest peak amplitude values (HPAV) calculated. In control animals, the marked increase in the EEG-HPAV observed near 20 min following 4-AP reached its maximum at 30 min. Results show that this epileptiform EEG activity induced by 4-AP is prevented by sertraline and vinpocetine at a dose of 2.5 mg/kg, and by carbamazepine, phenytoin, lamotrigine and oxcarbazepine at a higher dose (25 mg/kg). In contrast, topiramate (25 mg/kg), valproate (100 mg/kg) and levetiracetam (100 mg/kg) failed to prevent the epileptiform EEG activity induced by 4-AP. It is concluded that 4-AP is a useful tool to elicit the mechanism of action of anti-seizure drugs at clinical meaningful doses. The particular efficacy of sertraline and vinpocetine to prevent seizures induced by 4-AP is explained by their high effectiveness to reduce brain presynaptic Na(+) and Ca(2+) channels permeability. PMID:26830290

  20. Valproic Acid versus Lamotrigine as First-line Monotherapy in Newly Diagnosed Idiopathic Generalized Tonic –Clonic Seizures in Adults – A Randomized Controlled Trial

    PubMed Central

    Giri, Om Prakash; Khan, Farhan Ahmad; Kumar, Narendra; Kumar, Ajay; Haque, Ataul

    2016-01-01

    Introduction Idiopathic Generalized Tonic-Clonic Seizures (GTCS) are frequently encountered in adults. Their successful control is necessary to improve the quality of life of these patients. Valproic acid is a simple branched-chain carboxylic acid and lamotrigine is a phenyltriazine derivative. Opinions differ in regards to their effectiveness in idiopathic GTCS. Aim To compare the effectiveness of valproic acid and lamotrigine in newly diagnosed adults with idiopathic generalized tonic-clonic seizures. Materials and Methods The present prospective randomized study was conducted on 60 patients suffering from idiopathic GTCS. Thirty patients received valproic acid and rest 30 patients received lamotrigine. All patients were followed regularly monthly for one year for treatment response and adverse effects. Results After 12 months follow-up, 76.67% patients taking valproic acid and 56.67% patients taking lamotrigine were seizure-free. Common adverse effects recorded were nausea, dyspepsia, headache and skin rash. Conclusion Valproic acid is more effective than lamotrigine as first-line drug in the treatment of adults with newly diagnosed idiopathic generalized tonic-clonic seizures.

  1. Valproic Acid versus Lamotrigine as First-line Monotherapy in Newly Diagnosed Idiopathic Generalized Tonic –Clonic Seizures in Adults – A Randomized Controlled Trial

    PubMed Central

    Giri, Om Prakash; Khan, Farhan Ahmad; Kumar, Narendra; Kumar, Ajay; Haque, Ataul

    2016-01-01

    Introduction Idiopathic Generalized Tonic-Clonic Seizures (GTCS) are frequently encountered in adults. Their successful control is necessary to improve the quality of life of these patients. Valproic acid is a simple branched-chain carboxylic acid and lamotrigine is a phenyltriazine derivative. Opinions differ in regards to their effectiveness in idiopathic GTCS. Aim To compare the effectiveness of valproic acid and lamotrigine in newly diagnosed adults with idiopathic generalized tonic-clonic seizures. Materials and Methods The present prospective randomized study was conducted on 60 patients suffering from idiopathic GTCS. Thirty patients received valproic acid and rest 30 patients received lamotrigine. All patients were followed regularly monthly for one year for treatment response and adverse effects. Results After 12 months follow-up, 76.67% patients taking valproic acid and 56.67% patients taking lamotrigine were seizure-free. Common adverse effects recorded were nausea, dyspepsia, headache and skin rash. Conclusion Valproic acid is more effective than lamotrigine as first-line drug in the treatment of adults with newly diagnosed idiopathic generalized tonic-clonic seizures. PMID:27630862

  2. Valproic Acid, a Histone Deacetylase Inhibitor, in Combination with Paclitaxel for Anaplastic Thyroid Cancer: Results of a Multicenter Randomized Controlled Phase II/III Trial

    PubMed Central

    Pugliese, Mariateresa; Gallo, Marco; Brignardello, Enrico; Milla, Paola; Orlandi, Fabio; Limone, Paolo Piero; Arvat, Emanuela; Boccuzzi, Giuseppe; Piovesan, Alessandro

    2016-01-01

    Anaplastic thyroid cancer (ATC) has a median survival less than 5 months and, to date, no effective therapy exists. Taxanes have recently been stated as the main drug treatment for ATC, and the histone deacetylase inhibitor valproic acid efficiently potentiates the effects of paclitaxel in vitro. Based on these data, this trial assessed the efficacy and safety of the combination of paclitaxel and valproic acid for the treatment of ATC. This was a randomized, controlled phase II/III trial, performed on 25 ATC patients across 5 centers in northwest Italy. The experimental arm received the combination of paclitaxel (80 mg/m2/weekly) and valproic acid (1,000 mg/day); the control arm received paclitaxel alone. Overall survival and disease progression, evaluated in terms of progression-free survival, were the primary outcomes. The secondary outcome was the pharmacokinetics of paclitaxel. The coadministration of valproic acid did not influence the pharmacokinetics of paclitaxel. Neither median survival nor median time to progression was statistically different in the two arms. Median survival of operated-on patients was significantly better than that of patients who were not operated on. The present trial demonstrates that the addition of valproic acid to paclitaxel has no effect on overall survival and disease progression of ATC patients. This trial is registered with EudraCT 2008-005221-11. PMID:27766105

  3. Antiepileptic and antipsychotic activities of standardized Śilājatu (Shilajit) in experimental animals

    PubMed Central

    Durg, Sharanbasappa; Veerapur, Veeresh P.; Thippeswamy, B. S.; Ahamed, Syed Mansoor

    2015-01-01

    Background: Śilājatu (Shilajit; SJ) is claimed in traditional Indian medical practice to be useful in the treatment of nervous disorders, epilepsy and as antistress. Aim: To investigate whether SJ possesses antiepileptic and antipsychotic activities in rodents. Materials and Methods: Isonicotinyl hydrazine (INH), pentylenetetrazole (PTZ), apomorphine, phenytoin, diazepam, haloperidol and other chemicals of analytical grade were procured from standard companies. The antiepileptic activity of SJ was assessed using maximal electro shock (MES)-induced seizures in rats, INH and PTZ-induced seizures in mice. The antipsychotic effect of SJ was evaluated using apomorphine-induced climbing and stereotyped behaviours respectively, in mice and rats. Settings and Designs: SJ (25 and 50 mg/kg, p.o.) was given orally once daily for 15 days in all the rodent models. On the test day, SJ was administered 1 h prior to electric shock or chemical inducers (INH/PTZ/apomorphine) in experimental animals; the animals were then observed for different phases of seizures and psychotic behaviours. In addition, gamma-aminobutyric acid (GABA) content in the brain of rats and mice was estimated in seizure models. Statistical Analysis: The data were expressed as mean ± standard error of mean. Statistical comparisons were performed by one-way ANOVA followed by Tukey's post-test using Graph Pad Prism version 5.0, USA. A P < 0.05 was considered significant. Results and Conclusions: SJ pretreatment significantly inhibited the seizures induced by MES, INH and PTZ in a dose dependent manner. Further, SJ augmented brain GABA levels to normal, decreased by INH and PTZ in mice brain. SJ pretreatment also significantly inhibited the climbing and stereotyped behaviours induced by apomorphine. The present data seems to confirm the antiepileptic activity of SJ which may be because of enhancing the GABAergic system. The antipsychotic activity observed may be due to anti-dopaminergic and/or GABA

  4. Fetal antiepileptic drug exposure: Adaptive and emotional/behavioral functioning at age 6 years

    PubMed Central

    Cohen, Morris J.; Meador, Kimford J.; Browning, Nancy; May, Ryan; Baker, Gus A.; Clayton-Smith, Jill; Kalayjian, Laura A.; Kanner, Andres; Liporace, Joyce D.; Pennell, Page B.; Privitera, Michael; Loring, David W.

    2014-01-01

    The Neurodevelopmental Effects of Antiepileptic Drugs (NEAD) study is a prospective observational multicenter study in the USA and UK, which enrolled pregnant women with epilepsy on antiepileptic drug (AED) monotherapy from 1999 to 2004. The study aimed to determine if differential long-term neurodevelopmental effects exist across four commonly used AEDs (carbamazepine, lamotrigine, phenytoin, and valproate). In this report, we examine fetal AED exposure effects on adaptive and emotional/behavioral functioning at 6 years of age in 195 children (including three sets of twins) whose parent (in most cases, the mother) completed at least one of the rating scales. Adjusted mean scores for the four AED groups were in the low average to average range for parent ratings of adaptive functioning on the Adaptive Behavior Assessment System—Second Edition (ABAS-II) and for parent and teacher ratings of emotional/behavioral functioning on the Behavior Assessment System for Children (BASC). However, children whose mothers took valproate during pregnancy had significantly lower General Adaptive Composite scores than the lamotrigine and phenytoin groups. Further, a significant dose-related performance decline in parental ratings of adaptive functioning was seen for both valproate and phenytoin. Children whose mothers took valproate were also rated by their parents as exhibiting significantly more atypical behaviors and inattention than those in the lamotrigine and phenytoin groups. Based upon BASC parent and teacher ratings of attention span and hyperactivity, children of mothers who took valproate during their pregnancy were at a significantly greater risk for a diagnosis of ADHD. The increased likelihood of difficulty with adaptive functioning and ADHD with fetal valproate exposure should be communicated to women with epilepsy who require antiepileptic medication. Finally, additional research is needed to confirm these findings in larger prospective study samples, examine

  5. Effects of amoxicillin/clavulanic acid on the pharmacokinetics of valproic acid.

    PubMed

    Lee, Soo-Yun; Huh, Wooseong; Jung, Jin Ah; Yoo, Hye Min; Ko, Jae-Wook; Kim, Jung-Ryul

    2015-01-01

    Valproic acid (VPA) is mainly metabolized via glucuronide, which is hydrolyzed by β-glucuronidase and undergoes enterohepatic circulation. Amoxicillin/clavulanic acid (AMC) administration leads to decreased levels of β-glucuronidase-producing bacteria, suggesting that these antibiotics could interrupt enterohepatic circulation and thereby alter the pharmacokinetics of VPA. This study aimed to evaluate the effects of AMC on the pharmacokinetics of VPA. This was an open-label, two-treatment, one-sequence study in 16 healthy volunteers. Two treatments were evaluated; treatment VPA, in which a single dose of VPA 500 mg was administered, and treatment AMC + VPA, in which multiple doses of AMC 500/125 mg were administered three times daily for 7 days and then a single dose of VPA was administered. Blood samples were collected up to 48 hours. Pharmacokinetic parameters were calculated using noncompartmental methods. Fifteen subjects completed the study. Systemic exposures and peak concentrations of VPA were slightly lower with treatment AMC + VPA than with treatment VPA (AUClast, 851.0 h·mg/L vs 889.6 h·mg/L; C max, 52.1 mg/L vs 53.0 mg/L). There were no significant between-treatment effects on pharmacokinetics (95% confidence interval [CI]) of AUClast and C max (95.7 [85.9-106.5] and 98.3 [91.6-105.6], respectively). Multiple doses of AMC had no significant effects on the pharmacokinetics of VPA; thus, no dose adjustment is necessary.

  6. Valproic acid protection against the brachial plexus root avulsion-induced death of motoneurons in rats.

    PubMed

    Wu, Dianxiu; Li, Qiang; Zhu, Xiaojuan; Wu, Guangzhi; Cui, Shusen

    2013-10-01

    In this study, the role of valproic acid (VPA) in protecting motoneuron after brachial plexus root avulsion was investigated in adult rats. Sixty rats were used in this study, and underwent the brachial plexus root avulsion injury, which was created by using a micro-hemostat forceps to pull out brachial plexus root from the intervertebral foramen. The animals were divided into two groups, VPA group administered with VPA dissolved in drinking water (300 mg/kg) daily, and control group had drinking water every day. The spinal cords (C5-T1) were harvested at day 1, 2, 3, 7, 14, and 28 for immunohistochemistry analysis, TUNEL staining, Nissl staining, and electron microscopy, respectively. The results showed that with VPA administration, the survival of motoneurons was promoted and the cell apoptosis was inhibited. The number of c-Jun and Bcl-2 positive motoneurons was increased immediately after avulsion both in control and VPA group, however, the percent of c-Jun positive motoneurons was decreased and the percent of Bcl-2 positive motoneurons was increased by VPA treatment significantly. Our results indicated that motoneurons were protected by VPA against cell death induced by brachial plexus root avulsion through c-Jun inhibition and Bcl-2 induction. PMID:23843283

  7. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    SciTech Connect

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  8. Carrier-mediated placental transport of cimetidine and valproic acid across differentiating JEG-3 cell layers.

    PubMed

    Ikeda, K; Ueda, C; Yamada, K; Nakamura, A; Hatsuda, Y; Kawanishi, S; Nishii, S; Ogawa, M

    2015-07-01

    Human choriocarcinoma has been used as a model to study trophoblast transcellular drug transport in the placenta. Previous models had limitations regarding low molecular weight drug transport through the intracellular gap junction. The purpose of this study was to evaluate placental carrier-mediated transport across a differentiating JEG-3 choriocarcinoma cell (DJEGs) layer model in which the intracellular gap junction was restricted. Cimetidine is the substrate of an efflux transporter, breast cancer resistance protein (BCRP). BCRP highly expressed in the placenta, and its function in the DJEGs model was investigated. In addition, the placental drug transport of another efflux transporter, multidrug resistance-associated proteins (MRPs), and an influx transporter, monocarboxylate transporter (MCT), were examined with various substrates. Cimetidine permeated from the fetal side to the maternal side at significantly high levels and saturated in a dose-dependent manner. The permeability coefficient of a MRP substrate, fluorescein, across the DJEGs model was significantly increased by inhibiting MRP function with probenecid. On the other hand, permeation in the influx direction to the fetal side with a substrate of MCT, valproic acid, had a gentle dose-dependent saturation. These findings suggest that the DJEGs model could be used to evaluate transcellular placental drug transport mediated by major placental transporters.

  9. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    SciTech Connect

    Matsumoto, Yohsuke; Motoki, Takahiro; Kubota, Satoshi; Takigawa, Masaharu; Tsubouchi, Hirohito; Gohda, Eiichi

    2008-02-01

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E{sub 2} without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells.

  10. Valproic Acid Exposure during Early Postnatal Gliogenesis Leads to Autistic-like Behaviors in Rats

    PubMed Central

    Mony, Tamanna Jahan; Lee, Jae Won; Dreyfus, Cheryl; DiCicco-Bloom, Emanuel; Lee, Hee Jae

    2016-01-01

    Objective We reported that postnatal exposure of rats to valproic acid (VPA) stimulated proliferation of glial precursors during cortical gliogenesis. However, there are no reports whether enhanced postnatal gliogenesis affects behaviors related to neuropsychiatric disorders. Methods After VPA treatment during the postnatal day (PND) 2 to PND 4, four behavioral test, such as open field locomotor test, elevated plus maze test, three-chamber social interaction test, and passive avoidance test, were performed at PND 21 or 22. Results VPA treated rats showed significant hyperactive behavior in the open field locomotor test (p<0.05). Moreover, the velocity of movement in the VPA group was increased by 69.5% (p<0.01). In the elevated plus maze test, VPA exposed rats expressed significantly lower percentage of time spent on and of entries into open arms more than the control group (p<0.05). Also, both sociability and social preference indices with strangers in the three-chamber social interaction test were significantly lower in the VPA exposed rats (p<0.05). Conclusion Our results suggest that altered glial cell development is another locus at which pathogenetic factors can operate to contribute to the neurodevelopmental disorder. PMID:27776385

  11. Antifibrogenic role of valproic acid in streptozotocin induced diabetic rat penis.

    PubMed

    Kutlu, O; Karaguzel, E; Gurgen, S G; Okatan, A E; Kutlu, S; Bayraktar, C; Kazaz, I O; Eren, H

    2016-05-01

    We investigated the therapeutic effects of valproic acid (VPA) on erectile dysfunction and reducing penile fibrosis in streptozocin (STZ)-induced diabetic rats. Eighteen male rats were divided into three experimental groups (Control, STZ-DM, STZ-DM plus VPA) and diabetes was induced by transperitoneal single dose STZ. Eight weeks after, VPA and placebo treatments were given according to groups for 15 days. All rats were anesthetised for the measurement of in vivo erectile response to cavernous nerve stimulation. Afterward penes were evaluated histologically in terms of immune labelling scores of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). Slides were also evaluated in terms of collagen/smooth muscle ratio and penile apoptosis. After the treatment with VPA, erectile responses were found as improved when compared with STZ-DM rats but not statistically meaningful. eNOS and VEGF immune expressions diminished in penile corpora of STZ-DM rats and improved with VPA treatment. VPA led to decrease in TGF-β1 expression and collagen content of diabetic rats' penes. Penile apoptosis was not diminished with VPA. In conclusion, VPA treatment seems to be effective for reducing penile fibrosis in diabetic rats and more prolonged treatment period may enhance erectile functions. PMID:26276507

  12. M-current preservation contributes to anticonvulsant effects of valproic acid

    PubMed Central

    Kay, Hee Yeon; Greene, Derek L.; Kang, Seungwoo; Kosenko, Anastasia; Hoshi, Naoto

    2015-01-01

    Valproic acid (VPA) has been widely used for decades to treat epilepsy; however, its mechanism of action remains poorly understood. Here, we report that the anticonvulsant effects of nonacute VPA treatment involve preservation of the M-current, a low-threshold noninactivating potassium current, during seizures. In a wide variety of neurons, activation of Gq-coupled receptors, such as the m1 muscarinic acetylcholine receptor, suppresses the M-current and induces hyperexcitability. We demonstrated that VPA treatment disrupts muscarinic suppression of the M-current and prevents resultant agonist-induced neuronal hyperexcitability. We also determined that VPA treatment interferes with M-channel signaling by inhibiting palmitoylation of a signaling scaffold protein, AKAP79/150, in cultured neurons. In a kainate-induced murine seizure model, administration of a dose of an M-channel inhibitor that did not affect kainate-induced seizure transiently eliminated the anticonvulsant effects of VPA. Retigabine, an M-channel opener that does not open receptor-suppressed M-channels, provided anticonvulsant effects only when administered prior to seizure induction in control animals. In contrast, treatment of VPA-treated mice with retigabine induced anticonvulsant effects even when administered after seizure induction. Together, these results suggest that receptor-induced M-current suppression plays a role in the pathophysiology of seizures and that preservation of the M-current during seizures has potential as an effective therapeutic strategy. PMID:26348896

  13. Mechanism of microglia neuroprotection: Involvement of P2X7, TNFα, and valproic acid.

    PubMed

    Masuch, Annette; Shieh, Chu-Hsin; van Rooijen, Nico; van Calker, Dietrich; Biber, Knut

    2016-01-01

    Recently, we have demonstrated that ramified microglia are neuroprotective in N-methyl-D-aspartate (NMDA)-induced excitotoxicity in organotypic hippocampal slice cultures (OHSCs). The present study aimed to elucidate the underlying neuron-glia communication mechanism. It is shown here that pretreatment of OHSC with high concentrations of adenosine 5'-triphosphate (ATP) reduced NMDA-induced neuronal death only in presence of microglia. Specific agonists and antagonists identified the P2X7 receptor as neuroprotective receptor which was confirmed by absence of ATP-dependent neuroprotection in P2X7-deficient OHSC. Microglia replenished chimeric OHSC consisting of wild-type tissue replenished with P2X7-deficient microglia confirmed the involvement of microglial P2X7 receptor in neuroprotection. Stimulation of P2X7 in primary microglia induced tumor necrosis factor α (TNFα) release and blocking TNFα by a neutralizing antibody in OHSC abolished neuroprotection by ATP. OHSC from TNFα-deficient mice show increased exicitoxicity and activation of P2X7 did not rescue neuronal survival in the absence of TNFα. The neuroprotective effect of valproic acid (VPA) was strictly dependent on the presence of microglia and was mediated by upregulation of P2X7 in the cells. The present study demonstrates that microglia-mediated neuroprotection depends on ATP-activated purine receptor P2X7 and induction of TNFα release. This neuroprotective pathway was strengthened by VPA elucidating a novel mechanism for the neuroprotective function of VPA.

  14. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    PubMed

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity.

  15. Nonstationary disposition of valproic acid during prolonged intravenous infusion: contributions of unbound clearance and protein binding.

    PubMed

    Arens, T L; Pollack, G M

    2001-09-01

    Circadian variations in disposition have been observed for a variety of agents, including anticonvulsants. Valproic acid (VPA), an anticonvulsant used to control generalized and partial seizures, has exhibited diurnal oscillations in steady-state concentrations during long-term administration to humans and non-human primates. The present study was conducted to assess potential diurnal changes in the disposition of VPA during prolonged i.v. infusion in rats. Animals, maintained on a strict 12-h per day light cycle, were equipped with venous cannulae and an arterial microdialysis probe. VPA was administered as a 50-mg/kg loading dose followed by a 42 mg/kg/h infusion for 70 h. Blood and microdialysate samples were obtained at timed intervals after establishment of steady-state throughout two complete light/dark cycles; and total (serum) and unbound (microdialysate) VPA was determined by gas chromatography. Modest oscillations (6-7 h period) in total and unbound VPA were observed; clearance and binding parameters were not different between light and dark periods. However, unbound clearance increased, and unbound fraction decreased, with time over the course of the infusion. These results suggest that time-dependent changes in VPA disposition occur in rats, although oscillations in steady-state concentrations do not appear to be diurnal in nature. PMID:11754040

  16. Effect of valproic acid and environmental enrichment on behavioral functions in rats.

    PubMed

    Kus, Krzysztof; Burda, Kinga; Nowakowska, Elzbieta; Czubak, Anna; Metelska, Jana; Łancucki, Michał; Brodowska, Karolina; Nowakowska, Anna

    2010-01-01

    Deficits of cognitive functions are perceived as an important pathogenic factor of many neurological and psychiatric diseases. Such symptoms can be a result of a disease process or appear due to applied medication. Epilepsy is a disease in which cognitive deficits can occur before first seizures, during seizures and remissions. Valproic acid (VAL, CAS 77372-61-3) is a medicine applied in order to control epileptic seizures and mood stabilizing in bipolar disorders and mania. Its activity is related to the effect on neurotransmission of many systems. The present study was conducted to investigate whether enriched environment (EE) conditions affect learning and memory, and influence the antidepressant effect in rats. VAL improves spatial memory upon repeated administration both in the rats housed in standard conditions (SC) (after 21 days of treatment) and those housed in enriched environment (as early as after 14 days of treatment). VAL has an antidepressant effect on the forced swimming test both in the rats housed in standard conditions and those housed in EE. In rats housed in EE, the antidepressant effect occurred much earlier (as early as after 7 days ofVAL administration). It is worth noting that VAL has a low profile of adverse effects (Activity Meter, chimney test). The correlations observed may be translated into clinical effects, leading to new, more effective VAL therapies in depression or memory disorders in patients with underlying epilepsy.

  17. Valproic Acid Synergistically Enhances The Cytotoxicity of Clofarabine in Pediatric Acute Myeloid Leukemia Cells

    PubMed Central

    Xie, Chengzhi; Edwards, Holly; LoGrasso, Salvatore B.; Buck, Steven A.; Matherly, Larry H.; Taub, Jeffrey W.; Ge, Yubin

    2012-01-01

    SUMMARY Background Acute myeloid leukemia (AML) remains a major therapeutic challenge in pediatric oncology even with intensified cytarabine (ara-C)-based chemotherapy. Therefore, new therapies are urgently needed to improve treatment outcome of this deadly disease. In this study, we evaluated antileukemic interactions between clofarabine (a second-generation purine nucleoside analog) and valproic acid (VPA, a FDA-approved agent for treating epilepsy in both children and adult and a histone deacetylase inhibitor), in pediatric AML. Methodology In vitro clofarabine and VPA cytotoxicities of the pediatric AML cell lines and diagnostic blasts were measured by using MTT assays. The effects of clofarabine and VPA on apoptosis and DNA double strand breaks (DSBs) were determined by flow cytometry analysis and Western blotting, respectively. Active form of Bax was measured by Western blotting post immunoprecipitation. Results We demonstrated synergistic antileukemic activities between clofarabine and VPA in both pediatric AML cell lines and diagnostic blasts sensitive to VPA. In contrast, antagonism between the two agents could be detected in AML cells resistant to VPA. Clofarabine and VPA cooperate in inducing DNA DSBs, accompanied by Bax activation and apoptosis in pediatric AML cells. Conclusion Our results document synergistic antileukemic activities of combined VPA and clofarabine in pediatric AML and suggest that this combination could be an alternative treatment option for the disease. PMID:22488775

  18. Valproic acid: in vitro plasma protein binding and interaction with phenytoin.

    PubMed

    Cramer, J A; Mattson, R H

    1979-01-01

    Because valproic acid (VPA) is highly bound to plasma protein, several variables affecting binding will significantly alter the quantity of free drug which is pharmacologically active. Therefore, total VPA plasma concentrations do not reflect the therapeutic strength of the drug in tissue. We have performed equilibrium dialysis and ultrafiltration studies of VPA binding to plasma protein. The converging data in these in vitro studies indicate a clinically significant alteration in the percent of free VPA when total drug concentration exceeds 80 micrograms/ml. Saturation of drug binding sites probably occurs in this range. At 20--60 micrograms/ml VPA there is 5% free drug, with a significant increase to 8% free at 80 micrograms/ml; free drug increases to over 20% at 145 micrograms/ml total VPA. Human plasma, which is low in albumin, has twice the quantity of free VPA as normal plasma (10 versus 5% free). The clinical evidence of interaction between VPA and phenytoin is confirmed in vitro by the increase in the free fraction of both drugs. VPA binding decreases by 3--6%, while phenytoin binding decreases 5--6% as both drugs reach high plasma concentrations. When appropriate, laboratory reports should be available defining concentration of free drug in plasma for optimal interpretation of drug concetrations relative to clinical effects.

  19. Resveratrol prevents social deficits in animal model of autism induced by valproic acid.

    PubMed

    Bambini-Junior, Victorio; Zanatta, Geancarlo; Della Flora Nunes, Gustavo; Mueller de Melo, Gabriela; Michels, Marcus; Fontes-Dutra, Mellanie; Nogueira Freire, Valder; Riesgo, Rudimar; Gottfried, Carmem

    2014-11-01

    Autism spectrum disorders (ASD) involve a complex interplay of both genetic and environmental risk factors, such as prenatal exposure to valproic acid (VPA). Considering the neuroprotective, antioxidant and anti-inflammatory effects of resveratrol (RSV), we investigated the influence of prenatal RSV treatment on social behaviors of a rodent model of autism induced by prenatal exposure to VPA. In the three-chambered apparatus test, the VPA group showed a reduced place preference conditioned by conspecific and no preference between exploring a wire-cage or a rat enclosed inside a wire cage, revealing sociability impairments. Prenatal administration of RSV prevented the VPA-induced social impairments evaluated in this study. A bioinformatics analysis was used to discard possible molecular interactions between VPA and RSV during administration. The interaction energy between RSV and VPA is weak and highly unstable, suggesting cellular effects instead of a single chemical process. In summary, the present study highlights a promising experimental strategy to evaluate new molecular targets possibly involved in the etiology of autism and developmental alterations implicated in neural and behavioral impairments in ASD.

  20. Three Patients Needing High Doses of Valproic Acid to Get Therapeutic Concentrations

    PubMed Central

    Jackson, James; McCollum, Betsy; Ognibene, Judy; Diaz, Francisco J.; de Leon, Jose

    2015-01-01

    Valproic acid (VPA) can autoinduce its own metabolism. Cases requiring VPA doses >4000 mg/day to obtain therapeutic plasma concentrations, such as these 3 cases, have never been published. Case 1 received VPA for seizures and schizophrenia and had >50 VPA concentrations in 4 years. A high dose of 5,250 mg/day of VPA concentrate was prescribed for years but this dose led to an intoxication when switched to the enterocoated divalproex sodium formulation, requiring a normal dose of 2000 mg/day. VPA metabolic capacity was significantly higher (t = −9.6; df = 6.3, p < 0.001) during the VPA concentrate therapy, possibly due to autoinduction in that formulation. Case 2 had VPA for schizoaffective psychosis with 10 VPA concentrations during an 8-week admission. To maintain a VPA level ≥50 μg/mL, VPA doses increased from 1500 to 4000 mg/day. Case 3 had tuberous sclerosis and epilepsy and was followed up for >4 years with 137 VPA concentrations. To maintain VPA concentrations ≥50 μg/mL, VPA doses increased from 3,375 to 10,500 mg/day. In Cases 2 and 3, the duration of admission and the VPA dose were strongly correlated (r around 0.90; p < 0.001) with almost no change after controlling for VPA concentrations, indicating progressive autoinduction that increased with time. PMID:26000191

  1. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism.

    PubMed

    Martin, Henry G S; Manzoni, Olivier J

    2014-01-01

    Valproic acid (VPA) is a frequently used drug in the treatment of epilepsy, bipolar disorders and migraines; however it is also a potent teratogen. Prenatal exposure increases the risk of childhood malformations and can result in cognitive deficits. In rodents in utero exposure to VPA also causes neurodevelopmental abnormalities and is an important model of autism. In early postnatal life VPA exposed rat pups show changes in medial prefrontal cortex (mPFC) physiology and synaptic connectivity. Specifically, principal neurons show decreased excitability but increased local connectivity, coupled with an increase in long-term potentiation (LTP) due to an up-regulation of NMDA receptor (NMDAR) expression. However recent evidence suggests compensatory homeostatic mechanisms lead to normalization of synaptic NMDARs during later postnatal development. Here we have extended study of mPFC synaptic physiology into adulthood to better understand the longitudinal consequences of early developmental abnormalities in VPA exposed rats. Surprisingly in contrast to early postnatal life and adolescence, we find that adult VPA exposed rats show reduced synaptic function. Both NMDAR mediated currents and LTP are lower in adult VPA rats, although spontaneous activity and endocannabinoid dependent long-term depression are normal. We conclude that rather than correcting, synaptic abnormalities persist into adulthood in VPA exposed rats, although a quite different synaptic phenotype is present. This switch from hyper to hypo function in mPFC may be linked to some of the neurodevelopmental defects found in prenatal VPA exposure and autism spectrum disorders in general.

  2. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism

    PubMed Central

    Martin, Henry G. S.; Manzoni, Olivier J.

    2014-01-01

    Valproic acid (VPA) is a frequently used drug in the treatment of epilepsy, bipolar disorders and migraines; however it is also a potent teratogen. Prenatal exposure increases the risk of childhood malformations and can result in cognitive deficits. In rodents in utero exposure to VPA also causes neurodevelopmental abnormalities and is an important model of autism. In early postnatal life VPA exposed rat pups show changes in medial prefrontal cortex (mPFC) physiology and synaptic connectivity. Specifically, principal neurons show decreased excitability but increased local connectivity, coupled with an increase in long-term potentiation (LTP) due to an up-regulation of NMDA receptor (NMDAR) expression. However recent evidence suggests compensatory homeostatic mechanisms lead to normalization of synaptic NMDARs during later postnatal development. Here we have extended study of mPFC synaptic physiology into adulthood to better understand the longitudinal consequences of early developmental abnormalities in VPA exposed rats. Surprisingly in contrast to early postnatal life and adolescence, we find that adult VPA exposed rats show reduced synaptic function. Both NMDAR mediated currents and LTP are lower in adult VPA rats, although spontaneous activity and endocannabinoid dependent long-term depression are normal. We conclude that rather than correcting, synaptic abnormalities persist into adulthood in VPA exposed rats, although a quite different synaptic phenotype is present. This switch from hyper to hypo function in mPFC may be linked to some of the neurodevelopmental defects found in prenatal VPA exposure and autism spectrum disorders in general. PMID:24550781

  3. Valproic Acid and Topiramate Induced Hyperammonemic Encephalopathy in a Patient With Normal Serum Carnitine

    PubMed Central

    Blackford, Martha G.; Do, Stephanie T.; Enlow, Thomas C.; Reed, Michael D.

    2013-01-01

    A 17-year-old female developed hyperammonemic encephalopathy 2 weeks after valproic acid (VPA), 500 mg twice a day, was added to her regimen of topiramate (TPM), 200 mg twice a day. She presented to the emergency department (ED) with altered mental status, hypotension, bradycardia, and lethargy. Laboratory analysis showed mild non-anion gap hyperchloremic acidosis, serum VPA concentration of 86 mg/L, and urine drug screen result that was positive for marijuana. She was admitted to the pediatric intensive care unit for persistent symptoms, prolonged QTc, and medical history. Blood ammonia concentrations were obtained because of her persistent altered mental status, initially 94 μmol/L and a peak of 252 μmol/L. A serum carnitine profile was obtained at the time of hyperammonemia and was found to be normal (results were available postdischarge). VPA and TPM were discontinued on day 1 and day 2, respectively, as the patient's blood ammonia concentration remained elevated. On day 3, her mental status had returned to baseline, and blood ammonia concentrations trended downward; by day 4 her blood ammonia concentration was 23 μmol/L. VPA has been associated with numerous side effects including hyperammonemia and encephalopathy. Recently, drug interactions with TPM and VPA have been reported; however, serum carnitine concentrations have not been available. We discuss the possible mechanisms that VPA and TPM may affect serum ammonia and carnitine concentrations and the use of levocarnitine for patients or treating toxicity. PMID:23798907

  4. Valproic Acid and topiramate induced hyperammonemic encephalopathy in a patient with normal serum carnitine.

    PubMed

    Blackford, Martha G; Do, Stephanie T; Enlow, Thomas C; Reed, Michael D

    2013-04-01

    A 17-year-old female developed hyperammonemic encephalopathy 2 weeks after valproic acid (VPA), 500 mg twice a day, was added to her regimen of topiramate (TPM), 200 mg twice a day. She presented to the emergency department (ED) with altered mental status, hypotension, bradycardia, and lethargy. Laboratory analysis showed mild non-anion gap hyperchloremic acidosis, serum VPA concentration of 86 mg/L, and urine drug screen result that was positive for marijuana. She was admitted to the pediatric intensive care unit for persistent symptoms, prolonged QTc, and medical history. Blood ammonia concentrations were obtained because of her persistent altered mental status, initially 94 μmol/L and a peak of 252 μmol/L. A serum carnitine profile was obtained at the time of hyperammonemia and was found to be normal (results were available postdischarge). VPA and TPM were discontinued on day 1 and day 2, respectively, as the patient's blood ammonia concentration remained elevated. On day 3, her mental status had returned to baseline, and blood ammonia concentrations trended downward; by day 4 her blood ammonia concentration was 23 μmol/L. VPA has been associated with numerous side effects including hyperammonemia and encephalopathy. Recently, drug interactions with TPM and VPA have been reported; however, serum carnitine concentrations have not been available. We discuss the possible mechanisms that VPA and TPM may affect serum ammonia and carnitine concentrations and the use of levocarnitine for patients or treating toxicity.

  5. Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid.

    PubMed

    Kazlauskas, Nadia; Campolongo, Marcos; Lucchina, Luciana; Zappala, Cecilia; Depino, Amaicha Mara

    2016-10-01

    In Autism Spectrum Disorders (ASD), a bias to a higher incidence in boys than in girls has been reported. With the aim to identify biological mechanisms acting in female animals that could underlie this bias, we used an extensively validated mouse model of ASD: the prenatal exposure to valproic acid (VPA). We found postnatal behavioral alterations in female VPA pups: a longer latency in righting reflex at postnatal day (P) 3, and a delay in the acquisition of the acoustic startle response. We also analyzed the density of glial cells in the prefrontal cortex, hippocampus and cerebellum, in VPA and control animals. Female VPA pups showed alterations in the density of astrocytes and microglial cells between P21 and P42, with specific dynamics in each brain region. We also found a decrease in histone 3 acetylation in the cerebellum of female VPA pups at P14, suggesting that the changes in glial cell density could be due to alterations in the epigenetic developmental program. Finally, no differences in maternal behavior were found. Our results show that female VPA pups exhibit behavioral and inflammatory alterations postnatally, although they have been reported to have normal levels of sociability in adulthood. With our work, we contribute to the understanding of biological mechanisms underlying different effects of VPA on male and female rodents, and we hope to help elucidate whether there are factors increasing susceptibility to ASD in boys and/or resilience in girls.

  6. Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation.

    PubMed

    Zhao, Yan; Xing, Bo; Dang, Yong-hui; Qu, Chao-ling; Zhu, Feng; Yan, Chun-xia

    2013-01-01

    There is collecting evidence suggesting that the process of chromatin remodeling such as changes in histone acetylation contribute to the formation of stress-related memory. Recently, the ventrolateral orbital cortex (VLO), a major subdivision of orbitofrontal cortex (OFC), was shown to be involved in antidepressant-like actions through epigenetic mechanisms. Here, we further investigated the effects of the histone deacetylase inhibitor (HDACi) valproic acid (VPA) on stress-related memory formation and the underlying molecular mechanisms by using the traditional two-day forced swimming test (FST). The results showed that VPA significantly increased the immobility time on day 2 when infused into the VLO before the initial forced swim stress on day 1. The learned immobility response to the stress was associated with increased phosphorylation of extracellular signal-regulated kinase (ERK) in VLO and hippocampus on the first day. The levels of phosphorylated ERK (phospho-ERK) in VLO and hippocampus were significantly decreased when retested 24 h later. The pretreatment with intra-VLO VPA infusion further reduced the activation of ERK on day 2 and day 7 compared with the saline controls. Moreover, the VPA infusion pretreatment also induced a significantly decreased BDNF level in the VLO on day 2, whereas no change was detected in the hippocampus. These findings suggest that VPA enhance the memories of emotionally stressful events and the ERK activity is implicated in stimulating adaptive and mnemonic processes in case the event would recur.

  7. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid

    PubMed Central

    Shi, Xiumin; Li, Min; Cui, Meizi; Niu, Chao; Xu, Jianting; Zhou, Lei; Li, Wei; Gao, Yushun; Kong, Weisheng; Cui, Jiuwei; Hu, Jifan; Jin, Haofan

    2016-01-01

    Natural killer (NK) cells play an essential role in the fight against tumor development. The therapeutic use of autologous NK cells has been exploited to treat human malignancies, yet only limited antitumor activity is observed in cancer patients. In this study, we sought to augment the antitumor activity of NK cells using epigenetic approaches. Four small molecules that have been known to promote epigenetic reprogramming were tested for their ability to enhance the activity of NK cells. Using a tumor cell lysis assay, we found that the DNA demethylating agent 5-azacytidine and vitamin C did not significantly affect the tumor killing ability of NK cells. The thyroid hormone triiodothyronine (T3) slightly increased the activity of NK cells. The histone deacetylase inhibitor valproic acid (VPA), however, inhibited NK cell lytic activity against leukemic cells in a dose-dependent manner. Pretreatment using VPA reduced IFNγ secretion, impaired CD107a degranulation, and induced apoptosis by activating the PD-1/PD-L1 pathway. VPA downregulated the expression of the activating receptor NKG2D (natural-killer group 2, member D) by inducing histone K9 hypermethylation and DNA methylation in the gene promoter. Histone deacetylase inhibitors have been developed as anticancer agents for use as monotherapies or in combination with other anticancer therapies. Our data suggest that the activity of histone deacetylase inhibitors on NK cell activity should be considered in drug development. PMID:27152238

  8. Successful treatment of POLG-related mitochondrial epilepsy with antiepileptic drugs and low glycaemic index diet.

    PubMed

    Martikainen, Mika H; Päivärinta, Markku; Jääskeläinen, Satu; Majamaa, Kari

    2012-12-01

    Epilepsy is a common manifestation of mitochondrial disease associated with mutations of the mitochondrial polymerase γ (POLG). Prognosis of mitochondrial epilepsy is often poor and there are few reports of successful treatment of POLG-related epilepsy. We describe a 26-year-old woman who experienced severe headache during a three-day period, followed by symptoms of visual flashing, speech difficulty, and generalised seizures. EEG recording showed non-convulsive status epilepticus (left occipital area) and brain MRI revealed parieto-occipital T2-hyperintensities. Visual aura and aphasia persisted despite antiepileptic medication with phenytoin, oxcarbazepine, and levetiracetam. Mitochondrial disorder was clinically suspected and a homozygous c.2243G>C mutation (p.Trp748Ser) was discovered in the POLG1 gene. The patient was then set on a low glycaemic index treatment (LGIT) variant of the ketogenic diet, after which the headaches, aphasia, and visual aura progressively improved and disappeared. She returned home two weeks after onset of symptoms and has not had further seizures. She continues to receive levetiracetam monotherapy and LGIT. We conclude that, at least for this patient, the combination of three antiepileptic drugs and LGIT is effective and well tolerated as treatment for severe episodes of POLG-related mitochondrial epilepsy.

  9. Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI).

    PubMed

    Bialer, Meir; Johannessen, Svein I; Levy, René H; Perucca, Emilio; Tomson, Torbjörn; White, H Steve

    2013-01-01

    The Eleventh Eilat Conference on New Antiepileptic Drugs (AEDs)-EILAT XI, took place in Eilat, Israel from the 6th to 10th of May 2012. About 100 basic scientists, clinical pharmacologists and neurologists from 20 countries attended the conference, whose main themes included "Indications overlapping with epilepsy" and "Securing the successful development of an investigational antiepileptic drug in the current environment". Consistent with previous formats of this conference, a large part of the program was devoted to a review of AEDs in development, as well as updates on AEDs introduced since 1994. Like the EILAT X report, the current manuscript focuses only on the preclinical and clinical pharmacology of AEDs that are currently in development. These include brivaracetam, 2-deoxy-glucose, ganaxolone, ICA-105665, imepitoin, NAX 801-2, perampanel and other AMPA receptor antagonists, tonabersat, valnoctamide and its homologue sec-propylbutylacetamide (SPD), VX-765 and YK3089. Since the previous Eilat conference, retigabine (ezogabine) has been marketed and four newer AEDs in development (NAX 810-2, SPD, tonabersat and VX-765) are included in this manuscript.

  10. Epileptiform activity and cognitive deficits in SNAP-25(+/-) mice are normalized by antiepileptic drugs.

    PubMed

    Corradini, Irene; Donzelli, Andrea; Antonucci, Flavia; Welzl, Hans; Loos, Maarten; Martucci, Roberta; De Astis, Silvia; Pattini, Linda; Inverardi, Francesca; Wolfer, David; Caleo, Matteo; Bozzi, Yuri; Verderio, Claudia; Frassoni, Carolina; Braida, Daniela; Clerici, Mario; Lipp, Hans-Peter; Sala, Mariaelvina; Matteoli, Michela

    2014-02-01

    Synaptosomal-associated protein of 25 kDa (SNAP-25) is a protein that participates in the regulation of synaptic vesicle exocytosis through the formation of the soluble NSF attachment protein receptor complex and modulates voltage-gated calcium channels activity. The Snap25 gene has been associated with schizophrenia, attention deficit hyperactivity disorder, and bipolar disorder, and lower levels of SNAP-25 have been described in patients with schizophrenia. We used SNAP-25 heterozygous (SNAP-25(+/-)) mice to investigate at which extent the reduction of the protein levels affects neuronal network function and mouse behavior. As interactions of genotype with the specific laboratory conditions may impact behavioral results, the study was performed through a multilaboratory study in which behavioral tests were replicated in at least 2 of 3 distinct European laboratories. Reductions of SNAP-25 levels were associated with a moderate hyperactivity, which disappeared in the adult animals, and with impaired associative learning and memory. Electroencephalographic recordings revealed the occurrence of frequent spikes, suggesting a diffuse network hyperexcitability. Consistently, SNAP-25(+/-) mice displayed higher susceptibility to kainate-induced seizures, paralleled by degeneration of hilar neurons. Notably, both EEG profile and cognitive defects were improved by antiepileptic drugs. These results indicate that reduction of SNAP-25 expression is associated to generation of epileptiform discharges and cognitive dysfunctions, which can be effectively treated by antiepileptic drugs.

  11. Fluorination of an antiepileptic drug: A self supporting transporter by oxygen enrichment mechanism.

    PubMed

    Natchimuthu, V; Amoros, J; Ravi, S

    2016-03-01

    Drug therapy of seizures involves producing high levels of antiepileptic drugs in the blood. Drug must enter the brain by crossing from the blood into the brain tissue, called a transvascular route (TVR). Even before the drug can reach the brain tissue, factors such as systemic toxicity, macrophage phagocytises and reduction in oxygen content limit the success of this TVR. Encapsulating the drug within a nano scale delivering system, synthesising drugs with low molecular weight are the best mechanisms to deliver the drug to the brain. But through this article, we have explored a possibility of attaching a molecule 4-(trifluoromethyl) benzoic acid (TFMBA), that possess more number of fluorine atom, to benzodiazepine (BDZ) resulting in an ionic salt (S)-(+)-2,3-dihydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine5,11(10H,11aH)-dione with 4-(trifluoromethyl)benzoic acid. By this way, reducing the toxicity of BDZ than the conventional anti-epileptic drugs (AEDs), increasing the solubility, reducing the melting point, enriching the TVR with excess oxygen content with the support of fluorine. With all these important prerequisites fulfilled, the drug along with the attached molecule is expected to travel more comfortably through the TVR without any external support than any other conventional AEDs. FTIR, (1)H NMR, (13)C NMR, HRMS spectroscopy, HRTEM and In vitro cytotoxicity analysis supports this study. PMID:26708322

  12. Placebo-Controlled Trial of Valproic Acid Versus Risperidone in Children 3–7 Years of Age with Bipolar I Disorder

    PubMed Central

    Scheffer, Russell E.; Monroe, Erin; Delgado, Sergio; Altaye, Mekibib; Lagory, Denise

    2015-01-01

    Abstract Objective: The objective of this study was to determine the efficacy and safety of valproic acid versus risperidone in children, 3–7 years of age, with bipolar I disorder (BPD), during a mixed or manic episode. Methods: Forty-six children with Diagnostic and Statistical Manual of Mental Disorders. 4th ed., Text Revision (DSM-IV-TR) diagnosis of bipolar disorder, manic, hypomanic, or mixed episode, were recruited over a 6 year period from two academic outpatient programs for a double-blinded, placebo-controlled trial in which subjects were randomized in a 2:2:1 ratio to risperidone solution, valproic acid, or placebo. Results: After 6 weeks of treatment, the least-mean Young Mania Rating Scale (YMRS) total scores change, adjusted for baseline YMRS scores, from baseline by treatment group was: Valproic acid 10.0±2.46 (p=0.50); risperidone 18.82±1.55 (p=0.008); and placebo 4.29±3.56 (F=3.93, p=0.02). The mixed models for repeated measure (MMRM) analysis found a significant difference for risperidone-treated subjects versus placebo treated subjects (p=0.008) but not for valproic acid-treated subjects versus placebo-treated subjects (p=0.50). Treatment with risperidone over 6 weeks led to increased prolactin levels, liver functions, metabolic measures, and weight/body mass index (BMI). Treatment with valproic acid led to increases in weight/BMI and decreases in total red blood cells (RBC), hemoglobin, and hematocrit. Conclusions: In this small sample of preschool children with BPD, risperidone demonstrated clear efficacy versus placebo, whereas valproic acid did not. The laboratory and weight findings suggest that younger children with BPD are more sensitive to the effects of both of these psychotropics, and that, therefore, frequent laboratory and weight monitoring are warranted. PMID:25978742

  13. SMA CARNI-VAL TRIAL PART II: A Prospective, Single-Armed Trial of L-Carnitine and Valproic Acid in Ambulatory Children with Spinal Muscular Atrophy

    PubMed Central

    Kissel, John T.; Scott, Charles B.; Reyna, Sandra P.; Crawford, Thomas O.; Simard, Louise R.; Krosschell, Kristin J.; Acsadi, Gyula; Elsheik, Bakri; Schroth, Mary K.; D'Anjou, Guy; LaSalle, Bernard; Prior, Thomas W.; Sorenson, Susan; Maczulski, Jo Anne; Bromberg, Mark B.; Chan, Gary M.; Swoboda, Kathryn J.

    2011-01-01

    Background Multiple lines of evidence have suggested that valproic acid (VPA) might benefit patients with spinal muscular atrophy (SMA). The SMA CARNIVAL TRIAL was a two part prospective trial to evaluate oral VPA and l-carnitine in SMA children. Part 1 targeted non-ambulatory children ages 2–8 in a 12 month cross over design. We report here Part 2, a twelve month prospective, open-label trial of VPA and L-carnitine in ambulatory SMA children. Methods This study involved 33 genetically proven type 3 SMA subjects ages 3–17 years. Subjects underwent two baseline assessments over 4–6 weeks and then were placed on VPA and L-carnitine for 12 months. Assessments were performed at baseline, 3, 6 and 12 months. Primary outcomes included safety, adverse events and the change at 6 and 12 months in motor function assessed using the Modified Hammersmith Functional Motor Scale Extend (MHFMS-Extend), timed motor tests and fine motor modules. Secondary outcomes included changes in ulnar compound muscle action potential amplitudes (CMAP), handheld dynamometry, pulmonary function, and Pediatric Quality of Life Inventory scores. Results Twenty-eight subjects completed the study. VPA and carnitine were generally well tolerated. Although adverse events occurred in 85% of subjects, they were usually mild and transient. Weight gain of 20% above body weight occurred in 17% of subjects. There was no significant change in any primary outcome at six or 12 months. Some pulmonary function measures showed improvement at one year as expected with normal growth. CMAP significantly improved suggesting a modest biologic effect not clinically meaningful. Conclusions This study, coupled with the CARNIVAL Part 1 study, indicate that VPA is not effective in improving strength or function in SMA children. The outcomes used in this study are feasible and reliable, and can be employed in future trials in SMA. Trial Regsitration Clinicaltrials.gov NCT00227266 PMID:21754985

  14. Determination of valproic acid in human plasma using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection

    PubMed Central

    Fazeli-Bakhtiyari, Rana; Panahi-Azar, Vahid; Sorouraddin, Mohammad Hossein; Jouyban, Abolghasem

    2015-01-01

    Objective(s): Dispersive liquid-liquid microextraction coupled with gas chromatography (GC)-flame ionization detector was developed for the determination of valproic acid (VPA) in human plasma. Materials and Methods: Using a syringe, a mixture of suitable extraction solvent (40 µl chloroform) and disperser (1 ml acetone) was quickly added to 10 ml of diluted plasma sample containing VPA (pH, 1.0; concentration of NaCl, 4% (w/v)), resulting in a cloudy solution. After centrifugation (6000 rpm for 6 min), an aliquot (1 µl) of the sedimented organic phase was removed using a 1-µl GC microsyringe and injected into the GC system for analysis. One variable at a time optimization method was used to study various parameters affecting the extraction efficiency of target analyte. Then, the developed method was fully validated for its accuracy, precision, recovery, stability, and robustness. Results: Under the optimum extraction conditions, good linearity range was obtained for the calibration graph, with correlation coefficient higher than 0.998. Limit of detection and lower limit of quantitation were 3.2 and 6 μg/ml, respectively. The relative standard deviations of intra and inter-day analysis of examined compound were less than 11.5%. The relative recoveries were found in the range of 97 to 107.5%. Finally, the validated method was successfully applied to the analysis of VPA in patient sample. Conclusion: The presented method has acceptable levels of precision, accuracy and relative recovery and could be used for therapeutic drug monitoring of VPA in human plasma. PMID:26730332

  15. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability.

    PubMed

    Tan, Suk Fei; Masoumi, Hamid Reza Fard; Karjiban, Roghayeh Abedi; Stanslas, Johnson; Kirby, Brian P; Basri, Mahiran; Basri, Hamidon Bin

    2016-03-01

    Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21±0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood-brain barrier in the treatment of epilepsy.

  16. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability.

    PubMed

    Tan, Suk Fei; Masoumi, Hamid Reza Fard; Karjiban, Roghayeh Abedi; Stanslas, Johnson; Kirby, Brian P; Basri, Mahiran; Basri, Hamidon Bin

    2016-03-01

    Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21±0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood-brain barrier in the treatment of epilepsy. PMID:26585010

  17. Adverse reactions to antiepileptic drugs: a follow-up study of 355 patients with chronic antiepileptic drug treatment. Collaborative Group for Epidemiology of Epilepsy.

    PubMed

    1988-01-01

    Three hundred fifty-five patients receiving chronic antiepileptic drug (AED) treatment were followed in 15 university and hospital centers for an average of 11 months to assess the effects of intensive monitoring of adverse drug reactions (ADRs) on the frequency of reports and on the overall management of epilepsy. One hundred forty-eight patients (41.6%) had one or more ADRs during the entire follow-up period. ADRs were reported by 31% of patients at admission and by 20% at last visit, with a downward trend in the number of reports. Concurrently, the number of patients who were seizure-free rose from 24.5 to 42.8%. During the observation period, the number of prescriptions fell from 640 to 568, mostly for phenobarbital (PB), phenytoin (PHT), and valproate (VPA). The outcome of the most common ADR was only partially related to drug changes. Even with the limitations of the unstandardized criteria used for ADR reporting, the present study shows that intensive monitoring of drug-related clinical events is not only a valuable tool to provide a comprehensive survey of drug toxicity in clinical practice, but is also an educational effort to improve the quality of care for patients with epilepsy. PMID:3191896

  18. The Portland Neurotoxicity Scale: Validation of a Brief Self-Report Measure of Antiepileptic-Drug-Related Neurotoxicity

    ERIC Educational Resources Information Center

    Salinsky, Martin C.; Storzbach, Daniel

    2005-01-01

    The Portland Neurotoxicity Scale (PNS) is a brief patient-based survey of neurotoxicity complaints commonly encountered with the use of antiepileptic drugs (AEDs). The authors present data on the validity of this scale, particularly when used in longitudinal studies. Participants included 55 healthy controls, 23 epilepsy patient controls, and 86…

  19. Effect of antiepileptic drug therapy on thyroid hormones among adult epileptic patients: An analytical cross-sectional study

    PubMed Central

    Adhimoolam, Mangaiarkkarasi; Arulmozhi, Ranjitha

    2016-01-01

    Objective: The objective of the study was to evaluate and compare the effect of conventional and newer antiepileptic drugs (AEDs) on thyroid hormone levels in adult epileptic patients. Methods: A hospital-based, analytical cross-sectional study was conducted among the adult epileptic patients receiving conventional AEDs (Group 2) or newer AEDs (Group 3) for more than 6 months. Serum thyroid hormone levels including free triiodothyronine (fT3), free thyroxine (fT4), and thyroid stimulating hormone (TSH) were analyzed and the hormonal status was compared with healthy control subjects (Group 1). Findings: Sodium valproate and phenytoin were commonly used conventional AEDs; levetiracetam and topiramate were common among the newer drugs. There was a statistically significant decrease in serum fT4 and increase in serum TSH levels (P < 0.0001) in patients on long-term therapy with conventional antiepileptic agents than in the control group. No significant change in thyroid hormone levels (fT3, fT4, and TSH; P = 0.68, 0.37, and 0.90, respectively) was observed with newer antiepileptics-treated patients when compared to control group. One-way analysis of variance followed by post hoc Dunnett's test was performed using SPSS version 17.0 software package. Conclusion: The present study showed that conventional AEDs have significant alteration in the thyroid hormone levels than the newer antiepileptics in adult epileptic patients. PMID:27512707

  20. Tactile stimulation improves neuroanatomical pathology but not behavior in rats prenatally exposed to valproic acid.

    PubMed

    Raza, S; Harker, A; Richards, S; Kolb, B; Gibb, R

    2015-04-01

    Autism is a severe neurodevelopmental disorder with a population prevalence of 1 in 68, and dramatically increasing. While no single pharmacologic intervention has successfully targeted the core symptoms of autism, emerging evidence suggests that postnatal environmental manipulations may offer greater therapeutic efficacy. Massage therapy, or tactile stimulation (TS), early in life has repeatedly been shown to be an effective, low-cost, therapeutic approach in ameliorating the cognitive, social, and emotional symptoms of autism. While early TS treatment attenuates many of the behavioral aberrations among children with autism, the neuroanatomical correlates driving such changes are unknown. The present study assessed the therapeutic effects of early TS treatment on behavior and neuroanatomy using the valproic acid (VPA) rodent model of autism. Rats were prenatally exposed to VPA on gestational day 12.5 and received TS shortly following birth. Whereas TS reversed almost all the VPA-induced alterations in neuroanatomy, it failed to do so behaviorally. The TS VPA animals, when compared to VPA animals, did not exhibit altered or improved behavior in the delayed non-match-to-sample T-maze, Whishaw tray reaching, activity box, or elevated plus maze tasks. Anatomically, however, there were significant increases in dendritic branching and spine density in the medial prefrontal cortex, orbital frontal cortex, and amygdala in VPA animals following early TS treatment, suggesting a complete reversal or remediation of the VPA-induced effects in these regions. The results suggest that postnatal TS, during a critical period in development, acts as a powerful reorganization tool that can ameliorate the neuroanatomical consequences of prenatal VPA exposure.

  1. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    PubMed Central

    Dong, Xue-Jun; Zhang, Guo-Rong; Zhou, Qing-Jun; Pan, Ruo-Lang; Chen, Ye; Xiang, Li-Xin; Shao, Jian-Zhong

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  2. Valproic acid in pregnancy: how much are we endangering the embryo and fetus?

    PubMed

    Ornoy, Asher

    2009-07-01

    Valproic acid (VPA) is a known human teratogen. Exposure in pregnancy is associated with approximately three-fold increase in the rate of major anomalies, mainly spina bifida and only rarely anencephaly (NTD), cardiac, craniofacial, skeletal and limb defects and a possible set of dysmorphic features, the "valproate syndrome" with decreased intrauterine growth. This was demonstrated by prospective and retrospective studies. There is also, mainly in the children with the "valproate syndrome", a significant increase in the rate of developmental problems, manifested by decreased verbal intelligence often with communication problems of the autistic spectrum disorder (ASD). VPA is teratogenic in most animal species tested, but the human embryo seems to be the most susceptible. A daily dose of 1000 mg or more and/or polytherapy are associated with a higher teratogenic risk. It seems that several other AEDs potentiate the teratogenic effects of VPA. Thus, when valproate cannot be avoided in pregnancy, the lowest possible effective dose should be prescribed in 2-3 divided doses, preferably as monotherapy. Women exposed to valproate in pregnancy should be given periconceptional folic acid and followed up in a high risk pregnancy clinic. Appropriate ultrasonographic and other examinations, focusing on the possible different anomalies described with this agent, should be carried out. The specific inhibition by VPA of histone deacetylase and changes in gene expression may explain the teratogenicity of this drug. Other possible explanations are: increased fetal oxidative stress induced by VPA, with the brain being more susceptible to oxidative stress in comparison to other fetal organs, or the folic acid inhibitory action of this drug. PMID:19490988

  3. Effects of developmental alcohol and valproic acid exposure on play behavior of ferrets.

    PubMed

    Krahe, Thomas E; Filgueiras, Claudio C; Medina, Alexandre E

    2016-08-01

    Exposure to alcohol and valproic acid (VPA) during pregnancy can lead to fetal alcohol spectrum disorders and fetal valproate syndrome, respectively. Altered social behavior is a hallmark of both these conditions and there is ample evidence showing that developmental exposure to alcohol and VPA affect social behavior in rodents. However, results from rodent models are somewhat difficult to translate to humans owing to the substantial differences in brain development, morphology, and connectivity. Since the cortex folding pattern is closely related to its specialization and that social behavior is strongly influenced by cortical structures, here we studied the effects of developmental alcohol and VPA exposure on the play behavior of the ferret, a gyrencephalic animal known for its playful nature. Animals were injected with alcohol (3.5g/kg, i.p.), VPA (200mg/kg, i.p.) or saline (i.p) every other day during the brain growth spurt period, between postnatal days 10 and 30. The play behavior of pairs of the same experimental group was evaluated 3 weeks later. Both treatments induced significant behavioral differences compared to controls. Alcohol and VPA exposed ferrets played less than saline treated ones, but while animals from the alcohol group displayed a delay in start playing with each other, VPA treated ones spent most of the time close to one another without playing. These findings not only extend previous results on the effects of developmental exposure to alcohol and VPA on social behavior, but make the ferret a great model to study the underlying mechanisms of social interaction. PMID:27208641

  4. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    SciTech Connect

    Lee, Min-Ho |; Kim, Mingoo |; Lee, Byung-Hoon |; Kim, Ju-Han |; Kang, Kyung-Sun |; Kim, Hyung-Lae |; Yoon, Byung-Il |; Chung, Heekyoung; Kong, Gu |; Lee, Mi-Ock ||

    2008-02-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P < 0.05) and fold change (> 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid {beta}-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity.

  5. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder

    PubMed Central

    Chiu, Chi-Tso; Wang, Zhifei; Hunsberger, Joshua G.

    2013-01-01

    The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs’ primary targets—glycogen synthase kinase-3 for lithium and histone deacetylases for VPA—induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA’s beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders. PMID:23300133

  6. MECHANISMS OF SYNERGISTIC ANTILEUKEMIC INTERACTIONS BETWEEN VALPROIC ACID AND CYTARABINE IN PEDIATRIC ACUTE MYELOID LEUKEMIA

    PubMed Central

    Xie, Chengzhi; Edwards, Holly; Xu, Xuelian; Zhou, Hui; Buck, Steven A.; Stout, Mark L.; Yu, Qun; Rubnitz, Jeffrey E.; Matherly, Larry H.; Taub, Jeffrey W.; Ge, Yubin

    2010-01-01

    Purpose To determine the possibility of synergistic anti-leukemic activity and the underlying molecular mechanisms associated with cytarabine combined with valproic acid (VPA) [a histone deacetylase inhibitor (HDACI) and an FDA-licensed drug for treating both children and adults with epilepsy] in pediatric acute myeloid leukemia (AML). Experimental Design The type and extent of anti-leukemic interactions between cytarabine and VPA in clinically relevant pediatric AML cell lines and diagnostic blasts from children with AML were determined by MTT assays and standard isobologram analyses. The effects of cytarabine and VPA on apoptosis and cell cycle distributions were determined by flow cytometry analysis and caspase enzymatic assays. The effects of the two agents on DNA damage and Bcl-2 family proteins were determined by Western blotting. Results We demonstrated synergistic antileukemic activities between cytarabine and VPA in 4 pediatric AML cell lines and 9 diagnostic AML blast samples. t(8;21) AML blasts were significantly more sensitive to VPA and showed far greater sensitivities to combined cytarabine and VPA than non-t(8;21) AML cases. Cytarabine and VPA cooperatively induced DNA double strand breaks, reflected in induction of γH2AX and apoptosis, accompanied by activation of caspases 9 and 3. Further, VPA induced Bim expression and shRNA knockdown of Bim resulted in significantly decreased apoptosis induced by cytarabine, and by cytarabine plus VPA. Conclusions Our results establish global synergistic antileukemic activity of combined VPA and cytarabine in pediatric AML and provide compelling evidence to support the use of VPA in the treatment of children with this deadly disease. PMID:20889917

  7. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid.

    PubMed

    Kataoka, Shunsuke; Takuma, Kazuhiro; Hara, Yuta; Maeda, Yuko; Ago, Yukio; Matsuda, Toshio

    2013-02-01

    Maternal use of valproic acid (VPA) during pregnancy has been implicated in the aetiology of autism spectrum disorders in children, and rodents prenatally exposed to VPA showed behavioural alterations similar to those observed in humans with autism. However, the exact mechanism for VPA-induced behavioural alterations is not known. To study this point, we examined the effects of prenatal exposure to VPA and valpromide, a VPA analog lacking histone deacetylase inhibition activity, on behaviours, cortical pathology and histone acetylation levels in mice. Mice exposed to VPA at embryonic day 12.5 (E12.5), but not at E9 and E14.5, displayed social interaction deficits, anxiety-like behaviour and memory deficits at age 4-8 wk. In contrast to male mice, the social interaction deficits (a decrease in sniffing behaviour) were not observed in female mice at age 8 wk. The exposure to VPA at E12.5 decreased the number of Nissl-positive cells in the middle and lower layers of the prefrontal cortex and in the lower layers of the somatosensory cortex at age 8 wk. Furthermore, VPA exposure caused a transient increase in acetylated histone levels in the embryonic brain, followed by an increase in apoptotic cell death in the neocortex and a decrease in cell proliferation in the ganglionic eminence. In contrast, prenatal exposure to valpromide at E12.5 did not affect the behavioural, biochemical and histological parameters. Furthermore, these findings suggest that VPA-induced histone hyperacetylation plays a key role in cortical pathology and abnormal autism-like behaviours in mice.

  8. Efficacy of valproic acid for retinitis pigmentosa patients: a pilot study

    PubMed Central

    Iraha, Satoshi; Hirami, Yasuhiko; Ota, Sachiko; Sunagawa, Genshiro A; Mandai, Michiko; Tanihara, Hidenobu; Takahashi, Masayo; Kurimoto, Yasuo

    2016-01-01

    Purpose The purpose of this study was to examine the efficacy and safety of valproic acid (VPA) use in patients with retinitis pigmentosa (RP). Patients and methods This was a prospective, interventional, noncomparative case study. In total, 29 eyes from 29 patients with RP whose best-corrected visual acuities (BCVAs) in logarithm of the minimum angle of resolution (logMAR) ranged from 1.0 to 0.16 with visual fields (VFs) of ≤10° (measured using Goldmann perimeter with I4) were recruited. The patients received oral supplementation with 400 mg of VPA daily for 6 months and were followed for an additional 6 months. BCVAs, VFs (measured with the Humphrey field analyzer central 10-2 program), and subjective questionnaires were examined before, during, and after the cessation of VPA supplementation. Results The changes in BCVA and VF showed statistically significant differences during the internal use of VPA, compared with after cessation (P=0.001). With VPA intake, BCVA in logMAR significantly improved from baseline to 6 months (P=0.006). The mean deviation value of the VF significantly improved from baseline to 1 month (P=0.001), 3 months (P=0.004), and 6 months (P=0.004). These efficacies, however, were reversed to the baseline levels after the cessation of VPA intake. There were no significant relations between the mean blood VPA concentrations of each patient and the changes in BCVA and VF. During the internal use of VPA, 15 of 29 patients answered “easier to see”, whereas blurred vision was registered in 21 of 29 patients on cessation. No systemic drug-related adverse events were observed. Conclusion While in use, oral intake of VPA indicated a short-term benefit to patients with RP. It is necessary to examine the effect of a longer VPA supplementation in a controlled study design. PMID:27536054

  9. Valproic acid in pregnancy: how much are we endangering the embryo and fetus?

    PubMed

    Ornoy, Asher

    2009-07-01

    Valproic acid (VPA) is a known human teratogen. Exposure in pregnancy is associated with approximately three-fold increase in the rate of major anomalies, mainly spina bifida and only rarely anencephaly (NTD), cardiac, craniofacial, skeletal and limb defects and a possible set of dysmorphic features, the "valproate syndrome" with decreased intrauterine growth. This was demonstrated by prospective and retrospective studies. There is also, mainly in the children with the "valproate syndrome", a significant increase in the rate of developmental problems, manifested by decreased verbal intelligence often with communication problems of the autistic spectrum disorder (ASD). VPA is teratogenic in most animal species tested, but the human embryo seems to be the most susceptible. A daily dose of 1000 mg or more and/or polytherapy are associated with a higher teratogenic risk. It seems that several other AEDs potentiate the teratogenic effects of VPA. Thus, when valproate cannot be avoided in pregnancy, the lowest possible effective dose should be prescribed in 2-3 divided doses, preferably as monotherapy. Women exposed to valproate in pregnancy should be given periconceptional folic acid and followed up in a high risk pregnancy clinic. Appropriate ultrasonographic and other examinations, focusing on the possible different anomalies described with this agent, should be carried out. The specific inhibition by VPA of histone deacetylase and changes in gene expression may explain the teratogenicity of this drug. Other possible explanations are: increased fetal oxidative stress induced by VPA, with the brain being more susceptible to oxidative stress in comparison to other fetal organs, or the folic acid inhibitory action of this drug.

  10. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero

    PubMed Central

    Banerjee, Anwesha; Engineer, Crystal T.; Sauls, Bethany L.; Morales, Anna A.; Kilgard, Michael P.; Ploski, Jonathan E.

    2014-01-01

    Autism Spectrum Disorders (ASD) are complex neurodevelopmental disorders characterized by repetitive behavior and impaired social communication and interactions. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety and some ASD individuals exhibit impaired emotional learning. We therefore sought to further examine anxiety and emotional learning in an environmentally induced animal model of ASD that utilizes the administration of the known teratogen, valproic acid (VPA) during gestation. Specifically we exposed dams to one of two different doses of VPA (500 and 600 mg/kg) or vehicle on day 12.5 of gestation and examined the resultant progeny. Our data indicate that animals exposed to VPA in utero exhibit enhanced anxiety in the open field test and normal object recognition memory compared to control animals. Animals exposed to 500 mg/kg of VPA displayed normal acquisition of auditory fear conditioning, and exhibited reduced extinction of fear memory and normal litter survival rates as compared to control animals. We observed that animals exposed to 600 mg/kg of VPA exhibited a significant reduction in the acquisition of fear conditioning, a significant reduction in social interaction and a significant reduction in litter survival rates as compared to control animals. VPA (600 mg/kg) exposed animals exhibited similar shock sensitivity and hearing as compared to control animals indicating the fear conditioning deficit observed in these animals was not likely due to sensory deficits, but rather due to deficits in learning or memory retrieval. In conclusion, considering that progeny from dams exposed to rather similar doses of VPA exhibit striking differences in emotional learning, the VPA model may serve as a useful tool to explore the molecular and cellular mechanisms that contribute to not only ASD, but also emotional learning. PMID:25429264

  11. Age-related differences in susceptibility to toxic effects of valproic acid in rats.

    PubMed

    Espandiari, Parvaneh; Zhang, Jun; Schnackenberg, Laura K; Miller, Terry J; Knapton, Alan; Herman, Eugene H; Beger, Richard D; Hanig, Joseph P

    2008-07-01

    A multi-age rat model was evaluated as a means to identify a potential age-related difference in liver injury following exposure to valproic acid (VPA), a known pediatric hepatotoxic agent. Different age groups of Sprague-Dawley (SD) rats (10-, 25-, 40-, 80-day-old) were administered VPA at doses of 160, 320, 500 or 650 mg kg(-1) (i.p.) for 4 days. Animals from all age groups developed toxicity after treatment with VPA; however, the patterns of toxicity were dissimilar within each age group. The high dose of VPA caused significant lethality in 10- and 25-day-old rats. All doses of VPA caused decrease in the platelet counts (10-, 25-day-old rats) and the rate of growth (40-day-old rats) and increases in the urine creatine concentration (high dose, 80-day-old rats). VPA induced hepatic and splenic alterations in all age groups. The most severe lesions were found mostly in 10- and 80-day-old rats. Significant changes in blood urea nitrogen, alanine aminotransferase and alkaline phosphatase were observed in 10-day-old pups after treatment with low doses of VPA. The highest VPA dose caused significant decreases in the levels of serum total protein (40- and 80-day-old rats). Principal component analysis of spectra derived from terminal urine samples of all age groups showed that each age group clusters separately. In conclusion, this study showed that the vulnerability profile of each age group was different indicating that a multi-age pediatric animal model is appropriate to assess more completely age-dependent changes in drug toxicity.

  12. Hypoglycemic, antilipidemic and antioxidant effects of valproic acid in alloxan-induced diabetic rats.

    PubMed

    Akindele, Abidemi J; Otuguor, Edafe; Singh, Dhirendra; Ota, Duncan; Benebo, Adokiye S

    2015-09-01

    This study was designed to investigate the hypoglycemic, antilipidemic and antioxidant effects of valproic acid (VA) in alloxan-induced diabetic rats. VA (100, 300 and 600mg/kg p.o.) and insulin (17IU/kg s.c.) were administered once daily for 21 days. Fasting blood glucose level was determined at 7 days interval. On day 21, blood samples were collected for assay of serum biochemical parameters (total protein, creatinine, urea, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL), and low density lipoprotein (LDL)). Kidneys and livers were harvested for antioxidant indices and histopathological examination. In diabetic rats, VA produced a dose and day-dependent reduction in glucose level. Peak effect (52.79% reduction; P<0.001) was produced at the dose of 600mg/kg on day 21. In normoglycemic rats, VA (600mg/kg) caused significant reduction (P<0.05) in blood glucose level on days 1 and 21 with 16.38% and 15.63% reductions respectively. In diabetic rats, VA significantly reduced the level of catalase (CAT) and malondialdehyde (MDA) in the kidney, and increased the level of superoxide dismutase, CAT and glutathione peroxidase with reduction in MDA in the liver compared to diabetic control, especially at the dose of 600mg/kg. VA (600mg/kg) generally increased the level of HDL and reduced the levels of TG, LDL, TC, AST, ALT, ALP, bilirubin, creatinine and urea compared with diabetic control. The findings in this study suggest that VA possess beneficial antidiabetic effects. PMID:26015307

  13. HYPOTHERMIA AND VALPROIC ACID ACTIVATE PRO-SURVIVAL PATHWAYS AFTER HEMORRHAGE

    PubMed Central

    Bambakidis, Ted; Dekker, Simone E.; Liu, Baoling; Maxwell, Jake; Chatraklin, Kiril; Linzel, Durk; Li, Yongqing; Alam, Hasan B.

    2015-01-01

    Background Therapeutic hypothermia (Hypo) and valproic acid (VPA, a histone deacetylase inhibitor) have independently been shown to be protective in models of trauma and hemorrhagic shock (HS), but require logistically challenging doses to be effective. Theoretically, combined treatment may further enhance effectiveness, allowing us to use lower doses of each modality. The aim of this study was to determine whether a combination of mild hypothermia and VPA treatments would offer better cytoprotection compared to individual treatments in a hemorrhage model. Materials and methods Male Sprague-Dawley rats were subjected to 40% volume-controlled hemorrhage, kept in shock for 30 minutes, and assigned to one of the following treatment groups: normothermia (36–37°C), Hypo (30±2°C), normothermia+VPA (300mg/kg), and Hypo+VPA (n=5/group). After three hours of observation, the animals were sacrificed, liver tissue was harvested and subjected to whole cell lysis, and levels of key proteins in the pro-survival Akt pathway were measured using Western Blot. Results Activation of the pro-apoptotic protein cleaved-caspase-3 was significantly lower in the combined treatment group relative to normothermia (P<0.05). Levels of the pro-survival Bcl-2 was significantly higher in the combined treatment group relative to sham, normothermia, and normothermia+VPA groups (P<0.005). The downstream pro-survival protein phospho-GSK-3β was significantly higher in the sham, Hypo, and combined treatment groups compared to normothermia groups with or without VPA (P<0.05). Levels of the pro-survival β-catenin were significantly higher in the combined treatment group relative to normothermia (P<0.01). Conclusions This is the first in-vivo study to demonstrate that combined treatment with VPA and hypothermia offers better cytoprotection than these treatments given independently. PMID:25777823

  14. Medical management of refractory epilepsy--practical treatment with novel antiepileptic drugs.

    PubMed

    Ben-Menachem, Elinor

    2014-01-01

    The ultimate treatment goal in epilepsy therapy is always freedom from seizures with as few treatment adverse effects as possible. If seizures persist with the first monotherapy, alternative monotherapy with another antiepileptic drug (AED) should be considered. Continuing seizures should lead to a reevaluation of differential diagnosis and adherence. Epilepsy surgery as an alternative therapy may be suitable in selected cases. If the diagnosis of epilepsy is established and epilepsy surgery is not appropriate, AED treatment should be optimized. Evidence for how to proceed is lacking. Concepts such as rational polytherapy have been advocated but remain speculative concerning better efficacy based on the use of AEDs with differing modes of action. A variety of new AEDs including rufinamide, lacosamide, vigabatrin, perampanel, and retigabine have been recently introduced in the United States. They are briefly characterized in this update review. PMID:24400690

  15. Patients' preferences for treatment outcomes of add-on antiepileptic drugs: a conjoint analysis.

    PubMed

    Manjunath, Ranjani; Yang, Jui-Chen; Ettinger, Alan B

    2012-08-01

    To understand the relative importance of the outcomes of add-on antiepileptic drugs (AEDs) and the willingness of patients with epilepsy to accept therapeutic trade-offs between seizure control and tolerability, we administered a Web-enabled, choice-format conjoint survey to patients with a self-reported physician diagnosis of epilepsy and symptoms of partial seizures. Patients answered nine choice questions to evaluate treatment outcomes of two different hypothetical add-on AEDs. Patients were first asked to choose the better of the two medicines and then asked a follow-up question about whether or not they would add the selected AED to their current treatment regimen. Our study demonstrated that patients with epilepsy consider seizure reduction to be the top priority when ranking it against the reduction or elimination of side effects. This study aids in better understanding of patients' AED treatment preferences and may aid in management of epilepsy.

  16. The treatment of epilepsy in pregnancy: The neurodevelopmental risks associated with exposure to antiepileptic drugs.

    PubMed

    Bromley, R

    2016-09-01

    A number of antiepileptic drugs (AEDs) have been confirmed as teratogens due to their association with an increased malformation rate. The majority of research to date does not find an association between prenatal exposure to monotherapy carbamazepine, lamotrigine or phenytoin and neurodevelopmental outcome in comparison to control children and noted higher abilities in comparison to children exposed to valproate; but further work is needed before conclusions can be drawn. Data for levetiracetam was limited to one study, as was the evidence for topiramate. Sodium valproate exposure appeared to carry a dose dependent risk to the developing brain, with evidence of reduced levels of IQ, poorer verbal abilities and increased rate of autistic spectrum disorder both in comparison to control children and children exposed to other AEDs. The severity of the neurodevelopmental deficits associated with prenatal exposure to valproate highlight the critical need to consider neurodevelopmental outcomes as a central aspect of teratological research. PMID:27312074

  17. Postpartum depression in women with epilepsy: Influence of antiepileptic drugs in a prospective study

    PubMed Central

    Galanti, Melanie; Newport, D. Jeffrey; Pennell, Page B.; Titchner, Denicia; Newman, Melanee; Knight, Bettina T.; Stowe, Zachary N.

    2013-01-01

    Patients with epilepsy are at high risk for major depressive disorder (MDD) and, according to one report, postpartum depression (PPD) as well. The study described here sought to determine the prevalence and risk factors for PPD among women with epilepsy. Fifty-six women with epilepsy participating in a prospective study of perinatal antiepileptic drug (AED) pharmacokinetics were included. Participants completed the Beck Depression Inventory (BDI) during pregnancy and the postpartum period. Fourteen participants (25.0%) had a postnatal BDI score ≥12 indicative of PPD. Logistic regression indicated that significant risk factors for PPD among women with epilepsy included multiparity (odds ratio = 12.5) and AED polytherapy (odds ratio = 9.3). The rate of PPD was unaffected by the use of specific AEDs. In conclusion, PPD rates are higher among women with epilepsy than the general population, particularly those who are multiparous or receiving AED polytherapy, and there is no evidence that AED selection modifies this risk. PMID:19854113

  18. An Update on Maternal Use of Antiepileptic Medications in Pregnancy and Neurodevelopment Outcomes.

    PubMed

    Gerard, Elizabeth E; Meador, Kimford J

    2015-06-01

    Antiepileptic drugs (AEDs) are prescribed commonly to women of childbearing age. In utero exposure to some AEDs can have significant cognitive and behavioral consequences for the unborn child. Recently, prospective studies of women taking AEDs during pregnancy have added significantly to our understanding of cognitive and behavioral teratogenic risks posed by fetal AED exposure. Valproate is clearly associated with impaired cognitive development as well as an increased risk of disorders such as autism and autism spectrum disorder. Exposure to carbamazepine, lamotrigine, levetiracetam, or phenytoin monotherapy is associated with more favorable cognitive and behavioral outcomes than valproate, but more data are required to clarify if these AEDs have more subtle effects on cognition and behavior. There are insufficient data on the developmental effects of other AEDs in humans. Further, the underlying mechanisms of cognitive teratogenesis are poorly understood, including the genetic factors that affect susceptibility to AEDs. PMID:27617120

  19. Antiepileptic medications in autism spectrum disorder: a systematic review and meta-analysis.

    PubMed

    Hirota, Tomoya; Veenstra-Vanderweele, Jeremy; Hollander, Eric; Kishi, Taro

    2014-04-01

    Electroencephalogram-recorded epileptiform activity is common in children with autism spectrum disorder (ASD), even without clinical seizures. A systematic literature search identified 7 randomized, placebo-controlled trials of antiepileptic drugs (AEDs) in ASD (total n = 171), including three of valproate, and one each of lamotrigine, levetiracetam, and topiramate. Meta-analysis revealed no significant difference between medication and placebo in four studies targeting irritability/agitation and three studies investigating global improvement, although limitations include lack of power and different medications with diverse actions. Across all seven studies, there was no significant difference in discontinuation rate between two groups. AEDs do not appear to have a large effect size to treat behavioral symptoms in ASD, but further research is needed, particularly in the subgroup of patients with epileptiform abnormalities. PMID:24077782

  20. An Update on Maternal Use of Antiepileptic Medications in Pregnancy and Neurodevelopment Outcomes

    PubMed Central

    Gerard, Elizabeth E.; Meador, Kimford J.

    2015-01-01

    Antiepileptic drugs (AEDs) are prescribed commonly to women of childbearing age. In utero exposure to some AEDs can have significant cognitive and behavioral consequences for the unborn child. Recently, prospective studies of women taking AEDs during pregnancy have added significantly to our understanding of cognitive and behavioral teratogenic risks posed by fetal AED exposure. Valproate is clearly associated with impaired cognitive development as well as an increased risk of disorders such as autism and autism spectrum disorder. Exposure to carbamazepine, lamotrigine, levetiracetam, or phenytoin monotherapy is associated with more favorable cognitive and behavioral outcomes than valproate, but more data are required to clarify if these AEDs have more subtle effects on cognition and behavior. There are insufficient data on the developmental effects of other AEDs in humans. Further, the underlying mechanisms of cognitive teratogenesis are poorly understood, including the genetic factors that affect susceptibility to AEDs. PMID:27617120

  1. An Update on Maternal Use of Antiepileptic Medications in Pregnancy and Neurodevelopment Outcomes

    PubMed Central

    Gerard, Elizabeth E.; Meador, Kimford J.

    2015-01-01

    Antiepileptic drugs (AEDs) are prescribed commonly to women of childbearing age. In utero exposure to some AEDs can have significant cognitive and behavioral consequences for the unborn child. Recently, prospective studies of women taking AEDs during pregnancy have added significantly to our understanding of cognitive and behavioral teratogenic risks posed by fetal AED exposure. Valproate is clearly associated with impaired cognitive development as well as an increased risk of disorders such as autism and autism spectrum disorder. Exposure to carbamazepine, lamotrigine, levetiracetam, or phenytoin monotherapy is associated with more favorable cognitive and behavioral outcomes than valproate, but more data are required to clarify if these AEDs have more subtle effects on cognition and behavior. There are insufficient data on the developmental effects of other AEDs in humans. Further, the underlying mechanisms of cognitive teratogenesis are poorly understood, including the genetic factors that affect susceptibility to AEDs.

  2. The effects of antiepileptic drugs on cognitive functional magnetic resonance imaging

    PubMed Central

    Beltramini, Guilherme Coco; Cendes, Fernando

    2015-01-01

    The cognitive dysfunction caused by antiepileptic drugs (AEDs) has been extensively described, although the mechanisms underlying such collateral effects are still poorly understood. The combination of functional magnetic resonance imaging (fMRI) studies with pharmacological intervention (pharmaco-MRI or ph-MRI) offers the opportunity to investigate the effect of drugs such as AEDs on brain activity, including cognitive tasks. Here we review the studies that investigated the effects of AEDs [topiramate (TPM), lamotrigine (LMT), carbamazepine (CBZ), pregabalin (PGB), valproate (VPA) and levetiracetam (LEV)] on cognitive fMRI tasks. Despite the scarcity of fMRI studies focusing on the impact of AEDs on cognitive task, the results of recent work have provided important information about specific drug-related changes of brain function. PMID:25853082

  3. Quantification of sewer exfiltration using the anti-epileptic drug carbamazepine as marker species for wastewater.

    PubMed

    Fenz, R; Blaschke, A P; Clara, M; Kroiss, H; Mascher, D; Zessner, M

    2005-01-01

    The anti-epileptic drug carbamazepine was used as marker species in wastewater to identify and quantify sewer exfiltration. In several studies carbamazepine turned out to be hardly removed in wastewater treatment and not or just slightly attenuated during bank infiltration. Concentrations in wastewater are generally 1000 times higher than the limit of quantification. In contrast to many other marker species a "young" drug as carbamazepine is discharged to the environment only by wastewater. The results from this study carried out in Linz, Austria indicate an average exfiltration rate, expressed as percentage of the dry weather flow that is lost on the city-wide scale, of 1%. This rate is lower than sewage losses reported in most other studies which attempted to quantify exfiltration on the basis of groundwater pollution. However, it was also possible to identify one area with significant higher sewage losses.

  4. Are there potential problems with generic substitution of antiepileptic drugs? A review of issues.

    PubMed

    Crawford, P; Feely, M; Guberman, A; Kramer, G

    2006-04-01

    In response to increasing cost pressures, healthcare systems are encouraging the use of generic medicines. This review explores potential problems with generic substitution of antiepileptic drugs (AEDs). A broad search strategy identified approximately 70 relevant articles. Potential problems with generic substitution included: The limited evidence (mainly case reports with some pharmacokinetic studies) appears to support these concerns for older AEDs. As a result, restrictions on use of specific generic AEDs are in place in some countries and recommended by some lay epilepsy organisations. As more AEDs lose patent protection, it is important to examine the question of whether generic substitution may pose problems for patients with epilepsy, and whether there should be safeguards to ensure that both physician and patient are informed when generic substitution occurs.

  5. Failure of antiepileptic drugs in controlling seizures in epilepsy: What do we do next?

    PubMed

    Galindo-Mendez, Brahyan; Mayor, Luis C; Velandia-Hurtado, Fernando; Calderon-Ospina, Carlos

    2015-01-01

    Medically intractable epilepsy is a clinical condition of concern that arises when a patient with epilepsy suffers seizures, despite a trial of two or more antiepileptic drugs (AEDs) suitable for the type of epilepsy that are prescribed at maximum tolerated doses, does not achieve control of seizures. This diagnosis could be related to cortical dysplasias. We report the case of a 5-year-old girl with a previous normal neurological development and no family history of epilepsy who presented with focal-type seizures at age 4. She started treatment by taking different AEDs for seizure control. She continued having frequent seizures that sometimes progressed to generalized seizures and status epilepticus. After a focal cortical resection performed in the area where interictal spikes were detected, the pathology confirmed a type IIb cortical dysplasia as the cause of the epilepsy. This article discusses cortical dysplasias as a cause of pharmacoresistant epilepsy and its treatment. PMID:26101746

  6. The role of antiepileptic drugs in free radicals generation and antioxidant levels in epileptic patients.

    PubMed

    Eldin, Essam Eldin Mohamed Nour; Elshebiny, Hosam Abdel-Fattah; Mohamed, Tarek Mostafa; Abdel-Aziz, Mohamed Abdel-Azim; El-Readi, Mahmoud Zaki

    2016-01-01

    Many risk factors are encountered during the pathogenesis of epilepsy. In this study, the effect of seizure frequency on free radical generation and antioxidants levels in epileptic patients was evaluated. This study was carried out on 15 healthy controls (GI) and 60 epileptic patients treated with mono- or poly-therapy of carbamazepine, valproic acid, or phenytoin. The treated epileptic patients were divided into 2 main groups according to the seizure frequency: controlled seizure patients GII (n = 30) and uncontrolled seizure patients GIII (n = 30). GII included the GIIA subgroup (n = 15) which had been seizure free for more than 12 months and the GIIB subgroup (n = 15) which had been seizure free for a period from 6 to12 months. GIII included GIIIA (n = 15) and GIIIB (n = 15) for patients which had a seizure frequency of less than and more than four times/month, respectively. In comparison to the control group (GI), the levels of nitric oxide (NO) and malondialdehyde/creatinine ratio were significantly increased in GIIB, GIIIA, and GIIIB, while vitamins A and E levels were significantly decreased in GIIIB. Serum NO levels had significant negative correlations with serum vitamin E in the GIIA and GIIB groups, and with vitamin A in the GIIIA and GIIIB groups. However, serum NO had positive correlation with urinary MDA/Cr ratio. The imbalance between free radical generation and antioxidant system in epileptic patients may be a factor in seizure frequency.

  7. Antiepileptic drugs (AEDs) polypharmacy could lead to buried pharmacokinetic interactions due to CYP450.

    PubMed

    Tolou-Ghamari, Z

    2012-09-01

    CYP450 enzymes are basics for the metabolism of several medications such as numerous AEDs. As AEDs polypharmacy could lead to hidden pharmacokinetic interactions due to CYP450, there fore, the aim of this study was to determine a proper guide line for AEDs prescription in Iranian epileptic population. A cross-sectional study of fifty-four patients' (n=23 females; n= 31 males with a mean age of 27 years) located in the Epilepsy Ward of Kashani Hospital of Isfahan University of Medical Sciences was carried out during the year 2011. Variables including sex, age, age of seizureonset, type and number of AEDs were recorded in d-Base. Results showed that the number of prescriptions based on AEDs polypharmacy was 77.8%. The most important drugs in prescriptions were carbamazepine (n=41) that is a potent inducer of CYP450 and valproic acid (n=31) that is a potent inhibitor of CYP450 simultaneously. Administration of AEDs was based on: three (n=17), four (n=7), five (n=4) or six (n=3) AEDs simultaneously. To avoid side effects, in prescribing AEDs that act as CYP450 inhibitors or inducers concomitantly, their spectrum of interactions should be predicted.

  8. Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age.

    PubMed

    Meador, Kimford J; Baker, Gus A; Browning, Nancy; Cohen, Morris J; Clayton-Smith, Jill; Kalayjian, Laura A; Kanner, Andres; Liporace, Joyce D; Pennell, Page B; Privitera, Michael; Loring, David W

    2011-02-01

    We previously reported that foetal valproate exposure impairs intelligence quotient. In this follow-up investigation, we examined dose-related effects of foetal antiepileptic drug exposure on verbal and non-verbal cognitive measures. This investigation is an ongoing prospective observational multi-centre study in the USA and UK, which has enrolled pregnant females with epilepsy on monotherapy from 1999 to 2004. The study seeks to determine if differential long-term neurodevelopmental effects exist across four commonly used drugs (carbamazepine, lamotrigine, phenytoin and valproate). This report compares verbal versus non-verbal cognitive outcomes in 216 children who completed testing at the age of three years. Verbal and non-verbal index scores were calculated from the Differential Ability Scales, Preschool Language Scale, Peabody Picture Vocabulary Test and Developmental Test of Visual-Motor Integration. Verbal abilities were lower than non-verbal in children exposed in utero to each drug. Preconceptional folate use was associated with higher verbal outcomes. Valproate was associated with poorer cognitive outcomes. Performance was negatively associated with valproate dose for both verbal and non-verbal domains and negatively associated with carbamazepine dose for verbal performance. No dose effects were seen for lamotrigine and phenytoin. Since foetal antiepileptic drug exposure is associated with lower verbal than non-verbal abilities, language may be particularly susceptible to foetal exposure. We hypothesize that foetal drug exposure may alter normal cerebral lateralization. Further, a dose-dependent relationship is present for both lower verbal and non-verbal abilities with valproate and for lower verbal abilities with carbamazepine. Preconceptional folate may improve cognitive outcomes. Additional research is needed to confirm these findings, extend the study to other drugs, define the risks associated with drug treatment for seizures in the neonates, and

  9. Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age

    PubMed Central

    Meador, Kimford J.; Baker, Gus A.; Browning, Nancy; Cohen, Morris J.; Clayton-Smith, Jill; Kalayjian, Laura A.; Kanner, Andres; Liporace, Joyce D.; Pennell, Page B.; Privitera, Michael

    2011-01-01

    We previously reported that foetal valproate exposure impairs intelligence quotient. In this follow-up investigation, we examined dose-related effects of foetal antiepileptic drug exposure on verbal and non-verbal cognitive measures. This investigation is an ongoing prospective observational multi-centre study in the USA and UK, which has enrolled pregnant females with epilepsy on monotherapy from 1999 to 2004. The study seeks to determine if differential long-term neurodevelopmental effects exist across four commonly used drugs (carbamazepine, lamotrigine, phenytoin and valproate). This report compares verbal versus non-verbal cognitive outcomes in 216 children who completed testing at the age of three years. Verbal and non-verbal index scores were calculated from the Differential Ability Scales, Preschool Language Scale, Peabody Picture Vocabulary Test and Developmental Test of Visual-Motor Integration. Verbal abilities were lower than non-verbal in children exposed in utero to each drug. Preconceptional folate use was associated with higher verbal outcomes. Valproate was associated with poorer cognitive outcomes. Performance was negatively associated with valproate dose for both verbal and non-verbal domains and negatively associated with carbamazepine dose for verbal performance. No dose effects were seen for lamotrigine and phenytoin. Since foetal antiepileptic drug exposure is associated with lower verbal than non-verbal abilities, language may be particularly susceptible to foetal exposure. We hypothesize that foetal drug exposure may alter normal cerebral lateralization. Further, a dose-dependent relationship is present for both lower verbal and non-verbal abilities with valproate and for lower verbal abilities with carbamazepine. Preconceptional folate may improve cognitive outcomes. Additional research is needed to confirm these findings, extend the study to other drugs, define the risks associated with drug treatment for seizures in the neonates, and

  10. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder.

    PubMed

    Kumar, Hariom; Sharma, B M; Sharma, Bhupesh

    2015-12-01

    Valproic acid administration during gestational period causes behavior and biochemical deficits similar to those observed in humans with autism spectrum disorder. Although worldwide prevalence of autism spectrum disorder has been increased continuously, therapeutic agents to ameliorate the social impairment are very limited. The present study has been structured to investigate the therapeutic potential of melatonin receptor agonist, agomelatine in prenatal valproic acid (Pre-VPA) induced autism spectrum disorder in animals. Pre-VPA has produced reduction in social interaction (three chamber social behavior apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, Pre-VPA has increased locomotor activity (actophotometer), anxiety, brain oxidative stress (thiobarbituric acid reactive species, glutathione, and catalase), nitrosative stress (nitrite/nitrate), inflammation (brain and ileum myeloperoxidase activity), calcium levels and blood brain barrier leakage in animals. Treatment with agomelatine has significantly attenuated Pre-VPA induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, agomelatine also attenuated Pre-VPA induced increase in locomotion, anxiety, brain oxidative stress, nitrosative stress, inflammation, calcium levels and blood brain barrier leakage. It is concluded that, Pre-VPA has induced autism spectrum disorder, which was attenuated by agomelatine. Agomelatine has shown ameliorative effect on behavioral, neurochemical and blood brain barrier alteration in Pre-VPA exposed animals. Thus melatonin receptor agonists may provide beneficial therapeutic strategy for managing autism spectrum disorder.

  11. Valproic Acid Prevents Penile Fibrosis and Erectile Dysfunction in Cavernous Nerve Injured Rats

    PubMed Central

    Hannan, Johanna L.; Kutlu, Omer; Stopak, Bernard L.; Liu, Xiaopu; Castiglione, Fabio; Hedlund, Petter; Burnett, Arthur L.; Bivalacqua, Trinity J.

    2014-01-01

    Introduction Bilateral cavernous nerve injury (BCNI) causes profound penile changes such as apoptosis and fibrosis leading to erectile dysfunction (ED). Histone deacetylase (HDAC) has been implicated in chronic fibrotic diseases. Aims This study will characterize the molecular changes in penile HDAC after BCNI and determine if HDAC inhibition can prevent BCNI-induced ED and penile fibrosis. Methods Five groups of rats (8–10 wks, n=10/group) were utilized: 1) sham, 2&3) BCNI 14 and 30 days following injury, and 4&5) BCNI treated with HDAC inhibitor valproic acid (VPA 250mg/kg; 14 and 30 days). All groups underwent cavernous nerve stimulation (CNS) to determine intracavernosal pressure (ICP). Penile HDAC3, HDAC4, fibronectin, and transforming growth factor-β1 (TGF-β1) protein expression (Western blot) were assessed. Trichrome staining and the fractional area of fibrosis were determined in penes from each group. Cavernous smooth muscle content was assessed by immunofluorescence to alpha smooth muscle actin (α-SMA) antibodies. Main Outcome Measures ICP; HDAC3, HDAC4, fibronectin and TGF-β1 protein expression; penile fibrosis; penile α-SMA content. Results There was a voltage-dependent decline (p<0.05) in ICP to CNS 14 and 30 days after BCNI. Penile HDAC3, HDAC4, and fibronectin were significantly increased (P<0.05) 14 days after BCNI. There was a slight increase in TGF-β1 protein expression after BCNI. Histological analysis showed increased (P<0.05) corporal fibrosis after BCNI at both time points. VPA treatment decreased (P<0.05) penile HDAC3, HDAC4, and fibronectin protein expression as well as corporal fibrosis. There was no change in penile α-SMA between all groups. Furthermore, VPA-treated BCNI rats had improved erectile responses to CNS (P<0.05). Conclusion HDAC-induced pathological signaling in response to BCNI contributes to penile vascular dysfunction after BCNI. Pharmacological inhibition of HDAC prevents penile fibrosis, normalizes fibronectin

  12. Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study

    PubMed Central

    Meador, Kimford J; Baker, Gus A; Browning, Nancy; Cohen, Morris J; Bromley, Rebecca L; Clayton-Smith, Jill; Kalayjian, Laura A; Kanner, Andres; Liporace, Joyce D; Pennell, Page B; Privitera, Michael; Loring, David W

    2013-01-01

    Summary Background Many women of childbearing potential take antiepileptic drugs, but the cognitive effects of fetal exposure are uncertain. We aimed to assess effects of commonly used antiepileptic drugs on cognitive outcomes in children up to 6 years of age. Methods In this prospective, observational, assessor-masked, multicentre study, we enrolled pregnant women with epilepsy on antiepileptic drug monotherapy (carbamazepine, lamotrigine, phenytoin, or valproate) between October, 1999, and February, 2004, at 25 epilepsy centres in the UK and the USA. Our primary outcome was intelligence quotient (IQ) at 6 years of age (age-6 IQ) in all children, assessed with linear regression adjusted for maternal IQ, antiepileptic drug type, standardised dose, gestational birth age, and use of periconceptional folate. We also assessed multiple cognitive domains and compared findings with outcomes at younger ages. This study is registered with ClinicalTrials.gov, number NCT00021866. Findings We included 305 mothers and 311 children (six twin pairs) in the primary analysis. 224 children completed 6 years of follow-up (6-year-completer sample). Multivariate analysis of all children showed that age-6 IQ was lower after exposure to valproate (mean 97, 95% CI 94–101) than to carbamazepine (105, 102–108; p=0·0015), lamotrigine (108, 105–110; p=0·0003), or phenytoin (108, 104–112; p=0·0006). Children exposed to valproate did poorly on measures of verbal and memory abilities compared with those exposed to the other antiepileptic drugs and on non-verbal and executive functions compared with lamotrigine (but not carbamazepine or phenytoin). High doses of valproate were negatively associated with IQ (r=−0·56, p<0·0001), verbal ability (r=−0·40, p=0·0045), non-verbal ability (r=−0·42, p=0·0028), memory (r=−0·30, p=0·0434), and executive function (r=−0·42, p=0·0004), but other antiepileptic drugs were not. Age-6 IQ correlated with IQs at younger ages, and IQ

  13. Medicine possession ratio as proxy for adherence to antiepileptic drugs: prevalence, associations, and cost implications

    PubMed Central

    Jacobs, Karen; Julyan, Marlene; Lubbe, Martie S; Burger, Johanita R; Cockeran, Marike

    2016-01-01

    Objective To determine the adherence status to antiepileptic drugs (AEDs) among epilepsy patients; to observe the association between adherence status and age, sex, active ingredient prescribed, treatment period, and number of comorbidities; and to determine the effect of nonadherence on direct medicine treatment cost of AEDs. Methods A retrospective study analyzing medicine claims data obtained from a South African pharmaceutical benefit management company was performed. Patients of all ages (N=19,168), who received more than one prescription for an AED, were observed from 2008 to 2013. The modified medicine possession ratio (MPRm) was used as proxy to determine the adherence status to AED treatment. The MPRm was considered acceptable (adherent) if the calculated value was ≥80%, but ≤110%, whereas an MPRm of <80% (unacceptably low) or >110% (unacceptably high) was considered nonadherent. Direct medicine treatment cost was calculated by summing the medical scheme contribution and patient co-payment associated with each AED prescription. Results Only 55% of AEDs prescribed to 19,168 patients during the study period had an acceptable MPRm. MPRm categories depended on the treatment period (P>0.0001; Cramer’s V=0.208) but were independent of sex (P<0.182; Cramer’s V=0.009). Age group (P<0.0001; Cramer’s V=0.067), active ingredient (P<0.0001; Cramer’s V=0.071), and number of comor-bidities (P<0.0001; Cramer’s V=0.050) were statistically but not practically significantly associated with MPRm categories. AEDs with an unacceptably high MPRm contributed to 3.74% (US$736,376.23) of the total direct cost of all AEDs included in the study, whereas those with an unacceptably low MPRm amounted to US$3,227,894.85 (16.38%). Conclusion Nonadherence to antiepileptic treatment is a major problem, encompassing ~20% of cost in our study. Adherence, however, is likely to improve with the treatment period. Further research is needed to determine the factors influencing

  14. Studies on the effects of acetylcholine and antiepileptic drugs on /sup 32/P incorporation into phospholipids of rat brain synaptosomes

    SciTech Connect

    Aly, M.I.; Abdel-Latif, A.A.

    1982-02-01

    Studies were conducted on the effects of antiepileptic drugs on the acetylcholine-stimulated /sup 32/P labeling of phospholipids in rat brain synaptosomes. Of the four antiepileptic drugs investigated in the present study, namely phenytoin, carbamazepine, phenobarbital, and valproate, only phenytoin blocked the acetylcholine-stimulated /sup 32/P labeling of phosphatidylinositol and phosphatidic acid, and the acetylcholine-stimulated breakdown of polyphosphoinositides. Phenytoin alone, like atropine alone, had no effect on the /sup 32/P labeling of phospholipids nor on the specific radioactivity of (/sup 32/P)ATP. Omission of Na/sup +/ drastically reduced both the /sup 32/P labeling of synaptosomal phospholipids and the specific radioactivity of (/sup 32/P)ATP and furthermore it significantly decreased the phosphoinositide effect. It was concluded that certain antiepileptic drugs, such as phenytoin, could exert their pharmacological actions through their antimuscarinic effects. In addition the finding that phenytoin, which acts to regulate NA/sup +/ and Ca/sup 2 +/ permeability of neuronal membranes, also inhibited the phosphoinositide effects in synaptosomes, support the conclusions that Ca2+ and Na+ are probably involved in the molecular mechanism underlying this phenomenon in excitable tissues.

  15. P-glycoprotein alters blood–brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy

    PubMed Central

    Ma, Aimei; Wang, Cuicui; Chen, Yinghui; Yuan, Weien

    2013-01-01

    P-glycoprotein is one of the earliest known multidrug transporters and plays an important role in resistance to chemotherapeutic drugs. In this study, we detected levels of P-glycoprotein and its mRNA expression in a rat brain model of medically intractable epilepsy established by amygdala kindling and drug selection. We investigated whether inhibition of P-glycoprotein affects the concentration of antiepileptic drugs in cortical extracellular fluid. We found that levels of P-glycoprotein and its mRNA expression were upregulated in epileptic cerebral tissue compared with cerebral tissue from normal rats. The concentrations of two antiepileptic drugs, carbamazepine and phenytoin, were very low in the cortical extracellular fluid of rats with medically intractable epilepsy, and were restored after blockade of P-glycoprotein by verapamil. These results show that increased P-glycoprotein levels alter the ability of carbamazepine and phenytoin to penetrate the blood–brain barrier and reduce the concentrations of these agents in extracellular cortical fluid. High P-glycoprotein levels may be involved in resistance to antiepileptic drugs in medically intractable epilepsy. PMID:24348021

  16. Role of P-glycoprotein in refractoriness of seizures to antiepileptic drugs in Lennox-Gastaut syndrome.

    PubMed

    Kumar, Achal; Tripathi, Deepak; Paliwal, Vimal Kumar; Neyaz, Zafar; Agarwal, Vikas

    2015-02-01

    Mechanism of seizure refractoriness to antiepileptic drugs in children with Lennox-Gastaut syndrome is not known. Efflux of antiepileptic drugs due to increased expression/function of P-glycoprotein, a multidrug efflux transporter protein on the cell surface is a proposed mechanism. The authors studied the expression/function of P-glycoprotein on peripheral blood mononuclear cells of 29 children with Lennox-Gastaut syndrome, 23 children with other epilepsies, and 19 healthy children. The authors found a higher P-glycoprotein expression/function in Lennox-Gastaut syndrome, a higher percent positive cells as compared to children with other epilepsy (P < 0.001) and to healthy controls (P = 0.012), higher P-glycoprotein expression as compared to healthy controls (P = 0.003), a higher total P-glycoprotein expression (relative florescence intensity × percent positive cells) as compared to children with other epilepsies (P < 0.001) and healthy controls (P < 0.001), and a higher P-glycoprotein function as compared to children with other epilepsies (P = 0.001) and healthy controls (P = 0.002). These findings may explain seizure refractoriness to anti-epileptic drugs in Lennox-Gastaut syndome.

  17. Investigation of low levels of plasma valproic acid concentration following simultaneous administration of sodium valproate and rizatriptan benzoate.

    PubMed

    Hokama, Nobuo; Hobara, Norio; Kameya, Hiromasa; Ohshiro, Susumu; Hobara, Narumi; Sakanashi, Matao

    2007-03-01

    Drug interaction between rizatriptan benzoate, an anti-migraine agent, and sodium valproate (VPA-Na), an anticonvulsant, was studied in rats. When rizatriptan benzoate was administered orally immediately after VPA-Na oral administration, the pharmacokinetic parameters, such as plasma valproic acid (VPA) and area under the plasma concentration-time curve up to 3 h (AUC(0-3)), were significantly decreased compared with those in the control group. However, when rizatriptan benzoate was administered intraperitoneally immediately after VPA-Na orally, these parameters were not changed. In addition, when benzoic acid was administered orally immediately after VPA-Na orally, these were significantly lower compared with the control values. Therefore, it might be possible that VPA transport by monocarboxylate transporter was competitively inhibited by rizatriptan benzoate and thus absorption of VPA was decreased. PMID:17331341

  18. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder.

    PubMed

    Kumar, Hariom; Sharma, B M; Sharma, Bhupesh

    2015-12-01

    Valproic acid administration during gestational period causes behavior and biochemical deficits similar to those observed in humans with autism spectrum disorder. Although worldwide prevalence of autism spectrum disorder has been increased continuously, therapeutic agents to ameliorate the social impairment are very limited. The present study has been structured to investigate the therapeutic potential of melatonin receptor agonist, agomelatine in prenatal valproic acid (Pre-VPA) induced autism spectrum disorder in animals. Pre-VPA has produced reduction in social interaction (three chamber social behavior apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, Pre-VPA has increased locomotor activity (actophotometer), anxiety, brain oxidative stress (thiobarbituric acid reactive species, glutathione, and catalase), nitrosative stress (nitrite/nitrate), inflammation (brain and ileum myeloperoxidase activity), calcium levels and blood brain barrier leakage in animals. Treatment with agomelatine has significantly attenuated Pre-VPA induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, agomelatine also attenuated Pre-VPA induced increase in locomotion, anxiety, brain oxidative stress, nitrosative stress, inflammation, calcium levels and blood brain barrier leakage. It is concluded that, Pre-VPA has induced autism spectrum disorder, which was attenuated by agomelatine. Agomelatine has shown ameliorative effect on behavioral, neurochemical and blood brain barrier alteration in Pre-VPA exposed animals. Thus melatonin receptor agonists may provide beneficial therapeutic strategy for managing autism spectrum disorder. PMID:26498253

  19. The safety and tolerability of newer antiepileptic drugs in children and adolescents.

    PubMed

    Kayani, Saima; Sirsi, Deepa

    2012-01-01

    Childhood epilepsy continues to be intractable in more than 25% of patients diagnosed with epilepsy. The introduction of new anti-epileptic drugs (AEDs) provides more options for treatment of children with epilepsy. We review the safety and tolerability of seven new AEDs (levetiracetam, lamotrigine, oxcarbazepine, rufinamide, topiramate, vigabatrin and zonisamide) focusing on their side effect profiles and safety in children and adolescents. Many considerations that are specific for children such as the impact of AEDs on the developing brain are not addressed during the development of new AEDs. They are usually approved as adjunctive therapies based upon clinical trials involving adult patients with partial epilepsy. However, 2 of the AEDs reviewed here (rufinamide and vigabatrin) have FDA approval in the U.S. for specific Pediatric epilepsy syndromes, which are discussed below. The Pediatrician or Neurologists decision on the use of a new AED is an evolutionary process largely dependent on the patient characteristics, personal/peer experiences and literature about efficacy and safety profiles of these medications. Evidence based guidelines are limited due to a lack of randomized controlled trials involving pediatric patients for many of these new AEDs. PMID:23650467

  20. A prospective study of adverse drug reactions to antiepileptic drugs in children

    PubMed Central

    Anderson, Mark; Egunsola, Oluwaseun; Cherrill, Janine; Millward, Claire; Fakis, Apostolos; Choonara, Imti

    2015-01-01

    Objectives To prospectively determine the nature and rate of adverse drug reactions (ADRs) in children on antiepileptic drugs (AEDs) and to prospectively evaluate the effect of AEDs on behaviour. Setting A single centre prospective observational study. Participants Children (<18 years old) receiving one or more AEDs for epilepsy, at each clinically determined follow-up visit. Primary and secondary outcomes Primary outcome was adverse reactions of AEDs. Behavioural and cognitive functions were secondary outcomes. Results 180 children were recruited. Sodium valproate and carbamazepine were the most frequently used AEDs. A total of 114 ADRs were recorded in 56 of these children (31%). 135 children (75%) were on monotherapy. 27 of the 45 children (60%) on polytherapy had ADRs; while 29 (21%) of those on monotherapy had ADRs. The risk of ADRs was significantly lower in patients receiving monotherapy than polytherapy (RR: 0.61, 95% CI 0.47 to 0.79, p<0.0001). Behavioural problems and somnolence were the most common ADRs. 23 children had to discontinue their AED due to an ADR. Conclusions Behavioural problems and somnolence were the most common ADRs. Polytherapy significantly increases the likelihood of ADRs in children. Trail registration number EudraCT (2007-000565-37). PMID:26033949

  1. Selecting anti-epileptic drugs: a pediatric epileptologist’s view, a computer’s view

    PubMed Central

    Pestian, J; Matykiewicz, P; Holland-Bouley, K; Standridge, S; Spencer, M; Glauser, T

    2012-01-01

    Objective To identify which clinical characteristics are important to include in clinical decision support systems developed for Antiepileptic Drug (AEDs) selection. Methods Twenty-three epileptologists from the Childhood Absence Epilepsy network completed a survey related to AED selection. Using cluster analysis their responses where classified into subject matter groups and weighted for importance. Results Five distinct subject matter groups were identified and their relative weighting for importance were determined: disease characteristics (weight 4.8 ± 0.049), drug toxicities (3.82 ± 0.098), medical history (3.12 ± 0.102), systemic characteristics (2.57 ± 0.048) and genetic characteristics (1.08 ± 0.046). Conclusion Research about prescribing patterns exists but research on how such data can be used to train advanced technology is novel. As machine learning algorithms becomes more and more prevalent in clinical decisions support systems, developing methods for determining which data should be part of those algorithms is equally important. PMID:22998126

  2. Development and validation of sensitive spectrophotometric method for determination of two antiepileptics in pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Gouda, Ayman A.; Malah, Zakia Al

    2013-03-01

    Rapid, sensitive and validated spectrophotometric methods for the determination of two antiepileptics (gabapentin (GAB) and pregabalin (PRG)) in pure forms and in pharmaceutical formulations was developed. The method is based on the formation of charge transfer complex between drug and the chromogenic reagents quinalizarin (Quinz) and alizarin red S (ARS) producing charge transfer complexes in methanolic medium which showed an absorption maximum at 571 and 528 nm for GAB and 572 and 538 nm for PRG using Quinz and ARS, respectively. The optimization of the reaction conditions such as the type of solvent, reagent concentration and reaction time were investigated. Beer's law is obeyed in the concentration ranges 0.4-8.0 and 0.5-10 μg mL-1 for GAB and PRG using Quinz and ARS, respectively. The molar absorptivity, Sandell sensitivity, detection and quantification limits are also calculated. The correlation coefficients were ⩾0.9992 with a relative standard deviation (RSD%) of ⩽1.76. The methods are successfully applied to the determination of GAB and PRG in pharmaceutical formulations and the validity assesses by applying the standard addition technique, which compared with those obtained using the reported methods.

  3. Solid Dispersion Approach Improving Dissolution Rate of Stiripentol: a Novel Antiepileptic Drug

    PubMed Central

    Afifi, Samar

    2015-01-01

    Some drugs have low bioavailability due to their poor aqueous solubility and/or slow dissolution rate in biological fluids. Stiripentol (STP) is a novel anticonvulsant drug that is structurally unrelated to the currently available antiepileptics. It has poor aqueous solubility and its solubility has to be enhanced accordingly. Polyethyleneglycol 6000 (PEG-6000) is commonly utilized as a hydrophilic carrier for poorly water soluble drugs in order to improve their bioavailability. STP and PEG-6000 binary system was obtained by physical mixture, solvent evaporation, co-evaporation and melting methods using different weight ratios. The properties of the prepared binary systems were evaluated using dissolution rate, phase solubility, Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscope (SEM) studies. The FTIR spectroscopic studies showed the stability of STP and absence of STP-PEG-6000 interaction. The DSC and SEM studies indicated the amorphous state of STP in its binary systems with PEG-6000. Dissolution profile of STP was significantly improved via complexation with PEG-6000 as compared with the pure drug. The binary system which was prepared using melting method showed the highest dissolution rate. The promising results of the prepared binary systems open the avenue for further oral formulation of STP. PMID:26664367

  4. Seizure control and pharmacokinetics of antiepileptic drugs in pregnant women with epilepsy.

    PubMed

    Brodtkorb, Eylert; Reimers, Arne

    2008-03-01

    The main concerns associated with epilepsy during pregnancy consist of maternal and fetal risks from uncontrolled seizures, and harmful effects of the treatment on the development of the offspring. Although seizure control is maintained in the majority, worsening occurs in a fraction of childbearing women with epilepsy. As multiple factors associated with pregnancy may have a negative impact on epilepsy, a careful analysis of the situation should be performed in those who deteriorate. Emotional and behavioural influence, including insufficient sleep and treatment non-compliance, as well as physical factors, such as emesis and pelvic distortion, should receive attention. The serum concentrations of almost all antiepileptic drugs decrease during pregnancy, particularly those which are metabolised by glucuronidation. The inter-individual variability is pronounced. In highly protein-bound drugs, such as phenytoin and valproate, unbound drug is less affected than total concentrations. Lamotrigine and levetiracetam concentrations may decrease by more than 50% in the course of pregnancy; monohydroxyoxcarbazepine by up to 30-40%. Appropriate clinical follow-up tailored to individual needs and supported by therapeutic drug monitoring should be performed in pregnant women with epilepsy. Education concerning reproductive issues is an essential part of the epilepsy service to fertile women.

  5. Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel.

    PubMed

    Boiteux, Céline; Vorobyov, Igor; French, Robert J; French, Christopher; Yarov-Yarovoy, Vladimir; Allen, Toby W

    2014-09-01

    Voltage-gated sodium (Nav) channels are important targets in the treatment of a range of pathologies. Bacterial channels, for which crystal structures have been solved, exhibit modulation by local anesthetic and anti-epileptic agents, allowing molecular-level investigations into sodium channel-drug interactions. These structures reveal no basis for the "hinged lid"-based fast inactivation, seen in eukaryotic Nav channels. Thus, they enable examination of potential mechanisms of use- or state-dependent drug action based on activation gating, or slower pore-based inactivation processes. Multimicrosecond simulations of NavAb reveal high-affinity binding of benzocaine to F203 that is a surrogate for FS6, conserved in helix S6 of Domain IV of mammalian sodium channels, as well as low-affinity sites suggested to stabilize different states of the channel. Phenytoin exhibits a different binding distribution owing to preferential interactions at the membrane and water-protein interfaces. Two drug-access pathways into the pore are observed: via lateral fenestrations connecting to the membrane lipid phase, as well as via an aqueous pathway through the intracellular activation gate, despite being closed. These observations provide insight into drug modulation that will guide further developments of Nav inhibitors. PMID:25136136

  6. Risk of recurrence after discontinuation of antiepileptic drug therapy in children with epilepsy

    PubMed Central

    Incecik, Faruk; Herguner, Ozlem M.; Altunbasak, Sakir; Mert, Gulen; Kiris, Nurcihan

    2014-01-01

    Objectives: The numerous antiepileptic drug (AED) withdrawal studies published in the last 40 years have relied mainly on heterogeneous study groups. There is still no general agreement on the criteria to predict safe discontinuation. The goal of this study was to assess the outcome of AED withdrawal in epileptic children. Materials and Methods: Three hundred and eight children with epilepsy were enrolled, and these patients followed at least 1 year after drug withdrawal. Time to seizure relapse and predictive factors were analyzed by survival methods. Results: Among the 308 patients, 179 (58.1%) were boys and 129 (41.9%) were girls and the mean age at the seizure onset was 60.41 ± 36.54 months (2-144 months). The recurrence occurred in 73 (23.7%) patients. Mental retardation, history of febrile seizure, etiological of epilepsy, abnormal first electroencephalogram (EEG), abnormal neuroimaging findings, and total number of AED before remission were significantly associated with relapse risk according to univariate analysis. In the multivariate analysis, abnormal first EEG and number of AED before remission (polytherapy) were the risk factors influencing seizure recurrence. Conclusions: In our study, recurrence rate was 23.7% in children and most occurred during the 1st year. The potential risk factors of recurrence are history of febrile seizure, mental retardation, etiological of epilepsy, abnormal first EEG, abnormal neuroimaging findings, and total number of AED before remission. However, we found abnormal first EEG and polytherapy as risk factors of recurrence in multivariate analysis. PMID:25250060

  7. Varied effects of conventional antiepileptics on responding maintained by negative versus positive reinforcement.

    PubMed

    Roberts, Celeste; Harvey, Mark T; May, Michael E; Valdovinos, Maria G; Patterson, Tina G; Couppis, Maria H; Kennedy, Craig H

    2008-02-27

    We analyzed the effects of four conventional antiepileptic drugs (AEDs) - carbamazepine (CBZ), ethosuximide (ETH), phenytoin (PHT), and valproate (VPA) - on operant behavior maintained by negative or positive reinforcement contingencies. Rats were trained to lever press on a free-operant avoidance schedule or variable-interval (VI) schedule of appetitive reinforcement. Dose-effect functions were separately established on each reinforcement contingency for CBZ (12.5-100 mg/kg), ETH (25-200 mg/kg), PHT (12.5-50 mg/kg), and VPA (50-400 mg/kg). CBZ and PHT reduced responding on free-operant avoidance and VI appetitive reinforcement tasks, with positively reinforced behavior reduced at lower drug dosages than negatively reinforced responding. ETH and VPA reduced responding on the VI appetitive reinforcement task, but did not alter behavior maintained on the free-operant avoidance schedule. Our results suggest that conventional AEDs vary in their effect on operant behavior, depending on the type of reinforcement process maintaining responding.

  8. A pilot randomized controlled clinical trial to improve antiepileptic drug adherence in young children with epilepsy.

    PubMed

    Modi, Avani C; Guilfoyle, Shanna M; Mann, Krista A; Rausch, Joseph R

    2016-03-01

    The primary aim was to examine the preliminary efficacy of a family tailored problem-solving intervention to improve antiepileptic drug (AED) adherence in families of children with new-onset epilepsy. Secondary aims were to assess changes in targeted mechanisms and treatment feasibility and acceptability. Fifty families (M(age) = 7.6 ± 3.0; 80% Caucasian; 42% idiopathic localization related) completed baseline questionnaires and were given an electronic monitor to observe daily AED adherence. If adherence was ≤ 95% in the first 7 months of the study, families were randomized (Supporting Treatment Adherence Regimens (STAR): n = 11; Treatment as Usual (TAU): n = 12). Twenty-one families were not randomized due to adherence being ≥95%. The STAR intervention included four face-to-face and two telephone problem-solving sessions over 8 weeks. Significant group differences in adherence were found during active intervention (weeks 4-6; TAU = -12.0 vs. STAR = 18.1, p < 0.01; and weeks session 6-8: TAU = -9.7 vs. STAR = 15.3, p < 0.05). Children who received the STAR intervention exhibited improved adherence compared to children in the TAU group during active treatment. Significant changes in epilepsy knowledge and management were noted for the STAR group. Families expressed benefitting from the STAR intervention. Future studies should include a larger sample size and booster intervention sessions to maintain treatment effects over time.

  9. The antiepileptic drug diphenylhydantoin affects the structure of the human erythrocyte membrane.

    PubMed

    Suwalsky, Mario; Mennickent, Sigrid; Norris, Beryl; Villena, Fernando; Cuevas, Francisco; Sotomayor, Carlos P

    2004-01-01

    Phenytoin (diphenylhydantoin) is an antiepileptic agent effective against all types of partial and tonic-clonic seizures. Phenytoin limits the repetitive firing of action potentials evoked by a sustained depolarization of mouse spinal cord neurons maintained in vitro. This effect is mediated by a slowing of the rate of recovery of voltage activated Na+ channels from inactivation. For this reasons it was thought of interest to study the binding affinities of phenytoin with cell membranes and their perturbing effects upon membrane structures. The effects of phenytoin on the human erythrocyte membrane and molecular models have been investigated in the present work. This report presents the following evidence that phenytoin interacts with cell membranes: a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that phenytoin perturbed a class of lipids found in the outer moiety of cell membranes; b) in isolated unsealed human erythrocyte membranes (IUM) the drug induced a disordering effect on the polar head groups and acyl chains of the erythrocyte membrane lipid bilayer; c) in scanning electron microscopy (SEM) studies on human erythrocytes the formation of echinocytes was observed, due to the insertion of phenytoin in the outer monolayer of the red cell membrane. This is the first time that an effect of phenytoin on the red cell shape is described. However, the effects of the drug were observed at concentrations higher than those currently found in plasma when phenytoin is therapeutically administered. PMID:18998414

  10. Does in utero exposure of antiepileptic drugs lead to failure to reach full cognitive potential?

    PubMed

    McCorry, D; Bromley, R

    2015-05-01

    A clinical scenario of a young female on 800 mg of sodium valproate (VPA) who has recently failed lamotrigine (LTG) and levetiracetam (LEV) and who is currently planning a pregnancy is presented. Currently available data pertaining to the longer-term development of children exposed to antiepileptic drugs (AEDs) are reviewed along with considerations around the methodology and interpretation of such research. There is an accumulation of data highlighting significant risks associated with prenatal exposed to VPA, with the level of risk being mediated by dose. The majority of published evidence does not find a significant risk associated with carbamazepine (CBZ) exposure in utero for global cognitive abilities however the evidence for more specific cognitive skills are unclear. Limited data indicate that LTG may be a preferred treatment to VPA in terms of foetal outcome but further evidence is required. Too little data pertaining to LEV exposure is available and a lack of evidence regarding risk of this and other new AEDs should not be interpreted as evidence of safety. PMID:25819874

  11. Solid Dispersion Approach Improving Dissolution Rate of Stiripentol: a Novel Antiepileptic Drug.

    PubMed

    Afifi, Samar

    2015-01-01

    Some drugs have low bioavailability due to their poor aqueous solubility and/or slow dissolution rate in biological fluids. Stiripentol (STP) is a novel anticonvulsant drug that is structurally unrelated to the currently available antiepileptics. It has poor aqueous solubility and its solubility has to be enhanced accordingly. Polyethyleneglycol 6000 (PEG-6000) is commonly utilized as a hydrophilic carrier for poorly water soluble drugs in order to improve their bioavailability. STP and PEG-6000 binary system was obtained by physical mixture, solvent evaporation, co-evaporation and melting methods using different weight ratios. The properties of the prepared binary systems were evaluated using dissolution rate, phase solubility, Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscope (SEM) studies. The FTIR spectroscopic studies showed the stability of STP and absence of STP-PEG-6000 interaction. The DSC and SEM studies indicated the amorphous state of STP in its binary systems with PEG-6000. Dissolution profile of STP was significantly improved via complexation with PEG-6000 as compared with the pure drug. The binary system which was prepared using melting method showed the highest dissolution rate. The promising results of the prepared binary systems open the avenue for further oral formulation of STP.

  12. Relationship of Child IQ to Parental IQ and Education in Children with Fetal Antiepileptic Drug Exposure

    PubMed Central

    Meador, Kimford J.; Baker, Gus A.; Browning, Nancy; Clayton-Smith, Jill; Cohen, Morris J.; Kalayjian, Laura A.; Kanner, Andres; Liporace, Joyce D.; Pennell, Page B.; Privitera, Michael; Loring, David W.

    2011-01-01

    Clinical trial designs need to control for genetic and environmental influences when examining cognitive outcomes in children for whom clinical considerations preclude randomization. However, the contributions of maternal and paternal IQ and education to pediatric cognitive outcomes are uncertain in disease populations. The NEAD Study is an ongoing prospective observational multicenter study in the USA and UK, which enrolled pregnant women with epilepsy to determine if differential long-term neurodevelopmental effects exist across four commonly used antiepileptic drugs (AEDs). Here, we examined the relationship of IQ and education in both parents to child IQ at age 3 years. IQ and education for both parents were statistically correlated to child IQ. However, paternal IQ and education were not significant after accounting for maternal IQ effects. Because maternal IQ and education are independently related to child cognitive outcome, both should be assessed in studies investigating the effects of fetal drug exposures or other environmental factors that could affect the child’s cognitive outcome. PMID:21546316

  13. Effects of pharmaceuticals on aquatic invertebrates. Part I. The antiepileptic drug carbamazepine.

    PubMed

    Oetken, M; Nentwig, G; Löffler, D; Ternes, T; Oehlmann, J

    2005-10-01

    The effects of the antiepileptic drug carbamazepine (CBZ) were studied in three freshwater invertebrate species representing different taxonomic groups, life histories, and habitats in aquatic ecosystems. The oligochaete Lumbriculus variegatus was exposed by way of CBZ-spiked sediments at nominal concentrations between 0.625 and 10 mg/kg dry weight (dw) for 28 days. At the end of the test, reproduction and biomass were monitored as end points. The non-biting midge Chironomus riparius was exposed to CBZ in a series of tests at nominal CBZ concentrations in sediment ranging from 0.16 to 100 mg/kg dw at 20 degrees C and 23 degrees C. Emergence and gender ratio were monitored at the end of the test. The freshwater snail Potamopyrgus antipodarum as the third test species was used in a chronic reproduction test for 28 days at aqueous CBZ concentrations from 0.4 to 250 mg/L. Whereas for the oligochaete and the snail no effects were observed, C. riparius exhibited a significant and concentration-dependent decrease of emergence in all test series. No observed effect concentrations and 10% effect concentrations were in the range of 33 to 140 and 70 to 210 microg/kg dw, respectively, based on measured CBZ concentrations in sediments. These low values indicate that CBZ may pose a potential threat for the survival of C. riparius and probably also for other aquatic insect populations in the field.

  14. Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII).

    PubMed

    Bialer, Meir; Johannessen, Svein I; Levy, René H; Perucca, Emilio; Tomson, Torbjörn; White, H Steve

    2015-03-01

    The Twelfth Eilat Conference on New Antiepileptic Drugs (AEDs) - EILAT XII, took place in Madrid, Spain from August 31st to September 3rd 2014. About 130 basic scientists, clinical pharmacologists and neurologists from 22 countries attended the conference, whose main themes included "Conquering pharmacoresistant epilepsy", "Innovative emergency treatments", "Progress report on second-generation treatment" and "New methods and formulations". Consistent with previous formats of this conference, a large part of the program was devoted to a review of AEDs in development, as well as updates on AEDs introduced since 2004. Like the EILAT X and EILAT XI reports, the current article focuses on the preclinical and clinical pharmacology of AEDs that are currently in development. These include adenosine-releasing silk, allopregnanolone (SAGE-547), AMP-X-0079, brivaracetam, bumetanide, cannabidiol, cannabidivarin, 2-deoxy-glucose, everolimus, ganaxolone, huperzine A, imepitoin, minocycline, NAX 801-2, pitolisant, PRX 0023, SAGE-217, valnoctamide and its homologue sec-butyl-propylacetamide (SPD), and VLB-01. Since the previous Eilat conference, perampanel has been introduced into the market and twelve novel potential epilepsy treatments are presented for the first time. PMID:25769377

  15. Efficacy of omega-3 fatty acids in the treatment of borderline personality disorder: a study of the association with valproic acid.

    PubMed

    Bellino, Silvio; Bozzatello, Paola; Rocca, Giuseppe; Bogetto, Filippo

    2014-02-01

    Omega-3 fatty acids have received increasing interest due to their effects in stabilizing plasmatic membranes and regulating cell signaling. The efficacy of omega-3 fatty acids in psychiatric disorders, in particular mood disorders, has been studied. There have been two trials on eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) in the treatment of borderline personality disorder (BPD). The present 12-week controlled trial aimed to assess the efficacy of the association of EPA and DHA with valproic acid, compared to single valproic acid, in 43 consecutive BPD outpatients. Participants were evaluated at baseline and after 12 weeks with: Clinical Global Impression - Severity (CGI-S), Hamilton Scales for depression and anxiety (HAM-D, HAM-A), Social and Occupational Functioning Assessment Scale (SOFAS), borderline personality disorder severity index (BPDSI), Barratt Impulsiveness Scale - version 11 (BIS-11), Modified Overt Aggression Scale (MOAS), Self-Harm Inventory (SHI) and Dosage Record Treatment Emergent Symptom Scale (DOTES). PMID:24196948

  16. Dexamethasone alone and in combination with desipramine, phenytoin, valproic acid or levetiracetam interferes with 5-ALA-mediated PpIX production and cellular retention in glioblastoma cells.

    PubMed

    Lawrence, Johnathan E; Steele, Christopher J; Rovin, Richard A; Belton, Robert J; Winn, Robert J

    2016-03-01

    Extent of resection of glioblastoma (GBM) correlates with overall survival. Fluorescence-guided resection (FGR) using 5-aminolevulinic acid (5-ALA) can improve the extent of resection. Unfortunately not all patients given 5-ALA accumulate sufficient quantities of protoporphyrin IX (PpIX) for successful FGR. In this study, we investigated the effects of dexamethasone, desipramine, phenytoin, valproic acid, and levetiracetam on the production and accumulation of PpIX in U87MG cells. All of these drugs, except levetiracetam, reduce the total amount of PpIX produced by GBM cells (p < 0.05). When dexamethasone is mixed with another drug (desipramine, phenytoin, valproic acid or levetiracetam) the amount of PpIX produced is further decreased (p < 0.01). However, when cells are analyzed for PpIX cellular retention, dexamethasone accumulated significantly more PpIX than the vehicle control (p < 0.05). Cellular retention of PpIX was not different from controls in cells treated with dexamethasone plus desipramine, valproic acid or levetiracetam, but was significantly less for dexamethasone plus phenytoin (p < 0.01). These data suggest that medications given before and during surgery may interfere with PpIX accumulation in malignant cells. At this time, levetiracetam appears to be the best medication in its class (anticonvulsants) for patients undergoing 5-ALA-mediated FGR.

  17. New generation antiepileptic drugs: what do they offer in terms of improved tolerability and safety?

    PubMed

    French, Jacqueline A; Gazzola, Deana M

    2011-08-01

    Over the last two decades a total of 11 antiepileptic drugs (AEDs) have been introduced to the US market. Randomized, placebo-controlled trials have yielded information about each drug's efficacy, tolerability, and safety profile; however, few studies have compared the newer generation AEDs directly with the older generation. Comparative studies are not always straightforward in their interpretation, as many characteristics of drugs, both favorable and unfavorable, may not be highlighted by such studies. In general, findings from the literature suggest that the newer generation AEDs (including vigabatrin, felbamate, gabapentin, lamotrigine, tiagabine, topiramate, levetiracetam, oxcarbazepine, zonisamide, pregabalin, rufinamide, and lacosamide) enjoy both improved tolerability and safety compared with older agents such as phenobarbital, phenytoin, carbamazepine, and valproate. This is partially supported by some of the findings of the QSS and the TTA Committee of the American Academy of Neurology (AAN), whose review of four AEDs (gabapentin, lamotrigine, topiramate, and tiagabine) is discussed. Briefly, when compared with carbamazepine, lamotrigine was better tolerated; topiramate adverse events (AEs) were fairly comparable to carbamazepine and valproate; and tiagabine compared with placebo was associated with a higher discontinuation rate due to AEs. The findings of the SANAD trial are also presented; when administered to patients with partial epilepsy, carbamazepine was most likely to fail due to AEs, and lamotrigine and gabapentin were least likely to fail due to AEs. When administered to patients with idiopathic generalized epilepsy, topiramate was most frequently associated with AE-related discontinuation, followed by valproate; and while valproate was the most efficacious drug in this arm of the study, lamotrigine was more tolerable. What makes the SANAD study valuable and somewhat unique is its head-to-head comparison of one drug with another. Such

  18. Comparative study of lacosamide and classical sodium channel blocking antiepileptic drugs on sodium channel slow inactivation.

    PubMed

    Niespodziany, Isabelle; Leclère, Nathalie; Vandenplas, Catherine; Foerch, Patrik; Wolff, Christian

    2013-03-01

    Many antiepileptic drugs (AEDs) exert their therapeutic activity by modifying the inactivation properties of voltage-gated sodium (Na(v) ) channels. Lacosamide is unique among AEDs in that it selectively enhances the slow inactivation component. Although numerous studies have investigated the effects of AEDs on Na(v) channel inactivation, a direct comparison of results cannot be made because of varying experimental conditions. In this study, the effects of different AEDs on Na(v) channel steady-state slow inactivation were investigated under identical experimental conditions using whole-cell patch-clamp in N1E-115 mouse neuroblastoma cells. All drugs were tested at 100 μM, and results were compared with those from time-matched control groups. Lacosamide significantly shifted the voltage dependence of Na(v) current (I(Na) ) slow inactivation toward more hyperpolarized potentials (by -33 ± 7 mV), whereas the maximal fraction of slow inactivated channels and the curve slope did not differ significantly. Neither SPM6953 (lacosamide inactive enantiomer), nor carbamazepine, nor zonisamide affected the voltage dependence of I(Na) slow inactivation, the maximal fraction of slow inactivated channels, or the curve slope. Phenytoin significantly increased the maximal fraction of slow inactivated channels (by 28% ± 9%) in a voltage-independent manner but did not affect the curve slope. Lamotrigine slightly increased the fraction of inactivated currents (by 15% ± 4%) and widened the range of the slow inactivation voltage dependence. Lamotrigine and rufinamide induced weak, but significant, shifts of I(Na) slow inactivation toward more depolarized potentials. The effects of lacosamide on Na(v) channel slow inactivation corroborate previous observations that lacosamide has a unique mode of action among AEDs that act on Na(v) channels. PMID:23239147

  19. Low potency and limited efficacy of antiepileptic drugs in the mouse 6 Hz corneal kindling model.

    PubMed

    Leclercq, K; Matagne, A; Kaminski, R M

    2014-05-01

    Corneal kindling is a useful alternative to electrically induced amygdala or hippocampal kindling, which requires advanced surgical and EEG techniques that may not be easily available in many laboratories. Therefore the first aim of this study was to evaluate whether repeated 6 Hz corneal stimulation in mice would lead to an increased and persistent seizure response as described for higher frequency (50/60 Hz) corneal kindling. Male NMRI mice stimulated twice daily (except weekends) for 3 s with 6 Hz electrical current at 44 mA displayed robust kindling development, i.e., a progressive increase in seizure severity. The majority of the animals (about 90%) developed a fully kindled state, defined as at least 10 consecutive stage 3-5 seizures within 5 weeks of corneal stimulation. Afterwards, the fully kindled state was maintained for at least 8 weeks with only two days of stimulations per week. Next, the protective efficacy of four mechanistically different antiepileptic drugs (AEDs; clonazepam, valproate, carbamazepine and levetiracetam) was assessed and compared between 6 Hz and 50 Hz fully kindled mice. All tested AEDs showed a relatively lower potency in the 6 Hz kindling model and a limited efficacy against partial seizures was observed with carbamazepine and levetiracetam. We can conclude that 6 Hz kindling may be more advantageous than the previously described 50/60 Hz corneal kindling models due to its robustness and persistence of the fully kindled state. Furthermore, the observed low potency and limited efficacy of AEDs in 6 Hz fully kindled mice suggest that this model could be a useful tool in the discovery of novel AEDs targeting treatment resistant epilepsy.

  20. Antiepileptic drug treatment of rolandic epilepsy and Panayiotopoulos syndrome: clinical practice survey and clinical trial feasibility

    PubMed Central

    Mellish, Louise C; Dunkley, Colin; Ferrie, Colin D; Pal, Deb K

    2015-01-01

    Background The evidence base for management of childhood epilepsy is poor, especially for the most common specific syndromes such as rolandic epilepsy (RE) and Panayiotopoulos syndrome (PS). Considerable international variation in management and controversy about non-treatment indicate the need for high quality randomised controlled trials (RCT). The aim of this study is, therefore, to describe current UK practice and explore the feasibility of different RCT designs for RE and PS. Methods We conducted an online survey of 590 UK paediatricians who treat epilepsy. Thirty-two questions covered annual caseload, investigation and management practice, factors influencing treatment, antiepileptic drug preferences and hypothetical trial design preferences. Results 132 responded (22%): 81% were paediatricians and 95% at consultant seniority. We estimated, annually, 751 new RE cases and 233 PS cases. Electroencephalography (EEG) is requested at least half the time in approximately 70% of cases; MRI brain at least half the time in 40%–65% cases and neuropsychological evaluation in 7%–8%. Clinicians reported non-treatment in 40%: main reasons were low frequency of seizures and parent/child preferences. Carbamazepine is the preferred older, and levetiracetam the preferred newer, RCT arm. Approximately one-half considered active and placebo designs acceptable, choosing seizures as primary and cognitive/behavioural measures as secondary outcomes. Conclusions Management among respondents is broadly in line with national guidance, although with possible overuse of brain imaging and underuse of EEG and neuropsychological assessments. A large proportion of patients in the UK remains untreated, and clinicians seem amenable to a range of RCT designs, with carbamazepine and levetiracetam the preferred active drugs. PMID:25202134

  1. New generation antiepileptic drugs: what do they offer in terms of improved tolerability and safety?

    PubMed Central

    Gazzola, Deana M.

    2011-01-01

    Over the last two decades a total of 11 antiepileptic drugs (AEDs) have been introduced to the US market. Randomized, placebo-controlled trials have yielded information about each drug’s efficacy, tolerability, and safety profile; however, few studies have compared the newer generation AEDs directly with the older generation. Comparative studies are not always straightforward in their interpretation, as many characteristics of drugs, both favorable and unfavorable, may not be highlighted by such studies. In general, findings from the literature suggest that the newer generation AEDs (including vigabatrin, felbamate, gabapentin, lamotrigine, tiagabine, topiramate, levetiracetam, oxcarbazepine, zonisamide, pregabalin, rufinamide, and lacosamide) enjoy both improved tolerability and safety compared with older agents such as phenobarbital, phenytoin, carbamazepine, and valproate. This is partially supported by some of the findings of the QSS and the TTA Committee of the American Academy of Neurology (AAN), whose review of four AEDs (gabapentin, lamotrigine, topiramate, and tiagabine) is discussed. Briefly, when compared with carbamazepine, lamotrigine was better tolerated; topiramate adverse events (AEs) were fairly comparable to carbamazepine and valproate; and tiagabine compared with placebo was associated with a higher discontinuation rate due to AEs. The findings of the SANAD trial are also presented; when administered to patients with partial epilepsy, carbamazepine was most likely to fail due to AEs, and lamotrigine and gabapentin were least likely to fail due to AEs. When administered to patients with idiopathic generalized epilepsy, topiramate was most frequently associated with AE-related discontinuation, followed by valproate; and while valproate was the most efficacious drug in this arm of the study, lamotrigine was more tolerable. What makes the SANAD study valuable and somewhat unique is its head-to-head comparison of one drug with another. Such

  2. Direct photodegradation of lamotrigine (an antiepileptic) in simulated sunlight--pH influenced rates and products.

    PubMed

    Young, Robert B; Chefetz, Benny; Liu, Aiju; Desyaterik, Yury; Borch, Thomas

    2014-04-01

    Lamotrigine is an antiepileptic and mood stabilizing drug that has been detected in wastewater, groundwater, surface water and drinking water, at frequencies in surface water ranging from 47 to 97%. Because lamotrigine is a weak base (pKa = 5.7) that appears in two protonation states in natural waters, this study examined the direct photodegradation of lamotrigine (11.4 to 12.0 mg L(-1)) in simulated sunlight using liquid chromatography-UV diode array detection and buffered aqueous solutions at pH 3.3, 5.3, and 7.7. Lamotrigine's half-life varied little (100 ± 3 to 112 ± 2 h) with solution pH, but its specific light absorption rate was 12 times higher, and its reaction quantum yield was 13 times lower, at pH 7.7 versus pH 3.3. In the estimated midday, midsummer sunlight in Denver, CO, USA (latitude 39.8617 °N), lamotrigine's estimated photodegradation rate was more than twice as fast at pH 7.7 versus pH 3.3. Lamotrigine's photoproducts were detected by liquid chromatography-UV diode array detection and time-of-flight mass spectrometry. Solution pH was shown to affect the identities and relative abundances of lamotrigine's photoproducts. Some photoproducts appeared only in solutions containing protonated lamotrigine, and others appeared only in solutions containing neutral lamotrigine. As a result, different reaction mechanisms were proposed. Finally, lamotrigine's reaction quantum yield (2.51 ± 0.07 × 10(-5) mol einstein(-1) at pH 7.7) and other results suggested that lamotrigine and three photoproducts are approximately as resistant to direct photodegradation as carbamazepine, a frequently detected pharmaceutical in surface waters.

  3. Discontinuing antiepileptic drugs in patients who are seizure free on monotherapy

    PubMed Central

    Specchio, L; Tramacere, L; La Neve, A; Beghi, E

    2002-01-01

    Objectives: To assess the recurrence rate of epilepsy attributable to discontinuation of treatment in seizure free patients and to identify the risk factors for recurrence. Methods: 330 patients referred to an epilepsy centre who were seizure free for at least 2 years while on stable monotherapy were the study population. Discontinuation of antiepileptic drugs (AEDs) was proposed to all eligible patients or to their carers after discussion of the risks and benefits. Depending on whether they accepted or refused treatment withdrawal, the patients were stratified into two cohorts and followed up until seizure relapse or 31 March 1999, whichever came first. For each patient, records were taken of the main demographic and clinical variables. Results: The sample comprised 225 patients who entered the discontinuation programme and 105 who decided to continue treatment. Twenty nine patients (28%) continuing treatment had a relapse, compared with 113 (50%) of those entering the withdrawal programme. For patients continuing treatment, the probability of remission was 95% at 6 months, 91% at 12 months, 82% at 24 months, 80% at 36 months, and 68% at 60 months. The corresponding values for patients discontinuing treatment were 88%, 74%, 57%, 51%, and 48%. After adjusting for the principal prognostic factors, in patients discontinuing AEDs the risk of seizure relapse was 2.9 times that of patients continuing treatment. A relation was also found between relapse and duration of active disease, number of years of remission while on treatment, and abnormal psychiatric findings. Conclusions: Seizure free referral patients on stable monotherapy who elect to withdraw drug treatment are at higher risk of seizure relapse compared with patients continuing treatment. Severity of disease and seizure free period are significant prognostic factors. PMID:11784819

  4. Antiepileptic and Antioxidant Effect of Brassica nigra on Pentylenetetrazol-Induced Kindling in Mice.

    PubMed

    Kiasalari, Zahra; Khalili, Mohsen; Roghani, Mehrdad; Sadeghian, Azam

    2012-01-01

    Considering the high rate of epilepsy today, with respect to the insufficiency of the available therapies, new strategies and methods are recommended for medical treatment of epileptic patients. Therefore, the present study experimentally investigated the anticonvulsant effect of a herbal medicine candidate brassica nigra, by using kindling method. Sixty male mice were randomly selected and divided into six experimental groups (n = 10) including: 1-control, 2-pentylentetrazole (PTZ)-kindled mice, 3-positive control group received valproate (100 mg/Kg) as anti-convulsant drug, 4-5 and 6 received brassica nigra seed extract in three doses (75, 150 and 300 mg/Kg; IP). All groups except for the control ones were kindled by 11 period injections of PTZ (35 mg/Kg; IP). In the 12th injection, all groups except for the control group were tested for PTZ challenge dose (75 mg/Kg). However, the exhibited phases of seizure (0-6) were observed and noted till 30 min after the PTZ injection. At last, the brains of all the mice were removed and then malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO) levels of the brain tissues were determined. Statistical analysis of the data shows that the seed extract could reduce the intensity, improvement and duration of seizure. In addition, the brassica nigra extract increased the SOD and NO levels and decreased the MDA level in the brain tissues. Attained results show that the extract of Brassica nigra seed can be used in grand mal seizure treatment. Moreover, the antiepileptic effect of this extract is probably caused by its antioxidant properties and acts via enzyme activity mechanism. PMID:24250555

  5. Effects of antiepileptic drugs on associative LTP-like plasticity in human motor cortex.

    PubMed

    Heidegger, Tonio; Krakow, Karsten; Ziemann, Ulf

    2010-10-01

    Antiepileptic drugs (AEDs) are used extensively in clinical practice but relatively little is known on their specific effects at the systems level of human cortex. Here we tested, using a double-blind randomized placebo-controlled crossover design in healthy subjects, the effects of a single therapeutic oral dose of seven AEDs with different modes of action (tiagabine, diazepam, gabapentin, lamotrigine, topiramate, levetiracetam and piracetam) on long-term potentiation (LTP)-like motor cortical plasticity induced by paired associative transcranial magnetic stimulation (PAS). PAS-induced LTP-like plasticity was assessed from the increase in motor evoked potential amplitude in a hand muscle contralateral to the stimulated motor cortex. Levetiracetam significantly reduced LTP-like plasticity when compared to the placebo condition. Tiagabine, diazepam, lamotrigine and piracetam resulted in nonsignificant trends towards reduction of LTP-like plasticity while gabapentin and topiramate had no effect. The particularly depressant effect of levetiracetam is probably explained by its unique mode of action through binding at the vesicle membrane protein SV2A. Enhancement of gamma-amino butyric acid-dependent cortical inhibition by tiagabine, diazepam and possibly levetiracetam, and blockage of voltage-gated sodium channels by lamotrigine, may also depress PAS-induced LTP-like plasticity but these mechanisms appear to be less relevant. Findings may inform about AED-related adverse effects on important LTP-dependent central nervous systems processes such as learning or memory formation. The particular depressant effect of levetiracetam on LTP-like plasticity may also relate to the unique properties of this drug to inhibit epileptogenesis, a potentially LTP-associated process.

  6. Outcomes in Postoperative Pediatric Cardiac Surgical Patients Who Received an Antiepileptic Drug

    PubMed Central

    Dinh, Kimberly L.; McDade, Erin J.; Moffett, Brady S.; Wilfong, Angus A.; Cabrera, Antonio G.

    2016-01-01

    BACKGROUND: Advances in cardiac operations over the last few decades, including corrective operations in early life, have dramatically increased the survival of children with congenital heart disease. However, postoperative care has been associated with neurologic complications, with seizures being the most common manifestation. The primary objective of this study is to describe the outcomes in pediatric patients who received an antiepileptic drug (AED) post–cardiac surgery. METHOD: A retrospective cohort study was performed in all patients less than 18 years of age who received an AED in the cardiovascular intensive care unit at Texas Children's Hospital from June 2002 until June 2012. Cardiac surgical patients initiated on phenobarbital, phenytoin, and levetiracetam were queried. Patients were excluded if the AED was not initiated on the admission for surgery. Patients who received 1 AED were compared to patients who received 2 AED, and differences in outcomes examined between the 3 AEDs used were evaluated. RESULTS: A total of 37 patients met the study criteria. Patients were initiated on an AED a median of 4 days following surgery and became seizure free a median of 1 day after initiation, with 65% remaining seizure free after the first dose. Half of all patients required 2 AEDs for seizure control, with a higher proportion of adolescents requiring 2 AEDs (p = 0.04). No differences were found when comparing the collected outcomes between phenobarbital, fosphenytoin, or levetiracetam. CONCLUSION: No adverse events were reported with the AEDs reviewed. Further work is necessary to evaluate long-term neurodevelopmental outcomes in this population and whether outcomes are a result of the AED or of other clinical sequelae.

  7. Heterogeneous effects of antiepileptic drugs in an in vitro epilepsy model--a functional multineuron calcium imaging study.

    PubMed

    Hongo, Yoshie; Takasu, Keiko; Ikegaya, Yuji; Hasegawa, Minoru; Sakaguchi, Gaku; Ogawa, Koichi

    2015-07-01

    Epilepsy is a chronic brain disease characterised by recurrent seizures. Many studies of this disease have focused on local neuronal activity, such as local field potentials in the brain. In addition, several recent studies have elucidated the collective behavior of individual neurons in a neuronal network that emits epileptic activity. However, little is known about the effects of antiepileptic drugs on neuronal networks during seizure-like events (SLEs) at single-cell resolution. Using functional multineuron Ca(2+) imaging (fMCI), we monitored the activities of multiple neurons in the rat hippocampal CA1 region on treatment with the proconvulsant bicuculline under Mg(2+) -free conditions. Bicuculline induced recurrent synchronous Ca(2+) influx, and the events were correlated with SLEs. Other proconvulsants, such as 4-aminopyridine, pentetrazol, and pilocarpine, also induced synchronous Ca(2+) influx. We found that the antiepileptic drugs phenytoin, flupirtine, and ethosuximide, which have different mechanisms of action, exerted heterogeneous effects on bicuculline-induced synchronous Ca(2+) influx. Phenytoin and flupirtine significantly decreased the peak, the amount of Ca(2+) influx and the duration of synchronous events in parallel with the duration of SLEs, whereas they did not abolish the synchronous events themselves. Ethosuximide increased the duration of synchronous Ca(2+) influx and SLEs. Furthermore, the magnitude of the inhibitory effect of phenytoin on the peak synchronous Ca(2+) influx level differed according to the peak amplitude of the synchronous event in each individual cell. Evaluation of the collective behavior of individual neurons by fMCI seems to be a powerful tool for elucidating the profiles of antiepileptic drugs.

  8. Prescribing pattern of anti-epileptic drugs in an Italian setting of elderly outpatients: a population-based study during 2004–07

    PubMed Central

    Oteri, Alessandro; Trifirò, Gianluca; Gagliostro, Maria Silvia; Tari, Daniele Ugo; Moretti, Salvatore; Bramanti, Placido; Spina, Edoardo; Caputi, Achille Patrizio; Arcoraci, Vincenzo

    2010-01-01

    AIMS The aims of the study were to assess the trend of older and newer anti-epileptic drugs (AEDs) in the elderly population and to analyze the effects of a health-policy intervention with regard to AED use in general practice in a setting in Southern Italy. METHODS Data were extracted from the ‘Caserta-1’ Local-Health-Unit Arianna database in the years 2004–07. Patients aged over 65 years, receiving at least one AED prescription and registered in the lists of 88 general practitioners, were selected. The use of older and newer AEDs was calculated as 1 year prevalence and incidence of use and defined daily dose (DDD) per 1000 inhabitants day−1. Sub-analyses by gender, age and indication of use were performed. RESULTS Most of AED users were treated because of neuropathic pain (64.8%). However, the main indication of use for older AEDs (57.8%) was epilepsy, whereas newer AEDs (79.5%) were used for neuropathic pain. Prevalence and incidence of newer AED use increased until 2006, followed by a reduction in 2007. Newer AEDs, particularly gabapentin and pregabalin, were used in the treatment of more patients than older AEDs. However phenobarbital, accounting for more than 50% of total AED volume, was the most prescribed medication during the entire study period. CONCLUSIONS An increasing use of AEDs has been observed during 2004–07, mostly due to the prescription of newer compounds for neuropathic pain. The fall in the use of newer AEDs during 2007 coincides with revised re-imbursement criteria for gabapentin and pregabalin. The large use of phenobarbital in the elderly should be considered in the light of a risk of adverse drug reactions. PMID:20840443

  9. Fosinopril and zofenopril, two angiotensin-converting enzyme (ACE) inhibitors, potentiate the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice.

    PubMed

    Sarro, Giovambattista De; Paola, Eugenio Donato Di; Gratteri, Santo; Gareri, Pietro; Rispoli, Vincenzo; Siniscalchi, Antonio; Tripepi, Giovanni; Gallelli, Luca; Citraro, Rita; Russo, Emilio

    2012-03-01

    The renin-angiotensin system (RAS) exists in the brain and it may be involved in pathogenesis of neurological and psychiatric disorders including seizures. The aim of the present research was to evaluate the effects of some angiotensin-converting enzyme inhibitors (ACEi; captopril, enalapril, fosinopril and zofenopril), commonly used as antihypertensive agents, in the DBA/2 mice animal model of generalized tonic-clonic seizures. Furthermore, the co-administration of these compounds with some antiepileptic drugs (AEDs; carbamazepine, diazepam, felbamate, gabapentin, lamotrigine, phenobarbital, phenytoin, topiramate and valproate) was studied in order to identify possible positive interactions in the same model. All ACEi were able to decrease the severity of audiogenic seizures with the exception of enalapril up to the dose of 100mg/kg, the rank order of activity was as follows: fosinopril>zofenopril>captopril. The co-administration of ineffective doses of all ACE inhibitors with AEDs, generally increased the potency of the latter. Fosinopril was the most active in potentiating the activity of AEDs and the combination of ACEi with lamotrigine and valproate was the most favorable, whereas, the co-administrations with diazepam and phenobarbital seemed to be neutral. The increase in potency was generally associated with an enhancement of motor impairment, however, the therapeutic index of combined treatment of AEDs with ACEi was predominantly more favorable than control. ACEi administration did not influence plasma and brain concentrations of the AEDs studied excluding pharmacokinetic interactions and concluding that it is of pharmacodynamic nature. In conclusion, fosinopril, zofenopril, enalapril and captopril showed an additive anticonvulsant effect when co-administered with some AEDs, most notably carbamazepine, felbamate, lamotrigine, topiramate and valproate, implicating a possible therapeutic relevance of such drug combinations.

  10. Clinical pharmacokinetics of new-generation antiepileptic drugs at the extremes of age: an update.

    PubMed

    Italiano, Domenico; Perucca, Emilio

    2013-08-01

    Epilepsies occur across the entire age range, and their incidence peaks in the first years of life and in the elderly. Therefore, antiepileptic drugs (AEDs) are commonly used at the extremes of age. Rational prescribing in these age groups requires not only an understanding of the drugs' pharmacodynamic properties, but also careful consideration of potential age-related changes in their pharmacokinetic profile. The present article, which updates a review published in 2006 in this journal, focuses on recent findings on the pharmacokinetics of new-generation AEDs in neonates, infants, children, and the elderly. Significant new information on the pharmacokinetics of new AEDs in the perinatal period has been acquired, particularly for lamotrigine and levetiracetam. As a result of slow maturation of the enzymes involved in glucuronide conjugation, lamotrigine elimination occurs at a particularly slow rate in neonates, and becomes gradually more efficient during the first months of life. In the case of levetiracetam, elimination occurs primarily by renal excretion and is also slow at birth, but drug clearance increases rapidly thereafter and can even double within 1 week. In general, infants older than 2-3 months and children show higher drug clearance (normalized for body weight) than adults. This pattern was confirmed in recent studies that investigated the pediatric pharmacokinetics of several new AEDs, including levetiracetam, rufinamide, stiripentol, and eslicarbazepine acetate. At the other extreme of age, in the elderly, drug clearance is generally reduced compared with younger adults because of less efficient drug-metabolizing activity, decreased renal function, or both. This general pattern, described previously for several AEDs, was confirmed in recent studies on the effect of old age on the clearance of felbamate, levetiracetam, pregabalin, lacosamide, and retigabine. For those drugs which are predominantly eliminated by renal excretion, aging

  11. Effects of antiepileptic drugs on the serum folate and vitamin B12 in various epileptic patients

    PubMed Central

    Huang, Hong-Li; Zhou, Hao; Wang, Nuan; Yu, Chun-Yu

    2016-01-01

    Epilepsy is a common neurodegenerative disease with an increasing morbidity. Clinical treatment of epilepsy includes symptomatic treatment, etiological treatment, surgery and prevention. The aim of the present study was to determine the effects of antiepileptic drugs (AEDs) on serum folate and vitamin B12 in various epileptic patients, and to examine the correlation between these effects and secondary cerebrovascular events. A total of 68 epileptic patients, diagnosed between May 2012 and May 2014, were included in the present study. The study included 8 cases of autonomic seizures, 10 cases of absence seizures, 13 cases of complex partial seizures, 28 cases of generalized tonic-clonic seizures, and 9 cases of simple partial seizures. The patients received appropriate AED treatment according to the characteristics of epileptic seizure and the treatment guidance. The differences in the serum levels of folate and vitamin B12 in these patients, and the differences in the secondary cerebrovascular events in these patients after 1 year follow-up were analyzed. The difference in the AEDs used by various epileptic patients was statistically significant (P<0.05). The proportion of AED monotherapy in the autonomic seizure group and petit mal group was highest, and the proportion of two AED in combination with the psychomotor seizure, grand mal and simple partial seizure groups was highest. The serum levels of folate and vitamin B12 in these patients following treatment were significantly lower than those prior to treatment (P<0.05). The differences in the serum levels of folate and vitamin B12 in these groups following treatment were not statistically significant (P>0.05). The difference in the incidence of cerebrovascular events in these groups at follow up was not statistically significant (P>0.05). The multifactorial logistic regression analysis revealed that the serum levels of folate and vitamin B12 were the independent risk factors for epilepsy with secondary

  12. Effects of antiepileptic drugs on the serum folate and vitamin B12 in various epileptic patients

    PubMed Central

    Huang, Hong-Li; Zhou, Hao; Wang, Nuan; Yu, Chun-Yu

    2016-01-01

    Epilepsy is a common neurodegenerative disease with an increasing morbidity. Clinical treatment of epilepsy includes symptomatic treatment, etiological treatment, surgery and prevention. The aim of the present study was to determine the effects of antiepileptic drugs (AEDs) on serum folate and vitamin B12 in various epileptic patients, and to examine the correlation between these effects and secondary cerebrovascular events. A total of 68 epileptic patients, diagnosed between May 2012 and May 2014, were included in the present study. The study included 8 cases of autonomic seizures, 10 cases of absence seizures, 13 cases of complex partial seizures, 28 cases of generalized tonic-clonic seizures, and 9 cases of simple partial seizures. The patients received appropriate AED treatment according to the characteristics of epileptic seizure and the treatment guidance. The differences in the serum levels of folate and vitamin B12 in these patients, and the differences in the secondary cerebrovascular events in these patients after 1 year follow-up were analyzed. The difference in the AEDs used by various epileptic patients was statistically significant (P<0.05). The proportion of AED monotherapy in the autonomic seizure group and petit mal group was highest, and the proportion of two AED in combination with the psychomotor seizure, grand mal and simple partial seizure groups was highest. The serum levels of folate and vitamin B12 in these patients following treatment were significantly lower than those prior to treatment (P<0.05). The differences in the serum levels of folate and vitamin B12 in these groups following treatment were not statistically significant (P>0.05). The difference in the incidence of cerebrovascular events in these groups at follow up was not statistically significant (P>0.05). The multifactorial logistic regression analysis revealed that the serum levels of folate and vitamin B12 were the independent risk factors for epilepsy with secondary

  13. Effect of second-generation antiepileptic drugs on diplopia: a meta-analysis of placebo-controlled studies.

    PubMed

    Han, Haiyan; Qu, Wensheng; Kang, Huicong; Hu, Xiaoqing; Zhen, Guohua; Zhu, Suiqiang; Xue, Zheng

    2012-08-01

    Different antiepileptic drugs (AEDs) may cause similar adverse effects, one of which is diplopia. However, the AEDs causing diplopia and the dose-response effect of each drug remains uncertain. In this study, we compared several second-generation AEDs to find out whether they would contribute to the risk of diplopia and their effect-causing dose. A meta-analysis was performed on 19 studies in agreement with our inclusion criteria. The results showed that eight commonly used second-generation AEDs (gabapentin, levetiracetam, oxcarbazepine, lamotrigine, pregabalin, topiramate, vigabatrin and zonisamide) could cause diplopia. The reported odds ratios (ORs) ranged from 1.406 to 7.996. Ranking risks from the highest to the lowest ORs of the eight AEDs of any dose resulted in the following order: use of oxcarbazepine (7.996), levetiracetam (7.472), lamotrigine (5.258), vigabatrin (3.562), pregabalin (3.048), topiramate (2.660), gabapentin (1.966), zonisamide (1.406). Taking into account the ORs above, we can conclude that second-generation AEDs of any dose may cause diplopia. However, the levetiracetam-caused diplopia needs to be further studied according to the data (OR, 7.472; 95% confidence interval, 0.375-148.772). These findings ask for better concerns about patients' quality of life when giving antiepileptic treatments.

  14. Effects of the antiepileptics phenytoin and zonisamide on dentin formation and bone mineral density of the mandible in growing rats.

    PubMed

    Takahashi, A; Saito, T; Mayanagi, H; Kamei, J; Onodera, K

    2004-12-01

    This study was undertaken to examine the effects of the antiepileptics phenytoin and zonisamide on changes in the mineral density of the incisor and bone mineral density (BMD) of the mandibular head, and on the rate of dentin formation using histomorphometric measurements. After repeated administration of phenytoin or zonisamide to male growing rats, the mineral density of the lower incisors and mandibular head were determined by analyzing microradiographs and dentin formation rates were determined by histomorphometric measurements. Results showed a significant decrease in the mean values of BMD of the mandibular head and lower incisors in groups treated with phenytoin or zonisamide compared with the vehicle-treated group (p < 0.05). The percent rates of decrease in mineral density of the incisors for phenytoin and zonisamide were 6.8% and 4.0%, respectively. Phenytoin and zonisamide significantly reduced the dentin formation rate for the mesial and distal areas compared with the vehicle-treated group. Thus, epileptic children who are treated over a long period with antiepileptics, especially at primary school age, should ensure good oral hygiene so as not to suffer bone loss, edentulism or gingival overgrowth. PMID:15672119

  15. Treatment of cardiac arrhythmias in a mouse model of Rett syndrome with Na+-channel-blocking antiepileptic drugs.

    PubMed

    Herrera, José A; Ward, Christopher S; Pitcher, Meagan R; Percy, Alan K; Skinner, Steven; Kaufmann, Walter E; Glaze, Daniel G; Wehrens, Xander H T; Neul, Jeffrey L

    2015-04-01

    One quarter of deaths associated with Rett syndrome (RTT), an X-linked neurodevelopmental disorder, are sudden and unexpected. RTT is associated with prolonged QTc interval (LQT), and LQT-associated cardiac arrhythmias are a potential cause of unexpected death. The standard of care for LQT in RTT is treatment with β-adrenergic antagonists; however, recent work indicates that acute treatment of mice with RTT with a β-antagonist, propranolol, does not prevent lethal arrhythmias. In contrast, acute treatment with the Na(+) channel blocker phenytoin prevented arrhythmias. Chronic dosing of propranolol may be required for efficacy; therefore, we tested the efficacy of chronic treatment with either propranolol or phenytoin on RTT mice. Phenytoin completely abolished arrhythmias, whereas propranolol showed no benefit. Surprisingly, phenytoin also normalized weight and activity, but worsened breathing patterns. To explore the role of Na(+) channel blockers on QT in people with RTT, we performed a retrospective analysis of QT status before and after Na(+) channel blocker antiepileptic therapies. Individuals with RTT and LQT significantly improved their QT interval status after being started on Na(+) channel blocker antiepileptic therapies. Thus, Na(+) channel blockers should be considered for the clinical management of LQT in individuals with RTT.

  16. Assessment of oral side effects of Antiepileptic drugs and traumatic oro-facial injuries encountered in Epileptic children

    PubMed Central

    Ghafoor, P A Fazal; Rafeeq, Mohammed; Dubey, Alok

    2014-01-01

    Background: Epilepsy is a chronic disorder with unpredictably recurring seizure. Uncontrolled attacks can put patients at risk of suffering oro-facial trauma. Antiepileptic drugs (AED) provide satisfactory control of seizures in most of the patients with epilepsy. However use of AED has been found to cause many side effects inclusive of side effects in the oral cavity also. Materials & Methods: This study was conducted on 150 epileptic children, who were on anti epileptic medication for one year. Results: Gingival over growth was seen as common side effect of the AED drugs. Lip and cheek biting were the most common soft tissue injury, while tooth fracture was the most common hard tissue dental injury. Conclusion: General physicians, physicians & dentists should be well aware of the potential side effects of AED. A Dentist should be well versed and trained to manage oro-facial injuries in the emergency department. How to cite the article: Ghafoor PA, Rafeeq M, Dubey A. Assessment of oral side effects of Antiepileptic drugs and traumaticoro-facial injuries encountered in Epileptic children. J Int Oral Health 2014;6(2):126-8. PMID:24876713

  17. Deep brain stimulation of the posterior hypothalamus activates the histaminergic system to exert antiepileptic effect in rat pentylenetetrazol model.

    PubMed

    Nishida, Namiko; Huang, Zhi-Li; Mikuni, Nobuhiro; Miura, Yoshiki; Urade, Yoshihiro; Hashimoto, Nobuo

    2007-05-01

    Deep brain stimulation (DBS) is a promising therapy for intractable epilepsy, yet the optimum target and underlying mechanism remain controversial. We used the rat pentylenetetrazol (PTZ) seizure model to evaluate the effectiveness of DBS to three targets: two known to be critical for arousal, the histaminergic tuberomammillary nucleus (TMN) and the orexin/hypocretinergic perifornical area (PFN), and the anterior thalamic nuclei (ATH) now in clinical trial. TMN stimulation provided the strong protection against the seizure, and PFN stimulation elicited a moderate effect yet accompanying abnormal behavior in 25% subjects, while ATH stimulation aggravated the seizure. Power density analysis showed EEG desynchronization after DBS on TMN and PFN, while DBS on ATH caused no effect with the same stimulation intensity. EEG desynchronization after TMN stimulation was inhibited in a dose-dependent manner by pyrilamine, a histamine H(1) receptor selective antagonist, while the effect of PFN stimulation was inhibited even at a low dose. In parallel, in vivo microdialysis revealed a prominent increase of histamine release in the frontal cortex after TMN stimulation, a moderate level with PFN and none with ATH. Furthermore, antiepileptic effect of DBS to TMN was also blocked by an H(1) receptor antagonist. This study clearly indicates that EEG desynchronization and the activation of the histaminergic system contributed to the antiepileptic effects caused by DBS to the posterior hypothalamus.

  18. Effect of supplemental folic acid on valproic acid-induced embryotoxicity and tissue zinc levels in vivo.

    PubMed

    Hansen, D K; Grafton, T F; Dial, S L; Gehring, T A; Siitonen, P H

    1995-11-01

    Valproic acid (VPA) is an anti-convulsant drug known to cause spina bifida in humans. Administration of the vitamin, folic acid, has been shown to decrease the recurrence and possibly also the occurrence of neural tube defects, primarily spina bifida, in humans. Additionally, treatment with a derivative (folinic acid) of folic acid has been reported to decrease the frequency of VPA-induced exencephaly in mice treated with the drug in vivo. A protective effect by folinic acid has not been observed in vitro. The purpose of this investigation was to reexamine the ability of folinic acid to decrease the incidence of VPA-induced neural tube defects in vivo. We also examined the effect of increased intake of folic acid on zinc levels in various maternal and embryonic tissues. Folinic acid, whether administered by intraperitoneal injection or in osmotic mini-pumps, did not decrease the number of mouse fetuses with VPA-induced exencephaly. Dietary supplementation with 10-20 times the daily required intake of folic acid in rodents also failed to decrease the embryotoxicity of VPA. Such dietary supplementation had no effect on zinc levels in maternal liver, brain, or kidney, nor in embryonic tissues. These results indicate that folic acid is not able to reverse the embryotoxicity induced by the anticonvulsant, that there is no apparent effect of high dietary folate intake on maternal or embryonic zinc levels and suggest that folate is probably not involved in the mechanism of VPA-induced embryotoxicity. PMID:8838251

  19. Effect of valproic acid on body weight, food intake, physical activity and hormones: results of a randomized controlled trial

    PubMed Central

    Martin, CK; Han, H; Anton, SD; Greenway, FL; Smith, SR

    2009-01-01

    The objective of this study was to identify mechanisms through which valproic acid (VPA) causes weight gain. Healthy participants (N = 52) were randomized to VPA or placebo in a double-blind study. Energy intake (EI) was measured in the laboratory at lunch and dinner, and physical activity (PA) was measured with accelerometry. Glucose levels and hormones [Peptide YY3–36, glucagon-like peptide-1 (GLP-1), leptin, ghrelin, insulin] that regulate EI were measured. Assessments occurred at baseline and week 3. Change from baseline was evaluated with mixed models (α = 0.05). Weight significantly increased in the VPA group (+0.49 kg), but not the placebo group. The VPA group increased fast food fats cravings and decreased glucose levels compared with placebo. Change in weight, EI and PA did not differ by group. Within group analyses indicated that the VPA group increased PA, hunger, binge eating, depression and GLP-1. VPA-associated weight gain is not likely due to changes in PA or the gut hormones studied. Although EI did not increase when measured after 3 weeks of treatment, VPA decreased glucose levels and increased motivation to eat; hence, EI might have increased in the short-term. Research testing VPA on short-term (1 week) EI, metabolism, and substrate partitioning is warranted. PMID:18583434

  20. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice.

    PubMed

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life.

  1. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  2. Effect of inducers and inhibitors of glucuronidation on the biliary excretion and choleretic action of valproic acid in the rat.

    PubMed

    Watkins, J B; Klaassen, C D

    1982-02-01

    Valproic acid (VPA) induces an immediate choleresis in the rat which may be attributable to the osmotic properties of VPA-glucuronic acid conjugates in bile. The influence of inducers and inhibitors of glucuronidation of VPA on the biliary excretion and choleretic effect of VPA was studied. Hepatic UDP-glucuronyltransferase activity toward VPA was determined in vitro. Pretreatment with phenobarbital (75 mg/kg/day for 4 days) enhanced VPA glucuronidation; borneol (750 mg/kg) decreased VPA conjugation; 3-methylcholanthrene (20 mg/kg/day for 4 days) and galactosamine (600 mg/kg) had no effect on glucuronidation of VPA in vitro. Hepatic UDP-glucuronic acid content was decreased by borneol and galactosamine administration and was enhanced by phenobarbital and 3-methylcholanthrene pretreatment. The enzyme inducers increased the plasma disappearance of VPA in vivo but did not augment its biliary excretion or choleretic effect. Borneol and galactosamine, which inhibited the conjugation and plasma disappearance of VPA, decreased its biliary excretion and inhibited the VPA-induced increase in bile flow. Thus, the bile flow rate after VPA administration is closely related to the excretion of VPA-glucuronic acid. These data support the conclusion that the choleretic effect of VPA is due to the osmotic activity of VPA conjugates in bile.

  3. Induction of autophagy by valproic acid enhanced lymphoma cell chemosensitivity through HDAC-independent and IP3-mediated PRKAA activation.

    PubMed

    Ji, Meng-Meng; Wang, Li; Zhan, Qin; Xue, Wen; Zhao, Yan; Zhao, Xia; Xu, Peng-Peng; Shen, Yang; Liu, Han; Janin, Anne; Cheng, Shu; Zhao, Wei-Li

    2015-01-01

    Autophagy is closely related to tumor cell sensitivity to anticancer drugs. The HDAC (histone deacetylase) inhibitor valproic acid (VPA) interacted synergistically with chemotherapeutic agents to trigger lymphoma cell autophagy, which resulted from activation of AMPK (AMP-activated protein kinase) and inhibition of downstream MTOR (mechanistic target of rapamycin [serine/threonine kinase]) signaling. In an HDAC-independent manner, VPA potentiated the effect of doxorubicin on lymphoma cell autophagy via reduction of cellular inositol 1,4,5 trisphosphate (IP3), blockade of calcium into mitochondria and modulation of PRKAA1/2-MTOR cascade. In murine xenograft models established with subcutaneous injection of lymphoma cells, dual treatment of VPA and doxorubicin initiated IP3-mediated calcium depletion and PRKAA1/2 activation, induced in situ autophagy and efficiently retarded tumor growth. Aberrant genes involving mitochondrial calcium transfer were frequently observed in primary tumors of lymphoma patients. Collectively, these findings suggested an HDAC-independent chemosensitizing activity of VPA and provided an insight into the clinical application of targeting autophagy in the treatment of lymphoma.

  4. Laser Acupuncture Improves Behavioral Disorders and Brain Oxidative Stress Status in the Valproic Acid Rat Model of Autism.

    PubMed

    Khongrum, Jurairat; Wattanathorn, Jintanaporn

    2015-08-01

    The therapeutic strategy against autism, a severe neurological development disorder, is one of the challenges of this decade. Recent findings show that oxidative stress plays a crucial role on the pathophysiology of autism, and laser acupuncture at Shenmen (HT7) can improve oxidative status in many neurological disorders. Therefore, we aimed to assess the effect of laser acupuncture at HT7 on behavior disorders and oxidative stress status in the cortex, striatum, and hippocampus of the valproic acid rat model of autism. Laser acupuncture was performed once daily during postnatal day (PND) 14-PND 40. Behavioral tests including rotarod, open-field, learning and memory, and social behavior tests were performed during PND 14-PND 40. At the end of study, brain oxidative status including malondialdehyde levels and the activities of superoxide dismutase, catalase, and glutathione peroxidase were determined in the cortex, striatum, and hippocampus. Laser acupuncture at HT7 significantly improved autistic-like behaviors. Decreased malondialdehyde levels were observed in all areas mentioned above, however, increased glutathione peroxidase activity was observed only in the striatum and hippocampus. No changes in superoxide dismutase and catalase activities were observed in any investigated area of the brain. Therefore, our study suggests that laser acupuncture at HT7 partly mitigates autistic-like symptoms via improved oxidative status.

  5. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas.

    PubMed

    Li, Junwei; Bonifati, Serena; Hristov, Georgi; Marttila, Tiina; Valmary-Degano, Séverine; Stanzel, Sven; Schnölzer, Martina; Mougin, Christiane; Aprahamian, Marc; Grekova, Svitlana P; Raykov, Zahari; Rommelaere, Jean; Marchini, Antonio

    2013-10-01

    The rat parvovirus H-1PV has oncolytic and tumour-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored and results are encouraging, but it is necessary to improve the oncotoxicity of the virus. Here we show that this can be achieved by co-treating cancer cells with H-1PV and histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA). We demonstrate that these agents act synergistically to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage and apoptosis. Strikingly, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibits tumour growth promoting complete tumour remission in all co-treated animals. At the molecular level, we found acetylation of the parvovirus nonstructural protein NS1 at residues K85 and K257 to modulate NS1-mediated transcription and cytotoxicity, both of which are enhanced by VPA treatment. These results warrant clinical evaluation of H-1PV/VPA co-treatment against cervical and pancreatic ductal carcinomas.

  6. Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid

    PubMed Central

    Servadio, M; Melancia, F; Manduca, A; di Masi, A; Schiavi, S; Cartocci, V; Pallottini, V; Campolongo, P; Ascenzi, P; Trezza, V

    2016-01-01

    Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD. Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basis, we tested the hypothesis that changes in the endocannabinoid tone contribute to the altered phenotype induced by prenatal VPA exposure in rats, with focus on behavioral features that resemble the core and associated symptoms of ASD. In the course of development, VPA-exposed rats showed early deficits in social communication and discrimination, compromised sociability and social play behavior, stereotypies and increased anxiety, thus providing preclinical proof of the long-lasting deleterious effects induced by prenatal VPA exposure. At the neurochemical level, VPA-exposed rats displayed altered phosphorylation of CB1 cannabinoid receptors in different brain areas, associated with changes in anandamide metabolism from infancy to adulthood. Interestingly, enhancing anandamide signaling through inhibition of its degradation rescued the behavioral deficits displayed by VPA-exposed rats at infancy, adolescence and adulthood. This study therefore shows that abnormalities in anandamide activity may underlie the deleterious impact of environmental risk factors on ASD-relevant behaviors and that the endocannabinoid system may represent a therapeutic target for the core and associated symptoms displayed by autistic patients. PMID:27676443

  7. Valproic acid affects the engraftment of TPO-expanded cord blood cells in NOD/SCID mice.

    PubMed

    Vulcano, Francesca; Milazzo, Luisa; Ciccarelli, Carmela; Barca, Alessandra; Agostini, Francesca; Altieri, Ilaria; Macioce, Giampiero; Di Virgilio, Antonio; Screnci, Maria; De Felice, Lidia; Giampaolo, Adele; Hassan, Hamisa Jane

    2012-02-15

    Hematopoietic stem and progenitor cells (HSPC) can improve the long-term outcome of transplanted individuals and reduce the relapse rate. Valproic acid (VPA), an inhibitor of histone deacetylase, when combined with different cytokine cocktails, induces the expansion of CD34+ cell populations derived from cord blood (CB) and other sources. We evaluated the effect of VPA, in combination with thrombopoietin (TPO), on the viability and expansion of CB-HSPCs and on short- and long-term engraftability in the NOD/SCID mouse model. In vitro, VPA+TPO inhibited HSPC differentiation and preserved the CD34+ cell fraction; the self-renewal of the CD34+ TPO+VPA-treated cells was suggested by the increased replating efficiency. In vivo, short- and long-term engraftment was determined after 6 and 20 weeks. After 6 weeks, the median chimerism percentage was 13.0% in mice transplanted with TPO-treated cells and only 1.4% in those transplanted with TPO+VPA-treated cells. By contrast, after 20 weeks, the engraftment induced by the TPO+VPA-treated cells was three times more effective than that induced by TPO alone, and over ten times more effective compared to the short-term engraftment induced by the TPO+VPA-treated cells. The in vivo results are consistent with the higher secondary plating efficiency of the TPO+VPA-treated cells in vitro. PMID:22166516

  8. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use.

  9. Effects of prenatal exposure to valproic acid on the development of juvenile-typical social play in rats.

    PubMed

    Raza, Sarah; Himmler, Brett T; Himmler, Stephanie M; Harker, Allonna; Kolb, Bryan; Pellis, Sergio M; Gibb, Robbin

    2015-12-01

    Autism is a severe neurodevelopmental disorder characterized by qualitative impairments in social behavior, communication, and aberrant repetitive behaviors. A major focus of animal models of autism has been to mimic the social deficits of the disorder. The present study assessed whether rats exposed prenatally to valproic acid (VPA) show deficits in social play as juveniles that are consistent with the social deficits observed in autism. Dams were exposed to an acute dose of VPA on gestational day 12.5. Later, the playful interactions and associated ultrasonic vocalizations of the juveniles were examined. It was predicted that VPA-treated rats should play less than the controls. Characteristic of neurobehavioral insult at this early age, the VPA-treated juveniles showed significant increases in the frequency of body shakes and sexual mounting, but played at the same frequency as the controls. However, when playing, they were less likely to use tactics that facilitated bodily contact and vocalized less. These data suggest that prenatal VPA exposure disrupts some aspects of being able to communicate effectively and engage partners in dynamic interactions - deficits that are consistent with those observed in autism. PMID:26230723

  10. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats.

    PubMed

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-08-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  11. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice

    PubMed Central

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life. PMID:27071011

  12. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients.

  13. Removal of pharmaceutically active compounds in nitrifying-denitrifying plants.

    PubMed

    Suárez, S; Ramil, M; Omil, F; Lema, J M

    2005-01-01

    The behaviour of nine pharmaceutically active compounds (PhACs) of different diagnostic groups is studied during a nitrifying-denitrifying process in an activated sludge system. The compounds selected cover a wide range of frequently used substances such as anti-epileptics (carbamazepine), tranquillisers (diazepam), anti-depressants (fluoxetine and citalopram), anti-inflammatories (ibuprofen, naproxen and diclofenac) and estrogens (estradiol and ethinylestradiol). The main objective of this research is to investigate the effect of acclimation of biomass on the removal rates of these compounds, either by maintaining a high sludge retention time or at long-term operation. The removal rates achieved for nitrogen and carbon in the experimental unit exceed 90% and were not affected by the addition of PhACs. Carbamazepine, diazepam and diclofenac were only removed to a small extent. On the other hand, higher removal rates have been observed for naproxen and ibuprofen (68% and 82%), respectively. PMID:16312946

  14. Antiepileptic drug utilization in Bangladesh: experience from Dhaka Medical College Hospital

    PubMed Central

    2013-01-01

    Background Epilepsy is a common health problem which carries a huge medical social psychological and economic impact for a developing country. The aim of this hospital-based study was to get an insight into the effectiveness and tolerability of low cost antiepileptic drugs (AEDs) in Bangladeshi people with epilepsy. Methods This retrospective chart review was done from hospital records in weekly Epilepsy outdoor clinic of Department of Neurology, Dhaka Medical College Hospital (DMCH) from October 1998 to February 2013. A total of 854 epilepsy patients met the eligibility criteria (had a complete record of two years of follow up data) from hospital database. A checklist was used to take demographics (age and gender), epilepsy treatment and adverse event related data. At least two years of follow up data were considered for analysis. Results Out of 854 patients selected, majority of the patients attending outdoor clinic were >11-30 years age group (55.2%) with a mean age of 20.3 ± 9 years and with a male (53%) predominance. Focal epilepsy were more common (53%), among whom secondary generalized epilepsy was the most frequent diagnosis (67%) followed by complex partial seizure (21%). Among those with Idiopathic Generalized Epilepsy (46%), generalized tonic clonic seizure was encountered in 74% and absence seizure was observed in 13%. The number of patients on monotherapy and dual AED therapy were 67% and 24% respectively and polytherapy (i.e. >3 AEDs) was used only in 9%. CBZ (67%) was the most frequently prescribed AED, followed by VPA (43%), PHB (17%), and PHT (8%). CBZ was prescribed in 37% patients as monotherapy followed by VPA in 21% and PHB in 8% patients. Newer generation drugs eg lemotrigine and topiramate were used only as add on therapy in combination with CBZ and VPA in only 2% patients. The treatment retention rates over the follow up period for the AEDs in monotherapy varied between 86 and 91% and were highest for CBZ, followed by VPA. Most of the

  15. Valproic Acid and Other HDAC Inhibitors Upregulate FGF21 Gene Expression and Promote Process Elongation in Glia by Inhibiting HDAC2 and 3

    PubMed Central

    Wang, Junyu; Wang, Zhifei; Liao, Hsiao-Mei; Wei, Monica; Leeds, Peter

    2016-01-01

    Background: Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology. Methods: C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length. Results: Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively. Conclusions: In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth

  16. A New Derivative of Valproic Acid Amide Possesses a Broad-spectrum Antiseizure Profile and Unique Activity Against Status Epilepticus and Organophosphate Neuronal Damage

    PubMed Central

    White, H. Steve; Alex, Anitha B.; Pollock, Amanda; Hen, Naama; Shekh-Ahmad, Tawfeeq; Wilcox, Karen S.; McDonough, John H.; Stables, James P.; Kaufmann, Dan; Yagen, Boris; Bialer, Meir

    2011-01-01

    Summary Purpose sec-Butyl-propylacetamide (SPD) is a one-carbon homologue of valnoctamide (VCD), a CNS-active amide derivative of valproic acid (VPA) currently in phase II clinical trials. The current study evaluated the anticonvulsant activity of SPD in a battery of rodent seizure and epilepsy models and assessed its efficacy in rat and guinea pig models of status epilepticus (SE) and neuroprotection in an organotypic hippocampal slice model of excitotoxic cell death. Methods SPD’s anticonvulsant activity was evaluated in several rodent seizure and epilepsy models including: maximal electroshock (MES), 6Hz psychomotor, subcutaneous (s.c.) metrazol-, s.c., picrotoxin, s.c. bicuculline, audiogenic and corneal and hippocampal kindled seizures following intraperitoneal administration. Results obtained with SPD are discussed in relationship to those obtained with VPA and VCD. SPD was also evaluated for its ability to block benzodiazepine-resistant SE induced by pilocarpine (rats) and soman (rats and guinea pigs) following intraperitoneal administration. SPD was tested for its ability to block excitotoxic cell death induced by the glutamate agonists N-methyl-D-Aspartate (NMDA) and kainic acid (KA) using organotypic hippocampal slices and SE-induced hippocampal cell death using FluoroJade B staining. The cognitive function of SPD-treated rats that were protected against pilocarpine-induced convulsive SE was examined 10-14 days post SE using the Morris water maze (MWM). The relationship between the pharmacokinetic profile of SPD and its efficacy against soman-induced SE was evaluated in two parallel studies following SPD (60 mg/kg, i.p.) administration in the soman SE rat model. Key Findings SPD was highly effective and displayed a wide protective index (PI=TD50/ED50) in the standardized seizure and epilepsy models employed. SPD’s wide PI values demonstrate that it is effective at doses well below those that produce behavioral impairment. Unlike VCD, SPD also

  17. The combination of valproic acid, all-trans retinoic acid and low-dose cytarabine as disease-stabilizing treatment in acute myeloid leukemia

    PubMed Central

    2013-01-01

    Background A large proportion of patients with acute myeloid leukemia (AML) are not fit for intensive and potentially curative therapy due to advanced age or comorbidity. Previous studies have demonstrated that a subset of these patients can benefit from disease-stabilizing therapy based on all-trans retinoic acid (ATRA) and valproic acid. Even though complete hematological remission is only achieved for exceptional patients, a relatively large subset of patients respond to this treatment with stabilization of normal peripheral blood cell counts. Methods In this clinical study we investigated the efficiency and safety of combining (i) continuous administration of valproic acid with (ii) intermittent oral ATRA treatment (21.5 mg/m2 twice daily) for 14 days and low-dose cytarabine (10 mg/m2 daily) for 10 days administered subcutaneously. If cytarabine could not control hyperleukocytosis it was replaced by hydroxyurea or 6-mercaptopurin to keep the peripheral blood blast count below 50 × 109/L. Results The study included 36 AML patients (median age 77 years, range 48 to 90 years) unfit for conventional intensive chemotherapy; 11 patients responded to the treatment according to the myelodysplastic syndrome (MDS) response criteria and two of these responders achieved complete hematological remission. The most common response to treatment was increased and stabilized platelet counts. The responder patients had a median survival of 171 days (range 102 to > 574 days) and they could spend most of this time outside hospital, whereas the nonresponders had a median survival of 33 days (range 8 to 149 days). The valproic acid serum levels did not differ between responder and nonresponder patients and the treatment was associated with a decrease in the level of circulating regulatory T cells. Conclusion Treatment with continuous valproic acid and intermittent ATRA plus low-dose cytarabine has a low frequency of side effects and complete hematological remission is seen for a

  18. The Effectiveness of Mood Stabilizers and Antiepileptic Medication for the Management of Behaviour Problems in Adults with Intellectual Disability: A Systematic Review

    ERIC Educational Resources Information Center

    Deb, S.; Chaplin, R.; Sohanpal, S.; Unwin, G.; Soni, R.; Lenotre, L.

    2008-01-01

    Background: Psychotropic medications are used to manage behaviour problems in adults with intellectual disability (ID). One group of psychotropic medication are mood stabilizers such as lithium and some antiepileptic drugs. Method: A comprehensive systematic review was performed to determine the evidence base for the effectiveness of mood…

  19. Prophylactic efficacy of lithium, valproic acid, and carbamazepine in the maintenance phase of bipolar disorder: a naturalistic study.

    PubMed

    Peselow, Eric D; Clevenger, Steven; IsHak, Waguih W

    2016-07-01

    Mood stabilizers are used clinically for the management of bipolar disorder. Prophylactic therapy with mood stabilizers is the primary treatment for preventing depressive and manic relapses in bipolar patients once they are stabilized. In this study, we examined the relative efficacy of the three most commonly used mood-stabilizing agents: lithium (Li), valproic acid (VPA), and carbamazepine (CBZ), in preventing relapse episodes. A total of 225 patients with bipolar disorder were included in the present analysis. Patients taking Li, VPA, or CBZ were followed up for up to 124 months, until suffering a manic, mixed, or depressive episode (relapse), or until the end of the study/study termination (no relapse), whichever came first. The median unadjusted survival time was 36 months for patients taking VPA, 42 months for patients taking CBZ, and 81 months for patients taking Li. These results indicate that patients stayed longer on Li, suggesting that it might have been better tolerated than either CBZ or VPA. χ-Analysis showed that patients taking Li were significantly less likely to experience relapse during the observational period than patients taking either VPA or CBZ (P<0.05). A Cox regression model showed that the hazard of experiencing relapse was significantly predicted by the total number of depressive (P=0.007) and manic symptoms (P=0.02) assessed before the observation period. In addition, after controlling for symptom covariates, the hazard of experiencing relapse was 1.66 times (95% confidence interval 1.03-2.67) or 66% higher for patients taking VPA compared with patients taking Li (P=0.037). Although the hazard of experiencing relapse was higher for patients taking CBZ compared with those taking Li, the risk was not elevated by a significant amount. Notwithstanding the limitations of the naturalistic design of this study, the differences in relapse prevention and survival time observed in these medications show Li fairing relatively better in

  20. Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells

    PubMed Central

    Thotala, Dinesh; Karvas, Rowan M.; Engelbach, John A.; Garbow, Joel R.; Hallahan, Andrew N.; DeWees, Todd A.; Laszlo, Andrei; Hallahan, Dennis E.

    2015-01-01

    Neurocognitive deficits are serious sequelae that follow cranial irradiation used to treat patients with medulloblastoma and other brain neoplasms. Cranial irradiation causes apoptosis in the subgranular zone of the hippocampus leading to cognitive deficits. Valproic acid (VPA) treatment protected hippocampal neurons from radiation-induced damage in both cell culture and animal models. Radioprotection was observed in VPA-treated neuronal cells compared to cells treated with radiation alone. This protection is specific to normal neuronal cells and did not extend to cancer cells. In fact, VPA acted as a radiosensitizer in brain cancer cells. VPA treatment induced cell cycle arrest in cancer cells but not in normal neuronal cells. The level of anti-apoptotic protein Bcl-2 was increased and the pro-apoptotic protein Bax was reduced in VPA treated normal cells. VPA inhibited the activities of histone deacetylase (HDAC) and glycogen synthase kinase-3β (GSK3β), the latter of which is only inhibited in normal cells. The combination of VPA and radiation was most effective in inhibiting tumor growth in heterotopic brain tumor models. An intracranial orthotopic glioma tumor model was used to evaluate tumor growth by using dynamic contrast-enhanced magnetic resonance (DCE MRI) and mouse survival following treatment with VPA and radiation. VPA, in combination with radiation, significantly delayed tumor growth and improved mouse survival. Overall, VPA protects normal hippocampal neurons and not cancer cells from radiation-induced cytotoxicity both in vitro and in vivo. VPA treatment has the potential for attenuating neurocognitive deficits associated with cranial irradiation while enhancing the efficiency of glioma radiotherapy. PMID:26413814

  1. Association of LEPR and ANKK1 Gene Polymorphisms with Weight Gain in Epilepsy Patients Receiving Valproic Acid

    PubMed Central

    Li, Hongliang; Wang, Xueding; Zhou, Yafang; Ni, Guanzhong; Su, Qibiao; Chen, Ziyi; Chen, Zhuojia; Li, Jiali; Chen, Xinmeng; Hou, Xiangyu; Xie, Wen; Xin, Shuang; Zhou, Liemin

    2015-01-01

    Background: Weight gain is the most frequent adverse effect of valproic acid (VPA) treatment, resulting in poor compliance and many endocrine disturbances. Similarities in the weight change of monozygotic twins receiving VPA strongly suggests that genetic factors are involved in this effect. However, few studies have been conducted to identify the relevant genetic polymorphisms. Additionally, the causal relationship between the VPA concentration and weight gain has been controversial. Thus, we investigated the effects of single nucleotide polymorphisms (SNPs) in several appetite stimulation and energy homeostasis genes and the steady state plasma concentrations (Css) of VPA on the occurrence of weight gain in patients. Methods: A total of 212 epilepsy patients receiving VPA were enrolled. Nineteen SNPs in 11 genes were detected using the Sequenom MassArray iPlex platform, and VPA Css was determined by high-performance liquid chromatography (HPLC). Results: After 6 months of treatment, 20.28% of patients were found to gain a significant amount of weight (weight gained ≥7%). Three SNPs in the leptin receptor (LEPR), ankyrin repeat kinase domain containing 1 (ANKK1), and α catalytic subunit of adenosine monophosphate-activated protein kinase (AMPK) showed significant associations with VPA-induced weight gain (p < 0.001, p = 0.017 and p = 0.020, respectively). After Bonferroni correction for multiple tests, the genotypic association of LEPR rs1137101, the allelic association of LEPR rs1137101, and ANKK1 rs1800497 with weight gain remained significant. However, the VPA Css in patents who gained weight were not significantly different from those who did not gain weight (p = 0.121). Conclusions: LEPR and ANKK1 genetic polymorphisms may have value in predicting VPA-induced weight gain. PMID:25740917

  2. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts.

    PubMed

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21(Cip1) and p27(Kip1) expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line.

  3. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    SciTech Connect

    Dawson, Jennifer E.; Raymond, Angela M.; Winn, Louise M. . E-mail: winnl@biology.queensu.ca

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  4. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    PubMed Central

    Umka Welbat, Jariya; Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Pakdeechote, Poungrat; Sripanidkulchai, Bungorn; Wigmore, Peter

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA. PMID:27213437

  5. Changes in chromatin structure in NIH 3T3 cells induced by valproic acid and trichostatin A.

    PubMed

    Felisbino, Marina Barreto; Gatti, Maria Silvia Viccari; Mello, Maria Luiza S

    2014-11-01

    Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.

  6. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    PubMed

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. PMID:27469996

  7. Auditory-cued sensorimotor task reveals disengagement deficits in rats exposed to the autism-associated teratogen valproic acid.

    PubMed

    Chomiak, T; Hung, J; Cihal, A; Dhaliwal, J; Baghdadwala, M I; Dzwonek, A; Podgorny, P; Hu, B

    2014-05-30

    Autism Spectrum Disorder (ASD) is often found to co-exist with non-core behavioral manifestations that include difficulties in disengagement of attention to sensory cues. Here we examined whether this behavioral abnormality can be induced in rats prenatally exposed to valproic acid (VPA), a well-established teratogen associated with ASD animal models. We tested rats using an auditory-cued sensorimotor task (ACST) based on the premise that ACST will be more sensitive to developmental changes in temporal association cortex (TeA) of the posterior attention system. We show that VPA rats learned the ACST markedly faster than control animals, but they exhibited a profound preoccupation with cues associated with the expectancy at the reward location such that disengagement was disrupted. Control rats on the other hand were able to disengage and utilize auditory cues for re-engagement. However, both control and VPA-treated rats performed similarly when tested on novel object recognition (NOR) and novel context mismatch (NOCM) behavioral tasks that are known to be sensitive to normal perirhinal and prefrontal network functioning respectively. Consistent with disrupted posterior rather than frontal networks, we also report that VPA can selectively act on deep-layer TeA cortical neurons by showing that VPA increased dendritic density in isolated deep-layer TeA but not frontal neurons. These results describe a useful approach to examine the role of cue-dependent control of attention systems in rodent models of autism and suggest that disengagement impairments may arise from an inability to modify behavior through the appropriate use of sensory cue associations. PMID:24631679

  8. Transcriptional regulation of E-cadherin and oncoprotein E7 by valproic acid in HPV positive cell lines

    PubMed Central

    Faghihloo, Ebrahim; Akbari, Abolfazl; Adjaminezhad-Fard, Fatemeh; Mokhtari-Azad, Talat

    2016-01-01

    Objective(s): Valproic acid (VPA) has proven to be as one of the most promising useful drug with anticancer properties. In this study, we investigate the VPA effects on E-cadherin expression in HeLa, TC1, MKN45, and HCT116 cell lines. This study assesses the effects of VPA on human papillomavirus E7 expression in HPV positive cell lines. Materials and Methods: Cell lines were treated by 2 mmol/l VPA and expression of E-cadherin and E7 was analyzed by quantitative real-time PCR. Student’s t test and ANOVA were used to determine changes in expression levels. Results: The results revealed that mean of E-cadherin expression is increased by VPA 1.8 times in HCT116 and MKN45 cell lines, also the mean of E-cadherin mRNA levels is up-regulated 2.9 times in HeLa and TC1 cell lines. So, E-cadherin augmentation induced by VPA in HeLa and TC-1, HPV positive cell lines, is higher than HPV negative cell lines MKN45 and HCT116. The mean of HPV E7 expression is decreased by VPA, 4.6 times in in HeLa and TC-1 cell lines. Conclusion: This study demonstrates that re-expression of E-cadherin by VPA in HPV positive cell lines is more than HPV negative cell lines. Whereas, HPV E7 reduces the expression of E-cadherin, reduction of HPV E7 expression by VPA is related to more augmentation of E-cadherin in HPV positive cell lines. So, this study demonstrates that VPA has more anticancer properties in HPV positive cell lines, and could potentially be a promising candidate for cervical cancer treatment. PMID:27482340

  9. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival.

    PubMed

    Umka Welbat, Jariya; Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Pakdeechote, Poungrat; Sripanidkulchai, Bungorn; Wigmore, Peter

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA. PMID:27213437

  10. Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder.

    PubMed

    Wilson, C Brad; McLaughlin, Leslie D; Ebenezer, Philip J; Nair, Anand R; Francis, Joseph

    2014-07-15

    Reactive oxygen species (ROS) and pro-inflammatory cytokines (PIC) are upregulated in post-traumatic stress disorder (PTSD). Histone deacetylase inhibitors (HDACi) modify genetic transcription and can diminish ROS and PIC escalation. They can also modulate levels of neurotransmitters such as catecholamines and serotonin (5-HT). Thus, this study sought to analyze the effects of the HDACi valproic acid (VA) on oxidative stress, inflammation, and neurotransmitter modulation via a predator exposure/psychosocial stress animal model of PTSD. PTSD-like effects were induced in male Sprague-Dawley rats (n=6/group×4 groups). The rats were secured in Plexiglas cylinders and placed in a cage with a cat for 1h on days 1, 11, and 40 of a 40-day stress regimen. PTSD rats were also subjected to psychosocial stress via daily cage cohort changes. At the conclusion of the stress regimen, the treatment group (PTSD+VA) and control group (Control+VA) rats were given VA in their drinking water for 30 days. The rats were then euthanized and their brains were dissected to remove the hippocampus and prefrontal cortex (PFC). Whole blood was collected to assess systemic oxidative stress. ROS and PIC mRNA and protein elevation in the PTSD group were normalized with VA. Anxiety decreased in this group via improved performance on the elevated plus-maze (EPM). No changes were attributed to VA in the control group, and no improvements were noted in the vehicle groups. Results indicate VA can attenuate oxidative stress and inflammation, enhance fear extinction, and correct neurotransmitter aberrancies in a rat model of PTSD.

  11. Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid.

    PubMed

    Baronio, Diego; Castro, Kamila; Gonchoroski, Taylor; de Melo, Gabriela Mueller; Nunes, Gustavo Della Flora; Bambini-Junior, Victorio; Gottfried, Carmem; Riesgo, Rudimar

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data.

  12. Resuscitation with Valproic Acid Alters Inflammatory Genes in a Porcine Model of Combined Traumatic Brain Injury and Hemorrhagic Shock.

    PubMed

    Bambakidis, Ted; Dekker, Simone E; Sillesen, Martin; Liu, Baoling; Johnson, Craig N; Jin, Guang; de Vries, Helga E; Li, Yongqing; Alam, Hasan B

    2016-08-15

    Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the epigenome has been shown to be a promising strategy. The aim of this study was to investigate whether valproic acid (VPA), a histone deacetylase inhibitor, modulates the expression of cerebral inflammatory gene profiles in a large animal model of TBI+HS. Ten Yorkshire swine were subjected to computer-controlled TBI+HS (40% blood volume). After 2 h of shock, animals were resuscitated with Hextend (HEX) or HEX+VPA (300 mg/kg, n = 5/group). Six hours after resuscitation, brains were harvested, RNA was isolated, and gene expression profiles were measured using a porcine microarray. Ingenuity Pathway Analysis® (IPA), gene ontology (GO), Parametric Gene Set Enrichment Analysis (PGSEA), and DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key microarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA significantly down-regulated the complement system (p < 0.001), natural killer cell communication (p < 0.001), and dendritic cell maturation (p < 0.001). DAVID analysis indicated that a cluster of inflammatory pathways held the highest rank and gene enrichment score. Real-time PCR data confirmed that VPA significantly down-expressed genes that ultimately regulate nuclear factor-kB (NF-kB)-mediated production of cytokines, such as TYROBP, TREM2, CCR1, and IL-1β. This high-throughput analysis of cerebral gene expression shows that addition of VPA to the resuscitation protocol significantly modulates the expression of inflammatory pathways in a clinically realistic model of TBI+HS. PMID:26905959

  13. Phase I Pharmacokinetic and Pharmacodynamic Evaluation of Combined Valproic Acid/Doxorubicin Treatment in Dogs with Spontaneous Cancer

    PubMed Central

    Wittenburg, Luke A.; Gustafson, Daniel L.; Thamm, Douglas H.

    2010-01-01

    Purpose Histone deacetylase inhibitors (HDACi) are targeted anti-cancer agents with a well-documented ability to act synergistically with cytotoxic agents. We recently demonstrated that the HDACi valproic acid (VPA) sensitizes osteosarcoma cells to doxorubicin (DOX) in vitro and in vivo. As there are no published reports on the clinical utility of HDACi in dogs with spontaneous cancers, we sought to determine a safe and biologically effective dose of VPA administered prior to a standard dose of DOX. Methods 21 dogs were enrolled into eight cohorts in an accelerated dose-escalation trial consisting of pre-treatment with oral VPA followed by DOX on a three-week cycle. Blood and tumor tissue were collected for determination of serum VPA concentration and evaluation of pharmcodynamic effects by immunofluorescence cytochemistry and immunohistochemistry. Serum and complete blood counts were obtained for determination of changes in DOX pharmacokinetics or hematologic effects. Results All doses of VPA were well tolerated. Serum VPA concentrations increased linearly with dose. DOX pharmacokinetics were comparable to those in dogs receiving DOX alone. A positive correlation was detected between VPA dose and histone hyperacetylation in PBMC. No potentiation of DOX-induced myelosuppression was observed. Histone hyperacetylation was documented in tumor and PBMC. Responses included 2/21 complete, 3/21 partial, 5/21 stable disease, and 11/21 progressive disease. Conclusions VPA can be administered to dogs at doses up to 240 mg/kg/day prior to a standard dose of DOX. In addition, we have developed the PK/PD tools necessary for future studies of novel HDACi in the clinical setting of canine cancer. PMID:20705615

  14. Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid

    PubMed Central

    Baronio, Diego; Castro, Kamila; Gonchoroski, Taylor; de Melo, Gabriela Mueller; Nunes, Gustavo Della Flora; Bambini-Junior, Victorio; Gottfried, Carmem; Riesgo, Rudimar

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data. PMID:25560049

  15. Antitumor activities of valproic acid on Epstein-Barr virus-associated T and natural killer lymphoma cells.

    PubMed

    Iwata, Seiko; Saito, Takashi; Ito, Yoshinori; Kamakura, Maki; Gotoh, Kensei; Kawada, Jun-Ichi; Nishiyama, Yukihiro; Kimura, Hiroshi

    2012-02-01

    Epstein-Barr virus (EBV), which infects B cells, T cells, and natural killer (NK) cells, is associated with multiple lymphoid malignancies. Recently, histone deacetylase (HDAC) inhibitors have been reported to have anticancer effects against various tumor cells. In the present study, we evaluated the killing effect of valproic acid (VPA), which acts as an HDAC inhibitor, on EBV-positive and -negative T and NK lymphoma cells. Treatment of multiple T and NK cell lines (SNT13, SNT16, Jurkat, SNK6, KAI3 and KHYG1) with 0.1-5 mM of VPA inhibited HDAC, increased acetylated histone levels and reduced cell viability. No significant differences were seen between EBV-positive and -negative cell lines. Although VPA induced apoptosis in some T and NK cell lines (SNT16, Jurkat and KHYG1) and cell cycle arrest, it did not induce lytic infection in EBV-positive T or NK cell lines. Because the killing effect of VPA was modest (1 mM VPA reduced cell viability by between 22% and 56%), we tested the effects of the combination of 1 mM of VPA and 0.01 μM of the proteasome inhibitor bortezomib. The combined treated of cells with VPA and bortezomib had an additive killing effect. Finally, we administered VPA to peripheral blood mononuclear cells from three patients with EBV-associated T or NK lymphoproliferative diseases. In these studies, VPA had a greater killing effect against EBV-infected cells than uninfected cells, and the effect was increased when VPA was combined with bortezomib. These results indicate that VPA has antitumor effects on T and NK lymphoma cells and that VPA and bortezomib may have synergistic effects, irrespective of the presence of EBV. PMID:22017376

  16. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia.

    PubMed

    Lu, Wen-Hsin; Wang, Chih-Yen; Chen, Po-See; Wang, Jing-Wen; Chuang, De-Maw; Yang, Chung-Shi; Tzeng, Shun-Fen

    2013-05-01

    Peripheral injection with a high dose of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, into animals with mild or moderate spinal cord injury (SCI) for 1 week can reduce spinal cord tissue loss and promote hindlimb locomotor recovery. A purinergic adenosine triphosphate (ATP) receptor subtype, P2X4 receptor (P2X4 R), has been considered as a potential target to diminish SCI-associated inflammatory responses. In this study, using a minipump-based infusion system, we found that intraspinal infusion with VPA for 3 days into injured spinal cord significantly improved hindlimb locomotion of rats with severe SCI induced by a 10-g NYU impactor dropping from the height of 50 mm onto the spinal T9/10 segment. The neuronal fibers in the injured spinal cord tissues were significantly preserved in VPA-treated rats compared with those observed in vehicle-treated animals. Moreover, the accumulation of microglia/macrophages and astrocytes in the injured spinal cord was attenuated in the animal group receiving VPA infusion. VPA also significantly reduced P2X4 R expression post-SCI. Furthermore, in vitro study indicated that VPA, but not the other HDAC inhibitors, sodium butyrate and trichostatin A (TSA), caused downregulation of P2X4 R in microglia activated with lipopolysaccharide (LPS). Moreover, p38 mitogen-activated protein kinase (MAPK)-triggered signaling was involved in the effect of VPA on the inhibition of P2X4 R gene expression. In addition to the findings from others, our results also provide important evidence to show the inhibitory effect of VPA on P2X4 R expression in activated microglia, which may contribute to reduction of SCI-induced gliosis and subsequently preservation of spinal cord tissues. © 2013 Wiley Periodicals, Inc.

  17. The effect of epilepsy and antiepileptic drugs on sexual, reproductive and gonadal health of adults with epilepsy.

    PubMed

    Hamed, Sherifa A

    2016-06-01

    Epilepsy is a common chronic medical illness. Hyposexuality is the most frequent abnormality in men and women with epilepsy. In men with epilepsy, hypoandrogenimia, hypogonadism and sperm abnormalities are common. Testicular atrophy was also infrequently reported. In women with epilepsy, hyperandrogenism, polycystic ovaries (PCOs) and PCO syndrome are frequent. Decreased serum free testosterone, dehydroepiandrosterone levels, free androgen index and free testosterone/leutinizing hormone (LH) ratio and increased sex hormone binding globulin, estradiol, prolactin, LH, follicle stimulating hormone (FSH) levels and LH/FSH ratio are common with epilepsy. Disturbance of central and/or peripheral control of hypothalamic-pituitary-gonadal axis and alteration of central neurotrasmitters (GABA, glutamate and serotonin) by epileptic discharges or antiepileptic drugs (AEDs), direct gonadal toxicity by AEDs and pcyshicatric/psychosocial factors are all incriminated in sexual, reproductive and gonadal abnormalities associated with epilepsy. Patients may benefit from multidisplinary evaluation, tight seizure control, change the AED, androgen therapy, genital vasodilators, L-carnitine supplementation and psychotherapy.

  18. Predictive value of isolated epileptiform discharges for a favorable therapeutic response to antiepileptic drugs in nonepileptic psychiatric patients.

    PubMed

    Boutros, Nash N; Kirollos, Sandra B; Pogarell, Oliver; Gallinat, Jürgen

    2014-02-01

    The efficacy of antiepileptic drugs (AEDs) in treating behavioral symptoms in nonepileptic psychiatric patients with abnormal EEGs is currently unknown. Although isolated epileptiform discharges have been reported in many psychiatric conditions, they are most commonly observed in patients with aggression, panic, or autistic spectrum disorders. The literature search was guided by 3 criteria: (1) studies had patients who did not experience seizures, (2) patients had EEGs, and (3) an AED was administered. Most important finding is that the number of "controlled" studies was extremely small. Overall, most reports suggest that the use of an AED can be associated with clinical and, at times, improved EEG abnormalities. Additionally, six controlled studies were found for other psychiatric disorders, such as learning disabilities with similar results. Overall, the use of anticonvulsants to treat nonepileptic psychiatric patients needs further controlled studies to better define indications, adequate EEG work-up, best AED to be used, and optimal durations of treatment attempts.

  19. Antiepileptic and neuroprotective effects of human umbilical cord blood mononuclear cells in a pilocarpine-induced epilepsy model.

    PubMed

    Costa-Ferro, Zaquer Suzana Munhoz; de Borba Cunha, Fernanda; de Freitas Souza, Bruno Solano; Leal, Marcos Maurício Tosta; da Silva, Adelson Alves; de Bellis Kühn, Telma Ingrid Borges; Forte, Andresa; Sekiya, Eliseo Joji; Soares, Milena Botelho Pereira; Dos Santos, Ricardo Ribeiro

    2014-03-01

    Status epilepticus (SE) is a condition of persistent seizure that leads to brain damage and, frequently, to the establishment of chronic epilepsy. Cord blood is an important source of adult stem cells for the treatment of neurological disorders. The present study aimed to evaluate the effects of human umbilical cord blood mononuclear cells (HUCBC) transplanted into rats after induction of SE by the administration of lithium and pilocarpine chloride. Transplantation of HUCBC into epileptic rats protected against neuronal loss in the hippocampal subfields CA1, CA3 and in the hilus of the dentate gyrus, up to 300 days after SE induction. Moreover, transplanted rats had reduced frequency and duration of spontaneous recurrent seizures (SRS) 15, 120 and 300 days after the SE. Our study shows that HUCBC provide prominent antiepileptic and neuroprotective effects in the experimental model of epilepsy and reinforces that early interventions can protect the brain against the establishment of epilepsy.

  20. Markers of bone turnover in patients with epilepsy and their relationship to management of bone diseases induced by antiepileptic drugs.

    PubMed

    Hamed, Sherifa A

    2016-01-01

    Data from cross-sectional and prospective studies revealed that patients with epilepsy and on long-term treatment with antiepileptic drugs (AEDs) are at increased risk for metabolic bone diseases. Bone diseases were reported in about 50% of patients on AEDs. Low bone mineral density, osteopenia/osteoporosis, osteomalacia, rickets, altered concentration of bone turnover markers and fractures were reported with phenobarbital, phenytoin, carbamazepine, valproate, oxcarbazepine and lamotrigine. The mechanisms for AEDs-induced bone diseases are heterogeneous and include hypovitaminosis D, hypocalcemia and direct acceleration of bone loss and/or reduction of bone formation. This article reviews the evidence, predictors and mechanisms of AEDs-induced bone abnormalities and its clinical implications. For patients on AEDs, regular monitoring of bone health is recommended. Prophylactic administration of calcium and vitamin D is recommended for all patients. Treatment doses of calcium and vitamin D and even anti-resorptive drug therapy are reserved for patients at high risk of pathological fracture.

  1. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential

    PubMed Central

    Wolfart, Jakob; Laker, Debora

    2015-01-01

    Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies. PMID:26124723

  2. Antiepileptic and Antioxidant Effect of Hydroalcoholic Extract of Ferula Assa Foetida Gum on Pentylentetrazole- induced Kindling in Male Mice

    PubMed Central

    Kiasalari, Zahra; Khalili, Mohsen; Roghani, Mehrdad; Heidari, Hamid; Azizi, Yaser

    2013-01-01

    Introduction Considering the prevalence of epilepsy and the failure of available treatments for many epileptic patients, finding more effective drugs in the treatment of epilepsy seems necessary. Oxidative stress has a special role in the pathogenesis of epileptic syndrome. Therefore, in the present study, we have examined the anti-epileptic and anti-oxidant properties of the Ferula Assa Foetida gum extract, using the pentylentetrazole (PTZ) kindling method. In this experimental study, sixty male Albino mice weighing 25-30 g were selected and were randomly divided into 6 groups. 1- the control group, 2- PTZ-kindled mice, 3- positive control group which received valproate (100 mg/kg) as anti-convulsant drug, 4-5 & 6- the groups of kindled mice that pretreated with 25, 50 and 100 mg/kg doses of Ferula Assa Foetida gum extract. Methods Kindling has been induced in all groups, except for the control group via 11 PTZ injections (35 mg /kg; ip) every other day for 22 days. In the 24th day, the PTZ challenge dose was injected (75 mg / kg) to all groups except the control group. The intensity of seizures were observed and noted until 30 minutes after PTZ injection. At list, the mice were decapitated and the brains of all the mice were removed.. and their biochemical factors levels including malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO) were determined. Results Results of this study show that Ferula Assa Foetida gum extract is able to reduce seizure duration and its intensity. In addition, this extract has reduced MDA and NO levels and increased the level of SOD in the brain tissue compared to the PTZ- kindled mice. Discussion It can be concluded that Ferula Assa Foetida gum extract, in specific doses, is able to show an anti-epileptic effect because of its antioxidant properties, probably acting through an enzyme activity mechanism. PMID:25337361

  3. Comparison of gene expression regulation in mouse- and human embryonic stem cell assays during neural differentiation and in response to valproic acid exposure.

    PubMed

    Schulpen, Sjors H W; Theunissen, Peter T; Pennings, Jeroen L A; Piersma, Aldert H

    2015-08-15

    Embryonic stem cell tests (EST) are considered promising alternative assays for developmental toxicity testing. Classical mouse derived assays (mEST) are being replaced by human derived assays (hEST), in view of their relevance for human hazard assessment. We have compared mouse and human neural ESTn assays for neurodevelopmental toxicity as to regulation of gene expression during cell differentiation in both assays. Commonalities were observed in a range of neurodevelopmental genes and gene ontology (GO) terms. The mESTn showed a higher specificity in neurodevelopment than the hESTn, which may in part be caused by necessary differences in test protocols. Moreover, gene expression responses to the anticonvulsant and human teratogen valproic acid were compared. Both assays detected pharmacological and neurodevelopmental gene sets regulated by valproic acid. Common significant expression changes were observed in a subset of homologous neurodevelopmental genes. We suggest that these genes and related GO terms may provide good candidates for robust biomarkers of neurodevelopmental toxicity in hESTn.

  4. Up-regulation of HLA class-I antigen expression and antigen-specific CTL response in cervical cancer cells by the demethylating agent hydralazine and the histone deacetylase inhibitor valproic acid

    PubMed Central

    Mora-García, María de Lourdes; Duenas-González, Alfonso; Hernández-Montes, Jorge; De la Cruz-Hernández, Erick; Pérez-Cárdenas, Enrique; Weiss-Steider, Benny; Santiago-Osorio, Edelmiro; Ortíz-Navarrete, Vianney Francisco; Rosales, Víctor Hugo; Cantú, David; Lizano-Soberón, Marcela; Rojo-Aguilar, Martha Patricia; Monroy-García, Alberto

    2006-01-01

    Background DNA hypermethylation and histone deacetylation are epigenetic events that contribute to the absence or downregulated expression of different components of the tumor recognition complex. These events affect the processing and presentation of antigenic peptides to CTLs by HLA class-I molecules. In this work evaluated the effect of the DNA hypomethylating agent hydralazine and the histone deacetylase inhibitor valproic acid, on the expression of HLA class-I molecules and on the antigen-specific immune recognition of cervical cancer cells. Methods Cell lines C33A (HPV-), CaSki (HPV-16+) and MS751 (HPV-18+) were treated with hydralazine and valproic acid to assess the expression of HLA class-I molecules by flow cytometry and RT-PCR. Promoter methylation of HLA class-I -A, -B and C, was also evaluated by Methylation-Specific PCR. Primary cervical tumors of four HLA-A*0201 allele patients were typed for HPV and their CTL's stimulated in vitro with the T2 cell line previously loaded with 50 μM of the HPV peptides. Cytotoxicity of stimulated CTL's was assayed against Caski and MS751 cells pre-treated with hydralazine and valproic acid. Results Valproic acid and hydralazine/valproic acid up-regulated the constitutive HLA class-I expression as evaluated by flow cytometry and RT-PCR despite constitutive promoter demethylation at these loci. Hydralazine and valproic acid in combination but no IFN-gamma hyperacetylated histone H4 as evaluated by ChiP assay. The antigenic immune recognition of CaSki and MS751 cells by CTLs specific to HPV-16/18 E6 and E7-derived epitopes, was increased by VA and H/VA and the combination of H/VA/IFN-gamma. Conclusion These results support the potential use of hydralazine and valproic acid as an adjuvant for immune intervention in cervical cancer patients whenever clinical protocols based on tumor antigen recognition is desirable, like in those cases where the application of E6 and E7 based therapeutic vaccines is used. PMID:17192185

  5. Valproic acid improved in vitro development of pig cloning embryos but did not improve survival of cloned pigs to adulthood.

    PubMed

    Kang, Jin-Dan; Li, Suo; Lu, Yue; Wang, Wei; Liang, Shuang; Liu, Xi; Jin, Jun-Xue; Hong, Yu; Yan, Chang-Guo; Yin, Xi-Jun

    2013-01-15

    The objective was to examine the effects of valproic acid (VPA), a histone deacetylase inhibitor, on in vitro and in vivo development of Wuzhishan miniature pig somatic cell nuclear transfer (SCNT) embryos. Experiment 1 compared in vitro developmental competence of nuclear transfer embryos treated with various concentrations of VPA for 24 h. Embryos treated with 2 mM VPA for 24 h had a greater rate of blastocyst formation compared with control or embryos treated with 4 or 8 mM VPA (21.5% vs. 10.5%, 12.6%, and 17.2%, P < 0.05). Experiment 2 examined the in vitro developmental competence of nuclear transfer embryos treated with 2 mM VPA for various intervals after chemical activation. Embryos treated for 24 h had higher rates of blastocyst formation than the control or those treated for 4 or 48 h (20.7% vs. 9.2%, 12.1%, and 9.1%, P < 0.05). In Experiment 3, an average of 207 (range, 192-216) nuclear transfer embryos from the VPA-treated group were transferred to surrogate mothers, resulting in three pregnancies. Two of the surrogates delivered a total of 11 live piglets. However, for unknown reasons, nine of 11 piglets in the VPA-treated group died within 1 to 5 d after birth. Untreated control embryos (average, 205; range, 179-225) transferred to four surrogate mothers resulted in three pregnancies, two of which delivered a total of 12 live offspring, although four of 12 piglets in the VPA-untreated group died (cause unknown) within 1 to 3 d, whereas eight of the 12 piglets in the VPA-untreated group survived more than 3 or 4 mo. The average birth weight of the two litters from the VPA-treated group tended (P < 0.05) to be lower than that from the control groups (551.6 g vs. 675.2 g). In conclusion, VPA treatment increased the blastocyst formation rate of SCNT porcine embryos; both VPA-treated and the untreated clones developed to term, but offspring from VPA-treated embryos had a lower survival to adulthood than those from control embryos (18.2% vs. 67.0%; P < 0.05).

  6. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells

    PubMed Central

    Boyle, Jennifer; Pielen, Amelie; Lagrèze, Wolf Alexander

    2011-01-01

    Purpose Histone deacetylase inhibitors (HDACi) have neuroprotective effects under various neurodegenerative conditions, e.g., after optic nerve crush (ONC). HDACi-mediated protection of central neurons by increased histone acetylation has not previously been demonstrated in rat retinal ganglion cells (RGCs), although epigenetic changes were shown to be associated with cell death after ONC. We investigated whether HDACi can delay spontaneous cell death in purified rat RGCs and analyzed concomitant histone acetylation levels. Methods RGCs were purified from newborn (postnatal day [P] 0–P2) rat retinas by immunopanning with antibodies against Thy-1.1 and culturing in serum-free medium for 2 days. RGCs were treated with HDACi, each at several different concentrations: 0.1–10 mM sodium butyrate (SB), 0.1–2 mM valproic acid (VPA), or 0.5–10 nM trichostatin A (TSA). Negative controls were incubated in media alone, while positive controls were incubated in 0.05–0.4 IU/µl erythropoietin. Survival was quantified by counting viable cells using phase-contrast microscopy. The expression of acetylated histone proteins (AcH) 3 and 4 was analyzed in RGCs by immunohistochemistry. Results SB and VPA enhanced RGC survival in culture, with both showing a maximum effect at 0.1 mM (increase in survival to 188% and 163%, respectively). Their neuroprotective effect was comparable to that of erythropoietin at 0.05 IU/µl. TSA 0.5–1.0 nM showed no effect on RGC survival, and concentrations ≥5 nM increased RGC death. AcH3 and AcH4 levels were only significantly increased in RGCs treated with 0.1 mM SB. VPA 0.1 mM produced only a slight effect on histone acetylation. Conclusions Millimolar concentrations of SB and VPA delayed spontaneous cell death in purified RGCs; however, significantly increased histone acetylation levels were only detectable in RGCs after SB treatment. As the potent HDACi TSA was not neuroprotective, mechanisms other than histone acetylation may be the

  7. Palladium-benzodiazepine derivatives as promising metallodrugs for the development of antiepileptic therapies.

    PubMed

    Barros, Walleska Bismaida Zacarias Galvão; da Silva, Allysson Haide Queiroz; Barbosa, Ana Soraya Lima; Nunes, Ábner Magalhães; Reys, José Rui Machado; de Araújo-Filho, Heitor Gomes; de Souza Siqueira Quintans, Jullyana; Quintans-Júnior, Lucindo José; Pfeffer, Michel; Dos Santos Malta, Valéria Rodrigues; Meneghetti, Mario Roberto

    2016-02-01

    We synthesized two organometallic diazepam-palladium(II) derivatives by C-H activation of diazepam (DZP) with palladium salts, i.e., PdCl2 and Pd(OAc)2 (OAc=acetate). Both compounds obtained are air stable and were isolated in good yields. The anticonvulsant potential of the complexes, labeled [(DZP)PdCl]2 and [(DZP)PdOAc]2, was evaluated through two animal models: pentylenetetrazole (PTZ)- and picrotoxin (PTX)-induced convulsions. The organometallic DZP-palladium(II) acetate complex, [(DZP)PdOAc]2, significantly increased (p<0.01 or p<0.001) latencies and protected the animals against convulsions induced by PTZ and PTX, while the analogous chloro derivative, [(DZP)PdCl]2, was effective (p<0.01) only in the PTZ model. These effects appear to be mediated through the GABAergic system. The possible mechanism of action of the DZP-palladium(II) complexes was also confirmed with the use of flumazenil (FLU), a GABAA-benzodiazepine receptor complex site antagonist. Herein, we present the first report of the anticonvulsant properties of organometallic DZP-palladium(II) complexes as well as evidence that these compounds may play an important role in the study of new drugs to treat patients with epilepsy.

  8. Anti-epileptic drugs and bone loss: Phenytoin reduces pro-collagen I and alters the electrophoretic mobility of osteonectin in cultured bone cells.

    PubMed

    Wilson, Emma L; Garton, Mark; Fuller, Heidi R

    2016-05-01

    Phenytoin is an antiepileptic drug used in the management of partial and tonic-clonic seizures. In previous studies we have shown that valproate, another antiepileptic drug, reduced the amount of two key bone proteins, pro-collagen I and osteonectin (SPARC, BM-40), in both skin fibroblasts and cultured osteoblast-like cells. Here we show that phenytoin also reduces pro-collagen I production in osteoblast-like cells, but does not appear to cause a decrease in osteonectin message or protein production. Instead, a 24h exposure to a clinically relevant concentration of phenytoin resulted in a dose-dependent change in electrophoretic mobility of osteonectin, which was suggestive of a change in post-translational modification status. The perturbation of these important bone proteins could be one of the mechanisms to explain the bone loss that has been reported following long-term treatment with phenytoin.

  9. Common Variants of KCNJ10 Are Associated with Susceptibility and Anti-Epileptic Drug Resistance in Chinese Genetic Generalized Epilepsies

    PubMed Central

    Guo, Yong; Yan, Kui Po; Qu, Qiang; Qu, Jian; Chen, Zi Gui; Song, Tao; Luo, Xiang-Ying; Sun, Zhong-Yi; Bi, Chang-Long; Liu, Jin-Fang

    2015-01-01

    To explore genetic mechanism of genetic generalized epilepsies (GGEs) is challenging because of their complex heritance pattern and genetic heterogeneity. KCNJ10 gene encodes Kir4.1 channels and plays a major role in modulating resting membrane potentials in excitable cells. It may cause GGEs if mutated. The purpose of this study was to investigate the possible association between KCNJ10 common variants and the susceptibility and drug resistance of GGEs in Chinese population. The allele-specific MALDI–TOF mass spectrometry method was used to assess 8 single nucleotide polymorphisms (SNPs) of KCNJ10 in 284 healthy controls and 483 Chinese GGEs patients including 279 anti-epileptic drug responsive patients and 204 drug resistant patients. We found the rs6690889 TC+TT genotypes were lower frequency in the GGEs group than that in the healthy controls (6.7% vs 9.5%, p = 0.01, OR = 0.50[0.29–0.86]). The frequency of rs1053074 G allele was lower in the childhood absence epilepsy (CAE) group than that in the healthy controls (28.4% vs 36.2%, p = 0.01, OR = 0.70[0.53–0.93]). The frequency of rs12729701 G allele and AG+GG genotypes was lower in the CAE group than that in the healthy controls (21.2% vs 28.4%, p = 0.01, OR = 0.74[0.59–0.94] and 36.3% vs 48.1%, p = 0.01, OR = 0.83[0.72–0.96], respectively). The frequency of rs12402969 C allele and the CC+CT genotypes were higher in the GGEs drug responsive patients than that in the drug resistant patients (9.3% vs 5.6%, OR = 1.73[1.06–2.85], p = 0.026 and 36.3% vs 48.1%, p = 0.01, OR = 0.83[0.72–0.96], respectively). This study identifies potential SNPs of KCNJ10 gene that may contribute to seizure susceptibility and anti-epileptic drug resistance. PMID:25874548

  10. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    SciTech Connect

    Hermsen, Sanne A.B.; Pronk, Tessa E.; Brandhof, Evert-Jan van den; Ven, Leo T.M. van der; Piersma, Aldert H.

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  11. The challenge and promise of anti-epileptic therapy development in animal models

    PubMed Central

    Simonato, Michele; Brooks-Kayal, Amy R; Engel, Jerome; Galanopoulou, Aristea S; Jensen, Frances E; Moshé, Solomon L; O’Brien, Terence J; Pitkanen, Asla; Wilcox, Karen S; French, Jacqueline A

    2016-01-01

    Translation of successful target and compound validation studies into clinically effective therapies is a major challenge, with potential for costly clinical trial failures. This situation holds true for the epilepsies—complex diseases with different causes and symptoms. Although the availability of predictive animal models has led to the development of effective antiseizure therapies that are routinely used in clinical practice, showing that translation can be successful, several important unmet therapeutic needs still exist. Available treatments do not fully control seizures in a third of patients with epilepsy, and produce substantial side-effects. No treatment can prevent the development of epilepsy in at-risk patients or cure patients with epilepsy. And no specific treatment for epilepsy-associated comorbidities exists. To meet these demands, a redesign of translational approaches is urgently needed. PMID:25127174

  12. Identification of the antiepileptic racetam binding site in the synaptic vesicle protein 2A by molecular dynamics and docking simulations.

    PubMed

    Correa-Basurto, José; Cuevas-Hernández, Roberto I; Phillips-Farfán, Bryan V; Martínez-Archundia, Marlet; Romo-Mancillas, Antonio; Ramírez-Salinas, Gema L; Pérez-González, Óscar A; Trujillo-Ferrara, José; Mendoza-Torreblanca, Julieta G

    2015-01-01

    Synaptic vesicle protein 2A (SV2A) is an integral membrane protein necessary for the proper function of the central nervous system and is associated to the physiopathology of epilepsy. SV2A is the molecular target of the anti-epileptic drug levetiracetam and its racetam analogs. The racetam binding site in SV2A and the non-covalent interactions between racetams and SV2A are currently unknown; therefore, an in silico study was performed to explore these issues. Since SV2A has not been structurally characterized with X-ray crystallography or nuclear magnetic resonance, a three-dimensional (3D) model was built. The model was refined by performing a molecular dynamics simulation (MDS) and the interactions of SV2A with the racetams were determined by docking studies. A reliable 3D model of SV2A was obtained; it reached structural equilibrium during the last 15 ns of the MDS (50 ns) with remaining structural motions in the N-terminus and long cytoplasmic loop. The docking studies revealed that hydrophobic interactions and hydrogen bonds participate importantly in ligand recognition within the binding site. Residues T456, S665, W666, D670 and L689 were important for racetam binding within the trans-membrane hydrophilic core of SV2A. Identifying the racetam binding site within SV2A should facilitate the synthesis of suitable radio-ligands to study treatment response and possibly epilepsy progression.

  13. Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle.

    PubMed

    Meisel, Christian; Schulze-Bonhage, Andreas; Freestone, Dean; Cook, Mark James; Achermann, Peter; Plenz, Dietmar

    2015-11-24

    Pathological changes in excitability of cortical tissue commonly underlie the initiation and spread of seizure activity in patients suffering from epilepsy. Accordingly, monitoring excitability and controlling its degree using antiepileptic drugs (AEDs) is of prime importance for clinical care and treatment. To date, adequate measures of excitability and action of AEDs have been difficult to identify. Recent insights into ongoing cortical activity have identified global levels of phase synchronization as measures that characterize normal levels of excitability and quantify any deviation therefrom. Here, we explore the usefulness of these intrinsic measures to quantify cortical excitability in humans. First, we observe a correlation of such markers with stimulation-evoked responses suggesting them to be viable excitability measures based on ongoing activity. Second, we report a significant covariation with the level of AED load and a wake-dependent modulation. Our results indicate that excitability in epileptic networks is effectively reduced by AEDs and suggest the proposed markers as useful candidates to quantify excitability in routine clinical conditions overcoming the limitations of electrical or magnetic stimulation. The wake-dependent time course of these metrics suggests a homeostatic role of sleep, to rebalance cortical excitability.

  14. Comparing the effects of first-line antiepileptic drugs on the gait of dogs with idiopathic epilepsy.

    PubMed

    Suiter, E J; Packer, R M A; Volk, H A

    2016-06-25

    Idiopathic epilepsy (IE) is a common chronic neurological disease of the dog. Previous studies of anti-epileptic drug (AED) treatment have indicated that acceptable AED adverse effects are as important to owners as reductions in seizure frequency. AEDs in both dogs and human beings are frequently associated with the adverse-effect ataxia. The aim of this study was to compare ataxia levels in dogs with IE treated chronically with phenobarbitone or imepitoin, the two currently available first-line AED treatments. The gait of 6 imepitoin-treated dogs, 8 phenobarbitone-treated dogs and 10 age-matched healthy control dogs were compared. Fifty strides from a walking gait were analysed for each dog, quantifying ataxia via the variability in six established gait parameters. Three variables differed significantly between groups: lateral distance between (i) pelvic paw placements, (ii) thoracic paw placements and (iii) stance time, which were significantly more variable in the phenobarbitone-treated dogs than imepitoin-treated or control dogs. These results indicate that dogs treated with phenobarbitone experience ataxia compared with controls and imepitoin-treated dogs. Conversely, there was no difference between imepitoin-treated dogs and controls. These results along with further research are needed to quantify AEDs adverse effects, to help vets and owners make more informed drug-choices.

  15. A Review for the Analysis of Antidepressant, Antiepileptic and Quinolone Type Drugs in Pharmaceuticals and Environmental Samples.

    PubMed

    Rani, Susheela; Malik, Ashok Kumar; Kaur, Ramandeep; Kaur, Ripneel

    2016-09-01

    The analysis of drugs in various biological fluids is an important criterion for the determination of the physiological performance of a drug. After sampling of the biological fluid, the next step in the analytical process is sample preparation. Sample preparation is essential for isolation of desired components from complex biological matrices and greatly influences their reliable and accurate determination. The complexity of biological fluids adds to the challenge of direct determination of the drug by chromatographic analysis, therefore demanding a sample preparation step that is often time consuming, tedious and frequently overlooked. However, direct online injection methods offer the advantage of reducing sample preparation steps and enabling effective pre-concentration and clean-up of biological fluids. These procedures can be automated and therefore reduce the requirements for handling potentially infectious biomaterial, improve reproducibility, and minimize sample manipulations and potential contamination. This review is focused on the discovery and development of high-performance liquid chromatography (HPLC) and gas chromatography (GC) with different detectors. The drugs covered in this review are antiepileptics, antidepressant (AD), and quinolones. The application of these methods for determination of these drugs in biological, environmental and pharmaceutical samples has also been discussed.

  16. The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part II: Pharmacological issues and further understanding.

    PubMed

    de Leon, Jose

    2015-01-01

    The literature on inducers in epilepsy and bipolar disorder is seriously contaminated by false negative findings. Part II of this comprehensive review on antiepileptic drug (AED) inducers provides clinicians with further educational material about the complexity of interpreting AED drug-drug interactions. The basic pharmacology of induction is reviewed including the cytochrome P450 (CYP) isoenzymes, the Uridine Diphosphate Glucuronosyltransferases (UGTs), and P-glycoprotein (P-gp). CYP2B6 and CYP3A4 are very sensitive to induction. CYP1A2 is moderately sensitive while CYP2C9 and CYP2C19 are only mildly sensitive. CYP2D6 cannot be induced by medications. Induction of UGT and P-gp are poorly understood. The induction of metabolic enzymes such as CYPs and UGTs, and transporters such as P-gp, implies that the amount of these proteins increases when they are induced; this is almost always explained by increasing synthesis mediated by the so-called nuclear receptors (constitutive androstane, estrogen, glucocorticoid receptors and pregnaneX receptors). Although parti provides correction factors for AEDs, extrapolation from an average to an individual patient may be influenced by administration route, absence of metabolic enzyme for genetic reasons, and presence of inhibitors or other inducers. AED pharmacodynamic DDIs may also be important. Six patients with extreme sensitivity to AED inductive effects are described. PMID:26111722

  17. Identification of the antiepileptic racetam binding site in the synaptic vesicle protein 2A by molecular dynamics and docking simulations

    PubMed Central

    Correa-Basurto, José; Cuevas-Hernández, Roberto I.; Phillips-Farfán, Bryan V.; Martínez-Archundia, Marlet; Romo-Mancillas, Antonio; Ramírez-Salinas, Gema L.; Pérez-González, Óscar A.; Trujillo-Ferrara, José; Mendoza-Torreblanca, Julieta G.

    2015-01-01

    Synaptic vesicle protein 2A (SV2A) is an integral membrane protein necessary for the proper function of the central nervous system and is associated to the physiopathology of epilepsy. SV2A is the molecular target of the anti-epileptic drug levetiracetam and its racetam analogs. The racetam binding site in SV2A and the non-covalent interactions between racetams and SV2A are currently unknown; therefore, an in silico study was performed to explore these issues. Since SV2A has not been structurally characterized with X-ray crystallography or nuclear magnetic resonance, a three-dimensional (3D) model was built. The model was refined by performing a molecular dynamics simulation (MDS) and the interactions of SV2A with the racetams were determined by docking studies. A reliable 3D model of SV2A was obtained; it reached structural equilibrium during the last 15 ns of the MDS (50 ns) with remaining structural motions in the N-terminus and long cytoplasmic loop. The docking studies revealed that hydrophobic interactions and hydrogen bonds participate importantly in ligand recognition within the binding site. Residues T456, S665, W666, D670 and L689 were important for racetam binding within the trans-membrane hydrophilic core of SV2A. Identifying the racetam binding site within SV2A should facilitate the synthesis of suitable radio-ligands to study treatment response and possibly epilepsy progression. PMID:25914622

  18. Effects of antiepileptic drugs on learning as assessed by a repeated acquisition of response sequences task in rats.

    PubMed

    Shannon, Harlan E; Love, Patrick L

    2007-02-01

    Patients with epilepsy can have impaired cognitive abilities. Antiepileptic drugs (AEDs) may contribute to the cognitive deficits observed in patients with epilepsy, and have been shown to induce cognitive impairments in healthy individuals. However, there are few systematic data on the effects of AEDs on specific cognitive domains. We have previously demonstrated that a number of AEDs can impair working memory and attention. The purpose of the present study was to evaluate the effects of AEDs on learning as measured by a repeated acquisition of response sequences task in nonepileptic rats. The GABA-related AEDs phenobarbital and chlordiazepoxide significantly disrupted performance by shifting the learning curve to the right and increasing errors, whereas tiagabine and valproate did not. The sodium channel blockers carbamazepine and phenytoin suppressed responding at higher doses, whereas lamotrigine shifted the learning curve to the right and increased errors, and topiramate was without significant effect. Levetiracetam also shifted the learning curve to the right and increased errors. The disruptions produced by triazolam, chlordiazepoxide, lamotrigine, and levetiracetam were qualitatively similar to the effects of the muscarinic cholinergic receptor antagonist scopolamine. The present results indicate that AEDs can impair learning, but there are differences among AEDs in the magnitude of the disruption in nonepileptic rats, with drugs that enhance GABA receptor function and some that block sodium channels producing the most consistent impairment of learning. PMID:17174158

  19. The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part II: Pharmacological issues and further understanding.

    PubMed

    de Leon, Jose

    2015-01-01

    The literature on inducers in epilepsy and bipolar disorder is seriously contaminated by false negative findings. Part II of this comprehensive review on antiepileptic drug (AED) inducers provides clinicians with further educational material about the complexity of interpreting AED drug-drug interactions. The basic pharmacology of induction is reviewed including the cytochrome P450 (CYP) isoenzymes, the Uridine Diphosphate Glucuronosyltransferases (UGTs), and P-glycoprotein (P-gp). CYP2B6 and CYP3A4 are very sensitive to induction. CYP1A2 is moderately sensitive while CYP2C9 and CYP2C19 are only mildly sensitive. CYP2D6 cannot be induced by medications. Induction of UGT and P-gp are poorly understood. The induction of metabolic enzymes such as CYPs and UGTs, and transporters such as P-gp, implies that the amount of these proteins increases when they are induced; this is almost always explained by increasing synthesis mediated by the so-called nuclear receptors (constitutive androstane, estrogen, glucocorticoid receptors and pregnaneX receptors). Although parti provides correction factors for AEDs, extrapolation from an average to an individual patient may be influenced by administration route, absence of metabolic enzyme for genetic reasons, and presence of inhibitors or other inducers. AED pharmacodynamic DDIs may also be important. Six patients with extreme sensitivity to AED inductive effects are described.

  20. Modern Methods for Analysis of Antiepileptic Drugs in the Biological Fluids for Pharmacokinetics, Bioequivalence and Therapeutic Drug Monitoring

    PubMed Central

    Park, Yoo-Sin; Kim, Shin-Hee; Kim, Sang-Hyun; Jun, Min-Young

    2011-01-01

    Epilepsy is a chronic disease occurring in approximately 1.0% of the world's population. About 30% of the epileptic patients treated with availably antiepileptic drugs (AEDs) continue to have seizures and are considered therapy-resistant or refractory patients. The ultimate goal for the use of AEDs is complete cessation of seizures without side effects. Because of a narrow therapeutic index of AEDs, a complete understanding of its clinical pharmacokinetics is essential for understanding of the pharmacodynamics of these drugs. These drug concentrations in biological fluids serve as surrogate markers and can be used to guide or target drug dosing. Because early studies demonstrated clinical and/or electroencephalographic correlations with serum concentrations of several AEDs, It has been almost 50 years since clinicians started using plasma concentrations of AEDs to optimize pharmacotherapy in patients with epilepsy. Therefore, validated analytical method for concentrations of AEDs in biological fluids is a necessity in order to explore pharmacokinetics, bioequivalence and TDM in various clinical situations. There are hundreds of published articles on the analysis of specific AEDs by a wide variety of analytical methods in biological samples have appears over the past decade. This review intends to provide an updated, concise overview on the modern method development for monitoring AEDs for pharmacokinetic studies, bioequivalence and therapeutic drug monitoring. PMID:21660146

  1. Comparing the effects of first-line antiepileptic drugs on the gait of dogs with idiopathic epilepsy.

    PubMed

    Suiter, E J; Packer, R M A; Volk, H A

    2016-06-25

    Idiopathic epilepsy (IE) is a common chronic neurological disease of the dog. Previous studies of anti-epileptic drug (AED) treatment have indicated that acceptable AED adverse effects are as important to owners as reductions in seizure frequency. AEDs in both dogs and human beings are frequently associated with the adverse-effect ataxia. The aim of this study was to compare ataxia levels in dogs with IE treated chronically with phenobarbitone or imepitoin, the two currently available first-line AED treatments. The gait of 6 imepitoin-treated dogs, 8 phenobarbitone-treated dogs and 10 age-matched healthy control dogs were compared. Fifty strides from a walking gait were analysed for each dog, quantifying ataxia via the variability in six established gait parameters. Three variables differed significantly between groups: lateral distance between (i) pelvic paw placements, (ii) thoracic paw placements and (iii) stance time, which were significantly more variable in the phenobarbitone-treated dogs than imepitoin-treated or control dogs. These results indicate that dogs treated with phenobarbitone experience ataxia compared with controls and imepitoin-treated dogs. Conversely, there was no difference between imepitoin-treated dogs and controls. These results along with further research are needed to quantify AEDs adverse effects, to help vets and owners make more informed drug-choices. PMID:27302918

  2. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  3. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.; Jones, Michael G.; Wertsching, Alan K.; Luther, Thomas A.; Trowbridge, Tammy L.

    2011-11-22

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

  4. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    PubMed

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits. PMID:27419108

  5. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups

    PubMed Central

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-01-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2′-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits. PMID:27419108

  6. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    PubMed

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits.

  7. Transformation of the antiepileptic drug oxcarbazepine upon different water disinfection processes.

    PubMed

    Li, Zhi; Fenet, Hélène; Gomez, Elena; Chiron, Serge

    2011-02-01

    Transformation of the pharmaceutical oxcarbazepine (OXC), a keto analogue of carbamazepine (CBZ) was investigated under different water disinfection processes (ozonation, chlorination and UV irradiation) to compare its persistence, toxicity and degradation pathways with those of CBZ. Analysis by LC-ion trap-MS(n) allowed for the identification of up to thirteen transformation products (TPs). The major abundant and persistent TPs (10,11-dihydro-10,11-trans-dihydroxy-carbamazepine (DiOH-CBZ), acridine (ACIN) and 1-(2-benzaldehyde)-(1H, 3H)-quinazoline-2,4-dione (BQD)) were identical to those previously reported during water treatment of CBZ. Only one new compound arising from an intramolecular cyclisation reaction was identified during UV irradiation. OXC reacted quickly with hydroxyl radical and relatively rapidly with free chlorine while slow reaction rates were recorded in presence of ozone and upon UV irradiation. An increase of the acute toxicity of UV irradiated solutions, monitored by a Daphnia magna bioassay, was recorded, probably due to the accumulation of ACIN. The formation of ACIN is of concern due to the carcinogenic properties of this chemical. ACIN was also generated during the direct UV photo transformation of DiOH-CBZ and 10-hydroxy-10,11-dihydro-carbamazepine (OH-CBZ), two metabolites of OXC and CBZ widely detected in water resources. Analysis of tap water samples revealed the occurrence at ng/L levels of the major TPs detected under laboratory scale experiments, except ACIN.

  8. Multipurpose Compound

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  9. Drug interactions with the newer antiepileptic drugs (AEDs)--part 1: pharmacokinetic and pharmacodynamic interactions between AEDs.

    PubMed

    Patsalos, Philip N

    2013-11-01

    Since 1989 there has been an exponential introduction of new antiepileptic drugs (AEDs) into clinical practice and these include eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, perampanel, pregabalin, retigabine (ezogabine), rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide; 16 in total. Because often the treatment of epilepsy is lifelong, and because patients are commonly prescribed polytherapy with other AEDs, AED interactions are an important consideration in the treatment of epilepsy and indeed can be a major therapeutic challenge. For new AEDs, their propensity to interact is particularly important because inevitably they can only be prescribed, at least in the first instance, as adjunctive polytherapy. The present review details the pharmacokinetic and pharmacodynamic interactions that have been reported to occur with the new AEDs. Interaction study details are described, as necessary, so as to allow the reader to take a view as to the possible clinical significance of particular interactions. The principal pharmacokinetic interaction relates to hepatic enzyme induction or inhibition whilst pharmacodynamic interactions principally entail adverse effect synergism, although examples of anticonvulsant synergism also exist. Overall, the new AEDs are less interacting primarily because many are renally excreted or not hepatically metabolised (e.g. gabapentin, lacosamide, levetiracetam, topiramate, vigabatrin) and most do not (or minimally) induce or inhibit hepatic metabolism. A total of 139 pharmacokinetic interactions between concurrent AEDs have been described. The least pharmacokinetic interactions (n ≤ 5) are associated with gabapentin, lacosamide, tiagabine, vigabatrin and zonisamide, whilst lamotrigine (n = 17), felbamate (n = 15), oxcarbazepine (n = 14) and rufinamide (n = 13) are associated with the most. To date, felbamate, gabapentin, oxcarbazepine, perampanel, pregabalin

  10. Low plasma antioxidant status in patients with epilepsy and the role of antiepileptic drugs on oxidative stress

    PubMed Central

    Menon, Bindu; Ramalingam, Krishnan; Kumar, Rajendiran Vinoth

    2014-01-01

    Background: Oxidative stress has been implicated in various disorders including epilepsy. We studied the antioxidant status in patients with epilepsy and aimed at determining whether there was any difference in the antioxidant levels between patients and controls, patients who are not on antiepileptic drugs (AEDs), and on treatment, between individual AEDs and patients on monotherapy and polytherapy. Materials and Methods: Antioxidant levels like catalase, glutathione peroxidase (GPx), vitamin E, glutathione (GSH), thiol group (SH), uric acid, and total antioxidant capacity (TAC) were compared between 100 patients with epilepsy and equal number of controls. Twenty-five patients who were not on AEDs were compared with patients on AEDs and the control group. Patients were divided into monotherapy and polytherapy group and antioxidant status was compared between the two groups and between individual drugs. Results: Catalase, SH, vitamin E, and TAC were significantly low in patients with epilepsy than those in the control group (P < 0.001). GSH and uric acid did not show any difference; GPx in patients was significantly higher than those in the control group There were no differences in the antioxidant levels between the treated and the untreated groups; however, it was lower in untreated patients than controls (P < 0.001), suggesting that AEDs do not modify the oxidative stress. Patients on Valproate (VPA) showed higher catalase and GPx levels. Catalase was higher in the monotherapy than polytherapy group (P < 0.04). Conclusion: Our study found significantly low levels of antioxidant in patients as compared to controls. AED did not influence the antioxidant status suggesting that seizures induce oxidative stress. PMID:25506160

  11. The effect of imepitoin, a recently developed antiepileptic drug, on thyroid parameters and fat metabolism in healthy Beagle dogs.

    PubMed

    Bossens, K; Daminet, S; Duchateau, L; Rick, M; Van Ham, L; Bhatti, S

    2016-07-01

    Since early 2013, imepitoin has been used in most European countries for the management of recurrent single generalised epileptic seizures in dogs with idiopathic epilepsy. It has been reported that imepitoin is as effective as phenobarbital (PB) in controlling seizures in dogs with newly diagnosed idiopathic epilepsy and it has a clinically superior safety profile. As the use of imepitoin gains popularity, its effect on serum thyroid parameters warrants further investigation since long-term PB administration influences thyroid parameters in dogs, which could lead to misinterpretation of laboratory results and incorrect diagnosis of thyroidal illness. A prospective study was conducted to compare the effect of orally administered PB and imepitoin on serum concentrations of total thyroxine (TT4), triiodothyronine, free thyroxine, thyroglobulin autoantibodies, thyroid-stimulating hormone, cholesterol and triglycerides in healthy Beagle dogs. These parameters were determined prior to and at 6, 12 and 18 weeks after antiepileptic drug administration. The starting dose of PB (5 mg/kg PO twice daily; range, 4.4-6.0 mg/kg) was monitored and adjusted to obtain optimal therapeutic serum concentrations (30-35 g/mL). Imepitoin was administered at 30 mg/kg PO twice daily (range, 29.2-35.7 mg/kg). Imepitoin administration did not affect any of the thyroid parameters over an 18-week period. In contrast, serum TT4 concentrations decreased significantly over time in dogs receiving PB (P <0.05). Serum cholesterol concentrations increased significantly over time in dogs in the imepitoin group, but not to the same extent as commonly seen in dogs with primary hypothyroidism.

  12. Evaluation of anti-epileptic activity of leaf extracts of Punica granatum on experimental models of epilepsy in mice

    PubMed Central

    Viswanatha, Gollapalle L.; Venkataranganna, Marikunte V.; Prasad, Nunna Bheema Lingeswara; Ashok, Godavarthi

    2016-01-01

    Objectives: This study was aimed to examine the anti-epileptic activity of leaf extracts of Punica granatum in experimental models of epilepsy in Swiss albino mice. Materials and Methods: Petroleum ether leaf extract of P. granatum (PLPG), methanolic LPG (MLPG), and aqueous LPG (ALPG) extracts of P. granatum leaves was initially evaluated against 6-Hz-induced seizure model; the potent extract was further evaluated against maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced convulsions. Further, the potent extract was evaluated for its influence on Gamma amino butyric acid (GABA) levels in brain, to explore the possible mechanism of action. In addition, the potent extract was subjected to actophotometer test to assess its possible locomotor activity deficit inducing action. Results: In 6-Hz seizure test, the MLPG has alleviated 6-Hz-induced seizures significantly and dose dependently at doses 50, 100, 200, and 400 mg/kg. In contrast, PLPG and ALPG did not show any protection, only high dose of ALPG (400 and 800 mg/kg, p.o.) showed very slight inhibition. Based on these observations, only MLPG was tested in MES and PTZ models. Interestingly, the MLPG (50, 100, 200 and 400 mg/kg) has offered significant and dose-dependent protection against MES (P < 0.01) and PTZ-induced (P < 0.01) seizures in mice. Further, MLPG showed a significant increase in brain GABA levels (P < 0.01) compared to control and showed insignificant change in locomotor activity in all tested doses (100, 200 and 400 mg/kg). Interestingly, higher dose of MLPG (400 mg/kg, p.o.) and Diazepam (5 mg/mg, p.o.) have completely abolished the convulsions in all the anticonvulsant tests. Conclusion: These findings suggest that MLPG possesses significant anticonvulsant property, and one of the possible mechanisms behind the anticonvulsant activity of MLPG may be through enhanced GABA levels in the brain. PMID:27757273

  13. The effect of imepitoin, a recently developed antiepileptic drug, on thyroid parameters and fat metabolism in healthy Beagle dogs.

    PubMed

    Bossens, K; Daminet, S; Duchateau, L; Rick, M; Van Ham, L; Bhatti, S

    2016-07-01

    Since early 2013, imepitoin has been used in most European countries for the management of recurrent single generalised epileptic seizures in dogs with idiopathic epilepsy. It has been reported that imepitoin is as effective as phenobarbital (PB) in controlling seizures in dogs with newly diagnosed idiopathic epilepsy and it has a clinically superior safety profile. As the use of imepitoin gains popularity, its effect on serum thyroid parameters warrants further investigation since long-term PB administration influences thyroid parameters in dogs, which could lead to misinterpretation of laboratory results and incorrect diagnosis of thyroidal illness. A prospective study was conducted to compare the effect of orally administered PB and imepitoin on serum concentrations of total thyroxine (TT4), triiodothyronine, free thyroxine, thyroglobulin autoantibodies, thyroid-stimulating hormone, cholesterol and triglycerides in healthy Beagle dogs. These parameters were determined prior to and at 6, 12 and 18 weeks after antiepileptic drug administration. The starting dose of PB (5 mg/kg PO twice daily; range, 4.4-6.0 mg/kg) was monitored and adjusted to obtain optimal therapeutic serum concentrations (30-35 g/mL). Imepitoin was administered at 30 mg/kg PO twice daily (range, 29.2-35.7 mg/kg). Imepitoin administration did not affect any of the thyroid parameters over an 18-week period. In contrast, serum TT4 concentrations decreased significantly over time in dogs receiving PB (P <0.05). Serum cholesterol concentrations increased significantly over time in dogs in the imepitoin group, but not to the same extent as commonly seen in dogs with primary hypothyroidism. PMID:27240915

  14. Perfluorinated Compounds

    EPA Science Inventory

    Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

  15. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2001-01-01

    Seawater and natural brines accounted for about 63% of US magnesium compounds production during 2000. Premier Services in Florida, Dow Chemical in Michigan, Martin Marietta Magnesia Specialties, and Rohm & Haas recovered dead-burned and caustic-calcined magnesias from seawater. And Premier Services' recoveries, in Nevada, were from magnasite.

  16. Indications of newer and older anti-epileptic drug use: findings from a southern Italian general practice setting from 2005–2011

    PubMed Central

    Italiano, Domenico; Capuano, Annalisa; Alibrandi, Angela; Ferrara, Rosarita; Cannata, Angelo; Trifirò, Gianluca; Sultana, Janet; Ferrajolo, Carmen; Tari, Michele; Tari, Daniele Ugo; Perrotta, Margherita; Pagliaro, Claudia; Rafaniello, Concita; Spina, Edoardo; Arcoraci, Vincenzo

    2015-01-01

    Aims The aim of the study was to analyze the prescribing pattern of both newer and older AEDs. Methods A population of almost 150 000 individuals registered with 123 general practitioners was included in this study. Patients who received at least one AED prescription over 2005–2011 were identified. The 1 year prevalence and cumulative incidence of AED use, by drug class and individual drug, were calculated over the study period. Potential predictors of starting therapy with newer AEDs were also investigated. Results The prevalence of use per 1000 inhabitants of older AEDs increased from 10.7 (95% CI10.1, 11.2) in 2005 to 13.0 (95% CI12.4, 13.6) in 2011, while the incidence remained stable. Newer AED incidence decreased from 9.4 (95% CI 8.9, 9.9) in 2005 to 7.0 (95% CI 6.6, 7.5) in 2011, with a peak of 15.5 (95% CI 14.8, 16.1) in 2006. Phenobarbital and valproic acid were the most commonly prescribed AEDs as starting therapy for epilepsy. Gabapentin and pregabalin accounted for most new pain-related prescriptions, while valproic acid and lamotrigine were increasingly used for mood disorders. Female gender (OR 1.36, 95% CI 1.20, 1.53), age ranging between 45–54 years (OR 1.39, 95% CI 1.16, 1.66) and pain as an indication (OR 16.7, 95% CI, 13.1, 21.2) were associated with newer AEDs starting therapy. Conclusions Older AEDs were mainly used for epileptic and mood disorders, while newer drugs were preferred for neuropathic pain. Gender, age, indication of use and year of starting therapy influenced the choice of AED type. The decrease of newer AED use during 2007 is probably related to the restricted reimbursement criteria for gabapentin and pregabalin. PMID:25556909

  17. Opioid receptor binding in parahippocampus of patients with temporal lobe epilepsy: its association with the antiepileptic effects of subacute electrical stimulation.

    PubMed

    Rocha, Luisa; Cuellar-Herrera, Manola; Velasco, Marcos; Velasco, Francisco; Velasco, Ana-Luisa; Jiménez, Fiacro; Orozco-Suarez, Sandra; Borsodi, Anna

    2007-10-01

    Opioid receptor binding was evaluated in parahippocampal cortex (PHC) obtained from patients with intractable mesial temporal lobe epilepsy (MTLE) with and without subacute high frequency electrical stimulation (HFS) in this brain area. Mu, delta and nociceptin receptor binding was determined by autoradiography in PHC of five patients (ESAE group) with MTLE history of 14.8 +/- 2.5 years and seizure frequency of 11 +/- 2.9 per month, two of them (40%) with mesial sclerosis. This group demonstrated antiepileptic effects following subacute HFS (130 Hz, 450 micros, 200-400 microA), applied continuously during 16-20 days in PHC. Values were compared with those obtained from patients with severe MTLE (history of 21.7 +/- 2.8 years and seizure frequency of 28.2 +/- 14 per month) in whom electrical stimulation did not induce antiepileptic effects (ESWAE group, n = 4), patients with MTLE in whom no electrical stimulation was applied (MTLE group, n = 4) and autopsy material acquired from subjects without epilepsy (n = 4 obtained from three subjects). Enhanced 3H-DAMGO (MTLE, 755%; ESAE, 375%; ESWAE, 693%), 3H-DPDPE (MTLE, 242%; ESAE, 80%; ESWAE, 346%) and 3H-nociceptin (MTLE, 424%; ESAE, 217%; ESWAE, 451%) binding was detected in the PHC of all epileptic groups. However, tissue obtained from ESAE group demonstrated lower opioid receptor binding (3H-DAMGO, 44.5%, p < 0.05; 3H-DPDPE, 47%, p < 0.05; 3H-nociceptin, 39.3%, p < 0.5) when compared with MTLE group. The present results indicate that a high effectiveness to the antiepileptic effects induced by HFS is associated with reduced opioid peptide binding.

  18. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  19. Organic Compounds

    NASA Astrophysics Data System (ADS)

    Shankland, Kenneth

    For many years, powder X-ray diffraction was used primarily as a fingerprinting method for phase identification in the context of molecular organic materials. In the early 1990s, with only a few notable exceptions, structures of even moderate complexity were not solvable from PXRD data alone. Global optimisation methods and highly-modified direct methods have transformed this situation by specifically exploiting some well-known properties of molecular compounds. This chapter will consider some of these properties.

  20. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2003-01-01

    Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

  1. Antiepileptic drugs and the risk of ischaemic stroke and myocardial infarction: a population-based cohort study

    PubMed Central

    Renoux, Christel; Dell'Aniello, Sophie; Saarela, Olli; Filion, Kristian B; Boivin, Jean-François

    2015-01-01

    Objectives Hepatic enzyme-inducing antiepileptic drugs (AEDs) increase serum lipid levels and other atherogenic markers via the induction of cytochrome P450 and may therefore increase the risk of vascular events. We sought to assess the risk of ischaemic stroke and myocardial infarction (MI) according to AED enzymatic properties. Design Population-based cohort study with nested case–control analysis. Setting 650 general practices in the UK contributing to the Clinical Practice Research Datalink. Participants A cohort of 252 407 incident AED users aged 18 or older between January 1990 and April 2013. For each case of ischaemic stroke or MI, up to 10 controls were randomly selected among the cohort members in the risk sets defined by the case and matched on age, sex, indication for AED, calendar time and duration of follow-up. Interventions Current use of enzyme-inducing and enzyme-inhibiting AEDs compared with non-inducing AEDs. Primary outcome measures Incidence rate ratios (RRs) of ischaemic stroke and MI. Results 5069 strokes and 3636 MIs were identified during follow-up. Inducing AEDs use was associated with a small increased risk of ischaemic stroke (RR=1.16, 95% CI 1.02 to 1.33) relative to non-inducing AEDs, most likely due to residual confounding. However, current use of inducing AEDs for ≥24 months was associated with a 46% increased risk of MI (RR=1.46, 95% CI 1.15 to 1.85) compared with the same duration of non-inducing AED, corresponding to a risk difference of 1.39/1000 (95% CI 0.33 to 2.45) persons per year. Current use of inhibiting AED was associated with a decreased risk of MI (RR=0.81, 95% CI 0.66 to 1.00). Conclusions The use of enzyme-inducing AEDs was not associated with an increased risk of ischaemic stroke; a small increase of MI with prolonged use was observed. In contrast, use of inhibiting AEDs was associated with a decreased risk of MI. PMID:26270948

  2. The Brain Activity in Brodmann Area 17: A Potential Bio-Marker to Predict Patient Responses to Antiepileptic Drugs

    PubMed Central

    Xu, Xin; Fang, Weidong; Zeng, Kebin; Yang, Mingming; Li, Chenyu; Wang, Shasha; Li, Minghui; Wang, Xuefeng

    2015-01-01

    In this study, we aimed to predict newly diagnosed patient responses to antiepileptic drugs (AEDs) using resting-state functional magnetic resonance imaging tools to explore changes in spontaneous brain activity. We recruited 21 newly diagnosed epileptic patients, 8 drug-resistant (DR) patients, 11 well-healed (WH) patients, and 13 healthy controls. After a 12-month follow-up, 11 newly diagnosed epileptic patients who showed a poor response to AEDs were placed into the seizures uncontrolled (SUC) group, while 10 patients were enrolled in the seizure-controlled (SC) group. By calculating the amplitude of fractional low-frequency fluctuations (fALFF) of blood oxygen level-dependent signals to measure brain activity during rest, we found that the SUC patients showed increased activity in the bilateral occipital lobe, particularly in the cuneus and lingual gyrus compared with the SC group and healthy controls. Interestingly, DR patients also showed increased activity in the identical cuneus and lingual gyrus regions, which comprise Brodmann’s area 17 (BA17), compared with the SUC patients; however, these abnormalities were not observed in SC and WH patients. The receiver operating characteristic (ROC) curves indicated that the fALFF value of BA17 could differentiate SUC patients from SC patients and healthy controls with sufficient sensitivity and specificity prior to the administration of medication. Functional connectivity analysis was subsequently performed to evaluate the difference in connectivity between BA17 and other brain regions in the SUC, SC and control groups. Regions nearby the cuneus and lingual gyrus were found positive connectivity increased changes or positive connectivity changes with BA17 in the SUC patients, while remarkably negative connectivity increased changes or positive connectivity decreased changes were found in the SC patients. Additionally, default mode network (DMN) regions showed negative connectivity increased changes or negative

  3. Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model.

    PubMed

    Leclercq, Karine; Kaminski, Rafal M

    2015-08-01

    Several factors may influence the efficacy of antiepileptic drugs (AEDs) in patients with epilepsy, and treatment resistance could be related to genetics, neuronal network alterations, and modification of drug transporters or targets. Consequently, preclinical models used for the identification of potential new, more efficacious AEDs should reflect at least a few of these factors. Previous studies indicate that induction of status epilepticus (SE) may alter drug efficacy and that this effect could be long-lasting. In this context, we wanted to assess the protective effects of mechanistically diverse AEDs in mice subjected to pilocarpine-induced SE in another seizure model. We first determined seizure thresholds in mice subjected to pilocarpine-induced SE in the 6-Hz model, 2 weeks and 8 weeks following SE. We then evaluated the protective effects of mechanistically diverse AEDs in post-SE and control animals. No major differences in 6-Hz seizure susceptibility were observed between control groups, while the seizure threshold of pilocarpine mice at 8 weeks after SE was higher than at 2 weeks and higher than in control groups. Treatment with AEDs revealed major differences in drug response depending on their mechanism of action. Diazepam produced a dose-dependent protection against 6-Hz seizures in control and pilocarpine mice, both at 2 weeks and 8 weeks after SE, but with a more pronounced increase in potency in post-SE animals at 2 weeks. Levetiracetam induced a potent and dose-dependent protection in pilocarpine mice, 2 weeks after SE, while its protective effects were observed only at much higher doses in control mice. Its potency decreased in post-SE mice at 8 weeks and was very limited (30% protection at the highest tested dose) in the control group. Carbamazepine induced a dose-dependent protection at 2 weeks in control mice but only limited effect (50% at the highest tested dose) in pilocarpine mice. Its efficacy deeply decreased in post-SE mice at 8 weeks

  4. ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs.

    PubMed

    Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Miroslaw; Rola, Radoslaw; Maj, Maciej; Chrościńska-Krawczyk, Magdalena; Luszczki, Jarogniew J

    2015-10-22

    Hippocampal neurogenesis plays a very important role in learning and memory functions. In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties. The aim of this study was to evaluate the impact of ACEA (arachidonyl-2'-chloroethylamide--a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells' proliferation and differentiation in the mouse brain. All experiments were performed on adolescent CB57/BL male mice injected i.p. with VPA (10mg/kg), ACEA (10mg/kg) and PMSF (30 mg/kg) (phenylmethylsulfonyl fluoride--a substance protecting ACEA against degradation by the fatty-acid amidohydrolase) for 10 days. Next an acute response of proliferating neural precursor cells to ACEA and VPA administration was evaluated with Ki-67 staining (Time point 1). Next, in order to determine whether acute changes translated into long-term alterations in neurogenesis, proliferating cells were labeled with 5-bromo-2deoxyuridine (BrdU) followed by confocal microscopy used to determine the percentage of BrdU-labeled cells that showed mature cell phenotypes (Time point 2). Results indicate that ACEA with PMSF significantly increase the total number of Ki-67-positive cells when compared to the control group. Moreover, ACEA in combination with VPA increased the number of Ki-67-positive cells, whereas VPA administered alone had no impact on proliferating cells' population. Accordingly, neurogenesis study results indicate that the combination of ACEA+PMSF administered alone and in combination with VPA considerably increases the total number of BrdU-positive cells in comparison to the control group while ACEA+PMSF alone and in combination with VPA increased total numbers of BrdU-positive cells, newly born neurons and astrocytes as compared to VPA group but not to

  5. Intrapatient variation in antiepileptic drug plasma concentration after generic substitution vs stable brand-name drug regimens.

    PubMed

    Contin, Manuela; Alberghini, Lucia; Candela, Carmina; Benini, Giulia; Riva, Roberto

    2016-05-01

    Generic substitution of antiepileptic drugs (AEDs) is still a matter of controversy and concern among clinicians and patients. We aimed to assess intrasubject variation in plasma concentrations of lamotrigine (LTG), levetiracetam (LEV) and topiramate (TPM) after generic substitution compared with a stable brand-name drug regimen in a population of patients with epilepsy. A retrospective analysis was performed on prospectively collected and stored data from our therapeutic drug monitoring (TDM) database for the years 2009-2014. The main outcome variable was the proportion of patients who, after switching from branded to generic formulations, showed a greater than ±20% change in AED plasma concentrations compared to the proportion of control patients showing a change in AED plasma concentrations of the same extent while receiving stable branded formulations over repeated TDM tests. Fifty patients on LTG, 27 on LEV and 16 on TPM showing at least one TDM test while receiving generic products fulfilled the inclusion/exclusion criteria for the analysis and were compared with 200 control patients for LTG, 120 for LEV and 80 for TPM. The proportion of patients showing an intrasubject change greater than ±20% in AED plasma concentrations was similar in the brand name vs generic group compared with the control one for LTG (22% vs 33%) and LEV (44% vs 38%), while it was higher in the control group for TPM (41% vs 6%, p<0.01). These are the first data in the literature about the within-patient variation in steady-state plasma concentrations of a series of stable treatments with brand-name AEDs in a real clinical setting. In conclusion, a significant interday variability in intrapatient LTG, LEV and TPM plasma concentrations can be observed even in patients stabilized with the same brand name product over time. This suggests that any change in plasma AED concentration and possible related clinical effects after generic substitution may be not necessarily related to the switch

  6. Inverse Association between Sodium Channel-Blocking Antiepileptic Drug Use and Cancer: Data Mining of Spontaneous Reporting and Claims Databases

    PubMed Central

    Takada, Mitsutaka; Fujimoto, Mai; Motomura, Haruka; Hosomi, Kouichi

    2016-01-01

    Purpose: Voltage-gated sodium channels (VGSCs) are drug targets for the treatment of epilepsy. Recently, a decreased risk of cancer associated with sodium channel-blocking antiepileptic drugs (AEDs) has become a research focus of interest. The purpose of this study was to test the hypothesis that the use of sodium channel-blocking AEDs are inversely associated with cancer, using different methodologies, algorithms, and databases. Methods: A total of 65,146,507 drug-reaction pairs from the first quarter of 2004 through the end of 2013 were downloaded from the US Food and Drug Administration Adverse Event Reporting System. The reporting odds ratio (ROR) and information component (IC) were used to detect an inverse association between AEDs and cancer. Upper limits of the 95% confidence interval (CI) of < 1 and < 0 for the ROR and IC, respectively, signified inverse associations. Furthermore, using a claims database, which contains 3 million insured persons, an event sequence symmetry analysis (ESSA) was performed to identify an inverse association between AEDs and cancer over the period of January 2005 to May 2014. The upper limit of the 95% CI of adjusted sequence ratio (ASR) < 1 signified an inverse association. Results: In the FAERS database analyses, significant inverse associations were found between sodium channel-blocking AEDs and individual cancers. In the claims database analyses, sodium channel-blocking AED use was inversely associated with diagnoses of colorectal cancer, lung cancer, gastric cancer, and hematological malignancies, with ASRs of 0.72 (95% CI: 0.60 - 0.86), 0.65 (0.51 - 0.81), 0.80 (0.65 - 0.98), and 0.50 (0.37 - 0.66), respectively. Positive associations between sodium channel-blocking AEDs and cancer were not found in the study. Conclusion: Multi-methodological approaches using different methodologies, algorithms, and databases suggest that sodium channel-blocking AED use is inversely associated with colorectal cancer, lung cancer, gastric

  7. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2002-01-01

    Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  8. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  9. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  10. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  11. Antiepileptic drugs and memory.

    PubMed

    Thompson, P J

    1992-01-01

    Assessing the effects of medication on cognitive functions including memory is fraught with methodological problems. This article illustrates the range of approaches that have been employed. Medication effects have been more readily demonstrated in patients with intractable epilepsy, in whom drug dosages are higher and the risk of polytherapy is greater. Newly diagnosed cases and individuals treated with monotherapy show fewer effects. Evaluation of memory functions in most studies has been very limited, and where effects have been recorded these may well be secondary to changes in attentional level or mental processing speed.

  12. Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration.

    PubMed

    Croce, Nicoletta; Mathé, Aleksander A; Gelfo, Francesca; Caltagirone, Carlo; Bernardini, Sergio; Angelucci, Francesco

    2014-10-01

    One of the common effects of lithium (Li) and valproic acid (VPA) is their ability to protect against excitotoxic insults. Neurodegenerative and neuropsychiatric diseases may be also associated with altered trophic support of brain-derived neurotrophic factor (BDNF), the most widely distributed neurotrophin in the central nervous system. However, despite these evidences, the effect of Li-VPA combination on BDNF after excitoxic insult has been inadequately investigated. We address this issue by exposing a human neuroblastoma cell line (SH-SY5Y) to neurotoxic concentration of L-glutamate and exploring whether the neuroprotective action of Li-VPA on these cells is associated with changes in BDNF protein and mRNA levels. The results showed that pre-incubation of Li-VPA abolished the toxic effect of glutamate on SH-SY5Y cell survival and this neuroprotective effect was associated with increased synthesis and mRNA expression of BDNF after 24 and 48 h of incubation. In conclusion, this study demonstrates that the neuroprotective effects of Li-VPA against glutamate-induced neurotoxicity in SH-SY5Y neuroblastoma cells is associated with increased synthesis and mRNA expression of BDNF. These data further support the idea that these two drugs can be used for prevention and/or treatment of glutamate-related neurodegenerative disorders.

  13. An in vitro model for synaptic loss in neurodegenerative diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling.

    PubMed

    Williams, Robin S B; Bate, Clive

    2016-02-01

    Many neurodegenerative diseases present the loss of synapses as a common pathological feature. Here we have employed an in vitro model for synaptic loss to investigate the molecular mechanism of a therapeutic treatment, valproic acid (VPA). We show that amyloid-β (Aβ), isolated from patient tissue and thought to be the causative agent of Alzheimer's disease, caused the loss of synaptic proteins including synaptophysin, synapsin-1 and cysteine-string protein from cultured mouse neurons. Aβ-induced synapse damage was reduced by pre-treatment with physiologically relevant concentrations of VPA (10 μM) and a structural variant propylisopropylacetic acid (PIA). These drugs also reduced synaptic damage induced by other neurodegenerative-associated proteins α-synuclein, linked to Lewy body dementia and Parkinson's disease, and the prion-derived peptide PrP82-146. Consistent with these effects, synaptic vesicle recycling was also inhibited by these proteins and protected by VPA and PIA. We show a mechanism for this damage through aberrant activation of cytoplasmic phospholipase A2 (cPLA2) that is reduced by both drugs. Furthermore, Aβ-dependent cPLA2 activation correlates with its accumulation in lipid rafts, and is likely to be caused by elevated cholesterol (stabilising rafts) and decreased cholesterol ester levels, and this mechanism is reduced by VPA and PIA. Such observations suggest that VPA and PIA may provide protection against synaptic damage that occurs during Alzheimer's and Parkinson's and prion diseases. PMID:26116815

  14. Combined Transcriptomics and Chemical-Genetics Reveal Molecular Mode of Action of Valproic acid, an Anticancer Molecule using Budding Yeast Model

    PubMed Central

    Golla, Upendarrao; Joseph, Deepthi; Tomar, Raghuvir Singh

    2016-01-01

    Valproic acid (VA) is a pharmacologically important histone deacetylase inhibitor that recently garnered attention as an anticancer agent. Since the molecular mechanisms behind the multiple effects of VA are unclear, this study was aimed to unravel the comprehensive cellular processes affected by VA and its molecular targets in vivo using budding yeast as a model organism. Interestingly, genome-wide transcriptome analysis of cells treated with VA showed differential regulation of 30% of the genome. Functional enrichment analysis of VA transcriptome evidenced alteration of various cellular processes including cell cycle, cell wall biogenesis, DNA repair, ion homeostasis, metabolism, stress response, transport and ribosomal biogenesis, etc. Moreover, our genetic screening analysis revealed VA molecular targets belonging to oxidative and osmotic stress, DNA repair, cell wall integrity, and iron homeostasis. Further, our results demonstrated the activation of mitogen-activated protein kinases (MAPKs) Hog1 (p38) and Slt2 (p44/42) upon VA treatment. Our results also exhibited that VA acts through alteration of mitochondrial, ER architecture and functions. Especially, VA effects were neutralized in cells lacking lipid particles. Altogether, our results deciphered the novel molecular insights and mechanistic links to strengthen our knowledge on diverse cellular effects of VA along with its probable therapeutic targets and detoxification approaches. PMID:27734932

  15. Protective effects of valproic acid on the nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.

    PubMed

    Kidd, S K; Schneider, J S

    2011-10-27

    The use of animal models (including the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP] mouse model) to mimic dopaminergic (DAergic) cell loss and striatal dopamine (DA) depletion, as seen in Parkinson's disease (PD), has implicated a multitude of factors that might be associated with DAergic cell death in PD including excitotoxicity, inflammation, and oxidative stress. All of these factors have been shown to be reduced by administration of histone deacetylase (HDAC) inhibitors (HDACis) resulting in some degree of neuroprotection in various models of neurodegenerative disease including in Huntington's disease and amyotrophic lateral sclerosis. However, there is limited information of effects of HDACis in PD models. We have previously shown HDACis to be partially protective against 1-methyl-4-phenylpyridinium (MPP(+))-mediated cell loss in vitro. The present study was conducted to extend these findings to an in vivo PD model. The HDACi valproic acid (VPA) was co-administered with MPTP for 5 days to male FVBn mice and continued for an additional 2 weeks, throughout the period of active neurodegeneration associated with MPTP-mediated DAergic cell loss. VPA was able to partially prevent striatal dopamine depletion and almost completely protect against substantia nigra DAergic cell loss. These results suggest that VPA may be a potential disease-modifying therapy for PD. PMID:21846494

  16. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    PubMed Central

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways. PMID:27602061

  17. The BH3-mimetic gossypol and noncytotoxic doses of valproic acid induce apoptosis by suppressing cyclin-A2/Akt/FOXO3a signaling

    PubMed Central

    Pan, Hao; Lin, Qiu-Ru; Huang, Mei-Yun; Cai, Ji-Ye; Ouyang, Dong-Yun; He, Xian-Hui

    2015-01-01

    Previously we reported that valproic acid (VPA) acts in synergy with GOS to enhance cell death in human DU145 cells. However, the underlying mechanism remains elusive. In this study, we observed that such synergistic cytotoxicity of GOS and VPA could be extended to human A375, HeLa, and PC-3 cancer cells. GOS and VPA co-treatment induced robust apoptosis as evidenced by caspase-8/-9/-3 activation, PARP cleavage, and nuclear fragmentation. GOS and VPA also markedly decreased cyclin A2 protein expression. Owing to the reduction of cyclin A2, Akt signaling was suppressed, leading to dephosphorylation of FOXO3a. Consequently, FOXO3a was activated and the expression of its target genes, including pro-apoptotic FasL and Bim, was upregulated. Supporting this, FOXO3a knockdown attenuated FasL and Bim upregulation and apoptosis induction in GOS+VPA-treated cells. Furthermore, blocking proteasome activity by MG132 prevented the downregulation of cyclin A2, dephosphorylation of Akt and FOXO3a, and induction of apoptosis in cells co-treated with GOS and VPA. In mouse model, GOS and VPA combination significantly inhibited the growth of A375 melanoma xenografts. Our findings indicate that GOS and VPA co-treatment induces apoptosis in human cancer cells by suppressing the cyclin-A2/Akt/FOXO3a pathway. PMID:26517515

  18. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation.

    PubMed

    Tsolmongyn, Bilegtsaikhan; Koide, Naoki; Odkhuu, Erdenezaya; Haque, Abedul; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2013-04-01

    The effect of lipopolysaccharide (LPS) on valproic acid (VPA)-induced cell death was examined by using mouse RAW 264.7 macrophage cells. LPS inhibited the activation of caspase 3 and poly (ADP-ribose) polymerase and prevented VPA-induced apoptosis. LPS inhibited VPA-induced p53 activation and pifithrin-α as a p53 inhibitor as well as LPS prevented VPA-induced apoptosis. LPS abolished the increase of Bax/Bcl-2 ratio, which is a critical indicator of p53-mediated mitochondrial damage, in response to VPA. The nuclear factor (NF)-κB inhibitors, Bay 11-7082 and parthenolide, abolished the preventive action of LPS on VPA-induced apoptosis. A series of toll-like receptor ligands, Pam3CSK4, poly I:C, and CpG DNA as well as LPS prevented VPA-induced apoptosis. Taken together, LPS was suggested to prevent VPA-induced apoptosis via activation of anti-apoptotic NF-κB and inhibition of pro-apoptotic p53 activation. The detailed inhibitory mechanism of VPA-induced apoptosis by LPS is discussed.

  19. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    PubMed Central

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways.

  20. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation.

    PubMed

    Tsolmongyn, Bilegtsaikhan; Koide, Naoki; Odkhuu, Erdenezaya; Haque, Abedul; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2013-04-01

    The effect of lipopolysaccharide (LPS) on valproic acid (VPA)-induced cell death was examined by using mouse RAW 264.7 macrophage cells. LPS inhibited the activation of caspase 3 and poly (ADP-ribose) polymerase and prevented VPA-induced apoptosis. LPS inhibited VPA-induced p53 activation and pifithrin-α as a p53 inhibitor as well as LPS prevented VPA-induced apoptosis. LPS abolished the increase of Bax/Bcl-2 ratio, which is a critical indicator of p53-mediated mitochondrial damage, in response to VPA. The nuclear factor (NF)-κB inhibitors, Bay 11-7082 and parthenolide, abolished the preventive action of LPS on VPA-induced apoptosis. A series of toll-like receptor ligands, Pam3CSK4, poly I:C, and CpG DNA as well as LPS prevented VPA-induced apoptosis. Taken together, LPS was suggested to prevent VPA-induced apoptosis via activation of anti-apoptotic NF-κB and inhibition of pro-apoptotic p53 activation. The detailed inhibitory mechanism of VPA-induced apoptosis by LPS is discussed. PMID:23770718

  1. Effect of intracerebroventricular continuous infusion of valproic acid versus single i.p. and i.c.v. injections in the amygdala kindling epilepsy model.

    PubMed

    Serralta, Alfonso; Barcia, Juan A; Ortiz, Pedro; Durán, Carmen; Hernández, M Eugenia; Alós, Manuel

    2006-07-01

    Two protocols were tested to assess anticonvulsant efficacy and drug concentrations after intracerebroventricular (i.c.v.) continuous valproic acid (VPA) infusion, as compared with acute injections in the kindling epilepsy model. Protocol 1: amygdala-kindled rats were injected via intraperitoneal (i.p.) and i.c.v. routes with varying doses of VPA and tested for seizure intensity, afterdischarge and seizure duration, ataxia and sedation. Concentrations of VPA were determined by immunofluorescence in the brain, plasma, cerebrospinal fluid (CSF) and liver in matching rats. Protocol 2: amygdala-kindled rats were implanted with osmotic minipumps containing a VPA solution in saline and connected to intraventricular catheters for 7 days. Seizure threshold, latency and duration, afterdischarge duration, ataxia and sedation were recorded daily before, during, and until 5 days after VPA infusion. In matching animals, CSF, brain, plasma and liver VPA concentration was determined. Acute i.c.v. VPA injection suppressed seizures with a remarkable ataxia and sedation. However, continuous i.c.v. infusion controlled generalised and even focal seizures without producing important side effects, high plasma levels or hepatic drug concentrations. In conclusion, continuous i.c.v. VPA infusion may protect against kindled seizures by minimising ataxia and sedation, and achieving suitable intracerebral, yet low plasma or hepatic drug concentrations, thus avoiding potential systemic toxicity.

  2. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression

    PubMed Central

    Terranova-Barberio, Manuela; Roca, Maria Serena; Zotti, Andrea Ilaria; Leone, Alessandra; Bruzzese, Francesca; Vitagliano, Carlo; Scogliamiglio, Giosuè; Russo, Domenico; D'Angelo, Giovanni; Franco, Renato; Budillon, Alfredo; Di Gennaro, Elena

    2016-01-01

    The prognosis of patients with metastatic breast cancer remains poor, and thus novel therapeutic approaches are needed. Capecitabine, which is commonly used for metastatic breast cancer in different settings, is an inactive prodrug that takes advantage of elevated levels of thymidine phosphorylase (TP), a key enzyme that is required for its conversion to 5-fluororacil, in tumors. We demonstrated that histone deacetylase inhibitors (HDACi), including low anticonvulsant dosage of VPA, induced the dose- and time-dependent up-regulation of TP transcript and protein expression in breast cancer cells, but not in the non-tumorigenic breast MCF-10A cell line. Through the use of siRNA or isoform-specific HDACi, we demonstrated that HDAC3 is the main isoform whose inhibition is involved in the modulation of TP. The combined treatment with capecitabine and HDACi, including valproic acid (VPA), resulted in synergistic/additive antiproliferative and pro-apoptotic effects in breast cancer cells but not in TP-knockout cells, both in vitro and in vivo, highlighting the crucial role of TP in the synergism observed. Overall, this study suggests that the combination of HDACi (e.g., VPA) and capecitabine is an innovative antitumor strategy that warrants further clinical evaluation for the treatment of metastatic breast cancer. PMID:26735339

  3. Encapsulation of valproic acid and sodic phenytoin in ordered mesoporous SiO 2 solids for the treatment of temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    López, T.; Basaldella, E. I.; Ojeda, M. L.; Manjarrez, J.; Alexander-Katz, R.

    2006-10-01

    Temporal lobe epilepsy is one of the most frequent types of human neurological diseases, and a variety of surgical procedures have been developed for the treatment of intractable cases. An alternative is the use of drug-containing reservoirs based on nanostructured materials of controlled pore sizes in order to deliver the drug without causing secondary effects. Ordered SiO 2 nanostructures were developed as drug reservoirs. The latter were prepared by the sol-gel process using tetraethyl orthosilicate TEOS as precursor to form the "sol" and P123 surfactant as the organic structure-directing agent. In addition to the nontoxic nature of amorphous silica, uniform and tunable pore sizes between 2.5 and 30 nm can be obtained in this way. The aim of this study is to investigate the potential of these materials for the storage and release of drugs in the brain. For that, we loaded valproic acid (VH) and sodic phenytoin (PH) molecules into an ordered mesoporous SiO 2 by impregnation and characterized the drug impregnated SiO 2 by standard physical and spectroscopic techniques to identify the parameters necessary to improve the capacity and quality of the reservoirs. Finally, a study of neurohistopathology of the effects of these reservoirs on brain tissue is presented.

  4. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism.

    PubMed

    Takuma, Kazuhiro; Hara, Yuta; Kataoka, Shunsuke; Kawanai, Takuya; Maeda, Yuko; Watanabe, Ryo; Takano, Erika; Hayata-Takano, Atsuko; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2014-11-01

    We recently showed that prenatal exposure to valproic acid (VPA) in mice causes autism-like behavioral abnormalities, including social interaction deficits, anxiety-like behavior and spatial learning disability, in male offspring. In the present study, we examined the effect of prenatal VPA on cognitive function and whether the effect is improved by chronic treatment with VPA and sodium butyrate, histone deacetylase inhibitors. In addition, we examined whether the cognitive dysfunction is associated with hippocampal dendritic morphological changes. Mice given prenatal exposure to VPA exhibited novel object recognition deficits at 9 weeks of age, and that the impairment was blocked by chronic (5-week) treatment with VPA (30 mg/kg/d, i.p.) or sodium butyrate (1.2g/kg/d, i.p.) starting at 4 weeks of age. In agreement with the behavioral findings, the mice prenatally exposed to VPA showed a decrease in dendritic spine density in the hippocampal CA1 region, and the spine loss was attenuated by chronic treatment with sodium butyrate or VPA. Furthermore, acute treatment with sodium butyrate, but not VPA, significantly increased acetylation of histone H3 in the hippocampus at 30 min, suggesting the difference in the mechanism for the effects of chronic VPA and sodium butyrate. These findings suggest that prenatal VPA-induced cognitive dysfunction is associated with changes in hippocampal dendritic spine morphology.

  5. Dependence of Proximal GC Boxes and Binding Transcription Factors in the Regulation of Basal and Valproic Acid-Induced Expression of t-PA.

    PubMed

    Ulfhammer, Erik; Larsson, Pia; Magnusson, Mia; Karlsson, Lena; Bergh, Niklas; Jern, Sverker

    2016-01-01

    Objective. Endothelial tissue-type plasminogen activator (t-PA) release is a pivotal response to protect the circulation from occluding thrombosis. We have shown that the t-PA gene is epigenetically regulated and greatly induced by the histone deacetylase (HDAC) inhibitor valproic acid (VPA). We now investigated involvement of known t-PA promoter regulatory elements and evaluated dependence of potential interacting transcription factors/cofactors. Methods. A reporter vector with an insert, separately mutated at either the t-PA promoter CRE or GC box II or GC box III elements, was transfected into HT-1080 and HUVECs and challenged with VPA. HUVECs were targeted with siRNA against histone acetyl transferases (HAT) and selected transcription factors from the Sp/KLF family. Results. An intact VPA-response was observed with CRE mutated constructs, whereas mutation of GC boxes II and III reduced the magnitude of the induction by 54 and 79% in HT-1080 and 49 and 50% in HUVECs, respectively. An attenuated induction of t-PA mRNA was observed after Sp2, Sp4, and KLF5 depletion. KLF2 and p300 (HAT) were identified as positive regulators of basal t-PA expression and Sp4 and KLF9 as repressors. Conclusion. VPA-induced t-PA expression is dependent on the proximal GC boxes in the t-PA promoter and may involve interactions with Sp2, Sp4, and KLF5.

  6. Valproic acid and all trans retinoic acid differentially induce megakaryopoiesis and platelet-like particle formation from the megakaryoblastic cell line MEG-01.

    PubMed

    Schweinfurth, N; Hohmann, S; Deuschle, M; Lederbogen, F; Schloss, P

    2010-01-01

    Both, the activity of transcription factors as well as epigenetic alterations in defined DNA regions regulate cellular differentiation processes. Hence, neuronal differentiation from neural progenitor cells is promoted by the transcription factor all trans retinoic acid (ATRA) and the histone deacetylase inhibitor valproic acid (VPA). VPA has also been shown to be involved in differentiation of tumor cells and to greatly improve the reprogramming of human somatic cells to induced pluripotent stem cells. Here we have investigated the impact of ATRA and VPA on the differentiation of megakaryoctes and platelets from the megakaryocyte progenitor cell line MEG-01. Our results show that treatment with ATRA (10⁻¹¹ M) and VPA (2 × 10⁻³ M) induces megakaryopoiesis of MEG-01 cells as estimated by polyploidy, formation of characteristic proplatelets and elevated expression of the megakaryocytic markers CD41 and CD61. The resulting megakaryocytes stayed viable for more than 3 weeks and shed platelet-like particles positive for CD41, CD61 and CD42b into the supernatant. Platelet-like particles responded to thrombin receptor activating peptide (TRAP-6) with increased externalization of P-selectin. Thus, ATRA and VPA proved to be efficient agents for the gentle induction of megakaryopoiesis and thrombopoiesis of MEG-01 cells providing the possibility to study molecular events underlying megakaryopoiesis and human platelet production over longer time periods. PMID:20942599

  7. Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation.

    PubMed

    Kawano, Takeshi; Akiyama, Masaharu; Agawa-Ohta, Miyuki; Mikami-Terao, Yoko; Iwase, Satsuki; Yanagisawa, Takaaki; Ida, Hiroyuki; Agata, Naoki; Yamada, Hisashi

    2010-10-01

    Although p53 is intact in most cases of retinoblastoma, it is largely inactivated by the ubiqutin-proteasome system through interaction with murine double minute 2 (MDM2) and murine double minute X (MDMX). The present study showed that the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and depsipeptide (FK228) synergistically enhanced ionizing radiation (IR)-induced apoptosis, associated with activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase in Y79 and WER1-Rb1 human retinoblastoma cells. Both VPA and FK228 enhanced IR-induced phosphorylation of histone H2AX on Ser139 preceding apoptosis. Exposure of cells to IR in the presence of VPA or FK228 induced the accumulation of p53 acetylated at Lys382 and phosphorylated at Ser46 through the reduction of binding affinity with MDM2 and MDMX. These results suggest that acetylation of p53 by HDAC inhibitors is a promising new therapeutic target in refractory retinoblastoma. PMID:20811699

  8. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism.

    PubMed

    Olde Loohuis, N F M; Kole, K; Glennon, J C; Karel, P; Van der Borg, G; Van Gemert, Y; Van den Bosch, D; Meinhardt, J; Kos, A; Shahabipour, F; Tiesinga, P; van Bokhoven, H; Martens, G J M; Kaplan, B B; Homberg, J R; Aschrafi, A

    2015-08-01

    Autism spectrum disorders are severe neurodevelopmental disorders, marked by impairments in reciprocal social interaction, delays in early language and communication, and the presence of restrictive, repetitive and stereotyped behaviors. Accumulating evidence suggests that dysfunction of the amygdala may be partially responsible for the impairment of social behavior that is a hallmark feature of ASD. Our studies suggest that a valproic acid (VPA) rat model of ASD exhibits an enlargement of the amygdala as compared to controls rats, similar to that observed in adolescent ASD individuals. Since recent research suggests that altered neuronal development and morphology, as seen in ASD, may result from a common post-transcriptional process that is under tight regulation by microRNAs (miRs), we examined genome-wide transcriptomics expression in the amygdala of rats prenatally exposed to VPA, and detected elevated miR-181c and miR-30d expression levels as well as dysregulated expression of their cognate mRNA targets encoding proteins involved in neuronal system development. Furthermore, selective suppression of miR-181c function attenuates neurite outgrowth and branching, and results in reduced synaptic density in primary amygdalar neurons in vitro. Collectively, these results implicate the small non-coding miR-181c in neuronal morphology, and provide a framework of understanding how dysregulation of a neurodevelopmentally relevant miR in the amygdala may contribute to the pathophysiology of ASD.

  9. Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies.

    PubMed

    Tashiro, Yasura; Oyabu, Akiko; Imura, Yoshio; Uchida, Atsuko; Narita, Naoko; Narita, Masaaki

    2011-06-01

    Autism is often associated with multiple developmental anomalies including asymmetric facial palsy. In order to establish the etiology of autism with facial palsy, research into developmental abnormalities of the peripheral facial nerves is necessary. In the present study, to investigate the development of peripheral cranial nerves for use in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero and their cranial nerves were visualized by immunostaining. Treatment with VPA after embryonic day 9 had a significant effect on the peripheral fibers of several cranial nerves. Following VPA treatment, immunoreactivity within the trigeminal, facial, glossopharyngeal and vagus nerves was significantly reduced. Additionally, abnormal axonal pathways were observed in the peripheral facial nerves. Thus, the morphology of several cranial nerves, including the facial nerve, can be affected by prenatal VPA exposure as early as E13. Our findings indicate that disruption of early facial nerve development is involved in the etiology of asymmetric facial palsy, and may suggest a link to the etiology of autism.

  10. Valproic acid cooperates with hydralazine to augment the susceptibility of human osteosarcoma cells to Fas- and NK cell-mediated cell death.

    PubMed

    Yamanegi, Koji; Yamane, Junko; Kobayashi, Kenta; Kato-Kogoe, Nahoko; Ohyama, Hideki; Nakasho, Keiji; Yamada, Naoko; Hata, Masaki; Fukunaga, Satoru; Futani, Hiroyuki; Okamura, Haruki; Terada, Nobuyuki

    2012-07-01

    We investigated the effects of valproic acid (VPA), a histone deacetylase inhibitor, in combination with hydralazine, a DNA methylation inhibitor, on the expression of cell-surface Fas and MHC-class I-related chain molecules A and B (MICA and B), the ligands of NKG2D which is an activating receptor of NK cells, and on production of their soluble forms in HOS, U-2 OS and SaOS-2 human osteosarcoma cell lines. We also examined the susceptibility of these cells to Fas- and NK cell-mediated cell death. VPA did not increase the expression of Fas on the surface of osteosarcoma cells, while hydralazine did, and the combination of VPA with hydralazine increased the expression of cell-surface Fas. In contrast, the combination of VPA with hydralazine did not increase the production of soluble Fas by osteosarcoma cells. Both VPA and hydralazine increased the expression of cell-surface MICA and B in osteosarcoma cells, and their combination induced a greater increase in their expression. VPA inhibited the production of both soluble MICA and MICB by osteosarcoma cells while hydralazine produced no effect. Both VPA and hydralazine enhanced the susceptibility of osteosarcoma cells to Fas- and NK cell-mediated cell death and the combination of VPA with hydralazine further enhanced the effects. The present results suggest that combined administration of VPA and hydrazine is valuable for enhancing the therapeutic effects of immunotherapy for osteosarcomas.

  11. Bismaleimide compounds

    DOEpatents

    Adams, J.E.; Jamieson, D.R.

    1986-01-14

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  12. Bismaleimide compounds

    DOEpatents

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  13. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  14. Vitamin D in epilepsy: vitamin D levels in epilepsy patients, patients on antiepileptic drug polytherapy and drug-resistant epilepsy sufferers.

    PubMed

    Nagarjunakonda, S; Amalakanti, S; Uppala, V; Rajanala, L; Athina, S

    2016-01-01

    The objective of this study was to assess vitamin D levels in epileptic patients and to compare its serum levels in patients on antiepileptic monotherapy and polytherapy. We analyzed the serum 25-hydroxy (25-OH) vitamin D levels in 98 consecutive subjects (43 epileptic patients and 55 non-epileptics). Factors influencing its serum levels such as degree of sun exposure, physical activity and dietary intake were taken into consideration. Overall, 41% had deficient, 49% had insufficient and 9% had sufficient levels of serum vitamin D. Elderly individuals (>60 years) and people employed in offices and schools had lower blood vitamin D levels. Across both the sexes, epileptic patients and non-epileptics, epileptic patients on monotherapy and polytherapy and patients with drug-responsive and -resistant seizures, there were no significant differences in serum 25-OH vitamin D levels. Our study shows that people with epilepsy suffer with vitamin D deficiency along with their normal peers.

  15. Anticonvulsant activity, neural tube defect induction, mutagenicity and pharmacokinetics of a new potent antiepileptic drug, N-methoxy-2,2,3,3-tetramethylcyclopropane carboxamide.

    PubMed

    Sobol, Eyal; Yagen, Boris; Lamb, John G; White, H Steve; Wlodarczyk, Bogdan J; Finnell, Richard H; Bialer, Meir

    2007-01-01

    N-methoxy-2,2,3,3-tetramethylcyclopropane carboxamide (OM-TMCD) is a methoxyamide derivative of a cyclopropyl analogue of valproic acid (VPA). The structural considerations used in the design of OM-TMCD were aimed to enhance OM-TMCD anticonvulsant potency (compared to VPA) and to prevent VPA's two life-threatening side effects, i.e., induction of neural tube defects (NTDs) and hepatotoxicity. Following i.p. administration to rats OM-TMCD demonstrated a broad spectrum of anticonvulsant activity and showed better potency than VPA in the maximal electroshock seizure and subcutaneous pentylenetetrazole tests as well as in the hippocampal kindling model. OM-TMCD was inactive in the mouse 6-Hz test at 100 mg/kg dose. Teratogenicity studies performed in a SWV/Fnn-mouse model for VPA-induced-exencephaly showed that on the equimolar basis OM-TMCD possesses the same fetal toxicity and ability to induce NTDs as VPA, but since OM-TMCD is a much more potent anticonvulsant its activity/exencephaly formation ratio appears to be much more beneficial than that of VPA. OM-TMCD was found to be non-mutagenic and non-pro-mutagenic in the Ames test. It showed a beneficial pharmacokinetic profile in rats, having a high oral bioavailability of 75% and satisfactory values of clearance and volume of distribution. These results support further studies to fully characterize the therapeutic potential of OM-TMCD.

  16. (R)-[11C]PK11195 brain uptake as a biomarker of inflammation and antiepileptic drug resistance: evaluation in a rat epilepsy model.

    PubMed

    Bogdanović, Renée Marie; Syvänen, Stina; Michler, Christina; Russmann, Vera; Eriksson, Jonas; Windhorst, Albert D; Lammertsma, Adriaan A; de Lange, Elisabeth C; Voskuyl, Rob A; Potschka, Heidrun

    2014-10-01

    Neuroinflammation has been suggested as a key determinant of the intrinsic severity of epilepsy. Glial cell activation and associated inflammatory signaling can influence seizure thresholds as well as the pharmacodynamics and pharmacokinetics of antiepileptic drugs. Based on these data, we hypothesized that molecular imaging of microglia activation might serve as a tool to predict drug refractoriness of epilepsy. Brain uptake of (R)-[11C]PK11195, a ligand of the translocator protein 18 kDa and molecular marker of microglia activation, was studied in a chronic model of temporal lobe epilepsy in rats with selection of phenobarbital responders and non-responders. In rats with drug-sensitive epilepsy, (R)-[11C]PK11195 brain uptake values were comparable to those in non-epileptic controls. Analysis in non-responders revealed enhanced brain uptake of up to 39% in different brain regions. The difference might be related to the fact that non-responders exhibited higher baseline seizure frequencies than responders indicating a more pronounced intrinsic disease severity. In hippocampal sections, ED1 immunostaining argued against a general difference in microglia activation between both groups. Our data suggest that TSPO PET imaging might serve as a biomarker for drug resistance in temporal lobe epilepsy. However, it needs to be considered that our findings indicate that the TSPO PET data might merely reflect seizure frequency. Future experimental and clinical studies should further evaluate the validity of TSPO PET data to predict the response to phenobarbital and other antiepileptic drugs in longitudinal studies with scanning before drug exposure and with a focus on the early phase following an epileptogenic brain insult.

  17. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy.

  18. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition.

    PubMed

    Leng, Yan; Liang, Min-Huei; Ren, Ming; Marinova, Zoya; Leeds, Peter; Chuang, De-Maw

    2008-03-01

    Lithium and valproic acid (VPA) are two primary drugs used to treat bipolar mood disorder and have frequently been used in combination to treat bipolar patients resistant to monotherapy with either drug. Lithium, a glycogen synthase kinase-3 (GSK-3) inhibitor, and VPA, a histone deacetylase (HDAC) inhibitor, have neuroprotective effects. The present study was undertaken to demonstrate synergistic neuroprotective effects when both drugs were coadministered. Pretreatment of aging cerebellar granule cells with lithium or VPA alone provided little or no neuroprotection against glutamate-induced cell death. However, copresence of both drugs resulted in complete blockade of glutamate excitotoxicity. Combined treatment with lithium and VPA potentiated serine phosphorylation of GSK-3 alpha and beta isoforms and inhibition of GSK-3 enzyme activity. Transfection with GSK-3alpha small interfering RNA (siRNA) and/or GSK-3beta siRNA mimicked the ability of lithium to induce synergistic protection with VPA. HDAC1 siRNA or other HDAC inhibitors (phenylbutyrate, sodium butyrate or trichostatin A) also caused synergistic neuroprotection together with lithium. Moreover, combination of lithium and HDAC inhibitors potentiated beta-catenin-dependent, Lef/Tcf-mediated transcriptional activity. An additive increase in GSK-3 serine phosphorylation was also observed in mice chronically treated with lithium and VPA. Together, for the first time, our results demonstrate synergistic neuroprotective effects of lithium and HDAC inhibitors and suggest that GSK-3 inhibition is a likely molecular target for the synergistic neuroprotection. Our results may have implications for the combined use of lithium and VPA in treating bipolar disorder. Additionally, combined use of both drugs may be warranted for clinical trials to treat glutamate-related neurodegenerative diseases.

  19. Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid

    PubMed Central

    2011-01-01

    Background Spinal muscular atrophy (SMA) is an autosomal recessive disorder that affects the motoneurons of the spinal anterior horn, resulting in hypotonia and muscle weakness. The disease is caused by deletion or mutation in the telomeric copy of SMN gene (SMN1) and clinical severity is in part determined by the copy number of the centromeric copy of the SMN gene (SMN2). The SMN2 mRNA lacks exon 7, resulting in a production of lower amounts of the full-length SMN protein. Knowledge of the molecular mechanism of diseases has led to the discovery of drugs capable of increasing SMN protein level through activation of SMN2 gene. One of these drugs is the valproic acid (VPA), a histone deacetylase inhibitor. Methods Twenty-two patients with type II and III SMA, aged between 2 and 18 years, were treated with VPA and were evaluated five times during a one-year period using the Manual Muscle Test (Medical Research Council scale-MRC), the Hammersmith Functional Motor Scale (HFMS), and the Barthel Index. Results After 12 months of therapy, the patients did not gain muscle strength. The group of children with SMA type II presented a significant gain in HFMS scores during the treatment. This improvement was not observed in the group of type III patients. The analysis of the HFMS scores during the treatment period in the groups of patients younger and older than 6 years of age did not show any significant result. There was an improvement of the daily activities at the end of the VPA treatment period. Conclusion Treatment of SMA patients with VPA may be a potential alternative to alleviate the progression of the disease. Trial Registration ClinicalTrials.gov: NCT01033331 PMID:21435220

  20. A simple validated RP-HPLC bioanalytical method for the quantitative determination of a novel valproic acid arylamide derivative in rat hepatic microsomes.

    PubMed

    Silva-Trujillo, Arianna; Correa-Basurto, José; Romero-Castro, Aurelio; Albores, Arnulfo; Mendieta-Wejebe, Jessica Elena

    2015-04-01

    A simple and specific bioanalytical method based on reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with ultraviolet detection was developed and validated for the determination of a novel valproic acid arylamide, N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) in rat hepatic microsomes (a subcellular fraction containing phase I enzymes, especially cytochrome P450). The chromatographic separation was achieved using a reversed-phase Zorbax SB-C18 column and a mobile phase of acetic acid in water (0.2% v/v) and acetonitrile (40:60 v/v) with a flow rate of 0.5 mL/min. The calibration curve was linear over the range of 882-7060 ng/mL (r(2)  = 0.9987), and the lower limit of quantification and the lower limit of determination were found to be 882 and 127.99 ng/mL, respectively. The method was validated with excellent sensitivity, and intra-day accuracy and precision varied from 93.79 to 93.12%, and from 2.12 to 4.36%, respectively. The inter-day accuracy and precision ranged from 93.29 to 97.30% and from 0.68 to 3.60%, respectively. The recovery of HO-AAVPA was measured between 91.36 and 97.98%. The assay was successfully applied to the analysis of kinetic metabolism and pharmacokinetic parameters in vitro by a substrate depletion approach.

  1. Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity.

    PubMed

    Bello, Martiniano; Mendieta-Wejebe, Jessica E; Correa-Basurto, José

    2014-07-15

    Docking and molecular dynamics (MD) simulation have been two computational techniques used to gain insight about the substrate orientation within protein active sites, allowing to identify potential residues involved in the binding and catalytic mechanisms. In this study, both methods were combined to predict the regioselectivity in the binding mode of valproic acid (VPA) on three cytochrome P-450 (CYP) isoforms CYP2C9, CYP2C11, and CYP2E1, which are involved in the biotransformation of VPA yielding reactive hepatotoxic intermediate 2-n-propyl-4-pentenoic acid (4nVPA). There are experimental data about hydrogen atom abstraction of the C4-position of VPA to yield 4nVPA, however, there are not structural evidence about the binding mode of VPA and 4nVPA on CYPs. Therefore, the complexes between these CYP isoforms and VPA or 4nVPA were studied to explore their differences in binding and energetic stabilization. Docking results showed that VPA and 4nVPA are coupled into CYPs binding site in a similar conformation, but it does not explain the VPA hydrogen atom abstraction. On the other hand, MD simulations showed a set of energetic states that reorient VPA at the first ns, then making it susceptible to a dehydrogenation reaction. For 4nVPA, multiple binding modes were observed in which the different states could favor either undergo other reaction mechanism or ligand expulsion from the binding site. Otherwise, the energetic and entropic contribution point out a similar behavior for the three CYP complexes, showing as expected a more energetically favorable binding free energy for the complexes between CYPs and VPA than with 4nVPA.

  2. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study

    PubMed Central

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  3. Effects of Lithium and Valproic Acid on Gene Expression and Phenotypic Markers in an NT2 Neurosphere Model of Neural Development

    PubMed Central

    Hill, Eric J.; Nagel, David A.; O’Neil, John D.; Torr, Elizabeth; Woehrling, Elizabeth K.; Devitt, Andrew; Coleman, Michael D.

    2013-01-01

    Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals. PMID:23527032

  4. Valproic Acid Induces the Hyperacetylation of P53, Expression of P53 Target Genes, and Markers of the Intrinsic Apoptotic Pathway in Midorganogenesis Murine Limbs.

    PubMed

    Paradis, France-Hélène; Hales, Barbara F

    2015-10-01

    In utero exposure to valproic acid (VPA), an anticonvulsant and histone deacetylase inhibitor (HDACi), increases the risk of congenital malformations. Although the mechanisms leading to the teratogenicity of VPA remain unsolved, several HDAC inhibitors increase cell death in cancer cell lines and embryonic tissues. Moreover, P53, the master regulator of apoptosis, is an established HDAC target. The purpose of this study was to investigate the effects of VPA on P53 signaling and markers of apoptosis during midorganogenesis in vitro limb development. Timed-pregnant CD1 mice (gestation day 12) were euthanized; embryonic forelimbs were excised and cultured in vitro for 3, 6, 12, or 24 hr in the presence or absence of VPA or valpromide (VPD), a non-HDACi analog of VPA. Quantitative RT-PCR and Western blots were used to assess the expression of candidate genes and proteins involved in P53 signaling and apoptosis. P53 hyperacetylation and a decrease (Survivin/Birc5 and Bcl2) or an increase (p21/Cdkn1a) in the expression of p53 target genes was observed only in VPA-exposed limbs. VPA exposure also triggered an increase in markers of apoptosis and DNA damage; the concentrations of cleaved caspase 9 and caspase 3, cleaved-poly (ADP-ribose) polymerase, and γ-H2AX were increased in VPA-exposed limbs. VPD treatment caused a small but significant increase in cleaved caspase 3. Thus, in vitro exposure to an HDACi such as VPA leads to P53 hyperacetylation, enhances the expression of P53 target genes, and triggers an increase in apoptosis that may contribute to teratogenicity.

  5. Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma

    PubMed Central

    Kanamoto, Ayako; Ninomiya, Itasu; Harada, Shinichi; Tsukada, Tomoya; Okamoto, Koichi; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Oyama, Katsunobu; Miyashita, Tomoharu; Tajima, Hidehiro; Takamura, Hiroyuki; Fushida, Sachio; Ohta, Tetsuo

    2016-01-01

    Esophageal carcinoma is one of the most aggressive malignancies, and is characterized by poor response to current therapy and a dismal survival rate. In this study we investigated whether irradiation induces epithelial-mesenchymal transition (EMT) in esophageal squamous cell carcinoma (ESCC) TE9 cells and whether the classic histone deacetylase (HDAC) inhibitor valproic acid (VPA) suppresses these changes. First, we showed that 2 Gy irradiation induced spindle cell-like morphologic changes, decreased expression of membranous E-cadherin, upregulated vimentin expression, and altered the localization of β-catenin from its usual membrane-bound location to cytoplasm in TE9 cells. Irradiation induced upregulation of transcription factors including Slug, Snail, and Twist, which regulate EMT. Stimulation by irradiation resulted in increased TGF-β1 and HIF-1α expression and induced Smad2 and Smad3 phosphorylation. Furthermore, irradiation enhanced CD44 expression, indicating acquisition of cancer stem-like cell properties. In addition, irradiation enhanced invasion and migration ability with upregulation of matrix metalloproteinases. These findings indicate that single-dose irradiation can induce EMT in ESCC cells. Second, we found that treatment with 1 mM VPA induced reversal of EMT caused by irradiation in TE9 cells, resulting in attenuated cell invasion and migration abilities. These results suggest that VPA might have clinical value to suppress irradiation-induced EMT. The reversal of EMT by HDAC inhibitors may be a new therapeutic strategy to improve the effectiveness of radiotherapy in ESCC by inhibiting the enhancement of invasion and metastasis.

  6. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder.

    PubMed

    Kim, Ki Chan; Kim, Pitna; Go, Hyo Sang; Choi, Chang Soon; Park, Jin Hee; Kim, Hee Jin; Jeon, Se Jin; Dela Pena, Ike Campomayor; Han, Seol-Heui; Cheong, Jae Hoon; Ryu, Jong Hoon; Shin, Chan Young

    2013-03-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by three main behavioral symptoms including social deficits, impaired communication, and stereotyped and repetitive behaviors. ASD prevalence shows gender bias to male. Prenatal exposure to valproic acid (VPA), a drug used in epilepsy and bipolar disorder, induces autistic symptoms in both human and rodents. As we reported previously, prenatally VPA-exposed animals at E12 showed impairment in social behavior without any overt reproductive toxicity. Social interactions were not significantly different between male and female rats in control condition. However, VPA-exposed male offspring showed significantly impaired social interaction while female offspring showed only marginal deficits in social interaction. Similar male inclination was observed in hyperactivity behavior induced by VPA. In addition to the ASD-like behavioral phenotype, prenatally VPA-exposed rat offspring shows crooked tail phenotype, which was not different between male and female groups. Both male and female rat showed reduced GABAergic neuronal marker GAD and increased glutamatergic neuronal marker vGluT1 expression. Interestingly, despite of the similar increased expression of vGluT1, post-synaptic marker proteins such as PSD-95 and α-CAMKII expression was significantly elevated only in male offspring. Electron microscopy showed increased number of post-synapse in male but not in female at 4 weeks of age. These results might suggest that the altered glutamatergic neuronal differentiation leads to deranged post-synaptic maturation only in male offspring prenatally exposed to VPA. Consistent with the increased post-synaptic compartment, VPA-exposed male rats showed higher sensitivity to electric shock than VPA-exposed female rats. These results suggest that prenatally VPA-exposed rats show the male preponderance of ASD-like behaviors including defective social interaction similar to human autistic patients, which

  7. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  8. Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene

    PubMed Central

    Lee, R S; Pirooznia, M; Guintivano, J; Ly, M; Ewald, E R; Tamashiro, K L; Gould, T D; Moran, T H; Potash, J B

    2015-01-01

    Epigenetics may have an important role in mood stabilizer action. Valproic acid (VPA) is a histone deacetylase inhibitor, and lithium (Li) may have downstream epigenetic actions. To identify genes commonly affected by both mood stabilizers and to assess potential epigenetic mechanisms that may be involved in their mechanism of action, we administered Li (N=12), VPA (N=12), and normal chow (N=12) to Brown Norway rats for 30 days. Genomic DNA and mRNA were extracted from the hippocampus. We used the mRNA to perform gene expression analysis on Affymetrix microarray chips, and for genes commonly regulated by both Li and VPA, we validated expression levels using quantitative real-time PCR. To identify potential mechanisms underlying expression changes, genomic DNA was bisulfite treated for pyrosequencing of key CpG island ‘shores' and promoter regions, and chromatin was prepared from both hippocampal tissue and a hippocampal-derived cell line to assess modifications of histones. For most genes, we found little evidence of DNA methylation changes in response to the medications. However, we detected histone H3 methylation and acetylation in the leptin receptor gene, Lepr, following treatment with both drugs. VPA-mediated effects on histones are well established, whereas the Li effects constitute a novel mechanism of transcriptional derepression for this drug. These data support several shared transcriptional targets of Li and VPA, and provide evidence suggesting leptin signaling as an epigenetic target of two mood stabilizers. Additional work could help clarify whether leptin signaling in the brain has a role in the therapeutic action of Li and VPA in bipolar disorder. PMID:26171981

  9. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity

    SciTech Connect

    Kiang, Tony K.L.; Teng Xiaowei; Surendradoss, Jayakumar; Karagiozov, Stoyan; Abbott, Frank S.; Chang, Thomas K.H.

    2011-05-01

    The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role for metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.

  10. Valproic Acid Inhibits the Release of Soluble CD40L Induced by Non-Nucleoside Reverse Transcriptase Inhibitors in Human Immunodeficiency Virus Infected Individuals

    PubMed Central

    Davidson, Donna C.; Schifitto, Giovanni; Maggirwar, Sanjay B.

    2013-01-01

    Despite the use of highly active antiretroviral therapies (HAART), a majority of Human Immunodeficiency Virus Type 1 (HIV) infected individuals continually develop HIV – Associated Neurocognitive Disorders (HAND), indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistent with this notion, we have previously shown that levels of the inflammatory mediator soluble CD40 ligand (sCD40L) are elevated in the plasma and cerebrospinal fluid (CSF) of HIV infected, cognitively impaired individuals, and that excess sCD40L can contribute to blood brain barrier (BBB) permeability in vivo, thereby signifying the importance of this inflammatory mediator in the pathogenesis of HAND. Here we demonstrate that the non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) induces the release of circulating sCD40L in both HIV infected individuals and in an in vitro suspension of washed human platelets, which are the main source of circulating sCD40L. Additionally, EFV was found to activate glycogen synthase kinase 3 beta (GSK3β) in platelets, and we now show that