Single particle excitations in itinerant antiferromagnets
Brenig, W.; Kampf, A.P.
1994-04-01
The authors present a self-consistent strong coupling scheme to evaluate the single-particle Green`s function for the two dimensional Hubbard model in the spin-density-wave state. The authors analyze the single quasihole properties including its dispersion and its spectral weight factor. Significant incoherent contributions to the spectral function are found resulting from multi spin wave processes in accordance with similar results for the t-J model and small Hubbard clusters.
NASA Astrophysics Data System (ADS)
Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard
2015-06-01
The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0 nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.
Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard
2015-06-21
The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0 nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.
On the exchange bias in single and polycrystalline ferro/antiferromagnetic bilayers
Li, Zhanjie; Zhang, Shufeng
2001-06-01
By incorporating a random interfacial exchange interaction into the Landau{endash}Lifshitz{endash}Gilbert equation, a unified picture of exchange bias for single crystals, textured crystals, twin structures, and polycrystals of antiferromagnets is presented. It is found that the lateral interaction in the antiferromagnet is a key element governing the exchange bias and magnetization reversal of the ferromagnet. {copyright} 2001 American Institute of Physics.
Multicritical points in the three-dimensional XXZ antiferromagnet with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Selke, Walter
2013-01-01
The classical Heisenberg antiferromagnet with uniaxial exchange anisotropy, the XXZ model, and competing planar single-ion anisotropy in a magnetic field on a simple cubic lattice is studied with the help of extensive Monte Carlo simulations. The biconical (supersolid) phase, bordering the antiferromagnetic and spin-flop phases, is found to become thermally unstable well below the onset of the disordered, paramagnetic phase, leading to interesting multicritical points.
NASA Astrophysics Data System (ADS)
Pires, A. S. T.
2016-08-01
I study the spin-1 Heisenberg antiferromagnet on the two dimensional honeycomb lattice at zero temperature, with first J1, second J2 and third J3 neighbors exchange interactions and single ion easy plane anisotropy, using the SU(3) Schwinger boson formalism. The phase diagram is shown. The results show the existence of a region in the intermediate frustrated regime where the system does not have quantum magnetic order.
Antiferromagnetic phase transition in a single MnTe monolayer
NASA Astrophysics Data System (ADS)
Prechtl, G.; Heiss, W.; Bonanni, A.; Sitter, H.; Jantsch, W.; Mackowski, S.; Karczewski, G.
2000-05-01
We investigate a quantum-well sample containing a monolayer of MnTe in its center. The exciton Zeeman splitting is measured as a function of temperature by polarization-dependent photoluminescence excitation experiments. The dependence of the inverse Zeeman splitting shows a kink at a critical temperature of 50 K. Simultaneously, a peak in the linewidth of the e1- hh1 transition is observed at the same temperature. The critical temperature agrees very well with the predicted Nèel temperature obtained within the mean-field approximation for a single monolayer MnTe. After annealing the sample, the Zeeman splitting drastically increases and no critical phenomena are observed anymore.
Deng, Qingming; Zhao, Lina; Luo, Youhua; Zhang, Meng; Jing, Long; Zhao, Yuliang
2011-09-01
We theoretically studied the ferromagnetism/antiferromagnetism (FM/AFM) transition between single-wall carbon nanotubes (SWCNTs) induced by chemical modifications of semihydrogenation (SH-) and full-amination (NH(2)-). We found that armchairs with large diameters of SH-CNTs (n > 3) possess FM functions with intense magnetic moments, while armchair NH(2)-CNTs (n = 4, 6, 8) are antiferromagnetic semiconductors. The FM/AFM transition is mainly dominated by different chemical modifications and sizes of SWCNTs whose distance between carbon atoms of unpaired electrons can regulate the intensity of p-p spin interactions. Moreover, the zigzag SH-CNTs and NH(2)-CNTs are NM semiconductors. Thus, the electronic and magnetic properties of the SH- or NH(2)-CNTs can be precisely modulated by controlling the hydrogenation or amination on the different types and diameters of CNTs, which provides a new and also simple process for magnetism optimization design in SWCNTs. PMID:21804988
NASA Astrophysics Data System (ADS)
Deng, Qingming; Zhao, Lina; Luo, Youhua; Zhang, Meng; Jing, Long; Zhao, Yuliang
2011-09-01
We theoretically studied the ferromagnetism/antiferromagnetism (FM/AFM) transition between single-wall carbon nanotubes (SWCNTs) induced by chemical modifications of semihydrogenation (SH-) and full-amination (NH2-). We found that armchairs with large diameters of SH-CNTs (n > 3) possess FM functions with intense magnetic moments, while armchair NH2-CNTs (n = 4, 6, 8) are antiferromagnetic semiconductors. The FM/AFM transition is mainly dominated by different chemical modifications and sizes of SWCNTs whose distance between carbon atoms of unpaired electrons can regulate the intensity of p-p spin interactions. Moreover, the zigzag SH-CNTs and NH2-CNTs are NM semiconductors. Thus, the electronic and magnetic properties of the SH- or NH2-CNTs can be precisely modulated by controlling the hydrogenation or amination on the different types and diameters of CNTs, which provides a new and also simple process for magnetism optimization design in SWCNTs.
Zhou, Biao; Kobayashi, Akiko; Okano, Yoshinori; Cui, HengBo; Graf, David; Brooks, James S; Nakashima, Takeshi; Aoyagi, Shinobu; Nishibori, Eiji; Sakata, Makoto; Kobayashi, Hayao
2009-11-01
The crystal structure of the single-component molecular metal [Au(tmdt)(2)] was examined by performing powder X-ray diffraction experiments in the temperature range of 9-300 K using a synchrotron radiation source installed at SPring-8. The structural anomalies associated with antiferromagnetic transition were observed around the transition temperature (T(N) = 110 K). The continuous temperature dependence of the unit cell volume and the discontinuous change in the thermal expansion coefficient at T(N) suggested that the antiferromagnetic transition of [Au(tmdt)(2)] is a second-order transition. Au(tmdt)(2) molecules are closely packed in the (021) plane with two-dimensional lattice vectors of a and l (= 2a + b + 2c). The shortest intermolecular S...S distance along the a axis shows a sharp decrease at around T(N), while the temperature dependence of l exhibits a characteristic peak in the same temperature region. A distinct structure anomaly was not observed along the direction perpendicular to the (021) plane. These results suggest that the molecular arrangement in only the (021) plane changes significantly at T(N). Thus, the intermolecular spacing shows anomalous temperature dependence at around T(N) only along that direction where the neighboring tmdt ligands have opposite spins in the antiferromagnetic spin structure model recently derived from ab initio band structure calculations. The results of single-crystal four-probe resistance measurements on extremely small crystals (approximately 25 microm) did not show a distinct resistance anomaly at T(N). The resistance anomaly associated with antiferromagnetic transition, if at all present, is very small. The Au-S bond length decreases sharply at around 110 K; this is consistent with the proposed antiferromagnetic spin distribution model, where the left and right ligands of the same molecule possess opposite spin polarizations. The tendency of the Au-S bond to elongate with decreasing temperature is ascribed to the
Uniaxial anisotropy and low-temperature antiferromagnetism of Mn2BO4 single crystal
NASA Astrophysics Data System (ADS)
Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Ivanova, N. B.; Bayukov, O. A.; Vasiliev, A. D.; Bezmaternykh, L. N.; Nizhankovskii, V. I.; Gavrilkin, S. Yu.; Lamonova, K. V.; Ovchinnikov, S. G.
2015-11-01
The Mn2BO4 single crystals have been grown by the flux technique. A careful study of the crystal structure and magnetic properties have been carried out. The antiferromagnetic transition at TN=26 K has been traced through the dc magnetization and specific heat temperature dependences. Magnetic uniaxial anisotropy has been found with easy axis magnetization lying in the ab-plane. The obtained value of effective magnetic moment is assigned to the non-quenched orbital moment of Jahn-Teller Mn3+ ions. The discussion of magnetic properties is based on the superexchange interaction calculations.
Polar Order and Frustrated Antiferromagnetism in Perovskite Pb2MnWO6 Single Crystals.
Ivanov, Sergey A; Bush, Alexander A; Stash, Adam I; Kamentsev, Konstantin E; Shkuratov, Valerii Ya; Kvashnin, Yaroslav O; Autieri, Carmine; Di Marco, Igor; Sanyal, Biplab; Eriksson, Olle; Nordblad, Per; Mathieu, Roland
2016-03-21
Single crystals of the multiferroic double-perovskite Pb2MnWO6 have been synthesized and their structural, thermal, magnetic and dielectric properties studied in detail. Pure perovskite-phase formation and stoichiometric chemical composition of the as-grown crystals are confirmed by X-ray single-crystal and powder diffraction techniques as well as energy-dispersive X-ray and inductively coupled plasma mass spectrometry. Detailed structural analyses reveal that the crystals experience a structural phase transition from the cubic space group (s.g.) Fm3̅m to an orthorhombic structure in s.g. Pn21a at about 460 K. Dielectric data suggest that a ferrielectric phase transition takes place at that same temperature, in contrast to earlier results on polycrystalline samples, which reported a transition to s.g. Pnma and an antiferroelectric low-temperature phase. Magnetic susceptibility measurements indicate that a frustrated antiferromagnetic phase emerges below 8 K. Density functional theory based calculations confirm that the cationic order between Mn and W is favorable. The lowest total energy was found for an antiferromagnetically ordered state. However, analyses of the calculated exchange parameters revealed strongly competing antiferromagnetic interactions. The large distance between the magnetic atoms, together with magnetic frustration, is shown to be the main reason for the low value of the ordering temperature observed experimentally. We discuss the structure-property relationships in Pb2MnWO6 and compare these observations to reported results on related Pb2BWO6 perovskites with different B cations. PMID:26954581
Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4
DOE R&D Accomplishments Database
Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.
1958-11-26
The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.
Conductance of ferro- and antiferro-magnetic single-atom contacts: A first-principles study
Tan, Zhi-Yun; Zheng, Xiao-long; Ye, Xiang; Xie, Yi-qun; Ke, San-Huang
2013-08-14
We present a first-principles study on the spin dependent conductance of five single-atom magnetic junctions consisting of a magnetic tip and an adatom adsorbed on a magnetic surface, i.e., the Co-Co/Co(001) and Ni-X/Ni(001) (X = Fe, Co, Ni, Cu) junctions. When their spin configuration changes from ferromagnetism to anti-ferromagnetism, the spin-up conductance increases while the spin-down one decreases. For the junctions with a magnetic adatom, there is nearly no spin valve effect as the decreased spin-down conductance counteracts the increased spin-up one. For the junction with a nonmagnetic adatom (Ni-Cu/Ni(001)), a spin valve effect is obtained with a variation of 22% in the total conductance. In addition, the change in spin configuration enhances the spin filter effect for the Ni-Fe/Ni(001) junction but suppresses it for the other junctions.
Antiferromagnetic Ordering in the Single-Component Molecular Conductor [Pd(tmdt)2].
Ogura, Satomi; Idobata, Yuki; Zhou, Biao; Kobayashi, Akiko; Takagi, Rina; Miyagawa, Kazuya; Kanoda, Kazushi; Kasai, Hidetaka; Nishibori, Eiji; Satoko, Chikatoshi; Delley, Bernard
2016-08-01
Crystals of [Pd(tmdt)2] (tmdt = trimethylenetetrathiafulvalenedithiolate) were prepared in order to investigate their physical properties. The electrical resistivity of [Pd(tmdt)2] was measured on single crystals using two-probe methods and showed that the room-temperature conductivity was 100 S·cm(-1). The resistivity behaviors implied that [Pd(tmdt)2] was a semimetal at approximately room temperature and became narrow-gap semiconducting as the temperature was decreased to the lowest temperature. X-ray structural studies on small single crystals of [Pd(tmdt)2] at temperatures of 20-300 K performed using synchrotron radiation at SPring-8 showed no distinct structural change over this temperature region. However, small anomalies were observed at approximately 100 K. Electron spin resonance (ESR) spectra were measured over the temperature range of 2.7-301 K. The ESR intensity increased as the temperature decreased to 100 K and then decreased linearly as the temperature was further decreased to 50 K, where an abrupt decrease in the intensity was observed. To investigate the magnetic state, (1)H nuclear magnetic resonance (NMR) measurements were performed in the temperature range of 2.5-271 K, revealing broadening below 100 K. The NMR relaxation rate gradually increased below 100 K and formed a broad peak at approximately 50 K, followed by a gradual decrease down to the lowest temperature. These results suggest that most of the sample undergoes the antiferromagnetic transition at approximately 50 K with the magnetic ordering temperatures distributed over a wide range up to 100 K. These electric and magnetic properties of [Pd(tmdt)2] are quite different from those of the single-component molecular (semi)metals [Ni(tmdt)2] and [Pt(tmdt)2], which retain their stable metallic states down to extremely low temperatures. The experimental results and the band structure calculations at the density functional theory level showed that [Pd(tmdt)2] may be an antiferromagnetic Mott
Quantum Monte-Carlo simulation of spin-one antiferromagnets with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Kato, Yasuyuki; Wierschem, Keola; Nishida, Yusuke; Batista, Cristian; Sengupta, Pinaki
2013-03-01
We study a spin-one Heisenberg model with uniaxial single-ion anisotropy, D, and Zeeman coupling to a magnetic field, B, parallel to the symmetry axis. We compute the (D / J , B / J) quantum phase diagram for square and simple cubic lattices by combining analytical and Quantum Monte Carlo approaches, and find a transition between XY-antiferromagnetic and ferronematic phases that spontaneously break the U(1) symmetry of the model. In the language of bosonic gases, this is a transition between a Bose-Einstein condensate (BEC) of single bosons and a BEC of pairs. For the efficient simulation of ferronematic phase, we developed and implemented a new multi-discontinuity algorithm based on the directed-loop algorithm. The ordinary quantum Monte-Carlo methods fall into freezing problems when we apply them to this system at large D / J and finite B / J ~ 1 . The new method does not suffer from the freezing problems. This research used resources of the NERSCC (DOE Contract No. DE-AC02-05CH11231). Work at LANL was performed under the auspices of a J. Robert Oppenheimer Fellowship and the U.S. DOE contract No. DE-AC52-06NA25396 through the LDRD program.
Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO.
Pereira, L M C; Wahl, U; Correia, J G; Van Bael, M J; Temst, K; Vantomme, A; Araújo, J P
2013-10-16
As the intrinsic origin of the high-temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn(1-x)Fe(x)O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900 ° C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn-substitutional sites behave as localized paramagnetic moments down to 2 K, irrespective of the Fe concentration and the density of beam-induced defects. With increasing local concentration of Zn-substitutional Fe, strong nearest-cation-neighbor antiferromagnetic interactions favor the antiparallel alignment of the Fe moments. PMID:24025311
Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO
NASA Astrophysics Data System (ADS)
Pereira, L. M. C.; Wahl, U.; Correia, J. G.; Van Bael, M. J.; Temst, K.; Vantomme, A.; Araújo, J. P.
2013-10-01
As the intrinsic origin of the high-temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn1-xFexO phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900 ° C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn-substitutional sites behave as localized paramagnetic moments down to 2 K, irrespective of the Fe concentration and the density of beam-induced defects. With increasing local concentration of Zn-substitutional Fe, strong nearest-cation-neighbor antiferromagnetic interactions favor the antiparallel alignment of the Fe moments.
NaCaCo2F7: A single-crystal high-temperature pyrochlore antiferromagnet
NASA Astrophysics Data System (ADS)
Krizan, J. W.; Cava, R. J.
2014-06-01
We report the magnetic characterization of the frustrated transition metal pyrochlore NaCaCo2F7. This material has high spin Co2+ in CoF6 octahedra in a pyrochlore lattice and disordered nonmagnetic Na and Ca on the large-atom sites in the structure. Large crystals grown by the floating zone method were studied. The magnetic susceptibility is isotropic; the Co moment is larger than the spin-only value; and in spite of the large Curie Weiss theta (-140 K), freezing of the spin system, as characterized by peaks in the ac and dc susceptibility and specific heat, does not occur until around 2.4 K. This yields a frustration index of f=-θCW/Tf≈56, an indication that the system is highly frustrated. The observed entropy loss at the freezing transition is low, indicating that magnetic entropy remains present in the system at 0.6 K. The compound may be the realization of a frustrated pyrochlore antiferromagnet with weak bond disorder. The high magnetic interaction strength, strong frustration, and the availability of large single crystals makes NaCaCo2F7 an interesting alternative to rare earth oxide pyrochlores for the study of geometric magnetic frustration in pyrochlore lattices.
Collinear antiferromagnetism in trigonal SrMn2As2 revealed by single crystal neutron diffraction
NASA Astrophysics Data System (ADS)
Kreyssig, A.; Das, P.; Sangeetha, N. S.; Benson, Z. A.; Heitman, T.; Johnston, D. C.; Goldman, A. I.
FeAs-based compounds and related materials have been an area of intense research in understanding the complex interplay between magnetism and superconductivity. Here we report on the magnetic structure of SrMn2As2 that crystallizes in a trigonal structure (P 3 m1) and undergoes an antiferromagnetic (AFM) transition at TN ~ 120 K. The temperature dependence of the magnetic susceptibility remains nearly constant below TN with H ∥ c while it decreases significantly with H ∥ ab . This shows that the local Mn moments order and lie in the ab plane instead of aligning along the c axis as in BaMn2As2. Single crystal neutron diffraction measurements on SrMn2As2 determined that the Mn moments are collinearly aligned in a G-type AFM order with AFM alignments between a moment and all nearest neighbors in the basal plane and also perpendicular to it. This manifests that G-type AFM order is robust for Mn122 systems despite different symmetries, i.e. tetragonal for BaMn2As2 and trigonal for SrMn2As2.Work at Ames Laboratory was supported by the DOE, BES, Division of Materials Sciences & Engineering, through DE-AC02-07CH11358. This research used resources at University of Missouri Research Reactor.
Signatures of filamentary superconductivity in antiferromagnetic BaFe2As2 single crystals
NASA Astrophysics Data System (ADS)
Moseley, D.; Yates, K. A.; Branford, W. R.; Sefat, A. S.; Mandrus, D.; Stuard, S. J.; Salem-Sugui, S.; Ghivelder, L.; Cohen, L. F.
2015-08-01
In this paper, we present ac susceptibility and magnetotransport measurements on aged single crystals of the ferropnictide parent compound, BaFe2As2 with a paramagnetic-to-antiferromagnetic transition temperature of 134 K. The ac susceptibility shows the clear onset of a partial diamagnetic response with an onset temperature, commensurate with a subtle downturn in resistivity at approximately 20 K. Below 20 K the magnetotransport shows in-plane anisotropy, magnetic-field history dependence and a hysteretic signature. Above 20 K the crystals show the widely reported high-field linear magnetoresistance. An enhanced noise signature in ac susceptibility is observed above 20 K, which varies in character with amplitude and frequency of the ac signal. The hysteresis in magnetoresistance and the observed sensitivity of the superconducting phase to the amplitude of the ac signal are indicative characteristics of granular or weakly linked filamentary superconductivity. These features taken together with the observed noise signature above T{c} suggests a link between the formation of the superconducting filamentary phase and the freezing of antiphase domain walls, known to exist in these materials.
NASA Astrophysics Data System (ADS)
Huang, C. L.; Fritsch, V.; Pilawa, B.; Yang, C. C.; Merz, M.; Löhneysen, H. v.
2015-04-01
We present measurements of the magnetization M , specific heat C , resistivity ρ , and magnetoresistance MR of single-crystalline hexagonal CeAuSn for temperature down to T =1.6 K and in magnetic field up to B =12 T . Antiferromagnetic ordering at TN=4.4 K is observed as previously found for polycrystalline samples. A strong magnetic easy-plane anisotropy of M for B perpendicular and parallel to the c direction is found with M⊥/M||≈15 in B =0.1 T around TN, which is attributed to crystal-electric-field anisotropy. The analysis of the magnetic susceptibility indicates ferromagnetic correlations above TN. Measurements of M (T ) under hydrostatic pressure P show that TN(P ) increases linearly with P at a small rate of 0.035 K/kbar up to 4 kbar and gradually saturates approaching P =16 kbar . Zero-field Δ C /T , the phonon contribution to C being subtracted, is proportional to T2 below TN indicating a gapless spin-wave spectrum. It is found that all Δ C (T ,B )/T curves for B =0 -9 T cross at the same temperature, providing an example of a particularly well defined isosbestic point in a very narrow region around Tiso=6.6 K . Finally, ρ (T ) and MR experiments with current perpendicular and parallel to B allow us to separate orbital effects from the Zeeman splitting.
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
NASA Astrophysics Data System (ADS)
Mi, Bin-Zhou
2016-09-01
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green's function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
Antiferromagnetic order and Kondo-lattice behavior in single-crystalline Ce2RhSi3
NASA Astrophysics Data System (ADS)
Szlawska, M.; Kaczorowski, D.; Ślebarski, A.; Gulay, L.; Stępień-Damm, J.
2009-04-01
Single crystal of Ce2RhSi3 was investigated by means of x-ray diffraction, magnetization, electrical resistivity, and heat-capacity measurements. Moreover, its electronic structure was studied by cerium core-level x-ray photoemission spectroscopy. The results revealed that Ce2RhSi3 is an antiferromagnetic Kondo lattice due to the presence of stable trivalent Ce ions.
NASA Astrophysics Data System (ADS)
Duan, T. F.; Ren, W. J.; Liu, W.; Zhang, Z. D.
2016-08-01
The magnetic structure of MnSn2 and magnetic phase transitions in this compound have been investigated by magnetic measurements on single crystals. The results show that two antiferromagnetic (AFM) states exist below 325 K and that a transition between these two phases occurs at 74 K. Applying a magnetic field (H) has great influence on the transition temperature. An anomalous magnetization process at low fields occurs when the magnetic field applied along the [110] direction, which is ascribed to the contribution of the basal anisotropy. Based on the data for the magnetization processes and the phase transition of the present single crystal, the H-T phase diagram has been established.
NASA Astrophysics Data System (ADS)
Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J.
2016-03-01
Antiferromagnetic materials are internally magnetic, but the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets externally invisible. This implies that information stored in antiferromagnetic moments would be invisible to common magnetic probes, insensitive to disturbing magnetic fields, and the antiferromagnetic element would not magnetically affect its neighbours, regardless of how densely the elements are arranged in the device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. Among the outstanding questions is how to manipulate and detect the magnetic state of an antiferromagnet efficiently. In this Review we focus on recent works that have addressed this question. The field of antiferromagnetic spintronics can also be viewed from the general perspectives of spin transport, magnetic textures and dynamics, and materials research. We briefly mention this broader context, together with an outlook of future research and applications of antiferromagnetic spintronics.
Antiferromagnetic spintronics.
Jungwirth, T; Marti, X; Wadley, P; Wunderlich, J
2016-03-01
Antiferromagnetic materials are internally magnetic, but the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets externally invisible. This implies that information stored in antiferromagnetic moments would be invisible to common magnetic probes, insensitive to disturbing magnetic fields, and the antiferromagnetic element would not magnetically affect its neighbours, regardless of how densely the elements are arranged in the device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. Among the outstanding questions is how to manipulate and detect the magnetic state of an antiferromagnet efficiently. In this Review we focus on recent works that have addressed this question. The field of antiferromagnetic spintronics can also be viewed from the general perspectives of spin transport, magnetic textures and dynamics, and materials research. We briefly mention this broader context, together with an outlook of future research and applications of antiferromagnetic spintronics. PMID:26936817
Antiferromagnetic order in single crystals of the S =2 quasi-one-dimensional chain MnCl3(bpy)
NASA Astrophysics Data System (ADS)
Shinozaki, Shin-ichi; Okutani, Akira; Yoshizawa, Daichi; Kida, Takanori; Takeuchi, Tetsuya; Yamamoto, Shoji; Risset, Olivia N.; Talham, Daniel R.; Meisel, Mark W.; Hagiwara, Masayuki
2016-01-01
A suite of experimental tools, including high-field magnetization and electron spin resonance (ESR) studies in magnetic fields of up to 50 T and heat capacity studies up to 9 T, have revealed antiferromagnetic order in single crystals of the Heisenberg S =2 chain compound MnCl3(bpy), where bpy is 2 ,2'-bipyridine . The Néel temperature, which depends on the strength of the applied magnetic field and its orientation with respect to the crystalline axes that was revealed by heat capacity measurements, is near 11.5 K in zero field. The spin-flop transition is identified in the magnetization curve acquired at 1.7 K and at μoHSFc=24 T along the c axis. The transition field HSF is lower than that expected from the previous antiferromagnetic resonance (AFMR) studies on a powder sample. The identification of the long-range antiferromagnetic order resolves an earlier report by Granroth et al. [Phys. Rev. Lett. 77, 1616 (1996)], 10.1103/PhysRevLett.77.1616 that identified MnCl3(bpy) as an S =2 Haldane system down to 40 mK. The ESR studies identify a wide range of antiferromagnetic resonance modes that provide additional microscopic information about the g values (ga*=2.09 , gb=1.92 , and gc=2.07 ), the zero-field splitting constants, D /kB=-1.5 K and E /kB=-0.17 K when the nearest-neighbor spin interaction J /kB=31.2 K, which is evaluated from fitting the susceptibility, and the anisotropy of this compound (easy axis is the c axis, the second easy-axis is the b axis, and the hard axis is the a* axis), when using a standard (two-sublattice) AFMR analysis that does not quantitatively reproduce the observed HSFc value. The observed resonance mode indicates the frequency minimum at HSFc.
Hardy, Will J; Yuan, Jiangtan; Guo, Hua; Zhou, Panpan; Lou, Jun; Natelson, Douglas
2016-06-28
With materials approaching the 2D limit yielding many exciting systems with intriguing physical properties and promising technological functionalities, understanding and engineering magnetic order in nanoscale, layered materials is generating keen interest. One such material is V5S8, a metal with an antiferromagnetic ground state below the Néel temperature TN ∼ 32 K and a prominent spin-flop signature in the magnetoresistance (MR) when H∥c ∼ 4.2 T. Here we study nanoscale-thickness single crystals of V5S8, focusing on temperatures close to TN and the evolution of material properties in response to systematic reduction in crystal thickness. Transport measurements just below TN reveal magnetic hysteresis that we ascribe to a metamagnetic transition, the first-order magnetic-field-driven breakdown of the ordered state. The reduction of crystal thickness to ∼10 nm coincides with systematic changes in the magnetic response: TN falls, implying that antiferromagnetism is suppressed; and while the spin-flop signature remains, the hysteresis disappears, implying that the metamagnetic transition becomes second order as the thickness approaches the 2D limit. This work demonstrates that single crystals of magnetic materials with nanometer thicknesses are promising systems for future studies of magnetism in reduced dimensionality and quantum phase transitions. PMID:27163511
Phase diagrams of a classical two-dimensional Heisenberg antiferromagnet with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Leidl, R.; Selke, W.
2004-11-01
A classical variant of the two-dimensional anisotropic Heisenberg model reproducing inelastic neutron scattering experiments on La5Ca9Cu24O41 [M. Matsuda , Phys. Rev. B 68, 060406(R) (2003)] is analyzed using mostly Monte Carlo techniques. Phase diagrams with external fields parallel and perpendicular to the easy axis of the anisotropic interactions are determined, including antiferromagnetic and spin-flop phases. Mobile spinless defects, or holes, are found to form stripes which bunch, debunch, and break up at a phase transition. A parallel field can lead to a spin-flop phase.
Neto, Minos A; de Sousa, J Ricardo; Branco, N S
2015-05-01
We have studied the presence of plateaus on the low-temperature magnetization of an antiferromagnetic spin-1 chain, as an external uniform magnetic field is varied. A crystal-field interaction is present in the model and the exchange constants follow a random quenched (Bernoulli or Gaussian) distribution. Using a transfer-matrix technique we calculate the largest Lyapunov exponent and, from it, the magnetization at low temperatures as a function of the magnetic field, for different values of the crystal field and the width of the distributions. For the Bernoulli distribution, the number of plateaus increases, with respect to the uniform case [Litaiff et al., Solid State Commun. 147, 494 (2008)] and their presence can be linked to different ground states, when the magnetic field is varied. For the Gaussian distributions, the uniform scenario is maintained, for small widths, but the plateaus structure disappears as the width increases. PMID:26066165
NASA Astrophysics Data System (ADS)
Juan-Juan, Liu; Jin-Chen, Wang; Wei, Luo; Jie-Ming, Sheng; Zhang-Zhen, He; A. Danilkin, S.; Wei, Bao
2016-03-01
The magnetic structure of the spin-chain antiferromagnet SrCo2V2O8 is determined by single-crystal neutron diffraction experiment. The system undergoes magnetic long range order below T_N = 4.96 K. The moment of 2.16{\\mu}_B per Co at 1.6 K in the screw chain running along the c axis alternates in the c-axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetically along the other in-plane axis. This magnetic configuration breaks the 4-fold symmetry of the tetragonal crystal structure and leads to two equally populated magnetic twins with antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo2V2O8 warrants SrCo2V2O8 another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism.
Antiferromagnetic order induced by gadolinium substitution in Bi{sub 2}Se{sub 3} single crystals
Kim, S. W.; Jung, M. H.; Vrtnik, S.; Dolinšek, J.
2015-06-22
Magnetic topological insulators can serve as a fundamental platform for various spin-based device applications. We report the antiferromagnetic order induced by the magnetic impurity dopants of Gd in Gd{sub x}Bi{sub 2−x}Se{sub 3} and the systematic results with varying the Gd concentration x ( = 0.14, 0.20, 0.30, and 0.40). The antiferromagnetic order is demonstrated by the magnetic susceptibility, electrical resistivity, and specific heat measurements. The anomaly observed at T{sub N} = 6 K for x ≥ 0.30 shifts towards lower temperature with increasing the magnetic field, indicative of antiferromagnetic ground state. The Gd substitution into Bi{sub 2}Se{sub 3} enables not only tuning the magnetism from paramagnetic to antiferromagnetic for high x (≥ 0.30) but also giving a promising candidate for antiferromagnetic topological insulators.
NASA Astrophysics Data System (ADS)
Tretiakov, Oleg; Barker, Joseph
Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which e.g. results in a complete cancelation of the Magnus force. We find that the composite nature of antiferromagnetic skyrmions gives rise to different dynamical behavior, both due to an applied current and temperature effects. O.A.T. and J.B. acknowledge support by the Grants-in-Aid for Scientific Research (Nos. 25800184, 25247056, 25220910 and 15H01009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and SpinNet.
NASA Astrophysics Data System (ADS)
Kaczorowski, D.; Pikul, A. P.; Gnida, D.; Tran, V. H.
2009-07-01
Single crystals of Ce2PdIn8 were studied by means of magnetic susceptibility, electrical resistivity, and specific heat measurements. The compound was found to be a heavy fermion clean-limit superconductor with Tc=0.68K. Most remarkably, the superconductivity in this system emerges out of the antiferromagnetic state that sets in at TN=10K, and both cooperative phenomena coexist in a bulk at ambient pressure conditions.
Kaczorowski, D; Pikul, A P; Gnida, D; Tran, V H
2009-07-10
Single crystals of Ce2PdIn8 were studied by means of magnetic susceptibility, electrical resistivity, and specific heat measurements. The compound was found to be a heavy fermion clean-limit superconductor with Tc=0.68 K. Most remarkably, the superconductivity in this system emerges out of the antiferromagnetic state that sets in at TN=10 K, and both cooperative phenomena coexist in a bulk at ambient pressure conditions. PMID:19659236
Motion of a single hole in a quantum antiferromagnet at finite temperatures
Igarashi, J. ); Fulde, P. )
1993-07-01
Motion of a single hole is studied at finite temperatures in the [ital t]-[ital J] model on a slave-fermion Schwinger-boson representation. The spin fluctuation is treated with the mean-field theory of Arovas and Auerbach. The Green's function for the slave fermion is calculated within the self-consistent Born approximation. A sharp quasiparticle peak is found to be separated from a broad spectrum of incoherence in the spectral function for low temperatures. The Green's function for the physical hole is calculated by taking account of the multiple scattering between the slave fermion and the Schwinger boson. A bound state of the slave fermion and the Schwinger boson is found at low temperatures, suggesting that the spin and the charge cannot be separated into a simple form. The energy of the bound state is minimized at momenta ([plus minus][pi]/2, [plus minus][pi]/2), indicating that a small pocketlike Fermi surface is formed around the momenta for low concentrations of dopant holes.
Cell dimensions and antiferromagnetism of lunar and terrestrial ilmenite single crystals
Thorpe, A.N.; Minkin, J.A.; Senftle, F.E.; Alexander, Corrine; Briggs, Charles; Evans, H.T., Jr.; Nord, G.L., Jr.
1977-01-01
X-Ray diffraction and anisotropic magnetic measurements have been made on single crystals of lunar ilmenite and on terrestrial ilmenite from Bancroft, Ontario, Canada and the Ilmen Mountains, U.S.S.R. The elongated c-axis of lunar ilmenite, previously reported, is confirmed by new measurements. The shorter c-axis found in terrestrial specimens is ascribed to Fe3+ substitution for Ti4+ in the titanium layer. Magnetic measurements on the same specimens show that, in agreement with the Ishikawa-Shirane et al. model, the initial shortening of the c-axis by the above substitution of small amounts of Fe3+ (<8%) causes an increase in Fe2+-Fe2+ exchange coupling through Fe3+ in the titanium layer that lowers the Ne??el transition temperature. The Weiss temperatures and other magnetic parameters confirm this model proposed by Ishikawa and Shirane et al. Additional transitions found in one of the terrestrial specimens (Bancroft) have been ascribed to a small amount of an exsolved spinel phase, possibly a solid solution phase of magnetite-u??lvospinel. The spinel phase is localized in hematite-rich blebs which exsolved from the host ilmenite-rich phase. ?? 1977.
Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4
NASA Astrophysics Data System (ADS)
Zaharko, O.; Christensen, N. B.; Cervellino, A.; Tsurkan, V.; Maljuk, A.; Stuhr, U.; Niedermayer, C.; Yokaichiya, F.; Argyriou, D. N.; Boehm, M.; Loidl, A.
2011-09-01
We study the evidence for spin liquid in the frustrated diamond lattice antiferromagnet CoAl2O4 by means of single-crystal neutron scattering in zero and applied magnetic fields. The magnetically ordered phase appearing below TN=8 K remains nonconventional down to 1.5 K. The magnetic Bragg peaks at the q=0 positions are broad and their line shapes have strong Lorentzian contributions. Additionally, the peaks are connected by weak diffuse streaks oriented along the <111> directions. The observed short-range magnetic correlations are explained within the spiral spin-liquid model. The specific shape of the energy landscape of the system, with an extremely flat energy minimum around q=0 and many low-lying excited spiral states with q=<111>, results in thermal population of this manifold at finite temperatures. The agreement between the experimental results and the spiral spin-liquid model is only qualitative, indicating that microstructure effects might be important to achieve quantitative agreement. Application of a magnetic field significantly perturbs the spiral spin-liquid correlations. The magnetic peaks remain broad but acquire more Gaussian line shapes and increase in intensity. The 1.5 K static magnetic moment increases from 1.58 μB/Co at zero field to 2.08 μB/Co at 10 T. The magnetic excitations appear rather conventional at zero field. Analysis using classical spin-wave theory yields values of the nearest- and next-nearest-neighbor exchange parameters J1=0.92(1) meV and J2=0.101(2) meV and an additional anisotropy term D=-0.0089(2) meV for CoAl2O4. In the presence of a magnetic field, the spin excitations broaden considerably and become nearly featureless at the zone center.
Antiferromagnetic resonance in charge ordering state of Pr 0.5Ca 0.5MnO 3- δ single crystal
NASA Astrophysics Data System (ADS)
Kawamata, S.; Noguchi, S.; Okuda, K.; Nojiri, H.; Motokawa, M.
2001-05-01
An antiferromagnetic resonance (AFMR) is observed in the charge ordered antiferromagnetic phase of Pr 0.5Ca 0.5MnO 3- δ single crystal for the first time. Above the Néel temperature, TN=173 K, a paramagnetic resonance with g=2.0 is observed. There is no significant change of the resonance spectra at the charge ordering transition temperature, TCO=242 K. Below TN, a branch of AFMR is found. Since the resonance field of this mode increases linearly as the frequency is decreased, this branch is assigned as the spin-flop mode. Below 60 K, the critical fields, BC, evaluated as the extrapolation of this mode to zero frequency agree well with the insulator-metal transition fields, BCO, at which the melting of the charge-ordering phase occurs. Present results indicate that the temperature dependence of BCO is affected by the temperature dependence of BC.
Antiferromagnetism in EuCu2As2 and EuCu1.82Sb2 single crystals
Anand, V. K.; Johnston, D. C.
2015-05-07
Single crystals of EuCu2As2 and EuCu2Sb2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat Cp(T), and electrical resistivity ρ(T) measurements. EuCu2As2 crystallizes in the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm), whereas EuCu2Sb2 crystallizes in the related primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu2Sb2 crystals showed the presence of vacancies on the Cu sites, yielding themore » actual composition EuCu1.82Sb2. The ρ(T) and Cp(T) data reveal metallic character for both EuCu2As2 and EuCu1.82Sb2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),Cp(T), and ρ(T) data for both EuCu2As2 (TN = 17.5 K) and EuCu1.82Sb2 (TN = 5.1 K). In EuCu1.82Sb2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu+2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu2As2, also containing Eu+2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less
Antiferromagnetism in EuCu2As2 and EuCu1.82Sb2 single crystals
NASA Astrophysics Data System (ADS)
Anand, V. K.; Johnston, D. C.
2015-05-01
Single crystals of EuCu2As2 and EuCu2Sb2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T , isothermal magnetization M versus magnetic field H , specific heat Cp(T ) , and electrical resistivity ρ (T ) measurements. EuCu2As2 crystallizes in the body-centered tetragonal ThCr2Si2 -type structure (space group I 4 /m m m ), whereas EuCu2Sb2 crystallizes in the related primitive tetragonal CaBe2Ge2 -type structure (space group P 4 /n m m ). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu2Sb2 crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu1.82Sb2 . The ρ (T ) and Cp(T ) data reveal metallic character for both EuCu2As2 and EuCu1.82Sb2 . Antiferromagnetic (AFM) ordering is indicated from the χ (T ) ,Cp(T ) , and ρ (T ) data for both EuCu2As2 (TN=17.5 K) and EuCu1.82Sb2 (TN=5.1 K). In EuCu1.82Sb2 , the ordered-state χ (T ) and M (H ) data suggest either a collinear A-type AFM ordering of Eu+2 spins S =7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal a b plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. The anisotropic χ (T ) and isothermal M (H ) data for EuCu2As2 , also containing Eu+2 spins S =7/2 , strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.
Li, Hai-Feng; Cao, Chongde; Wildes, Andrew; Schmidt, Wolfgang; Schmalzl, Karin; Hou, Binyang; Regnault, Louis-Pierre; Zhang, Cong; Meuffels, Paul; Löser, Wolfgang; Roth, Georg
2015-01-01
Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenomena like superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with respective propagation wave vectors at Q± = (H ± 0.557(1), 0, L ± 0.150(1)) and QC = (H ± 0.564(1), 0, L), where (H, L) are allowed Miller indices, in an ErPd2Si2 single crystal by neutron scattering and establish their respective temperature- and field-dependent phase diagrams. The modulations can co-exist but also compete depending on temperature or applied field strength. They couple differently with the underlying lattice albeit with associated moments in a common direction. The Q± modulation may be attributed to localized 4f moments while the QC correlates well with itinerant conduction bands, supported by our transport studies. Hence, ErPd2Si2 represents a new model compound that displays clearly-separated itinerant and localized moments, substantiating early theoretical predictions and providing a unique platform allowing the study of itinerant electron behavior in a localized antiferromagnetic matrix. PMID:25608949
NASA Astrophysics Data System (ADS)
Mukuda, H.; Abe, M.; Kitaoka, Y.; Kotegawa, H.; Tokiwa, K.; Watanabe, T.; Iyo, A.; Kito, H.; Tanaka, Y.; Kodama, Y.
2007-09-01
We report systematic Cu-NMR studies on five-layered cuprates from under-doped HgBa2Ca4Cu5O12+δ (Hg-1245(UD)) to slightly overdoped Tl-1245(OVD), and compare with optimally-doped Hg-1245(OPT). In the under-doped Hg-1245(UD), antiferromagnetism (AFM) has been found to take place at TN = 290 K, exhibiting a large antiferromagnetic moment of 0.67-0.69 μB at three inner planes (IP's). These values are comparable to that reported for non-doped cuprates, suggesting that the IP's may be in a nearly non-doped regime. Most surprisingly, the AFM order is also detected with MAFM(OP) = 0.1 μB even at two outer planes (OP's) that are responsible for the onset of superconductivity (SC) with Tc = 72 K. The high-Tc SC at Tc = 72 K can uniformly coexist on a microscopic level with the AFM at OP's. This is the first microscopic evidence for the uniformly mixed phase of AFM and SC on a single CuO2 plane. Although, the AFM/SC mixed CuO2 planes are significantly separated by three non-doped AFM layers, the onset of AFM does not prevent the occurrence of SC with the high value of Tc = 72 K.
Li, Hai-Feng; Cao, Chongde; Wildes, Andrew; Schmidt, Wolfgang; Schmalzl, Karin; Hou, Binyang; Regnault, Louis-Pierre; Zhang, Cong; Meuffels, Paul; Löser, Wolfgang; Roth, Georg
2015-01-01
Identifying the nature of magnetism, itinerant or localized, remains a major challenge in condensed-matter science. Purely localized moments appear only in magnetic insulators, whereas itinerant moments more or less co-exist with localized moments in metallic compounds such as the doped-cuprate or the iron-based superconductors, hampering a thorough understanding of the role of magnetism in phenomena like superconductivity or magnetoresistance. Here we distinguish two antiferromagnetic modulations with respective propagation wave vectors at Q± = (H ± 0.557(1), 0, L ± 0.150(1)) and QC = (H ± 0.564(1), 0, L), where (H, L) are allowed Miller indices, in an ErPd2Si2 single crystal by neutron scattering and establish their respective temperature- and field-dependent phase diagrams. The modulations can co-exist but also compete depending on temperature or applied field strength. They couple differently with the underlying lattice albeit with associated moments in a common direction. The Q± modulation may be attributed to localized 4f moments while the QC correlates well with itinerant conduction bands, supported by our transport studies. Hence, ErPd2Si2 represents a new model compound that displays clearly-separated itinerant and localized moments, substantiating early theoretical predictions and providing a unique platform allowing the study of itinerant electron behavior in a localized antiferromagnetic matrix. PMID:25608949
Single antiferromagnetic MnTe (sub)monolayers in CdTe/CdMgTe quantum wells
NASA Astrophysics Data System (ADS)
Prechtl, G.; Heiss, W.; Mackowski, S.; Bonanni, A.; Karczewski, G.; Sitter, H.; Jantsch, W.
2000-06-01
Antiferromagnetic MnTe (sub)monolayers inserted into nonmagnetic CdTe/CdMgTe quantum wells are investigated by magneto-optical spectroscopy. In particular, the Zeeman splitting is determined from polarization dependent photoluminescence excitation experiments. Rapid thermal annealing (RTA) is applied to diffuse Mn out of the (sub)monolayer barriers into the quantum well. The resulting Mn diffusion leads to a substantial increase of the Zeeman splitting. Furthermore, the annealing induced broadening of the MnTe (sub)monolayer barrier in the well is accompanied by a decrease of the barrier height, leading to a blue shift or a red shift of the e1-hh1 transition, depending on the detailed sample structure. A comparison of the observed energy shifts with model calculations allows us to estimate the thickness of the MnTe barriers. These are found to be very close to their nominal values before annealing, regardless of the chosen MnTe band offset and effective masses.
Kondo lattice and antiferromagnetic behavior in quaternary CeTAl4Si2 (T = Rh, Ir) single crystals
Maurya, Arvind; Kulkarni, Ruta; Thamizhavel, Arumugam; Paudyal, Durga; Dhar, Sudesh Kumar
2016-02-26
Here, we have explored in detail the anisotropic magnetic properties of CeRhAl4Si2 and CeIrAl4Si2, which undergo two antiferromagnetic transitions, at TN1 = 12.6 and 15.5 K, followed by a second transition at TN2 = 9.4 and 13.8 K, respectively, with the [001]-axis as the relatively easy axis of magnetization. The electrical resistivity at ambient and applied pressure provides evidence of Kondo interaction in both compounds, further supported by a reduced value of the entropy associated with the magnetic ordering. The Sommerfeld coefficient γ is inferred to be 195.6 and 49.4 mJ/(mol K2) for CeRhAl4Si2 and CeIrAl4Si2, respectively, classifying these materialsmore » as moderate heavy-fermion compounds. The crystal electric field energy levels are derived from the peak seen in the Schottky heat capacity. Furthermore, we have also performed electronic structure calculations by using the local spin density approximation + U [LSDA+U] approach, which provide physical insights on the observed magnetic behavior of these two compounds.« less
Tancharakorn, Somchai; Fabbiani, Francesca P A; Allan, David R; Kamenev, Konstantin V; Robertson, Neil
2006-07-19
The magnetic susceptibility and single-crystal X-ray structure of the one-dimensional Heisenberg antiferromagnetic chain tetramethylammonium manganese trichloride (TMMC) have been studied under pressure as a facile route to develop structure-property relationships. The X-ray structure of TMMC was determined at 0, 2.1, 3.8, 6.8, 12.2, and 17.0 kbar using diamond-anvil cell techniques and synchrotron radiation. The space group is confirmed to be P6(3)/m up to 17 kbar, and structural refinement shows that the Mn-Mn separations between and along the chains change by about 3.4 and 2.5%, respectively, over 17 kbar. A structural transition from hexagonal to monoclinic symmetry possibly occurs at 17 kbar, associated with a loss of crystal quality. Variable-temperature magnetic susceptibility data were taken at 0, 0.3, 1.5, 2.9, 4.0, 5.2, and 6.5 kbar and show that the intrachain coupling constant changes from -6.85 to -7.81 K over this range. The interchain coupling constant of -0.54 K can also be extracted from the Fisher model modified for interacting chains. The pressure-temperature diagram shows the slope of the intrachain antiferromagnetic coupling with pressure, DeltaT(IAF)/DeltaP, changes from 0.5 to 1.6 K/kbar at 2 kbar where the structure changes from P2(1)/a to P2(1)/m. Comparison of the magnetic and structural data are consistent with the power-law relationship developed by Bloch where J proportional, variant r-n, r = Mn...Mn separation and n approximately 10. PMID:16834394
Electrical switching of an antiferromagnet
NASA Astrophysics Data System (ADS)
Jungwirth, Tomas
Louis Néel pointed out in his Nobel lecture that while abundant and interesting from theoretical viewpoint, antiferromagnets did not seem to have any applications. Indeed, the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization make antiferromagnets hard to control by tools common in ferromagnets. Strong coupling would be achieved if the externally generated field had a sign alternating on the scale of a lattice constant at which moments alternate in AFMs. However, generating such a field has been regarded unfeasible, hindering the research and applications of these abundant magnetic materials. We have recently predicted that relativistic quantum mechanics may offer staggered current induced fields with the sign alternating within the magnetic unit cell which can facilitate a reversible switching of an antiferromagnet by applying electrical currents with comparable efficiency to ferromagnets. Among suitable materials is a high Néel temperature antiferromagnet, tetragonal-phase CuMnAs, which we have recently synthesized in the form of single-crystal epilayers structurally compatible with common semiconductors. We demonstrate electrical writing and read-out, combined with the insensitivity to magnetic field perturbations, in a proof-of-concept antiferromagnetic memory device. We acknowledge support from European Research Council Advanced Grant No. 268066.
Adelnia, Fatemeh; Chiesa, Alessandro; Bordignon, Sara; Carretta, Stefano; Ghirri, Alberto; Candini, Andrea; Cervetti, Christian; Evangelisti, Marco; Affronte, Marco; Sheikin, Ilya; Winpenny, Richard; Timco, Grigore; Borsa, Ferdinando; and others
2015-12-28
A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr{sub 8}Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μ{sub 0}H{sub c1} = 2.15 T is found to be an almost true LC while the second LC at μ{sub 0}H{sub c2} = 6.95 T has an anti-crossing gap of Δ{sub 12} = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μ{sub 0}H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ∼ 10{sup 10} rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.
NASA Astrophysics Data System (ADS)
Adelnia, Fatemeh; Chiesa, Alessandro; Bordignon, Sara; Carretta, Stefano; Ghirri, Alberto; Candini, Andrea; Cervetti, Christian; Evangelisti, Marco; Affronte, Marco; Sheikin, Ilya; Winpenny, Richard; Timco, Grigore; Borsa, Ferdinando; Lascialfari, Alessandro
2015-12-01
A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr8Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μ0Hc1 = 2.15 T is found to be an almost true LC while the second LC at μ0Hc2 = 6.95 T has an anti-crossing gap of Δ12 = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μ0H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ˜ 1010 rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.
NASA Astrophysics Data System (ADS)
Chikara, S.; Korneta, O. B.; Qi, T. F.; Parkin, S.; Cao, G.; Song, W. P.; Crummett, W. P.
2009-03-01
Bilayered Ca3Ru2O7 is a highly anisotropic system [1] characterized by orbitally-driven colossal magnetoresistance^2 and an unusual antiferromagnetic metallic (AFM-M) state [2]. We report transport and thermodynamic properties of (Ca1-x Ax)3Ru2O7 (A = Sr, Ba) single crystals as a function of temperature and applied magnetic field. While Ba doping shows a far stronger impact, both Sr and Ba substitution for Ca induce a large array of interesting phenomena. Among them, a bulk spin-valve effect occurs in the AFM-M range, which is largely broadened due to the doping. This effect in bulk crystals is a novel phenomenon first observed in Ca3(Ru1-xCrx)2O7 single crystals [3]. The spin-valve effect in (Ca1-xAx)3Ru2O7 single crystals opens new avenues to understand the underlying physics and realize the potential of spin valves in practical devices.[0pt] [1] G. Cao et al., PRL 78, 1751 (1997)[0pt] [2] X. N. Lin et al., PRL 95, 017203 (2005)[0pt] [3] G. Cao et al., PRL 100, 016604 (2008)
Magnetic coupling between Sm3+ and the canted spin in an antiferromagnetic SmFeO3 single crystal
Cheng, J G; Zhou, J.-S.; Mandrus, D.; Goodenough, J; Marshall, L; Yan, Jiaqiang
2012-01-01
The perovskite SmFeO3 exhibits type-G AF ordering at TN 670 K and an easy axis rotation transition at TSR 480 K. Owing to the peculiar site anisotropy of rare-earth Sm3+, the moment on Sm3+ is oriented antiparallel to the canted spin from the Fe3+ sublattice along the a axis at T < TSR. Development of the magnetic moment on Sm3+ as temperature decreases makes it possible to balance the two magnetic moments at Tcomp. Application of a moderate external magnetic field along the a axis can trigger an abrupt reversal of the moment on Sm3+ and the canted spin relative to the external field at a temperature around Tcomp. We report here a study of the field-induced magnetic-moment reversal in a single crystal SmFeO3 by measuring the magnetization and specific heat with the external field along different crystallographic axes.
NASA Astrophysics Data System (ADS)
Zheng, H.; Terzic, J.; Ye, Feng; Wan, X. G.; Wang, D.; Wang, Jinchen; Wang, Xiaoping; Schlottmann, P.; Yuan, S. J.; Cao, G.
2016-06-01
The orthorhombic perovskite SrIr O3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose an insulating state. We report results of our investigation of bulk single-crystal S r0.94I r0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIr O3 . It retains the same crystal structure as stoichiometric SrIr O3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition occurring in the basal-plane resistivity at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear temperature dependence up to 800 K but the strong electronic anisotropy renders an insulating behavior in the out-of-plane resistivity. The Hall resistivity undergoes an abrupt sign change and grows below 40 K, which along with the Sommerfeld constant of 20 mJ /mol K2 suggests a multiband effect. All results including our first-principles calculations underscore a delicacy of the paramagnetic, metallic state in SrIr O3 that is in close proximity to an AFM insulating state. The contrasting ground states in isostructural S r0.94I r0.78O2.68 and SrIr O3 illustrate a critical role of lattice distortions and Ir deficiency in rebalancing the ground state in the iridates. Finally, the concurrent AFM and MI transitions reveal a direct correlation between the magnetic transition and formation of an activation gap in the iridate, which is conspicuously absent in S r2Ir O4 .
Niazi, A.; Bud'ko, S.L.; Schlagel, D.L.; Yan, J.Q.; Lograsso, T.A.; Kreyssig, A.; Das, S.; Nandi, S.; Goldman, A.I.; Honecker, A.; McCallum, R.W.; Reehuis, M.; Pieper, O.; Lake, B.; Johnston, D.C.
2009-05-01
The compound CaV{sub 2}O{sub 4} contains V{sup +3} cations with spin S=1 and has an orthorhombic structure at room temperature containing zigzag chains of V atoms running along the c axis. We have grown single crystals of CaV{sub 2}O{sub 4} and report crystallography, static magnetization, magnetic susceptibility x, ac magnetic susceptibility, heat capacity C{sub p}, and thermal expansion measurements in the temperature T range of 1.8--350 K on the single crystals and on polycrystalline samples. An orthorhombic-to-monoclinic structural distortion and a long-range antiferromagnetic (AF) transition were found at sample-dependent temperatures T{sub S}{approx}108--145 K and T{sub N}{approx}51--76 K, respectively. In two annealed single crystals, another transition was found at {approx}200 K. In one of the crystals, this transition is mostly due to V{sub 2}O{sub 3} impurity phase that grows coherently in the crystals during annealing. However, in the other crystal the origin of this transition at 200 K is unknown. The x(T) shows a broad maximum at {approx}300 K associated with short-range AF ordering and the anisotropy of x above T{sub N} is small. The anisotropic x(T{yields}0) data below T{sub N} show that the (average) easy axis of the AF magnetic structure is the b axis. The C{sub p}(T) data indicate strong short-range AF ordering above T{sub N}, consistent with the x(T) data. We fitted our x data by a J{sub 1}-J{sub 2} S=1 Heisenberg chain model, where J{sub 1}(J{sub 2}) is the (next)-nearest-neighbor exchange interaction. We find J{sub 1}{approx}230 K and surprisingly, J{sub 2}/J{sub 1}{approx}0 (or J{sub 1}/J{sub 2}{approx}0). The interaction J{sub {perpendicular}} between these S=1 chains leading to long-range AF ordering at T{sub N} is estimated to be J{sub {perpendicular}}/J{sub 1}{approx_equal}0.04.
Itoh, S.; Nakayama, T.; Kajimoto, R.; Adams, M. A.; Materials Science Division; High Energy Accelerator Research Organization; Rutherford Appleton Lab.
2009-01-01
The dynamic structure factors S(q,w) of an ideal percolating network, the three-dimensional (3d) dilute Heisenberg antiferromagnet RbMn{sub 0.4}Mg{sub 0.6}F{sub 3}, obtained from high resolution ({Delta}E = 17.5 {micro}eV) inelastic neutron scattering (INS) experiments are analyzed for the first time within the framework of the single-length-scaling postulate (SLSP). The analysis confirms the validity of the SLSP and is also used to extract the values of the key exponents governing the spin dynamics, the dynamic exponent (z{sub AF} = D{sub f}/tilded{sub AF}) being 2.5 {+-} 0.1 and the spectral dimension tilded{sub AF} for antiferromagnetic (AFM) fractons taking a value of unity.
Spintronics in antiferromagnets
Soh, Yeong-Ah; Kummamuru, Ravi K.
2012-05-10
Magnetic domains and the walls between are the subject of great interest because of the role they play in determining the electrical properties of ferromagnetic materials and as a means of manipulating electron spin in spintronic devices. However, much less attention has been paid to these effects in antiferromagnets, primarily because there is less awareness of their existence in antiferromagnets, and in addition they are hard to probe since they exhibit no net magnetic moment. In this paper, we discuss the electrical properties of chromium, which is the only elemental antiferromagnet and how they depend on the subtle arrangement of the antiferromagnetically ordered spins. X-ray measurement of the modulation wavevector Q of the incommensurate antiferromagnetic spin-density wave shows thermal hysteresis, with the corresponding wavelength being larger during cooling than during warming. The thermal hysteresis in the Q vector is accompanied with a thermal hysteresis in both the longitudinal and Hall resistivity. During cooling, we measure a larger longitudinal and Hall resistivity compared with when warming, which indicates that a larger wavelength at a given temperature corresponds to a smaller carrier density or equivalently a larger antiferromagnetic ordering parameter compared to a smaller wavelength. This shows that the arrangement of the antiferromagnetic spins directly influences the transport properties. In thin films, the sign of the thermal hysteresis for Q is the same as in thick films, but a distinct aspect is that Q is quantized.
Antiferromagnetic magnonic crystals
NASA Astrophysics Data System (ADS)
Troncoso, Roberto E.; Ulloa, Camilo; Pesce, Felipe; Nunez, A. S.
2015-12-01
We describe the features of magnonic crystals based upon antiferromagnetic elements. Our main results are that with a periodic modulation of either magnetic fields or system characteristics, such as the anisotropy, it is possible to tailor the spin-wave spectra of antiferromagnetic systems into a band-like organization that displays a segregation of allowed and forbidden bands. The main features of the band structure, such as bandwidths and band gaps, can be readily manipulated. Our results provide a natural link between two steadily growing fields of spintronics: antiferromagnetic spintronics and magnonics.
Ferromagnetic response of a ``high-temperature'' quantum antiferromagnet
NASA Astrophysics Data System (ADS)
Wang, Xin
2014-03-01
We study the antiferromagnetic phase of the ionic Hubbard model at finite temperature using dynamical mean-field theory. We find that the ionic potential plays a dual role in determining the antiferromagnetic order. A small ionic potential (compared to the Hubbard repulsion) increases the super-exchange coupling, thereby implying an increase of the Neel temperature of the system, which should facilitate observation of antiferromagnetic ordering experimentally. On the other hand, for large ionic potential, the antiferromagnetic ordering is killed and the system becomes a charge density wave with electron occupancies alternating between 0 and 2. This novel way of degrading antiferromagnetism leads to spin polarization of the low energy single particle density of states. The dynamic response of the system thus mimics ferromagnetic behavior, although the system is still an antiferromagnet in terms of the static spin order. Work done in collaboration with Rajdeep Sensarma and Sankar Das Sarma, and supported by NSF-JQI-PFC, AFOSR MURI, and ARO MURI.
Antiferromagnetism in CaAl2Si2-type CaMn2As2 and SrMn2As2 single crystals
NASA Astrophysics Data System (ADS)
Sangeetha, N. S.; Pandey, Abhishek; Benson, Zackery A.; Johnston, D. C.
Magnetic susceptibility versus temperature χ (T) measurements of CaMn2As2 and SrMn2As2 crystals show clear antiferromagnetic (AFM) transitions at TN ~ 65 K and 120 K,1 respectively. The anisotropic behaviors in χ (T <=TN) suggest that both compounds are noncollinear antiferromagnets which may result either from an intrinsic noncollinear structure or from multiple collinear AFM domains that are not aligned collinearly.2 The χ (T) data at T >TN reveal that both compounds exhibit strong short-range AFM ordering, evidently associated with quasi-two-dimensional spin lattices. The electrical resistivities show insulating ground states with activation energies of ~ 63 meV in CaMn2As2 and 44 meV in SrMn2As2 . The experimental results thus reveal that both (Ca , Sr) Mn2As2 materials are AFM insulators at low temperatures and in analogy with the high Tc cuprates, may be potential parent compounds for CaAl2Si2-type superconductors. Work was supported by the USDOE under Contract No. DE-AC02-07CH11358.
Spin reorientation via antiferromagnetic coupling
Ranjbar, M.; Sbiaa, R.; Dumas, R. K.; Åkerman, J.; Piramanayagam, S. N.
2014-05-07
Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.
Antiferromagnetic hedgehogs with superconducting cores
NASA Astrophysics Data System (ADS)
Goldbart, Paul M.; Sheehy, Daniel E.
1998-09-01
Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang's SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to ``escape'' into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined.
Antiferromagnetic hedgehogs with superconducting cores
Goldbart, P.M.; Sheehy, D.E.
1998-09-01
Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}
Spectral function and photoemission spectra in antiferromagnetically correlated metals
Kampf, A.P.; Schrieffer, J.R. )
1990-11-01
Antiferromagnetic spin fluctuations in a two-dimensional metal, such as doped high-{Tc} superconductors, lead to a pseudogap in the electronic spectrum. In the spectral function weight is shifted from the single quasiparticle peak of the Fermi-liquid regime to the incoherent particle and hole backgrounds, which evolve into the upper and lower Mott-Hubbard bands of the antiferromagnetic insulator. Precursors of these split bands show up as shadow bands'' in angle-resolved photoemission spectra.
From local to nonlocal Fermi liquid in doped antiferromagnets
Prelovsek, P. |; Jaklic, J.; Bedell, K.
1999-07-01
The variation of single-particle spectral functions with doping is studied numerically within the t-J model. Results suggest that the corresponding self-energies change from local ones at the intermediate doping to strongly nonlocal ones for a weakly doped antiferromagnet. The nonlocality shows up most clearly in the pseudogap emerging in the density of states, due to the onset of short-range antiferromagnetic correlations. {copyright} {ital 1999} {ital The American Physical Society}
Antiferromagnetic Spin Seebeck Effect.
Wu, Stephen M; Zhang, Wei; Kc, Amit; Borisov, Pavel; Pearson, John E; Jiang, J Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand
2016-03-01
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF_{2}. A device scale on-chip heater is deposited on a bilayer of MnF_{2} (110) (30 nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF_{2} (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF_{2} through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T) are applied parallel to the easy axis of the MnF_{2} thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected. PMID:26991198
Electrical switching of an antiferromagnet
NASA Astrophysics Data System (ADS)
Wadley, P.; Howells, B.; Železný, J.; Andrews, C.; Hills, V.; Campion, R. P.; Novák, V.; Olejník, K.; Maccherozzi, F.; Dhesi, S. S.; Martin, S. Y.; Wagner, T.; Wunderlich, J.; Freimuth, F.; Mokrousov, Y.; Kuneš, J.; Chauhan, J. S.; Grzybowski, M. J.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Jungwirth, T.
2016-02-01
Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.
Electrical switching of an antiferromagnet.
Wadley, P; Howells, B; Železný, J; Andrews, C; Hills, V; Campion, R P; Novák, V; Olejník, K; Maccherozzi, F; Dhesi, S S; Martin, S Y; Wagner, T; Wunderlich, J; Freimuth, F; Mokrousov, Y; Kuneš, J; Chauhan, J S; Grzybowski, M J; Rushforth, A W; Edmonds, K W; Gallagher, B L; Jungwirth, T
2016-02-01
Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 10(6) ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics. PMID:26841431
Magnetic field tuning of antiferromagnetic Yb3Pt4
NASA Astrophysics Data System (ADS)
Wu, L. S.; Janssen, Y.; Marques, C.; Bennett, M. C.; Kim, M. S.; Park, K.; Chi, Songxue; Lynn, J. W.; Lorusso, G.; Biasiol, G.; Aronson, M. C.
2011-10-01
We present measurements of the specific heat, magnetization, magnetocaloric effect, and magnetic neutron diffraction carried out on single crystals of antiferromagnetic Yb3Pt4, where highly localized Yb moments order at TN=2.4 K in zero field. The antiferromagnetic order was suppressed to TN→0 by applying a field of 1.85 T in the ab plane. Magnetocaloric effect measurements show that the antiferromagnetic phase transition is always continuous for TN>0, although a pronounced step in the magnetization is observed at the critical field in both neutron diffraction and magnetization measurements. These steps sharpen with decreasing temperature, but the related divergences in the magnetic susceptibility are cut off at the lowest temperatures, where the phase line itself becomes vertical in the field-temperature plane. As TN→0, the antiferromagnetic transition is increasingly influenced by a quantum critical end point, where TN ultimately vanishes in a first-order phase transition.
Antiferromagnetic inclusions in lunar glass
Thorpe, A.N.; Senftle, F.E.; Briggs, Charles; Alexander, Corrine
1974-01-01
The magnetic susceptibility of 11 glass spherules from the Apollo 15, 16, and 17 fines and two specimens of a relatively large glass spherical shell were studied as a function of temperature from room temperature to liquid helium temperatures. All but one specimen showed the presence of antiferromagnetic inclusions. Closely spaced temperature measurements of the magnetic susceptibility below 77 K on five of the specimens showed antiferromagnetic temperature transitions (Ne??el transitions). With the exception of ilmenite in one specimen, these transitions did not correspond to any transitions in known antiferromagnetic compounds. ?? 1974.
Yeninas, Steven; Pandey, Abhishek; Ogloblichev, V.; Mikhalev, K.; Johnston, David C.; Furukawa, Yuji
2013-12-23
The magnetic structure and metal-insulator transition in antiferromagnetic (AFM) BaMn2As2 and Ba1−xKxMn2As2 single crystals have been investigated by 55Mn and 75As nuclear magnetic resonance (NMR) measurements. In the parent AFM insulator BaMn2As2 with a Néel temperature TN=625 K, we observed a 55Mn zero-field NMR (ZFNMR) spectrum and confirmed the G-type AFM structure from the field dependence of the 55Mn spectra and 75As NMR spectra below TN. In hole-doped crystals with x>0.01, similar 55Mn ZFNMR spectra were observed and the AFM state was revealed to be robust up to x=0.4 with the ordered moment nearly independent of x. The nuclear spin-lattice relaxation rates (1/T1) for both nuclei in the doped samples follow the Korringa relation T1T=const, indicating a metallic state. This confirms the coexistence of AFM ordered localized Mn spins and conduction carriers from a microscopic point of view. From the x dependence of (T1T)−1/2 for both nuclei, we conclude that this transition is caused by vanishing of the hole concentration as the transition is approached from the metallic side.
NASA Astrophysics Data System (ADS)
Torikai, E.; Ishihara, H.; Nagamine, K.; Kitazawa, H.; Tanaka, I.; Kojima, H.; Sulaiman, S. B.; Srinivas, S.; Das, T. P.
1993-03-01
By using a monodomain single crystal La2CuO4 grown by the travelling solvent floating zone method, the strength and direction of the local hyperfine field vector at positive muon sites were determined. Combining with the μ+ location determined separately, we found the importance of the local hyperfine field contributions with dipolar symmetry as well as the distant dipolar field from surrounding point dipoles of Cu atomic moments.
Thermophoresis of an antiferromagnetic soliton
NASA Astrophysics Data System (ADS)
Kim, Se Kwon; Tchernyshyov, Oleg; Tserkovnyak, Yaroslav
2015-07-01
We study the dynamics of an antiferromagnetic soliton under a temperature gradient. To this end, we start by phenomenologically constructing the stochastic Landau-Lifshitz-Gilbert equation for an antiferromagnet with the aid of the fluctuation-dissipation theorem. We then derive the Langevin equation for the soliton's center of mass by the collective coordinate approach. An antiferromagentic soliton behaves as a classical massive particle immersed in a viscous medium. By considering a thermodynamic ensemble of solitons, we obtain the Fokker-Planck equation, from which we extract the average drift velocity of a soliton. The diffusion coefficient is inversely proportional to a small damping constant α , which can yield a drift velocity of tens of m/s under a temperature gradient of 1 K/mm for a domain wall in an easy-axis antiferromagnetic wire with α ˜10-4 .
Quantification of quantum discord in a antiferromagnetic Heisenberg compound
Singh, H. Chakraborty, T. Mitra, C.
2014-04-24
An experimental quantification of concurrence and quantum discord from heat capacity (C{sub p}) measurement performed over a solid state system has been reported. In this work, thermodynamic measurements were performed on copper nitrate (CN, Cu(NO{sub 3}){sub 2}⋅2.5H{sub 2}O) single crystals which is an alternating antiferromagnet Heisenberg spin 1/2 system. CN being a weak dimerized antiferromagnet is an ideal system to investigate correlations between spins. The theoretical expressions were used to obtain concurrence and quantum discord curves as a function of temperature from heat capacity data of a real macroscopic system, CN.
Intrinsic magnetization of antiferromagnetic textures
NASA Astrophysics Data System (ADS)
Tveten, Erlend G.; Müller, Tristan; Linder, Jacob; Brataas, Arne
2016-03-01
Antiferromagnets (AFMs) exhibit intrinsic magnetization when the order parameter spatially varies. This intrinsic spin is present even at equilibrium and can be interpreted as a twisting of the homogeneous AFM into a state with a finite spin. Because magnetic moments couple directly to external magnetic fields, the intrinsic magnetization can alter the dynamics of antiferromagnetic textures under such influence. Starting from the discrete Heisenberg model, we derive the continuum limit of the free energy of AFMs in the exchange approximation and explicitly rederive that the spatial variation of the antiferromagnetic order parameter is associated with an intrinsic magnetization density. We calculate the magnetization profile of a domain wall and discuss how the intrinsic magnetization reacts to external forces. We show conclusively, both analytically and numerically, that a spatially inhomogeneous magnetic field can move and control the position of domain walls in AFMs. By comparing our model to a commonly used alternative parametrization procedure for the continuum fields, we show that the physical interpretations of these fields depend critically on the choice of parametrization procedure for the discrete-to-continuous transition. This can explain why a significant amount of recent studies of the dynamics of AFMs, including effective models that describe the motion of antiferromagnetic domain walls, have neglected the intrinsic spin of the textured order parameter.
Antiferromagnetic ordering in MnF(salen)
NASA Astrophysics Data System (ADS)
Čižmár, Erik; Risset, Olivia N.; Wang, Tong; Botko, Martin; Ahir, Akhil R.; Andrus, Matthew J.; Park, Ju-Hyun; Abboud, Khalil A.; Talham, Daniel R.; Meisel, Mark W.; Brown, Stuart E.
2016-06-01
Antiferromagnetic order at {{T}\\text{N}}=23 K has been identified in Mn(III)F(salen), salen = H14C16N2O2, an S = 2 linear-chain system. Using single crystals, specific heat studies performed in magnetic fields up to 9 T revealed the presence of a field-independent cusp at the same temperature where 1H NMR studies conducted at 42 MHz observed dramatic changes in the spin-lattice relaxation time, T 1, and in the linewidths. Low-field (less than 0.1 T) magnetic susceptibility studies of single crystals and randomly-arranged microcrystalline samples reveal subtle features associated with the transition.
Strong correlation induced charge localization in antiferromagnets
Zhu, Zheng; Jiang, Hong-Chen; Qi, Yang; Tian, Chushun; Weng, Zheng-Yu
2013-01-01
The fate of a hole injected in an antiferromagnet is an outstanding issue of strongly correlated physics. It provides important insights into doped Mott insulators closely related to high-temperature superconductivity. Here, we report a systematic numerical study of t-J ladder systems based on the density matrix renormalization group. It reveals a surprising result for the single hole's motion in an otherwise well-understood undoped system. Specifically, we find that the common belief of quasiparticle picture is invalidated by the self-localization of the doped hole. In contrast to Anderson localization caused by disorders, the charge localization discovered here is an entirely new phenomenon purely of strong correlation origin. It results from destructive quantum interference of novel signs picked up by the hole, and since the same effect is of a generic feature of doped Mott physics, our findings unveil a new paradigm which may go beyond the single hole doped system. PMID:24002668
Antiferromagnetic ordering in MnF(salen).
Čižmár, Erik; Risset, Olivia N; Wang, Tong; Botko, Martin; Ahir, Akhil R; Andrus, Matthew J; Park, Ju-Hyun; Abboud, Khalil A; Talham, Daniel R; Meisel, Mark W; Brown, Stuart E
2016-06-15
Antiferromagnetic order at [Formula: see text] K has been identified in Mn(III)F(salen), salen = H14C16N2O2, an S = 2 linear-chain system. Using single crystals, specific heat studies performed in magnetic fields up to 9 T revealed the presence of a field-independent cusp at the same temperature where (1)H NMR studies conducted at 42 MHz observed dramatic changes in the spin-lattice relaxation time, T 1, and in the linewidths. Low-field (less than 0.1 T) magnetic susceptibility studies of single crystals and randomly-arranged microcrystalline samples reveal subtle features associated with the transition. PMID:27160792
Magnetoelectric effect in simple collinear antiferromagnetic spinels
NASA Astrophysics Data System (ADS)
Saha, Rana; Ghara, Somnath; Suard, Emmanuelle; Jang, Dong Hyun; Kim, Kee Hoon; Ter-Oganessian, N. V.; Sundaresan, A.
2016-07-01
We report the discovery of the linear magnetoelectric effect in a family of spinel oxides, C o3O4 and Mn B2O4 (B =Al ,Ga) with simple collinear antiferromagnetic spin structure. An external magnetic field induces a dielectric anomaly at TN, accompanied by the generation of electric polarization that varies linearly with magnetic field. Magnetization and magnetoelectric measurements on a single crystal of MnG a2O4 together with a phenomenological theory suggest that the easy axis direction is [111] with the corresponding magnetic symmetry R 3¯'m' . The proposed theoretical model of single-ion contribution of magnetic ions located in a noncentrosymmetric crystal environment stands for a generic mechanism for observing magnetoelectric effects in these and other similar materials.
Antiferromagnetism in EuCu_{2}As_{2} and EuCu_{1.82}Sb_{2} single crystals
Anand, V. K.; Johnston, D. C.
2015-05-07
Single crystals of EuCu_{2}As_{2} and EuCu_{2}Sb_{2} were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat C_{p}(T), and electrical resistivity ρ(T) measurements. EuCu_{2}As_{2} crystallizes in the body-centered tetragonal ThCr_{2}Si_{2}-type structure (space group I4/mmm), whereas EuCu_{2}Sb_{2} crystallizes in the related primitive tetragonal CaBe_{2}Ge_{2}-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu_{2}Sb_{2} crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu_{1.82}Sb_{2}. The ρ(T) and C_{p}(T) data reveal metallic character for both EuCu_{2}As_{2} and EuCu_{1.82}Sb_{2}. Antiferromagnetic (AFM) ordering is indicated from the χ(T),C_{p}(T), and ρ(T) data for both EuCu_{2}As_{2} (T_{N} = 17.5 K) and EuCu_{1.82}Sb_{2} (T_{N} = 5.1 K). In EuCu_{1.82}Sb_{2}, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu^{+2} spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu_{2}As_{2}, also containing Eu^{+2} spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the
NASA Astrophysics Data System (ADS)
Bandiera, S.; Sousa, R. C.; Auffret, S.; Rodmacq, B.; Dieny, B.
2012-08-01
Synthetic antiferromagnets are of great interest as reference layers in magnetic tunnel junctions since they allow decreasing the dipolar coupling between the two magnetic electrodes and exhibit larger pinning fields than single reference layers. In this letter, we investigate the effect of the insertion of an ultrathin Pt layer in contact with the Ru spacer in synthetic antiferromagnets with perpendicular magnetic anisotropy. Surprisingly, for Ru thickness below 0.75 nm, the antiferromagnetic coupling amplitude through Ru first increases upon Pt insertion up to a critical Pt thickness (˜0.25 nm) above which coupling decreases. In addition, the corresponding increase of perpendicular magnetic anisotropy enhances the thermal stability of the structure.
Antiferromagnetism in Pr3In: Singlet/triplet physics withfrustration
Christianson, A.D.; Lawrence, J.M.; Zarestky, J.L.; Suzuki, H.; Thompson, J.D.; Hundley, M.F.; Sarrao, J.L.; Booth, C.H.; Antonio, D.; Cornelius, A.L.
2004-11-18
We present neutron diffraction, magnetic susceptibility and specific heat data for a single-crystal sample of the cubic (Cu{sub 3}Au structure) compound Pr{sub 3}In. This compound is believed to have a singlet ({Lambda}{sub 1}) groundstate and a low-lying triplet ({Lambda}{sub 4}) excited state. In addition, nearest-neighbor antiferromagnetic interactions are frustrated in this structure. Antiferromagnetic order occurs below T{sub N} = 12K with propagation vector (0, 0, 0.5 {center_dot}{delta}) where {delta} {approx} 1/12. The neutron diffraction results can be approximated with the following model: ferromagnetic sheets from each of the three Pr sites alternate in sign along the propagation direction with a twelve-unit-cell square-wave modulation. The three moments of the unit cell of 1 {micro}{sub B} magnitude are aligned so as to sum to zero as expected for nearest-neighbor antiferromagnetic interactions on a triangle. The magnetic susceptibility indicates that in addition to the antiferromagnetic transition at 12K, there is a transition near 70K below which there is a small (0.005 {micro}{sub B}) ferromagnetic moment. There is considerable field and sample dependence to these transitions. The specific heat data show almost no anomaly at T{sub N} = 12K. This may be a consequence of the induced moment in the {Lambda}{sub 1} singlet, but may also be a sample-dependent effect.
Electric voltage generation by antiferromagnetic dynamics
NASA Astrophysics Data System (ADS)
Yamane, Yuta; Ieda, Jun'ichi; Sinova, Jairo
2016-05-01
We theoretically demonstrate dc and ac electric voltage generation due to spin motive forces originating from domain wall motion and magnetic resonance, respectively, in two-sublattice antiferromagnets. Our theory accounts for the canting between the sublattice magnetizations, the nonadiabatic electron spin dynamics, and the Rashba spin-orbit coupling, with the intersublattice electron dynamics treated as a perturbation. This work suggests a way to observe and explore the dynamics of antiferromagnetic textures by electrical means, an important aspect in the emerging field of antiferromagnetic spintronics, where both manipulation and detection of antiferromagnets are needed.
Quantum Optomechanics of a Bose-Einstein Antiferromagnet
Jing, H.; Goldbaum, D. S.; Buchmann, L.; Meystre, P.
2011-06-03
We investigate the cavity optomechanical properties of an antiferromagnetic Bose-Einstein condensate, where the role of the mechanical element is played by spin-wave excitations. We show how this system can be described by a single rotor that can be prepared deep in the quantum regime under realizable experimental conditions. This system provides a bottom-up realization of dispersive rotational optomechanics, and opens the door to the direct observation of quantum spin fluctuations.
Antiferromagnetism and Kondo screening on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Lin, Heng-Fu; Hong-Shuai, Tao; Guo, Wen-Xiang; Liu, Wu-Ming
2015-05-01
Magnetic adatoms in the honeycomb lattice have received tremendous attention due to the interplay between Ruderman-Kittel-Kasuya-Yosida interaction and Kondo coupling leading to very rich physics. Here we study the competition between the antiferromagnetism and Kondo screening of local moments by the conduction electrons on the honeycomb lattice using the determinant quantum Monte Carlo method. While changing the interband hybridization V, we systematically investigate the antiferromagnetic-order state and the Kondo singlet state transition, which is characterized by the behavior of the local moment, antiferromagnetic structure factor, and the short range spin-spin correlation. The evolution of the single particle spectrum are also calculated as a function of hybridization V, we find that the system presents a small gap in the antiferromagnetic-order region and a large gap in the Kondo singlet region in the Fermi level. We also find that the localized and itinerant electrons coupling leads to the midgap states in the conduction band in the Fermi level at very small V. Moreover, the formation of antiferromagnetic order and Kondo singlet are studied as on-site interaction U or temperature T increasing, we have derived the phase diagrams at on-site interaction U (or temperature T) and hybridization V plane. Project supported by the National Key Basic Research Special Foundation of China (Grants Nos. 2011CB921502 and 2012CB821305), the National Natural Science Foundation of China (Grants Nos. 61227902, 61378017, and 11434015), the State Key Laboratory for Quantum Optics and Quantum Optical Devices, China (Grant No. KF201403).
Spatially anisotropic Heisenberg kagome antiferromagnet
NASA Astrophysics Data System (ADS)
Apel, W.; Yavors'kii, T.; Everts, H.-U.
2007-04-01
In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.
Incommensurate to commensurate antiferromagnetism in CeRhAl4Si2 : An 27Al NMR study
NASA Astrophysics Data System (ADS)
Sakai, H.; Hattori, T.; Tokunaga, Y.; Kambe, S.; Ghimire, N. J.; Ronning, F.; Bauer, E. D.; Thompson, J. D.
2016-01-01
27Al nuclear magnetic resonance (NMR) experiments have been performed on a single crystal of CeRhAl4Si2 , which is an antiferromagnetic Kondo-lattice compound with successive antiferromagnetic transitions of TN 1=14 K and TN 2=9 K at zero external field. In the paramagnetic state, the Knight shifts, quadrupolar frequency, and asymmetric parameter of electrical field gradient on the Al sites have been determined, which have local orthorhombic symmetry. The transferred hyperfine coupling constants are also determined. Analysis of the NMR spectra indicates that a commensurate antiferromagnetic structure exists below TN 2, but an incommensurate modulation of antiferromagnetic moments is present in the antiferromagnetic state between TN 1 and TN 2. The spin-lattice relaxation rate suggests that the 4 f electrons behave as local moments at temperatures above TN 1.
Magnetostatic interactions in antiferromagnetically coupled patterned media.
Deng, S; Aung, K O; Piramanayagam, S N; Sbiaa, R
2011-03-01
In an array of closely spaced magnetic islands as in patterned media, magnetostatic interactions play a major role in widening the switching field distribution and reducing the thermal stability. Patterned antiferromagnetically coupled (AFC) media provide interesting systems for studying the effect of magnetostatic interactions on the reversal of closely spaced AFC bits in an array, as AFC structure helps to reduce the remanent magnetization (M(r)), leading to reduced magnetostatic interactions. Here, we study the magnetic reversal of single domain-patterned AFC CoCrPt:oxide bilayer system with perpendicular magnetic anisotropy, by imaging the remanence state of the bits after the application of a magnetic field with magnetic force microscopy (MFM). The influence of magnetostatic fields from the neighboring bits on the switching field distribution (SFD) for an entity in a patterned media is studied by varying the stabilizing layer thickness of the AFC structure and bit spacing. We observe a distinct increase in stability and coercivity with an increase in stabilizing layer thickness for the 40 nm spaced bits. This demonstrates the effectiveness of the AFC structure for reducing magnetostatic interactions in patterned media, such that high thermal stability can be achieved by the reduced M(r), without writability issues. PMID:21449425
Solitonlike magnetization textures in noncollinear antiferromagnets
NASA Astrophysics Data System (ADS)
Ulloa, Camilo; Nunez, A. S.
2016-04-01
We show that proper control of magnetization textures can be achieved in noncollinear antiferromagnets. This opens the versatile toolbox of domain-wall manipulation in the context of a different family of materials. In this way, we show that noncollinear antiferromagnets are a good prospect for applications in the context of antiferromagnetic spintronics. As in many noncollinear antiferromagnets, the order parameter field takes values in SO(3). By performing a gradient expansion in the energy functional we derive an effective theory that accounts for the physics of the magnetization of long-wavelength excitations. We apply our formalism to static and dynamic textures such as domain walls and localized oscillations, and identify topologically protected textures that are spatially localized. Our results are applicable to the exchange-bias materials Mn3X , with X =Ir,Rh,Pt .
Spin-Hall effects in metallic antiferromagnets
NASA Astrophysics Data System (ADS)
Zhang, Wei
Materials possessing new parameters for efficient and tunable spin Hall effects are being explored, among which antiferromagnets have become one of the most promising candidates. Two distinct properties of antiferromagnets are the microscopic spin magnetic moment ordering and the intrinsic anisotropy. Thus the natural question arises whether these two unique features of antiferromagnets can become new degrees of freedom for tuning their spin Hall effects. We performed experimental studies using spin pumping and inverse spin Hall detection on prototypical CuAu-I-type metallic antiferromagnets, PtMn, IrMn, PdMn, and FeMn, in which we observed increasing spin Hall effects for the alloys with heavier elements included. In particular, PtMn shows a large spin Hall effect that is comparable to Pt. We also demonstrated that the spin transfer torques from the antiferromagnets are large enough to excite ferromagnetic resonance of an adjacent ferromagnetic layer. We conclude that the sign and magnitude of the spin Hall effects in these antiferromagnets are determined by the atomic spin-orbit coupling of the heavy elements (e.g. Pt and Ir) as well as the large spin magnetic moments of Mn. In addition, by using epitaxial growth, we investigated the influence of the different crystalline and magnetic orientations on the anisotropic spin Hall effects of these antiferromagnets. Most of the experimental results were further corroborated by first-principles calculations, which determine the intrinsic spin Hall effect contribution and suggest pronounced anisotropies. Thus metallic antiferromagnets may become an active component for manipulating spin dependent transport properties in spintronic concepts. Work at Argonne was supported by the U.S. DOE, OS, Materials Sciences and Engineering Division. Work at Center for Nanoscale Materials was supported by DOE, OS-BES (DE-AC02-06CH11357). Work at Julich was supported by SPP 1538 Programme of the DFG.
Constructing a magnetic handle for antiferromagnetic manganites
NASA Astrophysics Data System (ADS)
Glavic, Artur; Dixit, Hemant; Cooper, Valentino R.; Aczel, Adam A.
2016-04-01
An intrinsic property of antiferromagnetic materials is the compensation of the magnetic moments from the individual atoms that prohibits the direct interaction of the spin lattice with an external magnetic field. To overcome this limitation we have created artificial spin structures by heteroepitaxy between two bulk antiferromagnets SrMnO3 and NdMnO3. Here, we demonstrate that charge transfer at the interface results in the creation of thin ferromagnetic layers adjacent to A -type antiferromagnetism in thick NdMnO3 layers. A novel interference based neutron diffraction technique and polarized neutron reflectometry are used to confirm the presence of ferromagnetism in the SrMnO3 layers and to probe the relative alignment of antiferromagnetic spins induced by the coupling at the ferro- to antiferromagnet interface. A density functional theory analysis of the driving forces for the exchange reveals strong ferromagnetic interfacial coupling through quantifiable short range charge transfer. These results confirm a layer-by-layer control of magnetic arrangements that constitutes a promising step on a path towards isothermal magnetic control of antiferromagnetic arrangements as would be necessary in spin-based heterostructures like multiferroic devices.
Roughness effects in uncompensated antiferromagnets
Charilaou, M.; Hellman, F.
2015-02-28
Monte Carlo simulations show that roughness in uncompensated antiferromagnets decreases not just the surface magnetization but also the net magnetization and particularly strongly affects the temperature dependence. In films with step-type roughness, each step creates a new compensation front that decreases the global net magnetization. The saturation magnetization decreases non-monotonically with increasing roughness and does not scale with the surface area. Roughness in the form of surface vacancies changes the temperature-dependence of the magnetization; when only one surface has vacancies, the saturation magnetization will decrease linearly with surface occupancy, whereas when both surfaces have vacancies, the magnetization is negative and exhibits a compensation point at finite temperature, which can be tuned by controlling the occupancy. Roughness also affects the spin-texture of the surfaces due to long-range dipolar interactions and generates non-collinear spin configurations that could be used in devices to produce locally modified exchange bias. These results explain the strongly reduced magnetization found in magnetometry experiments and furthers our understanding of the temperature-dependence of exchange bias.
Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3
NASA Astrophysics Data System (ADS)
Sürgers, Christoph; Kittler, Wolfram; Wolf, Thomas; Löhneysen, Hilbert v.
2016-05-01
Metallic antiferromagnets with noncollinear orientation of magnetic moments provide a playground for investigating spin-dependent transport properties by analysis of the anomalous Hall effect. The intermetallic compound Mn5Si3 is an intinerant antiferromagnet with collinear and noncollinear magnetic structures due to Mn atoms on two inequivalent lattice sites. Here, magnetotransport measurements on polycrstalline thin films and a single crystal are reported. In all samples, an additional contribution to the anomalous Hall effect attributed to the noncollinear arrangment of magnetic moments is observed. Furthermore, an additional magnetic phase between the noncollinear and collinear regimes above a metamagnetic transition is resolved in the single crystal by the anomalous Hall effect.
An itinerant antiferromagnetic metal without magnetic constituents
Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; Aronson, M. C.; Uemura, Y. J.; Morosan, E.
2015-07-13
The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn_{2} and Sc_{3}In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.
An itinerant antiferromagnetic metal without magnetic constituents
Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; et al
2015-07-13
The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemedmore » crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.« less
An itinerant antiferromagnetic metal without magnetic constituents
Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; Aronson, M. C.; Uemura, Y. J.; Morosan, E.
2015-01-01
The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems. PMID:26166042
Antiferromagnetic Domain Wall Motion Driven by Spin-Orbit Torques.
Shiino, Takayuki; Oh, Se-Hyeok; Haney, Paul M; Lee, Seo-Won; Go, Gyungchoon; Park, Byong-Guk; Lee, Kyung-Jin
2016-08-19
We theoretically investigate the dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet-heavy-metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction and emits spin waves in the terahertz frequency range. The interplay between spin-orbit torques and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation of antiferromagnetic spin textures and paves the way for the generation of high frequency signals from antiferromagnets. PMID:27588878
Spinon dynamics in quantum integrable antiferromagnets
NASA Astrophysics Data System (ADS)
Vlijm, R.; Caux, J.-S.
2016-05-01
The excitations of the Heisenberg antiferromagnetic spin chain in zero field are known as spinons. As pairwise-created fractionalized excitations, spinons are important in the understanding of inelastic neutron scattering experiments in (quasi-)one-dimensional materials. In the present paper, we consider the real space-time dynamics of spinons originating from a local spin flip on the antiferromagnetic ground state of the (an)isotropic Heisenberg spin-1/2 model and the Babujan-Takhtajan spin-1 model. By utilizing algebraic Bethe ansatz methods at finite system size to compute the expectation value of the local magnetization and spin-spin correlations, spinons are visualized as propagating domain walls in the antiferromagnetic spin ordering with anisotropy dependent behavior. The spin-spin correlation after the spin flip displays a light cone, satisfying the Lieb-Robinson bound for the propagation of correlations at the spinon velocity.
Quantized spin waves in antiferromagnetic Heisenberg chains.
Wieser, R; Vedmedenko, E Y; Wiesendanger, R
2008-10-24
The quantized stationary spin wave modes in one-dimensional antiferromagnetic spin chains with easy axis on-site anisotropy have been studied by means of Landau-Lifshitz-Gilbert spin dynamics. We demonstrate that the confined antiferromagnetic chains show a unique behavior having no equivalent, neither in ferromagnetism nor in acoustics. The discrete energy dispersion is split into two interpenetrating n and n' levels caused by the existence of two sublattices. The oscillations of individual sublattices as well as the standing wave pattern strongly depend on the boundary conditions. Particularly, acoustical and optical antiferromagnetic spin waves in chains with boundaries fixed (pinned) on different sublattices can be found, while an asymmetry of oscillations appears if the two pinned ends belong to the same sublattice. PMID:18999780
Ferroelectric polarization in antiferromagnetically coupled ferromagnetic film
NASA Astrophysics Data System (ADS)
Gareeva, Z. V.; Mazhitova, F. A.; Doroshenko, R. A.
2016-09-01
We report the influence of interface antiferromagnetic coupling on magnetoelectric properties of ferromagnetic bi-layers. Electric polarization arising at magnetic ingomogeneity in bi-layered ferromagnetic structure with antiferromagnetic coupling at interface in applied magnetic field has been explored. Diagrams representing dependences of electric polarization on magnetic field P(H) have been constructed for two magnetic field geometries (in-plane and out-of plane fields). It has been found out that P(H) dependences demonstrate non-monotonic behavior. Peculiarities of polarization in an in-plane-oriented magnetic field have been explained by magnetization processes. It has been shown that a variety of magnetic configurations of Bloch, Neel and mixed Bloch-Neel types can be realized in antiferromagnetically coupled film due to cubic anisotropy contribution. In the area of Bloch magnetic configuration electric polarization vanishes. The critical values of magnetic fields suppressing polarization have been estimated.
Antiferromagnetic Spin Wave Field-Effect Transistor.
Cheng, Ran; Daniels, Matthew W; Zhu, Jian-Gang; Xiao, Di
2016-01-01
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928
Antiferromagnetic Spin Wave Field-Effect Transistor
NASA Astrophysics Data System (ADS)
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di
2016-04-01
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.
Antiferromagnetic Spin Wave Field-Effect Transistor
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di
2016-01-01
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928
Antiferromagnetic Spin Wave Field-Effect Transistor
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di
2016-04-06
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less
Antiferromagnetic phases of the Kondo lattice
NASA Astrophysics Data System (ADS)
Eder, R.; Grube, K.; Wróbel, P.
2016-04-01
We discuss the paramagnetic and Néel-ordered phases of the Kondo lattice Hamiltonian on the two-dimensional square lattice by means of bond fermions. In the doped case we find two antiferromagnetic solutions, the first one with small ordered moment, heavy bands, and an antiferromagnetically folded large Fermi surface—i.e., including the localized spins—the second one with large ordered moment, light bands, and an antiferromagnetically folded conduction electron-only Fermi surface. The zero temperature phase diagram as a function of Kondo coupling and conduction electron density shows first- and second-order transition lines between the three different phases and agrees qualitatively with previous numerical studies. We compare to experiments on CeRh1 -xCoxIn5 and find qualitative agreement.
Paramagnetic and Antiferromagnetic Spin Seebeck Effect
NASA Astrophysics Data System (ADS)
Wu, Stephen
We report on the observation of the longitudinal spin Seebeck effect in both antiferromagnetic and paramagnetic insulators. By using a microscale on-chip local heater, it is possible to generate a large thermal gradient confined to the chip surface without a large increase in the total sample temperature. This technique allows us to easily access low temperatures (200 mK) and high magnetic fields (14 T) through conventional dilution refrigeration and superconducting magnet setups. By exploring this regime, we detect the spin Seebeck effect through the spin-flop transition in antiferromagnetic MnF2 when a large magnetic field (>9 T) is applied along the easy axis direction. Using the same technique, we are also able to resolve a spin Seebeck effect from the paramagnetic phase of geometrically frustrated antiferromagnet Gd3Ga5O12 (gadolinium gallium garnet) and antiferromagnetic DyScO3 (DSO). Since these measurements occur above the ordering temperatures of these two materials, short-range magnetic order is implicated as the cause of the spin Seebeck effect in these systems. The discovery of the spin Seebeck effect in these two materials classes suggest that both antiferromagnetic spin waves and spin excitations from short range magnetic order may be used to generate spin current from insulators and that the spin wave spectra of individual materials are highly important to the specifics of the longitudinal spin Seebeck effect. Since insulating antiferromagnets and paramagnets are far more common than the typical insulating ferrimagnetic materials used in spin Seebeck experiments, this discovery opens up a large new class of materials for use in spin caloritronic devices. All authors acknowledge support of the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. The use of facilities at the Center for Nanoscale Materials, was supported by the U.S. DOE, BES under Contract No. DE-AC02-06CH11357.
Nonequilibrium dynamics in the antiferromagnetic Hubbard model
NASA Astrophysics Data System (ADS)
Sandri, Matteo; Fabrizio, Michele
2013-10-01
We investigate by means of the time-dependent Gutzwiller variational approach the out-of-equilibrium dynamics of an antiferromagnetic state evolved with the Hubbard model Hamiltonian after a sudden change of the repulsion strength U. We find that magnetic order survives more than what is expected on the basis of thermalization arguments, in agreement with recent dynamical mean field theory calculations. In addition, we find evidence of a dynamical transition for quenches to large values of U between a coherent antiferromagnet characterized by a finite quasiparticle residue to an incoherent one with vanishing residue, which finally turns into a paramagnet for even larger U.
Ground-state candidate for the classical dipolar kagome Ising antiferromagnet
NASA Astrophysics Data System (ADS)
Chioar, I. A.; Rougemaille, N.; Canals, B.
2016-06-01
We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.
Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge
NASA Astrophysics Data System (ADS)
Kiyohara, Naoki; Tomita, Takahiro; Nakatsuji, Satoru
2016-06-01
The external field control of antiferromagnetism is a significant subject both for basic science and technological applications. As a useful macroscopic response to detect magnetic states, the anomalous Hall effect (AHE) is known for ferromagnets, but it has never been observed in antiferromagnets until the recent discovery in Mn3Sn . Here we report another example of the AHE in a related antiferromagnet, namely, in the hexagonal chiral antiferromagnet Mn3Ge . Our single-crystal study reveals that Mn3Ge exhibits a giant anomalous Hall conductivity |σx z|˜60 Ω-1 cm-1 at room temperature and approximately 380 Ω-1 cm-1 at 5 K in zero field, reaching nearly half of the value expected for the quantum Hall effect per atomic layer with Chern number of unity. Our detailed analyses on the anisotropic Hall conductivity indicate that in comparison with the in-plane-field components |σx z| and |σz y|, which are very large and nearly comparable in size, we find |σy x| obtained in the field along the c axis to be much smaller. The anomalous Hall effect shows a sign reversal with the rotation of a small magnetic field less than 0.1 T. The soft response of the AHE to magnetic field should be useful for applications, for example, to develop switching and memory devices based on antiferromagnets.
NaSrCo2F7, a Co(2+) pyrochlore antiferromagnet.
Krizan, J W; Cava, R J
2015-07-29
We report the crystal growth, by the Bridgeman-Stockbarger method, and the basic magnetic properties of a new cobalt-based pyrochlore, NaSrCo2F7. Single-crystal structure determination shows that Na and Sr are completely disordered on the non-magnetic large atom A sites, while magnetic [Formula: see text] Co(2+) fully occupies the pyrochlore lattice B sites. NaSrCo2F7 displays strong antiferromagnetic interactions ([Formula: see text]), a large effective moment ([Formula: see text]), and no spin freezing until 3 K. Thus, NaSrCo2F7 is a geometrically frustrated antiferromagnet with a frustration index [Formula: see text]. Ac susceptibility, dc susceptibility, and heat capacity are utilized to characterize the spin freezing. We argue that NaSrCo2F7 and the related material NaCaCo2F7 are examples of frustrated pyrochlore antiferromagnets with weak bond disorder. PMID:26154596
NASA Astrophysics Data System (ADS)
Merodio, P.; Kalitsov, A.; Chshiev, M.; Velev, J.
2016-06-01
Based on model calculations, we predict a magnetoelectric tunneling electroresistance effect in multiferroic tunnel junctions consisting of ferromagnetic electrodes and magnetoelectric antiferromagnetic barriers. Switching of the antiferromagnetic order parameter in the barrier in applied electric field by means of the magnetoelectric coupling leads to a substantial change of the resistance of the junction. The effect is explained in terms of the switching of the orientations of local magnetizations at the barrier interfaces affecting the spin-dependent interface transmission probabilities. Magnetoelectric multiferroic materials with finite ferroelectric polarization exhibit an enhanced resistive change due to polarization-induced spin-dependent screening. These results suggest that devices with active barriers based on single-phase magnetoelectric antiferromagnets represent an alternative nonvolatile memory concept.
Complex antiferromagnetic order in the Cd6 R approximants to the i- R-Cd quasicrystals
NASA Astrophysics Data System (ADS)
Kreyssig, A.; Beutier, G.; Hoffmann, J.-U.; Kong, T.; Kim, M. G.; Tucker, G. S.; Ueland, B. G.; Hiroto, T.; Liu, D.; Yamada, T.; Boissieu, M. De; Tamura, R.; Bud'Ko, S. L.; Canfield, P. C.; Goldman, A. I.
2014-03-01
The observation of antiferromagnetic order in the Cd6 R (R = rare earths) approximants to the recently discovered related i- R-Cd quasicrystals provides new and exciting opportunities to unravel the nature of magnetism in these materials. We present single-crystal studies employing x-ray and neutron scattering that revealed complex antiferromagnetism in the Cd6 R approximants. Resolution-limited magnetic Bragg peaks have been observed at lattice points forbidden by the center-symmetry and at incommensurate positions demonstrating long-range antiferromagnetic correlations between the R moments. The work at the Ames Laboratory was supported by US DOE, Office of Basic Energy Sciences, DMSE, contract DE-AC02-07CH11358. Work at the Tokyo University of Science was supported by KAKENHI (Grant No. 20045017).
Direct measurement of antiferromagnetic domain fluctuations.
Shpyrko, O G; Isaacs, E D; Logan, J M; Feng, Yejun; Aeppli, G; Jaramillo, R; Kim, H C; Rosenbaum, T F; Zschack, P; Sprung, M; Narayanan, S; Sandy, A R
2007-05-01
Measurements of magnetic noise emanating from ferromagnets owing to domain motion were first carried out nearly 100 years ago, and have underpinned much science and technology. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise. However, this must be sampled at spatial wavelengths of the order of several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present a direct measurement of the fluctuations in the nanometre-scale superstructure of spin- and charge-density waves associated with antiferromagnetism in elemental chromium. The technique used is X-ray photon correlation spectroscopy, where coherent X-ray diffraction produces a speckle pattern that serves as a 'fingerprint' of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micrometre distances. This work demonstrates a useful measurement tool for antiferromagnetic domain wall engineering, but also reveals a fundamental finding about spin dynamics in the simplest antiferromagnet: although the domain wall motion is thermally activated at temperatures above 100 K, it is not so at lower temperatures, and indeed has a rate that saturates at a finite value-consistent with quantum fluctuations-on cooling below 40 K. PMID:17476263
Indirect control of antiferromagnetic domain walls with spin current.
Wieser, R; Vedmedenko, E Y; Wiesendanger, R
2011-02-11
The indirect controlled displacement of an antiferromagnetic domain wall by a spin current is studied by Landau-Lifshitz-Gilbert spin dynamics. The antiferromagnetic domain wall can be shifted both by a spin-polarized tunnel current of a scanning tunneling microscope or by a current driven ferromagnetic domain wall in an exchange coupled antiferromagnetic-ferromagnetic layer system. The indirect control of antiferromagnetic domain walls opens up a new and promising direction for future spin device applications based on antiferromagnetic materials. PMID:21405493
Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi
Pavlosiuk, Orest; Kaczorowski, Dariusz; Fabreges, Xavier; Gukasov, Arsen; Wiśniewski, Piotr
2016-01-01
We observed the coexistence of superconductivity and antiferromagnetic order in the single-crystalline ternary pnictide HoPdBi, a plausible topological semimetal. The compound orders antiferromagnetically at TN = 1.9 K and exhibits superconductivity below Tc = 0.7 K, which was confirmed by magnetic, electrical transport and specific heat measurements. The specific heat shows anomalies corresponding to antiferromagnetic ordering transition and crystalline field effect, but not to superconducting transition. Single-crystal neutron diffraction indicates that the antiferromagnetic structure is characterized by the propagation vector. Temperature variation of the electrical resistivity reveals two parallel conducting channels of semiconducting and metallic character. In weak magnetic fields, the magnetoresistance exhibits weak antilocalization effect, while in strong fields and temperatures below 50 K it is large and negative. At temperatures below 7 K Shubnikov-de Haas oscillations with two frequencies appear in the resistivity. These oscillations have non-trivial Berry phase, which is a distinguished feature of Dirac fermions. PMID:26728755
Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi.
Pavlosiuk, Orest; Kaczorowski, Dariusz; Fabreges, Xavier; Gukasov, Arsen; Wiśniewski, Piotr
2016-01-01
We observed the coexistence of superconductivity and antiferromagnetic order in the single-crystalline ternary pnictide HoPdBi, a plausible topological semimetal. The compound orders antiferromagnetically at TN = 1.9 K and exhibits superconductivity below Tc = 0.7 K, which was confirmed by magnetic, electrical transport and specific heat measurements. The specific heat shows anomalies corresponding to antiferromagnetic ordering transition and crystalline field effect, but not to superconducting transition. Single-crystal neutron diffraction indicates that the antiferromagnetic structure is characterized by the propagation vector. Temperature variation of the electrical resistivity reveals two parallel conducting channels of semiconducting and metallic character. In weak magnetic fields, the magnetoresistance exhibits weak antilocalization effect, while in strong fields and temperatures below 50 K it is large and negative. At temperatures below 7 K Shubnikov-de Haas oscillations with two frequencies appear in the resistivity. These oscillations have non-trivial Berry phase, which is a distinguished feature of Dirac fermions. PMID:26728755
Skyrmions in square-lattice antiferromagnets
NASA Astrophysics Data System (ADS)
Keesman, Rick; Raaijmakers, Mark; Baerends, A. E.; Barkema, G. T.; Duine, R. A.
2016-08-01
The ground states of square-lattice two-dimensional antiferromagnets with anisotropy in an external magnetic field are determined using Monte Carlo simulations and compared to theoretical analysis. We find a phase in between the spin-flop and spiral phase that shows strong similarity to skyrmions in ferromagnetic thin films. We show that this phase arises as a result of the competition between Zeeman and Dzyaloshinskii-Moriya interaction energies of the magnetic system. Moreover, we find that isolated (anti-)skyrmions are stabilized in finite-sized systems, even at higher temperatures. The existence of thermodynamically stable skyrmions in square-lattice antiferromagnets provides an appealing alternative over skyrmions in ferromagnets as data carriers.
Dimensional Reduction in Quantum Dipolar Antiferromagnets
NASA Astrophysics Data System (ADS)
Babkevich, P.; Jeong, M.; Matsumoto, Y.; Kovacevic, I.; Finco, A.; Toft-Petersen, R.; Ritter, C.; Mânsson, M.; Nakatsuji, S.; Rønnow, H. M.
2016-05-01
We report ac susceptibility, specific heat, and neutron scattering measurements on a dipolar-coupled antiferromagnet LiYbF4 . For the thermal transition, the order-parameter critical exponent is found to be 0.20(1) and the specific-heat critical exponent -0.25 (1 ) . The exponents agree with the 2D X Y /h4 universality class despite the lack of apparent two-dimensionality in the structure. The order-parameter exponent for the quantum phase transitions is found to be 0.35(1) corresponding to (2 +1 )D . These results are in line with those found for LiErF4 which has the same crystal structure, but largely different TN, crystal field environment and hyperfine interactions. Our results therefore experimentally establish that the dimensional reduction is universal to quantum dipolar antiferromagnets on a distorted diamond lattice.
Dimensional Reduction in Quantum Dipolar Antiferromagnets.
Babkevich, P; Jeong, M; Matsumoto, Y; Kovacevic, I; Finco, A; Toft-Petersen, R; Ritter, C; Månsson, M; Nakatsuji, S; Rønnow, H M
2016-05-13
We report ac susceptibility, specific heat, and neutron scattering measurements on a dipolar-coupled antiferromagnet LiYbF_{4}. For the thermal transition, the order-parameter critical exponent is found to be 0.20(1) and the specific-heat critical exponent -0.25(1). The exponents agree with the 2D XY/h_{4} universality class despite the lack of apparent two-dimensionality in the structure. The order-parameter exponent for the quantum phase transitions is found to be 0.35(1) corresponding to (2+1)D. These results are in line with those found for LiErF_{4} which has the same crystal structure, but largely different T_{N}, crystal field environment and hyperfine interactions. Our results therefore experimentally establish that the dimensional reduction is universal to quantum dipolar antiferromagnets on a distorted diamond lattice. PMID:27232040
Antiferromagnetic Ising Model in Hierarchical Networks
NASA Astrophysics Data System (ADS)
Cheng, Xiang; Boettcher, Stefan
2015-03-01
The Ising antiferromagnet is a convenient model of glassy dynamics. It can introduce geometric frustrations and may give rise to a spin glass phase and glassy relaxation at low temperatures [ 1 ] . We apply the antiferromagnetic Ising model to 3 hierarchical networks which share features of both small world networks and regular lattices. Their recursive and fixed structures make them suitable for exact renormalization group analysis as well as numerical simulations. We first explore the dynamical behaviors using simulated annealing and discover an extremely slow relaxation at low temperatures. Then we employ the Wang-Landau algorithm to investigate the energy landscape and the corresponding equilibrium behaviors for different system sizes. Besides the Monte Carlo methods, renormalization group [ 2 ] is used to study the equilibrium properties in the thermodynamic limit and to compare with the results from simulated annealing and Wang-Landau sampling. Supported through NSF Grant DMR-1207431.
Heisenberg antiferromagnet on the Husimi lattice
NASA Astrophysics Data System (ADS)
Liao, H. J.; Xie, Z. Y.; Chen, J.; Han, X. J.; Xie, H. D.; Normand, B.; Xiang, T.
2016-02-01
We perform a systematic study of the antiferromagnetic Heisenberg model on the Husimi lattice using numerical tensor-network methods based on projected entangled simplex states. The nature of the ground state varies strongly with the spin quantum number S . For S =1/2 , it is an algebraic (gapless) quantum spin liquid. For S =1 , it is a gapped, nonmagnetic state with spontaneous breaking of triangle symmetry (a trimerized simplex-solid state). For S =2 , it is a simplex-solid state with a spin gap and no symmetry breaking; both integer-spin simplex-solid states are characterized by specific degeneracies in the entanglement spectrum. For S =3/2 , and indeed for all spin values S ≥5/2 , the ground states have 120∘ antiferromagnetic order. In a finite magnetic field, we find that, irrespective of the value of S , there is always a plateau in the magnetization at m =1/3 .
Diffusive magnonic spin transport in antiferromagnetic insulators
NASA Astrophysics Data System (ADS)
Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.
2016-02-01
It has been shown recently that a layer of the antiferromagnetic insulator (AFI) NiO can be used to transport spin current between a ferromagnet (FM) and a nonmagnetic metal (NM). In the experiments one uses the microwave-driven ferromagnetic resonance in a FM layer to produce a spin pumped spin current that flows through an AFI layer and reaches a NM layer where it is converted into a charge current by means of the inverse spin Hall effect. Here we present a theory for the spin transport in an AFI that relies on the spin current carried by the diffusion of thermal antiferromagnetic magnons. The theory explains quite well the measured dependence of the voltage in the NM layer on the thickness of the NiO layer.
Terahertz Antiferromagnetic Spin Hall Nano-Oscillator
NASA Astrophysics Data System (ADS)
Cheng, Ran; Xiao, Di; Brataas, Arne
2016-05-01
We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators.
Terahertz Antiferromagnetic Spin Hall Nano-Oscillator.
Cheng, Ran; Xiao, Di; Brataas, Arne
2016-05-20
We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators. PMID:27258884
Order and topology in antiferromagnets with surfaces
NASA Astrophysics Data System (ADS)
Charilaou, Michalis; Hellman, Frances
2014-03-01
We show using Monte Carlo simulations and mean-field theory that the antiferromagnetic (AFM) magnetization, arising from uncompensated spins, exhibits a unique thermodynamic behavior that differs from that of ferromagnets or of the Néel vector. More importantly, the net uncompensated magnetization is lower than that of the surface due to finite size effects. This phenomenon can be is manifested in thin films but it is in fact the same even in infinite systems with free surfaces, suggesting a topological order in uncompensated antiferromagnets. Moreover, we investigate the effects of defects and roughness on the magnetization of AFM and show that with increasing roughness the magnetization decreases non-monotonically and reaches values of only a few percent. Thanks to DOE BES LBNL magnetism program and Swiss Federation for support.
Itinerant antiferromagnetism of TiAl alloys
NASA Astrophysics Data System (ADS)
Petrişor, T.; Pop, I.; Giurgiu, A.; Farbaş, N.
1986-06-01
Magnetic susceptibility measurements of TiAl alloys are reported. Aluminium, by alloying, acts on the Néel temperature of pure titanium giving rise to a complicated phase diagram. A theoretical model, based on the itinerant antiferromagnetism model of chromium is proposed in order to explain the magnetic phase diagram of TiAl alloys. The experimental and theoretical magnetic phase diagram are in good agreement.
NASA Astrophysics Data System (ADS)
Jiang, Shan; Liu, Lian; Schütt, Michael; Hallas, Alannah M.; Shen, Bing; Tian, Wei; Emmanouilidou, Eve; Shi, Aoshuang; Luke, Graeme M.; Uemura, Yasutomo J.; Fernandes, Rafael M.; Ni, Ni
2016-05-01
We report the transport, thermodynamic, muon spin relaxation, and neutron study of the Ca0.74 (1 )La0.26 (1 ) (Fe1 -xCox )As2 single crystals, mapping out the temperature-doping level phase diagram. Upon Co substitution on the Fe site, the structural and magnetic phase transitions in this 112 compound are suppressed and superconductivity up to 20 K occurs. Our measurements of the superconducting and magnetic volume fractions show that these two phases coexist microscopically in the underdoped region, in contrast to the related Ca10(Pt3As8 )((Fe1 -xPtx )2As2 )5 (10-3-8) compound, where coexistence is absent. Supported by model calculations, we discuss the differences in the phase diagrams of the 112 and 10-3-8 compounds in terms of the FeAs interlayer coupling, whose strength is affected by the character of the spacer layer, which is metallic in the 112 compound and insulating in the 10-3-8 compound.
Enhanced ordering temperatures in antiferromagnetic manganite superlattices
May, Stephen J.; Robertson, Lee; Ryan, P J; Kim, J.-W.; Santos, Tiffany S.; Karapetrova, Evgenia; Zarestky, Jerel L.; Zhai, X.; Te velthuis, Suzanne G.; Eckstein, James N.; Bader, S. D.; Bhattacharya, Anand
2009-01-01
The disorder inherent to doping by cation substitution in the complex oxides can have profound effects on collective ordered states. Here, we demonstrate that cation-site ordering achieved via digital synthesis techniques can dramatically enhance the antiferromagnetic ordering temperatures of manganite films. Cation-ordered (LaMnO3)m/(SrMnO3)2m superlattices exhibit N el temperatures (TN) that are the highest of any La1-xSrxMnO3 compound, ~70 K greater than compositionally equivalent randomly doped La1/3Sr2/3MnO3. The antiferromagnetic order is A-type, consisting of in-plane double-exchange-mediated ferromagnetic sheets coupled antiferromagnetically along the out-of-plane direction. Via synchrotron x-ray scattering, we have discovered an in-plane structural modulation that reduces the charge itinerancy and hence the ordering temperature within the ferromagnetic sheets, thereby limiting TN. This modulation is mitigated and driven to long wavelengths by cation ordering, enabling the higher TN values of the superlattices. These results provide insight into how cation-site ordering can enhance cooperative behavior in oxides through subtle structural phenomena.
Enhanced ordering temperatures in antiferromagnetic manganite superlattices.
May, S. J.; Ryan, P. J.; Robertson, J. L.; Kim, J.-W.; Santos, T. S.; Karapetrova, E.; Zaresty, J. L.; Zhai, X.; te Velthuis, S. G. E.; Eckstein, J. N.; Bader, S. D.; Bhattacharya, A.; Iowa State Univ.; ORNL; Univ. of Illinois
2009-01-01
The disorder inherent to doping by cation substitution in the complex oxides can have profound effects on collective-ordered states. Here, we demonstrate that cation-site ordering achieved through digital-synthesis techniques can dramatically enhance the antiferromagnetic ordering temperatures of manganite films. Cation-ordered (LaMnO{sub 3}){sub m}/(SrMnO{sub 3}){sub 2m} superlattices show Neel temperatures (TN) that are the highest of any La{sub 1-x}Sr{sub x}MnO{sub 3} compound, {approx}70 K greater than compositionally equivalent randomly doped La{sub 1/3}Sr{sub 2/3}MnO{sub 3}. The antiferromagnetic order is A-type, consisting of in-plane double-exchange-mediated ferromagnetic sheets coupled antiferromagnetically along the out-of-plane direction. Through synchrotron X-ray scattering, we have discovered an in-plane structural modulation that reduces the charge itinerancy and hence the ordering temperature within the ferromagnetic sheets, thereby limiting TN. This modulation is mitigated and driven to long wavelengths by cation ordering, enabling the higher TN values of the superlattices. These results provide insight into how cation-site ordering can enhance cooperative behavior in oxides through subtle structural phenomena.
Barlowite as a canted antiferromagnet: Theory and experiment
NASA Astrophysics Data System (ADS)
Jeschke, Harald O.; Salvat-Pujol, Francesc; Gati, Elena; Hoang, Nguyen Hieu; Wolf, Bernd; Lang, Michael; Schlueter, John A.; Valentí, Roser
2015-09-01
We investigate the structural, electronic, and magnetic properties of the newly synthesized mineral barlowite Cu4(OH) 6FBr which contains Cu2 + ions in a perfect kagome arrangement. In contrast to the spin-liquid candidate herbertsmithite ZnCu3(OH)6Cl 2, kagome layers in barlowite are perfectly aligned due to the different bonding environments adopted by F- and Br- compared to Cl-. With the synthesis of this material we unveil a design strategy for layered kagome systems with possible exotic magnetic states. Density functional theory calculations and effective model considerations for Cu4(OH) 6FBr , which has a Cu2 + site coupling the kagome layers, predict a three-dimensional network of exchange couplings, which together with a substantial Dzyaloshinskii-Moriya coupling lead to canted antiferromagnetic ordering of this compound in excellent agreement with magnetic susceptibility measurements on single crystals yielding TN=15 K .
NASA Astrophysics Data System (ADS)
Shick, A. B.; Khmelevskyi, S.; Mryasov, O. N.; Wunderlich, J.; Jungwirth, T.
2010-06-01
Magnetic anisotropy phenomena in bimetallic antiferromagnets Mn2Au and MnIr are studied by first-principles density-functional theory calculations. We find strong and lattice-parameter-dependent magnetic anisotropies of the ground-state energy, chemical potential, and density of states, and attribute these anisotropies to combined effects of large moment on the Mn3d shell and large spin-orbit coupling on the 5d shell of the noble metal. Large magnitudes of the proposed effects can open a route towards spintronics in compensated antiferromagnets without involving ferromagnetic elements.
Room temperature spin-polarizations of Mn-based antiferromagnetic nanoelectrodes
Yamada, Toyo Kazu; Vazquez de Parga, Amadeo L.
2014-11-03
Antiferromagnets produce no stray field, and therefore, a tip electrode made of antiferromagnetic material has been considered to be the most suitable choice to measure such as magnetoresistance (MR) through single isolated magnetic nanoparticles, molecules, and ultrathin films. Spin polarizations (P) of antiferromagnetic 3-nm, 6-nm, and annealed 3-nm Mn films grown on W tips with a bcc(110) apex as well as bulk-NiMn tips were obtained at 300 K by measuring MR in ultrahigh vacuum by means of spin-polarized scanning tunneling microscopy using a layerwise antiferromagnetically stacking bct-Mn(001) film electrode. The Mn-coated tips with coverages of 3 and 6 nm exhibited P values of 1 ± 1% and 3 ± 2%, respectively, which tips likely contain α- or strained Mn. With a thermal assist, the crystalline quality and the magnetic stability of the film could increase. The annealed tip exhibited P = 9 ± 2%. The bulk-NiMn tips exhibit spin polarizations of 0 or 6 ± 2% probably depending on the chemical species (Mn or Ni) present at the apex of the tip. Fe-coated W tips were used to estimate the bct-Mn(001) film spin polarization.
Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles
NASA Astrophysics Data System (ADS)
Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.
2016-08-01
The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.
Half-Quantum Vortices in an Antiferromagnetic Spinor Bose-Einstein Condensate.
Seo, Sang Won; Kang, Seji; Kwon, Woo Jin; Shin, Yong-il
2015-07-01
We report on the observation of half-quantum vortices (HQVs) in the easy-plane polar phase of an antiferromagnetic spinor Bose-Einstein condensate. Using in situ magnetization-sensitive imaging, we observe that pairs of HQVs with opposite core magnetization are generated when singly charged quantum vortices are injected into the condensate. The dynamics of HQV pair formation is characterized by measuring the temporal evolutions of the pair separation distance and the core magnetization, which reveals the short-range nature of the repulsive interactions between the HQVs. We find that spin fluctuations arising from thermal population of transverse magnon excitations do not significantly affect the HQV pair formation dynamics. Our results demonstrate the instability of a singly charged vortex in the antiferromagnetic spinor condensate. PMID:26182102
Goetsch, R. J.; Ananad, V. K.; Johnston, David C.
2013-02-07
The synthesis and crystallographic and physical properties of polycrystalline EuNiGe3 are reported. EuNiGe3 crystallizes in the noncentrosymmetric body-centered tetragonal BaNiSn3-type structure (space group I4mm), in agreement with previous reports, with the Eu atoms at the corners and body center of the unit cell. The physical property data consistently demonstrate that this is a metallic system in which Eu spins S = 7/2 order antiferromagnetically at a temperature TN = 13.6 K.Magnetic susceptibility χ data forT >TN indicate that the Eu atoms have spin 7/2 with g = 2, that the Ni atoms are nonmagnetic, and that the dominant interactions between the Eu spins are ferromagnetic. Thus we propose that EuNiGe3 has a collinear A-type antiferromagnetic structure, with the Eu ordered moments in the ab plane aligned ferromagnetically and with the moments in adjacent planes along the c axis aligned antiferromagnetically. A fit of χ(T TN) by our molecular field theory is consistent with a collinear magnetic structure. Electrical resistivity ρ data from TN to 350 K are fitted by the Bloch-Gr¨uneisen model for electron-phonon scattering, yielding a Debye temperature of 265(2) K.Astrong decrease in ρ occurs belowTN due to loss of spin-disorder scattering. Heat capacity data at 25 K T 300Kare fitted by the Debye model, yielding the same Debye temperature 268(2) K as found from ρ(T ). The extracted magnetic heat capacity is consistent with S = 7/2 and shows that significant short-range dynamical spin correlations occur above TN. The magnetic entropy at TN = 13.6 K is 83% of the expected asymptotic high-T value, with the remainder recovered by 30 K.
NASA Astrophysics Data System (ADS)
Gu, Bo; Su, Gang; Gao, Song
2006-04-01
The magnetization process, the susceptibility, and the specific heat of the spin- 1/2 antiferromagnet (AF)-AF-ferromagnet (F) and F-F-AF trimerized quantum Heisenberg chains have been investigated by means of the transfer matrix renormalization group (TMRG) technique as well as the modified spin-wave (MSW) theory. A magnetization plateau at m=1/6 for both trimerized chains is observed at low temperature. The susceptibility and the specific heat show various behaviors for different ferromagnetic and antiferromagnetic interactions and in different magnetic fields. The TMRG results of susceptibility and the specific heat can be nicely fitted by a linear superposition of double two-level systems, where two fitting equations are proposed. Three branch excitations, one gapless excitation and two gapful excitations, for both systems are found within the MSW theory. It is observed that the MSW theory captures the main characteristics of the thermodynamic behaviors at low temperatures. The TMRG results are also compared with the possible experimental data.
Doping an antiferromagnetic insulator : A route to an antiferromagnetic metallic phase
NASA Astrophysics Data System (ADS)
Mahadevan, Priya; Pandey, Shishir; Sarma, D. D.
Usually antiferromagnetism is accompanied by an insulating character of the ground state, while ferromagnetism is accompanied by metallicity. In the limit of half-filling, the Hubbard model yields an antiferromagnetic insulator as the ground state. From the Nagaoka theorem we expect ferromagnetism at any finite electron doping of this half filled state. Numerical studies on the other hand, have however shown, that at low doping concentrations one has a narrow region of an antiferromagnetic metallic phase. The question is whether this is realizable in real materials. Among the 3d transition metal oxides, this antiferromagnetic metallic phase has remained elusive as strong electron-phonon coupling results in a different phase diagram. The 5d transition metal oxides are therefore more suitable. In this work we solve a multiband Hubbard model relevant for a 5d transition metal oxide within a mean-field approach and show that the large bandwidth and the small intra-atomic Hund's exchange associated with this limit gives us a robust AFM-M ground state for 25% electron doping. The conclusions are supported by ab-initio electronic structure calculations for NaOsO3.
Ferrimagnetism in a transverse Ising antiferromagnet
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2016-05-01
The phase diagrams and temperature dependences of total magnetization mT in a transverse Ising antiferromagnet consisting of alternating two (A and B) layers are studied by the uses of the effective-field theory with correlations and the mean-field-theory. A lot of characteristic phenomena, namely ferrimagnetic behaviors, have been found in the mT, when the crystallographically equivalent conditions between the A and B layers are broken. The appearance of a compensation point has been found below its transition temperature.
Dynamic critical curve of a synthetic antiferromagnet
NASA Astrophysics Data System (ADS)
Pham, Huy; Cimpoesu, Dorin; Plamadǎ, Andrei-Valentin; Stancu, Alexandru; Spinu, Leonard
2009-11-01
In this letter, a dynamic generalization of static critical curves (sCCs) for synthetic antiferromagnet (SAF) structures is presented, analyzing the magnetization switching of SAF elements subjected to pulsed magnetic fields. The dependence of dynamic critical curves (dCCs) on field pulse's shape and length, on damping, and on magnetostatic coupling is investigated. Comparing sCCs, which are currently used for studying the switching in toggle magnetic random access memories, with dCCs, it is shown that a consistent switching can be achieved only under specific conditions that take into account the dynamics of the systems. The study relies on the Landau-Lifshitz-Gilbert equation.
Frustrated 3×3 Heisenberg antiferromagnets
NASA Astrophysics Data System (ADS)
Moustanis, P. N.
2016-08-01
The full energy spectrum and the exact thermodynamic results of the antiferromagnetic Heisenberg Hamiltonian of the 3×3 triangular and the frustrated square lattice with periodic boundary conditions and s=1/2 are obtained. To this end the method of hierarchy of algebras is employed. It was found that the ground state of the 3×3 frustrated square lattice is a Resonating Valence Bond (RVB) state. Thermodynamic properties, like the specific heat, magnetic susceptibility, the thermal average of the square of the total Sz and entropy, for these two lattices are presented.
Switching of antiferromagnetic chains with magnetic pulses
NASA Astrophysics Data System (ADS)
Tao, Kun; Polyakov, Oleg P.; Stepanyuk, Valeri S.
2016-04-01
Recent experimental studies have demonstrated the possibility of information storage in short antiferromagnetic chains on an insulator substrate [S. Loth et al., Science 335, 196 (2012), 10.1126/science.1214131]. Here, using the density functional theory and atomistic spin dynamics simulations, we show that a local magnetic control of such chains with a magnetic tip and magnetic pulses can be used for fast switching of their magnetization. Furthermore, by changing the position of the tip one can engineer the magnetization dynamics of the chains.
Antiferromagnetic Ordering of Mn(III)F(salen)
NASA Astrophysics Data System (ADS)
Meisel, M. W.; Wang, Tong; Brown, S. E.; Botko, M.; Čižmár, E.; Risset, O. N.; Talham, D. R.
2014-03-01
Due to a report suggesting Mn(III)F(salen), salen = H14C16N2O2, is an S = 2 Haldane system with J /kB = 50 K and no long-range order down to 2 K based on standard magnetometry studies,[2] specific heat and NMR measurements were performed. Using small single crystals, specific heat studies revealed the presence of an anomaly near 23 K, and this response was robust in fields up to 9 T. The 1H NMR results performed on a single crystal in 1 T revealed a sharp transition characteristic of antiferromagnetic ordering at 22.5 K. Measuring the magnetic response of the same single crystal in a commercial magnetometer reveals the presence of a subtle feature, near 23 K, that is not resolved with as-grown, randomlly oriented microcrystalline samples. These findings provide insight into the results obtained in torque magnetometry, EPR, and neutron scattering data.[3] Supported by NSF via DMR-1202033 (MWM), DMR-1105531 (SEB), DMR-1005581 (DRT), and DMR-1157490 (NHMFL), by the Slovak Agency for Research and Development via APVV-0132-11 (EČ), and by the Fulbright Commission of the Slovak Republic (MWM).
Shuaibu, A.; Rahman, M. M.
2014-03-05
We study the low temperature behavior of a triangular lattice quantum spin-1 Heisenberg antiferromagnet with single-site anisotropy by using coordinate Bethe ansatz method. We compute the standard two-particle Hermitian Hamiltonian, and obtain the eigenfunctions and eigenvalue of the system. The obtained results show a number of advantages in comparison with many results.
Charge Stripes and Antiferromagnetism in Copper-Oxide Superconductors
Tranquada, J.M.
1997-12-31
Superconducting cuprate compounds are obtained by doping holes into antiferromagnetic insulators. Neutron scattering studies have provided evidence that the doped holes tend to segregate into charge stripes, which act like domain walls between antiferromagnetic regions. The interaction between the spatially segregated holes and the magnetic domains may be responsible for the strong pairing interaction found in the cuprates.
Microscopic theory of dynamical matrix in itinerant model of antiferromagnetism
NASA Astrophysics Data System (ADS)
Ami, Seiju; Cade, N. A.; Young, W.
1983-02-01
The dynamical matrix and the elastic constants are derived for an itinerant antiferromagnet. An orbital representation is used which bypasses the problem of large matrix inversion in reciprocal space. We show that exchange enhancement and antiferromagnetic ordering leads to softening of some of the elastic constants.
Activation of antiferromagnetic domain switching in exchange-coupled Fe/CoO/MgO(001) systems
NASA Astrophysics Data System (ADS)
Li, Q.; Chen, G.; Ma, T. P.; Zhu, J.; N'Diaye, A. T.; Sun, L.; Gu, T.; Huo, Y.; Liang, J. H.; Li, R. W.; Won, C.; Ding, H. F.; Qiu, Z. Q.; Wu, Y. Z.
2015-04-01
In contrast to the extensive study of domain reversal in ferromagnetic materials, the domain switching process in antiferromagnets is much less studied due to the difficulty of probing antiferromagnetic spins. Using a combination of hysteresis loop, Kerr microscope, and x-ray magnetic linear dichroism measurements, we investigated the antiferromagnetic (AFM) domain switching process in single crystalline Fe/CoO bilayers on MgO(001). We demonstrate that the CoO AFM switching is a Kolmogorov-Avrami process in which the thermal activation energy creates AFM domain nucleation centers which further expand by domain wall propagation. From the temperature- and thickness-dependent measurements, we are able to retrieve quantitatively the important parameter of the CoO AFM activation energy, which is shown to increase linearly with CoO thickness.
"Quasi-Antiferromagnetic" Ordering in the R-Mg-Zn Icosahedral Alloys? The Case of Tb-Mg-Zn
NASA Astrophysics Data System (ADS)
Goldman, A. I.; Islam, Z.; Fisher, I. R.; Panchula, A. F.; Cheon, K. O.; Canfield, P. C.; Stassis, C.; Zarestky, J.
1998-03-01
Recently, it was reported that long-range magnetic ordering was observed in several of the new rare earth containing icosahedral alloys, R-Mg-Zn (R=Tb, Dy, Ho, Er) (B. Charrier et al., Phys. Rev. Lett. 78, 4637, 1997.). At low temperatures, the antiferromagnetic Bragg peaks, while weak, could be indexed to the icosahedral parent phase with good accuracy. In addition, significant magnetic diffuse scattering, indicating only short-range magnetic order, was also observed. However, bulk magnetization measurements have evidenced only a spin-glass transition at low temperatures, and no antiferromagnetic transition. We will report on new neutron scattering measurements of the magnetic order in Tb-Mg-Zn powder samples produced from crushed single-crystals, used to improve sample purity. Our results for these samples show only the diffuse component of the magnetic scattering at low temperature, and no antiferromagnetic Bragg peaks. We will discuss several possibilities for the discrepencies between the two experiments.
NASA Astrophysics Data System (ADS)
Wu, R.; Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Yang, J. B.
2016-08-01
The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n-1/2 function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.
β-NMR Investigation of the Depth-Dependent Magnetic Properties of an Antiferromagnetic Surface.
Cortie, D L; Buck, T; Dehn, M H; Karner, V L; Kiefl, R F; Levy, C D P; McFadden, R M L; Morris, G D; McKenzie, I; Pearson, M R; Wang, X L; MacFarlane, W A
2016-03-11
By measuring the prototypical antiferromagnet α-Fe_{2}O_{3}, we show that it is possible to determine the static spin orientation and dynamic spin correlations within nanometers from an antiferromagnetic surface using the nuclear spin polarization of implanted ^{8}Li^{+} ions detected with β-NMR. Remarkably, the first-order Morin spin reorientation in single crystal α-Fe_{2}O_{3} occurs at the same temperature at all depths between 1 and 100 nm from the (110) surface; however, the implanted nuclear spin experiences an increased 1/T_{1} relaxation rate at shallow depths revealing soft-surface magnons. The surface-localized dynamics decay towards the bulk with a characteristic length of ε=11±1 nm, closely matching the finite-size thresholds of hematite nanostructures. PMID:27015494
Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.
Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S
2015-11-01
The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap. PMID:26542565
Fragile antiferromagnetism in the heavy-fermion compound YbBiPt
Ueland, Benjamin G.; Kreyssig, Andreas; Prokes, K.; Lynn, J. W.; Harriger, L. W.; Pratt, D. K.; Singh, D. K.; Heitmann, T. W.; Sauerbrei, Samantha; Saunders, Scott M.; Mun, E. D.; Budko, Serguei L.; McQueeney, Robert J.; Canfield, Paul C.; Goldman, Alan I.
2014-05-08
We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, τAFM = (121212), and ordered moments that align along the [1 1 1] direction of the cubic unit cell. We describe the scattering in terms of a two-Gaussian peak fit, which consists of a narrower component that appears below TN≈0.4 K and corresponds to a magnetic correlation length of ξn≈ 80 Å, and a broad component that persists up to T*≈ 0.7 K and corresponds to antiferromagnetic correlations extending over ξb≈ 20 Å. Our results illustrate the fragile magnetic order present in YbBiPt and provide a path forward for microscopic investigations of the ground states and fluctuations associated with the purported quantum critical point in this heavy-fermion compound.
Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet
Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; Lee, Young S.
2015-11-06
Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with themore » magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less
Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S.
2015-11-01
The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.
Electrically tunable transport in the antiferromagnetic Mott insulator Sr2IrO4
NASA Astrophysics Data System (ADS)
Wang, C.; Seinige, H.; Cao, G.; Zhou, J.-S.; Goodenough, J. B.; Tsoi, M.
2015-09-01
Electronic transport properties of the antiferromagnetic Mott insulator S r2Ir O4 have been investigated under extremely high electric biases. Using nanoscale contacts, we apply electric fields up to a few MV/m to a single crystal of S r2Ir O4 and observe a continuous reduction in the material's resistivity with increasing bias, characterized by a reduction in the transport activation energy by as much as 16 % . Temperature-dependent resistivity measurements provide a means to unambiguously retrieve the bias dependence of the activation energy from the Arrhenius plots at different biases. We further demonstrate the feasibility of reversible resistive switching induced by the electric bias, which is of interest for the emerging field of antiferromagnetic spintronics. Our findings demonstrate the potential of electrical means for tuning electronic properties in 5 d transition-metal oxides and suggest a promising path towards development of next-generation functional devices.
Strain-modulated antiferromagnetic spin orientation and exchange coupling in Fe/CoO(001)
Zhu, J.; Li, Q.; Li, J. X.; Ding, Z.; Wu, Y. Z.; Hua, C. Y.; Huang, M. J.; Lin, H.-J.; Hu, Z.; Won, C.
2014-05-21
The effect of CoO spin orientation on exchange coupling was investigated in single-crystalline Fe/CoO/MnO/MgO(001) systems. An antiferromagnetic CoO spin reorientation transition from the in-plane direction to the out-of-plane direction was found to be associated with the in-plane strain transition in CoO film from compression to expansion. The induced uniaxial anisotropies by exchange coupling at the Fe/CoO interface are significantly stronger for the in-plane CoO spin orientation than for the out-of-plane CoO spin orientation. Our study provides a way to modify the exchange coupling in the ferromagnetic (FM)/antiferromagnetic (AFM) bilayer by modulating the strain in the AFM film.
Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes
NASA Astrophysics Data System (ADS)
Zhang, D. L.; Xu, X. G.; Wu, Y.; Li, X. Q.; Miao, J.; Jiang, Y.
2012-05-01
We study dual-synthetic antiferromagnets (DSyAFs) using Co2FeAl (CFA) Heusler electrodes with a stack structure of Ta/CFA/Ru/CFA/Ru/CFA/Ta. When the thicknesses of the two Ru layers are 0.45 nm, 0.65 nm or 0.45 nm, 1.00 nm, the CFA-based DSyAF has a strong antiferromagnetic coupling between adjacent CFA layers at room temperature with a saturation magnetic field of ∼11,000 Oe, a saturation magnetization of ∼710 emu/cm3 and a coercivity of ∼2.0 Oe. Moreover, the DSyAF has a good thermal stability up to 400 °C, at which CFA films show B2-ordered structure. Therefore, the CFA-based DSyAFs are favorable for applications in future spintronic devices.
Spin Transport in Ferromagnetic and Antiferromagnetic Insulators
NASA Astrophysics Data System (ADS)
Su, Shanshan; Yin, Gen; Liu, Yizhou; Zang, Jiadong; Barlas, Yafis; Lake, Roger
Recently, experiments of spin pumping have been done for system with antiferromagnetic oxides (AFMOs) as a spacer between YIG and Pt. Observation of spin transport through the AFMO and the enhancement of spin pumping signal in the system due to the insertion of AFMO have been reported. In this research, we model the spin transport in Pt/YIG/Pt and Pt/YIG/AFMO/Pt heterostructures using the Landau-Lifshitz-Gilbert equations coupled with the non-equilibrium Green's function equations. We show that a pure spin current generated at the first Rashba SOC electrode is carried by magnon through YIG, which can be converted back to spin pumping signal at the second electrode. The spin dynamical details at the heterostructure can determine the transport efficiency. The effect of different magnetization orientations and finite temperatures will be addressed. This work was supported by the SHINES under Award # SC0012670.
Ising antiferromagnet on the Archimedean lattices.
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices. PMID:26172675
Classical antiferromagnet on a hyperkagome lattice.
Hopkinson, John M; Isakov, Sergei V; Kee, Hae-Young; Kim, Yong Baek
2007-07-20
Motivated by recent experiments on Na4Ir3O8 [Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, arXiv:0705.2821 (unpublished)], we study the classical antiferromagnet on a frustrated three-dimensional lattice obtained by selectively removing one of four sites in each tetrahedron of the pyrochlore lattice. This "hyperkagome" lattice consists of corner-sharing triangles. We present the results of large-N mean field theory and Monte Carlo computations on O(N) classical spin models. It is found that the classical ground states are highly degenerate. Nonetheless a nematic order emerges at low temperatures in the Heisenberg model (N=3) via "order by disorder," representing the dominance of coplanar spin configurations. Implications for ongoing experiments are discussed. PMID:17678320
Phonon assisted IR spectroscopy of quantum antiferromagnets
Lorenzana, J.; Eder, R.; Sawatzky, G.A.
1996-12-31
The authors review resent theoretical results for multimagnon-phonon assisted infrared absorption in antiferromagnetic Heisenberg systems. They show spin wave theory line shapes for 2D spin 1/2 systems (like the parent insulating high-Tc cuprates) 1D spin 1/2 systems and 2D spin 1 systems (like the nickelates) and exact diagonalization results in two-dimensional spin 1/2 systems. The theoretical line shapes are compared with experiments. In the case of the cuprates they explain mid-infrared peaks observed in the insulator. In the case of the nickelates a predicted line shape is also shown to agree with the experiments. They discuss the possibility to observe this excitations in other experiments.
Ising antiferromagnet on the 2-uniform lattices
NASA Astrophysics Data System (ADS)
Yu, Unjong
2016-08-01
The antiferromagnetic Ising model is investigated on the twenty 2-uniform lattices using the Monte Carlo method based on the Wang-Landau algorithm and the Metropolis algorithm to study the geometric frustration effect systematically. Based on the specific heat, the residual entropy, and the Edwards-Anderson freezing order parameter, the ground states of them were determined. In addition to the long-range-ordered phase and the spin ice phase found in the Archimedean lattices, two more phases were found. The partial long-range order is long-range order with exceptional disordered sites, which give extensive residual entropy. In the partial spin ice phase, the partial freezing phenomenon appears: A majority of sites are frozen without long-range order, but the other sites are fluctuating even at zero temperature. The spin liquid ground state was not found in the 2-uniform lattices.
Ising antiferromagnet on the Archimedean lattices
NASA Astrophysics Data System (ADS)
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Antiferromagnetically Induced Photoemission Band in the Cuprates
NASA Astrophysics Data System (ADS)
Haas, Stephan; Moreo, Adriana; Dagotto, Elbio
1995-05-01
Strong antiferromagnetic correlations in models of high critical temperature (high- Tc) cuprates produce quasiparticlelike features in photoemission (PES) calculations above the Fermi momentum pF corresponding to weakly interacting electrons. This effect, discussed before by Kampf and Schrieffer [Phys. Rev. B 41, 6399 (1990)], is analyzed here using computational techniques in strong coupling. It is concluded that weight above pF should be observable in PES data for underdoped compounds, while in the overdoped regime it will be hidden in the experimental background. At optimal doping the signal is weak. The order of magnitude of our results is compatible with experimental data by Aebi et al. [Phys. Rev. Lett. 72, 2757 (1994)] for Bi2Sr2CaCu2O8.
Probing the evolution of antiferromagnetism in multiferroics
Holcomb, M.; Martin, L.; Scholl, A.; He, Q.; Yu, P.; Yang, C.-H.; Yang, S.; Glans, P.-A.; Valvidares, M.; Huijben, M.; Kortright, J.; Guo,, J.; Chu, Y.-H.; Ramesh, R.
2010-06-09
This study delineates the evolution of magnetic order in epitaxial films of the room-temperature multiferroic BiFeO3 system. Using angle- and temperature-dependent dichroic measurements and spectromicroscopy, we have observed that the antiferromagnetic order in the model multiferroic BiFeO3 evolves systematically as a function of thickness and strain. Lattice-mismatch-induced strain is found to break the easy-plane magnetic symmetry of the bulk and leads to an easy axis of magnetization which can be controlled through strain. Understanding the evolution of magnetic structure and how to manipulate the magnetism in this model multiferroic has significant implications for utilization of such magnetoelectric materials in future applications.
Dynamics of antiferromagnets driven by spin current
NASA Astrophysics Data System (ADS)
Cheng, Ran; Niu, Qian
2014-02-01
When a spin-polarized current flows through a ferromagnetic (FM) metal, angular momentum is transferred to the background magnetization via spin-transfer torques. In antiferromagnetic (AFM) materials, however, the corresponding problem is unsolved. We derive microscopically the dynamics of an AFM system driven by spin current generated by an attached FM polarizer, and find that the spin current exerts a driving force on the local staggered order parameter. The mechanism does not rely on the conservation of spin angular momentum, nor does it depend on the induced FM moments on top the AFM background. Two examples are studied: (i) A domain wall is accelerated to a terminal velocity by purely adiabatic effect where the Walker's breakdown is avoided. (ii) Spin injection modifies the AFM resonance frequency, and spin current injection triggers spin wave instability of local moments above a threshold.
Anomalous Magnetothermopower in a Metallic Frustrated Antiferromagnet.
Arsenijević, Stevan; Ok, Jong Mok; Robinson, Peter; Ghannadzadeh, Saman; Katsnelson, Mikhail I; Kim, Jun Sung; Hussey, Nigel E
2016-02-26
We report the temperature T and magnetic field H dependence of the thermopower S of an itinerant triangular antiferromagnet PdCrO_{2} in high magnetic fields up to 32 T. In the paramagnetic phase, the zero-field thermopower is positive with a value typical of good metals with a high carrier density. In marked contrast to typical metals, however, S decreases rapidly with increasing magnetic field, approaching zero at the maximum field scale for T>70 K. We argue here that this profound change in the thermoelectric response derives from the strong interaction of the 4d correlated electrons of the Pd ions with the short-range spin correlations of the Cr^{3+} spins that persist beyond the Néel ordering temperature due to the combined effects of geometrical frustration and low dimensionality. PMID:26967440
Anomalous Magnetothermopower in a Metallic Frustrated Antiferromagnet
NASA Astrophysics Data System (ADS)
Arsenijević, Stevan; Ok, Jong Mok; Robinson, Peter; Ghannadzadeh, Saman; Katsnelson, Mikhail I.; Kim, Jun Sung; Hussey, Nigel E.
2016-02-01
We report the temperature T and magnetic field H dependence of the thermopower S of an itinerant triangular antiferromagnet PdCrO2 in high magnetic fields up to 32 T. In the paramagnetic phase, the zero-field thermopower is positive with a value typical of good metals with a high carrier density. In marked contrast to typical metals, however, S decreases rapidly with increasing magnetic field, approaching zero at the maximum field scale for T >70 K . We argue here that this profound change in the thermoelectric response derives from the strong interaction of the 4 d correlated electrons of the Pd ions with the short-range spin correlations of the Cr3 + spins that persist beyond the Néel ordering temperature due to the combined effects of geometrical frustration and low dimensionality.
Transformation of spin current by antiferromagnetic insulators
NASA Astrophysics Data System (ADS)
Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasil S.; Slavin, Andrei N.; Ivanov, Boris A.
2016-06-01
It is demonstrated theoretically that a thin layer of an anisotropic antiferromagnetic (AFM) insulator can effectively conduct spin current through the excitation of a pair of evanescent AFM spin wave modes. The spin current flowing through the AFM is not conserved due to the interaction between the excited AFM modes and the AFM lattice and, depending on the excitation conditions, can be either attenuated or enhanced. When the phase difference between the excited evanescent modes is close to π /2 , there is an optimum AFM thickness for which the output spin current reaches a maximum, which can significantly exceed the magnitude of the input spin current. The spin current transfer through the AFM depends on the ambient temperature and increases substantially when temperature approaches the Néel temperature of the AFM layer.
Antiferromagnetic coupling across silicon regulated by tunneling currents
NASA Astrophysics Data System (ADS)
Gareev, R. R.; Schmid, M.; Vancea, J.; Back, C. H.; Schreiber, R.; Bürgler, D.; Schneider, C. M.; Stromberg, F.; Wende, H.
2012-01-01
We report on the enhancement of antiferromagnetic coupling in epitaxial Fe/Si/Fe structures by voltage-driven spin-polarized tunneling currents. Using the ballistic electron magnetic microscopy, we established that the hot-electron collector current reflects magnetization alignment and the magnetocurrent exceeds 200% at room temperature. The saturation magnetic field for the collector current corresponding to the parallel alignment of magnetizations rises up with the tunneling current, thus demonstrating stabilization of the antiparallel alignment and increasing antiferromagnetic coupling. We connect the enhancement of antiferromagnetic coupling with local dynamic spin torques mediated by spin-polarized tunneling electrons.
Kapitza problem for the magnetic moments of synthetic antiferromagnetic systems
Dzhezherya, Yu. I.; Demishev, K. O.; Korenivskii, V. N.
2012-08-15
The dynamics of magnetization in synthetic antiferromagnetic systems with the magnetic dipole coupling in a rapidly oscillating field has been examined. It has been revealed that the system can behave similar to the Kapitza pendulum. It has been shown that an alternating magnetic field can be efficiently used to control the magnetic state of a cell of a synthetic antiferromagnet. Analytical relations have been obtained between the parameters of such an antiferromagnet and an external magnetic field at which certain quasistationary states are implemented.
Phenomenology of current-induced skyrmion motion in antiferromagnets
NASA Astrophysics Data System (ADS)
Velkov, H.; Gomonay, O.; Beens, M.; Schwiete, G.; Brataas, A.; Sinova, J.; Duine, R. A.
2016-07-01
We study current-driven skyrmion motion in uniaxial thin film antiferromagnets in the presence of the Dzyaloshinskii–Moriya interactions and in an external magnetic field. We phenomenologically include relaxation and current-induced torques due to both spin–orbit coupling and spatially inhomogeneous magnetic textures in the equation for the Néel vector of the antiferromagnet. Using the collective coordinate approach we apply the theory to a two-dimensional antiferromagnetic skyrmion and estimate the skyrmion velocity under an applied DC electric current.
Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators and Superconductors.
NASA Astrophysics Data System (ADS)
Blumberg, G.; Abbamonte, P.; Klein, M. V.
1996-03-01
We present results of low-temperature two-magnon resonance Raman excitation profile measurements for single layer Sr_2CuO_2Cl2 and bilayer YBa_2Cu_3O6 + δ antiferromagnets over the excitation region from 1.65 to 3.05 eV. These data reveal composite structure of the B_1g two-magnon line shape peaked at ~ 2.7J and ~ 4J and strong nonmonotonic dependence of the scattering intensity on excitation energy. Resonant magnetic scattering contributes also to A_1g and B_2g channels. We analyze these data using the triple resonance theory of Chubukov and Frenkel(A. Chubukov and D. Frenkel, Phys. Rev. Lett.74), 3057 (1995). and deduce information about magnetic interaction (J and J_⊥) and band parameters (NN hopping t and charge transfer gap 2Δ) in these antiferromagnets.(G. Blumberg et. al.), Preprint cond-mat/9511080. The ~ 3J spin superexchange excitation persists upon hole doping and is present in superconductors, proving the universality of the short wavelength magnetic excitations in the cuprate superconducting metals and the parent antiferromagnetic insulators.(G. Blumberg et. al.), Phys. Rev. B 49, 13 295 (1994).
Localized moments and the stability of antiferromagnetic order in Yb3Pt4
NASA Astrophysics Data System (ADS)
Wu, L. S.; Janssen, Y.; Bennett, M. C.; Aronson, M. C.
2012-08-01
We present here the results of electrical resistivity ρ, magnetization M, ac susceptibility χac', and specific heat CM measurements that have been carried out on single crystals of Yb3Pt4 over a wide range of fields and temperatures. The 2.4-K Néel temperature that is found in zero field collapses under field to a first-order transition TN=0 at BCEP=1.85 T. In the absence of antiferromagnetic order, the specific heat CM(T,B), the magnetization M(T,B), and even the resistivity ρ(T,B) all display B/T scaling, indicating that they are dominated by strong paramagnetic fluctuations, where the only characteristic energy scale results from the Zeeman splitting of an energetically isolated, Yb doublet ground state. This paramagnetic scattering disappears with the onset of antiferromagnetic order, revealing Fermi liquid behavior Δρ=AT2 that persists up to the antiferromagnetic phase line TN(B), but not beyond. The first-order character of TN=0 and the ubiquity of the paramagnetic fluctuations imply that non-Fermi-liquid behaviors are absent in Yb3Pt4. In contrast to heavy fermions such as YbRh2Si2, Yb3Pt4 represents an extremely simple regime of f-electron behavior where the Yb moments and conduction electrons are almost decoupled, and where Kondo physics plays little role.
Temperature dependence of anisotropic magnetoresistance in antiferromagnetic Sr{sub 2}IrO{sub 4}
Wang, C.; Seinige, H.; Tsoi, M.; Cao, G.; Zhou, J.-S.; Goodenough, J. B.
2015-05-07
Temperature-dependent magnetotransport properties of the antiferromagnetic semiconductor Sr{sub 2}IrO{sub 4} are investigated with point-contact devices. The point-contact technique allows to probe very small volumes and, therefore, to look for electronic transport on a microscopic scale. Point-contact measurements with single crystals of Sr{sub 2}IrO{sub 4} were intended to see whether the additional local resistance associated with a small contact area between a sharpened Cu tip and the antiferromagnet shows magnetoresistance (MR) such as that seen in bulk crystals. Point-contact measurements at liquid nitrogen temperature revealed large MRs (up to 28%) for modest magnetic fields (250 mT) applied within an IrO{sub 2} (ab) plane with angular dependence showing a crossover from four-fold to two-fold symmetry with an increasing magnetic field. Point contact measurement exhibits distinctive anisotropic magnetoresistance (AMR) in comparison to a bulk experiment, imposing intriguing questions about the mechanism of AMR in this material. Temperature-dependent MR measurements show that the MR falls to zero at the Neel temperature, but the temperature dependence of the MR ratio differs qualitatively from that of the resistivity. This AMR study helps to unveil the entanglement between electronic transport and magnetism in Sr{sub 2}IrO{sub 4} while the observed magnetoresistive phenomena can be potentially used to sense the antiferromagnetic order parameter in spintronic applications.
Photo-induced Spin Angular Momentum Transfer into Antiferromagnetic Insulator
NASA Astrophysics Data System (ADS)
Fang, Fan; Fan, Yichun; Ma, Xin; Zhu, J.; Li, Q.; Ma, T. P.; Wu, Y. Z.; Chen, Z. H.; Zhao, H. B.; Luepke, Gunter; College of William and Mary Team; Department of Physics, Fudan University Team; Department of Optical Science and Engineering, Fudan University Team
2014-03-01
Spin angular momentum transfer into antiferromagnetic(AFM) insulator is observed in single crystalline Fe/CoO/MgO(001) heterostructure by time-resolved magneto-optical Kerr effect (TR-MOKE). The transfer process is mediated by the Heisenberg exchange coupling between Fe and CoO spins. Below the Neel temperature(TN) of CoO, the fact that effective Gilbert damping parameter α is independent of external magnetic field and it is enhanced with respect to the intrinsic damping in Fe/MgO, indicates that the damping process involves both the intrinsic spin relaxation and the transfer of Fe spin angular momentum to CoO spins via FM-AFM exchange coupling and then into the lattice by spin-orbit coupling. The work at the College of William and Mary was sponsored by the Office of Naval Research. The work at Department of Physics, Fudan, was supported by NSFC. The work at Department of Optical Science and Engineering, Fudan was supported by NSFC and NCET.
Kinetically inhibited order in a diamond-lattice antiferromagnet.
MacDougall, Gregory J; Gout, Delphine; Zarestky, Jerel L; Ehlers, Georg; Podlesnyak, Andrey; McGuire, Michael A; Mandrus, David; Nagler, Stephen E
2011-09-20
Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here, we present a comprehensive single-crystal neutron scattering study of CoAl(2)O(4), a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Néel ordering. Below the temperature T(∗) = 6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T(∗) had previously been associated with the onset of glassy behavior. Our new results suggest instead that T(∗) signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials. PMID:21896723
Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet
MacDougall, Gregory J; Gout, Delphine J; Zarestky, Jerel L; Ehlers, Georg; Podlesnyak, Andrey A; McGuire, Michael A; Mandrus, David; Nagler, Stephen E
2011-01-01
Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, there is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.
Kinetically inhibited order in a diamond-lattice antiferromagnet
MacDougall, Gregory J.; Gout, Delphine; Zarestky, Jerel L.; Ehlers, Georg; Podlesnyak, Andrey; McGuire, Michael A.; Mandrus, David; Nagler, Stephen E.
2011-01-01
Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here, we present a comprehensive single-crystal neutron scattering study of CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Néel ordering. Below the temperature T∗ = 6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T∗ had previously been associated with the onset of glassy behavior. Our new results suggest instead that T∗ signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials. PMID:21896723
Experimental investigation of two-dimensional antiferromagnetic systems
NASA Astrophysics Data System (ADS)
Woodward, Frank Matthew
Quantum fluctuations have a profound effect on the bulk properties of magnetic systems, particularly in low spatial dimension. For example, 1D chains with half integral spins have a gapless excitation spectrum while whole integer spin chains have a (Haldane) gap. The quantum critical behavior of the S = 1/2 2D system is thought to be the origin of high TC superconductivity. Molecular magnets are engineered materials where spin, interaction strength, or dimensionality can be tuned for experimental exploration of magnetism. A conscious effort was made to pick chemical motifs known to generate a quasi two dimensional Heisenberg system and attempt to exploit these motifs by designing classes of compounds based upon them. Creating many similar systems and observing changes in magnetism as a result in changes of chemical structure provides for the development of a phenomenological model of magnetostructural correlations which can then be verified by calculation. This dissertation discusses two distinct classes of antiferromagnetic systems, each based upon entirely different chemical motifs, both exhibiting the desired two dimensional Heisenberg antiferromagnetic behavior. One class is based upon copper tetrabromide: (5gammaAP)2CuBr4 where 5gammaAP = 2-amino-5-gamma-pyridinium with gamma = chloro, bromo, or methyl substituents. These materials are shown, by bulk magnetization and calorimetry studies to possess an exchange strength on the order of J ≈ -7 to -9 K and ordering temperatures in the range of TN ≈ 3.5 to 5 K. In the ordered state, these materials are shown to possesses a weak 3D exchange interaction, and exhibit a spin-flop transition to long range order in the magnetism. The other class under investigation is based upon copper pyrazine: Cu(pz) 2(ClO4)2, Cu(pz)2(BF6) 2, and [Cu(pz)2(NO3)](PF6). By bulk magnetic measurements of powder and single crystal samples they are shown to be a very good approximation of the 2D QHAF model. The two dimensional magnetic
Giant magnetic effects and oscillations in antiferromagnetic Josephson weak links
Gorkov, L.; Kresin, Vladimir
2001-04-01
Josephson junctions with an antiferromagnetic metal as a link are described. The junction can be switched off by a relatively small magnetic field. The amplitude of the current oscillates as a function of the field.
Lifetime of gapped excitations in a collinear quantum antiferromagnet.
Chernyshev, A L; Zhitomirsky, M E; Martin, N; Regnault, L-P
2012-08-31
We demonstrate that local modulations of magnetic couplings have a profound effect on the temperature dependence of the relaxation rate of optical magnons in a wide class of antiferromagnets in which gapped excitations coexist with acoustic spin waves. In a two-dimensional collinear antiferromagnet with an easy-plane anisotropy, the disorder-induced relaxation rate of the gapped mode, Γ(imp)≈Γ(0)+A(TlnT)2, greatly exceeds the magnon-magnon damping, Γ(m-m)≈BT5, negligible at low temperatures. We measure the lifetime of gapped magnons in a prototype XY antiferromagnet BaNi2(PO4)2 using a high-resolution neutron-resonance spin-echo technique and find experimental data in close accord with the theoretical prediction. Similarly strong effects of disorder in the three-dimensional case and in noncollinear antiferromagnets are discussed. PMID:23002874
Room-temperature antiferromagnetic memory resistor.
Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R
2014-04-01
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets. PMID:24464243
Quantum Phase Transitions in Antiferromagnets and Superfluids
NASA Astrophysics Data System (ADS)
Sachdev, Subir
2000-03-01
A general introduction to the non-zero temperature dynamic and transport properties of low-dimensional systems near a quantum phase transition shall be presented. Basic results will be reviewed in the context of experiments on the spin-ladder compounds. Recent large N computations (M. Vojta and S. Sachdev, Phys. Rev. Lett. 83), 3916 (1999) on an extended t-J model motivate a global scenario of the quantum phases and transitions in the high temperature superconductors, and connections will be made to numerous experiments. A universal theory (S. Sachdev, C. Buragohain, and M. Vojta, Science, in press M. Vojta, C. Buragohain, and S. Sachdev, cond- mat/9912020) of quantum impurities in spin-gap antiferromagnets near a magnetic ordering transition will be compared quantitatively to experiments on Zn doped Y Ba2 Cu3 O7 (Fong et al.), Phys. Rev. Lett. 82, 1939 (1999)
Room-temperature antiferromagnetic memory resistor
NASA Astrophysics Data System (ADS)
Marti, X.; Fina, I.; Frontera, C.; Liu, Jian; Wadley, P.; He, Q.; Paull, R. J.; Clarkson, J. D.; Kudrnovský, J.; Turek, I.; Kuneš, J.; Yi, D.; Chu, J.-H.; Nelson, C. T.; You, L.; Arenholz, E.; Salahuddin, S.; Fontcuberta, J.; Jungwirth, T.; Ramesh, R.
2014-04-01
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.
Antiferromagnetic Skyrmion: Stability, Creation and Manipulation
Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko
2016-01-01
Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials. PMID:27099125
Antiferromagnetic Skyrmion: Stability, Creation and Manipulation.
Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko
2016-01-01
Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials. PMID:27099125
Antiferromagnetic Skyrmion: Stability, Creation and Manipulation
NASA Astrophysics Data System (ADS)
Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko
2016-04-01
Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction. It is demonstrated that the AFM skyrmion, driven by the spin-polarized current, can move straightly over long distance, benefiting from the absence of the SkHE. Our results will open a new strategy on designing the novel spintronic devices based on AFM materials.
NASA Astrophysics Data System (ADS)
Wang, Bo-Yao; Lin, Po-Han; Tsai, Ming-Shian; Shih, Chun-Wei; Lee, Meng-Ju; Huang, Chun-Wei; Jih, Nae-Yeou; Wei, Der-Hsin
2016-08-01
This study demonstrates the effect of antiferromagnet-induced perpendicular magnetic anisotropy (PMA) on ferromagnetic/antiferromagnetic/ferromagnetic (FM/AFM/FM) trilayers and reveals its interplay with a long-range interlayer coupling between separated FM layers. In epitaxially grown 12 monolayer (ML) Ni/Co/Mn/5 ML Co/Cu(001) films, magnetic hysteresis loops and element-resolved magnetic domain imaging showed that the magnetization direction of the top layers of 12 ML Ni/Co films could be changed from the in-plane direction to the perpendicular direction, when the thickness of the Mn films (tMn) was greater than a critical value close to the thickness threshold associated with the onset of AFM ordering (tMn=3.5 ML). The top FM layers exhibited a significantly enhanced PMA when tMn increased further, and this enhancement can be attributed to a strengthened AFM ordering of the volume moments of the Mn films, as evidenced by the presence of induced domain frustration. By contrast, the long-range interlayer coupling presented clear effects only when tMn was at a lower coverage.
Horio, M.; Adachi, T.; Mori, Y.; Takahashi, A.; Yoshida, T.; Suzuki, H.; Ambolode, L. C. C.; Okazaki, K.; Ono, K.; Kumigashira, H.; Anzai, H.; Arita, M.; Namatame, H.; Taniguchi, M.; Ootsuki, D.; Sawada, K.; Takahashi, M.; Mizokawa, T.; Koike, Y.; Fujimori, A.
2016-01-01
In the hole-doped cuprates, a small number of carriers suppresses antiferromagnetism and induces superconductivity. In the electron-doped cuprates, on the other hand, superconductivity appears only in a narrow window of high-doped Ce concentration after reduction annealing, and strong antiferromagnetic correlation persists in the superconducting phase. Recently, Pr1.3−xLa0.7CexCuO4 (PLCCO) bulk single crystals annealed by a protect annealing method showed a high critical temperature of around 27 K for small Ce content down to 0.05. Here, by angle-resolved photoemission spectroscopy measurements of PLCCO crystals, we observed a sharp quasi-particle peak on the entire Fermi surface without signature of an antiferromagnetic pseudogap unlike all the previous work, indicating a dramatic reduction of antiferromagnetic correlation length and/or of magnetic moments. The superconducting state was found to extend over a wide electron concentration range. The present results fundamentally challenge the long-standing picture on the electronic structure in the electron-doped regime. PMID:26843063
Horio, M; Adachi, T; Mori, Y; Takahashi, A; Yoshida, T; Suzuki, H; Ambolode, L C C; Okazaki, K; Ono, K; Kumigashira, H; Anzai, H; Arita, M; Namatame, H; Taniguchi, M; Ootsuki, D; Sawada, K; Takahashi, M; Mizokawa, T; Koike, Y; Fujimori, A
2016-01-01
In the hole-doped cuprates, a small number of carriers suppresses antiferromagnetism and induces superconductivity. In the electron-doped cuprates, on the other hand, superconductivity appears only in a narrow window of high-doped Ce concentration after reduction annealing, and strong antiferromagnetic correlation persists in the superconducting phase. Recently, Pr1.3-xLa0.7CexCuO4 (PLCCO) bulk single crystals annealed by a protect annealing method showed a high critical temperature of around 27 K for small Ce content down to 0.05. Here, by angle-resolved photoemission spectroscopy measurements of PLCCO crystals, we observed a sharp quasi-particle peak on the entire Fermi surface without signature of an antiferromagnetic pseudogap unlike all the previous work, indicating a dramatic reduction of antiferromagnetic correlation length and/or of magnetic moments. The superconducting state was found to extend over a wide electron concentration range. The present results fundamentally challenge the long-standing picture on the electronic structure in the electron-doped regime. PMID:26843063
Superconducting phase diagram of itinerant antiferromagnets
NASA Astrophysics Data System (ADS)
Rømer, A. T.; Eremin, I.; Hirschfeld, P. J.; Andersen, B. M.
2016-05-01
We study the phase diagram of the Hubbard model in the weak-coupling limit for coexisting spin-density-wave order and spin-fluctuation-mediated superconductivity. Both longitudinal and transverse spin fluctuations contribute significantly to the effective interaction potential, which creates Cooper pairs of the quasiparticles of the antiferromagnetic metallic state. We find a dominant dx2-y2-wave solution in both electron- and hole-doped cases. In the quasi-spin-triplet channel, the longitudinal fluctuations give rise to an effective attraction supporting a p -wave gap, but are overcome by repulsive contributions from the transverse fluctuations which disfavor p -wave pairing compared to dx2-y2. The subleading pair instability is found to be in the g -wave channel, but complex admixtures of d and g are not energetically favored since their nodal structures coincide. Inclusion of interband pairing, in which each fermion in the Cooper pair belongs to a different spin-density-wave band, is considered for a range of electron dopings in the regime of well-developed magnetic order. We demonstrate that these interband pairing gaps, which are nonzero in the magnetic state, must have the same parity under inversion as the normal intraband gaps. The self-consistent solution to the full system of five coupled gap equations gives intraband and interband pairing gaps of dx2-y2 structure and similar gap magnitude. In conclusion, the dx2-y2 gap dominates for both hole and electron doping inside the spin-density-wave phase.
Fishman, Randy Scott; Haraldsen, Jason T
2011-01-01
While a magnetic phase may be both locally stable and globally unstable, global stability always implies local stability. The distinction between local and global stability is studied on a geometrically-frustrated triangular lattice antiferromagnet with easy axis, single-ion anisotropy D along the z axis. Whereas the critical value Dloc c for local stability may be discontinuous across a phase boundary, the critical value Dglo c Dloc c for global stability must be continuous. We demonstrate this behavior across the phase boundary between collinear 3 and 4 sublattice phases that are stable for large D.
Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap
NASA Astrophysics Data System (ADS)
Murmann, S.; Deuretzbacher, F.; Zürn, G.; Bjerlin, J.; Reimann, S. M.; Santos, L.; Lompe, T.; Jochim, S.
2015-11-01
We report on the deterministic preparation of antiferromagnetic Heisenberg spin chains consisting of up to four fermionic atoms in a one-dimensional trap. These chains are stabilized by strong repulsive interactions between the two spin components without the need for an external periodic potential. We independently characterize the spin configuration of the chains by measuring the spin orientation of the outermost particle in the trap and by projecting the spatial wave function of one spin component on single-particle trap levels. Our results are in good agreement with a spin-chain model for fermionized particles and with numerically exact diagonalizations of the full few-fermion system.
Phase diagram of a three-dimensional antiferromagnet with random magnetic anisotropy.
Perez, Felio A; Borisov, Pavel; Johnson, Trent A; Stanescu, Tudor D; Trappen, Robbyn; Holcomb, Mikel B; Lederman, David; Fitzsimmons, M R; Aczel, Adam A; Hong, Tao
2015-03-01
Three-dimensional antiferromagnets with random magnetic anisotropy (RMA) that have been experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe_{x}Ni_{1-x}F_{2} epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean-field theory. Regions with uniaxial, oblique, and easy-plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs. PMID:25793845
Phase Diagram of a Three-Dimensional Antiferromagnet with Random Magnetic Anisotropy
Perez, Felio A.; Borisov, Pavel; Johnson, Trent A.; Stanescu, Tudor D.; Trappen, Robbyn; Holcomb, Mikel B.; Lederman, David; Fitzsimmons, M. R.; Aczel, Adam A.; Hong, Tao
2015-03-04
Three-dimensional (3D) antiferromagnets with random magnetic anisotropy (RMA) that were experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe_{x}Ni_{1-x}F_{2} epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean field theory. Regions with uniaxial, oblique and easy plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs.
Phase Diagram of a Three-Dimensional Antiferromagnet with Random Magnetic Anisotropy
Perez, Felio A.; Borisov, Pavel; Johnson, Trent A.; Stanescu, Tudor D.; Trappen, Robbyn; Holcomb, Mikel B.; Lederman, David; Fitzsimmons, M. R.; Aczel, Adam A.; Hong, Tao
2015-03-04
Three-dimensional (3D) antiferromagnets with random magnetic anisotropy (RMA) that were experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of FexNi1-xF2 epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean field theory. Regions with uniaxial, oblique and easy plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs.
Itinerant Antiferromagnetism in FeMnP0.8Si0.2
Sales, Brian C.; Susner, Michael A.; Conner, Benjamin S.; Yan, Jiaqiang Q.; May, Andrew F.
2015-09-25
Compounds based on the Fe2P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a noncentrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. We report the growth and characterization of millimeter-sized single crystals of FeMnP0.8Si0.2 with the Fe2P structure. Single-crystal x-ray diffraction, magnetization, resistivity, and Hall and heat capacity data are reported. The crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. The room-temperature resistivity is closemore » to the Ioffe-Regel limit for a metal. Single-crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism were not changed after high-temperature anneals and a rapid quench to room temperature« less
Nematic antiferromagnetic states in bulk FeSe
NASA Astrophysics Data System (ADS)
Liu, Kai; Lu, Zhong-Yi; Xiang, Tao
2016-05-01
The existence of nematic order, which breaks the lattice rotational symmetry with nonequivalent a and b axes in iron-based superconductors, is a well-established experimental fact. An antiferromagnetic (AFM) transition is accompanying this order, observed in nearly all parent compounds, except bulk FeSe. The absence of the AFM order in FeSe casts doubt on the magnetic mechanism of iron-based superconductivity, since the nematic order is believed to be driven by the same interaction that is responsible for the superconducting pairing in these materials. Here we show, through systematic first-principles electronic structure calculations, that the ground state of FeSe is in fact strongly AFM correlated but without developing a magnetic long-range order. Actually, there are a series of staggered n -mer AFM states with corresponding energies below that of the single stripe AFM state, which is the ground state for the parent compounds of most iron-based superconductors. Here, the staggered n -mer (n any integer >1 ) means a set of n adjacent parallel spins on a line along the b axis with antiparallel spins between n -mers along both a and b axes. Moreover, different n -mers can antiparallelly mix with each other to coexist. Among all the states, we find that the lowest energy states formed by the staggered dimer, staggered trimer, and their random antiparallel aligned spin states along the b axis are quasidegenerate. The thermal average of these states does not show any magnetic long-range order, but it does possess a hidden one-dimensional AFM order along the a axis, which can be detected by elastic neutron scattering measurements. Our finding gives a natural account for the absence of long-range magnetic order and suggests that the nematicity is driven predominantly by spin fluctuations even in bulk FeSe, providing a unified description on the phase diagram of iron-based superconductors.
Antiferromagnetic coupling across silicon regulated by tunneling currents
NASA Astrophysics Data System (ADS)
Gareev, Rashid; Schmid, Maximilian; Vancea, Johann; Back, Christian; Schreiber, Reinert; Buergler, Daniel; Stromberg, Frank; Wende, Heiko
2012-02-01
We present the room temperature enhancement of antiferromagnetic coupling in epitaxial Fe(3 nm)/Si(2.4 nm)/Fe(3 nm) structures by voltage-driven spin-polarized tunneling currents. Using the ballistic electron magnetic microscopy we established that the saturation field for the collector current corresponding to parallel alignment of magnetizations rises up with the tunneling current, thus demonstrating stabilization of the antiparallel alignment and increase of antiferromagnetic coupling. We connect the enhancement of antiferromagnetic coupling with local dynamic spin torques mediated by spin-polarized tunneling electrons. Finally, in the antiparallel state the spin-polarized majority (minority) electrons exert dynamic torques in the bottom (upper) iron layer and, thus, additionally stabilize magnetization alignment.
Antiferromagnetic phase of the gapless semiconductor V3Al
NASA Astrophysics Data System (ADS)
Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.
2015-03-01
Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.
Exchange-bias-like effect of an uncompensated antiferromagnet
NASA Astrophysics Data System (ADS)
Henne, Bastian; Ney, Verena; de Souza, Mariano; Ney, Andreas
2016-04-01
The exchange bias effect is usually defined as horizontal shift of the field-cooled magnetization loop when an antiferromagnet is directly coupled to a ferromagnet. Uncompensated spins at the interface between the two layers are believed to cause this phenomenon. The presence of such, on the other hand, would infer a vertical, i.e., a magnetization-like shift stemming from the antiferromagnet. Observations of this effect are sparse, especially in the absence of a ferromagnet. We present a model system based on extremely Co doped ZnO in which the uncompensated spins of antiferromagnetic Co-O-Co… configurations lead to this vertical shift and therefore to a field-resistant magnetization. A simple Stoner-Wohlfarth-like model based on configurations of different sizes is used to explain the occurrence of this exchange-bias-like shift and a narrow opening of the magnetization curves.
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
NASA Astrophysics Data System (ADS)
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.
Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings
NASA Astrophysics Data System (ADS)
Chiba, Takahiro; Bauer, Gerrit E. W.; Takahashi, Saburo
2015-08-01
We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e., antiferromagnetically exchange-coupled spin valves, in the presence of applied magnetic fields that enforce noncolliear magnetic configurations. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferrromagnet/normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the interlayer static and dynamic exchange interactions. We predict noncollinearity-induced additional damping that is modulated by an applied magnetic field. We compare theoretical results with published experiments.
Antiferromagnetic majority voter model on square and honeycomb lattices
NASA Astrophysics Data System (ADS)
Sastre, Francisco; Henkel, Malte
2016-02-01
An antiferromagnetic version of the well-known majority voter model on square and honeycomb lattices is proposed. Monte Carlo simulations give evidence for a continuous order-disorder phase transition in the stationary state in both cases. Precise estimates of the critical point are found from the combination of three cumulants, and our results are in good agreement with the reported values of the equivalent ferromagnetic systems. The critical exponents 1 / ν, γ / ν and β / ν were found. Their values indicate that the stationary state of the antiferromagnetic majority voter model belongs to the Ising model universality class.
Thermal Generation of Spin Current in an Antiferromagnet.
Seki, S; Ideue, T; Kubota, M; Kozuka, Y; Takagi, R; Nakamura, M; Kaneko, Y; Kawasaki, M; Tokura, Y
2015-12-31
The longitudinal spin Seebeck effect has been investigated for a uniaxial antiferromagnetic insulator Cr(2)O(3), characterized by a spin-flop transition under magnetic field along the c axis. We have found that a temperature gradient applied normal to the Cr(2)O(3)/Pt interface induces inverse spin Hall voltage of spin-current origin in Pt, whose magnitude turns out to be always proportional to magnetization in Cr(2)O(3). The possible contribution of the anomalous Nernst effect is confirmed to be negligibly small. The above results establish that an antiferromagnetic spin wave can be an effective carrier of spin current. PMID:26765011
Ferro- and antiferro-magnetism in (Np, Pu)BC
NASA Astrophysics Data System (ADS)
Klimczuk, T.; Shick, A. B.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Falmbigl, M.; Wastin, F.; Rogl, P.
2015-04-01
Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of {Np,Pu}BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below TN = 44 K, whereas ferromagnetic ordering was found for NpBC below TC = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.
Antiferromagnetism in Bulk Rutile RuO2
NASA Astrophysics Data System (ADS)
Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.
While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Li, Yuesheng; Adroja, Devashibhai; Biswas, Pabitra K; Baker, Peter J; Zhang, Qian; Liu, Juanjuan; Tsirlin, Alexander A; Gegenwart, Philipp; Zhang, Qingming
2016-08-26
Muon spin relaxation (μSR) experiments on single crystals of the structurally perfect triangular antiferromagnet YbMgGaO_{4} indicate the absence of both static long-range magnetic order and spin freezing down to 0.048 K in a zero field. Below 0.4 K, the μ^{+} spin relaxation rates, which are proportional to the dynamic correlation function of the Yb^{3+} spins, exhibit temperature-independent plateaus. All these μSR results unequivocally support the formation of a gapless U(1) quantum spin liquid ground state in the triangular antiferromagnet YbMgGaO_{4}. PMID:27610879
NASA Astrophysics Data System (ADS)
Pires, Antonio; Sousa, Griffith
2014-03-01
The square lattice antiferromagnet with next and next nearest neighbor exchange interaction has been the subject of intense research in the last years. It can present the behavior of a frustrated system and can otherwise describe real materials. However, a large part of the work has been dedicated to spin 1/2 and done at zero temperature. A system with spin 1 is of interest because it can have a single ion anisotropy. To study these models simple approaches which yield an analytical description are very useful for practical purposes. Here we use a Modified Spin Wave theory, where corrections owing to spin wave interactions are taken into account self-consistently, to study the easy axis two dimensional spin 1 antiferromagnet with competing interaction and single ion anisotropy. We calculate the phase diagram at zero temperature, and several thermodynamic quantities such as the magnetization, the gap and the specific heat. Their relations with the temperature and anisotropy parameter are analyzed over the entire range of temperature. We have found a Neel and a collinear phase separated by a disordered phase. This disordered phase could be a candidate for a spin liquid. This work was partially supported by CNPQ, FAPEMIG and FAPEAM.
Magnetoelectric coupling in the honeycomb antiferromagnet Co4Nb2O9
NASA Astrophysics Data System (ADS)
Khanh, N. D.; Abe, N.; Sagayama, H.; Nakao, A.; Hanashima, T.; Kiyanagi, R.; Tokunaga, Y.; Arima, T.
2016-02-01
The magnetic structure and magnetoelectric effect have been investigated for single crystals of the antiferromagnet Co4Nb2O9 . Single-crystal neutron diffraction and magnetic susceptibility measurement have revealed that the magnetic structure is different from a collinear arrangement with spin parallel to the trigonal axis as proposed previously. Co2 + magnetic moments are found to be almost lying in the basal plane, which lowers the magnetic symmetry to C 2 /c' with the propagation vector k =0 . Associated with the magnetic phase transition, a sharp anomaly in the dielectric constant and displacement current indicate the appearance of the magnetoelectric below Néel temperature TN with a large coupling constant up to 30 ps/m. The existence of off-diagonal components in a magnetoelectric tensor indicate the formation of ferrotoroidic order in Co4Nb2O9 . Such a magnetoelectric effect can be ascribed to the reduction of symmetry caused by simple antiferromagnetic order in a honeycomb network.
Thermal behavior in the magnetic phase diagram of the easy axis antiferromagnet Cs2FeCl5·H2O
NASA Astrophysics Data System (ADS)
Freitas, R. S.; Paduan-Filho, A.; Becerra, C. C.
2016-03-01
The specific heat at a constant applied field C H(T) and at fixed temperatures C T(H) of single crystals of the low anisotropy antiferromagnet Cs2FeCl5·H2O was measured across the different boundaries of its magnetic phase diagram, in magnetic fields up to 9 T applied parallel and perpendicular to the easy axis direction and to temperatures down to 0.3 K. The specific heat data indicate that the critical behavior along the antiferromagnetic to paramagnetic phase boundary and the spin-flop to paramagnetic phase boundary, are basically the same. We also measured the specific heat when the first order antiferromagnetic to spin-flop phase boundary is crossed at a fixed temperature. The entropy of the different magnetic phases is discussed.
On the ground state of antiferromagnets at zero temperature
NASA Astrophysics Data System (ADS)
Mayer, I.; Angelov, S. A.
1984-02-01
The wave function describing a perfect antiferromagnetic ordering of spins at 0 K (the singlet projection of the Néel function) was proved to be not an eigenfunction of the exchange Hamiltonian: the long-range order is reduced as to permit a higher correlation between the nearest-neighbour spins.
An antiferromagnetic transverse Ising nanoisland; unconventional surface effects
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2015-12-01
The phase diagrams and temperature dependences of magnetizations in a transverse Ising nanosisland with an antiferromagnetic spin configuration are studied by the use of the effective-field theory with correlations (EFT). Some novel features, such as the re-entrant phenomena with two compensation points being free from disorder induced frustration, are obtained for the magnetic properties in the system.
Birefringence of the antiferromagnetic crystals linear in a magnetic field
NASA Astrophysics Data System (ADS)
Eremenko, V. V.; Kharchenko, N. F.; Beliy, L. I.; Tutakina, O. P.
1980-01-01
The new linear magneto-optical effect-birefringence-of a linear polarized light which is directly proportional to the magnetic field strength has been observed. This effect is permitted in crystals which allow piezo-magnetic properties. One was studied in antiferromagnet CoF 2 and CoCO 3 for the longitudinal geometry of an experiment.
Antiferromagnetic order in a semiconductor quantum well with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Marinescu, D. C.
2015-05-01
An argument is made on the existence of a low-temperature itinerant antiferromagnetic (AF) spin alignment, rather than persistent helical (PH), in the ground state of a two dimensional electron gas in a semiconductor quantum well with linear spin-orbit Rashba-Dresselhaus interaction at equal coupling strengths, α. This result is obtained on account of the opposite-spin single-particle state degeneracy at k = 0 that makes the spin instability possible. A theory of the resulting magnetic phase is formulated within the Hartree-Fock approximation of the Coulomb interaction. In the AF state the direction of the fractional polarization is obtained to be aligned along the displacement vector of the single-particle states.
Sequential write-read operations in FeRh antiferromagnetic memory
NASA Astrophysics Data System (ADS)
Moriyama, Takahiro; Matsuzaki, Noriko; Kim, Kab-Jin; Suzuki, Ippei; Taniyama, Tomoyasu; Ono, Teruo
2015-09-01
B2-ordered FeRh has been known to exhibit antiferromagnetic-ferromagnetic (AF-F) phase transitions in the vicinity of room temperature. Manipulation of the Néel order via AF-F phase transition and recent experimental observation of the anisotropic magnetoresistance in antiferromagnetic FeRh has proven that FeRh is a promising candidate for antiferromagnetic memory material. In this work, we demonstrate sequential write and read operations in antiferromagnetic memory resistors made of B2-orderd FeRh thin films by a magnetic field and electric current only, which open a realistic pathway towards operational antiferromagnetic memory devices.
Magnetic ordering of the buckled honeycomb lattice antiferromagnet Ba2NiTeO6
NASA Astrophysics Data System (ADS)
Asai, Shinichiro; Soda, Minoru; Kasatani, Kazuhiro; Ono, Toshio; Avdeev, Maxim; Masuda, Takatsugu
2016-01-01
We investigate the magnetic order of the buckled honeycomb lattice antiferromagnet Ba2NiTeO6 and its related antiferromagnet Ba3NiTa2O9 by neutron diffraction measurements. We observe magnetic Bragg peaks below the transition temperatures, and identify propagation vectors for these oxides. A combination of representation analysis and Rietveld refinement leads to a collinear magnetic order for Ba2NiTeO6 and a 120∘ structure for Ba3NiTa2O9 . We find that the spin model of the bilayer triangular lattice is equivalent to that of the two-dimensional buckled honeycomb lattice having magnetic frustration. We discuss the magnetic interactions and single-ion anisotropy of Ni+2 ions for Ba2NiTeO6 in order to clarify the origin of the collinear magnetic structures. Our calculation suggests that the collinear magnetic order of Ba2NiTeO6 is induced by the magnetic frustration and easy-axis anisotropy.
Mechanism of spin and charge separation in one-dimensional quantum antiferromagnets
Mudry, C.; Fradkin, E. )
1994-10-15
We reconsider the problem of separation of spin and charge in one-dimensional quantum antiferromagnets. We show that spin and charge separation in one-dimensional strongly correlated systems cannot be described by the slave-boson or fermion representation within any perturbative treatment of the interactions between the slave holons and slave spinons. The constraint of single occupancy must be implemented exactly. As a result the slave fermions and bosons are not part of the physical spectrum. Instead, the excitations that carry the separate spin and charge quantum numbers are solitons. To prove this result, it is sufficient to study the pure spinon sector in the slave-boson representation. We start with a short-range resonating-valence-bond state spin liquid mean-field theory for the frustrated antiferromagnetic spin-1/2 chain. We derive an effective theory for the fluctuations of the Affleck-Marston and Anderson order parameters. We show how to recover the phase diagram as a function of the frustration by treating the fluctuations nonperturbatively.
Antiferromagnetism and Hidden Order in Isoelectronic Doping of URu2Si2
NASA Astrophysics Data System (ADS)
Wilson, Murray; Williams, Travis; Cai, Yipeng; Hallas, Alannah; Medina, Teresa; Munsie, Timothy; Cheung, Sky; Liu, Lian; Frandsen, Benjamen; Uemura, Yasutomo; Luke, Graeme
URu2Si2 has been studied for three decades to understand its unusual hidden order state. Doping of this compound on the Ru site usually causes the transition temperature to decrease and hidden order to transition to magnetic order. In contrast, the isoelectronic dopings Fe and Os cause a substantial increase in the transition temperature over a wide range of dopings, with Fe in particular mimicking applied hydrostatic pressure. However, until recently, the magnetic states of these dopings have not been well characterized. In the past year, neutron scattering results have been reported on Fe doping that show antiferromagnetism with moments that are twice as large as those measured for pure URu2Si2 under pressure. In this talk we present an investigation of the magnetic properties of single crystal samples of URu-xFexSi2 and URu2-xOsxSi2 by muon spin rotation (μSR) and susceptibility. Our μSR results demonstrate that both of these dopings show an antiferromagnetic ground state with internal fields comparable to pure URu2Si2 under pressure. Interpretation of our data indicates that the evolution of magnetism with doping for both Fe and Os is driven by changes in hybridization.
Magnetoelectric effect in antiferromagnetic LiCoPO4 in pulsed magnetic fields
NASA Astrophysics Data System (ADS)
Khrustalyov, V. M.; Savytsky, V. M.; Kharchenko, M. F.
2016-04-01
The magnetoelectric effect in single-crystal LiCoPO4 (TN = 21.8 K) is studied in strong pulsed magnetic fields which destroy the antiferromagnetic structure of the crystal spin ordering. The electric polarization along the crystallographic a axis induced by a magnetic field H||b is measured. New features of the electric polarization in a magnetic field are found, including a spike in the polarization near the field for the first magnetic transition at H1 = 123 kOe, a recovery of the electric polarization at the second magnetic transition H2 = 210 kOe, and a gradual reduction to zero on approaching the third transition at H3 = 263 kOe. Various possible magnetic structures in the high field phases are examined which are consistent with their magnetization and electric polarization. The observed linear dependence of the polarization on field strength in the initial antiferromagnetic phase and the vanishing of the polarization in the first high-field phase are in good agreement with previous studies of the magnetoelectric effect in LiCoPO4 [Wiegelmann et al., Ferroelectrics 161, 147 (1994); H. Wiegelman, Ph.D. thesis (University of Konstanz, Konstanz, 1995)].
Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet
Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; Lee, Young S.
2015-11-06
Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu_{3}(OH)_{6}Cl_{2}], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ_{kagome} that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.
Heisenberg antiferromagnet on Cayley trees: Low-energy spectrum and even/odd site imbalance
NASA Astrophysics Data System (ADS)
Changlani, Hitesh J.; Ghosh, Shivam; Henley, Christopher L.; Läuchli, Andreas M.
2013-02-01
To understand the role of local sublattice imbalance in low-energy spectra of s=(1)/(2) quantum antiferromagnets, we study the s=(1)/(2) quantum nearest neighbor Heisenberg antiferromagnet on the coordination 3 Cayley tree. We perform many-body calculations using an implementation of the density matrix renormalization group (DMRG) technique for generic tree graphs. We discover that the bond-centered Cayley tree has a quasidegenerate set of a low-lying tower of states and an “anomalous” singlet-triplet finite-size gap scaling. For understanding the construction of the first excited state from the many-body ground state, we consider a wave function ansatz given by the single-mode approximation, which yields a high overlap with the DMRG wave function. Observing the ground-state entanglement spectrum leads us to a picture of the low-energy degrees of freedom being “giant spins” arising out of sublattice imbalance, which helps us analytically understand the scaling of the finite-size spin gap. The Schwinger-boson mean-field theory has been generalized to nonuniform lattices, and ground states have been found which are spatially inhomogeneous in the mean-field parameters.
Anomalous net magnetization in collinear antiferromagnets with uncompensated surfaces
NASA Astrophysics Data System (ADS)
Hellman, Frances
2015-03-01
Like ferromagnets (FM), antiferromagnets (AFM) exhibit spontaneous long-range spin order below a transition temperature. The traditional FM order parameter is the spontaneous magnetization, while that of a simple AFM is the staggered magnetization, sometimes called the Neel vector N. The net magnetization M of a perfect AFM is (seemingly) zero at all temperatures T; however, defects such as vacancies, grain boundaries, and even surfaces create an M(T) which has a non-trivial relationship to the staggered magnetization N(T), even in ideal systems. As a specific example, we consider AFM CoO, which consists of AFM-coupled FM (111) planes; (111)-oriented epitaxial films with an odd number of planes will exhibit non-zero M due to uncompensated surfaces. These uncompensated surfaces were used to produce an artificially-structured FM semiconductor using epitaxial layers of AFM CoO with a doped semiconductor Al:ZnO (AZO). Both M(T) and the anomalous Hall effect show oscillatory behavior with thickness of either CoO (odd vs even numbers of planes) or AZO (~1 nm RKKY-like oscillations related to the AZO Fermi wavevector due to electron-induced coupling between Co moments at its two CoO surfaces). Mean field theory and Monte Carlo simulations show that M(T) of collinear AFM such as CoO with uncompensated surfaces exhibits T-dependence unlike that of N(T), of the absolute value of its individual layers, or m(T) of any single atomic plane including the uncompensated surface, due to incomplete cancellations of different planes. This phenomenon is valid even in the limit of semi-infinite systems; it is a topological state due to the presence of a free surface. Modifications of surface exchange coupling (leading to ordinary or extraordinary transitions), due to electron correlations in these Mott insulators, changes in crystal fields, spin-orbit coupling, or an incomplete (rough) surface, result in compensation points and highly non-Brillouin-like M(T). Work supported by the U
Frustration and multicriticality in the antiferromagnetic spin-1 chain
NASA Astrophysics Data System (ADS)
Pixley, J. H.; Shashi, Aditya; Nevidomskyy, Andriy H.
2014-12-01
The antiferromagnetic spin-1 chain has a venerable history and has been thought to be well understood. Here, we show that inclusion of both next-nearest-neighbor (α ) and biquadratic (β ) interactions results in a rich phase diagram with a multicritical point that has not been observed before. We study the problem using a combination of the density matrix renormalization group (DMRG), an analytic variational matrix product state wave function, and conformal field theory. For negative β <β* , we establish the existence of a spontaneously dimerized phase, separated from the Haldane phase by the critical line αc(β ) of second-order phase transitions. In the opposite regime, β >β* , the transition from the Haldane phase becomes first order into the next-nearest-neighbor (NNN) AKLT phase. Based on the field theoretical arguments and DMRG calculations, we find that these two regimes are separated by a multicritical point (β*,α*) of a different universality class, described by the level-4 SU(2) Wess-Zumino-Witten conformal theory. From the DMRG calculations, we estimate this multicritical point to lie in the range -0.2 <β*<-0.15 and 0.47 <α*<0.53 . We further find that the dimerized and NNN-AKLT phases are separated from each other by a line of first-order phase transitions that terminates at the multicritical point. We establish that transitions out of the Haldane phase into the dimer or NNN-AKLT phases are topological in nature and occur either with or without closing of the bulk gap, respectively. We also study short-range incommensurate-to-commensurate transitions in the resulting phase diagram. Inside the Haldane phase, we show the existence of two incommensurate crossovers: the Lifshitz transition and the disorder transition of the first kind, marking incommensurate correlations in momentum and real space, respectively. Notably, these crossover lines stretch across the entire (β ,α ) phase diagram, merging into a single incommensurate
Control of antiferromagnetic domain distribution via polarization-dependent optical annealing
Higuchi, Takuya; Kuwata-Gonokami, Makoto
2016-01-01
The absence of net magnetization inside antiferromagnetic domains has made the control of their spatial distribution quite challenging. Here we experimentally demonstrate an optical method for controlling antiferromagnetic domain distributions in MnF2. Reduced crystalline symmetry can couple an order parameter with non-conjugate external stimuli. In the case of MnF2, time-reversal symmetry is macroscopically broken reflecting the different orientations of the two magnetic sublattices. Thus, it exhibits different absorption coefficients between two orthogonal linear polarizations below its antiferromagnetic transition temperature under an external magnetic field. Illumination with linearly polarized laser light under this condition selectively destructs the formation of a particular antiferromagnetic order via heating. As a result, the other antiferromagnetic order is favoured inside the laser spot, achieving spatially localized selection of an antiferromagnetic order. Applications to control of interface states at antiferromagnetic domain boundaries, exchange bias and control of spin currents are expected. PMID:26911337
Control of antiferromagnetic domain distribution via polarization-dependent optical annealing.
Higuchi, Takuya; Kuwata-Gonokami, Makoto
2016-01-01
The absence of net magnetization inside antiferromagnetic domains has made the control of their spatial distribution quite challenging. Here we experimentally demonstrate an optical method for controlling antiferromagnetic domain distributions in MnF2. Reduced crystalline symmetry can couple an order parameter with non-conjugate external stimuli. In the case of MnF2, time-reversal symmetry is macroscopically broken reflecting the different orientations of the two magnetic sublattices. Thus, it exhibits different absorption coefficients between two orthogonal linear polarizations below its antiferromagnetic transition temperature under an external magnetic field. Illumination with linearly polarized laser light under this condition selectively destructs the formation of a particular antiferromagnetic order via heating. As a result, the other antiferromagnetic order is favoured inside the laser spot, achieving spatially localized selection of an antiferromagnetic order. Applications to control of interface states at antiferromagnetic domain boundaries, exchange bias and control of spin currents are expected. PMID:26911337
Segregation of antiferromagnetism and high-temperature superconductivity in Ca1-xLaxFe2As2
NASA Astrophysics Data System (ADS)
Saha, Shanta R.; Drye, T.; Goh, S. K.; Klintberg, L. E.; Silver, J. M.; Grosche, F. M.; Sutherland, M.; Munsie, T. J. S.; Luke, G. M.; Pratt, D. K.; Lynn, J. W.; Paglione, J.
2014-04-01
We report the effect of applied pressures on magnetic and superconducting order in single crystals of the aliovalent La-doped iron pnictide material Ca1-xLaxFe2As2. Using electrical transport, elastic neutron scattering, and resonant tunnel diode oscillator measurements on samples under both quasihydrostatic and hydrostatic pressure conditions, we report a series of phase diagrams spanning the range of substitution concentrations for both antiferromagnetic and superconducting ground states that include pressure-tuning through the antiferromagnetic (AFM) superconducting critical point. Our results indicate that the observed superconducting phase with a maximum transition temperature of Tc=47 K is intrinsic to these materials, appearing only upon suppression of magnetic order by pressure-tuning through the AFM critical point. Thus, the superconducting phase appears to exist exclusively in juxtaposition to the antiferromagnetic phase in a manner similar to the oxygen- and fluorine-based iron-pnictide superconductors with the highest transition temperatures reported to date. Unlike the lower-Tc systems, in which superconductivity and magnetism usually coexist, the tendency for the highest-Tc systems to show noncoexistence provides an important insight into the distinct transition temperature limits in different members of the iron-based superconductor family.
NASA Astrophysics Data System (ADS)
Sun, Wei; Huang, Ya-Xi; Pan, Yuanming; Mi, Jin-Xiao
2016-02-01
Minerals of the atacamite group such as herbertsmithite and kapellasite have recently attracted enormous attention as the S = ½ Kagomé antiferromagnets for achieving the quantum spin liquid (QSL) state with diverse technological applications. Herein we report on the synthesis of the newly discovered mineral centennialite by using an unconventional "solid-state" reaction method at 463 K. Synthetic centennialite, Ca1.06Cu2.94Cl2.01(OH)5.99·0.73H2O, has been characterized by scanning electron microscopy, electron microprobe analyses, Fourier-transform infrared spectroscopy, thermogravimetric and differential scanning calorimetric analyses, single-crystal X-ray diffraction structure refinements, and magnetic susceptibility measurements. The crystal structure of centennialite is characterized by a perfect (threefold symmetry) Kagomé layer with <5 % substitution between Ca and Cu and therefore differs from those of herbertsmithite and kapellasite, in which 15-25 % mixing between similar Zn and Cu atoms dramatically affects the QSL state. Centennialite remains antiferromagnetic down to ~7 K with a moderate spin frustration (i.e., a Weiss temperature θ = -56 K and a spin frustration parameter f = 8), but exhibits a canted antiferromagnetic ordering with a ferromagnetic component at lower temperatures.
EuCo2P2 : A model molecular-field helical Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.
2016-07-01
The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the a b plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ , high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperature T ≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ˜T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2 , respectively. These values are enhanced by a factor of ˜2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu-Eu exchange interactions within the a b plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χa b(T ≤TN) .
EuCo2P2: A model molecular-field helical Heisenberg antiferromagnet
Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.
2016-07-19
Here, the metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperaturemore » T ≤ TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χab(T ≤ TN).« less
Ferro- and antiferro-magnetism in (Np, Pu)BC
Klimczuk, T.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Wastin, F.; Falmbigl, M.; Rogl, P.
2015-04-01
Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of (Np,Pu)BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below T{sub N} = 44 K, whereas ferromagnetic ordering was found for NpBC below T{sub C} = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.
Room-temperature antiferromagnetism in CuMnAs
NASA Astrophysics Data System (ADS)
Máca, F.; Mašek, J.; Stelmakhovych, O.; Martí, X.; Reichlová, H.; Uhlířová, K.; Beran, P.; Wadley, P.; Novák, V.; Jungwirth, T.
2012-04-01
We report on an experimental and theoretical study of CuMn-V compounds. In agreement with previous works we find low-temperature antiferromagnetism with Néel temperature of 50 K in the cubic half-Heusler CuMnSb. We demonstrate that the orthorhombic CuMnAs is a room-temperature antiferromagnet. Our results are based on X-ray diffraction, magnetization, transport, and differential thermal analysis measurements, and on density-functional theory calculations of the magnetic structure of CuMn-V compounds. In the discussion part of the paper we make a prediction, based on our density-functional theory calculations, that the electronic structure of CuMn-V compounds makes a transition from a semimetal to a semiconductor upon introducing the lighter group-V elements.
Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices
Dare, A.-M.; Raymond, L.; Albinet, G.; Tremblay, A.-M. S.
2007-08-01
In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimensions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is possible in certain cases.
Resonating Valence Bond states for low dimensional S=1 antiferromagnets
NASA Astrophysics Data System (ADS)
Liu, Zheng-Xin; Zhou, Yi; Ng, Tai-Kai
2014-03-01
We study S = 1 spin liquid states in low dimensions. We show that the resonating-valence-bond (RVB) picture of S = 1 / 2 spin liquid state can be generalized to S = 1 case. For S = 1 system, a many-body singlet (with even site number) can be decomposed into superposition of products of two-body singlets. In other words, the product states of two-body singlets, called the singlet pair states (SPSs), are over complete to span the Hilbert space of many-body singlets. Furthermore, we generalized fermionic representation and the corresponding mean field theory and Gutzwiller projected stats to S = 1 models. We applied our theory to study 1D anti-ferromagnetic bilinear-biquadratic model and show that both the ground states (including the phase transition point) and the excited states can be understood excellently well within the framework. Our method can be applied to 2D S = 1 antiferromagnets.
Layer Anti-Ferromagnetism on Bilayer Honeycomb Lattice
Tao, Hong-Shuai; Chen, Yao-Hua; Lin, Heng-Fu; Liu, Hai-Di; Liu, Wu-Ming
2014-01-01
Bilayer honeycomb lattice, with inter-layer tunneling energy, has a parabolic dispersion relation, and the inter-layer hopping can cause the charge imbalance between two sublattices. Here, we investigate the metal-insulator and magnetic phase transitions on the strongly correlated bilayer honeycomb lattice by cellular dynamical mean-field theory combined with continuous time quantum Monte Carlo method. The procedures of magnetic spontaneous symmetry breaking on dimer and non-dimer sites are different, causing a novel phase transition between normal anti-ferromagnet and layer anti-ferromagnet. The whole phase diagrams about the magnetism, temperature, interaction and inter-layer hopping are obtained. Finally, we propose an experimental protocol to observe these phenomena in future optical lattice experiments. PMID:24947369
Observation of superficial antiferromagnetism in Co3O4 polycrystals
NASA Astrophysics Data System (ADS)
von Dreifus, Driele; Chaves Pereira, Ernesto; Aparecido de Oliveira, Adilson Jesus
2015-11-01
We report on a systematic study about the magnetic properties of Co3O4 polycrystals with large size distribution (100-1200 nm) and the crystallite size of 68(4) nm on average. An antiferromagnetic transition at T N = 32 K, extensively reported in the literature for Co3O4, was observed. Furthermore, another transition at T t = 14 K, which is suppressed for H ≥ 35 kOe, was also identified. An increase in the magnetic susceptibility, as well as irreversibility between zero field cooled and field cooled data below T t were observed. The non-detection of a coercive field below T t, and the fact that T t and T N are independent from the driven frequencies in ac magnetic measurements as a function of temperature, confirm that both peaks are associated to antiferromagnetic transitions.
Singular field response and singular screening of vacancies in antiferromagnets.
Wollny, Alexander; Andrade, Eric C; Vojta, Matthias
2012-10-26
For isolated vacancies in ordered local-moment antiferromagnets we show that the magnetic-field linear-response limit is generically singular: The magnetic moment associated with a vacancy in zero field is different from that in a finite field h in the limit h→0(+). The origin is a universal and singular screening cloud, which moreover leads to perfect screening as h→0(+) for magnets which display spin-flop bulk states in the weak-field limit. PMID:23215218
Drone-fermions in the two-dimensional antiferromagnet
NASA Astrophysics Data System (ADS)
Krivenko, S.; Khaliullin, G.
1995-02-01
Two different representations of spins - via the conventional fermions, or via the Mattis drone-fermions - are compared considering the planar antiferromagnetic Heisenberg model as an example. Mean-field spin correlation functions calculated for the uniform and flux RVB states show that the drone-fermion approach has an advantage in giving the lower energy and the enhanced AF correlations, because of the absence of unphysical spinless states in this representation.
Novel current driven domain wall dynamics in synthetic antiferromagnets
NASA Astrophysics Data System (ADS)
Yang, See-Hun
It was reported that the domain walls in nanowires can be moved efficiently by electrical currents by a new type of torque, chiral spin torque (CST), the combination of spin Hall effect and Dzyaloshinskii-Moriya interaction. Recently we domonstrated that ns-long current pulses can move domain walls at extraordinarily high speeds (up to ~750 m s -1) in synthetic antiferromagnetic (SAF) nanowires that have almost zero net magnetization, which is much more efficient compared with similar nanowires in which the sub-layers are coupled ferromagnetically (SF). This high speed is found to be due to a new type of powerful torque, exchange coupling torque (ECT) that is directly proportional to the strength of the antiferromagnetic exchange coupling between the two sub-layers, showing that the ECT is effective only in SAF not in SF. Moreover, it is found that the dependence of the wall velocity on the magnetic field applied along the nanowire is non-monotonic. Most recently we predict an Walker-breakdown-like domain wall precession in SAF nanowires in the presence of in-plane field based on the model we develop, and this extraordinary precession has been observed. In this talk I will discuss this in details by showing a unique characteristics of SAF sublayers' DW boost-and-drag mechanism along with CST and ECT. Novel current driven domain wall dynamics in synthetic antiferromagnets.
Revealing the properties of Mn2Au for antiferromagnetic spintronics
NASA Astrophysics Data System (ADS)
Barthem, V. M. T. S.; Colin, C. V.; Mayaffre, H.; Julien, M.-H.; Givord, D.
2013-12-01
The continuous reduction in size of spintronic devices requires the development of structures, which are insensitive to parasitic external magnetic fields, while preserving the magnetoresistive signals of existing systems based on giant or tunnel magnetoresistance. This could be obtained in tunnel anisotropic magnetoresistance structures incorporating an antiferromagnetic, instead of a ferromagnetic, material. To turn this promising concept into real devices, new magnetic materials with large spin-orbit effects must be identified. Here we demonstrate that Mn2Au is not a Pauli paramagnet as hitherto believed but an antiferromagnet with Mn moments of ~4 μB. The particularly large strength of the exchange interactions leads to an extrapolated Néel temperature well above 1,000 K, so that ground-state magnetic properties are essentially preserved up to room temperature and above. Combined with the existence of a significant in-plane anisotropy, this makes Mn2Au the most promising material for antiferromagnetic spintronics identified so far.
Revealing the properties of Mn2Au for antiferromagnetic spintronics.
Barthem, V M T S; Colin, C V; Mayaffre, H; Julien, M-H; Givord, D
2013-01-01
The continuous reduction in size of spintronic devices requires the development of structures, which are insensitive to parasitic external magnetic fields, while preserving the magnetoresistive signals of existing systems based on giant or tunnel magnetoresistance. This could be obtained in tunnel anisotropic magnetoresistance structures incorporating an antiferromagnetic, instead of a ferromagnetic, material. To turn this promising concept into real devices, new magnetic materials with large spin-orbit effects must be identified. Here we demonstrate that Mn2Au is not a Pauli paramagnet as hitherto believed but an antiferromagnet with Mn moments of ~4 μB. The particularly large strength of the exchange interactions leads to an extrapolated Néel temperature well above 1,000 K, so that ground-state magnetic properties are essentially preserved up to room temperature and above. Combined with the existence of a significant in-plane anisotropy, this makes Mn2Au the most promising material for antiferromagnetic spintronics identified so far. PMID:24327004
Electric-field induced ferromagnetic phase in paraelectric antiferromagnets
NASA Astrophysics Data System (ADS)
Glinchuk, Maya D.; Eliseev, Eugene A.; Gu, Yijia; Chen, Long-Qing; Gopalan, Venkatraman; Morozovska, Anna N.
2014-01-01
The phase diagram of a quantum paraelectric antiferromagnet EuTiO3 under an external electric field is calculated using Landau-Ginzburg-Devonshire theory. The application of an electric field E in the absence of strain leads to the appearance of a ferromagnetic (FM) phase due to the magnetoelectric (ME) coupling. At an electric field greater than a critical field, Ecr, the antiferromagnetic (AFM) phase disappears for all considered temperatures, and FM becomes the only stable magnetic phase. The calculated value of the critical field is close to the values reported recently by Ryan et al. [Nat. Commun. 4, 1334 (2013), 10.1038/ncomms2329] for EuTiO3 film under a compressive strain. The FM phase can also be induced by an E-field in other paraelectric antiferromagnetic oxides with a positive AFM-type ME coupling coefficient and a negative FM-type ME coupling coefficient. The results show the possibility of controlling multiferroicity, including the FM and AFM phases, with help of an electric field application.
Electrical manipulation of a ferromagnet by an antiferromagnet
NASA Astrophysics Data System (ADS)
Tshitoyan, V.; Ciccarelli, C.; Mihai, A. P.; Ali, M.; Irvine, A. C.; Moore, T. A.; Jungwirth, T.; Ferguson, A. J.
Several recent studies of antiferromagnetic (AFM) spintronics have focused on transmission and detection of spin-currents in AFMs. Efficient spin transmission through AFMs was inferred from experiments in FM/AFM/NM (normal metal) structures. Measurements in FM/AFM bilayers have demonstrated that a metallic AFM can also act as an efficient ISHE detector of the spin-current, with spin-Hall angles comparable to heavy NMs. Here we demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. We use an all-electrical excitation and detection technique of ferromagnetic resonance in a NiFe/IrMn bilayer. We observe antidamping-like spin torque acting on the NiFe generated by the in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to strong spin-orbit coupling, the AFM order in IrMn governs the observed phenomenon.
Spin pumping and spin-transfer torques in antiferromagnet
NASA Astrophysics Data System (ADS)
Niu, Qian
2015-03-01
Spin pumping and spin-transfer torques are key elements of coupled dynamics of magnetization and conduction electron spin, which have been widely studied in various ferromagnetic materials. Recent progress in spintronics suggests that a spin current can significantly affects the behavior of an antiferromagnetic material, and the electron motion become adiabatic when the staggered field varies sufficiently slowly. However, pumping from antiferromagnets and its relation to current-induced torques is yet unclear. In a recent study, we have solved this puzzle analytically by calculating how electrons scatter off a normal metal-antiferromagnetic interface. The pumped spin and staggered spin currents are derived in terms of the staggered field, the magnetization, and their rates of change. We find that for both compensated and uncompensated interfaces, spin pumping is of a similar magnitude as in ferromagnets; the direction of spin pumping is controlled by the polarization of the driving microwave. Via the Onsager reciprocity relations, the current-induced torques are also derived, the salient feature of which is illustrated by a terahertz nano-oscillator. In collaboration with Ran Cheng, Jiang Xiao, and A. Brataas.
Coexistence of superconductivity, ferromagnetism and antiferromagnetism in iron pnictides
NASA Astrophysics Data System (ADS)
Gill, Raminder
2016-05-01
Coexistence of Superconductivity and magnetism have always been the fascinating area of interest for condensed-matter physicists. A variety of systems, such as cuprates, heavy fermions, and iron pnictides showed superconductivity in a narrow region near the border to antiferromagnetism (AFM)as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetism (FM) has seen in URhGe, UGe2, ErRh4B4 and many compounds. Here, we present a third situation where superconductivity coexists with FM and AFM. The recent experimental finding of interplay of ferromagnetism,antiferromagnetism and superconductivity in EuFe2(As1-xPx)2 impressed us to discuss this problem in detail. Ironpnictides are high Tc magnetic superconductors and could be very useful in finding many new superconductorswith high Tc probably near to room temperature. In this paper, we have theoretically calculated the superconducting order parameter of EuFe2(As1-xPx)2 where magnetic ordering is due to Eu+ moments and superconductivity is due to Fe3+ moments. The Eu ions order antiferromagnetically for x≤0.13, while a crossover is observed for x≥0.22 whereupon the Eu ions order ferromagnetically.
Entanglement Perturbation Theory for Antiferromagnetic Heisenberg Spin Chains
NASA Astrophysics Data System (ADS)
Wang, Lihua; Chung, Sung Gong
2012-11-01
A recently developed numerical method, entanglement perturbation theory (EPT), is used to study the antiferromagnetic Heisenberg spin chains with z-axis anisotropy λ and magnetic field B. To demonstrate its accuracy, we first apply EPT to the isotropic spin-1/2 antiferromagnetic Heisenberg model, and find that EPT successfully reproduces the exact Bethe ansatz results for the ground state energy, the local magnetization, and the spin correlation functions (Bethe ansatz result is available for the first seven lattice separations). In particular, EPT confirms for the first time the asymptotic behavior of the spin correlation functions predicted by the conformal field theory, which realizes only for lattice separations larger than 1000. Next, turning on the z-axis anisotropy and the magnetic field, the 2- and 4-spin correlation functions are calculated, and the results are compared with those obtained by bosonization and density matrix renormalization group methods. Finally, for the spin-1 antiferromagnetic Heisenberg model, the ground state phase diagram in λ space is determined by Roomany--Wyld renormalization group (RG) finite size scaling. The results are in good agreement with those obtained by the level-spectroscopy method.
Antiferromagnetism and hidden order in isoelectronic doping of URu2Si2
Wilson, Murray N.; Williams, Travis J.; Cai, Yipeng; Hallas, Alannah M.; Medina, Teresa; Munsie, Timothy J.; Cheung, Sky C.; Frandsen, Benjamin A.; Liu, Lian; Uemura, Yasutomo J.; et al
2016-02-01
In this paper, we present muon spin rotation (mu SR) and susceptibility measurements on single crystals of isoelectronically doped URu2-xTxSi2 (T = Fe, Os) for doping levels up to 50%. Zero field (ZF) μ SR measurements show long-lived oscillations demonstrating that an antiferromagnetic state exists down to low doping levels for both Os and Fe dopants. The measurements further show an increase in the internal field with doping for both Fe and Os. Comparison of the local moment-hybridization crossover temperature from susceptibility measurements and our magnetic transition temperature shows that changes in hybridization, rather than solely chemical pressure, are importantmore » in driving the evolution of magnetic order with doping.« less
Magnetization of the canted antiferromagnetic CoCO 3 in Abragam-Pryce approximation
NASA Astrophysics Data System (ADS)
Meshcheryakov, V. F.
2006-05-01
Weiss molecular field theory was used to calculate the magnetization of the canted antiferromagnetic CoCO 3 ( T=18.1 K). Wave functions of magnetic doublets near Co 2+ ground state in Abragam-Pryce approximation were determined. One of the crystal field variables, free Co 2+ ion isotropic exchange interaction inside, and between magnetic sublatticies, and rotation angle ϕ, characterizing nonequivalence ion Co 2+ positions, were used as parameters. From comparison with the experimental data exchange interaction anisotropy and g-factors g, g were obtained. At low temperatures T<40 K the coincidence of calculated and experimental results are good and g-factor values are almost the same as have been obtained from EPR data in Co(1%)+CdCO single crystals. At high temperatures in the paramagnetic region, experimental data differs from calculated ones by more than two times. It is shown that this discrepancy cannot be described within the frames of used approximations.
Anti-ferromagnetism enables electron-phonon coupling in iron-based superconductors
NASA Astrophysics Data System (ADS)
Coh, Sinisa; Cohen, Marvin L.; Louie, Steven G.
We show that a generic form of an anti-ferromagnetic wavefunction opens strong electron-phonon coupling channels in the iron-based superconductors. In the non-magnetic state these channels exist locally on a single iron atom, but are cancelled out between two iron atoms in the primitive unit cell. Our findings are mostly based on symmetry and are relevant for any iron-based superconductor. This work was supported by NSF Grant No. DMR15-1508412 and the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the DOE at Lawrence Berkeley National Laboratory's NERSC facility.
NASA Astrophysics Data System (ADS)
Lima, L. S.
2016-08-01
We study the influence of the site disorder in the long range order and in the spin transport in the two-dimensional Heisenberg antiferromagnet with ion-single anisotropy, in the square lattice in T=0 using the SU(3) Schwinger boson theory. We analyze these properties in the regime of Bose-Einstein condensation, where the bosons tz are condensed:
Control of spinor dynamics in an anti-ferromagnetic F=1 Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Glassman, Zachary; Fahey, Donald; Wilson, Ryan; Tiesinga, Eite; Lett, Paul
2016-05-01
Spin-exchange collisions driving coherent population oscillations of the F = 1 ground state magnetic sublevels can be used for precision quantum measurements in a condensed Bose gas. Entanglement generated by these dynamics enables below standard quantum limit phase estimation by way of an SU(1,1) interferometer and antiferromagnetic spin-nematic squeezing. In order to observe these effects, we have simulated the spinor dynamics in the single mode approximation with both fully quantum and semi-classical models. We present a study of microwave pulse sequences, which can be used to control the spinor dynamics via energy level shifts and rotations, and discuss improved methods for future experiments in this field.
NASA Astrophysics Data System (ADS)
Leulmi, S.; Joisten, H.; Dietsch, T.; Iss, C.; Morcrette, M.; Auffret, S.; Sabon, P.; Dieny, B.
2013-09-01
Magnetic nanoparticles are receiving an increasing interest for various biotechnological applications due to the capability that they offer to exert actuation on biological species via external magnetic fields. In this study, two types of magnetic particles recently proposed for cancer cells treatment were compared. Both are prepared by top-down approaches and imitate the properties of superparamagnetic particles. One type is made of a single magnetic layer and has a magnetic vortex configuration. The second type has a multilayered structure called synthetic antiferromagnet. Once released in solution, the agglomeration/dispersion of these particles due to their magnetostatic interactions was compared as well as the mechanical torque that they can generate when submitted to an external magnetic field.
Magnetic soft modes in the distorted triangular antiferromagnet -CaCr2O4
Toth, Sandor; Lake, Bella; Hradil, Klaudia; Rule, K; Stone, Matthew B; Islam, A. T. M. N.
2012-01-01
-CaCr2O4 is a spin-3/2, distorted triangular lattice antiferromagnet with a simple 120 spin structure that masks the complex pattern of exchange interactions. The magnetic excitation spectrum has been measured using inelastic neutron scattering on powder and single crystal samples. It reveals unusual low energy modes which can be explained by linear spin-wave theory assuming nearest and next-nearest neighbor interactions. The mode softening is due to the next-nearest neighbor interactions and indicates a new magnetic phase nearby as revealed by the phase diagram constructed for this system. The extracted direct exchange interactions correlate well with the Cr3+{Cr3+ distances and are in agreement with other chromium oxide delafossite compounds.
First-principles DFT+U modeling of defect behaviors in anti-ferromagnetic uranium mononitride
Lan, Jian-Hui; Zhao, Zi-Chen; Wu, Qiong; Zhao, Yu-Liang; Shi, Wei-Qun; Chai, Zhi-Fang
2013-12-14
A series of point defects in uranium mononitride (UN) have been studied by first-principles DFT+U calculations. The influence of intrinsic defects on the properties of UN was explored by considering the anti-ferromagnetic (AFM) order along the [001] direction. Our results show that all the point defects lead to obvious volume swelling of UN crystal. Energetically, the interstitial nitrogen defect is the most favorable one among single-point defects in UN crystal with the formation energy of 4.539 eV, while the N-Frenkel pair becomes the most preferable one among double-point defects. The AFM order induces obvious electron spin polarization of uranium towards neighboring uranium atoms with opposite spin orientations in UN crystal.
On the influence of nanometer-thin antiferromagnetic surface layer on ferromagnetic CrO2
NASA Astrophysics Data System (ADS)
Das, P.; Bajpai, A.; Ohno, Y.; Ohno, H.; Müller, J.
2012-09-01
We investigate the influence of naturally grown 2-5 nm thin surface layer of antiferromagnetic (AFM) Cr2O3 on the half metallic ferromagnet CrO2 by measuring the magnetic behavior of a single micro-crystal. The temperature variation of the magnetic stray fields of the micro-crystal measured by micro-Hall magnetometry shows an anomalous increase below ˜60 K. We find clear evidence that this behavior is due to the influence of the AFM surface layer. The average amplitude of the Barkahausen jumps exhibits a similar temperature dependence indicating that the AFM surface layer plays a role in defining the potential landscape seen by the domain configuration in the ferromagnetic grain.
Spin-orbit torques in ferromagnets and antiferromagnets
NASA Astrophysics Data System (ADS)
Gao, Huawei
Spintronics is a sub-field of condensed matter physics which explores the physics of electrons involving both their charge and spin, with an emphasis on the active manipulation of the spin degree of freedom in solid state systems. In spin-based memory and storage devices, information ( 0 or 1) is stored based on the magnetization orientation in ferromagnets or layered magnetic structures. We study the utilization of spin-orbit torques in ferromagnets and antiferromagnets as an effective ways of magnetization switching in these nonvolatile memory devices. The method we use is linear response theory and numerical simulation. Our results show that the spin-orbit torques are effective approaches of manipulating magnetization in both ferromagnets and antiferromagnets, which can be used in the future memory device applications. In ferromagnets, we start from a simple two dimensional electron gas ferromagnetic model with Rashba spin-orbit coupling to study the different components of spin-orbit torques and the parameter dependence. The results show the existence of these torques. Then, we study these torques in a realistic material, GaMnAs, with a complex band structure. We confirm that these torques have the same parameter dependence in GaMnAs and the simple two dimensional model. The complex band structure changes the magnitudes of the effective fields and shows more features in the results which unveils the competition between band structure and spin-orbit coupling. In antiferromagnets, by studying the spin-orbit torques in the two dimensional antiferromagneic model and the realistic material Mn2Au, we predict that a lateral electric current in antiferromagnets can induce non-equilibrium Neel-order fields, i.e., fields whose sign alternates between the spin sub lattices, which can trigger ultrafast spin-axis reorientation. Due to the two dimensional nature, the spin-orbit torques can have large magnitudes if we tune the Fermi energy to a certain level. We then extend
Wang, Meng; Yi, Ming; Cao, Huibo; de la Cruz, C.; Mo, S. K.; Huang, Q. Z.; Bourret-Courchesne, E.; Dai, Pengcheng; Lee, D. H.; Shen, Z. X.; Birgeneau, R. J.
2015-09-01
A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe Rb_{1-δ}Fe_{1.5-σ}S_{2} is reported. A neutron diffraction experiment on a powder sample shows that a 98% volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of Rb_{0.66}Fe_{1.36}S_{2}, and that only 2% of the sample is in the block antiferromagnetic phase with √5×√5 iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with the refined composition of Rb_{0.78}Fe_{1.35}S_{2}, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrate that the extra 10% iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.
Kenzelmann, M.; Cowley, R. A.; Buyers, W. J. L.; Tun, Z.; Coldea, Radu; Enderle, M.
2002-01-01
We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl{sub 3}. Measurements over a wide range of wave-vector transfers along the chain confirm that above T{sub N} CsNiCl{sub 3} is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length {zeta} = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl{sub 3} for T {approx}< 12 K, possibly caused by multiply frustrated interchain interactions.
NASA Astrophysics Data System (ADS)
Yang, See-Hun; Ryu, Kwang-Su; Parkin, Stuart
2015-03-01
The operation of racetrack memories is based on the motion of domain walls in atomically thin, perpendicularly magnetized nanowires, which are interfaced with adjacent metal layers with high spin-orbit coupling. Such domain walls have a chiral Néel structure and can be moved efficiently by electrical currents. High-capacity racetrack memory requires closely packed domain walls, but their density is limited by dipolar coupling from their fringing magnetic fields. These fields can be eliminated using a synthetic antiferromagnetic structure composed of two magnetic sub-layers, exchange-coupled via an ultrathin antiferromagnetic-coupling spacer layer. Here, we show that nanosecond-long current pulses can move domain walls in synthetic antiferromagnetic racetracks that have almost zero net magnetization. The domain walls can be moved even more efficiently and at much higher speeds (up to ˜750 m s-1) compared with similar racetracks in which the sub-layers are coupled ferromagnetically. This is due to a stabilization of the Néel domain wall structure, and an exchange coupling torque that is directly proportional to the strength of the antiferromagnetic exchange coupling between the two sub-layers. Moreover, the dependence of the wall velocity on the magnetic field applied along the nanowire is distinct from that of the single-layer racetrack due to the exchange coupling torque. The high domain wall velocities in racetracks that have no net magnetization allow for densely packed yet highly efficient domain-wall-based spintronics.
NASA Astrophysics Data System (ADS)
Goldbart, Paul M.
1998-03-01
Zhang's SO(5) approach to the physics of high-temperature superconducting materials(S.-C. Zhang, Science 275), 1089 (1997). contains the possibility that the antiferromagnetic state should support novel excitations that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region(P. M. Goldbart, Antiferromagnetic hedgehogs with superconducting cores); cond- mat/9711088 (UIUC Preprint P-97-10-030-iii).. Neither singular nor topologically stable, in contrast with their hedgehog cousins in pure antiferromagnetism, these excitations are what hedgehogs become when antiferromagnetic order is permitted to `` escape'' toward superconductivity---a central element in Zhang's approach. We describe the structure of antiferromagnetic hedgehog excitations with superconducting cores within the context of Zhang's approach to high-temperature superconducting materials, and touch upon a number of the experimental implications that these excitations engender.
Higuchi, Takuya; Kanda, Natsuki; Tamaru, Hiroharu; Kuwata-Gonokami, Makoto
2011-01-28
We propose Raman-induced collinear difference-frequency generation (DFG) as a method to manipulate dynamical magnetization. When a fundamental beam propagates along a threefold rotational axis, this coherent second-order optical process is permitted by angular momentum conservation through the rotational analogue of the umklapp process. As a demonstration, we experimentally obtained polarization properties of collinear magnetic DFG along a [111] axis of a single crystal of antiferromagnetic NiO with micromultidomain structure, which excellently agreed with the theoretical prediction. PMID:21405359
NASA Astrophysics Data System (ADS)
Grechnev, A. G.; Kovalev, A. S.; Pankratova, M. L.
2013-12-01
The transformation of the hysteretic field dependence of the magnetization of a ferromagnetic thin layer in contact with a magnetically hard antiferromagnet is considered. It is shown that this interaction leads to a shift of the hysteresis loop from the configuration symmetric with respect to magnetic field (exchange bias). Furthermore, upon increasing the magnitude of the exchange interaction, within a narrow range of the magnitudes, there occurs a qualitative change in the hysteresis loop shape and its subsequent disappearance; hence the field dependence of the magnetization becomes monotonous and single-valued.
Effects of size, shape, and frequency on the antiferromagnetic resonance linewidth of MnF
NASA Technical Reports Server (NTRS)
Obrien, K. C.
1973-01-01
The research concerning the properties and application of solid state materials at submillimeter frequencies is summarized. Work reported includes: far infrared Fourier spectroscopy; studies of the antiferromagnetic resonance line in MnF2 at millimeter wavelengths; numerical solution of the equations of motion of a general two-sublattice antiferromagnet; study of antiferromagnetic resonance line in NiO powder; and resonance investigations of several indium thisospinels at millimeter wavelengths.
Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy.
Wu, Han-Chun; Liao, Zhi-Min; Sofin, R G Sumesh; Feng, Gen; Ma, Xiu-Mei; Shick, Alexander B; Mryasov, Oleg N; Shvets, Igor V
2012-12-11
Mn(2)Au, a layered bimetal, is successfully grown using molecular beam epitaxy (MBE). The experiments and theoretical calculations presented suggest that Mn(2)Au film is antiferromagnetic with a very low critical temperature. The antiferromagnetic nature is demonstrated by measuring the exchange-bias effect of Mn(2)Au/Fe bilayers. This study establishes a primary basis for further research of this new antiferromagnet in spin-electronic device applications. PMID:22996352
Cyclic period-3 window in antiferromagnetic potts and Ising models on recursive lattices
NASA Astrophysics Data System (ADS)
Ananikian, N. S.; Ananikyan, L. N.; Chakhmakhchyan, L. A.
2011-09-01
The magnetic properties of the antiferromagnetic Potts model with two-site interaction and the antiferromagnetic Ising model with three-site interaction on recursive lattices have been studied. A cyclic period-3 window has been revealed by the recurrence relation method in the antiferromagnetic Q-state Potts model on the Bethe lattice (at Q < 2) and in the antiferromagnetic Ising model with three-site interaction on the Husimi cactus. The Lyapunov exponents have been calculated, modulated phases and a chaotic regime in the cyclic period-3 window have been found for one-dimensional rational mappings determined the properties of these systems.
Itinerant Antiferromagnetism in FeMnP_{0.8}Si_{0.2}
Sales, Brian C.; Susner, Michael A.; Conner, Benjamin S.; Yan, Jiaqiang Q.; May, Andrew F.
2015-01-01
Compounds based on the Fe_{2}P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a noncentrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. We report the growth and characterization of millimeter-sized single crystals of FeMnP_{0.8}Si_{0.2} with the Fe_{2}P structure. Single-crystal x-ray diffraction, magnetization, resistivity, and Hall and heat capacity data are reported. The crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. The room-temperature resistivity is close to the Ioffe-Regel limit for a metal. Single-crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism were not changed after high-temperature anneals and a rapid quench to room temperature
Itinerant Antiferromagnetism in FeMnP_{0.8}Si_{0.2}
Sales, Brian C.; Susner, Michael A.; Conner, Benjamin S.; Yan, Jiaqiang Q.; May, Andrew F.
2015-09-25
Compounds based on the Fe_{2}P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a noncentrosymmetric crystal structure, and because of the recent developments of these materials for magnetocaloric applications. We report the growth and characterization of millimeter-sized single crystals of FeMnP_{0.8}Si_{0.2} with the Fe_{2}P structure. Single-crystal x-ray diffraction, magnetization, resistivity, and Hall and heat capacity data are reported. The crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. The room-temperature resistivity is close to the Ioffe-Regel limit for a metal. Single-crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism were not changed after high-temperature anneals and a rapid quench to room temperature
Detection of Antiferromagnetic Correlations in the Fermi-Hubbard Model
NASA Astrophysics Data System (ADS)
Hulet, Randall
2014-05-01
The Hubbard model, consisting of a cubic lattice with on-site interactions and kinetic energy arising from tunneling to nearest neighbors is a ``standard model'' of strongly correlated many-body physics, and it may also contain the essential ingredients of high-temperature superconductivity. While the Hamiltonian has only two terms it cannot be numerically solved for arbitrary density of spin-1/2 fermions due to exponential growth in the basis size. At a density of one spin-1/2 particle per site, however, the Hubbard model is known to exhibit antiferromagnetism at temperatures below the Néel temperature TN, a property shared by most of the undoped parent compounds of high-Tc superconductors. The realization of antiferromagnetism in a 3D optical lattice with atomic fermions has been impeded by the inability to attain sufficiently low temperatures. We have developed a method to perform evaporative cooling in a 3D cubic lattice by compensating the confinement envelope of the infrared optical lattice beams with blue-detuned laser beams. Evaporation can be controlled by the intensity of these non-retroreflected compensating beams. We observe significantly lower temperatures of a two-spin component gas of 6Li atoms in the lattice using this method. The cooling enables us to detect the development of short-range antiferromagnetic correlations using spin-sensitive Bragg scattering of light. Comparison with quantum Monte Carlo constrains the temperature in the lattice to 2-3 TN. We will discuss the prospects of attaining even lower temperatures with this method. Supported by DARPA/ARO, ONR, and NSF.
How to move domain walls in an antiferromagnet
NASA Astrophysics Data System (ADS)
Kim, Se Kwon
Domain walls (DWs) in an easy-axis antiferromagnet can be driven by several stimuli: a charge current (in conducting antiferromagnets), a magnon current, and a temperature gradient. In this talk, we discuss the dynamics of a DW induced by two latter external perturbations, which are applicable in both metallic and insulating antiferromagnets. First of all, we study the Brownian dynamics of a DW subjected to a temperature gradient. To this end, we derive the Langevin equation for the DW's center of mass with the aid of the fluctuation-dissipation theorem. A DW behaves as a classical massive particle immersed in a viscous medium. By considering a thermodynamic ensemble of DWs, we obtain the Fokker-Planck equation, from which we extract the average drift velocity of a DW. We briefly address other mechanisms of thermally driven DW motion. Secondly, we analyze the dynamics of a DW driven by circularly polarized magnons. Magnons passing through a DW reverse their spin upon transmission, thereby transferring two quanta of angular momentum to the DW and causing it to precess. A precessing DW partially reflects magnons back to the source. The reflection of magnons creates a previously identified reactive force. We point out a second mechanism of propulsion of the DW, which we term redshift: magnons passing through a precessing DW reduce their linear momentum and transfer the decrease to the DW. We solve the equations of motion for magnons in the background of a uniformly precessing DW with the aid of supersymmetric quantum mechanics and compute the net force and torque applied by magnons to the DW. The theory agrees well with micromagnetic simulations. This work has been supported in part by the ARO, the U.S. DOE-BES, and the U.S. NSF grants.
Dynamical Structure Factors of quasi-one-dimensional antiferromagnets
NASA Astrophysics Data System (ADS)
Hagemans, Rob; Caux, Jean-Sébastien; Maillet, Jean Michel
2007-03-01
For a long time it has been impossible to accurately calculate the dynamical structure factors (spin-spin correlators as a function of momentum and energy) of quasi-one-dimensional antiferromagnets. For integrable Heisenberg chains, the recently developed ABACUS method (a first-principles computational approach based on the Bethe Ansatz) now yields highly accurate (over 99% of the sum rule) results for the DSF for finite chains, allowing for a very precise description of neutron-scattering data over the full momentum and energy range. We show remarkable agreement between results obtained with ABACUS and experiment.
Giant magnetocaloric effect in antiferromagnetic DyVO4 compound
NASA Astrophysics Data System (ADS)
Midya, A.; Khan, N.; Bhoi, D.; Mandal, P.
2014-09-01
We have investigated the magnetic and magnetocaloric properties of DyVO4 by magnetization and heat capacity measurements. χ(T) shows antiferromagnetic to paramagnetic transition at TNDy~3.5 K. The compound undergoes a metamagnetic transition and exhibits a huge entropy change. The maximum values of magnetic entropy change (ΔSM), adiabatic temperature change (ΔTad) and refrigerant capacity (RC) reach 26 J kg-1 K-1, 17 K, and 526 J kg-1, respectively for a field change of 0-8 T. Moreover, the material is highly insulating and exhibits no thermal and field hysteresis, satisfying the necessary conditions for a good magnetic refrigerant material.
Emergence of frustrated antiferromagnet in the lowest Landau level
NASA Astrophysics Data System (ADS)
Rhim, Jun Won; Archer, Alexander C.; Jain, Jainendra K.; Park, Kwon; Condensed Matter Theory Collaboration
2014-03-01
We investigate the spin structure of the triangular composite fermion crystals (CFCs) in the lowest Landau level (LLL). In contrast to the usual Hund's rule, our Monte-Carlo (MC) calculation finds the spin exchange energy to be antiferromagnetic in certain parameter regimes in the vicinity of ν = 1 / 5 . For further physical intuition, we develop an effective two-body potential between composite fermions in the crystal phase, which provides a reasonable account of the MC results. We discuss the experimental feasibility of this physics.
A transverse Ising bilayer film with an antiferromagnetic spin configuration
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2015-10-01
The phase diagrams and temperature dependences of magnetizations in a transverse Ising bilayer film with an antiferromagnetic spin configuration are studied by the uses of the effective-field theory (EFT) with correlations, in order to clarify whether the appearance of a compensation point is possible below the transition temperature in the system. From these investigations, we have found a lot of characteristic phenomena in these properties, when the value of an interlayer coupling takes a large value, such as the reentrant phenomenon free from the disorder-induced frustration and the novel types of magnetization curve with a compensation point.
Antiferromagnetic structure in tetragonal CuMnAs thin films.
Wadley, P; Hills, V; Shahedkhah, M R; Edmonds, K W; Campion, R P; Novák, V; Ouladdiaf, B; Khalyavin, D; Langridge, S; Saidl, V; Nemec, P; Rushforth, A W; Gallagher, B L; Dhesi, S S; Maccherozzi, F; Železný, J; Jungwirth, T
2015-01-01
Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions. PMID:26602978
Antiferromagnetic structure in tetragonal CuMnAs thin films
NASA Astrophysics Data System (ADS)
Wadley, P.; Hills, V.; Shahedkhah, M. R.; Edmonds, K. W.; Campion, R. P.; Novák, V.; Ouladdiaf, B.; Khalyavin, D.; Langridge, S.; Saidl, V.; Nemec, P.; Rushforth, A. W.; Gallagher, B. L.; Dhesi, S. S.; Maccherozzi, F.; Železný, J.; Jungwirth, T.
2015-11-01
Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions.
Excitations in a Four-Leg Antiferromagnetic Heisenberg Spin Tube,
Garlea, Vasile O; Zheludev, Andrey I; Regnault, L.-P.; Chung, J.-H.; Qiu, Y.; Boehm, Martin; Habicht, Klaus; Meissner, Michael; Fernandez-Baca, Jaime A
2008-01-01
Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu2Cl4 D8C4SO2. Contrary to previously conjectured models that relied on bond-alternating nearest-neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a S 1=2 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations.
Excitations in a four-leg antiferromagnetic Heisenberg spin tube
Garlea, Vasile O; Zheludev, Andrey I; Regnault, L.-P.; Chung, J.-H.; Qiu, Y.; Boehm, Martin; Habicht, Klaus; Meissner, Michael
2008-01-01
Inelastic neutron scattering is used to investigate magnetic excitations in the quasi-one-dimensional quantum spin-liquid system Cu$_2$Cl$_{4}\\cdot$ D$_8$C$_4$SO$_2$. Contrary to previously conjectured models that relied on bond-alternating nearest neighbor interactions in the spin chains, the dominant interactions are actually next-nearest-neighbor in-chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a $S=1/2$ 4-leg spin-tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short-range spin correlations.
Quantum localization in bilayer Heisenberg antiferromagnets with site dilution.
Roscilde, Tommaso; Haas, Stephan
2005-11-11
The field-induced antiferromagnetic ordering in systems of weakly coupled S = 1/2 dimers at zero temperature can be described as a Bose-Einstein condensation of triplet quasiparticles (singlet quasiholes) in the ground state. For the case of a Heisenberg bilayer, it is here shown how the above picture is altered in the presence of site dilution of the magnetic lattice. Geometric randomness leads to quantum localization of the quasiparticles or quasiholes and to an extended Bose-glass phase in a realistic disordered model. This localization phenomenon drives the system towards a quantum-disordered phase well before the classical geometric percolation threshold is reached. PMID:16384096
Antiferromagnetic structure in tetragonal CuMnAs thin films
Wadley, P.; Hills, V.; Shahedkhah, M. R.; Edmonds, K. W.; Campion, R. P.; Novák, V.; Ouladdiaf, B.; Khalyavin, D.; Langridge, S.; Saidl, V.; Nemec, P.; Rushforth, A. W.; Gallagher, B. L.; Dhesi, S. S.; Maccherozzi, F.; Železný, J.; Jungwirth, T.
2015-01-01
Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions. PMID:26602978
Angle-dependent loop shifts in antiferromagnetic nanoparticles
NASA Astrophysics Data System (ADS)
Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi
2016-08-01
Experimentally hysteresis loop shifts have been widely observed in antiferromagnetic (AF) nanoparticles. Here numerical investigations show that this effect is dependent on the angle between the easy axis of the AF spins and the applied magnetic field in uncompensated nanoparticles. In contrast, the loop shifts disappear in compensated nanoparticles. The results suggest that the uncompensated spins and field directions are essential ingredients to generate loop shifts in AF nanoparticle systems. The present study hints at a possible way to optimize the magnetic performance of AF nanostructures.
Antiferromagnetic/ferromagnetic nanostructures for multidigit storage units
NASA Astrophysics Data System (ADS)
Morales, R.; Kovylina, M.; Schuller, Ivan K.; Labarta, A.; Batlle, X.
2014-01-01
The pursuit of higher densities in binary storage media is facing serious operating limitations. In order to overcome these constraints, several multistate techniques have been investigated as alternatives. Here, we report on an approach to define multistate switching memory units based on magnetic nanostructures exhibiting exchange bias. Writing and reading conditions were studied in patterned antiferromagnetic/ferromagnetic thin films. We establish the necessary and sufficient requirements for this multidigit memory concept that might open up new possibilities for the exploration and design of suitable room temperature spintronic devices.
Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices
Takamura, Y.; Biegalski, M.B.; Christen, H.M.
2009-10-22
Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La{sub 0.7}Sr{sub 0.3}FeO{sub 3}(LSFO)/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.
Spin torques between ferromagnetic and compensated antiferromagnetic layers
NASA Astrophysics Data System (ADS)
Popescu, Adrian; Prakia, Khartik; Haney, Paul
2014-03-01
The current induced torques between a ferromagnetic layer and a compensated antiferromagnetic layer of various symmetries are considered. The general conditions under which these current induced torques can stabilize the out-of-plane configuration of the ferromagnet are provided, along with numerical results for specific models. The effects of phase breaking scattering and their experimental implications are also discussed. Adrian Popescu acknowledges support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, Award 70NANB10H193.
Optical Signatures of Antiferromagnetic Ordering of Fermionic Atoms in an Optical Lattice
NASA Astrophysics Data System (ADS)
Cordobes Aguilar, Francisco; Ho, Andrew F.; Ruostekoski, Janne
2014-07-01
We show how off-resonant light scattering can provide quantitative information on antiferromagnetic ordering of a two-species fermionic atomic gas in a tightly-confined two-dimensional optical lattice. We analyze the emerging magnetic ordering of atoms in the mean-field and in random phase approximations and show how the many-body static and dynamic correlations, evaluated in the standard Feynman-Dyson perturbation series, can be detected in the scattered light signal. The staggered magnetization reveals itself in the magnetic Bragg peaks of the individual spin components. These magnetic peaks, however, can be considerably suppressed in the absence of a true long-range antiferromagnetic order. The light scattered outside the diffraction orders can be collected by a lens with highly improved signal-to-shot-noise ratio when the diffraction maxima are blocked. The collective and single-particle excitations are identified in the spectrum of the scattered light. We find that the spin-conserving and spin-exchanging atomic transitions convey information on density, longitudinal spin, and transverse spin correlations. The different correlations and scattering processes exhibit characteristic angular distribution profiles for the scattered light, and e.g., the diagnostic signal of transverse spin correlations could be separated from the optical response by the scattering direction, frequency, or polarization. We also analyze the detection accuracy by estimating the number of required measurements, constrained by the heating rate that is determined by inelastic light-scattering events. The imaging technique could be extended to the two-species fermionic states in other regions of the phase diagram where the ground-state properties are still not fully understood.
Spin transport in antiferromagnetic insulator detected by spin pumping
NASA Astrophysics Data System (ADS)
Cao, Wei; Li, Yi; Bailey, William
Spin transport in antiferromagnetic insulators has drawn attention recently. Prior work has been done on the spin diffusion length of different antiferromagnetic materials via inverse spin hall effect. In this work, we measure the spin pumping of Py/Cu/CoO to characterize the absorption of spin current in the CoO layer. The series of Py/Cu/CoO (t) with changing the thickness of CoO layer indicates that there is a Gilbert damping enhancement of 0.001 in saturation at about 2 nm at room temperature. The spin mixing conductance obtained from this experimental series and from Py (t)/Cu/CoO series is 2.4 nm-2 and 3.2 nm-2 , respectively. We also measured the spin pumping of the Py/Cu/CoO sample at low temperatures. The Gilbert damping exhibits a positive peak at about 280 K, which is close to the Néel temperature of CoO. Our work shows a finite spin mixing conductance in Py/Cu/CoO and the spin diffusion length of CoO is quite small at room temperature. We also find that its Gilbert damping reaches its maximum value at Néel temperature.
Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors
NASA Astrophysics Data System (ADS)
Sachdev, Subir
I begin with a proposed global phase diagram of the cuprate superconductors as a function of carrier concentration, magnetic field, and temperature, and highlight its connection to numerous recent experiments. The phase diagram is then used as a point of departure for a pedagogical review of various quantum phases and phase transitions of insulators, superconductors, and metals. The bond operator method is used to describe the transition of dimerized antiferromagnetic insulators between magnetically ordered states and spin-gap states. The Schwinger boson method is applied to frustrated square lattice antiferromagnets: phase diagrams containing collinear and spirally ordered magnetic states, Z_2 spin liquids, and valence bond solids are presented, and described by an effective gauge theory of spinons. Insights from these theories of insulators are then applied to a variety of symmetry breaking transitions in d-wave superconductors. The latter systems also contain fermionic quasiparticles with a massless Dirac spectrum, and their influence on the order parameter fluctuations and quantum criticality is carefully discussed. I conclude with an introduction to strong coupling problems associated with symmetry breaking transitions in two-dimensional metals, where the order parameter fluctuations couple to a gapless line of fermionic excitations along the Fermi surface.
Antiferromagnetic ground state in NpCoGe
NASA Astrophysics Data System (ADS)
Colineau, E.; Griveau, J.-C.; Eloirdi, R.; Gaczyński, P.; Khmelevskyi, S.; Shick, A. B.; Caciuffo, R.
2014-03-01
NpCoGe, the neptunium analog of the ferromagnetic superconductor UCoGe, has been investigated by dc magnetization, ac susceptibility, specific heat, electrical resistivity, Hall effect, 237Np Mössbauer spectroscopy, and local spin-density approximation (LSDA) calculations. NpCoGe exhibits an antiferromagnetic ground state with a Néel temperature TN≈13 K and an average ordered magnetic moment <μNp>=0.80μB. The magnetic phase diagram has been determined and shows that the antiferromagnetic structure is destroyed by the application of a magnetic field (≈3 T). The value of the isomer shift suggests a Np3+ charge state (configuration 5f4). A high Sommerfeld coefficient value for NpCoGe (170 mJ mol-1 K-2) is inferred from specific heat. LSDA calculations indicate strong magnetic anisotropy and easy magnetization along the c axis. Mössbauer data and calculated exchange interactions support the possible occurrence of an elliptical spin-spiral structure in NpCoGe. The comparison with NpRhGe and uranium analogs suggests the leading role of 5f-d hybridization, the rather delocalized character of 5f electrons in NpCoGe, and the possible proximity of NpRuGe or NpFeGe to a magnetic quantum critical point.
Dynamical current-induced ferromagnetic and antiferromagnetic resonances
NASA Astrophysics Data System (ADS)
Guimarães, F. S. M.; Lounis, S.; Costa, A. T.; Muniz, R. B.
2015-12-01
We demonstrate that ferromagnetic and antiferromagnetic excitations can be triggered by the dynamical spin accumulations induced by the bulk and surface contributions of the spin Hall effect. Due to the spin-orbit interaction, a time-dependent spin density is generated by an oscillatory electric field applied parallel to the atomic planes of Fe/W(110) multilayers. For symmetric trilayers of Fe/W/Fe in which the Fe layers are ferromagnetically coupled, we demonstrate that only the collective out-of-phase precession mode is excited, while the uniform (in-phase) mode remains silent. When they are antiferromagnetically coupled, the oscillatory electric field sets the Fe magnetizations into elliptical precession motions with opposite angular velocities. The manipulation of different collective spin-wave dynamical modes through the engineering of the multilayers and their thicknesses may be used to develop ultrafast spintronics devices. Our work provides a general framework that probes the realistic responses of materials in the time or frequency domain.
Raman scattering in a two-layer antiferromagnet
NASA Astrophysics Data System (ADS)
Morr, Dirk K.; Chubukov, Andrey V.; Kampf, Arno P.; Blumberg, G.
1996-08-01
Two-magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the interplanar exchange constant in antiferromagnetic two-layer systems, such as YBa2Cu3O6+x. We present a theory for Raman scattering in a two-layer antiferromagnet. We study the spectra for the electronic and magnetic excitations across the charge transfer gap within the one-band Hubbard model and derive the matrix elements for the Raman scattering cross section in a diagrammatic formalism. We analyze the effect of the interlayer exchange coupling J2 for the Raman spectra in A1g and B1g scattering geometries both in the nonresonant regime (when the Loudon-Fleury model is valid) and at resonance. We show that within the Loudon-Fleury approximation, a nonzero J2 gives rise to a finite signal in A1g scattering geometry. Both in this approximation and at resonance the intensity in the A1g channel has a peak at small transferred frequency equal to twice the gap in the spin-wave spectrum. We compare our results with experiments in YBa2Cu3O6.1 and Sr2CuO2Cl2 compounds and argue that the large value of J2 suggested in a number of recent studies is incompatible with Raman experiments in A1g geometry.
Electrical control of antiferromagnetic metal up to 15 nm
NASA Astrophysics Data System (ADS)
Zhang, PengXiang; Yin, GuFan; Wang, YuYan; Cui, Bin; Pan, Feng; Song, Cheng
2016-08-01
Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.
Antiferromagnetic order in MnO spherical nanoparticles
Wang, Cuihuan; Baker, Sheila N; Lumsden, Mark D; Nagler, Stephen E; Heller, William T; Baker, Gary A; Deen, P P; Cranswick, Lachlan M.D.; Su, Y.; Christianson, Andrew D
2011-01-01
We have performed unpolarized and polarized neutron diffraction experiments on monodisperse 8- and 13-nm antiferromagnetic MnO nanoparticles. For the 8-nm sample, the antiferromagnetic transition temperature T{sub N} (114 K) is suppressed compared to that in the bulk material (119 K), while for the 13-nm sample T{sub N} (120 K) is comparable to that in the bulk. The neutron diffraction data of the nanoparticles is well described using the bulk MnO magnetic structure but with a substantially reduced average magnetic moment of 4.2 {+-} 0.3 {micro}{sub B}/Mn for the 8-nm sample and 3.9 {+-} 0.2 {micro}{sub B}/Mn for the 13-nm sample. An analysis of the polarized neutron data on both samples shows that in an individual MnO nanoparticle about 80% of Mn ions order. These results can be explained by a structure in which the monodisperse nanoparticles studied here have a core that behaves similar to the bulk with a surface layer which does not contribute significantly to the magnetic order.
Theory of the spin Seebeck effect in antiferromagnets
NASA Astrophysics Data System (ADS)
Rezende, S. M.; Rodríguez-Suárez, R. L.; Azevedo, A.
2016-01-01
The spin Seebeck effect (SSE) consists in the generation of a spin current by a temperature gradient applied in a magnetic film. The SSE is usually detected by an electric voltage generated in a metallic layer in contact with the magnetic film resulting from the conversion of the spin current into charge current by means of the inverse spin Hall effect. The SSE has been widely studied in bilayers made of the insulating ferrimagnet yttrium iron garnet (YIG) and metals with large spin-orbit coupling such as platinum. Recently the SSE has been observed in bilayers made of the antiferromagnet Mn F2 and Pt, revealing dependences of the SSE voltage on temperature and field very different from the ones observed in YIG/Pt. Here we present a theory for the SSE in structures with an antiferromagnetic insulator (AFI) in contact with a normal metal (NM) that relies on the bulk magnon spin current created by the temperature gradient across the thickness of the AFI/NM bilayer. The theory explains quite well the measured dependences of the SSE voltage on the sample temperature and on the applied magnetic field in Mn F2/Pt .
Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications
Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.
2015-01-01
Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer motif. We demonstrate the transfer of magnetic properties from thin films to lithographically defined 2 μm particles which have been lifted off into solution. We simulate the minimum energy state of a synthetic antiferromagnetic bilayer system that is free to rotate in an applied field and show that the low field susceptibility of the system is equal to the magnetic hard axis followed by a sharp switch to full magnetization as the field is increased. This agrees with the experimental results and explains the behaviour of the particles in solution. PMID:26221056
Quantum Criticality in Quasi-Two-Dimensional Itinerant Antiferromagnets.
Varma, C M
2015-10-30
Quasi-two-dimensional itinerant fermions in the antiferromagnetic (AFM) quantum-critical region of their phase diagram, such as in the Fe-based superconductors or in some of the heavy-fermion compounds, exhibit a resistivity varying linearly with temperature and a contribution to specific heat or thermopower proportional to TlnT. It is shown, here, that a generic model of itinerant anti-ferromagnet can be canonically transformed so that its critical fluctuations around the AFM-vector Q can be obtained from the fluctuations in the long wavelength limit of a dissipative quantum XY model. The fluctuations of the dissipative quantum XY model in 2D have been evaluated recently, and in a large regime of parameters, they are determined, not by renormalized spin fluctuations, but by topological excitations. In this regime, the fluctuations are separable in their spatial and temporal dependence and have a spatial correlation length which is proportional to the logarithm of the temporal correlation length, i.e., for some purposes, the effective dynamic exponent z=∞. The time dependence gives ω/T scaling at criticality. The observed resistivity and entropy then follow. Several predictions to test the theory are also given. PMID:26565482
Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications
NASA Astrophysics Data System (ADS)
Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.
2015-07-01
Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer motif. We demonstrate the transfer of magnetic properties from thin films to lithographically defined 2 μm particles which have been lifted off into solution. We simulate the minimum energy state of a synthetic antiferromagnetic bilayer system that is free to rotate in an applied field and show that the low field susceptibility of the system is equal to the magnetic hard axis followed by a sharp switch to full magnetization as the field is increased. This agrees with the experimental results and explains the behaviour of the particles in solution.
Fractional excitations in the square lattice quantum antiferromagnet
Christensen, N. B.; Nilsen, G. J.; Tregenna-Piggott, P.; Perring, T. G.; Enderle, M.; McMorrow, D. F.; Ivanov, D. A.; Rønnow, H. M.
2014-01-01
Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). We use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experiments reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration. PMID:25729400
Large magnetoresistance in the antiferromagnetic semimetal NdSb
NASA Astrophysics Data System (ADS)
Wakeham, N.; Bauer, E. D.; Neupane, M.; Ronning, F.
2016-05-01
There has been considerable interest in topological semimetals that exhibit extreme magnetoresistance (XMR). These have included materials lacking inversion symmetry such as TaAs, as well Dirac semimetals such as Cd3As2 . However, it was reported recently that LaSb and LaBi also exhibit XMR, even though the rocksalt structure of these materials has inversion symmetry, and the band-structure calculations do not show a Dirac dispersion in the bulk. Here, we present magnetoresistance and specific-heat measurements on NdSb, which is isostructural with LaSb. NdSb has an antiferromagnetic ground state and, in analogy with the lanthanum monopnictides, is expected to be a topologically nontrivial semimetal. We show that NdSb has an XMR of ˜104% , even within the antiferromagnetic state, illustrating that XMR can occur independently of the absence of time-reversal symmetry breaking in zero magnetic field. The persistence of XMR in a magnetic system offers the promise of new functionality when combining topological matter with electronic correlations. We also find that in an applied magnetic field below the Néel temperature there is a first-order transition, consistent with evidence from previous neutron scattering work.
Spin Seebeck effect through antiferromagnetic NiO
NASA Astrophysics Data System (ADS)
Prakash, Arati; Brangham, Jack; Yang, Fengyuan; Heremans, Joseph P.
2016-07-01
We report temperature-dependent spin Seebeck measurements on Pt/YIG bilayers and Pt/NiO/YIG trilayers, where YIG (yttrium iron garnet, Y3F e5O12 ) is an insulating ferrimagnet and NiO is an antiferromagnet at low temperatures. The thickness of the NiO layer is varied from 0 to 10 nm. In the Pt/YIG bilayers, the temperature gradient applied to the YIG stimulates dynamic spin injection into the Pt, which generates an inverse spin Hall voltage in the Pt. The presence of a NiO layer dampens the spin injection exponentially with a decay length of 2 ± 0.6 nm at 180 K. The decay length increases with temperature and shows a maximum of 5.5 ± 0.8 nm at 360 K. The temperature dependence of the amplitude of the spin Seebeck signal without NiO shows a broad maximum of 6.5 ± 0.5 μV/K at 20 K. In the presence of NiO, the maximum shifts sharply to higher temperatures, likely correlated to the increase in decay length. This implies that NiO is most transparent to magnon propagation near the paramagnet-antiferromagnet transition. We do not see the enhancement in spin current driven into Pt reported in other papers when 1-2 nm NiO layers are sandwiched between Pt and YIG.
NASA Astrophysics Data System (ADS)
Hou, Y. S.; Xiang, H. J.; Gong, X. G.
2016-04-01
Based on the density functional theory and model Hamiltonian, we studied the basal-plane antiferromagnetism in the spin–orbit Mott insulator Ba2IrO4. By comparing the magnetic properties of the bulk Ba2IrO4 with those of the single-layer Ba2IrO4, we demonstrate unambiguously that the basal-plane antiferromagnetism is caused by the intralyer magnetic interactions rather than by the previously proposed interlayer ones. Aiming at revealing the origin of the basal-plane antiferromagnetism, we add the single ion anisotropy and pseudo-quadrupole interactions into the general bilinear pseudo-spin Hamiltonian. The obtained magnetic interaction parameters indicate that the single ion anisotropy and pseudo-quadrupole interactions are unexpectedly strong. Systematical Monte Carlo simulations demonstrate that the basal-plane antiferromagnetism is caused by isotropic Heisenberg, bond-dependent Kitaev and pseudo-quadrupole interactions. On the basis of this study the single ion anisotropy and pseudo-quadrupole interactions could play a role in explaining magnetic interactions in other iridates.
Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal
Olejnik, K.; Wadley, P.; Haigh, J.; Edmonds, K. W.; Campion, R. P.; Rushforth, A. W.; Gallagher, B. L.; Foxon, C. T.; Jungwirth, T.; Wunderlich, J.; Dhesi, S. S.; Cavill, S.; van der Laan, G.; Arenholz, E.
2009-11-05
We demonstrate an exchange bias in (Ga,Mn)As induced by antiferromagnetic coupling to a thin overlayer of Fe. Bias fields of up to 240 Oe are observed. Using element-specific x-ray magnetic circular dichroism measurements, we distinguish an interface layer that is strongly pinned antiferromagnetically to the Fe. The interface layer remains polarized at room temperature.
Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current
Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu
2015-08-24
We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.
Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current
NASA Astrophysics Data System (ADS)
Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu
2015-08-01
We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.
Magnetic transitions of single-component molecular metal [Au(tmdt)2] and its alloy systems.
Zhou, Biao; Shimamura, Mina; Fujiwara, Emiko; Kobayashi, Akiko; Higashi, Takeshi; Nishibori, Eiji; Sakata, Makoto; Cui, Hengbo; Takahashi, Kazuyuki; Kobayashi, Hayao
2006-03-29
A single-component molecular conductor [Au(tmdt)2] (tmdt = trimethylenetetrathiafulvalenedithiolate) undergoes an antiferromagnetic phase transition at unprecedentedly high temperature (TN = 110 K). Black microcrystals of alloys, [Ni1-xAux(tmdt)2] (0.0 < x < 1.0) were prepared. The Au-rich system exhibited an antiferromagnetic transition. Metallic single crystal was obtained for x = 0.25. PMID:16551070
NASA Astrophysics Data System (ADS)
Owerre, Solomon Akaraka; Paranjape, M. B.
2014-11-01
The Hamiltonian of a two-sublattice antiferromagnetic spins, with single (hard-axis) and double ion anisotropies described by H = J {\\hat S}1...\\hatS 2-2Jz \\hat {S}1z\\hat {S}2z+K(\\hat {S}1z2 +\\hat {S}2z2) is investigated using the method of effective potential. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and reduced mass. We study the quantum-classical phase transition of the escape rate of this model. We show that the first-order phase transition for this model sets in at the critical value Jc = (Kc+Jz, c)/2 while for the anisotropic Heisenberg coupling H = J(S1xS2x +S1yS2y) + JzS1zS2z + K(S1z2+ S2z2) we obtain Jc = (2Kc-Jz, c)/3. The phase diagrams of the transition are also studied.
Tailoring coercivity of unbiased exchange-coupled ferromagnet/antiferromagnet bilayers
Sossmeier, K. D.; Schafer, D.; Bastos, A. P. O.; Schmidt, J. E.; Geshev, J.
2012-07-01
This paper reports experimental results obtained on unconventional exchange-coupled ferromagnet/antiferromagnet (FM/AF) system showing zero net bias. The Curie temperature of the FM (NiCu) is lower than the blocking temperature of the AF (IrMn). Samples were either annealed or irradiated with He, Ar, or Ge ions at 40 keV. Due to the exchange coupling at the FM/AF interface, the coercivity (H{sub C}) of the as-deposited FM/AF bilayer is rather higher than that of the corresponding FM single layer. We found that by choosing a proper ion fluence or annealing temperature, it is possible to controllably vary H{sub C}. Ion irradiation of the FM single layer has lead to only a decrease of H{sub C} and annealing or He ion irradiation has not caused important changes at the FM/AF interface; nevertheless, a twofold increase of H{sub C} was obtained after these treatments. Even more significant enhancement of H{sub C} was attained after Ge ion irradiation and attributed to ion-implantation-induced modification of only the FM layer; damages of the FM/AF interface, on the other hand, decrease the coercivity.
Magnetization dynamics in exchange coupled antiferromagnet spin superfluids
NASA Astrophysics Data System (ADS)
Liu, Yizhou; Barlas, Yafis; Yin, Gen; Zang, Jiadong; Lake, Roger
Antiferromagnets (AFMs) are commonly used as the exchange bias layer in magnetic recording and spintronic devices. Recently, several studies on the spin transfer torque and spin pumping in AFMs reveal much more interesting physics in AFMs. Properties of AFMs such as the ultrafast switching within picoseconds and spin superfluidity demonstrate the potential to build AFM based spintronic devices. Here, we study the magnetization dynamics in an exchange coupled AFM systems. Beginning from the Landau-Lifshitz-Gilbert equation, we derive a Josephson-like equation for the exchange coupled system. We investigate the detailed magnetization dynamics by employing spin injection and spin pumping theory. We also propose a geometry that could be used to measure this magnetization dynamics. This work was supported as part of the Spins and Heat in Nanoscale Electronic Systems (SHINES) an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #SC0012670.
Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices.
Greif, Daniel; Jotzu, Gregor; Messer, Michael; Desbuquois, Rémi; Esslinger, Tilman
2015-12-31
We report on the observation of antiferromagnetic correlations of ultracold fermions in a variety of optical lattice geometries that are well described by the Hubbard model, including dimers, 1D chains, ladders, isolated and coupled honeycomb planes, as well as square and cubic lattices. The dependence of the strength of spin correlations on the specific geometry is experimentally studied by measuring the correlations along different lattice tunneling links, where a redistribution of correlations between the different lattice links is observed. By measuring the correlations in a crossover between distinct geometries, we demonstrate an effective reduction of the dimensionality for our atom numbers and temperatures. We also investigate the formation and redistribution time of spin correlations by dynamically changing the lattice geometry and studying the time evolution of the system. Time scales ranging from a sudden quench of the lattice geometry to an adiabatic evolution are probed. PMID:26764974
Band gaps of two-dimensional antiferromagnetic photonic crystal
NASA Astrophysics Data System (ADS)
Song, Yu-Ling; Ta, Jin-Xing; Wang, Xuan-Zhang
2011-07-01
In an external magnetic field, the band structure of a two-dimensional photonic crystal (PC) composed of parallel antiferromagnetic cylinders in a background dielectric is investigated with a Green's function method. The cylinders with two resonant frequencies form a square lattice and are characterized by a magnetic permeability tensor. In our numerical calculation, we find that this method allows fast convergence and is available in both the resonant and non-resonant frequency ranges. In the non-resonant range, the PC is similar in band structure to an ordinary dielectric PC. Two electromagnetic band gaps, however, appear in the resonant frequency region, and their frequency positions and widths are governed by the external field. The dependence of the electromagnetic gaps on the cylinder radius also is discussed.
A quadrangular transverse Ising nanowire with an antiferromagnetic spin configuration
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2015-11-01
The phase diagrams and the temperature dependences of magnetizations in a transverse Ising nanowire with an antiferromagnetic spin configuration are investigated by the use of the effective-field theory with correlations (EFT) and the core-shell concept. Many characteristic and unexpected behaviors are found for them, especially for thermal variation of total magnetization mT. The reentrant phenomenon induced by a transverse field in the core, the appearance of a compensation point, the non-monotonic variation with a compensation point, the reentrant phenomena with a compensation point and the existence of both a broad maximum and a compensation point have been found in the thermal variations of mT.
Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Ho.
Rettig, L; Dornes, C; Thielemann-Kühn, N; Pontius, N; Zabel, H; Schlagel, D L; Lograsso, T A; Chollet, M; Robert, A; Sikorski, M; Song, S; Glownia, J M; Schüßler-Langeheine, C; Johnson, S L; Staub, U
2016-06-24
Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L_{3} absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p→5d) or quadrupole (E2, 2p→4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3-τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f-5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak. PMID:27391747
Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Ho
NASA Astrophysics Data System (ADS)
Rettig, L.; Dornes, C.; Thielemann-Kühn, N.; Pontius, N.; Zabel, H.; Schlagel, D. L.; Lograsso, T. A.; Chollet, M.; Robert, A.; Sikorski, M.; Song, S.; Glownia, J. M.; Schüßler-Langeheine, C.; Johnson, S. L.; Staub, U.
2016-06-01
Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E 1 , 2 p →5 d ) or quadrupole (E 2 , 2 p →4 f ) transition allows us to selectively and independently study the spin dynamics of the itinerant 5 d and localized 4 f electronic subsystems via the suppression of the magnetic (2 1 3 -τ ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4 f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4 f -5 d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.
Bose and Mott glass phases in dimerized quantum antiferromagnets
NASA Astrophysics Data System (ADS)
Thomson, S. J.; Krüger, F.
2015-11-01
We examine the effects of disorder on dimerized quantum antiferromagnets in a magnetic field, using the mapping to a lattice gas of hard-core bosons with finite-range interactions. Combining a strong-coupling expansion, the replica method, and a one-loop renormalization-group analysis, we investigate the nature of the glass phases formed. We find that away from the tips of the Mott lobes, the transition is from a Mott insulator to a compressible Bose glass, however the compressibility at the tips is strongly suppressed. We identify this finding with the presence of a rare Mott glass phase and demonstrate that the inclusion of replica symmetry breaking is vital to correctly describe the glassy phases. This result suggests that the formation of Bose and Mott glass phases is not simply a weak localization phenomenon but is indicative of much richer physics. We discuss our results in the context of both ultracold atomic gases and spin-dimer materials.
Strong spin Hall effect in the antiferromagnet PtMn
NASA Astrophysics Data System (ADS)
Ou, Yongxi; Shi, Shengjie; Ralph, D. C.; Buhrman, R. A.
2016-06-01
Effectively manipulating magnetism in ferromagnet (FM) thin-film nanostructures with an in-plane current has become feasible since the determination of a "giant" spin Hall effect (SHE) in certain heavy metal/FM systems. Recently, both theoretical and experimental reports indicate that metallic antiferromagnet materials can have both a large anomalous Hall effect and a strong SHE. Here we report a systematic study of the SHE in PtMn with several PtMn/FM systems. By using interface engineering to reduce the "spin memory loss" we obtain, in the best instance, a spin-torque efficiency ξDLPtMn≡TintθSHPtMn≃0.24 , where Tint is the effective interface spin transparency. This is more than twice the previously reported spin-torque efficiency for PtMn. We also find that the apparent spin diffusion length in PtMn is surprisingly long, λsPtMn≈2.3 nm .
Antiferromagnetic superconducting state in the electron-doped cuprates?
NASA Astrophysics Data System (ADS)
Das, Tanmoy; Markiewicz, Robert S.; Bansil, Arun
2006-03-01
Recent angle-resolved photoemission (ARPES) studies of the electron-doped cuprate Nd2-xCexCuO4 (NCCO)[1] have been interpreted in terms of a uniform antiferromagnetic (AF) metal, with doping into the upper magnetic band and gap collapse close to optimal doping[2]. An open question is whether the system remains uniform in the simultaneous presence of AF and (d- wave) superconducting (SC) order. Here, we explore the properties of a uniform AF-SC model for NCCO, to ascertain to what extent we can explain anomalous features, such as the nonmonotonic angle dependence of the superconducting gap[3]. Work supported by the USDOE. [1] N.P. Armitage, et al., PRL 87, 147003 (2002). [2] C. Kusko, et al., PRB66, 140513 (2002); A.-M.S. Tremblay, et al., cond-mat/0511334. [3] H. Matsui, et al., PRL 95, 017003 (2005).
Enhancement of Thermally Injected Spin Current through an Antiferromagnetic Insulator.
Lin, Weiwei; Chen, Kai; Zhang, Shufeng; Chien, C L
2016-05-01
We report a large enhancement of thermally injected spin current in normal metal (NM)/antiferromagnet (AF)/yttrium iron garnet (YIG), where a thin AF insulating layer of NiO or CoO can enhance the spin current from YIG to a NM by up to a factor of 10. The spin current enhancement in NM/AF/YIG, with a pronounced maximum near the Néel temperature of the thin AF layer, has been found to scale linearly with the spin-mixing conductance at the NM/YIG interface for NM=3d, 4d, and 5d metals. Calculations of spin current enhancement and spin mixing conductance are qualitatively consistent with the experimental results. PMID:27203336
Impurity effects in highly frustrated diamond-lattice antiferromagnets
NASA Astrophysics Data System (ADS)
Savary, Lucile; Gull, Emanuel; Trebst, Simon; Alicea, Jason; Bergman, Doron; Balents, Leon
2011-08-01
We consider the effects of local impurities in highly frustrated diamond-lattice antiferromagnets, which exhibit large but nonextensive ground-state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state and provide a mechanism of degeneracy breaking. The states that are selected can be determined by a “swiss cheese model” analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.
Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet
NASA Astrophysics Data System (ADS)
Zaletel, Michael P.; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R.
2016-05-01
The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.
Helimagnons in a chiral ground state of the pyrochlore antiferromagnets
NASA Astrophysics Data System (ADS)
Choi, Eunsong; Chern, Gia-Wei; Perkins, Natalia B.
2013-02-01
The Goldstone mode in a helical magnetic phase, also known as the helimagnon, is a propagating mode with a highly anisotropic dispersion relation. Here we study theoretically the magnetic excitations in a complex chiral ground state of pyrochlore antiferromagnets such as spinel CdCr2O4 and itinerant magnet YMn2. We show that the effective theory of the soft modes in the helical state possesses a symmetry similar to that of smectic liquid crystals. An overall agreement is obtained between experiments and our dynamics simulations with realistic model parameters. By exactly diagonalizing the linearized Landu-Lifshitz equation in various commensurate limits of the spiral order, we find a low-energy dispersion relation characteristic of the helimagnons. Our calculation thus reveals the first example of helimagnon excitations in geometrically frustrated spin systems.
Impurity Effects in Highly Frustrated Diamond-Lattice Antiferromagnets
NASA Astrophysics Data System (ADS)
Savary, Lucile
2012-02-01
We consider the effects of local impurities in highly frustrated diamond lattice antiferromagnets, which exhibit large but non-extensive ground state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state, and provide a mechanism of degeneracy breaking. The states which are selected can be determined by a ``swiss cheese model'' analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.
Antiferromagnetic Critical Fluctuations in BaFe$_2$As$_2$
Wilson, Stephen D; Yamani, Z.; Rotundu, C. R.; Freelon, B.; Valdivia, P. N.; Bourret-Courchesne, E. D.; Lynn, J W; Chi, Songxue; Hong, Tao; Birgeneau, R. J.
2010-01-01
Magnetic correlations near the magnetostructural phase transition in the bilayer iron-pnictide parent compound, BaFe{sub 2}As{sub 2}, are measured. In close proximity to the antiferromagnetic phase transition in BaFe{sub 2}As{sub 2}, a crossover to three-dimensional critical behavior is anticipated and has been preliminarily observed. Here we report complementary measurements of two-dimensional magnetic fluctuations over a broad temperature range about T{sub N}. The potential role of two-dimensional critical fluctuations in the magnetic phase behavior of BaFe{sub 2}As{sub 2} and their evolution near the anticipated crossover to three-dimensional critical behavior and long-range order are discussed.
Spontaneous Pattern Formation in an Antiferromagnetic Quantum Gas
Kronjaeger, Jochen; Bongs, Kai; Becker, Christoph; Soltan-Panahi, Parvis; Sengstock, Klaus
2010-08-27
In this Letter we report on the spontaneous formation of surprisingly regular periodic magnetic patterns in an antiferromagnetic Bose-Einstein condensate (BEC). The structures evolve within a quasi-one-dimensional BEC of {sup 87}Rb atoms on length scales of a millimeter with typical periodicities of 20...30 {mu}m, given by the spin healing length. We observe two sets of characteristic patterns which can be controlled by an external magnetic field. We identify these patterns as linearly unstable modes within a mean-field approach and calculate their mode structure as well as time and energy scales, which we find to be in good agreement with observations. These investigations open new prospects for controlled studies of symmetry breaking and complex quantum magnetism in bulk BEC.
Nanoscale Magnetic Structure of Ferromagnet/Antiferromagnet Manganite Multilayers
Niebieskikwiat, D.; Hueso, L. E.; Borchers, J. A.; Mathur, N. D.; Salamon, M. B.
2007-12-14
We use polarized neutron reflectometry and dc magnetometry to obtain a comprehensive picture of the magnetic structure of a series of La{sub 2/3}Sr{sub 1/3}MnO{sub 3}/Pr{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0{<=}t{sub A}{<=}7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to ferromagnetic (FM) inclusions within the AFM matrix is maximized at t{sub A}{approx}3 nm. This enhancement of FM moment occurs at the matching between layer thickness and cluster size, implying the possibility of tuning phase separation by imposing appropriate geometrical constraints which favor the accommodation of FM nanoclusters within the ''non-FM'' material.
Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.
Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R
2016-05-13
The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations. PMID:27232041
Enhanced Antiferromagnetic Exchange between Magnetic Impurities in a Superconducting Host
NASA Astrophysics Data System (ADS)
Yao, N. Y.; Glazman, L. I.; Demler, E. A.; Lukin, M. D.; Sau, J. D.
2014-08-01
It is generally believed that superconductivity only weakly affects the indirect exchange between magnetic impurities. If the distance r between impurities is smaller than the superconducting coherence length (r≲ξ), this exchange is thought to be dominated by Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, identical to the those in a normal metallic host. This perception is based on a perturbative treatment of the exchange interaction. Here, we provide a nonperturbative analysis and demonstrate that the presence of Yu-Shiba-Rusinov bound states induces a strong 1/r2 antiferromagnetic interaction that can dominate over conventional RKKY even at distances significantly smaller than the coherence length (r≪ξ). Experimental signatures, implications, and applications are discussed.
Spin waves in antiferromagnetically coupled bimetallic oxalates.
Reis, Peter L; Fishman, Randy S
2009-01-01
Bimetallic oxalates are molecule-based magnets with transition-metal ions M(II) and M(')(III) arranged on an open honeycomb lattice. Performing a Holstein-Primakoff expansion, we obtain the spin-wave spectrum of antiferromagnetically coupled bimetallic oxalates as a function of the crystal-field angular momentum L(2) and L(3) on the M(II) and M(')(III) sites. Our results are applied to the Fe(II)Mn(III), Ni(II)Mn(III) and V(II)V(III) bimetallic oxalates, where the spin-wave gap varies from 0 meV for quenched angular momentum to as high as 15 meV. The presence or absence of magnetic compensation appears to have no effect on the spin-wave gap. PMID:21817242
Antiferromagnetic Spin-S Chains with Exactly Dimerized Ground States
NASA Astrophysics Data System (ADS)
Michaud, Frédéric; Vernay, François; Manmana, Salvatore R.; Mila, Frédéric
2012-03-01
We show that spin S Heisenberg spin chains with an additional three-body interaction of the form (Si-1·Si)(Si·Si+1)+H.c. possess fully dimerized ground states if the ratio of the three-body interaction to the bilinear one is equal to 1/[4S(S+1)-2]. This result generalizes the Majumdar-Ghosh point of the J1-J2 chain, to which the present model reduces for S=1/2. For S=1, we use the density matrix renormalization group method to show that the transition between the Haldane and the dimerized phases is continuous with a central charge c=3/2. Finally, we show that such a three-body interaction appears naturally in a strong-coupling expansion of the Hubbard model, and we discuss the consequences for the dimerization of actual antiferromagnetic chains.
Enhancement of Thermally Injected Spin Current through an Antiferromagnetic Insulator
NASA Astrophysics Data System (ADS)
Lin, Weiwei; Chen, Kai; Zhang, Shufeng; Chien, C. L.
2016-05-01
We report a large enhancement of thermally injected spin current in normal metal (NM)/antiferromagnet (AF)/yttrium iron garnet (YIG), where a thin AF insulating layer of NiO or CoO can enhance the spin current from YIG to a NM by up to a factor of 10. The spin current enhancement in NM /AF /YIG , with a pronounced maximum near the Néel temperature of the thin AF layer, has been found to scale linearly with the spin-mixing conductance at the NM /YIG interface for NM =3 d , 4 d , and 5 d metals. Calculations of spin current enhancement and spin mixing conductance are qualitatively consistent with the experimental results.
Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets
Hou, Zhuofei; Landau, David P; Stocks, George Malcolm; Brown, G.
2015-01-01
Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic latticewith linear sizesL 40 at a temperature below the N eel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the xy direction, which are compared to the infinite system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion formore » individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S(q, ) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST (q, ) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST (q, ) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films.« less
Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets
Hou, Zhuofei; Landau, David P; Stocks, George Malcolm; Brown, G.
2015-01-01
Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic latticewith linear sizesL 40 at a temperature below the N eel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the xy direction, which are compared to the infinite system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S(q, ) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST (q, ) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST (q, ) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films.
Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets
NASA Astrophysics Data System (ADS)
Hou, Zhuofei; Landau, D. P.; Stocks, G. M.; Brown, G.
2015-02-01
Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic lattice with linear sizes L ⩽40 at a temperature below the Néel temperature. Nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the x y direction, which are compared to the "infinite" system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S (q ,ω ) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST(q ,ω ) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q -space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST(q ,ω ) not expected in bulk systems. The results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or films.
Smeared spin-flop transition in random antiferromagnetic Ising chain
Timonin, P. N.
2012-12-15
At T = 0 and in a sufficiently large field, the nearest-neighbor antiferromagnetic Ising chain undergoes a first-order spin-flop transition into the ferromagnetic phase. We consider its smearing under the random-bond disorder such that all independent random bonds are antiferromagnetic (AF). It is shown that the ground-state thermodynamics of this random AF chain can be described exactly for an arbitrary distribution P(J) of AF bonds. Moreover, the site magnetizations of finite chains can be found analytically in this model. We consider a continuous P(J) that is zero above some -J{sub 1} and behaves near it as (-J{sub 1}-J){sup {lambda}}, {lambda} > -1. In this case, the ferromagnetic phase emerges continuously in a field H > H{sub c} = 2J{sub 1}. At 0 > {lambda} > -1, it has the usual second-order anomalies near H{sub c} with the critical indices obeying the scaling relation and depending on {lambda}. At {lambda} > 0, higher-order transitions occur (third, fourth, etc.), marked by a divergence of the corresponding nonlinear susceptibilities. In the chains with an even number of spins, the intermediate 'bow-tie' phase with linearly modulated AF order exists between the AF and ferromagnetic phases at J{sub 1} < H < H{sub c}. Its origin can be traced to the infinite correlation length of the degenerate AF phase from which it emerges. This implies the existence of similar inhomogeneous phases with size- and form-dependent order in a number of other systems with infinite correlation length. The possibility to observe the signs of the 'bow-tie' phase in low-T neutron diffraction experiments is discussed.
XMCD studies of antiferromagnetically coupled Co/Pt Multilayers
NASA Astrophysics Data System (ADS)
Baruth, A.; Keavney, D. J.
2005-03-01
Previous results on multilayered structures of [Pt(5å)/Co(4å)]3/NiO(tNiOå) /[Co(4å)/Pt(5å)]3 show exchange coupling between the two Co/Pt layers as well as exchange bias between the Co and NiO below 200K [1]. The exchange coupling is explained through the canting of AFM NiO spins which were theoretically predicted [2] and seen using X-ray Magnetic Circular Dichroism [3]. Using XMCD we have studied the element specific magnetization of Co and NiO as functions of field and temperature (above and below the blocking temperature, 200K) in two samples with 11å and 12å NiO. At these thicknesses of NiO, both sets of Co/Pt multilayers couple antiferromagnetically, but the coupling strength for the 12å NiO sample is approximately half that of the 11å. Element specific hysteresis loops showed identical behavior for both Co and Ni implying that the AFM NiO spins at the interface cant in the direction of the Co magnetization. Photoemission electron microscope images on a virgin sample at room temperature revealed the exact correlation between FM domains in the Co and NiO layers in the strongest antiferromagnetically coupled sample. We plan to measure the AFM domain structure of NiO using Magnetic Linear Dichroism. [1] Phys. Rev. Lett. 91, 037207 (2003) [2] Phys. Rev. Lett. 92, 219703 (2004) [3] Z.Y. Liu et. al. Phys Rev B (accepted) Funded by NSF MRSEC
Raman scattering in a two-layer antiferromagnet
Morr, D.K.; Chubukov, A.V. |; Kampf, A.P.; Blumberg, G. |
1996-08-01
Two-magnon Raman scattering is a useful tool to verify recent suggestions concerning the value of the interplanar exchange constant in antiferromagnetic two-layer systems, such as YBa{sub 2}Cu{sub 3}O{sub 6+{ital x}}. We present a theory for Raman scattering in a two-layer antiferromagnet. We study the spectra for the electronic and magnetic excitations across the charge transfer gap within the one-band Hubbard model and derive the matrix elements for the Raman scattering cross section in a diagrammatic formalism. We analyze the effect of the interlayer exchange coupling {ital J}{sub 2} for the Raman spectra in {ital A}{sub 1{ital g}} and {ital B}{sub 1{ital g}} scattering geometries both in the nonresonant regime (when the Loudon-Fleury model is valid) and at resonance. We show that within the Loudon-Fleury approximation, a nonzero {ital J}{sub 2} gives rise to a finite signal in {ital A}{sub 1{ital g}} scattering geometry. Both in this approximation and at resonance the intensity in the {ital A}{sub 1{ital g}} channel has a peak at {ital small} transferred frequency equal to twice the gap in the spin-wave spectrum. We compare our results with experiments in YBa{sub 2}Cu{sub 3}O{sub 6.1} and Sr{sub 2}CuO{sub 2}Cl{sub 2} compounds and argue that the large value of {ital J}{sub 2} suggested in a number of recent studies is incompatible with Raman experiments in {ital A}{sub 1{ital g}} geometry. {copyright} {ital 1996 The American Physical Society.}
van Wüllen, Christoph
2009-10-29
Antiferromagnetic coupling in multinuclear transition metal complexes usually leads to electronic ground states that cannot be described by a single Slater determinant and that are therefore difficult to describe by Kohn-Sham density functional methods. Density functional calculations in such cases are usually converged to broken symmetry solutions which break spin and, in many cases, also spatial symmetry. While a procedure exists to extract isotropic Heisenberg (exchange) coupling constants from such calculations, no such approach is yet established for the calculation of magnetic anisotropy energies or zero field splitting parameters. This work proposes such a procedure. The broken symmetry solutions are not only used to extract the exchange couplings but also single-ion D tensors which are then used to construct a (phenomenological) spin Hamiltonian, from which the magnetic anisotropy and the zero-field energy levels can be computed. The procedure is demonstrated for a bi- and a trinuclear Mn(III) model compound. PMID:19708660
Gong, W. J.; Liu, W. Feng, J. N.; Zhang, Z. D.; Kim, D. S.; Choi, C. J.
2014-04-07
The effect of antiferromagnetic (AFM) layer on exchange bias (EB), training effect, and magnetotransport properties in ferromagnetic (FM) /AFM nanoscale antidot arrays and sheet films Ag(10 nm)/Co(8 nm)/NiO(t{sub NiO})/Ag(5 nm) at 10 K is studied. The AFM layer thickness dependence of the EB field shows a peak at t{sub NiO} = 2 nm that is explained by using the random field model. The misalignment of magnetic moments in the three-dimensional antidot arrays causes smaller decrease of EB field compared with that in the sheet films for training effect. The anomalous magnetotransport properties, in particular positive magnetoresistance (MR) for antidot arrays but negative MR for sheet films are found. The training effect and magnetotransport properties are strongly affected by the three-dimensional spin-alignment effects in the antidot arrays.
Remarkably robust and correlated coherence and antiferromagnetism in (Ce1-xLax)Cu2Ge2
Hodovanets, H.; Bud’ko, S. L.; Straszheim, W. E.; Taufour, V.; Mun, E. D.; Kim, H.; Flint, R.; Canfield, P. C.
2015-06-08
We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce1-xLax)Cu2Ge2 single crystals (0 ≤ x ≤ 1). With La-substitution, the antiferromagnetic temperature TN is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x > 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below Tcoh up to ~0.9 of La, indicating a small percolation limit ~9% of Ce. Tcoh as a function of magnetic field was found to have different behavior for x < 0.9 and x > 0.9. Remarkably, (Tcoh)2more » at H = 0 was found to be linearly proportional to TN. In conclusion, the jump in the magnetic specific heat δCm at TN as a function of TK/TN for (Ce1-xLax)Cu2Ge2 follows the theoretical prediction based on the molecular field calculation for the S = 1/2 resonant level model.« less
NASA Astrophysics Data System (ADS)
Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo
2016-02-01
Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained.
Novel dynamic scaling regime in hole-doped 2-dimensional antiferromagnet La2CuO4
NASA Astrophysics Data System (ADS)
Bao, Wei
2003-11-01
Only 3% hole doping by Li is sufficient to suppress the long-range 3-dimensional (3D) antiferromagnetic order in La_2CuO_4. The spin dynamics of such a 2D spin liquid state at T≪ J was investigated with measurements of the dynamic magnetic structure factor S(ω,q), using cold neutron spectroscopy, for single crystalline La_2Cu_1-xLi_xO4 (x =0.04, 0.06 and 0.1). S(ω,q) peaks sharply at (π,π) for all of these samples[1]. A phase crossover from the quantum critical (QC) ω/T scaling at high temperatures to a novel low temperature regime characterized by a constant energy scale is observed for the first time[2]. The observed crossover possibly corresponds to the theoretically expected crossover from the QC to the quantum disordered regime of the 2D Heisenberg antiferromagnetic spin liquid[3]. Possible role played by doped holes in modifying spin fluctuation spectrum will be discussed. [1] W. Bao et al., Phys. Rev. Lett. 84, 3978 (2000) [2] W. Bao et al., cond-mat/0307605; accepted by Phys. Rev. Lett. [3] S. Sachdev, Quantum Phase Transitions, Cambridge University Press, 1999
Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo
2016-01-01
Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained. PMID:26887790
Comprehensive study of the spin-charge interplay in antiferromagnetic La(2-x)Sr(x)CuO4.
Drachuck, Gil; Razzoli, Elia; Bazalitski, Galina; Kanigel, Amit; Niedermayer, Christof; Shi, Ming; Keren, Amit
2014-01-01
The origin of the pseudogap and its relationship with superconductivity in the cuprates remains vague. In particular, the interplay between the pseudogap and magnetism is mysterious. Here we investigate the newly discovered nodal gap in hole-doped cuprates using a combination of three experimental techniques applied to one, custom made, single crystal. The crystal is an antiferromagnetic La(2-x)Sr(x)CuO4. with x=1.92%. We perform angle-resolved photoemission spectroscopy measurements as a function of temperature and find: quasi-particle peaks, Fermi surface, anti-nodal gap and below 45 K a nodal gap. Muon spin rotation measurements ensure that the sample is indeed antiferromagnetic and that the doping is close, but below, the spin-glass phase boundary. We also perform elastic neutron scattering measurements and determine the thermal evolution of the commensurate and incommensurate magnetic order, where we find that a nodal gap opens well below the commensurate ordering at 140 K, and close to the incommensurate spin density wave ordering temperature of 30 K. PMID:24572737
Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo
2016-01-01
Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained. PMID:26887790
Long-range order for the spin-1 Heisenberg model with a small antiferromagnetic interaction
Lees, Benjamin
2014-09-15
We look at the general SU(2) invariant spin-1 Heisenberg model. This family includes the well-known Heisenberg ferromagnet and antiferromagnet as well as the interesting nematic (biquadratic) and the largely mysterious staggered-nematic interaction. Long range order is proved using the method of reflection positivity and infrared bounds on a purely nematic interaction. This is achieved through the use of a type of matrix representation of the interaction making clear several identities that would not otherwise be noticed. Using the reflection positivity of the antiferromagnetic interaction one can then show that the result is maintained if we also include an antiferromagnetic interaction that is sufficiently small.
Kuświk, Piotr; Gastelois, Pedro Lana; Głowiński, Hubert; Przybylski, Marek; Kirschner, Jürgen
2016-10-26
The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy. PMID:27589202
Magnetic ordering in frustrated antiferromagnets on the pyrochlore lattice
NASA Astrophysics Data System (ADS)
Chern, Gia-Wei
Pyrochlore antiferromagnet is one of the most studied examples of strongly-interacting systems. The conflict between the lattice geometry and the local spin correlations favored by their interactions precludes the simple Neel ordering and creates an extensive degeneracy of the classical ground state. This, in turn, renders the magnet susceptible to nominally small perturbations such as quantum fluctuations, anisotropies, and dipolar interactions. Of particular interest is the classical Heisenberg spins on the pyrochlore lattice with exchange interactions restricted to the nearest neighbors. It has been demonstrated by analytical arguments and numerical simulations that the spin system remains disordered down to the lowest temperatures. In this thesis I study how magnetic ordering is induced by residual perturbations in such a system. Apart from the theoretical interest, the work presented in this thesis is mainly motivated by experimental observations of real materials. Three mechanisms of breaking the ground-state degeneracy are considered here: (1) order by distortion, (2) further-neighbor exchange interactions, and (3) the orbital degrees of freedom. In the first part, we present a theoretical model describing the lattice distortion and incommensurate magnetic order in the compound CdCr2O 4, which belongs to a class of chromium spinels exhibiting the magnetoelastic phase transitions. The magnetic frustration is relieved through the spin-driven Jahn-Teller effect involving a phonon doublet with odd parity. The distortion stabilizes a collinear magnetic order with the propagation wavevector q = 2pi(0, 0, 1). The crystal structure becomes chiral due to the lack of inversion symmetry. The handedness is transferred to the magnetic system by the relativistic spin-orbit coupling: the collinear state is twisted into a long spiral with the spins in the ac plane and q shifted to 2pi(0, delta, 1), consistent with the experiments. In the second part, we examine the effects
Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO
Guo, Jing; Simonson, J. W.; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian
2013-01-01
The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity. PMID:23989921
Electrically tunable transport in antiferromagnetic Sr2IrO4
NASA Astrophysics Data System (ADS)
Wang, Cheng; Seinige, Heidi; Cao, Gang; Zhou, Jian-Shi; Goodenough, John B.; Tsoi, Maxim
2015-03-01
Electronic transport in antiferromagnetic (AFM) Mott insulator Sr2IrO4 is studied under high electric fields. Our goal is to address the question of electronic conduction in nano-scale AFM spintronic applications where high biases and associated electric fields are routinely present. We use nano-scale contacts between a sharpened Cu tip and single crystal of Sr2IrO4 to achieve electric fields up to a few MV/m. When an electrical bias is applied to such a point contact, the electric potential drops essentially in a small contact region, thus leading to high electric fields and providing a means to probe electronic transport on a microscopic scale. Detailed measurements of point-contact current-voltage characteristics revealed that the contact resistance decreased significantly (50-70%) with an increasing dc bias. The observed bias dependence can be well fitted by an activation energy model that involves band structure modifications under strong electric fields. Our findings suggest a promising path towards band-gap engineering in 5d transition metal oxides, which may lead to appealing technical solutions in developing next generation's electronic devices. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, and by NSF Grants DMR-1207577, DMR-1265162 and DMR-1122603.
Temperature and bias dependence of anisotropic magnetoresistance in antiferromagnetic Sr2IrO4
NASA Astrophysics Data System (ADS)
Seinige, Heidi; Wang, Cheng; Cao, Gang; Zhou, Jian-Shi; Goodenough, John B.; Tsoi, Maxim
2015-03-01
We study anisotropic magnetoresistance (AMR) in antiferromagnetic (AFM) Mott insulator Sr2IrO4. Such AMR is a promising candidate for monitoring the magnetic order parameter in AFM spintronics. Here we present temperature- and electrical bias-dependent measurements of the point-contact AMR in single crystals of Sr2IrO4. The point-contact technique allows to probe very small volumes and, therefore, look for electronic transport in Sr2IrO4 on a microscopic scale. Point-contact measurements at liquid nitrogen temperature revealed a large negative magnetoresistance (MR) for magnetic fields applied within IrO2 a-b plane and electric currents flowing perpendicular to the plane. The observed MR decreases with increasing temperature and falls to zero at TNéel ~ 240 K. Interestingly, the temperature dependence of MR ratios differs qualitatively from that of the resistivity. The point-contact measurements also show a strong dependence of MR on the dc bias applied to the contact. The latter can be associated with correlations between electronic transport and magnetic order in Sr2IrO4. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, and by NSF Grants DMR-1207577, DMR-1265162 and DMR-1122603.
Magnetic Diffuse Scattering in the Frustrated Kagome Antiferromagnet YBaCo4O7
NASA Astrophysics Data System (ADS)
Manuel, Pascal; Chapon, Laurent; Radaelli, Paolo; Mitchell, John; Zheng, Hong
2008-03-01
Cobalt oxides of composition RBaCo4O7 (R=Y, Tb-Lu) crystallize with a lattice structure topologically related to that of the pyrochlore. Considering only the magnetic transition metal sublattice, R-114 appears as Kagome sheets linked by triangular layers and is therefore expected to provide a new materials class for exploring geometric magnetic frustration. We have recently shown that stoichiometric R-114 compound orders antiferromagnetically into a long-range ordered (LRO) structure with features common to the √3 *√3 negative chirality spin arrangements often found in Kagome net systems. In contrast, small excesses of O added to the system, as little as 0.1, destroys this LRO state. To explore the nature of the frustrated magnetism in this novel system, we have measured magnetic diffuse scattering on YBaCo4O7 and YBaCo4O7.1 single crystals at the ISIS facility. Large maps of reciprocal space in several planes have been recorded showing a very structured diffuse scattering. The data compared to models obtained by the Monte-Carlo method using the metropolis algorithm, reveal the exact nature of the disordered ground state in this new class of frustrated magnets.
Low temperature specific heat of frustrated antiferromagnet HoInCu4
NASA Astrophysics Data System (ADS)
Weickert, Franziska; Fritsch, Veronika; Bambaugh, Ryan; Sarrao, John; Thompson, Joe D.; Movshovich, Roman
2014-03-01
We present low temperature specific heat measurements of single crystal HoInCu4, down to 35 mK and in magnetic field up to 12 Tesla. Ho atoms are arranged in an FCC lattice of the edge-sharing tetrahedra, and undergo an antiferromagnetic ordering at TN = 0.76 K, with the frustration parameter f = -ΘCW /TN of 14.3. Magnetic AF order is suppressed in field H0 ~ 4 T. The low temperature Schottky anomaly due to Ho evolves smoothly as a function of field through H0 and TN. The peak value of the anomaly remains roughly constant from 0 T to 12 T. The temperature of the anomaly's peak remains constant at TSch ~ 170 mK for H
High-temperature antiferromagnetism in molecular semiconductor thin films and nanostructures.
Serri, Michele; Wu, Wei; Fleet, Luke R; Harrison, Nicholas M; Hirjibehedin, Cyrus F; Kay, Christopher W M; Fisher, Andrew J; Aeppli, Gabriel; Heutz, Sandrine
2014-01-01
The viability of dilute magnetic semiconductors in applications is linked to the strength of the magnetic couplings, and room temperature operation is still elusive in standard inorganic systems. Molecular semiconductors are emerging as an alternative due to their long spin-relaxation times and ease of processing, but, with the notable exception of vanadium-tetracyanoethylene, magnetic transition temperatures remain well below the boiling point of liquid nitrogen. Here we show that thin films and powders of the molecular semiconductor cobalt phthalocyanine exhibit strong antiferromagnetic coupling, with an exchange energy reaching 100 K. This interaction is up to two orders of magnitude larger than in related phthalocyanines and can be obtained on flexible plastic substrates, under conditions compatible with routine organic electronic device fabrication. Ab initio calculations show that coupling is achieved via superexchange between the singly occupied a1g () orbitals. By reaching the key milestone of magnetic coupling above 77 K, these results establish quantum spin chains as a potentially useable feature of molecular films. PMID:24445992
Kim, Jinsu; Lee, Kyujoon; Takabatake, Toshiro; Kim, Hanchul; Kim, Miyoung; Jung, Myung-Hwa
2015-01-01
There are many interests to achieve long-range magnetic order in topological insulators of Bi2Se3 or Bi2Te3 by doping magnetic transition metals such as Fe and Mn. The transition metals act as not only magnetic dopants but also electric dopants because they are usually divalent. However, if the doping elements are rare-earth metals such as Gd, which are trivalent, only magnetic moments can be introduced. We fabricated single crystals of Bi2-xGdxTe3 (0 ≤ × ≤ 0.2), in which we observed magnetic phase change from paramagnetic (PM) to antiferromagnetic (AFM) phase by increasing x. This PM-to-AFM phase transition agrees with the density functional theory calculations showing a weak and short-ranged Gd-Gd AFM coupling via the intervening Te ions. The critical point corresponding to the magnetic phase transition is x = 0.09, where large linear magnetoresistance and highly anisotropic Shubnikov-de Haas oscillations are observed. These results are discussed with two-dimensional properties of topological surface state electrons. PMID:25974047
Intersite coupling effects in a Kondo lattice near an antiferromagnetic instability
NASA Astrophysics Data System (ADS)
Nakatsuji, Satoru
2003-03-01
Critcal fluctuations due to the proximity to a magnetic instability are believed to be the origin of a variety of non-Fermi-liquid behavior and unconventional superconductivity observed in heavy fermion systems. Near the quantum critical points, prominent effect of intersite coupling in Kondo lattice systems may appear. With this in mind, we studied the La dilution effects in CeCoIn_5, a heavy fermion superconductor located near an antiferromangetic instability [1,2]. The scaling laws found for the magnetic susceptibility and the specific heat reveal two well-separated energy scales, corresponding to the single impurity Kondo temperature TK and an intersite spin-liquid temperature T. The Ce-dilute alloy has the expected Fermi liquid ground state, while the specific heat and resistivity in the dense Kondo regime exhibit non-Fermi-liquid behavior, which scales with T^*. These observations indicate that the screening of the magnetic moments in the lattice involves antiferromagnetic intersite correlations with a larger energy scale in comparison with the Kondo impurity case. This work was supported by NSF DMR-9527035. [1] C. Petrovic ´it et al., J.Phys.: Condens. Matter ´bf 13, L337 (2001). [2] S. Nakatsuji ´it et al., Phys. Rev. Lett. 89, 106402 (2002) ^´ast Work done in collaboration with Zachary Fisk, Sunmog Yeo, Luis Balicas, Pedro Schlottmann, Pagliuso G. Pagliuso, Nelson O. Moreno, John L. Sarrao, and Joe D. Thompson
NASA Astrophysics Data System (ADS)
Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; Fuente, César De La; Arnaudas, José Ignacio
2015-09-01
High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.
High-temperature antiferromagnetism in molecular semiconductor thin films and nanostructures
Serri, Michele; Wu, Wei; Fleet, Luke R.; Harrison, Nicholas M.; Hirjibehedin, Cyrus F.; Kay, Christopher W.M.; Fisher, Andrew J.; Aeppli, Gabriel; Heutz, Sandrine
2014-01-01
The viability of dilute magnetic semiconductors in applications is linked to the strength of the magnetic couplings, and room temperature operation is still elusive in standard inorganic systems. Molecular semiconductors are emerging as an alternative due to their long spin-relaxation times and ease of processing, but, with the notable exception of vanadium-tetracyanoethylene, magnetic transition temperatures remain well below the boiling point of liquid nitrogen. Here we show that thin films and powders of the molecular semiconductor cobalt phthalocyanine exhibit strong antiferromagnetic coupling, with an exchange energy reaching 100 K. This interaction is up to two orders of magnitude larger than in related phthalocyanines and can be obtained on flexible plastic substrates, under conditions compatible with routine organic electronic device fabrication. Ab initio calculations show that coupling is achieved via superexchange between the singly occupied a1g () orbitals. By reaching the key milestone of magnetic coupling above 77 K, these results establish quantum spin chains as a potentially useable feature of molecular films. PMID:24445992
Field-induced spin density wave and spiral phases in a layered antiferromagnet
Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; Grenier, B.; Ressouche, E.; Samulon, Eric C.; Fisher, Ian R.
2015-07-28
Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba_{3}Mn_{2}O_{8} using single crystal neutron diffraction. We find that for magnetic fields between μ_{0}H=8.80 T and 10.56 T applied along the $1\\bar{1}0$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ_{0}H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.
Suppression of antiferromagnetism by pressure in CaCo2P2
NASA Astrophysics Data System (ADS)
Baumbach, R. E.; Sidorov, V. A.; Lu, Xin; Ghimire, N. J.; Ronning, F.; Scott, B. L.; Williams, D. J.; Bauer, E. D.; Thompson, J. D.
2014-03-01
We report magnetization M, heat capacity C, and electrical resistivity ρ for single crystals of the itinerant electron antiferromagnet CaCo2P2 (TN ≈ 110 K). Measurements at ambient pressure reveal rich magnetic behavior, where ferromagnetic correlations are present in the paramagnetic state and a subsequent feature is seen at T1 ≈ 22 K within the ordered state. Heat-capacity measurements additionally reveal moderately enhanced electronic correlations, as evidenced by the electronic coefficient of the specific heat γ = 23 mJ/mol·K2, which is large by comparison to closely related 122 analogs and the value predicted by electronic structure calculations. Upon the application of pressure, TN is suppressed toward zero. For P ≥ 0.89 GPa, another phase transition appears at T2 < TN which is also suppressed by P. At Pc ≈ 1.4-1.5 GPa, TN and T2 drop abruptly to zero at a putative quantum phase transition. For P > Pc, a broad shoulder in ρ (T) appears at T*, which moves to higher T and broadens with increasing P. We discuss possible scenarios to understand the phase diagram and compare to other compounds which show similar P-driven behavior.
Field-induced spin density wave and spiral phases in a layered antiferromagnet
Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; Grenier, B.; Ressouche, E.; Samulon, Eric C.; Fisher, Ian R.
2015-07-28
Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba3Mn2O8 using single crystal neutron diffraction. We find that for magnetic fields between μ0H=8.80 T and 10.56 T applied along themore » $$1\\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.« less
Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; Fuente, César de la; Arnaudas, José Ignacio
2015-01-01
High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417
Kim, Jinsu; Lee, Kyujoon; Takabatake, Toshiro; Kim, Hanchul; Kim, Miyoung; Jung, Myung-Hwa
2015-01-01
There are many interests to achieve long-range magnetic order in topological insulators of Bi2Se3 or Bi2Te3 by doping magnetic transition metals such as Fe and Mn. The transition metals act as not only magnetic dopants but also electric dopants because they are usually divalent. However, if the doping elements are rare-earth metals such as Gd, which are trivalent, only magnetic moments can be introduced. We fabricated single crystals of Bi2-xGdxTe3 (0 ≤ × ≤ 0.2), in which we observed magnetic phase change from paramagnetic (PM) to antiferromagnetic (AFM) phase by increasing x. This PM-to-AFM phase transition agrees with the density functional theory calculations showing a weak and short-ranged Gd-Gd AFM coupling via the intervening Te ions. The critical point corresponding to the magnetic phase transition is x = 0.09, where large linear magnetoresistance and highly anisotropic Shubnikov-de Haas oscillations are observed. These results are discussed with two-dimensional properties of topological surface state electrons. PMID:25974047
Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio
2015-01-01
High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417
YbNi Si3 : An antiferromagnetic Kondo lattice with strong exchange interaction
NASA Astrophysics Data System (ADS)
Avila, M. A.; Sera, M.; Takabatake, T.
2004-09-01
We report on the structural, thermodynamic, and transport properties of high quality single crystals of YbNiSi3 grown by the flux method. This compound crystallizes in the SmNiGe3 layered structure type of the Cmmm space group. The general physical behavior is that of a Kondo lattice showing an antiferromagnetic ground state below TN=5.1K . This is among the highest ordering temperatures for a Yb-based intermetallic, indicating strong exchange interaction between the Yb ions, which are in or very close to +3 valency based on the effective moment of 4.45μB/f.u . The compound has moderately heavy-electron behavior with a Sommerfeld coefficient of 190mJ/molK2 . Resistivity is highly anisotropic and for I⊥b exhibits the signature logarithmic increase below a local minimum, followed by a sharp decrease in the coherent/magnetically ordered state, resulting in a residual resistivity of 1.5μΩcm and a residual resistivity ratio of 40. Fermi-liquid behavior consistent with a ground-state doublet is clearly observed below 1K .
Heat switch effect in an antiferromagnetic insulator Co3V2O8
NASA Astrophysics Data System (ADS)
Zhao, X.; Wu, J. C.; Zhao, Z. Y.; He, Z. Z.; Song, J. D.; Zhao, J. Y.; Liu, X. G.; Sun, X. F.; Li, X. G.
2016-06-01
We report a heat switch effect in single crystals of an antiferromagnet Co3V2O8, that is, the thermal conductivity (κ) can be changed with magnetic field in an extremely large scale. Due to successive magnetic phase transitions at 12-6 K, the zero-field κ(T ) displays a deep minimum at 6.7 K and rather small magnitude at low temperatures. Both the temperature and field dependencies of κ demonstrate that the phonons are strongly scattered at the regime of magnetic phase transitions. Magnetic field can suppress magnetic scattering effect and significantly recover the phonon thermal conductivity. In particular, a 14 T field along the a axis increases the κ at 7.5 K up to 100 times. For H ∥c , the magnitude of κ can be suppressed down to ˜8% at some field-induced transition and can be enhanced up to 20 times at 14 T. The present results demonstrate that it is possible to design a kind of heat switch in the family of magnetic materials.
Direct observation of imprinted antiferromagnetic vortex state in CoO/Fe/Ag(001) disks
Wu, J.; Carlton, D.; Park, J. S.; Meng, Y.; Arenholz, E.; Doran, A.; Young, A.T.; Scholl, A.; Hwang, C.; Zhao, H. W.; Bokor, J.; Qiu, Z. Q.
2010-12-21
In magnetic thin films, a magnetic vortex is a state in which the magnetization vector curls around the center of a confined structure. A vortex state in a thin film disk, for example, is a topological object characterized by the vortex polarity and the winding number. In ferromagnetic (FM) disks, these parameters govern many fundamental properties of the vortex such as its gyroscopic rotation, polarity reversal, core motion, and vortex pair excitation. However, in antiferromagnetic (AFM) disks, though there has been indirect evidence of the vortex state through observations of the induced FM-ordered spins in the AFM disk, they have never been observed directly in experiment. By fabricating single crystalline NiO/Fe/Ag(001) and CoO/Fe/Ag(001) disks and using X-ray Magnetic Linear Dichroism (XMLD), we show direct observation of the vortex state in an AFM disk of AFM/FM bilayer system. We observe that there are two types of AFM vortices, one of which has no analog in FM structures. Finally, we show that a frozen AFM vortex can bias a FM vortex at low temperature.
Detection of antiferromagnetic order by cooling atoms in an optical lattice
NASA Astrophysics Data System (ADS)
Yang, Tsung-Lin; Teles, Rafael; Hazzard, Kaden; Hulet, Randall; Rice University Collaboration
2016-05-01
We have realized the Fermi-Hubbard model with fermionic 6 Li atoms in a three-dimensional compensated optical lattice. The compensated optical lattice has provided low enough temperatures to produce short-range antiferromagnetic (AF) spin correlations, which we detect via Bragg scattering of light. Previously, we reached temperatures down to 1.4 times that of the AFM phase transition, more than a factor of 2 below temperatures obtained previously in 3D optical lattices with fermions. In order to further reduce the entropy in the compensated lattice, we implement an entropy conduit - which is a single blue detuned laser beam with a waist size smaller than the overall atomic sample size. This repulsive narrow potential provides a conductive metallic path between the low entropy core and the edges of the atomic sample where atoms may be evaporated. In addition, the entropy conduit may store entropy, thus further lowering the entropy in the core. We will report on the status of these efforts to further cool atoms in the optical lattice. Work supported by ARO MURI Grant, NSF and The Welch Foundation.
Mechanism of spin current transfer through antiferromagnetic dielectrics
NASA Astrophysics Data System (ADS)
Tyberkevych, Vasyl
The mechanisms of spin current (SC) transfer are well-studied in both metallic systems, where SC is carried mostly by spin-polarized electrons, and in ferromagnetic (FM) dielectrics, where propagating spin waves (magnons) are responsible for the spin transfer. The possibility of SC transfer through antiferromagnetic dielectrics (AFMD) is much less investigated, although recent experimental studies by H. Wang et al. [H. Wang et al., Phys. Rev. Lett. 113, 097202 (2014)] demonstrated extraordinary high efficiency of SC transfer in tri-layer FM-AFMD-Platinum (YIG-NiO-Pt) systems measured by the inverse spin Hall effect (ISHE). Perhaps the most unexpected result of these studies was that, with the increase of the thickness of the AFMD layer, the ISHE voltage, first, increased, and, then, exponentially decayed with the characteristic decay length of λ ~ 10 nm. Moreover, the excitation frequency, equal to the ferromagnetic resonance (FMR) frequency of the YIG layer, was rather low compared to the frequencies of the antiferromagnetic resonance in the AFMD, which rules out the eigenmodes of the AFMD layer as potential carriers of the spin current. Here we propose a possible mechanism of SC transfer through the AFMD with a biaxial anisotropy, which explains all previous experimental findings and opens a new way of manipulating spin currents using anisotropic AFMD materials. We show, that spin current can be carried by evanescent AFMD modes non-resonantly excited at the FM-AFMD interface. The decay length of the evanescent modes is defined by the AFMD anisotropy and determines the SC penetration depth into the AFMD. Furthermore, the anisotropy of the AFMD leads to the coupling between the spin subsystem and the crystal lattice of the AFMD, which makes possible exchange of angular momentum between these subsystems. We demonstrate that, under certain realistic conditions, the angular momentum flows from the lattice to the spin subsystem, in which case the AFMD layer acts as a
A nonmagnetic impurity in a 2D quantum critical antiferromagnet
NASA Astrophysics Data System (ADS)
Troyer, Matthias
2003-03-01
We compute the properties of a mobile hole and a static impurity injected into a two-dimensional antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point. A static S=1/2 impurity doped into a quantum-disordered spin gap system induces a local moment with spin S=1/2 and a corresponding Curie-like impurity susceptibility, while the same impurity in a Néel ordered state only gives a finite impurity susceptibility. For the quantum critical system however an interesting field-theoretical prediction has been made that there the impurity spin susceptibility still has a Curie-like divergence, but with a universal effective spin that is neither an integer nor a half-odd integer [1]. In large-scale quantum Monte Carlo (QMC) simulations using the loop algorithm we calculate the impurity susceptibility and find that, unfortunately, this effect is not observable since the renormalization of the effective spin away from S=1/2 is minimal. Other predictions of the field theory, such as a new critical exponent η' describing the time-dependent impurity spin correlations can however be confirmed [2]. Next we compute the spectral function of a hole injected into a 2D antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point [3]. We show that, near van Hove singularities, the problem maps onto that of a static vacancy. This allows the calculation of the spectral function in a QMC simulation without encountering the negative sign problem. We find a vanishing quasiparticle residue at the critical point, a new exponent η_h0.080.04 describing the frequency dependence of the spectral function G_h(ω)(ɛ_0-ω)-1+ηh and discuss possible relevance to photoemission spectra of cuprate superconductors near the antinodal points. ^1 S. Sachdev, C. Buragohain and M. Vojta, Science 286, 2479 (1999). ^2 M. Troyer, in Prog. Theor. Phys. Suppl. 145 (2002); M. Körner and M. Troyer, ibid. ^3 S. Sachdev, M. Troyer, and M. Vojta, Phys. Rev
NASA Astrophysics Data System (ADS)
Fukushima, Akio; Yakushiji, Kay; Konoto, Makoto; Kubota, Hitoshi; Imamura, Hiroshi; Yuasa, Shinji
2016-02-01
We newly developed a magnetic memory cell having multi-bit function. The memory cell composed of a perpendicularly magnetized magnetic tunnel junction (MB-pMTJ) and a synthetic antiferromagnetic reference layer. The multi-bit function is realized by combining the freedom of states of the magnetic free layer and that in the antiferromagnetically coupled reference layer. The structure of the reference layer is (FeB/Ta/[Co/Pt]3)/Ru/([Co/Pt]6); the top and the bottom layers are coupled through Ru layer where the reference layer has two degrees of freedom of a head-to-head and a bottom-to-bottom magnetic configuration. A four-state memory cell is realized by combination of both degrees of freedom. The states in the reference layer however is hardly detected by the total resistance of MB-pMTJ, because the magnetoresistance effect in the reference layer is negligibly small. That implies that the resistance values for the different states in the reference layer are degenerated. On the other hand, the two different states in the reference layer bring different stray fields to the free layer, which generate two different minor loop with different switching fields. Therefore, the magnetic states in the reference layer can be differentiated by the two-step reading, before and after applying the appropriately pulsed magnetic field which can identify the initial state in the reference layer. This method is similar to distinguishing different magnetic states in an in-plane magnetized spin-valve element. We demonstrated that four different states in the MB-pMTJ can be distinguished by the two-step read-out. The important feature of the two-step reading is a practically large operation margins (large resistance change in reading) which is equal to that of a single MTJ. Even though the two-step reading is a destructive method by which 50% of the magnetic state is changed, this MB-pMTJ is promising for high density non-volatile memory cell with a minor cost of operation speed.
Antiferromagnetic FeMn alloys electrodeposited from chloride-based electrolytes.
Ruiz-Gómez, Sandra; Ranchal, Rocío; Abuín, Manuel; Aragón, Ana María; Velasco, Víctor; Marín, Pilar; Mascaraque, Arantzazu; Pérez, Lucas
2016-03-01
The capability of synthesizing Fe-based antiferromagnetic metal alloys would fuel the use of electrodeposition in the design of new magnetic devices such as high-aspect-ratio spin valves or new nanostructured hard magnetic composites. Here we report the synthesis of high quality antiferromagnetic FeMn alloys electrodeposited from chloride-based electrolytes. We have found that in order to grow homogeneous FeMn films it is necessary to incorporate a large concentration of NH4Cl as an additive in the electrolyte. The study of the structure and magnetic properties shows that films with composition close to Fe50Mn50 are homogeneous antiferromagnetic alloys. We have established a parameter window for the synthesis of FeMn alloys that show antiferromagnetism at room temperature. PMID:26925594
Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs
NASA Astrophysics Data System (ADS)
Wadley, P.; Novák, V.; Campion, R. P.; Rinaldi, C.; Martí, X.; Reichlová, H.; Železný, J.; Gazquez, J.; Roldan, M. A.; Varela, M.; Khalyavin, D.; Langridge, S.; Kriegner, D.; Máca, F.; Mašek, J.; Bertacco, R.; Holý, V.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Foxon, C. T.; Wunderlich, J.; Jungwirth, T.
2013-08-01
Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.
NASA Astrophysics Data System (ADS)
Zhang, X. K.; Tang, S. L.; Xu, L. Q.; Yuan, J. J.; Yu, H. J.; Zhu, X. R.; Xie, Y. M.
2014-07-01
Spin glass behavior and exchange bias effect have been observed in antiferromagnetic SrMn3O6-x nanoribbons synthesized via a self-sacrificing template process. The magnetic field dependence of thermoremanent magnetization and isothermal remanent magnetization shows that the sample is good correspondence to spin glass and diluted antiferromagnetic system for the applied field H < 2 T and H > 2 T, respectively. By detailed analysis of training effect using Binek's model, we argue that the observed exchange bias effect in SrMn3O6-x nanoribbons arises entirely from an interface exchange coupling between the antiferromagnetic core and spin glass shell. The present study is useful for understanding the nature of shell layer and the origin of exchange bias effect in other antiferromagnetic nanosystems as well.
Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs.
Wadley, P; Novák, V; Campion, R P; Rinaldi, C; Martí, X; Reichlová, H; Zelezný, J; Gazquez, J; Roldan, M A; Varela, M; Khalyavin, D; Langridge, S; Kriegner, D; Máca, F; Mašek, J; Bertacco, R; Holý, V; Rushforth, A W; Edmonds, K W; Gallagher, B L; Foxon, C T; Wunderlich, J; Jungwirth, T
2013-01-01
Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics. PMID:23959149
Zhang, X. K. Yuan, J. J.; Yu, H. J.; Zhu, X. R.; Xie, Y. M.; Tang, S. L.; Xu, L. Q.
2014-07-14
Spin glass behavior and exchange bias effect have been observed in antiferromagnetic SrMn{sub 3}O{sub 6−x} nanoribbons synthesized via a self-sacrificing template process. The magnetic field dependence of thermoremanent magnetization and isothermal remanent magnetization shows that the sample is good correspondence to spin glass and diluted antiferromagnetic system for the applied field H < 2 T and H > 2 T, respectively. By detailed analysis of training effect using Binek's model, we argue that the observed exchange bias effect in SrMn{sub 3}O{sub 6−x} nanoribbons arises entirely from an interface exchange coupling between the antiferromagnetic core and spin glass shell. The present study is useful for understanding the nature of shell layer and the origin of exchange bias effect in other antiferromagnetic nanosystems as well.
Thickness-dependent cooperative aging in polycrystalline films of antiferromagnet CoO
NASA Astrophysics Data System (ADS)
Ma, Tianyu; Cheng, Xiang; Boettcher, Stefan; Urazhdin, Sergei; Novozhilova, Lydia
2016-07-01
We demonstrate that thin polycrystalline films of antiferromagnet CoO, in bilayers with ferromagnetic Permalloy, exhibit slow power-law aging of their magnetization state. The aging characteristics are remarkably similar to those previously observed in thin epitaxial Fe50Mn50 films, indicating that these behaviors are likely generic to ferromagnet/antiferromagnet bilayers. In very thin films, aging is observed over a wide temperature range. In thicker CoO, aging effects become reduced at low temperatures. Aging entirely disappears for large CoO thicknesses. We also investigate the dependence of aging characteristics on temperature and magnetic history. Analysis shows that the observed behaviors are inconsistent with the Neel-Arrhenius model of thermal activation, and are instead indicative of cooperative aging of the antiferromagnet. Our results provide new insights into the mechanisms controlling the stationary states and dynamics of ferromagnet/antiferromagnet bilayers, and potentially other frustrated magnetic systems.
Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains
Brandao, Paula; Reis, Mario S.; Santos, Antonio M. dos
2013-02-15
Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO{sub 4}{center_dot}H{sub 2}O (1) and BaCu{sub 2}Ge{sub 3}O{sub 9}{center_dot}H{sub 2}O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2{sub 1}/c with a=5.1320(2) Angstrom-Sign , b=16.1637(5) Angstrom-Sign , c=5.4818(2) Angstrom-Sign , {beta}=102.609(2) Degree-Sign , V=443.76(3) Angstrom-Sign {sup 3} and Z=4. This copper germanate contains layers of composition [CuGeO{sub 4}]{sub {infinity}}{sup 2-} comprising CuO{sub 4} square planes and GeO{sub 4} tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) Angstrom-Sign , b=10.8606(9) Angstrom-Sign , c=13.5409(8) Angstrom-Sign , V=817.56(9) Angstrom-Sign {sup 3} and Z=4. This structure contains GeO{sub 6} and CuO{sub 6} octahedra as well as GeO{sub 4} tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the {chi}T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data. - Graphical abstract: Copper chains present in CaCuGeO{sub 4}{center_dot}H{sub 2}O and BaCu{sub 2}Ge{sub 3}O{sub 9}{center
Spin-transfer torques in antiferromagnetic textures: Efficiency and quantification method
NASA Astrophysics Data System (ADS)
Yamane, Yuta; Ieda, Jun'ichi; Sinova, Jairo
2016-08-01
We formulate a theory of spin-transfer torques in textured antiferromagnets, which covers the small to large limits of the exchange coupling energy relative to the kinetic energy of the intersublattice electron dynamics. Our theory suggests a natural definition of the efficiency of spin-transfer torques in antiferromagnets in terms of well-defined material parameters, revealing that the charge current couples predominantly to the antiferromagnetic order parameter and the sublattice-canting moment in, respectively, the limits of large and small exchange coupling. The effects can be quantified by analyzing the antiferromagnetic spin-wave dispersions in the presence of charge current: in the limit of large exchange coupling the spin-wave Doppler shift always occurs, whereas, in the opposite limit, the only spin-wave modes to react to the charge current are ones that carry a pronounced sublattice-canting moment. The findings offer a framework for understanding and designing spin-transfer torques in antiferromagnets belonging to different classes of sublattice structures such as, e.g., bipartite and layered antiferromagnets.
No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor.
Bozovic, I; Logvenov, G; Verhoeven, M A J; Caputo, P; Goldobin, E; Geballe, T H
2003-04-24
There is still no universally accepted theory of high-temperature superconductivity. Most models assume that doping creates 'holes' in the valence band of an insulating, antiferromagnetic 'parent' compound, and that antiferromagnetism and high-temperature superconductivity are intimately related. If their respective energies are nearly equal, strong antiferromagnetic fluctuations (temporally and spatially restricted antiferromagnetic domains) would be expected in the superconductive phase, and superconducting fluctuations would be expected in the antiferromagnetic phase; the two states should 'mix' over an extended length scale. Here we report that one-unit-cell-thick antiferromagnetic La2CuO4 barrier layers remain highly insulating and completely block a supercurrent; the characteristic decay length is 1 A, indicating that the two phases do not mix. We likewise found that isolated one-unit-cell-thick layers of La1.85Sr0.15CuO4 remain superconducting. The latter further implies that, on doping, new electronic states are created near the middle of the bandgap. These two findings are in conflict with most proposed models, with a few notable exceptions that include postulated spin-charge separation. PMID:12712200
All-Electric Access to the Magnetic-Field-Invariant Magnetization of Antiferromagnets
NASA Astrophysics Data System (ADS)
Kosub, Tobias; Kopte, Martin; Radu, Florin; Schmidt, Oliver G.; Makarov, Denys
2015-08-01
The rich physics of thin film antiferromagnets can be harnessed for prospective spintronic devices given that all-electric assessment of the tiny uncompensated magnetic moment is achieved. On the example of magnetoelectric antiferromagnetic Cr2O3 , we prove that spinning-current anomalous Hall magnetometry serves as an all-electric method to probe the field-invariant uncompensated magnetization of antiferromagnets. We obtain direct access to the surface magnetization of magnetoelectric antiferromagnets providing a read-out method for ferromagnet-free magnetoelectric memory. Owing to the great sensitivity, the technique bears a strong potential to address the physics of antiferromagnets. Exemplarily, we apply the method to access the criticality of the magnetic transition for an antiferromagnetic thin film. We reveal the presence of field-invariant uncompensated magnetization even in 6-nm-thin IrMn films and clearly distinguish two contributions, of which only the minor one is involved in interfacial magnetic coupling. This approach is likely to advance the fundamental understanding of the anomalous Hall and magnetic proximity effects.
Even-odd effect in short antiferromagnetic Heisenberg chains
NASA Astrophysics Data System (ADS)
Machens, A.; Konstantinidis, N. P.; Waldmann, O.; Schneider, I.; Eggert, S.
2013-04-01
Motivated by recent experiments on chemically synthesized magnetic molecular chains, we investigate the lowest-lying energy band of short spin-s antiferromagnetic Heisenberg chains focusing on effects of open boundaries. By numerical diagonalization we find that the Landé pattern in the energy levels, i.e., E(S)∝S(S+1) for total spin S, known from, e.g., ring-shaped nanomagnets, can be recovered in odd-membered chains, while strong deviations are found for the lowest excitations in chains with an even number of sites. This particular even-odd effect in the short Heisenberg chains cannot be explained by simple effective Hamiltonians and symmetry arguments. We go beyond these approaches, taking into account quantum fluctuations by means of a path-integral description and the valence bond basis, but the resulting quantum edge-spin picture which is known to work well for long chains does not agree with the numerical results for short chains and cannot explain the even-odd effect. Instead, by analyzing also the classical chain model, we show that spatial fluctuations dominate the physical behavior in short chains, with length N≲eπs, for any spin s. Such short chains are found to display a unique behavior, which is not related to the thermodynamic limit and cannot be described well by theories developed for this regime.
Ferromagnetic and antiferromagnetic order in bacterial vortex lattices
NASA Astrophysics Data System (ADS)
Wioland, Hugo; Woodhouse, Francis G.; Dunkel, Jörn; Goldstein, Raymond E.
2016-04-01
Despite their inherently non-equilibrium nature, living systems can self-organize in highly ordered collective states that share striking similarities with the thermodynamic equilibrium phases of conventional condensed-matter and fluid systems. Examples range from the liquid-crystal-like arrangements of bacterial colonies, microbial suspensions and tissues to the coherent macro-scale dynamics in schools of fish and flocks of birds. Yet, the generic mathematical principles that govern the emergence of structure in such artificial and biological systems are elusive. It is not clear when, or even whether, well-established theoretical concepts describing universal thermostatistics of equilibrium systems can capture and classify ordered states of living matter. Here, we connect these two previously disparate regimes: through microfluidic experiments and mathematical modelling, we demonstrate that lattices of hydrodynamically coupled bacterial vortices can spontaneously organize into distinct patterns characterized by ferro- and antiferromagnetic order. The coupling between adjacent vortices can be controlled by tuning the inter-cavity gap widths. The emergence of opposing order regimes is tightly linked to the existence of geometry-induced edge currents, reminiscent of those in quantum systems. Our experimental observations can be rationalized in terms of a generic lattice field theory, suggesting that bacterial spin networks belong to the same universality class as a wide range of equilibrium systems.
Antiferromagnetic topological superconductor and electrically controllable Majorana fermions.
Ezawa, Motohiko
2015-02-01
We investigate the realization of a topological superconductor in a generic bucked honeycomb system equipped with four types of mass-generating terms, where the superconductor gap is introduced by attaching the honeycomb system to an s-wave superconductor. Constructing the topological phase diagram, we show that Majorana modes are formed in the phase boundary. In particular, we analyze the honeycomb system with antiferromagnetic order in the presence of perpendicular electric field E(z). It becomes topological for |E(z)|>E(z)(cr) and trivial for |E(z)|
Ultrafast band engineering and transient spin currents in antiferromagnetic oxides
Gu, Mingqiang; Rondinelli, James M.
2016-04-29
Here, we report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed inmore » classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.« less
Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides
Gu, Mingqiang; Rondinelli, James M.
2016-01-01
We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices. PMID:27126354
Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks
NASA Astrophysics Data System (ADS)
Zhang, Xichao; Ezawa, Motohiko; Zhou, Yan
2016-08-01
A magnetic skyrmion is a topological magnetization structure with a nanometric size and a well-defined swirling spin distribution, which is anticipated to be an essential building block for novel skyrmion-based device applications. We study the motion of magnetic skyrmions in multilayer synthetic antiferromagnetic (SAF) racetracks as well as in conventional monolayer ferromagnetic (FM) racetracks at finite temperature. There is an odd-even effect of the constituent FM layer number on the skyrmion Hall effect (SkHE). Namely, due to the suppression of the SkHE, the magnetic skyrmion has no transverse motion in multilayer SAF racetracks packed with even FM layers. It is shown that a moving magnetic skyrmion is stable even at room temperature (T =300 K) in a bilayer SAF racetrack but it is destructed at T =100 K in a monolayer FM racetrack. Our results indicate that the SAF structures are reliable and promising candidates for future applications in skyrmion electronics and skyrmion spintronics.
Itinerant and localized magnetization dynamics in antiferromagnetic Ho
Rettig, L.; Dornes, C.; Thielemann-Kuhn, N.; Pontius, N.; Zabel, H.; Schlagel, D. L.; Lograsso, T. A.; Chollet, M.; Robert, A.; Sikorski, M.; et al
2016-06-21
Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flipmore » process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.« less
Enhanced Magnetic Properties in Antiferromagnetic-Core/Ferrimagnetic-Shell Nanoparticles
Vasilakaki, Marianna; Trohidou, Kalliopi N.; Nogués, Josep
2015-01-01
Bi-magnetic core/shell nanoparticles are gaining increasing interest due to their foreseen applications. Inverse antiferromagnetic(AFM)/ferrimagnetic(FiM) core/shell nanoparticles are particularly appealing since they may overcome some of the limitations of conventional FiM/AFM systems. However, virtually no simulations exist on this type of morphology. Here we present systematic Metropolis Monte Carlo simulations of the exchange bias properties of such nanoparticles. The coercivity, HC, and loop shift, Hex, present a non-monotonic dependence with the core diameter and the shell thickness, in excellent agreement with the available experimental data. Additionally, we demonstrate novel unconventional behavior in FiM/AFM particles. Namely, while HC and Hex decrease upon increasing FiM thickness for small AFM cores (as expected), they show the opposite trend for large cores. This presents a counterintuitive FiM size dependence for large AFM cores that is attributed to the competition between core and shell contributions, which expands over a wider range of core diameters leading to non-vanishing Hex even for very large cores. Moreover, the results also hint different possible ways to enhance the experimental performance of inverse core/shell nanoparticles for diverse applications. PMID:25872473
Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound
Ghosh, Krishanu; Mazumdar, Chandan; Ranganathan, R.; Mukherjee, S.
2015-01-01
The rare coexistence of a Griffiths phase (GP) and a geometrically frustrated antiferromagnetism in the non-stoichiometric intermetallic compound GdFe0.17Sn2 (the paramagnetic Weiss temperature θp ~ −59 K) is reported in this work. The compound forms in the Cmcm space group with large structural anisotropy (b/c ~ 4). Interestingly, all the atoms in the unit cell possess the same point group symmetry (Wycoff position 4c), which is rather rare. The frustration parameter, f = |θp|/TN has been established as 3.6, with the Néel temperature TN and Griffiths temperature TG being 16.5 and 32 K, respectively. The TG has been determined from the heat capacity measurement and also from the magnetocaloric effect (MCE). It is also shown that substantial difference in GP region may exist between zero field and field cooled measurements - a fact hitherto not emphasized so far. PMID:26515256
Distinct magnetic phase transition at the surface of an antiferromagnet.
Langridge, S; Watson, G M; Gibbs, D; Betouras, J J; Gidopoulos, N I; Pollmann, F; Long, M W; Vettier, C; Lander, G H
2014-04-25
In the majority of magnetic systems the surface is required to order at the same temperature as the bulk. In the present Letter, we report a distinct and unexpected surface magnetic phase transition at a lower temperature than the Néel temperature. Employing grazing incidence x-ray resonant magnetic scattering, we have observed the near-surface behavior of uranium dioxide. UO2 is a noncollinear, triple-q, antiferromagnet with the U ions on a face-centered cubic lattice. Theoretical investigations establish that at the surface the energy increase-due to the lost bonds-is reduced when the spins near the surface rotate, gradually losing their component normal to the surface. At the surface the lowest-energy spin configuration has a double-q (planar) structure. With increasing temperature, thermal fluctuations saturate the in-plane crystal field anisotropy at the surface, leading to soft excitations that have ferromagnetic XY character and are decoupled from the bulk. The structure factor of a finite two-dimensional XY model fits the experimental data well for several orders of magnitude of the scattered intensity. Our results support a distinct magnetic transition at the surface in the Kosterlitz-Thouless universality class. PMID:24815664
Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets
NASA Astrophysics Data System (ADS)
Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.
2016-05-01
Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.
Jamming Behavior of Domain Walls in an Antiferromagnetic Film
NASA Astrophysics Data System (ADS)
Sinha, Sunil
2014-03-01
Over the last few years, attempts have been made to unify many aspects of the freezing behavior of glasses, granular materials, gels, supercooled liquids, etc. into a general conceptual framework of what is called jamming behavior. This occurs when particles reach packing densities high enough that their motions become highly restricted. A general phase diagram has been proposed onto which various materials systems, e.g glasses or granular materials, can be mapped. We will discuss some recent applications of resonant and non-resonant soft X-ray Grazing Incidence Scattering to mesoscopic science, for example the study of magnetic domain wall fluctuations in thin films. For these studies, we use resonant magnetic x-ray scattering with a coherent photon beam and the technique of X-ray Photon Correlation Spectroscopy. find that at the ordering temperature the domains of an antiferromagnetic system, namely Dysprosium metal, behave very much also like a jammed system and their associated fluctuations exhibit behavior which exhibit some of the universal characteristics of jammed systems, such as non-exponential relaxation and Vogel-Fulcher type freezing. Work supported by Basic Energy Sciences, U.S. Dept. of Energy under Grant Number: DE-SC0003678.
Electrodynamics of the antiferromagnetic phase in URu2Si2
NASA Astrophysics Data System (ADS)
Hall, Jesse S.; Movassagh, M. Rahimi; Wilson, M. N.; Luke, G. M.; Kanchanavatee, N.; Huang, K.; Janoschek, M.; Maple, M. B.; Timusk, T.
2015-11-01
We present data on the optical conductivity of URu2 -x(Fe,Os ) xSi2 . While the parent material URu2Si2 enters the enigmatic hidden order (HO) phase below 17.5 K, an antiferromagnetic (AFM) phase is induced by the substitution of Fe or Os onto the Ru sites. We find that both the HO and the AFM phases exhibit an identical gap structure that is characterized by a loss of conductivity below the gap energy with spectral weight transferred to a narrow frequency region just above the gap, the typical optical signature of a density wave. The AFM phase is marked by strong increases in both transition temperature and the energy of the gap associated with the transition. In the normal phase just above the transition the optical scattering rate varies as ω2. We find that in both the HO and the AFM phases, our data are consistent with elastic resonant scattering of a Fermi liquid. This indicates that the appearance of a coherent state is a necessary condition for either ordered phase to emerge. Our measurements favor models in which the HO and the AFM phases are driven by the common physics of a nesting-induced density wave gap.
Critical frontier of the triangular Ising antiferromagnet in a field
NASA Astrophysics Data System (ADS)
Qian, Xiaofeng; Wegewijs, Maarten; Blöte, Henk W.
2004-03-01
We study the critical line of the triangular Ising antiferromagnet in an external magnetic field by means of a finite-size analysis of results obtained by transfer-matrix and Monte Carlo techniques. We compare the shape of the critical line with predictions of two different theoretical scenarios. Both scenarios, while plausible, involve assumptions. The first scenario is based on the generalization of the model to a vertex model, and the assumption that the exact analytic form of the critical manifold of this vertex model is determined by the zeroes of an O(2) gauge-invariant polynomial in the vertex weights. However, it is not possible to fit the coefficients of such polynomials of orders up to 10, such as to reproduce the numerical data for the critical points. The second theoretical prediction is based on the assumption that a renormalization mapping exists of the Ising model on the Coulomb gas, and analysis of the resulting renormalization equations. It leads to a shape of the critical line that is inconsistent with the first prediction, but consistent with the numerical data.
Quantum order by disorder in frustrated diamond lattice antiferromagnets.
Bernier, Jean-Sébastien; Lawler, Michael J; Kim, Yong Baek
2008-07-25
We present a quantum theory of frustrated diamond lattice antiferromagnets. Considering quantum fluctuations as the predominant mechanism relieving spin frustration, we find a rich phase diagram comprising of six phases with coplanar spiral ordering in addition to the Néel phase. By computing the specific heat of these ordered phases, we obtain a remarkable agreement between (k, k, 0) spiral ordering and the experimental specific heat data for the diamond lattice spinel compounds MnSc2S4, Co3O4, and CoRh2O4, i.e., specific heat data is a strong evidence for (k, k, 0) spiral ordering in all of these materials. This prediction can be tested in future neutron scattering experiments on Co3O4 and CoRh2O4, and is consistent with existing neutron scattering data on MnSc2S4. Based on this agreement, we infer a monotonically increasing relationship between frustration and the strength of quantum fluctuations. PMID:18764361
Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides
NASA Astrophysics Data System (ADS)
Gu, Mingqiang; Rondinelli, James M.
2016-04-01
We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.
Reflective optical bi-stability of antiferromagnetic films
NASA Astrophysics Data System (ADS)
Bai, J.; Fu, S. F.; Zhou, S.; Wang, X. Z.
2011-10-01
We investigate one magnetically nonlinear response of antiferromagnetic (AF) films to incident electromagnetic waves, or the reflective optical bi-stability (ROB). Such geometry is used, where the AF anisotropy axis and external static magnetic field both are parallel to the film surfaces and normal to the incident plane. For TE incident waves with the electric component transverse to the incident plane, the ROB of the AF film with the absorption is calculated, but the case of TM incident waves is neglected since no magnetic nonlinearity is induced in this geometry. The bi-stability is completely different in the two resonant-frequency vicinities. Two kinds of bi-stability are found in the higher vicinity, and their features versus incident power are opposite. We also find that there are critical incident angle and critical film thickness for the existence of bi-stability. The bi-stability disappears when the film thickness or incident angle exceeds its critical value. Because the properties of bi-stable reflection sensitively depend on the external field and the incident angle, this bi-stability can be easily modulated by means of changing these quantities.
Ferromagnetic and antiferromagnetic order in bacterial vortex lattices
Wioland, Hugo; Woodhouse, Francis G.; Dunkel, Jörn; Goldstein, Raymond E.
2016-01-01
Despite their inherent non-equilibrium nature1, living systems can self-organize in highly ordered collective states2,3 that share striking similarities with the thermodynamic equilibrium phases4,5 of conventional condensed matter and fluid systems. Examples range from the liquid-crystal-like arrangements of bacterial colonies6,7, microbial suspensions8,9 and tissues10 to the coherent macro-scale dynamics in schools of fish11 and flocks of birds12. Yet, the generic mathematical principles that govern the emergence of structure in such artificial13 and biological6–9,14 systems are elusive. It is not clear when, or even whether, well-established theoretical concepts describing universal thermostatistics of equilibrium systems can capture and classify ordered states of living matter. Here, we connect these two previously disparate regimes: Through microfluidic experiments and mathematical modelling, we demonstrate that lattices of hydrodynamically coupled bacterial vortices can spontaneously organize into distinct phases of ferro- and antiferromagnetic order. The preferred phase can be controlled by tuning the vortex coupling through changes of the inter-cavity gap widths. The emergence of opposing order regimes is tightly linked to the existence of geometry-induced edge currents15,16, reminiscent of those in quantum systems17–19. Our experimental observations can be rationalized in terms of a generic lattice field theory, suggesting that bacterial spin networks belong to the same universality class as a wide range of equilibrium systems. PMID:27213004
Kondo bahavior in antiferromagnetic NpPdSn
NASA Astrophysics Data System (ADS)
Shrestha, K.; Prokes, K.; Griveau, J.-C.; Jardin, R.; Colineau, E.; Caciuffo, R.; Eloirdi, R.; Gofryk, K.
Actinide-based intermetallics show a large variety of exotic physical phenomena mainly coming from 5f hybridization with both on-site and neighboring ligand states. Depending on the strength of these process unusual behaviors such as long-range magnetic order, Kondo effect, heavy-fermion ground state, valence fluctuations, and/or superconductivity have been observed. Here we report results of our extensive studies on NpPdSn. The compound crystalizes in hexagonal ZrNiAl-type of crystal structure and is studied by means of x-ray and neutron diffraction, magnetization, heat capacity, electrical resistivity, and thermoelectric power measurements, performed over a wide range of temperatures and applied magnetic fields. All the results revealed Kondo lattice behavior and antiferromagnetic ordering below 19 K. NpPdSn can be classified as a moderately enhanced heavy-fermion system, one of very few known amidst Np-based intermetallics. Work at Idaho National Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.
The Spin-flop Transition in Antiferromagnetic Superlattices
NASA Astrophysics Data System (ADS)
Te Velthuis, S. G. E.; Jiang, J. S.; Bader, S. D.; Felcher, G. P.
2002-03-01
An antiferromagnetically (AF) coupled Fe/Cr(211) superlattice with uniaxial magnetic anisotropy has been used to study the spin-flop transition in an AF with a finite number of layers. It has been predicted that, at a field a lower than the bulk spin-flop field, a domain wall is created at the surface and rapidly propagates toward the center of the sublattice^1. We present extensive polarized neutron reflectivity measurements that give the evolution of the magnetic configuration during the spin-flop transition and prove directly the existence of such a state, in which the superlattice splits in two anti-phase, AF domains. Magneto-optic Kerr measurements with the field tilted from the easy axis show that the spin-flop is stable over a finite angular region. In contrast to the situation for a bulk AF, the first-order nature of the spin-flop transition is preserved off-axis, but we report that the detailed character of the transition is altered. ^1R.W. Wang, D.L. Mills, Eric E. Fullerton, J.E. Mattson, and S.D. Bader, Phys. Rev. Lett. 72 (1994) 920.
Fabrication of [001]L1{sub 0}-FePtRh ferro-antiferromagnetic pattern by flat-patterning method
Hasegawa, T.; Tomioka, T.; Ishio, S.; Kondo, Y.; Yamane, H.
2012-04-01
A flat-patterning method that exploits the ferromagnetic (FM) - antiferromagnetic (AF) transition in [001]-oriented L1{sub 0} FePt{sub 1-x}Rh{sub x} films was investigated. FM-AF patterns with dot diameters between 15 and 1000 nm were fabricated by locally diffusing a small percentage of FePt atoms onto the FePt{sub 1-x}Rh{sub x} film. The geometric and magnetic properties of the patterns were analyzed in detail. Only the area whose composition crossed the FM-AF threshold underwent a magnetic phase change to the FM phase. FM dots with single-domain structures were observed in the AF matrix in the range of 15-100 nm by magnetic force microscopy.
NASA Astrophysics Data System (ADS)
Yamaguchi, H.; Okubo, T.; Iwase, K.; Ono, T.; Kono, Y.; Kittaka, S.; Sakakibara, T.; Matsuo, A.; Kindo, K.; Hosokoshi, Y.
2013-11-01
We have succeeded in synthesizing single crystals of the verdazyl radical β-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl. The ab initio molecular orbital calculation indicates the formation of an S=1/2 Heisenberg antiferromagnetic chain with fourfold magnetic periodicity consisting of three types of exchange interactions. We successfully explain the magnetic and thermodynamic properties based on the expected spin model by using the quantum Monte Carlo method. Furthermore, we reveal that the alternating and unique Ising ferromagnetic chains become effective in the specific field regions and observe a cooperative phenomenon caused by the magnetic order and quantum fluctuations. These results demonstrate that the verdazyl radical could form an unconventional spin model with interesting quantum behavior and provide a way to study a variety of quantum spin systems.
A low temperature study of antiferromagnetic YbVO4 by NMR thermally detected by nuclear orientation
NASA Astrophysics Data System (ADS)
Hutchison, W. D.; Prandolini, M. J.; Harker, S. J.; Chaplin, D. H.; Bowden, G. J.; Bleaney, B.
1999-09-01
NMR-TDNO results using an external 60CoCo (hcp) nuclear orientation thermometer for non-irradiated, single crystal, antiferromagnetic YbVO4 are compared with those obtained earlier with neutron activated samples using both internal and external γ-ray thermometers. Detailed comparisons are made for the 171Yb (I=1/2, 14.31% abundant) stable nucleus. This strongly asymmetric, largely homogeneous, resonance lineshape was retained and is readily power broadened. Extremely broad, field-dependent homogeneous thermometric responses are observed in the expected frequency range for the quadrupolar stable nucleus 173Yb (I=5/2, 16.13% abundant) for both irradiated and non-irradiated samples.
Oh, Joosung; Le, Manh Duc; Jeong, Jaehong; Lee, Jung-hyun; Woo, Hyungje; Song, Wan-Young; Perring, T G; Buyers, W J L; Cheong, S-W; Park, Je-Geun
2013-12-20
The breakdown of magnons, the quasiparticles of magnetic systems, has rarely been seen. By using an inelastic neutron scattering technique, we report the observation of spontaneous magnon decay in multiferroic LuMnO3, a simple two dimensional Heisenberg triangular lattice antiferromagnet, with large spin S=2. The origin of this rare phenomenon lies in the nonvanishing cubic interaction between magnons in the spin Hamiltonian arising from the noncollinear 120° spin structure. We observed all three key features of the nonlinear effects as theoretically predicted: a rotonlike minimum, a flat mode, and a linewidth broadening, in our inelastic neutron scattering measurements of single crystal LuMnO3. Our results show that quasiparticles in a system hitherto thought of as "classical" can indeed break down. PMID:24483753
Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles
Ravikumar, Patta; Kisan, Bhagaban; Perumal, A.
2015-08-15
We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.
Antiferromagnetic molecular nanomagnets with odd-numbered coupled spins
NASA Astrophysics Data System (ADS)
Owerre, S. A.; Nsofini, J.
2015-05-01
In recent years, studies on cyclic molecular nanomagnets have captivated the attention of researchers. These magnets are finite in size and contain very large spins. They are interesting because they possess macroscopic quantum tunneling of Néel vectors. For antiferromagnetic molecular nanomagnets with finite number of even-numbered coupled spins, tunneling involves two classical localized Néel ground states separated by a magnetic energy barrier. The question is: can such phenomena be observed in nanomagnets with odd number of magnetic ions? The answer is not directly obvious because cyclic chains with odd-numbered coupled spins are frustrated as one cannot obtain a perfect Néel order. These frustrated spins can indeed be observed experimentally, so they are of interest. In this letter, we theoretically investigate macroscopic quantum tunneling in this odd spin system with arbitrary spins s, in the presence of a magnetic field applied along the plane of the magnet. In contrast to systems with an even-numbered coupled spins, the ground state of the cyclic odd-spin system contains a topological soliton due to spin frustration. Thus, the classical ground state is 2N-fold degenerate as the soliton can be placed anywhere along the ring with total S_z=+/- s . Small quantum fluctuations delocalize the soliton with a formation of an energy band. We obtain this energy band using degenerate perturbation theory at order 2s. We show that the soliton ground state is chiral for half-odd integer spins and non-chiral for integer spins. From the structure of the energy band we infer that as the value of the spin increases the inelastic polarized neutron-scattering intensity may increase or decrease depending on the strengths of the parameters of the Hamiltonian.
Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles
NASA Astrophysics Data System (ADS)
Ravikumar, Patta; Kisan, Bhagaban; Perumal, A.
2015-08-01
We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinement effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μB/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (TC) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high TC and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.
Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets
Johnston, David C.
2015-02-27
In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature T_{N} to be carried out for arbitrary Heisenberg exchange interactions J_{ij} between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θ_{p} in the Curie-Weiss law is written in terms of the J_{ij} values and T_{N} in terms of the J_{ij} values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/T_{N}, the ratio f = θ_{p}/T_{N}, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ T_{N}) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.
Unified molecular field theory for collinear and noncollinear Heisenberg antiferromagnets
Johnston, David C.
2015-02-27
In this study, a unified molecular field theory (MFT) is presented that applies to both collinear and planar noncollinear Heisenberg antiferromagnets (AFs) on the same footing. The spins in the system are assumed to be identical and crystallographically equivalent. This formulation allows calculations of the anisotropic magnetic susceptibility χ versus temperature T below the AF ordering temperature TN to be carried out for arbitrary Heisenberg exchange interactions Jij between arbitrary neighbors j of a given spin i without recourse to magnetic sublattices. The Weiss temperature θp in the Curie-Weiss law is written in terms of the Jij values and TNmore » in terms of the Jij values and an assumed AF structure. Other magnetic and thermal properties are then expressed in terms of quantities easily accessible from experiment as laws of corresponding states for a given spin S. For collinear ordering these properties are the reduced temperature t=T/TN, the ratio f = θp/TN, and S. For planar noncollinear helical or cycloidal ordering, an additional parameter is the wave vector of the helix or cycloid. The MFT is also applicable to AFs with other AF structures. The MFT predicts that χ(T ≤ TN) of noncollinear 120° spin structures on triangular lattices is isotropic and independent of S and T and thus clarifies the origin of this universally observed behavior. The high-field magnetization and heat capacity for fields applied perpendicular to the ordering axis (collinear AFs) and ordering plane (planar noncollinear AFs) are also calculated and expressed for both types of AF structures as laws of corresponding states for a given S, and the reduced perpendicular field versus reduced temperature phase diagram is constructed.« less
Low frequency spin dynamics in a quantum Hall canted antiferromagnet
NASA Astrophysics Data System (ADS)
Muraki, Koji
2007-03-01
In quantum Hall (QH) systems, Coulomb interactions combined with the macroscopic degeneracy of Landau levels (LLs) drive the electron system into strongly correlated phases as illustrated by the series of fractional QH effects and may also lead to various forms of broken symmetry dictated by the LL filing factor ν. When two layers of such electron systems are closely separated by a thin tunnel barrier, the addition of interlayer interactions and the layer degree of freedom brings about even richer electronic phases, opening up possibilities for different classes of symmetry breaking. In particular, at total filling factor νT = 2, where the two of the four lowest LLs split by the Zeeman and interlayer tunnel couplings are occupied, the competing degrees of freedom due to the layer and spin are predicted to lead to rich magnetic phases. Here we present results of resistively detected nuclear spin relaxation measurements in closely separated electron systems that reveal strong low-frequency spin fluctuations in the QH regime at νT = 2 [1]. As the temperature is decreased, the spin fluctuations, manifested by a sharp enhancement of the nuclear spin-lattice relaxation rate 1/T1, continue to grow down to the lowest temperature of 66 mK. The observed divergent behavior of 1/T1 signals a gapless spin excitation mode (i.e., a Goldstone mode) and is a hallmark of the theoretically predicted canted antiferromagnetic order. Our data demonstrate the realization of a two-dimensional system with broken planar spin rotational symmetry, in which fluctuations do not freeze out when approaching the zero temperature limit. [1] N. Kumada, K. Muraki, and Y. Hirayama, Science 313, 329 (2006).
Pressure-induced amorphization of antiferromagnetic FePO 4
NASA Astrophysics Data System (ADS)
Pasternak, M. P.; Rozenberg, G. Kh.; Milner, A. P.; Amanowicz, M.; Brister, K. E.; Taylor, R. D.
1998-03-01
In this paper we describe for the first time an unusual phenomenon, occurring in FePO 4 ( TN=25 K), where pressure drives the crystalline low-pressure phase (I) into two, coexisting antiferromagnetic states; one amorphous designated as IIa, the other crystalline (IIb) with an enhanced coordination number. This is unlike the case of berlinite (AlPO 4), which completely amorphizes above 15 GPa. Measurements were carried out with Mössbauer Spectroscopy (MS) and X-ray diffraction (XRD) at CHESS, over the pressure range 0-30 GPa. XRD shows that the double transformation starts at ˜2 GPa reaching saturation at 7 GPa. MS, however, show that the FePO 4-I phase coexists to the highest pressure, indicating possible formation of clusters with sizes undetected by XRD. The abundance of the FePO 4 IIa and IIb phases are about equal. Both XRD and the new TN (=60 K) value obtained by MS, show that the FePO 4-IIa phase is isostructural to CrVO 4. No change is observed in the relative abundance of the three phases at P>7 GPa in which the I-phase constitutes about 10% of the total. The TN value of the FePO 4-II phases increases with increasing pressure, from 50 K at 2.5 GPa to 65 at 25 GPa. The pressure transitions at room temperature are not reversible; after pressure release to ambient value, the FePO 4-I is completely restored only after heat treatment in air at T=700°C.
Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; McMillen, Colin D.; Cao, Huibo; Kolis, Joseph W.
2016-06-06
The descloizite-type compound, SrMn(VO4)(OH), was synthesized as large single crystals (1-2mm) using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P212121 (no. 19), Z = 4. The structure exhibits a one-dimensional feature, with [MnO4] chains propagating along the a-axis which are interconnected by VO4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant of J/kB = 9.97(3) K between nearestmore » Mn neighbors and a canted antiferromagnetic behavior below TN = 30 K. Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P21 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicular to the chain axis. Lastly, the presence of the Dzyaloshinskii Moriya antisymmetric exchange interaction leads to a slight canting of the spins and gives rise to a weak ferromagnetic component along the chain direction.« less
NASA Astrophysics Data System (ADS)
Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; McMillen, Colin D.; Cao, Huibo; Kolis, Joseph W.
2016-06-01
The descloizite-type compound, SrMn (V O4) (OH ) , was synthesized as large single crystals (1-2 mm) using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P 212121 (no. 19), Z = 4 . The structure exhibits a one-dimensional feature, with [MnO4]∞ chains propagating along the a axis, which are interconnected by V O4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant of J /kB= 9.97 (3 ) K between nearest Mn neighbors and a canted antiferromagnetic behavior below TN= 30 K . Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P 21 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicular to the chain axis. The presence of the Dzyaloshinskii-Moriya antisymmetric exchange interaction leads to a slight canting of the spins and gives rise to a weak ferromagnetic component along the chain direction.
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe
NASA Astrophysics Data System (ADS)
Kriegner, D.; Výborný, K.; Olejník, K.; Reichlová, H.; Novák, V.; Marti, X.; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V. V.; Springholz, G.; Holý, V.; Jungwirth, T.
2016-06-01
Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets.
Antiferromagnetic proximity effect in epitaxial CoO/NiO/MgO(001) systems
Li, Q.; Liang, J. H.; Luo, Y. M.; Ding, Z.; Gu, T.; Hu, Z.; Hua, C. Y.; Lin, H.-J.; Pi, T. W.; Kang, S. P.; Won, C.; Wu, Y. Z.
2016-01-01
Magnetic proximity effect between two magnetic layers is an important focus of research for discovering new physical properties of magnetic systems. Antiferromagnets (AFMs) are fundamental systems with magnetic ordering and promising candidate materials in the emerging field of antiferromagnetic spintronics. However, the magnetic proximity effect between antiferromagnetic bilayers is rarely studied because detecting the spin orientation of AFMs is challenging. Using X-ray linear dichroism and magneto-optical Kerr effect measurements, we investigated antiferromagnetic proximity effects in epitaxial CoO/NiO/MgO(001) systems. We found the antiferromagnetic spin of the NiO underwent a spin reorientation transition from in-plane to out-of-plane with increasing NiO thickness, with the existence of vertical exchange spring spin alignment in thick NiO. More interestingly, the Néel temperature of the CoO layer was greatly enhanced by the adjacent NiO layer, with the extent of the enhancement closely dependent on the spin orientation of NiO layer. This phenomenon was attributed to different exchange coupling strengths at the AFM/AFM interface depending on the relative spin directions. Our results indicate a new route for modifying the spin configuration and ordering temperature of AFMs through the magnetic proximity effect near room temperature, which should further benefit the design of AFM spintronic devices. PMID:26932164
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe
Kriegner, D.; Výborný, K.; Olejník, K.; Reichlová, H.; Novák, V.; Marti, X.; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V. V.; Springholz, G.; Holý, V.; Jungwirth, T.
2016-01-01
Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II–VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets. PMID:27279433
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe.
Kriegner, D; Výborný, K; Olejník, K; Reichlová, H; Novák, V; Marti, X; Gazquez, J; Saidl, V; Němec, P; Volobuev, V V; Springholz, G; Holý, V; Jungwirth, T
2016-01-01
Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets. PMID:27279433
Antiferromagnetic proximity effect in epitaxial CoO/NiO/MgO(001) systems.
Li, Q; Liang, J H; Luo, Y M; Ding, Z; Gu, T; Hu, Z; Hua, C Y; Lin, H-J; Pi, T W; Kang, S P; Won, C; Wu, Y Z
2016-01-01
Magnetic proximity effect between two magnetic layers is an important focus of research for discovering new physical properties of magnetic systems. Antiferromagnets (AFMs) are fundamental systems with magnetic ordering and promising candidate materials in the emerging field of antiferromagnetic spintronics. However, the magnetic proximity effect between antiferromagnetic bilayers is rarely studied because detecting the spin orientation of AFMs is challenging. Using X-ray linear dichroism and magneto-optical Kerr effect measurements, we investigated antiferromagnetic proximity effects in epitaxial CoO/NiO/MgO(001) systems. We found the antiferromagnetic spin of the NiO underwent a spin reorientation transition from in-plane to out-of-plane with increasing NiO thickness, with the existence of vertical exchange spring spin alignment in thick NiO. More interestingly, the Néel temperature of the CoO layer was greatly enhanced by the adjacent NiO layer, with the extent of the enhancement closely dependent on the spin orientation of NiO layer. This phenomenon was attributed to different exchange coupling strengths at the AFM/AFM interface depending on the relative spin directions. Our results indicate a new route for modifying the spin configuration and ordering temperature of AFMs through the magnetic proximity effect near room temperature, which should further benefit the design of AFM spintronic devices. PMID:26932164
Antiferromagnetic proximity effect in epitaxial CoO/NiO/MgO(001) systems
NASA Astrophysics Data System (ADS)
Li, Q.; Liang, J. H.; Luo, Y. M.; Ding, Z.; Gu, T.; Hu, Z.; Hua, C. Y.; Lin, H.-J.; Pi, T. W.; Kang, S. P.; Won, C.; Wu, Y. Z.
2016-03-01
Magnetic proximity effect between two magnetic layers is an important focus of research for discovering new physical properties of magnetic systems. Antiferromagnets (AFMs) are fundamental systems with magnetic ordering and promising candidate materials in the emerging field of antiferromagnetic spintronics. However, the magnetic proximity effect between antiferromagnetic bilayers is rarely studied because detecting the spin orientation of AFMs is challenging. Using X-ray linear dichroism and magneto-optical Kerr effect measurements, we investigated antiferromagnetic proximity effects in epitaxial CoO/NiO/MgO(001) systems. We found the antiferromagnetic spin of the NiO underwent a spin reorientation transition from in-plane to out-of-plane with increasing NiO thickness, with the existence of vertical exchange spring spin alignment in thick NiO. More interestingly, the Néel temperature of the CoO layer was greatly enhanced by the adjacent NiO layer, with the extent of the enhancement closely dependent on the spin orientation of NiO layer. This phenomenon was attributed to different exchange coupling strengths at the AFM/AFM interface depending on the relative spin directions. Our results indicate a new route for modifying the spin configuration and ordering temperature of AFMs through the magnetic proximity effect near room temperature, which should further benefit the design of AFM spintronic devices.
Ovchinnikov, S. G. Korshunov, M. M.; Kozeeva, L. P.; Lavrov, A. N.
2010-07-15
We report on the results of measurements of anisotropic resistivity of RBa{sub 2}Cu{sub 3}O{sub 6+x} (R = Tm, Lu) high-temperature superconducting single crystals in a wide range of doping levels, indicating a nontrivial effect of magnetic order on the electronic properties of cuprates. In particular, our results visually demonstrate the crossover from the state with moderate anisotropy of resistivity {rho}{sub c}/{rho}{sub ab} {approx} 30 to a strongly anisotropic state with {rho}{sub c}/{rho}{sub ab} {approx} 7 x 10{sup 3} upon cooling as well as upon a decrease in the hole concentration in the CuO{sub 2} planes. It is also shown that anisotropy is sensitive to the magnetic state of CuO{sub 2} planes and attains its maximum value after the establishment of the long-range antiferromagnetic order. The results are discussed in the framework of the theory based on the t-t'-t''-J model of CuO{sub 2} layers taking into account strong electron correlations and short-range magnetic order. In this theory, anomalies of spin correlators and Fermi surface topology for a critical hole concentration of p* {approx} 0.24 are demonstrated. The concentration dependence of the charge carrier energy indicates partial suppression of energy due to the emergence of a pseudogap at p < p*. This theory explains both the experimentally observed sensitivity of anisotropy in conductivity to the establishment of the antiferromagnetic order and the absence of anomalies in the temperature dependence of resistivity {rho}{sub ab}(T) in the vicinity of the Neel temperature.
Determination of the Magnetic Structure of Yb3Pt4:a k=0 Local-moment Antiferromagnet
Janssen, T.; Kim, M.S.; Park, K.S.; Wu, L.; Marques, C.; Bennett, M.C.; Chen, Y.; Li, J.; Huang, Q.; Lynn, J.W.; Aronson, M.C.
2010-02-01
We have used neutron-diffraction measurements to study the zero-field magnetic structure of the intermetallic compound Yb{sub 3}Pt{sub 4}, which was earlier found to order antiferromagnetically at the Neel temperature T{sub N} = 2.4 K, and displays a field-driven quantum-critical point at 1.6 T. In Yb{sub 3}Pt{sub 4}, the Yb moments sit on a single low-symmetry site in the rhombohedral lattice with space group R{bar 3}. The Yb ions form octahedra with edges that are twisted with respect to the hexagonal unit cell, a twisting that results in every Yb ion having exactly one Yb nearest neighbor. Below T{sub N}, we found new diffracted intensity due to a k=0 magnetic structure. This magnetic structure was compared to all symmetry-allowed magnetic structures and was subsequently refined. The best-fitting magnetic-structure model is antiferromagnetic and involves pairs of Yb nearest neighbors on which the moments point almost exactly toward each other. This structure has moment components within the ab plane as well as parallel to the c axis although the easy magnetization direction lies in the ab plane. Our magnetization results suggest that besides the crystal-electric-field anisotropy, anisotropic exchange favoring alignment along the c axis is responsible for the overall direction of the ordered moments. The magnitude of the ordered Yb moments in Yb{sub 3}Pt{sub 4} is 0.81 {mu}{sub B}/Yb at 1.4 K. The analysis of the bulk properties, the size of the ordered moment, and the observation of well-defined crystal-field levels argue that the Yb moments are spatially localized in zero field.
Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains
Brandao, Paula; Reis, Mario S; Gai, Zheng; Moreira Dos Santos, Antonio F
2013-01-01
Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4 center dot H2O (1) and BaCu2Ge3O9 center dot H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2(1)/c with a=5.1320(2) angstrom, b=16.1637(5) angstrom, c=5.4818(2) angstrom, beta=102.609(2)degrees, V=443.76(3) angstrom(3) and Z=4. This copper germanate contains layers of composition [CuGeO4](infinity)(2-) comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) angstrom, b=10.8606(9) angstrom, c=13.5409(8) angstrom, V=817.56(9) angstrom(3) and Z=4. This structure contains GeO6 and CuO6 octahedra as well as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the chi T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data.
NASA Astrophysics Data System (ADS)
Kontani, Hiroshi; Ohno, Masanori
2006-07-01
In nearly antiferromagnetic (AF) metals such as high- Tc superconductors (HTSCs), a single nonmagnetic impurity frequently causes nontrivial widespread change of the electronic states. To elucidate this long-standing issue, we study a Hubbard model with a strong onsite impurity potential based on an improved fluctuation-exchange (FLEX) approximation, which we call the GVI -FLEX method. This model corresponds to the HTSC with dilute nonmagnetic impurity concentration. We find that (i) both local and staggered susceptibilities are strongly enhanced around the impurity. By this reason, (ii) the quasiparticle lifetime as well as the local density of states are strongly suppressed in a wide area around the impurity (like a Swiss cheese hole), which causes the “huge residual resistivity” beyond the s -wave unitary scattering limit. We stress that the excess quasiparticle damping rate caused by impurities has strong k -dependence due to non- s -wave scatterings induced by many-body effects, so the structure of the “hot spot/cold spot” in the host system persists against impurity doping. This result could be examined by the ARPES measurements. In addition, (iii) only a few percent of impurities can cause a “Kondo-like” upturn of resistivity (dρ/dT<0) at low T when the system is very close to the AF quantum critical point. The results (i)-(iii) obtained in the present study, which cannot be derived by the simple FLEX approximation, naturally explain the main impurity effects in HTSCs. We also discuss the impurity effect in heavy fermion systems and organic superconductors.
Electronic structure of the antiferromagnetic topological insulator candidate GdBiPt
NASA Astrophysics Data System (ADS)
Li, Zhi; Su, Haibin; Yang, Xinyu; Zhang, Jiuxing
2015-06-01
We studied the electronic structures of antiferromagnetic (AFM) GdBiPt with propagating vectors Q1⃗=(0 ,0 ,π ) (A-type) and Q2⃗=(π ,π ,π ) (G-type) by performing first-principles calculation based on density-functional theory with modified Becke and Johnson local-density approximation potentials plus Hubbard U (MBJLDA+U). With the total energy calculation, the G-type AFM spin-ordered state is relatively more stable than the A-type AFM spin-ordered state, although the difference in total energy is minute. Our band-structure calculation predicts that the A-type AFM state is topologically nontrivial due to a single s -character band inversion at the Γ point, which is similar to the band inversions in half-Heusler topological insulator candidates and bulk HgTe semiconductors, while the G-type AFM state is topologically trivial due to the absence of s /p band inversion. With a realistic tight-binding model calculation with 20 bands coupled to an AFM Zeeman field, GdBiPt with A-type AFM spin order presents a metallic surface state on the terminations with AFM aligned Gd ions, and this surface state is independent of the strength of the AFM Zeeman field, i.e., this surface state will be preserved in a nonmagnetic case. Upon terminating the ferromagnetic spin-aligned Gd ions, the surface state is dependent on the strength of the Zeeman field, and the metallic surface can recover when the Zeeman field approaches zero.
Hubbard one-particle Green function in the antiferromagnetic phase
NASA Astrophysics Data System (ADS)
Polatsek, G.; Becker, K. W.
1997-01-01
An analytic approach is presented of electronic one-particle spectra of the one-band Hubbard model at half filling in the antiferromagnetic phase. Starting from the strong-coupling regime U>>:t, a projection technique is used to set up self-consistent coupled equations for the electron Green function, which are valid down to values U~t. The self-consistent equation for the hole propagator is a direct generalization of the one found from the t-J model. This gives further support to the ``string'' picture, where propagation of holes creates strings of overturned spins with which the holes interact. In the present work hopping of holes (or electrons) with up spin on the down sublattice is also taken into acount, as well as transitions between the lower and upper Hubbard bands. These are shown to change significantly the incoherent part of the t-J model spectra, by smearing out the shake-off peaks, reminiscent of higher bound string states due to multispin scattering. Coherent (quasiparticle) peaks exist at the band edges, on both sides of the insulating gap. We show that with decreasing U the quasiparticle concept loses its meaning for wave vectors at the center of the magnetic Brillouin zone (MBZ). For large values of U the dispersion of the quasiparticle is found to scale with its band width, which is of order J. Extrema are always found at k=(π/2,π/2). The weight of the quasiparticle at this k value decreases logarithmically with increasing U. In the strong-coupling limit the spectrum tends to be symmetric, i.e., to become an even function of the frequency around the chemical potential, for any wave vector. For small values of U the dispersion at the edge of the MBZ flattens away, as expected when approaching the noninteracting limit. The spectral function in this regime, for wave vectors away from the edge of the MBZ, is concentrated mainly on one side of the chemical potential.
Antiferromagnetic ordering in NdAuGe compound
Bashir, A. K. H.; Tchoula Tchokonté, M. B.; Snyman, J. L.; Sondezi, B. M.; Strydom, A. M.
2014-05-07
The compound NdAuGe was investigated by means of electrical resistivity, ρ(T), magnetic susceptibility, χ(T), magnetization, σ(μ{sub 0}H), and specific heat, C{sub p}(T), measurements. Powder X-ray diffraction studies confirm a hexagonal LiGaGe-type structure with space group P6{sub 3}mc (No. 186). ρ(T) data show normal metallic behaviour and a tendency toward saturation at higher temperatures. The low temperature ρ(T) data indicate a phase transition around 3.8 K. The low field dc χ(T) data show an antiferromagnetic anomaly associated with a Néel temperature at T{sub N} = 3.7 K close to the phase transition observed in ρ(T) results. At higher temperatures, χ(T) follows the paramagnetic Curie-Weiss behaviour with an effective magnetic moment μ{sub eff}=3.546(4) μ{sub B} and a paramagnetic Weiss temperature of θ{sub p}=−6.1(4) K. The value obtained for μ{sub eff} is close to the value of 3.62 μ{sub B} expected for the free Nd{sup 3+}-ion. σ(μ{sub 0}H) shows a linear behaviour with applied field up to 3 T with an evidence of metamagnetic behaviour above 3 T. C{sub p}(T) confirms the magnetic phase transition at T{sub N} = 3.4 K. The 4f-electron specific heat indicates a Schottky-type anomaly around 16.5 K with energy splitting Δ{sub 1}=25.8(4) K and Δ{sub 2}=50.7(4) K of the Nd{sup 3+} (J = 9/2) multiplet, that are associated with, respectively, the first and second excited states of the Nd{sup 3+}-ion.
NASA Astrophysics Data System (ADS)
Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher
2015-07-01
This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction’s perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule’s magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs’ electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ˜50% of the interatomic exchange coupling for the FM electrodes.
Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher
2015-07-31
This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes. PMID:26159362
Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets
NASA Astrophysics Data System (ADS)
Železný, J.; Gao, H.; Výborný, K.; Zemen, J.; Mašek, J.; Manchon, Aurélien; Wunderlich, J.; Sinova, Jairo; Jungwirth, T.
2014-10-01
We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.
NASA Astrophysics Data System (ADS)
Barker, Joseph; Tretiakov, Oleg A.
2016-04-01
Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, Skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that Skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic Skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which, e.g., results in a complete cancellation of the Magnus force. We find that the composite nature of antiferromagnetic Skyrmions gives rise to different dynamical behavior due to both an applied current and temperature effects.
Fernández-Pacheco, A. Mansell, R.; Petit, D.; Lee, J. H.; Cowburn, R. P.; Ummelen, F. C.; Swagten, H. J. M.
2014-09-01
We have designed a bilayer synthetic antiferromagnet where the order of layer reversal can be selected by varying the sweep rate of the applied magnetic field. The system is formed by two ultra-thin ferromagnetic layers with different proximities to the spin reorientation transition, coupled antiferromagnetically using Ruderman-Kittel-Kasuya-Yosida interactions. The different dynamic magnetic reversal behavior of both layers produces a crossover in their switching fields for field rates in the kOe/s range. This effect is due to the different effective anisotropy of both layers, added to an appropriate asymmetric antiferromagnetic coupling between them. Field-rate controlled selective switching of perpendicular magnetic anisotropy layers as shown here can be exploited in sensing and memory applications.
Barker, Joseph; Tretiakov, Oleg A
2016-04-01
Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, Skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that Skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic Skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which, e.g., results in a complete cancellation of the Magnus force. We find that the composite nature of antiferromagnetic Skyrmions gives rise to different dynamical behavior due to both an applied current and temperature effects. PMID:27104724
NASA Astrophysics Data System (ADS)
Pawłowski, G.
2009-04-01
The problem of order-order and order-disorder transitions in the system described by the 2D antiferromagnetic Blume-Capel model in the presence of a magnetic field is studied by the Wang and Landau flat-histogram simulation method and by the classical Monte Carlo. Anomalous thermodynamic characteristics in low temperatures indicate different type orderings in finite temperatures. The existence of pure antiferromagnetic phases as well as mixed state is shown by detailed phenomenological analysis of the system. The border lines on the phase diagram between various orderings are determined by the complementary microscopic study of the percolation problem for c(2×2) elementary structures of antiferromagnetic ordered phases. This new approach has also shown a full agreement between the percolation threshold for the cluster of mixed phase and the critical temperature of the ordered system.
Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn
NASA Astrophysics Data System (ADS)
Tshitoyan, V.; Ciccarelli, C.; Mihai, A. P.; Ali, M.; Irvine, A. C.; Moore, T. A.; Jungwirth, T.; Ferguson, A. J.
2015-12-01
We demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. In our study, we use an electrical detection technique of the ferromagnetic resonance driven by an in-plane ac current in a NiFe/IrMn bilayer. At room temperature, we observe antidampinglike spin torque acting on the NiFe ferromagnet, generated by an in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to the strong spin-orbit coupling, the antiferromagnetic order in IrMn governs the observed phenomenon.
Drichko, Natalia; Hackl, Rudi; Schlueter, John A.
2015-10-15
Using Raman scattering, the quasi-two-dimensional organic superconductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br (T-c = 11.8 K) and the related antiferromagnet kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl are studied. Raman scattering provides unique spectroscopic information about magnetic degrees of freedom that has been otherwise unavailable on such organic conductors. Below T = 200 K a broad band at about 500 cm(-1) develops in both compounds. We identify this band with two-magnon excitation. The position and the temperature dependence of the spectral weight are similar in the antiferromagnet and in the metallic Fermi liquid. We conclude that antiferromagnetic correlations are similarly present in the magnetic insulator and the Fermi-liquid state of the superconductor.
Low temperature magnetic transitions of single crystal HoBi
Fente, A.; Suderow, H.; Vieira, S.; Nemes, N. M.; Garcia-Hernandez, M.; Budko, Sergei L.; Canfield, Paul C.
2013-09-04
We present resistivity, specific heat and magnetization measurements in high quality single crystals of HoBi, with a residual resistivity ratio of 126. We find, from the temperature and field dependence of the magnetization, an antiferromagnetic transition at 5.7 K, which evolves, under magnetic fields, into a series of up to five metamagnetic phases.
Monoclinic crystal structure of α -RuCl3 and the zigzag antiferromagnetic ground state
NASA Astrophysics Data System (ADS)
Johnson, R. D.; Williams, S. C.; Haghighirad, A. A.; Singleton, J.; Zapf, V.; Manuel, P.; Mazin, I. I.; Li, Y.; Jeschke, H. O.; Valentí, R.; Coldea, R.
2015-12-01
The layered honeycomb magnet α -RuCl3 has been proposed as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled jeff=1/2 Ru3 + magnetic moments. Here, we report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a parent crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, in contrast with the currently assumed trigonal three-layer stacking periodicity. We report electronic band-structure calculations for the monoclinic structure, which find support for the applicability of the jeff=1/2 picture once spin-orbit coupling and electron correlations are included. Of the three nearest-neighbor Ru-Ru bonds that comprise the honeycomb lattice, the monoclinic structure makes the bond parallel to the b axis nonequivalent to the other two, and we propose that the resulting differences in the magnitude of the anisotropic exchange along these bonds could provide a natural mechanism to explain the previously reported spin gap in powder inelastic neutron scattering measurements, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as magnetic neutron powder diffraction, show a single magnetic transition upon cooling below TN≈13 K. The analysis of our neutron powder diffraction data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60 T show a single transition around 8 T for in
Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet
NASA Astrophysics Data System (ADS)
Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.
2004-11-01
The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.
Antiferromagnetic ordering with an anisotropy reversal in USn{sub 0.5}Sb{sub 1.5}
Tran, V.H. . E-mail: V.H.Tran@int.pan.wroc.pl; Bukowski, Z.; Stepien-Damm, J.; Troc, R.
2006-05-15
We report on single crystal growth, crystal structure refinements and on the measurements of low-temperature magnetic properties of a novel uranium intermetallic USn{sub 0.5}Sb{sub 1.5}. Single crystals were grown by means of the antimony flux technique. The crystal structure, refined from single crystal X-ray data, appears to be similar to that of USb{sub 2}, i.e., the tetragonal, anti-Cu{sub 2}Sb type unit cell with space group P4/nmm. Magnetisation and electrical resistivity measurements revealed that this compound orders antiferromagnetically below T{sub N}=177(1)K. A large magnetocrystalline anisotropy observed in the magnetic properties of USn{sub 0.5}Sb{sub 1.5} changes dramatically with decreasing temperature, switching from an easy magnetisation c-axis to an easy ab-plane at 163K. Due to the opening a superzone gap, the electrical resistivity in-plane shows a small hump just below T{sub N} in a manner resembling the formation of spin-density wave or/and charge-density wave.
Lattice effects in HoVo 3 single crystal
NASA Astrophysics Data System (ADS)
Sikora, M.; Marquina, C.; Ibarra, M. R.; Nugroho, A. A.; Palstra, T. T. M.
2007-09-01
We report the study of lattice effects in the Mott insulator HoVO 3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO 3 reveals gradual orbital ordering (OO) below TOO=200 K and orders antiferromagnetically at TN=113 K. A first-order structural phase transition takes place at TS˜38 K, which is probably accompanied by change of the OO type and hence the type of antiferromagnetic spin ordering.
Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.
Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya
2015-11-12
In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics--for example, to develop a memory device that produces almost no perturbing stray fields. PMID:26524519
Antiferromagnetism and superconductivity in oxygen-deficient YBa2Cu3O(x)
NASA Technical Reports Server (NTRS)
Brewer, J. H.; Carolan, J. F.; Chaklader, A. C. D.; Hardy, W. N.; Ansaldo, E. J.
1988-01-01
Positive-muon spin-rotation and -relaxation measurements of the oxygen-deficient perovskite YBa2Cu3O(x) have revealed local antiferromagnetic order for x = 6.0-6.4 with a Neel temperature TN that decreases rapidly with increasing oxygen content x. For slowly annealed samples with x = 6.35-6.5 the superconducting transition temperature Tc increases smoothly with x from 25 K at x = 6.348 to 60 K at x = 6.507. Two such samples with x = 6.348 and x = 6.400 appear to 'switch' from superconductivity to antiferromagnetic order at lower temperatures.
Bayrakci, S P; Tennant, D A; Leininger, Ph; Keller, T; Gibson, M C R; Wilson, S D; Birgeneau, R J; Keimer, B
2013-07-01
A high-resolution neutron spectroscopic technique is used to measure momentum-resolved magnon lifetimes in the prototypical two- and three-dimensional antiferromagnets Rb(2)MnF(4) and MnF(2), over the full Brillouin zone and a wide range of temperatures. We rederived theories of the lifetime resulting from magnon-magnon scattering, thereby broadening their applicability beyond asymptotically small regions of wave vector and temperature. Corresponding computations, combined with a small contribution reflecting collisions with domain boundaries, yield excellent quantitative agreement with the data. Comprehensive understanding of magnon lifetimes in simple antiferromagnets provides a solid foundation for current research on more complex magnets. PMID:23863025
Fu, Xiaojian; Xi, Xiaoqing; Bi, Ke; Zhou, Ji
2013-11-18
Temperature-dependent terahertz magnetic dipole radiation in antiferromagnetic GdFeO{sub 3} ceramic is investigated both theoretically and experimentally in this work. A two-level quantum transition mechanism is introduced to describe the excitation-radiation process, and radiative lifetime is derived analytically from the change of spin state density during this process. Terahertz spectral measurements demonstrate that the radiative frequency exhibits a red-shift and lifetime shortens as temperature increases, which is in good agreement with theoretical predictions. The temperature-sensitive radiative frequency and excellent terahertz emission mean that the antiferromagnetic ceramics show potential for application in terahertz sensors and frequency-tunable terahertz lasers.
Magnetotransport study of the pressure-induced antiferromagnetic phase in FeSe
NASA Astrophysics Data System (ADS)
Terashima, Taichi; Kikugawa, Naoki; Kasahara, Shigeru; Watashige, Tatsuya; Matsuda, Yuji; Shibauchi, Takasada; Uji, Shinya
2016-05-01
The resistivity ρ and Hall resistivity ρH are measured on FeSe at pressures up to P =28.3 kbar in magnetic fields up to B =14.5 T. The ρ (B ) and ρH(B ) curves are analyzed with multicarrier models to estimate the carrier density and mobility as a function of P and temperature (T ≤110 K). It is shown that the pressure-induced antiferromagnetic transition is accompanied by an abrupt reduction of the carrier density and scattering. This indicates that the electronic structure is reconstructed significantly by the antiferromagnetic order.
Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets
Folven, Eric; Linder, J.; Gomonay, O. V.; Scholl, Andreas; Doran, A.; Young, A. T.; Retterer, Scott T.; Malik, V. K.; Tybell, Thomas; Takamura, Yayoi; et al
2015-09-14
Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in La0.7Sr0.3MnO3 thin films and LaFeO3/La0.7Sr0.3MnO3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. In conclusion, the data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.
Disappearance of antiferromagnetic spin excitations in overdoped La2-xSrxCuO4.
Wakimoto, S; Yamada, K; Tranquada, J M; Frost, C D; Birgeneau, R J; Zhang, H
2007-06-15
Magnetic excitations for energies up to approximately 100 meV are studied for overdoped La(2-x)Sr(x)CuO(4) with x=0.25 and 0.30, using time-of-flight neutron spectroscopy. Comparison of spectra integrated over the width of an antiferromagnetic Brillouin zone demonstrates that the magnetic scattering at intermediate energies, 20
Induced antiferromagnetism in Mn doped BaMgF{sub 4}
Manikandan, M. Muthukumaran, A. Venkateswaran, C.
2014-04-24
Pure and Mn doped BaMgF{sub 4} samples have been synthesized by the hydrothermal method. X-ray diffraction (XRD) pattern of both the samples reveal the formation of pure BaMgF{sub 4} phase. High resolution scanning electron micrographs (HRSEM) show rectangular shape particles. At room temperature, the undoped BaMgF{sub 4} shows diamagnetic behavior where as the 5% Mn doped BaMgF{sub 4} exhibits antiferromagnetic hysteresis loop. The possible reason for room temperature antiferromagnetism and the role of dopant ion have been investigated.
Niklowitz, P G; Pfleiderer, C; Keller, T; Vojta, M; Huang, Y-K; Mydosh, J A
2010-03-12
We report for the first time simultaneous microscopic measurements of the lattice constants, the distribution of the lattice constants, and the antiferromagnetic moment in high-purity URu(2)Si(2), combining Larmor and conventional neutron diffraction at low temperatures and pressures up to 18 kbar. Our data demonstrate quantitatively that the small moment in the hidden order (HO) of URu(2)Si(2) is purely parasitic. The excellent experimental conditions we achieve allow us to resolve that the transition line between HO and large-moment antiferromagnetism (LMAF), which stabilizes under pressure, is intrinsically first order and ends in a bicritical point. Therefore, the HO and LMAF must have different symmetry, which supports exotic scenarios of the HO such as orbital currents, helicity order, or multipolar order. PMID:20366444
Santos, Tiffany S.; Robertson, Lee; May, Stephen J.; Bhattacharya, Anand
2009-01-01
We investigated cation-ordered La1 xSrxMnO3 about the half-doping level x 0.5 in superlattices of alternating, single unit-cell layers of LaMnO3 and SrMnO3. The effect of La/Sr cation order was addressed by comparing the structural, magnetic and transport properties of these superlattices with random alloy films of equivalent composition. The samples were synthesized by ozone-assisted molecular beam epitaxy onto SrTiO3 substrates. The superlattices could be tuned between ferromagnetic and antiferromagnetic metallic states by inserting extra single unit-cell layers of LaMnO3 and SrMnO3, respectively. For x < 0.5, a ferromagnetic, metallic phase was observed. For x = 0.50 and 0.55, A-type antiferromagnetic order was confirmed by neutron diffraction, with a N eel temperature of 300 K, significantly higher than bulk values. The enhanced N eel temperature was attributed to lattice strain rather than cation order.
NASA Astrophysics Data System (ADS)
Foley, Andrew; Corbett, Joseph; Richard, Andrea L.; Alam, Khan; Ingram, David C.; Smith, Arthur R.
2016-07-01
Single phase ε-Mn4N and ζ-Mn10N thin films are grown on MgO(001) using molecular beam epitaxy. The films are identified and characterized using reflection high-energy electron diffraction, x-ray diffraction, back scattered electron scanning electron microscopy, atomic/magnetic force microscopy and Rutherford backscattering spectrometry. These films are found to be highly smooth with root-mean-squared roughnesses 3.39 nm and below. The quality of ε-Mn4N grown is strongly dependent on substrate temperature during growth. Epitaxial growth of substantial grains composed of the antiferromagnetic η-phase Mn3N2 side by side with ferrimagnetic ε-phase grains is observed when growth temperature is below 480 °C. Ising domains isolated within areas roughly 0.5 μm across are observed in the ferrimagnetic ε-phase grains of samples consisting of a mix of η- and ε-phase grains. Magnetic domains following semi-continuous paths, which are 0.7-7.2 μm across, are observed in single phase ε-Mn4N. Measurements of the ζ-phase detail the structure and magnetism of the material as high Mn content γ-type ζ-phase with a regular surface corrugation along the [100]-direction and antiferromagnetic.
From antiferromagnetic insulator to correlated metal in pressurized and doped LaMnPO.
Simonson, J W; Yin, Z P; Pezzoli, M; Guo, J; Liu, J; Post, K; Efimenko, A; Hollmann, N; Hu, Z; Lin, H-J; Chen, C-T; Marques, C; Leyva, V; Smith, G; Lynn, J W; Sun, L L; Kotliar, G; Basov, D N; Tjeng, L H; Aronson, M C
2012-07-01
Widespread adoption of superconducting technologies awaits the discovery of new materials with enhanced properties, especially higher superconducting transition temperatures T(c). The unexpected discovery of high T(c) superconductivity in cuprates suggests that the highest T(c)s occur when pressure or doping transform the localized and moment-bearing electrons in antiferromagnetic insulators into itinerant carriers in a metal, where magnetism is preserved in the form of strong correlations. The absence of this transition in Fe-based superconductors may limit their T(c)s, but even larger T(c)s may be possible in their isostructural Mn analogs, which are antiferromagnetic insulators like the cuprates. It is generally believed that prohibitively large pressures would be required to suppress the effects of the strong Hund's rule coupling in these Mn-based compounds, collapsing the insulating gap and enabling superconductivity. Indeed, no Mn-based compounds are known to be superconductors. The electronic structure calculations and X-ray diffraction measurements presented here challenge these long held beliefs, finding that only modest pressures are required to transform LaMnPO, isostructural to superconducting host LaFeAsO, from an antiferromagnetic insulator to a metallic antiferromagnet, where the Mn moment vanishes in a second pressure-driven transition. Proximity to these charge and moment delocalization transitions in LaMnPO results in a highly correlated metallic state, the familiar breeding ground of superconductivity. PMID:22647607
High Antiferromagnetic Domain Wall Velocity Induced by Néel Spin-Orbit Torques
NASA Astrophysics Data System (ADS)
Gomonay, O.; Jungwirth, T.; Sinova, J.
2016-07-01
We demonstrate the possibility to drive an antiferromagnetic domain wall at high velocities by fieldlike Néel spin-orbit torques. Such torques arise from current-induced local fields that alternate their orientation on each sublattice of the antiferromagnet and whose orientation depends primarily on the current direction, giving them their fieldlike character. The domain wall velocities that can be achieved by this mechanism are 2 orders of magnitude greater than the ones in ferromagnets. This arises from the efficiency of the staggered spin-orbit fields to couple to the order parameter and from the exchange-enhanced phenomena in antiferromagnetic texture dynamics, which leads to a low domain wall effective mass and the absence of a Walker breakdown limit. In addition, because of its nature, the staggered spin-orbit field can lift the degeneracy between two 180° rotated states in a collinear antiferromagnet, and it provides a force that can move such walls and control the switching of the states.
NASA Astrophysics Data System (ADS)
Sanyal, Prabuddha
2015-11-01
Recently an antiferromagnetic metal phase has been proposed in double perovskites materials like Sr2FeMoO6 (SFMO), when electron doped. This material has been found to change from half-metallic ferromagnet to a novel antiferromagnetic metal (AFM) upon La-overdoping. The original proposition of such an AFM phase was made for ordered samples, but the experimental realization of La-overdoped SFMO has been found to contain a substantial fraction of antisite defects. A microscopic chemical phase segregation into alternate Fe and Mo rich regions was observed. In this paper we propose a possible scenario in which an antiferromagnetic metal phase can still be stabilized even in presence of such strong antisite defect concentration and phase segregation, by a novel kinetic energy-driven mechanism. Our results thus provide a plausible explanation to the experimental observations in the La-overdoped regime. Antisite regions can thus give rise to antiferromagnetic metallic phases, although the metal is low-dimensional.
Antiferromagnetism in Co-57-doped La2CuO(4-y) studied by Moessbauer spectroscopy
NASA Technical Reports Server (NTRS)
Jha, S.; Mitros, C.; Lahamer, Amer; Yehia, Sherif; Julian, Glenn M.
1989-01-01
Moessbauer effect studies of Co-57-doped La2CuO(4-y) were performed at temperatures between 4.2 K and room temperature. These confirm the antiferromagnetic ordering of these compounds below room temperature. Temperature dependence of the quadrupole splitting shows that the hyperfine field is at an angle with the c-axis.
Spin-Flop Transition and a Tilted Canted Spin Structure in a Coupled Antiferromagnet
NASA Astrophysics Data System (ADS)
Shimahara, Hiroshi; Ito, Kazuhiro
2016-04-01
We study a uniaxial coupled Heisenberg antiferromagnet that consists of two subsystems of classical spins with small and large lengths and spin-flop transitions in a magnetic field parallel to the magnetic easy axis. It is proved that the anisotropy of inter-subsystem coupling stabilizes an asymmetric canted antiferromagnetic phase with a tilted direction of antiferromagnetism that is not perpendicular to the magnetic field. In contrast to the conventional first-order spin-flop transition, the spin-flop transition from the Néel phase to such a tilted canted antiferromagnetic (TCAF) phase is of the second order in the absence of simple anisotropic energies in the subsystems. The transition from the TCAF phase to the high-field saturated spin phase is of the second order in the strong coupling limit of the exchange interactions J1 between the small spins, whereas when J1 is finite, it becomes first-order. Therefore, in the former case, the TCAF phase converts the Néel phase continuously into the saturated phase. The transitions to the TCAF phase are accompanied by additional spontaneous symmetry breaking, causing the uniform magnetization to have a nonzero component perpendicular to the magnetic field.
NASA Astrophysics Data System (ADS)
Borovský, Michal; Weigel, Martin; Barash, Lev Yu.; Žukovič, Milan
2016-02-01
The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = -1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.
High Antiferromagnetic Domain Wall Velocity Induced by Néel Spin-Orbit Torques.
Gomonay, O; Jungwirth, T; Sinova, J
2016-07-01
We demonstrate the possibility to drive an antiferromagnetic domain wall at high velocities by fieldlike Néel spin-orbit torques. Such torques arise from current-induced local fields that alternate their orientation on each sublattice of the antiferromagnet and whose orientation depends primarily on the current direction, giving them their fieldlike character. The domain wall velocities that can be achieved by this mechanism are 2 orders of magnitude greater than the ones in ferromagnets. This arises from the efficiency of the staggered spin-orbit fields to couple to the order parameter and from the exchange-enhanced phenomena in antiferromagnetic texture dynamics, which leads to a low domain wall effective mass and the absence of a Walker breakdown limit. In addition, because of its nature, the staggered spin-orbit field can lift the degeneracy between two 180° rotated states in a collinear antiferromagnet, and it provides a force that can move such walls and control the switching of the states. PMID:27419586
NASA Astrophysics Data System (ADS)
Seabra, Luis; Shannon, Nic
2011-04-01
The majority of magnetic materials possess some degree of magnetic anisotropy, either at the level of a single ion, or in the exchange interactions between different magnetic ions. Where these exchange interactions are also frustrated, the competition between them and anisotropy can stabilize a wide variety of new phases in applied magnetic field. Motivated by the hexagonal delafossite 2H-AgNiO2, we study the Heisenberg antiferromagnet on a layered triangular lattice with competing first- and second-neighbor interactions and single-ion easy-axis anisotropy. Using a combination of classical Monte Carlo simulation, mean-field analysis, and Landau theory, we establish the magnetic phase diagram of this model as a function of temperature and magnetic field for a fixed ratio of exchange interactions, but with values of easy-axis anisotropy D extending from the Heisenberg (D=0) to the Ising (D=∞) limits. We uncover a rich variety of different magnetic phases. These include several phases which are magnetic supersolids (in the sense of Matsuda and Tsuneto or Liu and Fisher), one of which may already have been observed in AgNiO2. We explore how this particular supersolid arises through the closing of a gap in the spin-wave spectrum, and how it competes with rival collinear phases as the easy-axis anisotropy is increased. The finite temperature properties of this phase are found to be different from those of any previously studied magnetic supersolid.
Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe
NASA Astrophysics Data System (ADS)
Chen, Xianhui
In this talk, we report the synthesis of an air-stable material, (Li0.8Fe0.2) OHFeSe, which shows superconducting transition temperature up Tc to ~40 K, by means of a novel hydrothermal method. The crystal structure is unambiguously determined by a combination of X-ray and neutron powder diffraction and nuclear magnetic resonance. Moreover, antiferromagnetic order is found to coexist with superconductivity. We also grew single crystals of (Li,Fe)OHFeSe, and observed a first-order transition from superconductor to AFM insulator with a strong charge doping induced by ionic gating in the thin flakes of single crystal. Tc is continuously enhanced with electron doping by ionic gating up to a maximum Tc of 43 K, and a striking superconductor-insulator transition occurs just at the verge of optimal doping with highest Tc. A novel phase diagram of temperature-gating voltage with the superconductor-insulator transition is mapped out, indicating that the superconductor-insulator transition is a common feature for unconventional superconductivity.
Analysis of the antiferromagnetic phase transitions of the 2D Kondo lattice
NASA Astrophysics Data System (ADS)
Jones, Barbara
2010-03-01
The Kondo lattice continues to present an interesting and relevant challenge, with its interactions between Kondo, RKKY, and coherent order. We present our study[1] of the antiferromagnetic quantum phase transitions of a 2D Kondo-Heisenberg square lattice. Starting from the nonlinear sigma model as a model of antiferromagnetism, we carry out a renormalization group analysis of the competing Kondo-RKKY interaction to one-loop order in an ɛ-expansion. We find a new quantum critical point (QCP) strongly affected by Kondo fluctuations. Near this QCP, there is a breakdown of hydrodynamic behavior, and the spin waves are logarithmically frozen out. The renormalization group results allow us to propose a new phase diagram near the antiferromagnetic fixed point of this 2D Kondo lattice model. The T=0 phase diagram contains four phases separated by a tetracritical point, the new QCP. For small spin fluctuations, we find a stable local magnetic moment antiferromagnet. For stronger coupling, region II is a metallic quantum disordered paramagnet. We find in region III a paramagnetic phase driven by Kondo interactions, with possible ground states of a heavy fermion liquid or a Kondo driven spin-liquid. The fourth phase is a spiral phase, or a large-Fermi-surface antiferromagnetic phase. We will describe these phases in more detail, including possible experimental confirmation of the spiral phase. The existence of the tetracritical point found here would be expected to affect the phase diagram at finite temperatures as well. In addition, It is hoped that these results, and particularly the Kondo interaction paramagnetic phase, will serve to bridge to solutions starting from the opposite limit, of a Kondo effect leading to a heavy fermion ground state. Work in collaboration with T. Tzen Ong. [4pt] [1] T. Ong and B. A. Jones, Phys. Rev. Lett. 103, 066405 (2009).
Lattice effects in YVO 3 single crystal
NASA Astrophysics Data System (ADS)
Marquina, C.; Sikora, M.; Ibarra, M. R.; Nugroho, A. A.; Palstra, T. T. M.
2005-04-01
In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at TN=116 K and orbital ordering was reported to appear below TOO=196 K. A first-order structural phase transition takes place at TS=77 K, accompanied by changes in the antiferromagnetic type of ordering as well as in the orbital-ordering type. Our results reveal that the thermal expansion measurement technique is a very powerful tool in order to clearly detect the existence of the above-mentioned transitions. The magnetostriction results point to the stability of the low-temperature-magnetic ground state under such high applied magnetic field.
Antiferromagnetic and xy ferro-orbital order in insulating SrRuO3 thin films with SrO termination.
Autieri, C
2016-10-26
By means of first-principles calculations we study the structural, magnetic and electronic properties of SrRuO3 surface for the SrO termination. We find that the RuO6 octahedra and the structure of the SrO layers at the surface are strongly modified as well as the Ru-O-Ru bond angles. We find in the thin films a d xy ferro-orbital order. The d xy orbital becomes the lowest in energy as in other quasitwodimensional ruthenates. Such structural rearrangement, together with a band reduction, leads to a modification of the magnetic properties. We compare the Jahn-Teller effect between the ferromagnetic and antiferromagnetic phases. We show that an insulating G-type antiferromagnetic phase takes place in SrRuO3 thin films, substituting the metallic phase experimentally found in every bulk Sr-ruthenates. The single layer SrRuO3 presents many similarities with the Ca2RuO4 low temperature phase, these similarities disappear with a larger number of layers. A study of the ground state of the as function of the number of layers is presented, the competition between bandwidth and Coulomb repulsion determines the ground state. We propose the disorder as responsible for the exchange bias effect observed. PMID:27588503
NASA Astrophysics Data System (ADS)
Nakajima, Taro; Mitsuda, Setsuo; Okano, Hidekazu; Inomoto, Yu; Kobayashi, Satoru; Prokes, Karel; Gerischer, Sebastian; Smeibidl, Peter
2014-09-01
We have investigated nonmagnetic impurity effect on the H||c-T magnetic phase diagram of an isosceles triangular lattice Ising antiferromagnet CoNb2O6, by means of neutron diffraction measurements using single crystals of Co1-xMgxNb2O6 with x = 0, 0.004, and 0.008. We have found that the commensurate antiferromagnetic (AF) ground state disappears by substituting only 0.8% of nonmagnetic Mg2+ ions for the magnetic Co2+ ions. On the other hand, the phase boundaries between the other phases, namely the field-induced ferrimagnetic phase, thermally-induced incommensurate (IC) magnetic phase and the paramagnetic phase, are hardly affected by the small amount of nonmagnetic substitution. We have also performed Monte Carlo simulations for the isosceles triangular lattice Ising model to understand the extremely high sensitivity to the nonmagnetic substitution. Consequently, we have revealed that the disappearance of the AF phase is not because the small amount of nonmagnetic impurities destabilize the AF phase, but because the phase transition from the IC phase to the AF phase is strongly suppressed by a pinning effect due to the impurities.
NASA Astrophysics Data System (ADS)
Ivanov, S. A.; Beran, P.; Bazuev, G. V.; Ericsson, T.; Tellgren, R.; Anil Kumar, P.; Nordblad, P.; Mathieu, R.
2015-03-01
Stoichiometric polycrystalline samples of L n F e2 /3M o1 /3O3(L n =Nd ,Pr ,Ce ,La ) have been prepared by solid-state reaction and studied by means of x-ray and neutron powder diffraction as well as Mössbauer spectroscopy and magnetic measurements. All samples were found to be of single phase and to have Pnma symmetry with valence state +3 of Fe and Mo. It is demonstrated that the B-site cations of L n F e2 /3M o1 /3O3 in accord with L n Fe O3 order in a G-type antiferromagnetic structure with the magnetic moments aligned along the b axis. However, with significantly lower Néel temperatures than their L n Fe O3 parent compounds. The Fe-O-Fe bond lengths and bond angles and thus the magnitude of the antiferromagnetic superexchange interaction are found to systematically change with the ionic radius of Ln such that TN increases with increasing radius. Only the CeF e2 /3M o1 /3O3 compound experiences a low temperature spin reorientation from alignment along the b axis to the a axis.
NASA Astrophysics Data System (ADS)
Mun, Eundeok; Weickert, Franziska; Kim, Jaewook; Scott, Brian L.; Miclea, Corneliu Florin; Movshovich, Roman; Wilcox, Jason; Manson, Jamie; Zapf, Vivien S.
2016-03-01
We investigate partially disordered antiferromagnetism in CoCl2-2SC(NH2)2, in which a b -plane hexagonal layers are staggered along the c axis rather than stacked. A robust 1/3 state forms in applied magnetic fields in which the spins are locked, varying as a function of neither temperature nor field. By contrast, in zero field and applied fields at higher temperatures, partial antiferromagnetic order occurs, in which free spins are available to create a Curie-like magnetic susceptibility. We report measurements of the crystallographic structure and the specific heat, magnetization, and electric polarization down to T =50 mK and up to μ0H =60 T . The Co2 +S =3 /2 spins are Ising-like and form distorted hexagonal layers. The Ising energy scale is well separated from the magnetic exchange, and both energy scales are accessible to the measurements, allowing us to cleanly parametrize them. In transverse fields, a quantum Ising phase transition can be observed at 2 T. Finally, we find that magnetic exchange striction induces changes in the electric polarization up to 3 μ C /m2 , and single-ion magnetic anisotropy effects induce a much larger electric polarization change of 300 μ C /m2 .
Mun, Eundeok; Weickert, Dagmar Franziska; Kim, Jaewook; Scott, Brian L.; Miclea, Corneliu Florin; Movshovich, Roman; Wilcox, Jason; Manson, Jamie; Zapf, Vivien S.
2016-03-01
We investigate partially disordered antiferromagnetism in CoCl2-2SC(NH2)2, in which ab-plane hexagonal layers are staggered along the c axis rather than stacked. A robust 1/3 state forms in applied magnetic fields in which the spins are locked, varying as a function of neither temperature nor field. By contrast, in zero field and applied fields at higher temperatures, partial antiferromagnetic order occurs, in which free spins are available to create a Curie-like magnetic susceptibility. We report measurements of the crystallographic structure and the specific heat, magnetization, and electric polarization down to T = 50mK and up to μ0H = 60T. The Co2+more » S = 3/2 spins are Ising-like and form distorted hexagonal layers. The Ising energy scale is well separated from the magnetic exchange, and both energy scales are accessible to the measurements, allowing us to cleanly parametrize them. In transverse fields, a quantum Ising phase transition can be observed at 2 T. Lastly, we find that magnetic exchange striction induces changes in the electric polarization up to 3μC/m2, and single-ion magnetic anisotropy effects induce a much larger electric polarization change of 300μC/m2.« less
Remarkably robust and correlated coherence and antiferromagnetism in (Ce_{1-x}La_{x})Cu_{2}Ge_{2}
Hodovanets, H.; Bud’ko, S. L.; Straszheim, W. E.; Taufour, V.; Mun, E. D.; Kim, H.; Flint, R.; Canfield, P. C.
2015-06-08
We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce_{1-x}La_{x})Cu_{2}Ge_{2} single crystals (0 ≤ x ≤ 1). With La-substitution, the antiferromagnetic temperature T_{N} is suppressed in an almost linear fashion and moves below 0.36 K, the base temperature of our measurements for x > 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below T_{coh} up to ~0.9 of La, indicating a small percolation limit ~9% of Ce. T_{coh} as a function of magnetic field was found to have different behavior for x < 0.9 and x > 0.9. Remarkably, (T_{coh})^{2} at H = 0 was found to be linearly proportional to T_{N}. In conclusion, the jump in the magnetic specific heat δC_{m} at T_{N} as a function of T_{K}/T_{N} for (Ce_{1-x}La_{x})Cu_{2}Ge_{2} follows the theoretical prediction based on the molecular field calculation for the S = 1/2 resonant level model.
Antiferromagnetism in cesium tetrabromocuprate(II) and body-centered-cubic solid helium three
NASA Astrophysics Data System (ADS)
Sherline, Todd Erik
In an attempt to further understand the interplay between geometrical frustration, thermal fluctuations, and quantum mechanical fluctuations in reduced dimensional magnetic systems, the magnetic field phase diagram of the two dimensional triangular antiferromagnet cesium tetrabromocuprate(II) (Cs2CuBr4) has been measured in magnetic fields from 18 T to 32 T and at temperatures from 0.4 K to 3 K by means of specific heat and magnetocaloric effect measurements. The high field phase closes at a zero temperature magnetic field value of 24.4 T. The saturation field of 29.4 T and exchange constants J = 12.44 K and J' = 7.78 K have been found through analysis of the specific heat in the fully saturated ferromagnetic regime. A possible new phase between 24.4 T and 29.4 T as well as a second plateau phase around 23.4 T are indicated by the magnetocaloric measurements. In order to unambiguously determine the magnetic structure of solid 3He at temperatures below 1 mK, a new two-axis spectrometer, E10, has been developed at the Hahn-Meitner Institut, Berlin beam tube D1S specifically for this experiment. An adiabatic nuclear demagnetization refrigerator has also been built along with necessary thermometry. A solid single crystal has been oriented by the observation of two (110) reflections. Currently, no evidence of a magnetically ordered solid has been found. An experiment has been attempted to elucidate the behavior of the upper critical field of 3He separating the high field phase and paramagnetic phase in the microkelvin temperature range. The pressure of the solid is remarkably sensitive to the magnetic phase transitions. Thus, measurement of the solid pressure as a function of field and temperature is a prime method for snapping out the phase diagram. Unexpected heat leaks inhibited cooling to below 1.2 mK. Diagnosis has revealed the heating to be vibrationally induced. A new apparatus must be designed with a focus on increased thermal conductivity of the cell and
Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach
NASA Astrophysics Data System (ADS)
Spirin, D. V.; Fridman, Yu. A.
2003-03-01
We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4 J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories.
NASA Astrophysics Data System (ADS)
Rykov, Alexandre I.; Ueda, Yutaka; Goto, Atsushi; Yasuoka, Hiroshi
1996-02-01
Magnetic susceptibility and NMR/NQR measurements were performed on Y 1- xCa xSr 2Cu 2GaO 7 ( x=0, 0.1, 0.2, 0.3). The single phase samples annealed at 600°C under oxygen pressure of 30 MPa are superconductors with Tc=35 K for x=0.2 and x=0.3. In spite of the presence of a small Curie-like term, we show that the spin susceptibility in the normal state increases with Ca doping and reaches the value χspin≈0.9 cm 3/Cu-mole, which is comparable to other superconducting cuprates. From the observation of Cu zero-field resonance (AFNR) and susceptibility data the parent compound is classified as 2D antiferromagnet ( TN=387 K). The transition from antiferromagnetic insulator to superconductor occurs with increasing concentration of carriers, but extends over several tens percent of Ca. The superconductivity is significantly suppressed by increasing disorder within limits of solubility for Ca. The Ga NQR spectra are narrow in both antiferromagnetic and superconducting regimes, but heavily broadened in the intermediate spin-glass-like domain. From x=0 to x=0.3, the 63Cu quadrupole frequency increases from 24 to 28 MHz due to the charge transfer resulting in superconductivity. Other EFG parameters are not markedly changed from those given in YSr 2Cu 2GaO 7 by Pieper [Physica C190(1992)261].
Pedro, I. de; Rojo, J.M.; Arriortua, M.I.
2011-08-15
The Co{sub 2-x}Cu{sub x}(OH)AsO{sub 4} (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) A, b=8.559(2) A, c=6.039(1) A and a=8.316(1) A, b=8.523(2) A, c=6.047(1) A for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O{sub 5}-trigonal bipyramid dimers and M(2)O{sub 6}-octahedral chains (M=Co and Cu) are present. Co{sub 2}(OH)AsO{sub 4} shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co{sup 2+} is partially substituted by Cu{sup 2+}ions, Co{sub 1.7}Cu{sub 0.3}(OH)AsO{sub 4}, the ferromagnetic component observed in Co{sub 2}(OH)AsO{sub 4} disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This {lambda}-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx{sup 2}-y{sup 2} orbital and the absence of overlap between neighbour ions. - Graphical abstract: Schematic drawing of the Co{sub 2-x}Cu{sub x}(OH)AsO{sub 4} (x=0 and 0.3) crystal structure view along the |0 1 0| direction. Polyhedra are occupied by the M(II) ions (M=Co and Cu) and the AsO{sub 4} groups are represented by tetrahedra. Open circles correspond to the oxygen atoms, and small circles show the hydrogen atoms. Highlights: > Synthesis of a new adamite-type compound, Co{sub 1.7}Cu{sub 0.3}(OH)AsO{sub 4}. > Single crystal structure
Application of Novel Molecular Field Theory to Helical Antiferromagnetic Ordering in EuCo2P2
NASA Astrophysics Data System (ADS)
Johnston, D. C.; Sangeetha, N. S.
A formulation of Weiss molecular field theory (MFT) was recently advanced for antiferromagnetic (AFM) systems of identical crystallographically-equivalent local moments interacting by Heisenberg exchange that does not utilize the concept of magnetic sublattices.1 This formulation has the attractive feature that the magnetic and thermal properties in magnetic fields H --> 0 depend only on the interactions of a representative spin with its neighbors, and thus allows the properties of collinear and coplanar noncollinear AFM structures to be understood and modeled on the same footing. Neutron diffraction measurements showed that EuCo2P2 with the bct ThCr2Si2 -type structure undergoes an AFM transition to a coplanar noncollinear c-axis helical AFM structure below the ordering temperature TN = 66 . 5 K.2 Here we report the properties and apply our MFT to model the anisotropic magnetic susceptibility of single-crystal EuCo2P2 below TN. Research supported by U.S. Department of Energy, Division of Materials Science and Engineering, under Contract No. DE-AC02-07CH11358.
NASA Astrophysics Data System (ADS)
Li, Yuesheng; Zhang, Qingming; Chen, Gang
The ground state of a spin-orbit coupled insulator with an odd number of electrons per unit cell must be exotic as long as the time reversal symmetry is preserved according to the recent theoretical advances. We present a new structurally perfect triangular quantum spin liquid (QSL) candidate YbMgGaO4 with spin-orbit entangled effective spin-1/2 for Yb3+. Due to the spin-orbit entanglement, the neighboring spin interaction is highly anisotropic in the spin space. We carried out the thermodynamic and the electron spin resonance measurements for YbMgGaO4 single-crystals to quantitatively determine the anisotropic couplings. Despite the antiferromagnetic couplings (~4K), no spin freezing was observed at least down to 60mK. The magnetic heat capacity of YbMgGaO4 clearly behaves as Cv ~ Tγ (γ ~ 2/3) from about 1K down to 60mK, suggesting a probable gapless QSL. Almost zero residual spin entropy (<0.6% of Rln2) at 60mK, indicates the system accesses the ground state property. Our results shed new light on the search for QSLs in strong spin-orbit coupled insulators.
Magnetic dilution and domain selection in the X Y pyrochlore antiferromagnet Er2Ti2O7
NASA Astrophysics Data System (ADS)
Gaudet, J.; Hallas, A. M.; Maharaj, D. D.; Buhariwalla, C. R. C.; Kermarrec, E.; Butch, N. P.; Munsie, T. J. S.; Dabkowska, H. A.; Luke, G. M.; Gaulin, B. D.
2016-08-01
Below TN=1.1 K, the X Y pyrochlore Er2Ti2O7 orders into a k =0 noncollinear, antiferromagnetic structure referred to as the ψ2 state. The magnetic order in Er2Ti2O7 is known to obey conventional three-dimensional (3D) percolation in the presence of magnetic dilution, and in that sense is robust to disorder. Recently, however, two theoretical studies have predicted that the ψ2 structure should be unstable to the formation of a related ψ3 magnetic structure in the presence of magnetic vacancies. To investigate these theories, we have carried out systematic elastic and inelastic neutron scattering studies of three single crystals of Er2 -xYxTi2O7 with x =0 (pure), 0.2 (10 %Y ) and 0.4 (20 % Y ), where magnetic Er3 + is substituted by nonmagnetic Y3 +. We find that the ψ2 ground state of pure Er2Ti2O7 is significantly affected by magnetic dilution. The characteristic domain selection associated with the ψ2 state, and the corresponding energy gap separating ψ2 from ψ3, vanish for Y3 + substitutions between 10 % Y and 20 % Y , far removed from the three-dimensional percolation threshold of ˜60 % Y . The resulting ground state for Er2Ti2O7 with magnetic dilutions from 20 % Y up to the percolation threshold is naturally interpreted as a frozen mosaic of ψ2 and ψ3 domains.
Antiferromagnetic Kondo lattice in the layered compounds Re2NiGa9Ge2 (Re =Ce, Pr, Sm)
NASA Astrophysics Data System (ADS)
Zhu, Yanglin; Liu, Jinyu; Hu, Jin; Adams, Daniel; Spinu, Leonard; Mao, Zhiqiang
Intermetallic compounds containing rare-earth/actinide elements with 4f/5f electrons have formed a special family of strongly correlated materials, i.e. heavy fermion systems. We have recently found a new layered rare earth intermetallic system showing moderate heavy fermion behavior: Re2NiGa9Ge2 (Re =Ce, Sm, Pr). The Re =Ce and Sm members were previously synthesized, while their electronic properties have not been reported. We have recently grown single crystals of Re2NiGa9Ge2 (Re =Ce, Sm, Pr) and characterized their electronic and magnetic properties. We find all these materials are antiferromagnetic, with TN = 2.5 K, 5 K, 3.4 K respectively for Re =Ce, Pr and Sm. Moreover, they also exhibit large values of electronic specific coefficient: γ ~ 101 mJ mol-Ce-1 K-2 for Re =Ce, 368 mJ mol-Pr-1 K-2 for Re =Pr, and 196.4 mJ mol-Sm-1 K-2 for Re =Sm, indicating enhanced Kondo effect and the presence of AFM Kondo lattice. Our findings suggest that Re2NiGa9Ge2 (Re =Ce, Pr, Sm) could be interesting candidate materials for exploring novel exotic properties of correlated electrons through external parameter tuning such as chemical substitution and pressure.
NASA Astrophysics Data System (ADS)
Peprah, M. K.; Quintero, P. A.; Xia, J. S.; Pérez, J. M.; Meisel, M. W.; Garcia, A.; Brown, S. E.; Manson, J. L.
An S = 1 chain, [Ni(HF2)(3-Clpy)4]BF4 (py = pyridine), has been identified to have nearest-neighbor antiferromagnetic interaction J /kB = 4 . 86 K and single-ion anisotropy D /kB = 4 . 3 K, while avoiding long-range order to 25 mK. With D / J = 0 . 88 , this system is close to the D / J ~ 1 gapless quantum critical point between the Haldane and Large- D phases. The magnetization was studied at 50 mK <= T <= 1 K and with B <= 10 T. Using a magnetometer equipped with a pressure cell, the low-field (0.1 T), high temperature (T >= 2 K) magnetic susceptibility was studied to 1.47 GPa. These data suggest the response at ambient pressure2 changes between 0.24 GPa and 0.35 GPa. These studies are being extended by 1H NMR experiments capable of varying the pressure and of spanning from 300 K to below 100 mK. Supported by the NSF via DMR-1202033 (MWM), DMR-1410343 (SEB), DMR-1306158 (JLM), DMR-1461019 (UF Physics REU support for JMP), and DMR-1157490 (NHMFL), and by the State of Florida.
NASA Astrophysics Data System (ADS)
Pournaghavi, Nezhat; Esmaeilzadeh, Mahdi; Ahmadi, Somaieh; Farokhnezhad, Mohsen
2016-01-01
We study spin-dependent electron transport properties of zigzag silicene nanoribbons in the presence of anti-ferromagnetic exchange field using a nonequilibrium Green's function method. Applying a transverse electric field, spin splitting can take place and the silicene nanoribbon can work as a spin filter. The spin polarization is calculated and it is shown that the spin filtering is perfect and the spin states of electrons are fully coherent. The spin direction of transmitted electrons through the silicene filter can be easily controlled by changing the transverse electric field direction. Using Hubbard model, we take into account the electron-electron interaction and we find that although this interaction causes some changes in the electron conductance, it has no destructive effect on spin filtering properties. The effect of a single vacancy on electron transport is also investigated and it is found that, the vacancy causes to decrease the electron conductance; however, the spin-dependent properties remain the same. The vacancy in the near of the edges of nanoribbon has less destructive effect on electron conductance than that in the middle.
Hu, Ai-Yuan; Wang, Huai-Yu
2016-07-01
We investigate the phase transition of the quantum spin-1 anisotropic antiferromagnet on a square lattice. The model is described by the Heisenberg Hamiltonian with the nearest-neighbor coupling strengths J_{1a} and J_{1b} along the x and y directions, respectively, and next-nearest-neighbor coupling J_{2}. This model allows Néel state (AF1) and collinear state (AF2). The effects of the spatial and single-ion anisotropy on phase transformation between these two states are explored. Our results show that the two states can exist and have the same critical temperature at D>0 as long as J_{2}=J_{1b}/2. Under such parameters, a first-order phase transformation between these two states below the Néel point can occur when J_{1b} value is not very small and D value is within a narrow range. For J_{2}≠J_{1b}/2, although both states may exist, their Néel temperatures differ. If the Néel point of the AF1 (AF2) state is larger, then at very low temperature, the AF1 (AF2) state is more stable. Thus, in an intermediate temperature, a first-order phase transition between these two states may occur. PMID:27575111
NASA Astrophysics Data System (ADS)
Hu, Ai-Yuan; Wang, Huai-Yu
2016-07-01
We investigate the phase transition of the quantum spin-1 anisotropic antiferromagnet on a square lattice. The model is described by the Heisenberg Hamiltonian with the nearest-neighbor coupling strengths J1 a and J1 b along the x and y directions, respectively, and next-nearest-neighbor coupling J2. This model allows Néel state (AF1) and collinear state (AF2). The effects of the spatial and single-ion anisotropy on phase transformation between these two states are explored. Our results show that the two states can exist and have the same critical temperature at D >0 as long as J2=J1 b/2 . Under such parameters, a first-order phase transformation between these two states below the Néel point can occur when J1 b value is not very small and D value is within a narrow range. For J2≠J1 b/2 , although both states may exist, their Néel temperatures differ. If the Néel point of the AF1 (AF2) state is larger, then at very low temperature, the AF1 (AF2) state is more stable. Thus, in an intermediate temperature, a first-order phase transition between these two states may occur.
Antiferromagnetic metallic state: A transport and thermodynamic study of Ca3(Ru1-xCrx)2O7*
NASA Astrophysics Data System (ADS)
Durairaj, V.; Chikara, S.; Cao, G.; Schlottmann, P.
2007-03-01
Among the variety of exciting physical properties, a signature feature of the bilayered Ca3Ru2O7 is the antiferromagnetic metallic (AFM) state that lies between a Neel temperature, TN=56 K and a Mott-like transition (MIT), TMI=48 K. The results of our recent thermodynamic and transport study of single crystal Ca3(Ru1-xCrx)2O7 (0<=x<=0.20) reveal that the temperature regime for the AFM state is significantly broadened with TMI and TN being pushed to lower and higher temperatures, respectively, as Cr doping (x) increases. In addition, the magnetic easy axis for magnetization moves gradually away from a-axis to b-axis as x increases and at x=0.20, the magnetic anisotropy in the basal plane diminishes. This reduced spin polarization along the easy axis is promptly reflected in the less pronounced negative magnetoresistance as x increases. Furthermore, the DC current--voltage characteristics show the S-shaped negative differential resistivity for x<=0.17. As seen in the pure compound, observed non-ohmic behavior is restricted to the AF nonmetallic region. All results are presented along with comparisons drawn from related systems such as perovskite CaRu1-xCrxO3 where highly anisotropic magnetism is induced by Cr substitution. * This work was supported by NSF grants DMR-0240813 and DMR-0552267.
Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5
Sapkota, Aashish; Tucker, Gregory S; Ramazanoglu, Mehmet; Tian, Wei; Ni, N; Cava, R J; McQueeney, Robert J; Goldman, Alan I; Kreyssig, Andreas
2014-09-01
Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of the Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.
Raman scattering study on the hidden order and antiferromagnetic phases in URu2-xFexSi2
NASA Astrophysics Data System (ADS)
Kung, Hsiang-Hsi; Ran, Sheng; Kanchanavatee, Noravee; Lee, Alexander; Krapivin, Viktor; Haule, Kristjan; Maple, M. Brian; Blumberg, Girsh
The heavy fermion compound URu2Si2 possesses an unusual ground state known as the ``hidden order'' (HO) phase below T = 17 . 5 K, which evolves into an large moment antiferromagnetic (LMAFM) phase under pressure. A recent Raman scattering study shows that an A2 g symmetry (D4 h) in-gap mode emerges in the HO phase, characterizing the excitation from a chirality density wave. Here, we report Raman scattering results for single crystal URu2-xFexSi2 with x <= 0 . 2 , where the Fe substitution acts as chemical pressure, shifting the system's ground state from HO to LMAFM. We found that the A2 g mode softens with doping, vanishes at the HO and LMAFM phase boundary, then re-emerges and hardens with doping in the LMAFM phase. The relations between the A2 g mode energy and the strength of the HO/LMAFM order parameters will be discussed in this talk. GB and HHK acknowledge support from DOE BES Award DE-SC0005463. AL and VK acknowledge NSF Award DMR-1104884. KH acknowledges NSF Award DMR-1405303. MBM, SR and NK acknowledge DOE BES Award DE-FG02-04ER46105 and NSF Award DMR 1206553.
Metallic behavior induced by potassium doping of the trigonal antiferromagnetic insulator EuMn2As2
NASA Astrophysics Data System (ADS)
Anand, V. K.; Johnston, D. C.
2016-07-01
We report magnetic susceptibility χ , isothermal magnetization M , heat capacity Cp, and electrical resistivity ρ measurements on undoped EuMn2As2 and K-doped Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2 single crystals with the trigonal CaAl2Si2 -type structure as a function of temperature T and magnetic field H . EuMn2As2 has an insulating ground state with an activation energy of 52 meV and exhibits antiferromagnetic (AFM) ordering of the Eu+2 spins S =7/2 at TN 1=15 K from Cp(T ) and χ (T ) data with a likely spin-reorientation transition at TN 2=5.0 K. The Mn+23 d5 spins-5/2 exhibit AFM ordering at TN=142 K from all three types of measurements. The M (H ) isotherm and χ (T ) data indicate that the Eu AFM structure is both noncollinear and noncoplanar. The AFM structure of the Mn spins is also unclear. A 4% substitution of K for Eu in Eu0.96K0.04Mn2As2 is sufficient to induce a metallic ground state. Evidence is found for a difference in the AFM structure of the Eu moments in the metallic crystals from that of undoped EuMn2As2 versus both T and H . For metallic Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2 , an anomalous S-shape T dependence of ρ related to the Mn magnetism is found. Upon cooling from 200 K, ρ exhibits a strong negative curvature, reaches maximum positive slope at the Mn TN≈150 K, and then continues to decrease but more slowly below TN. This suggests that dynamic short-range AFM order of the Mn spins above the Mn TN strongly suppresses the resistivity, contrary to the conventional decrease of ρ that is only observed upon cooling below TN of an antiferromagnet.
NASA Astrophysics Data System (ADS)
Yuan, Xiao-Zhong; Goan, Hsi-Sheng; Zhu, Ka-Di
2007-07-01
Using the spin wave approximation, we study the decoherence dynamics of a central spin coupled to an antiferromagnetic environment under the application of an external global magnetic field. The external magnetic field affects the decoherence process through its effect on the antiferromagnetic environment. It is shown explicitly that the decoherence factor which displays a Gaussian decay with time depends on the strength of the external magnetic field and the crystal anisotropy field in the antiferromagnetic environment. When the strength of the external magnetic field is increased to the critical field point at which the spin flop transition (a first-order quantum phase transition) happens in the antiferromagnetic environment, the decoherence of the central spin reaches its highest point. This result is consistent with several recent quantum phase transition witness studies. The influences of the environmental temperature on the decoherence behaviour of the central spin are also investigated.
Fermi surface reconstruction in hole-doped t-J models without long-range antiferromagnetic order
NASA Astrophysics Data System (ADS)
Punk, Matthias; Sachdev, Subir
2012-05-01
We calculate the Fermi surface of electrons in hole-doped, extended t-J models on a square lattice in a regime where no long-range antiferromagnetic order is present, and no symmetries are broken. Using the “spinon-dopon” formalism of Ribeiro and Wen, we show that short-range antiferromagnetic correlations lead to a reconstruction of the Fermi surface into hole pockets which are not necessarily centered at the antiferromagnetic Brillouin zone boundary. The Brillouin zone area enclosed by the Fermi surface is proportional to the density of dopants away from half-filling, in contrast to the conventional Luttinger theorem, which counts the total electron density. This state realizes a “fractionalized Fermi liquid” (FL*), which has been proposed as a possible ground state of the underdoped cuprates; we note connections to recent experiments. We also discuss the quantum phase transition from the FL* state to the Fermi liquid state with long-range antiferromagnetic order.
NASA Astrophysics Data System (ADS)
Sekine, Akihiko; Chiba, Takahiro
2016-06-01
We propose a realization of the electric-field-induced antiferromagnetic resonance. We consider three-dimensional antiferromagnetic insulators with spin-orbit coupling characterized by the existence of a topological term called the θ term. By solving the Landau-Lifshitz-Gilbert equation in the presence of the θ term, we show that, in contrast to conventional methods using ac magnetic fields, the antiferromagnetic resonance state is realized by ac electric fields along with static magnetic fields. This mechanism can be understood as the inverse process of the dynamical chiral magnetic effect, an alternating current generation by magnetic fields. In other words, we propose a way to electrically induce the dynamical axion field in condensed matter. We discuss a possible experiment to observe our proposal, which utilizes the spin pumping from the antiferromagnetic insulator into a heavy metal contact.
Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy
NASA Astrophysics Data System (ADS)
Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente
2016-06-01
The antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.25 alloy. It was found that atomic disorder occupation between Fe atom on 3f and Mn atoms on 3g sites is responsible for the formation of antiferromagnetic structures. Furthermore the magnetic competition and the coupling between possible AFM supercells along the c and a-axis can promote a non-collinear antiferromagnetic structure. These theoretical investigations help to deeply understand the magnetic order in FeMn(PSi) alloys and benefit to explore the potential magnetocaloric materials in Fe2P-type alloys.
Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy.
Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente
2016-06-01
The antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.25 alloy. It was found that atomic disorder occupation between Fe atom on 3f and Mn atoms on 3g sites is responsible for the formation of antiferromagnetic structures. Furthermore the magnetic competition and the coupling between possible AFM supercells along the c and a-axis can promote a non-collinear antiferromagnetic structure. These theoretical investigations help to deeply understand the magnetic order in FeMn(PSi) alloys and benefit to explore the potential magnetocaloric materials in Fe2P-type alloys. PMID:27143642
Electronic structure of the antiferromagnetic semiconductor Mn Sb2 S4
NASA Astrophysics Data System (ADS)
Matar, S. F.; Weihrich, R.; Kurowski, D.; Pfitzner, A.; Eyert, V.
2005-06-01
The electronic band structures of orthorhombic (oP28) and monoclinic (mC28) MnSb2S4 were investigated with ab initio calculations in the local spin density approximation to the density functional theory. An analysis of the electronic properties and of the chemical bonding is provided using the augmented spherical wave method considering nonmagnetic, ferromagnetic, ferrimagnetic, and antiferromagnetic model orderings. In agreement with experimental results both modifications of MnSb2S4 are predicted to be antiferromagnetic. While the experimental band gap is missed for the monoclinic polymorph, the calculated band gap for orthorhombic MnSb2S4 is close to the experimental one.
Easy moment direction and antiferromagnetic domain wall motion in Mn2Au
NASA Astrophysics Data System (ADS)
Barthem, Vitoria M. T. S.; Colin, Claire V.; Haettel, Richard; Dufeu, Didier; Givord, Dominique
2016-05-01
The interest of giving active functions to antiferromagnetic (AFM) materials in spintronics devices has been realized recently. Mn2Au is a high-Néel temperature antiferromagnet with large Mn moment, lying in plane of the tetragonal structure. To determine the direction of the moments in Mn2Au, an original approach is demonstrated, which should be generic to planar AFM materials. It involves the rotation of the granular sample around an axis perpendicular to the applied magnetic field. The family of easy moment directions is <110>. For grains prevented from rotating, the dominant magnetization process is AFM domain wall motion. Textured Mn2Au nanoelements could be introduced in spintronics devices, in which the Mn moments would be switched under modest external excitation.
NASA Astrophysics Data System (ADS)
Gómez Albarracín, F. A.; Rosales, H. D.
2016-04-01
In this paper we present a detailed study of the antiferromagnetic classical Heisenberg model on a bilayer honeycomb lattice in a highly frustrated regime in the presence of a magnetic field. This study shows strong evidence of entropic order-by-disorder selection in different sectors of the magnetization curve. For antiferromagnetic couplings J1=Jx=Jp/3 , we find that at low temperatures there are two different regions in the magnetization curve selected by this mechanism with different number of soft and zero modes. These regions present broken Z2 symmetry and are separated by a not fully collinear classical plateau at M =1 /2 . At higher temperatures, there is a crossover from the conventional paramagnet to a cooperative magnet. Finally, we also discuss the low-temperature behavior of the system for a less frustrated region, J1=Jx
Size effects on the Néel temperature of antiferromagnetic NiO nanoparticles
NASA Astrophysics Data System (ADS)
Rinaldi-Montes, Natalia; Gorria, Pedro; Martínez-Blanco, David; Fuertes, Antonio B.; Puente-Orench, Inés; Olivi, Luca; Blanco, Jesús A.
2016-05-01
Among all antiferromagnetic transition metal monoxides, NiO presents the highest Néel temperature (TN ˜ 525 K). In this work, the size-dependent reduction of TN in NiO nanoparticles with average diameters (D) ranging from 4 to 9 nm is investigated by neutron diffraction. The scaling law followed by TN(D) is in agreement with the Binder theory of critical phenomena in low-dimensional systems. X-ray absorption fine structure measurements link the decrease of TN to the occurrence of size effects (average undercoordination, bond relaxation and static disorder) in the nearest and next-nearest Ni coordination shells that hold the key for the maintenance of the antiferromagnetic order.
Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X =Rh ,Ir ,Pt )
NASA Astrophysics Data System (ADS)
Feng, Wanxiang; Guo, Guang-Yu; Zhou, Jian; Yao, Yugui; Niu, Qian
2015-10-01
Magneto-optical Kerr effect, normally found in magnetic materials with nonzero magnetization such as ferromagnets and ferrimagnets, has been known for more than a century. Here, using first-principles density functional theory, we demonstrate large magneto-optical Kerr effect in high-temperature noncollinear antiferromagnets Mn3X (X =Rh ,Ir ,Pt ), in contrast to usual wisdom. The calculated Kerr rotation angles are large, being comparable to that of transition-metal magnets such as bcc Fe. The large Kerr rotation angles and ellipticities are found to originate from the lifting of band double degeneracy due to the absence of spatial symmetry in the Mn3X noncollinear antiferromagnets which together with the time-reversal symmetry would preserve the Kramers theorem. Our results indicate that Mn3X would provide a rare material platform for exploration of subtle magneto-optical phenomena in noncollinear magnetic materials without net magnetization.
Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; et al
2015-04-28
Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpectedmore » asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less
Ground state and zero temperature phase diagrams of the XXZ antiferromagnetic spin- {1}/{2} chain
NASA Astrophysics Data System (ADS)
Zhou, P.
1990-05-01
An expression of the XXZ model is given from which the Ising, isotropic XY and Heisenberg models may be more properly obtained by varying only one anisotropy parameter. The ground state and spin configuration of the antiferromagnetic quasi-classical s = {1}/{2}XXZ chain in a magnetic field of arbitrary direction are studied. The phase diagrams with a longitudinal ( h⊥ = 0) and a transverse field ( h‖ = 0) are presented. Because we take into account an effect of anisotropy in the Zeeman interaction, the phase diagrams are quite different from those given by Kurmann, et al. [Physica A 112 (1982) 235]. A ferromagnetic-antiferromagnetic first order phase transition is indicated for the Ising case with h⊥=0.
Spin-1/2 Heisenberg Antiferromagnet on the Spatially Anisotropic Kagome Lattice
NASA Astrophysics Data System (ADS)
Schnyder, Andreas; Starykh, Oleg; Balents, Leon
2008-03-01
We study the quasi-one-dimensional limit of the Spin-1/2 quantum antiferromagnet on the Kagome lattice, a model Hamiltonian that might be of relevance for the mineral volborthite [1,2]. The lattice is divided into antiferromagnetic spin-chains (exchange J) that are weakly coupled via intermediate ``dangling'' spins (exchange J'). Using bosonization, renormalization group methods, and current algebra techniques we determine the ground state as a function of J'/J. The case of a strictly one-dimensional Kagome strip is also discussed. [1] Z. Hiroi, M. Hanawa, N. Kobayashi, M. Nohara, Hidenori Takagi, Y. Kato, and M. Takigawa, J. Phys. Soc. Japan 70, 3377 (2001). [2] F. Bert, D. Bono, P. Mendels, F. Ladieu, F. Duc, J.-C. Trumbe, and P. Millet, Phys. Rev. Lett. 95, 087203 (2005).
Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet
Mitamura, H.; Watanuki, R.; Kaneko, Koji; Onozaki, N.; Amou, Y.; Kittaka, S.; Kobayashi, Riki; Shimura, Y.; Yamamoto, I.; Suzuki, K.; Chi, Songxue; Sakakibara, T.
2014-10-01
Magnetic field (B) variation of the electrical polarization P_{c} ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO_{4})_{2} is examined up to the saturation point of the magnetization for B⊥c. P_{c} is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P_{c} at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation of which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.
Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet
Mitamura, H.; Watanuki, R.; Kaneko, Koji; Onozaki, N.; Amou, Y.; Kittaka, S.; Kobayashi, Riki; Shimura, Y.; Yamamoto, I.; Suzuki, K.; et al
2014-10-01
Magnetic field (B) variation of the electrical polarization Pc ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO4)2 is examined up to the saturation point of the magnetization for B⊥c. Pc is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in Pc at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation of which would require a newmore » mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less
Antiferromagnetically Spin Polarized Oxygen Observed in Magnetoelectric TbMn2O5
NASA Astrophysics Data System (ADS)
Beale, T. A. W.; Wilkins, S. B.; Johnson, R. D.; Bland, S. R.; Joly, Y.; Forrest, T. R.; McMorrow, D. F.; Yakhou, F.; Prabhakaran, D.; Boothroyd, A. T.; Hatton, P. D.
2010-08-01
We report the direct measurement of antiferromagnetic spin polarization at the oxygen sites in the multiferroic TbMn2O5, through resonant soft x-ray magnetic scattering. This supports recent theoretical models suggesting that the oxygen spin polarization is key to the magnetoelectric coupling mechanism. The spin polarization is observed through a resonantly enhanced diffraction signal at the oxygen K edge at the commensurate antiferromagnetic wave vector. Using the fdmnes code we have accurately reproduced the experimental data. We have established that the resonance arises through the spin polarization on the oxygen sites hybridized with the square based pyramid Mn3+ ions. Furthermore we have discovered that the position of the Mn3+ ion directly influences the oxygen spin polarization.
NASA Astrophysics Data System (ADS)
Bauer, Johannes; Sachdev, Subir
2015-08-01
We study charge-ordered solutions for fermions on a square lattice interacting with dynamic antiferromagnetic fluctuations. Our approach is based on real-space Eliashberg equations, which are solved self-consistently. We first show that the antiferromagnetic fluctuations can induce arc features in the spectral functions, as spectral weight is suppressed at the hot spots; however, no real pseudogap is generated. At low temperature, spontaneous charge order with a d -form factor can be stabilized for certain parameters. As long as the interacting Fermi surfaces possess hot spots, the ordering wave vector corresponds to the diagonal connection of the hot spots, similar to the non-self-consistent case. Tendencies towards observed axial order only appear in situations without hot spots.
Characterizing the Haldane phase in quasi-one-dimensional spin-1 Heisenberg antiferromagnets
NASA Astrophysics Data System (ADS)
Wierschem, Keola; Sengupta, Pinaki
2014-12-01
We review the basic properties of the Haldane phase in spin-1 Heisenberg antiferromagnetic chains, including its persistence in quasi-one-dimensional (Q1D) geometries. Using large-scale numerical simulations, we map out the phase diagram for a realistic model applicable to experimental Haldane compounds. We also investigate the effect of different chain coupling geometries and confirm a general mean-field universality of the critical coupling times the coordination number of the lattice. Inspired by recent developments in the characterization of symmetry protected topological (SPT) states, of which the Haldane phase of the spin-1 Heisenberg antiferromagnetic chain is a preeminent example, we provide direct evidence that the Q1D Haldane phase is indeed a nontrivial SPT state.
Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals.
Berg, Erez; Metlitski, Max A; Sachdev, Subir
2012-12-21
The quantum theory of antiferromagnetism in metals is necessary for our understanding of numerous intermetallic compounds of widespread interest. In these systems, a quantum critical point emerges as external parameters (such as chemical doping) are varied. Because of the strong coupling nature of this critical point and the "sign problem" plaguing numerical quantum Monte Carlo (QMC) methods, its theoretical understanding is still incomplete. Here, we show that the universal low-energy theory for the onset of antiferromagnetism in a metal can be realized in lattice models, which are free from the sign problem and hence can be simulated efficiently with QMC. Our simulations show Fermi surface reconstruction and unconventional spin-singlet superconductivity across the critical point. PMID:23258893