Epstein, L M; Forney, J D
1984-01-01
A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei. Images PMID:6092921
Dakshinamurthy, Amirtha Ganesh; Ramesar, Rajkumar; Goldberg, Paul; Blackburn, Jonathan M
2008-11-01
Cancer-testis (CT) antigens are a group of tumor antigens that are expressed in the testis and aberrantly in cancerous tissue but not in somatic tissues. The testis is an immune-privileged site because of the presence of a blood-testis barrier; as a result, CT antigens are considered to be essentially tumor specific and are attractive targets for immunotherapy. CT antigens are classified as the CT-X and the non-X CT antigens depending on the chromosomal location to which the genes are mapped. CT-X antigens are typically highly immunogenic and hence the first step towards tailored immunotherapy is to elucidate the expression profile of CT-X antigens in the respective tumors. In this study we investigated the expression profile of 16 CT-X antigen genes in 34 colorectal cancer (CRC) patients using reverse transcription-polymerase chain reaction. We observed that 12 of the 16 CT-X antigen genes studied did not show expression in any of the CRC samples analyzed. The other 4 CT-X antigen genes showed low frequency of expression and exhibited a highly variable expression profile when compared to other populations. Thus, our study forms the first report on the expression profile of CT-X antigen genes among CRC patients in the genetically diverse South African population. The results of our study suggest that genetic and ethnic variations in population might have a role in the expression of the CT-X antigen genes. Thus our results have significant implications for anti-CT antigen-based immunotherapy trials in this population.
Ding, Jun-Ying; Meng, Qing-Ling; Guo, Min-Zhuo; Yi, Yao; Su, Qiu-Dong; Lu, Xue-Xin; Qiu, Feng; Bi, Sheng-Li
2012-10-01
To study the effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering. Based on the colon preference of E. coli, the HDV small antigen original gene from GenBank was optimized. Both the original gene and the optimized gene expressed in prokaryotic cells, SDS-PAGE was made to analyze the protein expression yield and to decide which protein expression style was more proportion than the other. Furthermore, two antigens were purified by chromatography in order to compare the purity by SDS-PAGE and Image Lab software. SDS-PAGE indicated that the molecular weight of target proteins from two groups were the same as we expected. Gene optimization resulted in the higher yield and it could make the product more soluble. After chromatography, the purity of target protein from optimized gene was up to 96.3%, obviously purer than that from original gene. Gene optimization could increase the protein expression yield and solubility of genetic engineering HDV small antigen. In addition, the product from the optimized gene group was easier to be purified for diagnosis usage.
Sousa, C T; Brito, T S; Lima, F J B; Siqueira, R J B; Magalhães, P J C; Lima, A A M; Santos, A A; Havt, A
2011-06-01
Inhibition of type-5 phosphodiesterase by sildenafil decreases capacitative Ca2+ entry mediated by transient receptor potential proteins (TRPs) in the pulmonary artery. These families of channels, especially the canonical TRP (TRPC) subfamily, may be involved in the development of bronchial hyperresponsiveness, a hallmark of asthma. In the present study, we evaluated i) the effects of sildenafil on tracheal rings of rats subjected to antigen challenge, ii) whether the extent of TRPC gene expression may be modified by antigen challenge, and iii) whether inhibition of type-5 phosphodiesterase (PDE5) may alter TRPC gene expression after antigen challenge. Sildenafil (0.1 µM to 0.6 mM) fully relaxed carbachol-induced contractions in isolated tracheal rings prepared from naive male Wistar rats (250-300 g) by activating the NO-cGMP-K+ channel pathway. Rats sensitized to antigen by intraperitoneal injections of ovalbumin were subjected to antigen challenge by ovalbumin inhalation, and their tracheal rings were used to study the effects of sildenafil, which more effectively inhibited contractions induced by either carbachol (10 µM) or extracellular Ca2+ restoration after thapsigargin (1 µM) treatment. Antigen challenge increased the expression of the TRPC1 and TRPC4 genes but not the expression of the TRPC5 and TRPC6 genes. Applied before the antigen challenge, sildenafil increased the gene expression, which was evaluated by RT-PCR, of TRPC1 and TRPC6, decreased TRPC5 expression, and was inert against TRPC4. Thus, we conclude that PDE5 inhibition is involved in the development of an airway hyperresponsive phenotype in rats after antigen challenge by altering TRPC gene expression.
Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production
Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander
2015-01-01
Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S. agalactiae adaptation to the human. PMID:26047354
Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production.
Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander
2015-01-01
Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S. agalactiae adaptation to the human.
Identification, expression and phylogenetic analysis of EgG1Y162 from Echinococcus granulosus.
Zhang, Fengbo; Ma, Xiumin; Zhu, Yuejie; Wang, Hongying; Liu, Xianfei; Zhu, Min; Ma, Haimei; Wen, Hao; Fan, Haining; Ding, Jianbing
2014-01-01
This study was to clone, identify and analyze the characteristics of egG1Y162 gene from Echinococcus granulosus. Genomic DNA and total RNAs were extracted from four different developmental stages of protoscolex, germinal layer, adult and egg of Echinococcus granulosus, respectively. Fluorescent quantitative PCR was used for analyzing the expression of egG1Y162 gene. Prokaryotic expression plasmid of pET41a-EgG1Y162 was constructed to express recombinant His-EgG1Y162 antigen. Western blot analysis was performed to detect antigenicity of EgG1Y162 antigen. Gene sequence, amino acid alignment and phylogenetic tree of EgG1Y162 were analyzed by BLAST, online Spidey and MEGA4 software, respectively. EgG1Y162 gene was expressed in four developmental stages of Echinococcus granulosus. And, egG1Y162 gene expression was the highest in the adult stage, with the relative value of 19.526, significantly higher than other three stages. Additionally, Western blot analysis revealed that EgG1Y162 recombinant protein had good reaction with serum samples from Echinococcus granulosus infected human and dog. Moreover, EgG1Y162 antigen was phylogenetically closest to EmY162 antigen, with the similarity over 90%. Our study identified EgG1Y162 antigen in Echinococcus granulosus for the first time. EgG1Y162 antigen had a high similarity with EmY162 antigen, with the genetic differences mainly existing in the intron region. And, EgG1Y162 recombinant protein showed good antigenicity.
Rottiers, P; Verfaillie, T; Contreras, R; Revets, H; Desmedt, M; Dooms, H; Fiers, W; Grooten, J
1998-11-09
Progression to malignancy of transformed cells involves complex genetic alterations and aberrant gene expression patterns. While aberrant gene expression is often caused by alterations in individual genes, the contribution of the tumoral environment to the triggering of this gene expression is less well established. The stable but heterogeneous expression in cultured EL4/13 cells of a novel tumor-associated antigen, designated as HTgp-175, was chosen for the investigation of gene expression during tumor formation. Homogeneously HTgp-175-negative EL4/13 cells, isolated by cell sorting or obtained by subcloning, acquired HTgp-175 expression as a result of tumor formation. The tumorigenicity of HTgp-175-negative vs. HTgp-175-positive EL4 variants was identical, indicating that induction but not selection accounted for the phenotypic switch from HTgp-175-negative to HTgp-175-positive. Although mutagenesis experiments showed that the protein was not essential for tumor establishment, tumor-derived cells showed increased malignancy, linking HTgp-175 expression with genetic changes accompanying tumor progression. This novel gene expression was not an isolated event, since it was accompanied by ectopic expression of the large chondroitin sulfate proteoglycan PG-M and of normal differentiation antigens. We conclude that signals derived from the tumoral microenvironment contribute significantly to the aberrant gene expression pattern of malignant cells, apparently by fortuitous activation of differentiation processes and cause expression of novel differentiation antigens as well as of inappropriate tumor-associated and ectopic antigens.
[Research advances of genomic GYP coding MNS blood group antigens].
Liu, Chang-Li; Zhao, Wei-Jun
2012-02-01
The MNS blood group system includes more than 40 antigens, and the M, N, S and s antigens are the most significant ones in the system. The antigenic determinants of M and N antigens lie on the top of GPA on the surface of red blood cells, while the antigenic determinants of S and s antigens lie on the top of GPB on the surface of red blood cells. The GYPA gene coding GPA and the GYPB gene coding GPB locate at the longarm of chromosome 4 and display 95% homologus sequence, meanwhile both genes locate closely to GYPE gene that did not express product. These three genes formed "GYPA-GYPB-GYPE" structure called GYP genome. This review focuses on the molecular basis of genomic GYP and the variety of GYP genome in the expression of diversity MNS blood group antigens. The molecular basis of Miltenberger hybrid glycophorin polymorphism is specifically expounded.
Sakai, Shinya; Mantani, Naoki; Kogure, Toshiaki; Ochiai, Hiroshi; Shimada, Yutaka; Terasawa, Katsutoshi
2002-12-01
Influenza virus is a worldwide health problem with significant economic consequences. To study the gene expression pattern induced by influenza virus infection, it is useful to reveal the pathogenesis of influenza virus infection; but this has not been well examined, especially in vivo study. To assess the influence of influenza virus infection on gene expression in mice, mRNA levels in the lung and tracheal tissue 48 h after infection were investigated by cDNA array analysis. Four-week-old outbred, specific pathogen free strain, ICR female mice were infected by intra-nasal inoculation of a virus solution under ether anesthesia. The mice were sacrificed 48 h after infection and the tracheas and lungs were removed. To determine gene expression, the membrane-based microtechnique with an Atlas cDNA expression array (mouse 1.2 array II) was performed in accordance with the manual provided. We focused on the expression of 46 mRNAs for cell surface antigens. Of these 46 mRNAs that we examined, four (CD1d2 antigen, CD39 antigen-like 1, CD39 antigen-like 3, CD68 antigen) were up-regulated and one (CD36 antigen) was down-regulated. Although further studies are required, these data suggest that these molecules play an important role in influenza virus infection, especially the phase before specific immunity.
1988-10-31
00 0 Cloning and Expression of Genes for Dengue Virus (Type-2 Encoded-Antigens for Rapid ODiagnosis and Vaccine DevelopmentN| ANNUAL PROGRESS REPORT...11. TITLE (include Security Classification) Cloning and Expression of Genes f or Dengue Virus Type 2 Fncoded Antigens for Rapid Diagnosis and Vaccine ...epidemics in Central and South Americas and the Caribbean is a cause of major concern. An effective vaccine is not available to protect individuals
Baranasic, Damir; Oppermann, Timo; Cheaib, Miriam; Cullum, John; Schmidt, Helmut
2014-01-01
ABSTRACT Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. PMID:25389173
Identification, expression and phylogenetic analysis of EgG1Y162 from Echinococcus granulosus
Zhang, Fengbo; Ma, Xiumin; Zhu, Yuejie; Wang, Hongying; Liu, Xianfei; Zhu, Min; Ma, Haimei; Wen, Hao; Fan, Haining; Ding, Jianbing
2014-01-01
Objective: This study was to clone, identify and analyze the characteristics of egG1Y162 gene from Echinococcus granulosus. Methods: Genomic DNA and total RNAs were extracted from four different developmental stages of protoscolex, germinal layer, adult and egg of Echinococcus granulosus, respectively. Fluorescent quantitative PCR was used for analyzing the expression of egG1Y162 gene. Prokaryotic expression plasmid of pET41a-EgG1Y162 was constructed to express recombinant His-EgG1Y162 antigen. Western blot analysis was performed to detect antigenicity of EgG1Y162 antigen. Gene sequence, amino acid alignment and phylogenetic tree of EgG1Y162 were analyzed by BLAST, online Spidey and MEGA4 software, respectively. Results: EgG1Y162 gene was expressed in four developmental stages of Echinococcus granulosus. And, egG1Y162 gene expression was the highest in the adult stage, with the relative value of 19.526, significantly higher than other three stages. Additionally, Western blot analysis revealed that EgG1Y162 recombinant protein had good reaction with serum samples from Echinococcus granulosus infected human and dog. Moreover, EgG1Y162 antigen was phylogenetically closest to EmY162 antigen, with the similarity over 90%. Conclusion: Our study identified EgG1Y162 antigen in Echinococcus granulosus for the first time. EgG1Y162 antigen had a high similarity with EmY162 antigen, with the genetic differences mainly existing in the intron region. And, EgG1Y162 recombinant protein showed good antigenicity. PMID:25337206
Expression of mouse Tla region class I genes in tissues enriched for gamma delta cells.
Eghtesady, P; Brorson, K A; Cheroutre, H; Tigelaar, R E; Hood, L; Kronenberg, M
1992-01-01
The Tla region of the BALB/c mouse major histocompatibility complex contains at least 20 class I genes. The function of the products of these genes is unknown, but recent evidence demonstrates that some Tla region gene products could be involved in presentation of antigens to gamma delta T cells. We have generated a set of polymerase chain reaction (PCR) oligonucleotide primers and hybridization probes that permit us to specifically amplify and detect expression of 11 of the 20 BALB/c Tla region genes. cDNA prepared from 12 adult and fetal tissues and from seven cell lines was analyzed. In some cases, northern blot analysis or staining with monoclonal antibodies specific for the Tla-encoded thymus leukemia (TL) antigen were used to confirm the expression pattern of several of the genes as determined by PCR. Some Tla region genes, such as T24d and the members of the T10d/T22d gene pair, are expressed in a wide variety of tissues in a manner similar to the class I transplantation antigens. The members of the TL antigen encoding gene pair, T3d/T18d, are expressed in only a limited number of organs, including several sites enriched for gamma delta T cells. Other Tla region genes, including T1d, T2d, T16d, and T17d, are transcriptionally silent and transcripts from the T8d/T20d gene pair do not undergo proper splicing. In general, sites that contain gamma delta T lymphocytes have Tla region transcripts. The newly identified pattern of expression of the genes analyzed in sites containing gamma delta T cells further extends the list of potential candidates for antigen presentation to gamma delta T cells.
Direct Introduction of Genes into Rats and Expression of the Genes
NASA Astrophysics Data System (ADS)
Benvenisty, Nissim; Reshef, Lea
1986-12-01
A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.
Claus, Heike; Jördens, Markus S; Kriz, Pavla; Musilek, Martin; Jarva, Hanna; Pawlik, Marie-Christin; Meri, Seppo; Vogel, Ulrich
2012-01-05
The investigational multicomponent meningococcus serogroup B vaccine (4CMenB) targets the antigenetically variable population of serogroup B meningococci. Forty-one strains of capsule null locus (cnl) meningococci, which are frequent among healthy carriers, were selected from nine sequence types (ST), which belong to four clonal complexes (cc), and three countries. They were antigen sequence typed and analyzed for antigen expression to predict whether these strains harbor the genes and express the four vaccine antigens of 4CMenB as measured by the meningococcal antigen typing system (MATS). The PorA variant used in the vaccine was not found. The nadA gene was absent in all but one strain, which did not express the antigen in vitro. Only strains of clonal complex ST-198 harbored a factor H binding protein (FHBP) allele of the cross-reactive variant 1 family which is included in the vaccine. All these strains expressed the antigen. Five variants of the Neisserial heparin binding antigen (NHBA) gene were identified. Expression of NHBA was observed in all strains with highest levels in ST-198 cc and ST-845. The data suggest a potential impact of 4CMenB immunization at least on cnl meningococci of the ST-198 cc and ST-845. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guo, Dongchuan; Wu, Yun; Kaplan, Heidi B.
2000-01-01
Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Ω4521 fusion are Lac+. One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac− TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac+ LPS O-antigen mutants containing Tn5 lac Ω4521 (Tcr). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development. PMID:10913090
VH gene family expression in mice with the xid defect
1991-01-01
Preferential use of particular VH gene families in the response to specific antigens has been demonstrated in several systems. The lack of responses to certain types of antigens, therefore, could be the result of deletion of or failure to express some VH genes. Because CBA/N mice, which carry the X-linked immunodeficiency (xid) gene defect, have been shown to be unresponsive to thymus-independent polysaccharide antigens, it was of interest to examine if this unresponsiveness could be accounted for by abnormal expression of particular VH gene families. Using in situ hybridization on B cell colonies, we determined the expression of nine VH gene families in CBA/CaHN females (genotypically normal), CBA/N males (xid) and females (xid), and (CBA/N x CBA/CaHN)F1 males (xid) and females (phenotypically normal). Our results indicate that VH gene family expression, including the S107 family, in CBA/N males and F1 males, is similar to that of CBA/CaHN and F1 females with predominant expression of J558, the largest gene family, in all individuals. Interestingly, CBA/N female mice, which carry two defective X chromosomes, as a group expressed significantly reduced levels of the J558 gene family, and as individuals showed variation in which family was predominantly expressed. We conclude that the unresponsiveness of mice with the xid defect to polysaccharide antigens can not attributed to a failure to express the nine VH gene families that we examined. Our findings do not support previous studies (Primi, D., and P.-A. Cazenave 1986. J. Exp. Med. 165:357), which found an absence of expression of the S107 family in xid mice. PMID:1711566
den Reijer, Paul Martijn; Lemmens-den Toom, Nicole; Kant, Samantha; Snijders, Susan V.; Boelens, Hélène; Tavakol, Mehri; Verkaik, Nelianne J.; van Belkum, Alex; Verbrugh, Henri A.; van Wamel, Willem J. B.
2013-01-01
Attempts to develop an efficient anti-staphylococcal vaccine in humans have so far been unsuccessful. Therefore, more knowledge of the antigens that are expressed by Staphylococcus aureus in human blood and induce an immune response in patients is required. In this study we further characterize the serial levels of IgG and IgA antibodies against 56 staphylococcal antigens in multiple serum samples of 21 patients with a S. aureus bacteremia, compare peak IgG levels between patients and 30 non-infected controls, and analyze the expression of 3626 genes by two genetically distinct isolates in human blood. The serum antibody levels were measured using a bead-based flow cytometry technique (xMAP®, Luminex corporation). Gene expression levels were analyzed using a microarray (BµG@s microarray). The initial levels and time taken to reach peak IgG and IgA antibody levels were heterogeneous in bacteremia patients. The antigen SA0688 was associated with the highest median initial-to-peak antibody fold-increase for IgG (5.05-fold) and the second highest increase for IgA (2.07-fold). Peak IgG levels against 27 antigens, including the antigen SA0688, were significantly elevated in bacteremia patients versus controls (P≤0.05). Expression of diverse genes, including SA0688, was ubiquitously high in both isolates at all time points during incubation in blood. However, only a limited number of genes were specifically up- or downregulated in both isolates when cultured in blood, compared to the start of incubation in blood or during incubation in BHI broth. In conclusion, most staphylococcal antigens tested in this study, including many known virulence factors, do not induce uniform increases in the antibody levels in bacteremia patients. In addition, the expression of these antigens by S. aureus is not significantly altered by incubation in human blood over time. One immunogenic and ubiquitously expressed antigen is the putative iron-regulated ABC transporter SA0688. PMID:23308212
Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants.
Lou, Xiao-Ming; Yao, Quan-Hong; Zhang, Zhen; Peng, Ri-He; Xiong, Ai-Sheng; Wang, Hua-Kun
2007-04-01
The original hepatitis B virus (HBV) large surface antigen gene was synthesized. In order to optimize the expression of this gene in tomato plants, the tobacco pathogenesis-related protein S signal peptide was fused to the 5' end of the modified gene and the sequence encoding amino acids S, E, K, D, E, and L was placed at the 3' end. The gene encoding the modified HBV large surface antigen under the control of a fruit-specific promoter was constructed and expressed in transgenic tomato plants. The expression of the antigen from transgenic plants was confirmed by PCR and reverse transcriptase PCR. Enzyme-linked immunoassays using a monoclonal antibody directed against human serum-derived HBsAg revealed that the maximal level of HBsAg was about 0.02% of the soluble protein in transgenic tomato fruit. The amount of HBsAg in mature fruits was found to be 65- to 171-fold larger than in small or medium fruits and leaf tissues. Examination of transgenic plant samples by transmission electron microscopy proved that HBsAg had been expressed and had accumulated. The HBsAg protein was capable of assembling into capsomers and virus-like particles. To our knowledge, this is the first time the HBV large surface antigen has been expressed in plants. This work suggests the possibility of producing a new alternative vaccine for human HBV.
Schröder, R; Maassen, A; Lippoldt, A; Börner, T; von Baehr, R; Dobrowolski, P
1991-08-01
Using the broad-host-range promoter probe vector pRS201 for cloning of phage Acm1 promoters, we established a convenient vector system for expression of heterologous genes in different Gram-negative bacteria. The usefulness of this system was demonstrated by expression of the HBV core gene in Acetobacter methanolicus. Plasmids carrying the HBV core gene downstream of different Acm1-phage promoters were transferred to A. methanolicus, a new potential host for recombinant DNA expression. Using enzyme immunoassay and immunoblot techniques, the amount and composition of core antigen produced in A. methanolicus were compared with that derived from Escherichia coli. The expression of immunoreactive core antigen in A. methanolicus exceeds by sevenfold that in E. coli using an expression system with tandemly arranged promoters. Morphological observations by electron microscopy show that the HBV core gene products isolated from both hosts are assembled into regular spherical particles with a diameter of about 28 nm that are comparable to original viral nucleocapsids.
Hou, Q; Chen, K; Shan, Z
2015-01-01
To construct the cDNA library of the ascites tumor cells of ovarian cancer, which can be used to screen the related antigen for the early diagnosis of ovarian cancer and therapeutic targets of immune treatment. Four cases of ovarian serous cystadenocarcinoma, two cases of ovarian mucinous cystadenocarcinoma, and two cases of ovarian endometrial carcinoma in patients with ascitic tumor cells which were used to construct the cDNA library. To screen the ovarian cancer antigen gene, evaluate the enzyme, and analyze nucleotide sequence, serological analysis of recombinant tumor cDNA expression libraries (SEREX) and suppression subtractive hybridization technique (SSH) techniques were utilized. The detection method of recombinant expression-based serological mini-arrays (SMARTA) was used to detect the ovarian cancer antigen and the positive reaction of 105 cases of ovarian cancer patients and 105 normal women's autoantibodies correspondingly in serum. After two rounds of serologic screening and glycosides sequencing analysis, 59 candidates of ovarian cancer antigen gene fragments were finally identified, which corresponded to 50 genes. They were then divided into six categories: (1) the homologous genes which related to the known ovarian cancer genes, such as BARD 1 gene, etc; (2) the homologous genes which were associated with other tumors, such as TM4SFI gene, etc; (3) the genes which were expressed in a special organization, such as ILF3, FXR1 gene, etc; (4) the genes which were the same with some protein genes of special function, such as TIZ, ClD gene; (5) the homologous genes which possessed the same source with embryonic genes, such as PKHD1 gene, etc; (6) the remaining genes were the unknown genes without the homologous sequence in the gene pool, such as OV-189 genes. SEREX technology combined with SSH method is an effective research strategy which can filter tumor antigen with high specific character; the corresponding autoantibodies of TM4SFl, ClD, TIZ, BARDI, FXRI, and OV-189 gene's recombinant antigen in serum can be regarded as the biomarkers which are used to diagnose ovarian cancer. The combination of multiple antigen detection can improve diagnostic efficiency.
Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng
2015-01-01
In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. © 2015 by the Association of Clinical Scientists, Inc.
Telomere interactions may condition the programming of antigen expression in Trypanosoma brucei.
Van der Werf, A; Van Assel, S; Aerts, D; Steinert, M; Pays, E
1990-01-01
The AnTat 1.1 antigen type typically occurs late in a chronic infection by the EATRO 1125 stock of Trypanosoma brucei. The AnTat 1.1 gene, which is located 24 kb from a chromosome end, seems exclusively expressed by acting as a donor in gene conversion events targeted to the telomeric expression site. We report that this gene is sufficiently provided with the homology blocks required for recombination with the expression site, and is not interrupted by stop codons up to the 3' block of homology. A possible reason for its low probability of activation is an inverse orientation with respect to the proximal chromosome end, since, if correctly positioned, it is readily expressed at an early stage of infection, following gene conversion. This suggests that interactions between chromosome ends may precede and favour the rearrangements leading to antigenic variation. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. PMID:2323332
Rozhdestvenskaya, Anastasia S.; Totolian, Artem A.; Dmitriev, Alexander V.
2010-01-01
Background Streptococcus agalactiae is able to colonize numerous tissues employing different mechanisms of gene regulation, particularly via two-component regulatory systems. These systems sense the environmental stimuli and regulate expression of the genes including virulence genes. Recently, the novel two-component regulatory system Sak188/Sak189 was identified. In S. agalactiae genome, it was adjacent to the bac gene encoding for β-antigen, an important virulence factor. Methodology/Principal Findings In this study, the sak188 and sak189 genes were inactivated, and the functional role of Sak188/Sak189 two-component system in regulation of the β-antigen expression was investigated. It was demonstrated that both transcription of bac gene and expression of encoded β-antigen were controlled by Sak189 response regulator, but not Sak188 histidine kinase. It was also found that the regulation occurred at transcriptional level. Finally, insertional inactivation of sak189 gene, but not sak188 gene, significantly affected virulent properties of S. agalactiae. Conclusions/Significance Sak189 response regulator is necessary for activation of bac gene transcription. It also controls the virulent properties of S. agalactiae. Given that the primary functional role of Sak188/Sak189 two-component systems is a control of bac gene transcription, this system can be annotated as BgrR/S (bac gene regulatory system). PMID:20419089
Embryonal carcinoma antigen and the T/t locus of the mouse.
Kemler, R; Babinet, C; Condamine, H; Gachelin, G; Guenet, J L; Jacob, F
1976-01-01
The presence of the F9 antigen and of four other antigens related to the T/t locus of the mouse was investigated by immunofluorescence on preimplantation embryos. In morulae heterozygous for any of these t haplotypes, both the appropriate t antigen and the F9 antigen are expressed. The F9 antigen segregates among the progeny of crosses producing embryos homozygous for some (tw32 and tw5) but not for other haplotypes. It is concluded that (i) whatever the time of action of a t haplotype, its corresponding antigen is expressed during cleavage and (ii) the F9 antigen is specified by a gene(s) in the region of the T/t locus. Images PMID:1069295
Zhang, Fei; Zhang, Yangyi; Wen, Xintian; Huang, Xiaobo; Wen, Yiping; Wu, Rui; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Zhao, Qin; Cao, Sanjie
2015-10-01
Porcine pleuropneumonia is an infectious disease caused by Actinobacillus pleuropneumoniae. The identification of A. pleuropneumoniae genes, specially expressed in vivo, is a useful tool to reveal the mechanism of infection. IVIAT was used in this work to identify antigens expressed in vivo during A. pleuropneumoniae infection, using sera from individuals with chronic porcine pleuropneumonia. Sequencing of DNA inserts from positive clones showed 11 open reading frames with high homology to A. pleuropneumoniae genes. Based on sequence analysis, proteins encoded by these genes were involved in metabolism, replication, transcription regulation, and signal transduction. Moreover, three function-unknown proteins were also indentified in this work. Expression analysis using quantitative real-time PCR showed that most of the genes tested were up-regulated in vivo relative to their expression levels in vitro. IVI (in vivoinduced) genes that were amplified by PCR in different A. pleuropneumoniae strains showed that these genes could be detected in almost all of the strains. It is demonstrated that the identified IVI antigen may have important roles in the infection of A. pleuropneumoniae.
Miyoshi, Jun; Yajima, Tomoharu; Okamoto, Susumu; Matsuoka, Katsuyoshi; Inoue, Nagamu; Hisamatsu, Tadakazu; Shimamura, Katsuyoshi; Nakazawa, Atsushi; Kanai, Takanori; Ogata, Haruhiko; Iwao, Yasushi; Mukai, Makio; Hibi, Toshifumi
2011-09-01
Host-intestinal microbial interaction plays an important role in the pathogenesis of inflammatory bowel diseases (IBDs). The surface molecules of the intestinal epithelium act as receptors for bacterial adhesion and regulate the intestinal bacteria. Some known receptors are the mucosal blood type antigens, which are regulated by the fucosyltransferase2 (FUT2) gene, and individuals who express these antigens in the gastrointestinal tract are called secretors. Recent research has revealed that the FUT2 gene is associated with Crohn's disease (CD) in western populations. To clarify the contribution of mucosal blood type antigens in IBD, we determined the incidence of five previously reported single-nucleotide polymorphisms of the FUT2 gene in Japanese patients. We also used immunohistochemistry to investigate the antigen expression in mucosal specimens from IBD patients and animal models. Genetic analysis revealed that all of the patients with colonic CD were secretors, whereas the incidence of secretors was 80, 80, 67, and 80%, respectively, for the control, ileocolonic CD, ileal CD, and ulcerative colitis groups (P = 0.036). Abnormal expression of blood type antigens was observed only in colonic CD. Interleukin-10⁻/⁻ mice, but not dextran sulfate sodium colitis mice, had enhanced colonic expression of blood type antigens, and the expression of these antigens preceded the development of colitis in the interleukin-10⁻/⁻ mice. FUT2 secretor status was associated with colonic-type CD. This finding, taken together with the immunohistochemistry data, suggests that the abnormal expression of blood type antigens in the colon may be a unique and essential factor for colonic CD.
Yurova, K A; Sokhonevich, N A; Khaziakhmatova, O G; Litvinova, L S
2016-01-01
The dose-dependent effects of cytokines (IL-2, IL-7, and IL-15), which have a common g-chain, on mRNA expression of U2afll4 and GFi1 genes involved in regulation of alternative splicing of the Ptprc gene, have been investigated in vitro using T-lymphocyte cultures with different degrees of differentiation. IL-2, IL-7, and IL-15 caused a similar unidirectional inhibitory effect of various severity on restimulated CD45RO+ T-cells exposed to an antigen-independent activation; they caused a dose-dependent decrease of the U2af1l4 gene expression, and an increase of Gfi1 gene expression. This may suggest formation of active forms of the CD45 receptor, and also limitation of the formation of low-molecular short splice variants of the CD45RO receptor. Under conditions of antigen-independent stimulation of naive CD45RA+-cells rIL-7 and IL-15 exhibited opposite effects on U2af1l4 and Gfi1 gene expression. The increase of IL-7 concentrations in the incubation medium of naive cells was accompanied by a decrease in expression of both genes. IL-15 IL-7 exhibited opposite effects. Cytokines possessing a common g-chain (IL-2, IL-7, and IL-15) prevented antigen-independent differentiation of naive T-cells, by preventing the formation of polyclonal "surrogate" cells. In general, the study of the molecular mechanisms of genetic control determining homeostatic processes of T-cells in response to exposure to antigenic or non-antigenic treatments may be important for construction of a general model of self-maintenance and differentiation of immune cells.
Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi
2012-01-01
TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.
A new Tla region antigen Qa-11, similar to Qa-2 and associated with B-type beta 2-microglobulin.
van de Meugheuvel, W; van Seventer, G; Demant, P
1985-04-01
A new antigen, Qa-11, is detected as a 40,000 dalton band in the SDS-PAGE of immunoprecipitates of radiolabeled lymphocyte membrane preparations. In C57BL H-2 congenic strains, its presence is controlled by a gene in the Tla region. In strains with genetic background other than C57BL it is not expressed. Tests with recombinant inbred strains and with H-3 congenic strains show that, in addition to the Tla region, a gene linked to or identical with the beta 2-microglobulin-b-allele is required for the expression of Qa-11 as well. The mobility of the Qa-11 antigen in SDS-PAGE and in isoelectrofocusing is the same as that of Qa-2 antigen. The Cleveland peptide maps of Qa-2 and Qa-11 are identical as well. This finding, that the Tla region controlled Qa-11 antigen is structurally very similar to the Qa-2 antigen, contrasts with the fact that Tla region products do not react with anti-Qa-2 sera. This paradox could be explained by a separate Qa-11 region between Qa-2 and Tla. Alternatively, it is possible that the Qa-11 antigen is the result of the action of a modifying gene in the Tla region upon a Qa-2 gene product, or that the structural gene for Qa-11 is located in the Qa-2 region and a Tla region gene controls its expression.
Yi, Y; Zhang, M; Liu, C
2001-06-01
To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.
Golby, Paul; Nunez, Javier; Cockle, Paul J.; Ewer, Katie; Logan, Karen; Hogarth, Philip; Vordermeier, H. Martin; Hinds, Jason; Hewinson, R. Glyn; Gordon, Stephen V.
2011-01-01
Genome sequencing of Mycobacterium tuberculosis complex members has accelerated the search for new disease-control tools. Antigen mining is one area that has benefited enormously from access to genome data. As part of an ongoing antigen mining programme, we screened genes that were previously identified by transcriptome analysis as upregulated in response to an in vitro acid shock for their in vivo expression profile and antigenicity. We show that the genes encoding two methyltransferases, Mb1438c/Rv1403c and Mb1440c/Rv1404c, were highly upregulated in a mouse model of infection, and were antigenic in M. bovis-infected cattle. As the genes encoding these antigens were highly upregulated in vivo, we sought to define their genetic regulation. A mutant was constructed that was deleted for their putative regulator, Mb1439/Rv1404; loss of the regulator led to increased expression of the flanking methyltransferases and a defined set of distal genes. This work has therefore generated both applied and fundamental outputs, with the description of novel mycobacterial antigens that can now be moved into field trials, but also with the description of a regulatory network that is responsive to both in vivo and in vitro stimuli. PMID:18375799
Johnston, Christopher; Douarre, Pierre E; Soulimane, Tewfik; Pletzer, Daniel; Weingart, Helge; MacSharry, John; Coffey, Aidan; Sleator, Roy D; O'Mahony, Jim
2013-06-01
Subunit and DNA-based vaccines against Mycobacterium avium ssp. paratuberculosis (MAP) attempt to overcome inherent issues associated with whole-cell formulations. However, these vaccines can be hampered by poor expression of recombinant antigens from a number of disparate hosts. The high G+C content of MAP invariably leads to a codon bias throughout gene expression. To investigate if the codon bias affects recombinant MAP antigen expression, the open reading frame of a MAP-specific antigen MptD (MAP3733c) was codon optimised for expression against a Lactobacillus salivarius host. Of the total 209 codons which constitute MAP3733c, 172 were modified resulting in a reduced G+C content from 61% for the native gene to 32.7% for the modified form. Both genes were placed under the transcriptional control of the PnisA promoter; allowing controlled heterologous expression in L. salivarius. Expression was monitored using fluorescence microscopy and microplate fluorometry via GFP tags translationally fused to the C-termini of the two MptD genes. A > 37-fold increase in expression was observed for the codon-optimised MAP3733synth variant over the native gene. Due to the low cost and improved expression achieved, codon optimisation significantly improves the potential of L. salivarius as an oral vaccine stratagem against Johne's disease. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Wide distribution of O157-antigen biosynthesis gene clusters in Escherichia coli.
Iguchi, Atsushi; Shirai, Hiroki; Seto, Kazuko; Ooka, Tadasuke; Ogura, Yoshitoshi; Hayashi, Tetsuya; Osawa, Kayo; Osawa, Ro
2011-01-01
Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.
Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V.S.; Fletcher, Helen A.
2015-01-01
Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination. PMID:26256523
Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A
2015-09-29
The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke
Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period ofmore » pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.« less
Abdizadeh, Rahman; Maraghi, Sharif; Ghadiri, Ata A.; Tavalla, Mehdi; Shojaee, Saeedeh
2015-01-01
Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to one-third of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites and are promising approaches for antigen preparation in vaccine development. PMID:25861441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabuchi, Yoshiaki; Kondo, Takashi; Suzuki, Yoshihisa
2005-04-15
Sertoli TTE3 cells, derived from transgenic mice bearing temperature-sensitive simian virus 40 large T (tsSV40LT)-antigen, proliferated continuously at a permissive temperature (33 deg C) whereas inactivation of the large T-antigen by a nonpermissive temperature (39 deg C) led to differentiation as judged by elevation of transferrin. To clarify the detailed mechanisms of differentiation, we investigated the time course of changes in gene expression using cDNA microarrays. Of the 865 genes analyzed, 14 genes showed increased levels of expression. Real-time quantitative PCR revealed that the mRNA levels of p21{sup waf1}, milk fat globule membrane protein E8, heat-responsive protein 12, and selenoproteinmore » P were markedly elevated. Moreover, the differentiated condition induced by the nonpermissive temperature significantly increased mRNA levels of these four genes in several cell lines from the transgenic mice bearing the oncogene. The present results regarding changes in gene expression will provide a basis for a further understanding of molecular mechanisms of differentiation in both Sertoli cells and cell lines transformed by tsSV40LT-antigen.« less
Westhoff, Connie M.; Uy, Jon Michael; Aguad, Maria; Smeland‐Wagman, Robin; Kaufman, Richard M.; Rehm, Heidi L.; Green, Robert C.; Silberstein, Leslie E.
2015-01-01
BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next‐generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS‐based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data. PMID:26634332
Gorskaya, Yu F; Danilova, T A; Mezentseva, M V; Shapoval, I M; Narovlyanskii, A N; Nesterenko, V G
2011-06-01
Injection of S. typhimurium antigens significantly (9-fold) increased cloning efficiency and, hence, the content of stromal precursor cells in the spleen as soon as after 24 h. These parameters returned to normal by days 6-15 after immunization. Cultured splenocytes collected from immune (but not intact) animals expressed the genes of proinflammatory cytokines IL-1β (on days 1, 6, 15) and IL-6 (on days 1 and 6), TNF-α (on days 6 and 15), and of IFN-α and IL-18 (on days 6 and 15). The expression of IL-4 gene was suppressed on day 6 after immunization, of IL-10 gene on days 1 and 6, of IL-6 gene on day 15. Hence, no signs of immune response suppression by stromal cells were found in this system. The spectrum and dynamics of the expression of pro- and anti-inflammatory cytokine genes in stromal cell cultures from the spleen of immunized mice seemed to correspond to those needed for support of the immune response to S. typhimurium antigens, observed in immunized animals. The results indicate possible involvement of stromal cells in the realization of immune response in vivo. The increase of stromal precursor cells cloning efficiency in response to antigen injection could not be reproduced in vitro: the presence of S. typhimurium antigens in primary cultures of intact mouse bone marrow and spleen throughout the entire period of culturing ≈ 20-fold reduced cloning efficiency in cultures.
Osorio, Manuel; Takeda, Kazuyo; Stibitz, Scott; Kopecko, Dennis J.
2017-01-01
ABSTRACT We have been exploring the use of the live attenuated Salmonella enterica serovar Typhi Ty21a vaccine strain as a versatile oral vaccine vector for the expression and delivery of multiple foreign antigens, including Shigella O-antigens. In this study, we separately cloned genes necessary for the biosynthesis of the Shigella flexneri serotype 2a and 3a O-antigens, which have been shown to provide broad cross-protection to multiple disease-predominant S. flexneri serotypes. The cloned S. flexneri 2a rfb operon, along with bgt and gtrII, contained on the SfII bacteriophage, was sufficient in Ty21a to express the heterologous S. flexneri 2a O-antigen containing the 3,4 antigenic determinants. Further, this rfb operon, along with gtrA, gtrB, and gtrX contained on the Sfx bacteriophage and oac contained on the Sf6 bacteriophage, was sufficient to express S. flexneri 3a O-antigen containing the 6, 7, and 8 antigenic determinants. Ty21a, with these plasmid-carried or chromosomally inserted genes, demonstrated simultaneous and stable expression of homologous S. Typhi O-antigen plus the heterologous S. flexneri O-antigen. Candidate Ty21a vaccine strains expressing heterologous S. flexneri 2a or 3a lipopolysaccharide (LPS) elicited significant serum antibody responses against both homologous S. Typhi and heterologous Shigella LPS and protected mice against virulent S. flexneri 2a or 3a challenges. These new S. flexneri 2a and 3a O-antigen-expressing Ty21a vaccine strains, together with our previously constructed Ty21a strains expressing Shigella sonnei or Shigella dysenteriae 1 O-antigens, have the potential to be used together for simultaneous protection against the predominant causes of shigellosis worldwide as well as against typhoid fever. PMID:29046309
Jäger, Dirk; Unkelbach, Marc; Frei, Claudia; Bert, Florian; Scanlan, Matthew J; Jäger, Elke; Old, Lloyd J; Chen, Yao-Tseng; Knuth, Alexander
2002-06-28
Serological analysis of recombinant cDNA expression libraries (SEREX) has led to the identification of several categories of new tumor antigens. We analyzed a testicular cDNA expression library with serum obtained from a breast cancer patient and isolated 13 genes designated NW-BR-1 through NW-BR-13. Of these, 3 showed tumor-restricted expression (NW-BR-1, -2 and -3), the others being expressed ubiquitously. NW-BR-3, representing 9 of 24 primary clones, showed tissue-restricted mRNA expression, being expressed in normal testis but not in 15 other normal tissues tested by Northern blotting. RT-PCR analysis showed strong NW-BR-3 expression in normal testis, weak expression in brain, kidney, trachea, uterus and normal prostate, and was negative in liver, heart, lung, colon, small intestine, bone marrow, breast, thymus, muscle, spleen, and stomach. NW-BR-3 mRNA expression was found in different tumor tissues and tumor cell lines by RT-PCR, thus showing a 'cancer/testis' (CT)-like mRNA expression pattern. NW-BR-3 shares 71% nucleotide and amino acid homology to a mouse gene cloned from mouse testicular tissue. Based on the mRNA expression pattern, NW-BR-3 represents a new candidate target gene for cancer immunotherapy. NW-BR-1 and NW-BR-2 also showed tumor-restricted mRNA expression. NW-BR-1 is a partial clone of the breast differentiation antigen NY-BR-1 previously identified by SEREX. NY-BR-1 is expressed in normal breast, testis and 80% of breast cancers. NW-BR-2 is identical to the CT antigen SCP-1, initially isolated by SEREX analysis of renal cancer. This study provides further evidence that SEREX is a powerful tool to identify new tumor antigens potentially relevant for immunotherapy approaches.
Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin
2014-01-01
CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IE
Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M
2016-03-01
T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin (I) as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278.
2005-02-01
tissue-specific expression of prostate-specific antigen. Cancer Res. 57: 495–499. 11. Schuur, E. R ., Henderson, G . A., Kmetec, L. A., Miller, J. D...Lamparski, H. G ., and Henderson, D. R . (1996). Prostate-specific antigen expression is regulated by an up- stream enhancer. J. Biol. Chem. 271: 7043...5: 223–232. 29. Blasberg, R . G ., and Tjuvajev, J. G . (1999). Herpes simplex virus thymidine kinase as a marker/reporter gene for PET imaging of gene
Bil-Lula, Iwona; Woźniak, Mieczysław
2018-03-26
Immunocompromised patients are susceptible to multiple viral infections. Relevant interactions between co-infecting viruses might result from viral regulatory genes which trans-activate or repress the expression of host cell genes as well as the genes of any co-infecting virus. The aim of the current study was to show that the replication of human adenovirus 5 is enhanced by co-infection with BK polyomavirus and is associated with increased expression of proteins including early region 4 open reading frame 1 and both the large tumor antigen and small tumor antigen. Clinical samples of whole blood and urine from 156 hematopoietic stem cell transplant recipients were tested. We also inoculated adenocarcinomic human alveolar basal epithelial cells with both human adenovirus 5 and BK polyomavirus to evaluate if co-infection of viruses affected their replication. Data showed that adenovirus load was significantly higher in the plasma (mean 7.5 x 10 3 ± 8.5 x 10 2 copies/ml) and urine (mean 1.9 x 10 3 ± 8.0 x 10 2 copies/ml) of samples from patients with co-infections, in comparison to samples from patients with isolated adenovirus infection. In vitro co-infection led to an increased (8.6 times) expression of the adenovirus early region 4 open reading frame gene 48 hours post-inoculation. The expression of the early region 4 open reading frame gene positively correlated with the expression of BK polyomavirus large tumor antigen (r = 0.90, p < 0.0001) and small tumor antigen (r = 0.83, p < 0.001) genes. The enhanced expression of the early region 4 open reading frame gene due to co-infection with BK polyomavirus was associated with enhanced adenovirus, but not BK polyomavirus, replication. The current study provides evidence that co-infection of adenovirus and BK polyomavirus contributes to enhanced adenovirus replication. Data obtained from this study may have significant importance in the clinical setting.
Evolution of Alternative Adaptive Immune Systems in Vertebrates.
Boehm, Thomas; Hirano, Masayuki; Holland, Stephen J; Das, Sabyasachi; Schorpp, Michael; Cooper, Max D
2018-04-26
Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.
Zheng, Linli; Ge, Yumei; Hu, Weilin; Yan, Jie
2013-03-01
To determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism. OmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays. The bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P <0.01), whereas mRNA levels of leptospiral groEL, mce, loa22 and ligB genes were rapidly but transiently up-regulated (P<0.01). The treatment with closantel and HK-peptide antiserum partly reversed the infection-based down-regulated mRNA levels of lipL21 and lipL48 genes (P <0.01). Moreover, closantel caused a decrease of the infection-based up-regulated mRNA levels of groEL, mce, loa22 and ligB genes (P <0.01). Expression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.
Fan, Xiaohu; Lang, Haili; Zhou, Xianpei; Zhang, Li; Yin, Rong; Maciejko, Jessica; Giannitsos, Vasiliki; Motyka, Bruce; Medin, Jeffrey A.; Platt, Jeffrey L.
2010-01-01
Abstract The ABO histo-blood group system is the most important antigen system in transplantation medicine, yet no small animal model of the ABO system exists. To determine the feasibility of developing a murine model, we previously subcloned the human α-1,2-fucosyltransferase (H-transferase, EC 2.4.1.69) cDNA and the human α-1,3-N-acetylgalactosaminyltransferase (A-transferase, EC 2.4.1.40) cDNA into lentiviral vectors to study their ability to induce human histo-blood group A antigen expression on mouse cells. Herein we investigated the optimal conditions for human A and H antigen expression in murine cells. We determined that transduction of a bicistronic lentiviral vector (LvEF1-AH-trs) resulted in the expression of A antigen in a mouse endothelial cell line. We also studied the in vivo utility of this vector to induce human A antigen expression in mouse liver. After intrahepatic injection of LvEF1-AH-trs, A antigen expression was observed on hepatocytes as detected by immunohistochemistry and real-time RT-PCR. In human group A erythrocyte-sensitized mice, A antigen expression in the liver was associated with tissue damage, and deposition of antibody and complement. These results suggest that this gene transfer strategy can be used to simulate the human ABO blood group system in a murine model. This model will facilitate progress in the development of interventions for ABO-incompatible transplantation and transfusion scenarios, which are difficult to develop in clinical or large animal settings. PMID:20163247
Fujiwara, Hiroshi
2014-02-01
The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.
Ozawa, Keiya
2014-03-01
Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.
Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew
2012-01-01
The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317
Kwon, Deug-Nam; Chang, Byung-Soo; Kim, Jin-Hoi
2014-01-01
Background N-glycolylneuraminic acid (Neu5Gc) is generated by hydroxylation of CMP-Neu5Ac to CMP-Neu5Gc, catalyzed by CMP-Neu5Ac hydroxylase (CMAH). However, humans lack this common mammalian cell surface molecule, Neu5Gc, due to inactivation of the CMAH gene during evolution. CMAH is one of several human-specific genes whose function has been lost by disruption or deletion of the coding frame. It has been suggested that CMAH inactivation has resulted in biochemical or physiological characteristics that have resulted in human-specific diseases. Methodology/Principal Findings To identify differential gene expression profiles associated with the loss of Neu5Gc expression, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip, using the main tissues (lung, kidney, and heart) from control mice and CMP-Neu5Ac hydroxylase (Cmah) gene knock-out mice, respectively. Out of a total of 25,697 genes, 204, 162, and 147 genes were found to be significantly modulated in the lung, kidney, and heart tissues of the Cmah null mouse, respectively. In this study, we examined the gene expression profiles, using three commercial pathway analysis software packages: Ingenuity Pathways Analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Pathway Studio. The gene ontology analysis revealed that the top 6 biological processes of these genes included protein metabolism and modification, signal transduction, lipid, fatty acid, and steroid metabolism, nucleoside, nucleotide and nucleic acid metabolism, immunity and defense, and carbohydrate metabolism. Gene interaction network analysis showed a common network that was common to the different tissues of the Cmah null mouse. However, the expression of most sialytransferase mRNAs of Hanganutziu-Deicher antigen, sialy-Tn antigen, Forssman antigen, and Tn antigen was significantly down-regulated in the liver tissue of Cmah null mice. Conclusions/Significance Mice bearing a human-like deletion of the Cmah gene serve as an important model for the study of abnormal pathogenesis and/or metabolism caused by the evolutionary loss of Neu5Gc synthesis in humans. PMID:25229777
Farza, H; Salmon, A M; Hadchouel, M; Moreau, J L; Babinet, C; Tiollais, P; Pourcel, C
1987-01-01
We have investigated the basis for liver-specific and sex-linked expression of hepatitis B surface antigen (HBsAg) gene in transgenic mice by monitoring the level of liver HBsAg mRNA and serum HBsAg at different stages of development and in response to sex-hormone regulation. Transcription of the HBsAg gene starts at day 15 of development, together with that of the albumin gene, and reaches a comparable level at birth. HBsAg mRNA level and HBsAg production are parallel in males and females during prenatal development and until the first month of life, but HBsAg gene expression increases 5-10 times in males at puberty. After castration, the level of expression decreases dramatically in both males and females and is subsequently increased by injection of testosterone or estradiol. Glucocorticoids also regulated positively expression of the HBsAg gene. Our results suggest that sex hormones play a role in hepatitis B virus gene expression during natural infection and could explain the difference in incidence of chronic carriers between men and women. Images PMID:3469661
Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab
2014-01-01
Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. PMID:24799432
Genetic engineering with T cell receptors.
Zhang, Ling; Morgan, Richard A
2012-06-01
In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.
Elswaifi, Shaadi F; St Michael, Frank; Sreenivas, Avula; Cox, Andrew; Carman, George M; Inzana, Thomas J
2009-10-01
Histophilus somni (Haemophilus somnus) is an important pathogen of cattle that is responsible for respiratory disease, septicemia, and systemic diseases such as thrombotic meningoencephalitis, myocarditis, and abortion. A variety of virulence factors have been identified in H. somni, including compositional and antigenic variation of the lipooligosaccharide (LOS). Phosphorylcholine (ChoP) has been identified as one of the components of H. somni LOS that undergoes antigenic variation. In this study, five genes (lic1ABCD(Hs) and glpQ) with homology to genes responsible for ChoP expression in Haemophilus influenzae LOS were identified in the H. somni genome. An H. somni open reading frame (ORF) with homology to H. influenzae lic1A (lic1A(Hi)) contained a variable number of tandem repeats (VNTR). However, whereas the tetranucleotide repeat 5'-CAAT-3' is present in lic1A(Hi), the VNTR in H. somni lic1A (lic1A(Hs)) consisted of 5'-AACC-3'. Due to the propensity of VNTR to vary during replication and cause the ORF to shift in and out of frame with the upstream start codon, the VNTR were deleted from lic1A(Hs) to maintain the gene constitutively on. This construct was cloned into Escherichia coli, and functional enzyme assays confirmed that lic1A(Hs) encoded a choline kinase, and that the VNTR were not required for expression of a functional gene product. Variation in the number of VNTR in lic1A(Hs) correlated with antigenic variation of ChoP expression in H. somni strain 124P. However, antigenic variation of ChoP expression in strain 738 predominately occurred through variable extension/truncation of the LOS outer core. These results indicated that the lic1(Hs) genes controlled expression of ChoP on the LOS, but that in H. somni there are two potential mechanisms that account for antigenic variation of ChoP.
Elswaifi, Shaadi F.; St. Michael, Frank; Sreenivas, Avula; Cox, Andrew; Carman, George M.; Inzana, Thomas J.
2013-01-01
Histophilus somni (Haemophilus somnus) is an important pathogen of cattle that is responsible for respiratory disease, septicemia, and systemic diseases such as thrombotic meningoencephalitis, myocarditis, and abortion. A variety of virulence factors have been identified in H. somni, including compositional and antigenic variation of the lipooligosaccharide (LOS). Phosphorylcholine (ChoP) has been identified as one of the components of H. somni LOS that undergoes antigenic variation. In this study, five genes (lic1ABCDHs and glpQ) with homology to genes responsible for ChoP expression in Haemophilus influenzae LOS were identified in the H. somni genome. An H. somni open reading frame (ORF) with homology to H. influenzae lic1A (lic1AHi) contained a variable number of tandem repeats (VNTR). However, whereas the tetranucleotide repeat 5′-CAAT-3′ is present in lic1AHi, the VNTR in H. somni lic1A (lic1AHs) consisted of 5′-AACC-3′. Due to the propensity of VNTR to vary during replication and cause the ORF to shift in and out of frame with the upstream start codon, the VNTR were deleted from lic1AHs to maintain the gene constitutively on. This construct was cloned into Escherichia coli, and functional enzyme assays confirmed that lic1AHs encoded a choline kinase, and that the VNTR were not required for expression of a functional gene product. Variation in the number of VNTR in lic1AHs correlated with antigenic variation of ChoP expression in H. somni strain 124P. However, antigenic variation of ChoP expression in strain 738 predominately occurred through variable extension/truncation of the LOS outer core. These results indicated that the lic1Hs genes controlled expression of ChoP on the LOS, but that in H. somni there are two potential mechanisms that account for antigenic variation of ChoP. PMID:19682567
The oncogenic potential of BK-polyomavirus is linked to viral integration into the human genome.
Kenan, Daniel J; Mieczkowski, Piotr A; Burger-Calderon, Raquel; Singh, Harsharan K; Nickeleit, Volker
2015-11-01
It has been suggested that BK-polyomavirus is linked to oncogenesis via high expression levels of large T-antigen in some urothelial neoplasms arising following kidney transplantation. However, a causal association between BK-polyomavirus, large T-antigen expression and oncogenesis has never been demonstrated in humans. Here we describe an investigation using high-throughput sequencing of tumour DNA obtained from an urothelial carcinoma arising in a renal allograft. We show that a novel BK-polyomavirus strain, named CH-1, is integrated into exon 26 of the myosin-binding protein C1 gene (MYBPC1) on chromosome 12 in tumour cells but not in normal renal cells. Integration of the BK-polyomavirus results in a number of discrete alterations in viral gene expression, including: (a) disruption of VP1 protein expression and robust expression of large T-antigen; (b) preclusion of viral replication; and (c) deletions in the non-coding control region (NCCR), with presumed alterations in promoter feedback loops. Viral integration disrupts one MYBPC1 gene copy and likely alters its expression. Circular episomal BK-polyomavirus gene sequences are not found, and the renal allograft shows no productive polyomavirus infection or polyomavirus nephropathy. These findings support the hypothesis that integration of polyomaviruses is essential to tumourigenesis. It is likely that dysregulation of large T-antigen, with persistent over-expression in non-lytic cells, promotes cell growth, genetic instability and neoplastic transformation. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Rozemeijer, Wouter; Fink, Pamela; Rojas, Eduardo; Jones, C Hal; Pavliakova, Danka; Giardina, Peter; Murphy, Ellen; Liberator, Paul; Jiang, Qin; Girgenti, Douglas; Peters, Remco P H; Savelkoul, Paul H M; Jansen, Kathrin U; Anderson, Annaliesa S; Kluytmans, Jan
2015-01-01
Staphylococcus aureus is a versatile pathogen of medical significance, using multiple virulence factors to cause disease. A prophylactic S. aureus 4-antigen (SA4Ag) vaccine comprising capsular polysaccharide (types 5 and 8) conjugates, clumping factor A (ClfA) and manganese transporter C (MntC) is under development. This study was designed to characterize S. aureus isolates recovered from infected patients and also to investigate approaches for examining expression of S. aureus vaccine candidates and the host response during human infection. Confirmation of antigen expression in different disease states is important to support the inclusion of these antigens in a prophylactic vaccine. Hospitalized patients with diagnosed S. aureus wound (27) or bloodstream (24) infections were enrolled. Invasive and nasal carriage S. aureus isolates were recovered and characterized for genotypic diversity. S. aureus antigen expression was evaluated directly by real-time, quantitative, reverse-transcriptase PCR (qRT-PCR) analysis and indirectly by serology using a competitive Luminex immunoassay. Study isolates were genotypically diverse and all had the genes encoding the antigens present in the SA4Ag vaccine. S. aureus nasal carriage was detected in 55% of patients, and in those subjects 64% of the carriage isolates matched the invasive strain. In swab samples with detectable S. aureus triosephosphate isomerase housekeeping gene expression, RNA transcripts encoding the S. aureus virulence factors ClfA, MntC, and capsule polysaccharide were detected by qRT-PCR. Antigen expression was indirectly confirmed by increases in antibody titer during the course of infection from acute to convalescent phase. Demonstration of bacterial transcript expression together with immunological response to the SA4Ag antigens in a clinically relevant patient population provides support for inclusion of these antigens in a prophylactic vaccine.
A transcriptome-based examination of blood group expression
Noh, S.-J.; Lee, Y.T.; Byrnes, C.; Miller, J.L.
2011-01-01
Over the last two decades, red cell biologists witnessed a vast expansion of genetic-based information pertaining to blood group antigens and their carrier molecules. Genetic progress has led to a better comprehension of the associated antigens. To assist with studies concerning the integrated regulation and function of blood groups, transcript levels for each of the 36 associated genes were studied. Profiles using mRNA from directly sampled reticulocytes and cultured primary erythroblasts are summarized in this report. Transcriptome profiles suggest a highly regulated pattern of blood group gene expression during erythroid differentiation and ontogeny. Approximately one-third of the blood group carrier genes are transcribed in an erythroid-specific fashion. Low-level and indistinct expression was noted for most of the carbohydrate-associated genes. Methods are now being developed to further explore and manipulate expression of the blood group genes at all stages of human erythropoiesis. PMID:20685146
Peixoto, António; Evaristo, César; Munitic, Ivana; Monteiro, Marta; Charbit, Alain; Rocha, Benedita; Veiga-Fernandes, Henrique
2007-01-01
To study in vivo CD8 T cell differentiation, we quantified the coexpression of multiple genes in single cells throughout immune responses. After in vitro activation, CD8 T cells rapidly express effector molecules and cease their expression when the antigen is removed. Gene behavior after in vivo activation, in contrast, was quite heterogeneous. Different mRNAs were induced at very different time points of the response, were transcribed during different time periods, and could decline or persist independently of the antigen load. Consequently, distinct gene coexpression patterns/different cell types were generated at the various phases of the immune responses. During primary stimulation, inflammatory molecules were induced and down-regulated shortly after activation, generating early cells that only mediated inflammation. Cytotoxic T cells were generated at the peak of the primary response, when individual cells simultaneously expressed multiple killer molecules, whereas memory cells lost killer capacity because they no longer coexpressed killer genes. Surprisingly, during secondary responses gene transcription became permanent. Secondary cells recovered after antigen elimination were more efficient killers than cytotoxic T cells present at the peak of the primary response. Thus, primary responses produced two transient effector types. However, after boosting, CD8 T cells differentiate into long-lived killer cells that persist in vivo in the absence of antigen. PMID:17485515
Wang, Ping-ping; Pian, Ya-ya; Yuan, Yuan; Zheng, Yu-ling; Jiang, Yong-qiang; Xiong, Zheng-ying
2012-02-01
To amplify the mrp gene of Streptococcus suis type 2 05ZYH33, express it in E.coli BL21 in order to acquire high purity recombinant protein MRP, then evaluate the protective antigen of recombinant protein MRP. Using PCR technology to obtain the product of mrp gene of 05ZYH33, and then cloned it into the expression vector pET28a(+). The recombinant protein was purified by affinity chromatography, later immunized New Zealand rabbit to gain anti-serum, then test the anti-serum titer by ELISA. The opsonophagocytic killing test demonstrated the abilities of protective antigen of MRP. The truncated of MRP recombinant protein in E.coli BL21 expressed by inclusion bodies, and purified it in high purity. After immunoprotection, the survival condition of CD-1 was significantly elevated. The survival rate of wild-type strain 05ZYH33 in blood was apparently decreased after anti-serum opsonophagocyticed, but the mutant delta; MRP showed no differences. MRP represent an important protective antigen activity.
Transformation of an edible crop with the pagA gene of Bacillus anthracis.
Aziz, Mohammad Azhar; Sikriwal, Deepa; Singh, Samer; Jarugula, Sridhar; Kumar, P Anand; Bhatnagar, Rakesh
2005-09-01
Vaccination against anthrax is the most important strategy to combat the disease. This study describes a generation of edible transgenic crop expressing, functional protective antigen (PA). In vitro studies showed that the plant-expressed antigen is qualitatively similar to recombinant PA. Immunization studies in mouse animal models indicated the generation of PA-specific neutralizing antibodies and stressed the need for improving expression levels to generate higher antibody titers. Genetic engineering of a plant organelle offers immense scope for increasing levels of antigen expression. An AT-rich PA gene (pagA) coding for the 83-kDa PA molecule was thus cloned and expressed in tobacco chloroplasts. Biolistics was used for the transformation of a chloroplast genome under a set of optimized conditions. The expression of the pagA gene with 69% AT content was highly favored by an AT-rich chloroplast genome. A multifold expression level of functional PA was obtained as compared with the nuclear transgenic tobacco plants. This report describes for the first time a comprehensive study on generating transgenic plants expressing PA, which may serve as a source of an edible vaccine against anthrax. Two important achievements of expressing PA in an edible crop and use of chloroplast technology to enhance the expression levels are discussed here.
Davis, Melissa B.; Walens, Andrea; Hire, Rupali; Mumin, Kauthar; Brown, Andrea M.; Ford, DeJuana; Howerth, Elizabeth W.; Monteil, Michele
2015-01-01
The Atypical ChemoKine Receptor 1 (ACKR1) gene, better known as Duffy Antigen Receptor for Chemokines (DARC or Duffy), is responsible for the Duffy Blood Group and plays a major role in regulating the circulating homeostatic levels of pro-inflammatory chemokines. Previous studies have shown that one common variant, the Duffy Null (Fy-) allele that is specific to African Ancestry groups, completely removes expression of the gene on erythrocytes; however, these individuals retain endothelial expression. Additional alleles are associated with a myriad of clinical outcomes related to immune responses and inflammation. In addition to allele variants, there are two distinct transcript isoforms of DARC which are expressed from separate promoters, and very little is known about the distinct transcriptional regulation or the distinct functionality of these protein isoforms. Our objective was to determine if the African specific Fy- allele alters the expression pattern of DARC isoforms and therefore could potentially result in a unique signature of the gene products, commonly referred to as antigens. Our work is the first to establish that there is expression of DARC on lymphoblasts. Our data indicates that people of African ancestry have distinct relative levels of DARC isoforms expressed in these cells. We conclude that the expression of both isoforms in combination with alternate alleles yields multiple Duffy antigens in ancestry groups, depending upon the haplotypes across the gene. Importantly, we hypothesize that DARC isoform expression patterns will translate into ancestry-specific inflammatory responses that are correlated with the axis of pro-inflammatory chemokine levels and distinct isoform-specific interactions with these chemokines. Ultimately, this work will increase knowledge of biological mechanisms underlying disparate clinical outcomes of inflammatory-related diseases among ethnic and geographic ancestry groups. PMID:26473357
Liao, Ting-Yu Angela; Lau, Alice; Joseph, Sunil; Hytönen, Vesa; Hmama, Zakaria
2015-01-01
Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb) antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.
Induction of Interferon-Stimulated Genes by Simian Virus 40 T Antigens
Rathi, Abhilasha V.; Cantalupo, Paul G.; Sarkar, Saumendra N.; Pipas, James M.
2010-01-01
Simian virus 40 (SV40) large T antigen (TAg) is a multifunctional oncoprotein essential for productive viral infection and for cellular transformation. We have used microarray analysis to examine the global changes in cellular gene expression induced by wild-type T antigen (TAgwt) and TAg-mutants in mouse embryo fibroblasts (MEFs). The expression profile of approximately 800 cellular genes was altered by TAgwt and a truncated TAg (TAgN136), including many genes that influence cell cycle, DNA-replication, transcription, chromatin structure and DNA repair. Unexpectedly, we found a significant number of immune response genes upregulated by TAgwt including many interferon stimulated genes (ISGs) such as ISG56, OAS, Rsad2, Ifi27 and Mx1. Additionally, we also observed activation of STAT1 by TAgwt. Our genetic studies using several TAg mutants reveal an unexplored function of TAg and indicate that the LXCXE motif and p53 binding are required for the upregulation of ISGs. PMID:20692676
1986-01-01
The UV-induced, C3H fibrosarcoma, 1591, expresses at least three unique MHC class I antigens not found on normal C3H tissue. Here we report the complete DNA sequence of the three novel class I genes encoding these molecules, and describe in detail the recognition of the individual products by tumor-reactive and allospecific CTL. Remarkably, although C3H does not appear to express H-2L locus information, this C3H tumor expresses two distinct antigens, termed A149 and A166, which are extremely homologous to each other and to the H-2Ld antigen from BALB/c. The gene encoding the third novel class I antigen from 1591, A216, is quite homologous to H-2Kk) throughout its 3' end. Since all three of these genes account for polymorphic restriction fragments not found in C3H, it is likely that they were derived by recombination from the endogenous class I genes of C3H. The DNA sequence homology of A149, A166, and H-2Ld is especially significant given the functional conservation observed between the products of these genes. Limited sequence substitutions appear to correlate with some of the discrete serological differences observed between these molecules. In addition, both A149 and A166 crossreact, but to differing extents, with H-2Ld at the level of T cell recognition. Our results are consistent with the view that CTL recognize complex conformational determinants on class I molecules, but extend previous observations by comparing a set of antigens with discrete and overlapping structural and functional differences. PMID:3489061
O'Flaherty, Sarah; Klaenhammer, Todd R
2016-10-15
Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid-based expression systems since expressing antigens from a chromosomal location confers an advantage to the vaccine strains by eliminating the antibiotic maintenance required for plasmids and negates issues with plasmid instability that would result in loss of the antigen. Lactic acid bacteria, including Lactobacillus acidophilus, have shown potential for mucosal vaccine delivery, as L. acidophilus is bile and acid tolerant, allowing transit through the gastrointestinal tract where cells interact with host epithelial and immune cells, including dendritic cells. In this study, we successfully expressed C. botulinum and B. anthracis antigens in the probiotic L. acidophilus strain NCFM. Both antigens were highly expressed individually or in tandem from the chromosome of L. acidophilus. Copyright © 2016 O'Flaherty and Klaenhammer.
Klaenhammer, Todd R.
2016-01-01
ABSTRACT Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. IMPORTANCE Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid-based expression systems since expressing antigens from a chromosomal location confers an advantage to the vaccine strains by eliminating the antibiotic maintenance required for plasmids and negates issues with plasmid instability that would result in loss of the antigen. Lactic acid bacteria, including Lactobacillus acidophilus, have shown potential for mucosal vaccine delivery, as L. acidophilus is bile and acid tolerant, allowing transit through the gastrointestinal tract where cells interact with host epithelial and immune cells, including dendritic cells. In this study, we successfully expressed C. botulinum and B. anthracis antigens in the probiotic L. acidophilus strain NCFM. Both antigens were highly expressed individually or in tandem from the chromosome of L. acidophilus. PMID:27496774
STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors
Hubert, Rene S.; Vivanco, Igor; Chen, Emily; Rastegar, Shiva; Leong, Kahan; Mitchell, Steve C.; Madraswala, Rashida; Zhou, Yanhong; Kuo, James; Raitano, Arthur B.; Jakobovits, Aya; Saffran, Douglas C.; Afar, Daniel E. H.
1999-01-01
In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging. PMID:10588738
Haggerty, Timothy J.; Dunn, Ian S.; Rose, Lenora B.; Newton, Estelle E.; Pandolfi, Franco; Kurnick, James T.
2014-01-01
In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90) share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer. PMID:25503774
Palermo, D A; Evans, T M; Clark, V L
1987-01-01
A gonococcal gene bank maintained in Escherichia coli K-12 was screened by colony immunoblotting, and a transformant expressing a surface antigen reactive to anti-gonococcal outer membrane antiserum was isolated. The isolate carried a recombinant plasmid, pTME6, consisting of approximately 9 kilobases of Neisseria gonorrhoeae DNA inserted into the BamHI site of pBR322. Surface labeling of E. coli HB101(pTME6) confirmed that the antigen was expressed on the E. coli cell surface. The antigenic material was resistant to proteinase K digestion and sensitive to periodate oxidation, indicating that the material was carbohydrate. Purified lipopolysaccharide (LPS) from HB101(pTME6) produced a unique band on silver-stained polyacrylamide gels that contained immunoreactive material as seen on Western blots of LPS samples. Only two of three E. coli LPS mutant strains carrying pTME6 reacted with the antigonococcal antiserum, suggesting that a certain E. coli core structure is necessary for antigen expression. We conclude that pTME6 contains one or more gonococcal genes encoding an LPS core biosynthetic enzyme(s) which can modify E. coli core LPS to produce a gonococcuslike epitope(s). Images PMID:3117695
He, Zhu-Mei; Jiang, Xiao-Ling; Qi, Yu; Luo, Di-Qing
2008-06-01
To assess the utility of the tomato fruit-specific E8 gene's promoter for driving vaccine antigen expression in plant, the 2.2 kb and 1.1 kb E8 promoters were isolated and sequenced from Lycopersicon esculentum cv. Jinfeng #1. The 1.1 kb promoter was fused to vaccine antigen HBsAg M gene for the transfer to Nicotiana tabacum, and the CaMV 35S promoter was used for comparison. Cholera toxin B (ctb) gene under the control of the 1.1 kb promoter was transformed into both N. tabacum and L. esculentum. Southern blot hybridization confirmed the stable integration of the target genes into the tomato and tobacco genomes. ELISA assay showed that the expression product of HBsAg M gene under the control of the 1.1 kb E8 promoter could not be detected in transgenic tobacco tissues such as leaves, flowers, and seeds. In contrast, the expression of HBsAg M gene driven by CaMV 35S promoter could be detected in transgenic tobacco. ELISA assay for CTB proved that the 1.1 kb E8 promoter was able to direct the expression of exotic gene in ripe fruits of transgenic tomato, but expression was absent in leaf, flower, and unripe fruit of tomato, and CTB protein was not detected in transgenic tobacco tissues such as leaves, flowers, and seeds when the gene was under the control of the 1.1 kb E8 promoter. The results indicated that the E8 promoter acted not only in an organ-specific, but also in a species-specific fashion in plant transformation.
Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab
2014-06-01
Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Pim-1: A Molecular Target to Modulate Cellular Resistance to Therapy in Prostate Cancer
2005-10-01
Reiter RE, Lilly MB: Gene expression profiling in R- flurbiprofen -treated prostate cancer: Identification of prostate stem cell antigen as a... flurbiprofen -regulated gene. (submitted, 2006). 51. Holder SL, Zemskova M, Bremner R, Neidigh J, Lilly MB: Identification of specific, cell-permeable...profiling in R- flurbiprofen - treated prostate cancer: Identification of prostate stem cell antigen as a flurbiprofen - regulated gene. (poster
Quakkelaar, Esther D.; Redeker, Anke; Haddad, Elias K.; Harari, Alexandre; McCaughey, Stella Mayo; Duhen, Thomas; Filali-Mouhim, Abdelali; Goulet, Jean-Philippe; Loof, Nikki M.; Ossendorp, Ferry; Perdiguero, Beatriz; Heinen, Paul; Gomez, Carmen E.; Kibler, Karen V.; Koelle, David M.; Sékaly, Rafick P.; Sallusto, Federica; Lanzavecchia, Antonio; Pantaleo, Giuseppe; Esteban, Mariano; Tartaglia, Jim; Jacobs, Bertram L.; Melief, Cornelis J. M.
2011-01-01
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines. PMID:21347234
Functional expression of a cattle MHC class II DR-like antigen on mouse L cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraser, D.C.; Craigmile, S.; Campbell, J.D.M.
1996-09-01
Cattle DRA and DRB genes, cloned by reverse-transcription polymerase chain reaction, were transfected into mouse L cells. The cattle DR-expressing L-cell transfectant generated was analyzed serologically, biochemically, and functionally. Sequence analysis of the transfected DRB gene clearly showed showed that it was DRB3 allele DRB3*0101, which corresponds to the 1D-IEF-determined allele DRBF3. 1D-IEF analysis of the tranfectant confirmed that the expressed DR product was DRBF3. Functional integrity of the transfected gene products was demonstrated by the ability of the transfectant cell line to present two antigens (the foot-and-mouth disease virus-derived peptide FMDV15, and ovalbumin) to antigen-specific CD4{sup +} T cellsmore » from both the original animal used to obtain the genes, and also from an unrelated DRBF3{sup +} heterozygous animal. Such transfectants will be invaluable tools, allowing us to dissect the precise contributions each locus product makes to the overall immune response in heterozygous animals, information essential for rational vaccine design. 45 refs., 5 figs., 1 tab.« less
Andrews, T Daniel; Gojobori, Takashi
2004-01-01
The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow "parallelized" evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.
Ectopic Expression of O Antigen in Bordetella pertussis by a Novel Genomic Integration System
Shinzawa, Naoaki; Nishikawa, Sayaka; Suzuki, Koichiro; Fukui-Miyazaki, Aya
2018-01-01
ABSTRACT We describe a novel genome integration system that enables the introduction of DNA fragments as large as 50 kbp into the chromosomes of recipient bacteria. This system, named BPI, comprises a bacterial artificial chromosome vector and phage-derived gene integration machinery. We introduced the wbm locus of Bordetella bronchiseptica, which is required for O antigen biosynthesis, into the chromosome of B. pertussis, which intrinsically lacks O antigen, using the BPI system. After the introduction of the wbm locus, B. pertussis presented an additional substance in the lipooligosaccharide fraction that was specifically recognized by the anti-B. bronchiseptica antibody but not the anti-B. pertussis antibody, indicating that B. pertussis expressed O antigen corresponding to that of B. bronchiseptica. O antigen-expressing B. pertussis was less sensitive to the bactericidal effects of serum and polymyxin B than the isogenic parental strain. In addition, an in vivo competitive infection assay showed that O antigen-expressing B. pertussis dominantly colonized the mouse respiratory tract over the parental strain. These results indicate that the BPI system provides a means to alter the phenotypes of bacteria by introducing large exogenous DNA fragments. IMPORTANCE Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis, which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant mutant strain of B. pertussis. The present results demonstrate that this system successfully accomplished the above-described purpose. We consider this system to be applicable to a number of bacteria other than Bordetella. PMID:29404410
Ectopic Expression of O Antigen in Bordetella pertussis by a Novel Genomic Integration System.
Ishigaki, Keisuke; Shinzawa, Naoaki; Nishikawa, Sayaka; Suzuki, Koichiro; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko
2018-01-01
We describe a novel genome integration system that enables the introduction of DNA fragments as large as 50 kbp into the chromosomes of recipient bacteria. This system, named BPI, comprises a bacterial artificial chromosome vector and phage-derived gene integration machinery. We introduced the wbm locus of Bordetella bronchiseptica , which is required for O antigen biosynthesis, into the chromosome of B. pertussis , which intrinsically lacks O antigen, using the BPI system. After the introduction of the wbm locus, B. pertussis presented an additional substance in the lipooligosaccharide fraction that was specifically recognized by the anti- B. bronchiseptica antibody but not the anti- B. pertussis antibody, indicating that B. pertussis expressed O antigen corresponding to that of B. bronchiseptica . O antigen-expressing B. pertussis was less sensitive to the bactericidal effects of serum and polymyxin B than the isogenic parental strain. In addition, an in vivo competitive infection assay showed that O antigen-expressing B. pertussis dominantly colonized the mouse respiratory tract over the parental strain. These results indicate that the BPI system provides a means to alter the phenotypes of bacteria by introducing large exogenous DNA fragments. IMPORTANCE Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis , which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant mutant strain of B. pertussis . The present results demonstrate that this system successfully accomplished the above-described purpose. We consider this system to be applicable to a number of bacteria other than Bordetella .
Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.
Hey, Ying-Ying; O'Neill, Helen C
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
Moradi Sardareh, Hemen; Goodarzi, Mohammad Taghi; Yadegar-Azari, Reza; Poorolajal, Jalal; Mousavi-Bahar, Seyed Habibollah; Saidijam, Massoud
2014-11-30
To determine the expression of prostate cancer antigen 3 (PCA3) gene in peripheral blood and urine sediments from patients with prostate cancer (PCa) and benign prostatic hyperplasia (BPH) and normal subjects. A total number of 48 patients [24 with biopsy proven prostate cancer (PCa) and 24 with benign prostate hyperplasia (BPH)] were studied. Twenty-four healthy individuals were also recruited as control group. After blood and urine sampling, total RNA was extracted and cDNA was synthesized. Expression of PCA3 gene was assessed by quantitative reverse transcription polymerase chain reaction. Comparison of PCA3 gene expression between control and BPH groups indicated no statistically significant differences in both urine and blood samples. Patients with PCa demonstrated an increased PCA3 gene expression rate compared to control and BPH groups (10.64 and 7.17 folds, respectively). The rate of fold increased PCA3 gene expression in urine was 20.90, 20.90, and 20.35 in patients with PCa, BPH and normal subjects, respectively. Evaluation of PCA3 gene expression can be considered as a reliable marker for detection of PCa. Increased level of this marker in urine sediments is more sensitive than blood for distinguishing between cancerous and non-cancerous groups.
Herrmann, Amanda C.; Bernatchez, Chantale; Haymaker, Cara; Molldrem, Jeffrey J.; Hong, Waun Ki; Perez-Soler, Roman
2016-01-01
Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR) inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation. PMID:27467256
Ma, Benjiang; Hang, Changshou; Zhao, Yun; Wang, Shiwen; Xie, Yanxiang
2002-09-01
To construct a novel baculovirus vector which is capable of promoting the high-yield expression of foreign gene in mammalian cells and to express by this vector the nucleoprotein (NP) gene of Crimean-Congo hemorrhagic fever virus (CCHFV) Chinese isolate (Xinjiang hemorrhagic fever virus, XHFV) BA88166 in insect and Vero cells. Human cytomegalovirus (CMV) immediate early (IE) promoter was ligated to the baculovirus vector pFastBac1 downstream of the polyhedrin promoter to give rise to the novel vector pCB1. XHFV NP gene was cloned to this vector and was well expressed in COS-7 cells and Vero cells by means of recombinant plasmid transfection and baculovirus infection. The XHFV NP gene in vector pCB1 could be well expressed in mammalian cells. Vero cells infected with recombinant baculovirus harboring NP gene could be employed as antigens to detect XHF serum specimens whose results were in good correlation with those of ELISA and in parallel with clinical diagnoses. This novel baculovirus vector is able to express the foreign gene efficiently in both insect and mammalian cells, which provides not only the convenient diagnostic antigens but also the potential for developing recombinant virus vaccines and gene therapies.
Characterization of HKE2: an ancient antigen encoded in the major histocompatibility complex.
Ostrov, D A; Barnes, C L; Smith, L E; Binns, S; Brusko, T M; Brown, A C; Quint, P S; Litherland, S A; Roopenian, D C; Iczkowski, K A
2007-02-01
Genes at the centromeric end of the human leukocyte antigen region influence adaptive autoimmune diseases and cancer. In this study, we characterized protein expression of HKE2, a gene located in the centromeric portion of the class II region of the major histocompatibility complex encoding subunit 6 of prefoldin. Immunohistochemical analysis using an anti-HKE2 antibody indicated that HKE2 protein expression is dramatically upregulated as a consequence of activation. In a tissue microarray and in several tumors, HKE2 was overexpressed in certain cancers compared with normal counterparts. The localization of the HKE2 gene to the class II region, its cytoplasmic expression and putative protein-binding domain suggest that HKE2 may function in adaptive immunity and cancer.
Antigen processing and presentation: evolution from a bird's eye view.
Kaufman, Jim
2013-09-01
Most detailed knowledge of the MHC outside of mammals has come from studies of chickens, originally due to the economic importance of the poultry industry. We have used our discoveries about the chicken MHC to develop a framework for understanding the evolution of the MHC, based on the importance of genomic organisation for gene co-evolution. In humans, MHC class I molecules are polymorphic and determine the specificity of peptide presentation, while the molecules involved in antigen processing are functionally monomorphic. The genes for tapasin, transporters associated with antigen presentation (TAPs) and inducible proteasome components (LMPs) are located in and beyond the class II region, far away from the class I genes in the class I region. In contrast, chickens express only one class I locus at high levels, which can result in strong MHC associations with resistance to particular infectious pathogens. The chicken TAP and tapasin genes are located very close to the class I genes, and have high levels of allelic polymorphism and moderate sequence diversity, co-evolving their specificities to work optimally with the dominantly expressed class I molecule. The salient features of the chicken MHC are found in many if not most non-mammalian species examined, and are likely to represent the ancestral organisation of the MHC. Comparison with the MHC organisation of humans and typical mammals suggests that a large inversion brought the class III region into the middle of the MHC, separating the antigen processing genes from the class I gene, breaking the co-evolutionary relationships and allowing a multigene family of well-expressed class I genes. Such co-evolution in the primordial MHC was likely responsible for the appearance of the antigen presentation pathways and receptor-ligand interactions at the birth of the adaptive immune system. Of course, much further work is required to understand this evolutionary framework in more detail. Copyright © 2012 Elsevier Ltd. All rights reserved.
Abad-Grau, María del Mar; Fedetz, María; Izquierdo, Guillermo; Lucas, Miguel; Fernández, Óscar; Ndagire, Dorothy; Catalá-Rabasa, Antonio; Ruiz, Agustín; Gayán, Javier; Delgado, Concepción; Arnal, Carmen
2012-01-01
The human leukocyte antigen (HLA) DRB1*1501 has been consistently associated with multiple sclerosis (MS) in nearly all populations tested. This points to a specific antigen presentation as the pathogenic mechanism though this does not fully explain the disease association. The identification of expression quantitative trait loci (eQTL) for genes in the HLA locus poses the question of the role of gene expression in MS susceptibility. We analyzed the eQTLs in the HLA region with respect to MS-associated HLA-variants obtained from genome-wide association studies (GWAS). We found that the Tag of DRB1*1501, rs3135388 A allele, correlated with high expression of DRB1, DRB5 and DQB1 genes in a Caucasian population. In quantitative terms, the MS-risk AA genotype carriers of rs3135388 were associated with 15.7-, 5.2- and 8.3-fold higher expression of DQB1, DRB5 and DRB1, respectively, than the non-risk GG carriers. The haplotype analysis of expression-associated variants in a Spanish MS cohort revealed that high expression of DRB1 and DQB1 alone did not contribute to the disease. However, in Caucasian, Asian and African American populations, the DRB1*1501 allele was always highly expressed. In other immune related diseases such as type 1 diabetes, inflammatory bowel disease, ulcerative colitis, asthma and IgA deficiency, the best GWAS-associated HLA SNPs were also eQTLs for different HLA Class II genes. Our data suggest that the DR/DQ expression levels, together with specific structural properties of alleles, seem to be the causal effect in MS and in other immunopathologies rather than specific antigen presentation alone. PMID:22253788
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hongwei; Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA 22908; Li Jinzhong
PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10{sup 9} PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of themore » luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.« less
Yan, Y; Xu, W; Chen, H; Ma, Z; Zhu, Y; Cai, S
1994-01-01
The partial structure gene encoding ES antigen derived from Trichinella spiralis (TSP) muscle larvae was cloned, characterized, and expressed in E. coli. The target DNA (0.7 kb) was directly obtained from the TSP total RNA by using RNA PCR technique. Based on the analysis with the RE digestion, the fragment was cloned into the fusion expression vector pEX31C. It was shown that a kind of 37kDa fusion protein was expressed in E. coli containing the recombinant plasmid by SDS-PAGE electrophoresis. The expressed protein was over 22% of the total cell protein, and it was aggregated in the form of inclusion bodies in E. coli. The purified protein could be recognized in ELISA both by sera from swine-infected with TSP and by the monoclonal antibody against TSP. These findings suggest that the recombinant protein is a potentially valuable antigen both for immunodiagnosis and vaccine development of trichinellosis.
An Immunological Fingerprint Differentiates Muscular Lymphatics from Arteries and Veins
Bridenbaugh, Eric A.; Wang, Wei; Srimushnam, Maya; Cromer, Walter E.; Zawieja, Scott D.; Schmidt, Susan E.; Jupiter, Daniel C.; Huang, Hung-Chung; Van Buren, Vincent
2013-01-01
Abstract The principal function of the lymphatic system is to transport lymph from the interstitium to the nodes and then from the nodes to the blood. In doing so lymphatics play important roles in fluid homeostasis, macromolecular/antigen transport and immune cell trafficking. To better understand the genes that contribute to their unique physiology, we compared the transcriptional profile of muscular lymphatics (prenodal mesenteric microlymphatics and large, postnodal thoracic duct) to axillary and mesenteric arteries and veins isolated from rats. Clustering of the differentially expressed genes demonstrated that the lymph versus blood vessel differences were more profound than between blood vessels, particularly the microvessels. Gene ontology functional category analysis indicated that microlymphatics were enriched in antigen processing/presentation, IgE receptor signaling, catabolic processes, translation and ribosome; while they were diminished in oxygen transport, regulation of cell proliferation, glycolysis and inhibition of adenylate cyclase activity by G-proteins. We evaluated the differentially expressed microarray genes/products by qPCR and/or immunofluorescence. Immunofluorescence documented that multiple MHC class II antigen presentation proteins were highly expressed by an antigen-presenting cell (APC) type found resident within the lymphatic wall. These APCs also expressed CD86, a co-stimulatory protein necessary for T-cell activation. We evaluated the distribution and phenotype of APCs within the pre and postnodal lymphatic network. This study documents a novel population of APCs resident within the walls of muscular, prenodal lymphatics that indicates novel roles in antigen sampling and immune responses. In conclusion, these prenodal lymphatics exhibit a unique profile that distinguishes them from blood vessels and highlights the role of the lymphatic system as an immunovascular system linking the parenchymal interstitium, lymph nodes and the blood. PMID:24044756
Expression of cancer-testis antigens MAGE-A4 and MAGE-C1 in oral squamous cell carcinoma.
Montoro, José Raphael de Moura Campos; Mamede, Rui Celso Martins; Neder Serafini, Luciano; Saggioro, Fabiano Pinto; Figueiredo, David Livingstone Alves; Silva, Wilson Araújo da; Jungbluth, Achim A; Spagnoli, Giulio Cesare; Zago, Marco Antônio
2012-08-01
Tumor markers are genes or their products expressed exclusively or preferentially in tumor cells and cancer-testis antigens (CTAs) form a group of genes with a typical expression pattern expressed in a variety of malignant neoplasms. CTAs are considered potential targets for cancer vaccines. It is possible that the CTA MAGE-A4 (melanoma antigen) and MAGE-C1 are expressed in carcinoma of the oral cavity and are related with survival. This study involved immunohistochemical analysis of 23 patients with oral squamous cell carcinoma (SCC) and was carried out using antibodies for MAGE-A4 and MAGE-C1. Fisher's exact test and log-rank test were used to evaluate the results. The expression of the MAGE-A4 and MAGE-C1 were 56.5% and 47.8% without statistical difference in studied variables and survival. The expression of at least 1 CTA was present in 78.3% of the patients, however, without correlation with clinicopathologic variables and survival. Copyright © 2011 Wiley Periodicals, Inc.
Characterization of a gene coding for a type IIo bacterial IgG-binding protein.
Boyle, M D; Weber-Heynemann, J; Raeder, R; Podbielski, A
1995-06-01
Two antigenic classes of non-immune IgG-binding proteins can be expressed by group A streptococci. One antigenic group of proteins is recognized by an antibody prepared against the product of a cloned fcrA gene (anti-FcRA). In this study, the immunogen used to prepare the antibody that defines the second antigenic class was shown to be the product of the emm-like (emmL) gene of M serotype 55 group A isolate, A928. The emmL55 gene expressed in E. coli produced an M(r) approximately 58,000 molecule which bound human IgG1, IgG2, IgG3 and IgG4, as well as horse, rabbit and pig IgG in a non-immune fashion. These properties are characteristic of the previously described type IIo IgG-binding protein isolated from this strain. In addition, the recombinant protein was reactive with human serum albumin and fibrinogen. The emmL 55 gene sequence was analysed and found to have the organization and sequence characteristics of a typical class I emm-like gene.
Long, Meixiao; Slaiby, Aaron M.; Wu, Shuang; Hagymasi, Adam T.; Mihalyo, Marianne A.; Bandyopadhyay, Suman; Vella, Anthony T.; Adler, Adam J.
2010-01-01
When naive CD4+ Th cells encounter cognate pathogen-derived Ags they expand and develop the capacity to express the appropriate effector cytokines for neutralizing the pathogen. Central to this differentiation process are epigenetic modifications within the effector cytokine genes that allow accessibility to the transcriptional machinery. In contrast, when mature self-reactive CD4 cells encounter their cognate epitopes in the periphery they generally undergo a process of tolerization in which they become hyporesponsive/anergic to antigenic stimulation. In the current study, we used a TCR transgenic adoptive transfer system to demonstrate that in a dose-dependent manner parenchymal self-Ag programs cognate naive CD4 cells to acetylate histones bound to the promoter region of the Ifng gene (which encodes the signature Th1 effector cytokine) during peripheral tolerization. Although the Ifng gene gains transcriptional competence, these tolerized CD4 cells fail to express substantial amounts of IFN-γ in response to antigenic stimulation apparently because a blockage in TCR-mediated signaling also develops. Nevertheless, responsiveness to antigenic stimulation is partially restored when self-Ag-tolerized CD4 cells are retransferred into mice infected with a virus expressing the same Ag. Additionally, there is preferential boosting in the ability of these CD4 cells to express IFN-γ relative to other cytokines with expression that also becomes impaired. Taken together, these results suggest that epigenetic modification of the Ifng locus during peripheral CD4 cell tolerization might allow for preferential expression of IFN-γ during recovery from tolerance. PMID:17947638
2008-05-01
adoptive therapy using CD19- specific chimeric antigen receptor re-directed T cells for recurrent/refractory follicular lymphoma. Mol Ther...T- cell therapies for B- cell malignancies we have developed a chimeric antigen receptor (CAR) which when expressed on the cell surface redirects T...that both CD4+ and CD8+ T cells expressing CD19-specific chimeric antigen receptor (CAR) can be generated usmg a novel non-viral gene
Pohl, Mary Ann; Kienesberger, Sabine; Blaser, Martin J
2012-04-01
Lewis (Le) antigens are fucosylated oligosaccharides present in the Helicobacter pylori lipopolysaccharide. Expression of these antigens is believed to be important for H. pylori colonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galT is essential for production of type 1 (Le(a) and Le(b)) antigens. The upstream gene jhp0562, which is present in many but not all H. pylori strains, is homologous to β-(1,3)galT but is of unknown function. Because H. pylori demonstrates extensive intragenomic recombination, we hypothesized that these two genes could undergo DNA rearrangement. A PCR screen and subsequent sequence analyses revealed that the two genes can recombine at both the 5' and 3' ends. Chimeric β-(1,3)galT-like alleles can restore function in a β-(1,3)galT null mutant, but neither native nor recombinant jhp0562 can. Mutagenesis of jhp0562 revealed that it is essential for synthesis of both type 1 and type 2 Le antigens. Transcriptional analyses of both loci showed β-(1,3)galT expression in all wild-type (WT) and mutant strains tested, whereas jhp0562 was not expressed in jhp0562 null mutants, as expected. Since jhp0562 unexpectedly displayed functions in both type 1 and type 2 Le synthesis, we asked whether galT, part of the type 2 synthesis pathway, had analogous functions in type 1 synthesis. Mutagenesis and complementation analysis confirmed that galT is essential for Le(b) production. In total, these results demonstrate that galT and jhp0562 have functions that cross the expected Le synthesis pathways and that jhp0562 provides a substrate for intragenomic recombination to generate diverse Le synthesis enzymes.
Kienesberger, Sabine; Blaser, Martin J.
2012-01-01
Lewis (Le) antigens are fucosylated oligosaccharides present in the Helicobacter pylori lipopolysaccharide. Expression of these antigens is believed to be important for H. pylori colonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galT is essential for production of type 1 (Lea and Leb) antigens. The upstream gene jhp0562, which is present in many but not all H. pylori strains, is homologous to β-(1,3)galT but is of unknown function. Because H. pylori demonstrates extensive intragenomic recombination, we hypothesized that these two genes could undergo DNA rearrangement. A PCR screen and subsequent sequence analyses revealed that the two genes can recombine at both the 5′ and 3′ ends. Chimeric β-(1,3)galT-like alleles can restore function in a β-(1,3)galT null mutant, but neither native nor recombinant jhp0562 can. Mutagenesis of jhp0562 revealed that it is essential for synthesis of both type 1 and type 2 Le antigens. Transcriptional analyses of both loci showed β-(1,3)galT expression in all wild-type (WT) and mutant strains tested, whereas jhp0562 was not expressed in jhp0562 null mutants, as expected. Since jhp0562 unexpectedly displayed functions in both type 1 and type 2 Le synthesis, we asked whether galT, part of the type 2 synthesis pathway, had analogous functions in type 1 synthesis. Mutagenesis and complementation analysis confirmed that galT is essential for Leb production. In total, these results demonstrate that galT and jhp0562 have functions that cross the expected Le synthesis pathways and that jhp0562 provides a substrate for intragenomic recombination to generate diverse Le synthesis enzymes. PMID:22290141
[Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].
Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua
2013-02-01
To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.
Larson, Sarah M; Truscott, Laurel C; Chiou, Tzu-Ting; Patel, Amie; Kao, Roy; Tu, Andy; Tyagi, Tulika; Lu, Xiang; Elashoff, David; De Oliveira, Satiro N
2017-05-04
Patients with refractory or recurrent B-lineage hematologic malignancies have less than 50% of chance of cure despite intensive therapy and innovative approaches are needed. We hypothesize that gene modification of haematopoietic stem cells (HSC) with an anti-CD19 chimeric antigen receptor (CAR) will produce a multi-lineage, persistent immunotherapy against B-lineage malignancies that can be controlled by the HSVsr39TK suicide gene. High-titer third-generation self-inactivating lentiviral constructs were developed to deliver a second-generation CD19-specific CAR and the herpes simplex virus thymidine kinase HSVsr39TK to provide a suicide gene to allow ablation of gene-modified cells if necessary. Human HSC were transduced with such lentiviral vectors and evaluated for function of both CAR and HSVsr39TK. Satisfactory transduction efficiency was achieved; the addition of the suicide gene did not impair CAR expression or antigen-specific cytotoxicity, and determined marked cytotoxicity to ganciclovir. NSG mice transplanted with gene-modified human HSC showed CAR expression not significantly different between transduced cells with or without HSVsr39TK, and expression of anti-CD19 CAR conferred anti-tumor survival advantage. Treatment with ganciclovir led to significant ablation of gene-modified cells in mouse tissues. Haematopoietic stem cell transplantation is frequently part of the standard of care for patients with relapsed and refractory B cell malignancies; following HSC collection, a portion of the cells could be modified to express the CD19-specific CAR and give rise to a persistent, multi-cell lineage, HLA-independent immunotherapy, enhancing the graft-versus-malignancy activity.
Sayej, Wael N; Foster, Christopher; Jensen, Todd; Chatfield, Sydney; Finck, Christine
2018-06-12
The role of epithelial cells in eosinophilic esophagitis (EoE) is not well understood. In this study, our aim was to isolate, culture, and expand esophageal epithelial cells obtained from patients with or without EoE and characterize differences observed over time in culture. Biopsies were obtained at the time of endoscopy from children with EoE or suspected to have EoE. We established patient-derived esophageal epithelial cell (PDEEC) lines utilizing conditional reprogramming methods. We determined integrin profiles, gene expression, MHC class II expression, and reactivity to antigen stimulation. The PDEECs were found to maintain their phenotype over several passages. There were differences in integrin profiles and gene expression levels in EoE-Active compared to normal controls and EoE-Remission patients. Once stimulated with antigens, PDEECs express MHC class II molecules on their surface, and when co-cultured with autologous T-cells, there is increased IL-6 and TNF-α secretion in EoE-Active patients vs. controls. We are able to isolate, culture, and expand esophageal epithelial cells from pediatric patients with and without EoE. Once stimulated with antigens, these cells express MHC class II molecules and behave as non-professional antigen-presenting cells. This method will help us in developing an ex vivo, individualized, patient-specific model for diagnostic testing for causative antigens.
Hovey, Adriann M.; Devor, Eric J.; Breheny, Patrick J.; Mott, Sarah L.; Dai, Donghai; Thiel, Kristina W.; Leslie, Kimberly K.
2015-01-01
Cancer-testis (CT) antigens are a large family of genes that are selectively expressed in human testis germ cells, overexpressed in a variety of tumors and predominantly located on the X chromosome. To date, all known CT antigens are protein-coding genes. Here, we identify miR-888 as the first miRNA with features characteristic of a CT antigen. In a panel of 21 normal human tissues, miR-888 expression was high in testes and minimal or absent in all other examined tissues. In situ hybridization localized miR-888 expression specifically to the early stages of sperm development within the testes. Using The Cancer Genome Atlas database, we discovered that miR-888 was predominately expressed in endometrial tumors, with a significant association to high-grade tumors and increased percent invasion. In a separate panel of endometrial tumor specimens, we validated overexpression of miR-888 by real-time polymerase chain reaction. In addition, miR-888 expression was highest in endometrial carcinosarcoma, a rare and aggressive type of endometrial tumor. Moreover, we identified the progesterone receptor (PR), a potent endometrial tumor suppressor, as a direct target of miR-888. These data define miR-888 as the first miRNA CT antigen and a potential mediator of an aggressive endometrial tumor phenotype through down-regulation of PR. PMID:25926074
Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach.
Fontenla, Francisco; Blanco-Abad, Verónica; Pardo, Belén G; Folgueira, Iria; Noia, Manuel; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José M; Lamas, Jesús
2016-07-01
We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparative gene expression profiling of rat strains with genetic predisposition to diverse cardiovascular diseases can help decode the transcriptional program that governs cellular behavior. We hypothesized that co-transcribed, intra-pathway, functionally coherent genes can be r...
1991-01-01
8217 terminus of E. When the recombinant virus was grown in Spodoptera frugiperda cells. about I mg of E antigen was made per 10’ cells. Recombinant E antigen...assay with DEN-I virus coprotein gene and its expression in Spodoptera hyperimmune mouse ascitic fluid. This heat-in- frugiperda cells activated...immunization, S. frugiperda cells infected with tion with BstNI (cuts at nucleotides 801 and recombinant baculovirus were pelleted. lysed by 2150). The
Lemieux, Jacob E; Kyes, Sue A; Otto, Thomas D; Feller, Avi I; Eastman, Richard T; Pinches, Robert A; Berriman, Matthew; Su, Xin-zhuan; Newbold, Chris I
2013-01-01
Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites. PMID:23980881
Kim, Hee Jin; Prithiviraj, Kalyani; Groathouse, Nathan; Brennan, Patrick J; Spencer, John S
2013-02-01
The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called "hypothetical unknowns." Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy.
Prithiviraj, Kalyani; Groathouse, Nathan; Brennan, Patrick J.; Spencer, John S.
2013-01-01
The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called “hypothetical unknowns.” Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy. PMID:23239802
A virus vector based on Canine Herpesvirus for vaccine applications in canids.
Strive, T; Hardy, C M; Wright, J; Reubel, G H
2007-01-31
Canine Herpesvirus (CHV) is being developed as a virus vector for the vaccination of European red foxes. However, initial studies using recombinant CHV vaccines in foxes revealed viral attenuation and lack of antibody response to inserted foreign antigens. These findings were attributed both to inactivation of the thymidine kinase (TK) gene and excess foreign genetic material in the recombinant viral genome. In this study, we report an improved CHV-bacterial artificial chromosome (BAC) vector system designed to overcome attenuation in foxes. A non-essential region was identified in the CHV genome as an alternative insertion site for foreign genes. Replacement of a guanine/cytosine (GC)-rich intergenic region between UL21 and UL22 of CHV with a marker gene did not change growth behaviour in vitro, showing that this region is not essential for virus growth in cell culture. We subsequently produced a CHV-BAC vector with an intact TK gene in which the bacterial genes and the antigen expression cassette were inserted into this GC-rich locus. Unlike earlier constructs, the new CHV-BAC allowed self-excision of the bacterial genes via homologous recombination after transfection of BACs into cell culture. The BAC-CHV system was used to produce a recombinant virus that constitutively expressed porcine zona pellucida subunit C protein between the UL21 and UL22 genes of CHV. Complete self-excision of the bacterial genes from CHV was achieved within one round of replication whilst retaining antigen gene expression.
He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu
2011-08-01
Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.
Yang, XinChao; Li, MengHui; Liu, JianHua; Ji, YiHong; Li, XiangRui; Xu, LiXin; Yan, RuoFeng; Song, XiaoKai
2017-02-16
Eimeria maxima is one of the most prevalent Eimeria species causing avian coccidiosis, and results in huge economic loss to the global poultry industry. Current control strategies, such as anti-coccidial medication and live vaccines have been limited because of their drawbacks. The third generation anticoccidial vaccines including the recombinant vaccines as well as DNA vaccines have been suggested as a promising alternative strategy. To date, only a few protective antigens of E. maxima have been reported. Hence, there is an urgent need to identify novel protective antigens of E. maxima for the development of neotype anticoccidial vaccines. With the aim of identifying novel protective genes of E. maxima, a cDNA expression library of E. maxima sporozoites was constructed using Gateway technology. Subsequently, the cDNA expression library was divided into 15 sub-libraries for cDNA expression library immunization (cDELI) using parasite challenged model in chickens. Protective sub-libraries were selected for the next round of screening until individual protective clones were obtained, which were further sequenced and analyzed. Adopting the Gateway technology, a high-quality entry library was constructed, containing 9.2 × 10 6 clones with an average inserted fragments length of 1.63 kb. The expression library capacity was 2.32 × 10 7 colony-forming units (cfu) with an average inserted fragments length of 1.64 Kb. The expression library was screened using parasite challenged model in chickens. The screening yielded 6 immune protective genes including four novel protective genes of EmJS-1, EmRP, EmHP-1 and EmHP-2, and two known protective genes of EmSAG and EmCKRS. EmJS-1 is the selR domain-containing protein of E. maxima whose function is unknown. EmHP-1 and EmHP-2 are the hypothetical proteins of E. maxima. EmRP and EmSAG are rhomboid-like protein and surface antigen glycoproteins of E. maxima respectively, and involved in invasion of the parasite. Our results provide a cDNA expression library for further screening of T cell stimulating or inhibiting antigens of E. maxima. Moreover, our results provide six candidate protective antigens for developing new vaccines against E. maxima.
Bryant, Jessica M; Regnault, Clément; Scheidig-Benatar, Christine; Baumgarten, Sebastian; Guizetti, Julien; Scherf, Artur
2017-07-11
Plasmodium falciparum relies on monoallelic expression of 1 of 60 var virulence genes for antigenic variation and host immune evasion. Each var gene contains a conserved intron which has been implicated in previous studies in both activation and repression of transcription via several epigenetic mechanisms, including interaction with the var promoter, production of long noncoding RNAs (lncRNAs), and localization to repressive perinuclear sites. However, functional studies have relied primarily on artificial expression constructs. Using the recently developed P. falciparum clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we directly deleted the var2csa P. falciparum 3D7_1200600 (Pf3D7_1200600) endogenous intron, resulting in an intronless var gene in a natural, marker-free chromosomal context. Deletion of the var2csa intron resulted in an upregulation of transcription of the var2csa gene in ring-stage parasites and subsequent expression of the PfEMP1 protein in late-stage parasites. Intron deletion did not affect the normal temporal regulation and subsequent transcriptional silencing of the var gene in trophozoites but did result in increased rates of var gene switching in some mutant clones. Transcriptional repression of the intronless var2csa gene could be achieved via long-term culture or panning with the CD36 receptor, after which reactivation was possible with chondroitin sulfate A (CSA) panning. These data suggest that the var2csa intron is not required for silencing or activation in ring-stage parasites but point to a subtle role in regulation of switching within the var gene family. IMPORTANCE Plasmodium falciparum is the most virulent species of malaria parasite, causing high rates of morbidity and mortality in those infected. Chronic infection depends on an immune evasion mechanism termed antigenic variation, which in turn relies on monoallelic expression of 1 of ~60 var genes. Understanding antigenic variation and the transcriptional regulation of monoallelic expression is important for developing drugs and/or vaccines. The var gene family encodes the antigenic surface proteins that decorate infected erythrocytes. Until recently, studying the underlying genetic elements that regulate monoallelic expression in P. falciparum was difficult, and most studies relied on artificial systems such as episomal reporter genes. Our study was the first to use CRISPR/Cas9 genome editing for the functional study of an important, conserved genetic element of var genes-the intron-in an endogenous, episome-free manner. Our findings shed light on the role of the var gene intron in transcriptional regulation of monoallelic expression. Copyright © 2017 Bryant et al.
Cheng, Keding; Chui, Huixia; Domish, Larissa; Sloan, Angela; Hernandez, Drexler; McCorrister, Stuart; Robinson, Alyssia; Walker, Matthew; Peterson, Lorea A M; Majcher, Miles; Ratnam, Sam; Haldane, David J M; Bekal, Sadjia; Wylie, John; Chui, Linda; Tyler, Shaun; Xu, Bianli; Reimer, Aleisha; Nadon, Celine; Knox, J David; Wang, Gehua
2016-08-01
Mass spectrometry-based phenotypic H-antigen typing (MS-H) combined with whole-genome-sequencing-based genetic identification of H antigens, O antigens, and toxins (WGS-HOT) was used to type 60 clinical Escherichia coli isolates, 43 of which were previously identified as nonmotile, H type undetermined, or O rough by serotyping or having shown discordant MS-H and serotyping results. Whole-genome sequencing confirmed that MS-H was able to provide more accurate data regarding H antigen expression than serotyping. Further, enhanced and more confident O antigen identification resulted from gene cluster based typing in combination with conventional typing based on the gene pair comprising wzx and wzy and that comprising wzm and wzt The O antigen was identified in 94.6% of the isolates when the two genetic O typing approaches (gene pair and gene cluster) were used in conjunction, in comparison to 78.6% when the gene pair database was used alone. In addition, 98.2% of the isolates showed the existence of genes for various toxins and/or virulence factors, among which verotoxins (Shiga toxin 1 and/or Shiga toxin 2) were 100% concordant with conventional PCR based testing results. With more applications of mass spectrometry and whole-genome sequencing in clinical microbiology laboratories, this combined phenotypic and genetic typing platform (MS-H plus WGS-HOT) should be ideal for pathogenic E. coli typing. Copyright © 2016 Cheng et al.
Burns, William R.; Zhao, Yangbing; Frankel, Timothy L.; Hinrichs, Christian S.; Zheng, Zhili; Xu, Hui; Feldman, Steven A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.
2011-01-01
Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express HLA class I antigen restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight-melanoma associated antigen (HMW-MAA), which is highly expressed on over 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody (mAb) 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3ζ activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA expressing cell lines. Furthermore, the receptor functioned in both CD4+ and CD8+ cells, was non-MHC-restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies. PMID:20395199
Liu, Jiabin; Behrens, Timothy W.; Kearney, John F.
2014-01-01
Marginal Zone (MZ) B cells play an important role in the clearance of blood-borne bacterial infections via rapid T-independent IgM responses. We have previously demonstrated that MZ B cells respond rapidly and robustly to bacterial particulates. To determine the MZ-specific genes that are expressed to allow for this response, MZ and Follicular (FO) B cells were sort-purified and analyzed via DNA microarray analysis. We identified 181 genes that were significantly different between the two B cell populations. 99 genes were more highly expressed in MZ B cells while 82 genes were more highly expressed in FO B cells. To further understand the molecular mechanisms by which MZ B cells respond so rapidly to bacterial challenge, idiotype positive and negative MZ B cells were sort-purified before (0 hour) or after (1 hour) i.v. immunization with heat killed Streptococcus pneumoniae, R36A, and analyzed via DNA microarray analysis. We identified genes specifically up regulated or down regulated at 1 hour following immunization in the idiotype positive MZ B cells. These results give insight into the gene expression pattern in resting MZ vs. FO B cells and the specific regulation of gene expression in antigen-specific MZ B cells following interaction with antigen. PMID:18453586
T-cell receptor revision: friend or foe?
Hale, J Scott; Fink, Pamela J
2010-04-01
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue.
Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy.
Faramarzi, Sepideh; Ghafouri-Fard, Soudeh
2017-09-01
Prostate cancer is a prevalent disorder among men with a heterogeneous etiological background. Several molecular events and signaling perturbations have been found in this disorder. Among genes whose expressions have been altered during the prostate cancer development are cancer-testis antigens (CTAs). This group of antigens has limited expression in the normal adult tissues but aberrant expression in cancers. This property provides them the possibility to be used as cancer biomarkers and immunotherapeutic targets. Several CTAs have been shown to be immunogenic in prostate cancer patients and some of the have entered clinical trials. Based on the preliminary data obtained from these trials, it is expected that CTA-based therapeutic options are beneficial for at least a subset of prostate cancer patients.
Trefoil factor 2 (TFF2) deficiency in murine digestive tract influences the immune system.
Baus-Loncar, Mirela; Schmid, Janinne; Lalani, El-Nasir; Rosewell, Ian; Goodlad, Robert A; Stamp, Gordon W H; Blin, Nikolaus; Kayademir, Tuncay
2005-01-01
The gastrointestinal trefoil factor family (TFF1, TFF2, TFF3) peptides are considered to play an important role in maintaining the integrity of the mucosa. The physiological role of TFF2 in the protection of the GI tract was investigated in TFF2 deficiency. TFF2-/- mice were generated and differential expression of various genes was assessed by using a mouse expression microarray, quantitative real time PCR, Northern blots or immunohistochemistry. On an mRNA level we found 128 differentially expressed genes. We observed modulation of a number of crucial genes involved in innate and adaptive immunity in the TFF2-/- mice. Expression of proteasomal subunits genes (LMP2, LMP7 and PSMB5) involved in the MHC class I presentation pathway were modulated indicating the formation of immunoproteasomes improving antigen presentation. Expression of one subunit of a transporter (TAP1) responsible for importing degraded antigens into ER was increased, similarly to the BAG2 gene that modulates chaperone activity in ER helping proper loading on MHC class I molecules. Several mouse defensin (cryptdin) genes coding important intestinal microbicidal proteins were up-regulated as a consequence of TFF2 deficiency. Normally moderate expression of TFF3 was highly increased in stomach. Copyright (c) 2005 S. Karger AG, Basel.
NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability
Sommermeyer, Daniel; Conrad, Heinke; Krönig, Holger; Gelfort, Haike; Bernhard, Helga; Uckert, Wolfgang
2013-01-01
The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy. PMID:22907642
[Search for protective antigens in Ixodes persulcatus (ixodidae) salivary gland extracts].
Shtannikov, A V; Reshetniak, T V; Repolovskaia, T V; Panfertsev, E A; Perovskaia, O N; Gutova, V P; Vasil'eva, I S; Ershova, A S; Prilipov, A G; Biketov, S F; Zeidner, N
2010-01-01
RT-PCR evaluation of the activity of eight Ixodes persulcatus salivary gland genes shows clear distinctions in their expression depending of the stage of tick feeding. Out of them, only Salp 10 and Salp 15 proteins may be regarded as candidates for protective antigens to develop anti-tick and anti-Borrelia vaccines. Firstly they play an important role in feeding a tick and modifying a host's immune response. Secondly, the increasing expression of the salp 10 and salp 10 genes begins at early tick feeding stages. Thirdly, the activity of these genes increases with the beginning of feeding by tens and hundreds times and keeps at this level until the third tick feeding stage is over.
[Construction and expression of the targeting super-antigen EGF-SEA fusion gene].
Xie, Yang; Peng, Shaoping; Liao, Zhiying; Liu, Jiafeng; Liu, Xuemei; Chen, Weifeng
2014-05-01
To construct expression vector for the SEA-EGF fusion gene. Clone the SEA gene and the EGF gene segment with PCR and RT-PCR independently, and connect this two genes by the bridge PCR. Insert the fusion gene EGF-SEA into the expression vector PET-44. Induced the secretion of the fusion protein SEA-EGF by the antileptic. The gene fragment encoding EGF and SEA mature peptide was successfully cloned. The fusion gene EGF-SEA was successfully constructed and was inserted into expression vector. The new recombinant expression vector for fusion gene EGF-SEA is specific for head and neck cancer, laid the foundation for the further study of fusion protein SEA-EGF targeting immune therapy in head and neck tumors.
Garmory, Helen S; Griffin, Kate F; Brown, Katherine A; Titball, Richard W
2003-06-20
Bubonic and pneumonic plague are caused by the bacterium Yersinia pestis. The V antigen of Y. pestis is a protective antigen against plague. In this study, an aroA attenuated strain of Salmonella enterica serovar Typhimurium (SL3261) has been used to deliver the Y. pestis V antigen as a candidate oral plague vaccine. SL3261 was transformed with the expression plasmid pTrc-LcrV, containing the lcrV gene encoding V antigen. Immunoblot analysis showed V antigen expression in SL3261 in vitro and intragastric immunisation of mice with the recombinant Salmonella resulted in the induction of V antigen-specific serum antibody responses and afforded protection against Y. pestis challenge. However, the antibody responses induced by the recombinant Salmonella did not correlate with the protection afforded, indicating that immune responses other than antibody may play a role in the protection afforded against plague by this candidate vaccine.
Stable expression of hepatitis delta virus antigen in a eukaryotic cell line.
Macnaughton, T B; Gowans, E J; Reinboth, B; Jilbert, A R; Burrell, C J
1990-06-01
The gene encoding the hepatitis delta virus structural antigen (HDAg) was linked to a neomycin resistance gene in a retrovirus expression vector, and human HepG2 cells were transfected with the recombinant plasmid. A stable cell line was cloned that expressed HDAg in the nuclei of 100% of cells, in a pattern indicating a close relationship with cell nucleoli. Analysis of partially purified recombinant HDAg by HPLC showed an Mr in the range of 7 x 10(5) to 2 x 10(6), which appeared to contain conformation-dependent epitopes, whereas the density of the antigen was 1.19 g/ml by equilibrium centrifugation in caesium chloride, and in rate zonal centrifugation it sedimented with a value of 50S, close to that of particulate hepatitis B virus surface antigen. Immunoblotting demonstrated a single polypeptide with an Mr of 24K which corresponded to the smaller of the two HDAg-specific polypeptides present in infected sera. The recombinant HDAg polypeptide was shown to be a RNA-binding protein with specificity for both genomic and antigenomic species of hepatitis delta virus RNA.
Manoharan, Herbert; Babcock, Karlee; Willi, Jonathan; Pitot, Henry C
2003-09-01
Previous studies in this laboratory have demonstrated that the earliest cytogenetic alteration in the development of hepatic neoplasms in a transgenic strain of rats bearing the albumin Simian virus 40 T antigen (Alb SV40 T Ag) construct was a duplication of the chromosome 1q4.1-1q4.2 band. In this region, in the rat genome a cluster of linked imprinted genes occurs. One of these imprinted genes, H19, which is expressed in fetal liver but not in adult liver, was found to be expressed in virtually all neoplasms investigated. A single-nucleotide polymorphic marker in the H19 coding sequence was identified in two rat strains and utilized for the investigation of H19 imprinting. Our results reveal monoallelic expression of the maternal gene in fetal liver, but biallelic expression of the H19 gene in liver neoplasms, thus demonstrating the basis for the deregulation of the imprinted gene expression during hepatocarcinogenesis. These results suggest that the loss of genomic imprinting of the H19 gene found in the liver neoplasms of the Alb SV40 T Ag rat may result not from allelic loss, but from adverse changes in the epigenetic imprints present in the 5'-upstream region of the H19 promoter of the parental alleles. Copyright 2003 Wiley-Liss, Inc.
Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum
Artzy-Randrup, Yael; Rorick, Mary M; Day, Karen; Chen, Donald; Dobson, Andrew P; Pascual, Mercedes
2012-01-01
The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI: http://dx.doi.org/10.7554/eLife.00093.001 PMID:23251784
Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu
2013-05-01
Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.
Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus
NASA Astrophysics Data System (ADS)
Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard
1984-04-01
The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.
Expression of Chicken DEC205 Reflects the Unique Structure and Function of the Avian Immune System
Staines, Karen; Young, John R.; Butter, Colin
2013-01-01
The generation of appropriate adaptive immune responses relies critically on dendritic cells, about which relatively little is known in chickens, a vital livestock species, in comparison with man and mouse. We cloned and sequenced chicken DEC205 cDNA and used this knowledge to produce quantitative PCR assays and monoclonal antibodies to study expression of DEC205 as well as CD83. The gene structure of DEC205 was identical to those of other species. Transcripts of both genes were found at higher levels in lymphoid tissues and the expression of DEC205 in normal birds had a characteristic distribution in the primary lymphoid organs. In spleen, DEC205 was seen on cells ideally located to trap antigen. In thymus it was found on cells thought to participate in the education of T cells, and in the bursa on cells that may be involved in presentation of antigen to B cells and regulation of B cell migration. The expression of DEC205 on cells other than antigen presenting cells (APC) is also described. Isolated splenocytes strongly expressing DEC205 but not the KUL01 antigen have morphology similar to mammalian dendritic cells and the distinct expression of DEC205 within the avian-specific Bursa of Fabricius alludes to a unique function in this organ of B cell diversification. PMID:23326318
Corrias, Maria Valeria; Levreri, Isabella; Scaruffi, Paola; Raffaghello, Lizzia; Carlini, Barbara; Bocca, Paola; Prigione, Ignazia; Stigliani, Sara; Amoroso, Loredana; Ferrone, Soldano; Pistoia, Vito
2012-01-01
The high molecular weight melanoma-associated antigen (HMW-MAA) and the cytoplasmic melanoma-associated antigen (cyt-MAA/LGALS3BP) are expressed in melanoma. Their serum levels are increased in melanoma patients and correlate with clinical outcome. We investigated whether these molecules can serve as prognostic markers for neuroblastoma (NB) patients. Expression of cyt-MAA and HMW-MAA was evaluated by flow cytometry in NB cell lines, patients’ neuroblasts (FI-NB), and short-term cultures of these latter cells (cNB). LGALS3BP gene expression was evaluated by RT–qPCR on FI-NB, cNB, and primary tumor specimens. Soluble HMW-MAA and cyt-MAA were tested by ELISA. Cyt-MAA and HMW-MAA were expressed in NB cell lines, cNB, and FI-NB samples. LGALS3BP gene expression was higher in primary tumors and cNB than in FI-NB samples. Soluble cyt-MAA, but not HMW-MAA, was detected in NB cell lines and cNBs supernatants. NB patients’ serum levels of both antigens were higher than those of the healthy children. High cyt-MAA serum levels at diagnosis associated with higher incidence of relapse, independently from other known risk factors. In conclusion, both HMW-MAA and cyt-MAA antigens, and LGALS3BP gene, were expressed by NB cell lines and patients’ neuroblasts, and both antigens’ serum levels were increased in NB patients. Elevated serum levels of cyt-MAA at diagnosis correlated with relapse, supporting that cyt-MAA may serve as early serological biomarker to individuate patients at higher risk of relapse that may require a more careful follow-up, after being validated in a larger cohort of patients at different time-points during follow-up. Given its immunogenicity, cyt-MAA may also be a potential target for NB immunotherapy. PMID:21660451
Gameiro, Steven F.; Zhang, Ali; Ghasemi, Farhad; Barrett, John W.; Mymryk, Joe S.
2017-01-01
Oncoproteins from high-risk human papillomaviruses (HPV) downregulate the transcription of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus in tissue culture model systems. This could allow infected or transformed cells to evade the adaptive immune response. Using data from over 800 human cervical and head & neck tumors from The Cancer Genome Atlas (TCGA), we determined the impact of HPV status on the mRNA expression of all six MHC-I heavy chain genes, and the β2 microglobulin light chain. Unexpectedly, these genes were all expressed at high levels in HPV positive (HPV+) cancers compared with normal control tissues. Indeed, many of these genes were expressed at significantly enhanced levels in HPV+ tumors. Similarly, the transcript levels of several other components of the MHC-I peptide-loading complex were also high in HPV+ cancers. The coordinated expression of high mRNA levels of the MHC-I antigen presentation apparatus could be a consequence of the higher intratumoral levels of interferon γ in HPV+ carcinomas, which correlate with signatures of increased infiltration by T- and NK-cells. These data, which were obtained from both cervical and oral tumors in large human cohorts, indicates that HPV oncoproteins do not efficiently suppress the transcription of the antigen presentation apparatus in human tumors. PMID:28891951
2018-01-01
Objective The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth factor-β (TGF-β) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on TGF-β signaling pathway and inhibit each other to affect the hair growth. PMID:29514440
Targeting gene therapy to cancer: a review.
Dachs, G U; Dougherty, G J; Stratford, I J; Chaplin, D J
1997-01-01
In recent years the idea of using gene therapy as a modality in the treatment of diseases other than genetically inherited, monogenic disorders has taken root. This is particularly obvious in the field of oncology where currently more than 100 clinical trials have been approved worldwide. This report will summarize some of the exciting progress that has recently been made with respect to both targeting the delivery of potentially therapeutic genes to tumor sites and regulating their expression within the tumor microenvironment. In order to specifically target malignant cells while at the same time sparing normal tissue, cancer gene therapy will need to combine highly selective gene delivery with highly specific gene expression, specific gene product activity, and, possibly, specific drug activation. Although the efficient delivery of DNA to tumor sites remains a formidable task, progress has been made in recent years using both viral (retrovirus, adenovirus, adeno-associated virus) and nonviral (liposomes, gene gun, injection) methods. In this report emphasis will be placed on targeted rather than high-efficiency delivery, although those would need to be combined in the future for effective therapy. To date delivery has been targeted to tumor-specific and tissue-specific antigens, such as epithelial growth factor receptor, c-kit receptor, and folate receptor, and these will be described in some detail. To increase specificity and safety of gene therapy further, the expression of the therapeutic gene needs to be tightly controlled within the target tissue. Targeted gene expression has been analyzed using tissue-specific promoters (breast-, prostate-, and melanoma-specific promoters) and disease-specific promoters (carcinoembryonic antigen, HER-2/neu, Myc-Max response elements, DF3/MUC). Alternatively, expression could be regulated externally with the use of radiation-induced promoters or tetracycline-responsive elements. Another novel possibility that will be discussed is the regulation of therapeutic gene products by tumor-specific gene splicing. Gene expression could also be targeted at conditions specific to the tumor microenvironment, such as glucose deprivation and hypoxia. We have concentrated on hypoxia-targeted gene expression and this report will discuss our progress in detail. Chronic hypoxia occurs in tissue that is more than 100-200 microns away from a functional blood supply. In solid tumors hypoxia is widespread both because cancer cells are more prolific than the invading endothelial cells that make up the blood vessels and because the newly formed blood supply is disorganized. Measurements of oxygen partial pressure in patients' tumors showed a high percentage of severe hypoxia readings (less than 2.5 mmHg), readings not seen in normal tissue. This is a major problem in the treatment of cancer, because hypoxic cells are resistant to radiotherapy and often to chemotherapy. However, severe hypoxia is also a physiological condition specific to tumors, which makes it a potentially exploitable target. We have utilized hypoxia response elements (HRE) derived from the oxygen-regulated phosphoglycerate kinase gene to control gene expression in human tumor cells in vitro and in experimental tumors. The list of genes that have been considered for use in the treatment of cancer is extensive. It includes cytokines and costimulatory cell surface molecules intended to induce an effective systemic immune response against tumor antigens that would not otherwise develop. Other inventive strategies include the use of internally expressed antibodies to target oncogenic proteins (intrabodies) and the use of antisense technology (antisense oligonucleotides, antigenes, and ribozymes). This report will concentrate more on novel genes encoding prodrug activating enzymes, so-called suicide genes (Herpes simplex virus thymidine kinase, Escherichia coli nitroreductase, E. (ABSTRACT TRUNCATED)
Intraclonal Cell Expansion and Selection Driven by B Cell Receptor in Chronic Lymphocytic Leukemia
Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Fabris, Sonia; Neri, Antonino; Fabbi, Marina; Quintana, Giovanni; Quarta, Giovanni; Ghiotto, Fabio; Fais, Franco; Ferrarini, Manlio
2011-01-01
The mutational status of the immunoglobulin heavy-chain variable region (IGHV) genes utilized by chronic lymphocytic leukemia (CLL) clones defines two disease subgroups. Patients with unmutated IGHV have a more aggressive disease and a worse outcome than patients with cells having somatic IGHV gene mutations. Moreover, up to 30% of the unmutated CLL clones exhibit very similar or identical B cell receptors (BcR), often encoded by the same IG genes. These “stereotyped” BcRs have been classified into defined subsets. The presence of an IGHV gene somatic mutation and the utilization of a skewed gene repertoire compared with normal B cells together with the expression of stereotyped receptors by unmutated CLL clones may indicate stimulation/selection by antigenic epitopes. This antigenic stimulation may occur prior to or during neoplastic transformation, but it is unknown whether this stimulation/selection continues after leukemogenesis has ceased. In this study, we focused on seven CLL cases with stereotyped BcR Subset #8 found among a cohort of 700 patients; in six, the cells expressed IgG and utilized IGHV4-39 and IGKV1-39/IGKV1D-39 genes, as reported for Subset #8 BcR. One case exhibited special features, including expression of IgM or IgG by different subclones consequent to an isotype switch, allelic inclusion at the IGH locus in the IgM-expressing cells and a particular pattern of cytogenetic lesions. Collectively, the data indicate a process of antigenic stimulation/selection of the fully transformed CLL cells leading to the expansion of the Subset #8 IgG-bearing subclone. PMID:21541442
Bruggeman, Jan Willem; Koster, Jan; Lodder, Paul; Repping, Sjoerd; Hamer, Geert
2018-06-15
Cancer cells have been found to frequently express genes that are normally restricted to the testis, often referred to as cancer/testis (CT) antigens or genes. Because germ cell-specific antigens are not recognized as "self" by the innate immune system, CT-genes have previously been suggested as ideal candidate targets for cancer therapy. The use of CT-genes in cancer therapy has thus far been unsuccessful, most likely because their identification has relied on gene expression in whole testis, including the testicular somatic cells, precluding the detection of true germ cell-specific genes. By comparing the transcriptomes of micro-dissected germ cell subtypes, representing the main developmental stages of human spermatogenesis, with the publicly accessible transcriptomes of 2617 samples from 49 different healthy somatic tissues and 9232 samples from 33 tumor types, we here discover hundreds of true germ cell-specific cancer expressed genes. Strikingly, we found these germ cell cancer genes (GC-genes) to be widely expressed in all analyzed tumors. Many GC-genes appeared to be involved in processes that are likely to actively promote tumor viability, proliferation and metastasis. Targeting these true GC-genes thus has the potential to inhibit tumor growth with infertility being the only possible side effect. Moreover, we identified a subset of GC-genes that are not expressed in spermatogonial stem cells. Targeting of this GC-gene subset is predicted to only lead to temporary infertility, as untargeted spermatogonial stem cells can recover spermatogenesis after treatment. Our GC-gene dataset enables improved understanding of tumor biology and provides multiple novel targets for cancer treatment.
HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells
Gornalusse, Germán G.; Hirata, Roli K.; Funk, Sarah; Riolobos, Laura; Lopes, Vanda S.; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G.; Hanafi, Laïla-Aïcha; Clegg, Dennis O.; Turtle, Cameron; Russell, David W.
2017-01-01
Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this ‘missing self’ response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies, and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression. PMID:28504668
HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells.
Gornalusse, Germán G; Hirata, Roli K; Funk, Sarah E; Riolobos, Laura; Lopes, Vanda S; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G; Hanafi, Laïla-Aïcha; Clegg, Dennis O; Turtle, Cameron; Russell, David W
2017-08-01
Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this 'missing-self' response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8 + T cells, do not bind anti-HLA antibodies and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.
Helicobacter pylori HopE and HopV porins present scarce expression among clinical isolates
Lienlaf, Maritza; Morales, Juan Pablo; Díaz, María Inés; Díaz, Rodrigo; Bruce, Elsa; Siegel, Freddy; León, Gloria; Harris, Paul R; Venegas, Alejandro
2010-01-01
AIM: To evaluate how widely Helicobacter pylori (H. pylori) HopE and HopV porins are expressed among Chilean isolates and how seroprevalent they are among infected patients in Chile. METHODS: H. pylori hopE and hopV genes derived from strain CHCTX-1 were cloned by polymerase chain reaction (PCR), sequenced and expressed in Escherichia coli AD494 (DE3). Gel-purified porins were used to prepare polyclonal antibodies. The presence of both genes was tested by PCR in a collection of H. pylori clinical isolates and their expression was detected in lysates by immunoblotting. Immune responses against HopE, HopV and other H. pylori antigens in sera from infected and non-infected patients were tested by Western blotting using these sera as first antibody on recombinant H. pylori antigens. RESULTS: PCR and Western blotting assays revealed that 60 and 82 out of 130 Chilean isolates carried hopE and hopV genes, respectively, but only 16 and 9, respectively, expressed these porins. IgG serum immunoreactivity evaluation of 69 H. pylori-infected patients revealed that HopE and HopV were infrequently recognized (8.7% and 10.1% respectively) compared to H. pylori VacA (68.1%) and CagA (59.5%) antigens. Similar values were detected for IgA serum immunoreactivity against HopE (11.6%) and HopV (10.5%) although lower values for VacA (42%) and CagA (17.4%) were obtained when compared to the IgG response. CONCLUSION: A scarce expression of HopE and HopV among Chilean isolates was found, in agreement with the infrequent seroconversion against these antigens when tested in infected Chilean patients. PMID:20082477
Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki
2013-01-01
Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer reactivity mediated by CD8+ T cells double gene-modified to express WT1-specific TCR and CCR2 not only via CCL2-tropic tumor trafficking, but also CCL2-enhanced WT1-responsiveness. PMID:23441216
Anandasabapathy, Niroshana; Victora, Gabriel D.; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L.; Nussenzweig, Michel C.; Steinman, Ralph M.
2011-01-01
Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5–7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia. PMID:21788405
Anandasabapathy, Niroshana; Victora, Gabriel D; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L; Nussenzweig, Michel C; Steinman, Ralph M; Liu, Kang
2011-08-01
Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5-7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia.
Belperron, Alexia A.; Feltquate, David; Fox, Barbara A.; Horii, Toshihiro; Bzik, David J.
1999-01-01
The liver- and blood-stage-expressed serine repeat antigen (SERA) of Plasmodium falciparum is a candidate protein for a human malaria vaccine. We compared the immune responses induced in mice immunized with SERA-expressing plasmid DNA vaccines delivered by intramuscular (i.m.) injection or delivered intradermally by Gene Gun immunization. Mice were immunized with a pcdna3 plasmid encoding the entire 47-kDa domain of SERA (amino acids 17 to 382) or the N-terminal domain (amino acids 17 to 110) of SERA. Minimal antibody responses were detected following DNA vaccination with the N-terminal domain of SERA, suggesting that the N-terminal domain alone is not highly immunogenic by this route of vaccine delivery. Immunization of mice by Gene Gun delivery of the 47-kDa domain of SERA elicited a significantly higher serum antibody titer to the antigen than immunization of mice by i.m. injection with the same plasmid did. The predominant isotype subclass of the antibodies elicited to the SERA protein following i.m. and Gene Gun immunizations with SERA plasmid DNA was immunoglobulin G1. Coimmunization of mice with SERA plasmid DNA and a plasmid expressing the hepatitis B surface antigen (pCMV-s) by the i.m. route resulted in higher anti-SERA titers than those generated in mice immunized with the SERA DNA plasmid alone. Vaccination with DNA may provide a viable alternative or may be used in conjunction with protein-based subunit vaccines to maximize the efficacy of a human malaria vaccine that includes immunogenic regions of the SERA protein. PMID:10496891
Carter, Javier A; Jiménez, Juan C; Zaldívar, Mercedes; Alvarez, Sergio A; Marolda, Cristina L; Valvano, Miguel A; Contreras, Inés
2009-10-01
The lipopolysaccharide O antigen of Shigella flexneri 2a has two preferred chain lengths, a short (S-OAg) composed of an average of 17 repeated units and a very long (VL-OAg) of about 90 repeated units. These chain length distributions are controlled by the chromosomally encoded WzzB and the plasmid-encoded Wzz(pHS-2) proteins, respectively. In this study, genes wzzB, wzz(pHS-2) and wzy (encoding the O-antigen polymerase) were cloned under the control of arabinose- and rhamnose-inducible promoters to investigate the effect of varying their relative expression levels on O antigen polysaccharide chain length distribution. Controlled expression of the chain length regulators wzzB and wzz(pHS-2) revealed a dose-dependent production of each modal length. Increase in one mode resulted in a parallel decrease in the other, indicating that chain length regulators compete to control the degree of O antigen polymerization. Also, when expression of the wzy gene is low, S-OAg but not VL-OAg is produced. Production of VL-OAg requires high induction levels of wzy. Thus, the level of expression of wzy is critical in determining O antigen modal distribution. Western blot analyses of membrane proteins showed comparable high levels of the WzzB and Wzz(pHS-2) proteins, but very low levels of Wzy. In vivo cross-linking experiments and immunoprecipitation of membrane proteins did not detect any direct interaction between Wzy and WzzB, suggesting the possibility that these two proteins may not interact physically but rather by other means such as via translocated O antigen precursors.
Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.
2008-01-01
Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698
Chung, Tai-Chun; Jones, Charles H; Gollakota, Akhila; Kamal Ahmadi, Mahmoud; Rane, Snehal; Zhang, Guojian; Pfeifer, Blaine A
2015-05-04
Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.
Kintz, Erica; Heiss, Christian; Black, Ian; ...
2017-02-06
Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintz, Erica; Heiss, Christian; Black, Ian
Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less
Ma, Bing-cun; Yang, Xin; Wang, Hong-ning; Cao, Hai-peng; Xu, Peng-wei; Ding, Meng-die; Liu, Hui
2016-01-01
To obtain adhesive and safe lactic acid bacteria (LAB) strains for expressing heterologous antigens, we screened LAB inhabitants in intestine of Tibetan chickens by analyzing their adhesion and safety properties and the selected LAB was engineered to express heterologous antigen (UTEpi C-A) based on chromosomal integration strategy. We demonstrated that a new Lactobacillu salivarius TCMM17 strain is strongly adhesive to chicken intestinal epithelial cells, contains no endogenous plasmids, is susceptible to tested antimicrobials, and shows no toxicities. In order to examine the potential of TCMM17 strain as heterogenous antigen delivering vehicle, we introduced a UTEpi C-A expression cassette in its chromosome by constructing a non-replicative plasmid (pORI280-UUTEpi C-AD). The recombinant TCMM17 strain (∆TCMM17) stably was found to keep the gene cassette through 50 generations, and successfully displayed EpiC encoded by the cassette on its surface. This work provides a universal platform for development of novel oral vaccines and expression of further antigens of avian pathogens.
Shemesh, J; Rotem-Yehudar, R; Ehrlich, R
1991-01-01
Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells. Images PMID:1895404
Overview of expression of hepatitis B surface antigen in transgenic plants.
Guan, Zheng-jun; Guo, Bin; Huo, Yan-lin; Guan, Zheng-ping; Wei, Ya-hui
2010-10-28
Hepatitis B virus (HBV), a pathogen for chronic liver infection, afflicts more than 350 million people world-wide. The effective way to control the virus is to take HBV vaccine. Hepatitis B surface antigen (HBsAg) is an effective protective antigen suitable for vaccine development. At present, "edible" vaccine based on transgenic plants is one of the most promising directions in novel types of vaccines. HBsAg production from transgenic plants has been carried out, and the transgenic plant expression systems have developed from model plants (such as tobacco, potato and tomato) to other various plant platforms. Crude or purified extracts of transformed plants have been found to conduct immunological responses and clinical trials for hepatitis B, which gave the researches of plant-based HBsAg production a big boost. The aim of this review was to summarize the recent data about plant-based HBsAg development including molecular biology of HBsAg gene, selection of expression vector, the expression of HBsAg gene in plants, as well as corresponding immunological responses in animal models or human. Copyright © 2010 Elsevier Ltd. All rights reserved.
Molecular Profiling of Glatiramer Acetate Early Treatment Effects in Multiple Sclerosis
Achiron, Anat; Feldman, Anna; Gurevich, Michael
2009-01-01
Background: Glatiramer acetate (GA, Copaxone®) has beneficial effects on the clinical course of relapsing-remitting multiple sclerosis (RRMS). However, the exact molecular mechanisms of GA effects are only partially understood. Objective: To characterized GA molecular effects in RRMS patients within 3 months of treatment by microarray profiling of peripheral blood mononuclear cells (PBMC). Methods: Gene-expression profiles were determined in RRMS patients before and at 3 months after initiation of GA treatment using Affimetrix (U133A-2) microarrays containing 14,500 well-characterized human genes. Most informative genes (MIGs) of GA-induced biological convergent pathways operating in RRMS were constructed using gene functional annotation, enrichment analysis and pathway reconstruction bioinformatic softwares. Verification at the mRNA and protein level was performed by qRT-PCR and FACS. Results: GA induced a specific gene expression molecular signature that included altered expression of 480 genes within 3 months of treatment; 262 genes were up-regulated, and 218 genes were down-regulated. The main convergent mechanisms of GA effects were related to antigen-activated apoptosis, inflammation, adhesion, and MHC class-I antigen presentation. Conclusions: Our findings demonstrate that GA treatment induces alternations of immunomodulatory gene expression patterns that are important for suppression of disease activity already at three months of treatment and can be used as molecular markers of GA activity. PMID:19893201
T-cell receptor revision: friend or foe?
Hale, J Scott; Fink, Pamela J
2010-01-01
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue. PMID:20201984
Iacono-Connors, L C; Schmaljohn, C S; Dalrymple, J M
1990-01-01
The gene encoding Bacillus anthracis protective antigen (PA) was modified by site-directed mutagenesis, subcloned into baculovirus and vaccinia virus plasmid transfer vectors (pAcYM1 and pSC-11, respectively), and inserted via homologous recombinations into baculovirus Autographa californica nuclear polyhedrosis virus or vaccinia virus (strains WR and Connaught). Expression of PA was detected in both systems by immunofluorescence assays with antisera from rabbits immunized with B. anthracis PA. Western blot (immunoblot) analysis showed that the expressed product of both systems was slightly larger (86 kilodaltons) than B. anthracis-produced PA (83.5 kilodaltons). Analysis of trypsin digests of virus-expressed and authentic PA suggested that the size difference was due to the presence of a signal sequence remaining with the virus-expressed protein. Immunization of mice with either recombinant baculovirus-infected Spodoptera frugiperda cells or with vaccinia virus recombinants elicited a high-titer, anti-PA antibody response. Images PMID:2105271
Pascal, Laura E; True, Lawrence D; Campbell, David S; Deutsch, Eric W; Risk, Michael; Coleman, Ilsa M; Eichner, Lillian J; Nelson, Peter S; Liu, Alvin Y
2008-01-01
Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers. PMID:18501003
Genetics Home Reference: multiple sclerosis
... HLA-DRB1 gene belongs to a family of genes called the human leukocyte antigen (HLA) complex . The HLA complex helps ... DRB1*1501 associates with high expression of DRB1 gene in different human populations. PLoS One. 2012;7(1):e29819. doi: ...
Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.
2017-01-01
A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818
Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19
Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.
1998-01-01
A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273
Quantum changes in Helicobacter pylori gene expression accompany host-adaptation
Wise, Michael J.; Khosravi, Yalda; Seow, Shih-Wee; Amoyo, Arlaine A.; Pettersson, Sven; Peters, Fanny; Tay, Chin-Yen; Perkins, Timothy T.; Loke, Mun-Fai; Marshall, Barry J.; Vadivelu, Jamuna
2017-01-01
Abstract Helicobacter pylori is a highly successful gastric pathogen. High genomic plasticity allows its adaptation to changing host environments. Complete genomes of H. pylori clinical isolate UM032 and its mice-adapted serial derivatives 298 and 299, generated using both PacBio RS and Illumina MiSeq sequencing technologies, were compared to identify novel elements responsible for host-adaptation. The acquisition of a jhp0562-like allele, which encodes for a galactosyltransferase, was identified in the mice-adapted strains. Our analysis implies a new β-1,4-galactosyltransferase role for this enzyme, essential for Ley antigen expression. Intragenomic recombination between babA and babB genes was also observed. Further, we expanded on the list of candidate genes whose expression patterns have been mediated by upstream homopolymer-length alterations to facilitate host adaption. Importantly, greater than four-fold reduction of mRNA levels was demonstrated in five genes. Among the down-regulated genes, three encode for outer membrane proteins, including BabA, BabB and HopD. As expected, a substantial reduction in BabA protein abundance was detected in mice-adapted strains 298 and 299 via Western analysis. Our results suggest that the expression of Ley antigen and reduced outer membrane protein expressions may facilitate H. pylori colonisation of mouse gastric epithelium. PMID:27803027
Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES
2012-01-01
Background Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs), a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation. Method The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100) DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100) tumor model. Results Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells. Conclusion Together, our findings suggest that shikonin can effectively enhance anti-tumor potency of a gene-based cancer vaccine via the induction of RANTES expression at the skin immunization site. PMID:22494696
Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader
2016-12-01
Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.
Identification of antigens by monoclonal antibody PD4 and its expression in Escherichia coli
Ning, Jin-Ying; Sun, Guo-Xun; Huang, Su; Ma, Hong; An, Ping; Meng, Lin; Song, Shu-Mei; Wu, Jian; Shou, Cheng-Chao
2003-01-01
AIM: To clone and express the antigen of monoclonal antibody (MAb) PD4 for further investigation of its function. METHODS: MGC803 cDNA expression library was constructed and screened with PD4 as probes to clone the antigen. After failed in the library screening, immunoprecipitation and SDS-polyacrylamide gel electrophoresis were applied to purify the antigen for sequence analysis. The antigen coming from Mycoplasma hyorhinis (M. hyorhinis) was further confirmed with Western blot analysis by infecting M. hyorhinis -free HeLa cells and eliminating the M. hyorhinis from MGC803 cells. The full p37 gene was cloned by PCR and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence assay was used to demonstrate if p37 protein could directly bind to gastric tumor cell AGS. RESULTS: The cDNA library constructed with MGC803 cells was screened by MAb PD4 as probes. Unfortunately, the positive clones identified with MAb PD4 were also reacted with unrelated antibodies. Then, immunoprecipitation was performed and the purified antigen was identified to be a membrane protein of Mycoplasma hyorhinis (M. hyorhinis) by sequencing of N-terminal amino acid residues. The membrane protein was intensively verified with Western blot by eliminating M. hyorhinis from MGC803 cells and by infecting M. hyorhinis-free HeLa cells. The full p37 gene was cloned and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence demonstrated that p37 protein could directly bind to gastric tumor cell AGS. CONCLUSION: The antigen recognized by MAb PD4 is from M. hyorhinis, which suggests the actions involved in MAb PD4 is possibly mediated by p37 protein or M. hyorhinis. As p37 protein can bind directly to tumor cells, the pathogenic role of p37 involved in tumorigenesis justifies further investigation. PMID:14562370
Use of a bacterial expression vector to map the varicella-zoster virus major glycoprotein gene, gC.
Ellis, R W; Keller, P M; Lowe, R S; Zivin, R A
1985-01-01
The genome of varicella-zoster virus (VZV) encodes at least three major glycoprotein genes. Among viral gene products, the gC gene products are the most abundant glycoproteins and induce a substantial humoral immune response (Keller et al., J. Virol. 52:293-297, 1984). We utilized two independent approaches to map the gC gene. Small fragments of randomly digested VZV DNA were inserted into a bacterial expression vector. Bacterial colonies transformed by this vector library were screened serologically for antigen expression with monoclonal antibodies to gC. Hybridization of the plasmid DNA from a gC antigen-positive clone revealed homology to the 3' end of the VZV Us segment. In addition, mRNA from VZV-infected cells was hybrid selected by a set of VZV DNA recombinant plasmids and translated in vitro, and polypeptide products were immunoprecipitated by convalescent zoster serum or by monoclonal antibodies to gC. This analysis revealed that the mRNA encoding a 70,000-dalton polypeptide precipitable by anti-gC antibodies mapped to the HindIII C fragment, which circumscribes the entire Us region. We conclude that the VZV gC glycoprotein gene maps to the 3' end of the Us region and is expressed as a 70,000-dalton primary translational product. These results are consistent with the recently reported DNA sequence of Us (A.J. Davison, EMBO J. 2:2203-2209, 1983). Furthermore, glycosylation appears not to be required for a predominant portion of the antigenicity of gC glycoproteins. We also report the tentative map assignments for eight other VZV primary translational products. Images PMID:2981365
Compeer, Ewoud B; Janssen, Willemijn; van Royen-Kerkhof, Annet; van Gijn, Marielle; van Montfrans, Joris M; Boes, Marianne
2015-05-10
Common Variable Immunodeficiency (CVID) is the most prevalent primary antibody deficiency, and characterized by defective generation of high-affinity antibodies. Patients have therefore increased risk to recurrent infections of the respiratory and intestinal tract. Development of high-affinity antigen-specific antibodies involves two key actions of B-cell receptors (BCR): transmembrane signaling through BCR-complexes to induce B-cell differentiation and proliferation, and BCR-mediated antigen internalization for class-II MHC-mediated presentation to acquire antigen-specific CD4(+) T-cell help.We identified a variant (L3P) in the B-lymphoid tyrosine kinase (BLK) gene of 2 related CVID-patients, which was absent in healthy relatives. BLK belongs to the Src-kinases family and involved in BCR-signaling. Here, we sought to clarify BLK function in healthy human B-cells and its association to CVID.BLK expression was comparable in patient and healthy B-cells. Functional analysis of L3P-BLK showed reduced BCR crosslinking-induced Syk phosphorylation and proliferation, in both primary B-cells and B-LCLs. B-cells expressing L3P-BLK showed accelerated destruction of BCR-internalized antigen and reduced ability to elicit CD40L-expression on antigen-specific CD4(+) T-cells.In conclusion, we found a novel BLK gene variant in CVID-patients that causes suppressed B-cell proliferation and reduced ability of B-cells to elicit antigen-specific CD4(+) T-cell responses. Both these mechanisms may contribute to hypogammaglobulinemia in CVID-patients.
Chen, Jian; Wan, Kang-Lin
2003-10-01
To recombine OspC gene from Borrelia burgdorferi PD91 of China and expressed it in E. coli for early diagnosis of Lyme disease. The OspC gene was amplified from the genome of Borrelia burgdorferi PD91 strain by polymerase chain reaction and recombined with plasmid PET-11D. The recombinant plasmid PET-11D-OspC was identified with PCR, restriction endonuclease analysis and sequencing. The antigenicity was verified with Western Blot. OspC gene was cloned correctly into vector PET-11D. The resultant sequence was definitely different from the published sequence. The recombinant OspC seemed to have had strong antigenicity. The findings laid basis for the studies on early diagnosis of Lyme disease.
Hance, Kenneth W.; Zeytin, Hasan E.; Greiner, John W.
2010-01-01
In recent years, investigators have carried out several studies designed to evaluate whether human tumor-associated antigens might be exploited as targets for active specific immunotherapy, specifically human cancer vaccines. Not too long ago such an approach would have been met with considerable skepticism because the immune system was believed to be a rigid discriminator between self and non-self which, in turn, protected the host from a variety of pathogens. That viewpoint has been challenged in recent years by a series of studies indicating that antigenic determinants of self have not induced absolute host immune tolerance. Moreover, under specific conditions that evoke danger signals, peptides from self-antigen can be processed by the antigen-presenting cellular machinery, loaded onto the major histocompatibility antigen groove to serve as targets for immune intervention. Those findings provide the rationale to investigate a wide range of tumor-associated antigens, including differentiation antigens, oncogenes, and tumor suppressor genes as possible immune-based targets. One of those tumor-associated antigens is the carcinoembryonic antigen (CEA). Described almost 40 years ago, CEA is a Mr 180–200,000 oncofetal antigen that is one of the more widely studied human tumor-associated antigens. This review will provide: (i) a brief overview of the CEA gene family, (ii) a summary of early preclinical findings on overcoming immune tolerance to CEA, and (iii) the rationale to develop mouse models which spontaneously develop gastrointestinal tumors and express the CEA transgene. Those models have been used extensively in the study of overcoming host immune tolerance to CEA, a self, tumor-associated antigen, and the experimental findings have served as the rationale for the design of early clinical trials to evaluate CEA-based cancer vaccines. PMID:15888344
Improve T Cell Therapy in Neuroblastoma
2012-07-01
Epstein - Barr - virus (EBV)-specific cytotoxic T lymphocytes (EBV-CTLs) genetically modified to express a chimeric antigen receptor (CAR-GD2) targeting the...A. Krance, M. K. Brenner, and C. M. Rooney. 1996. Long-term restoration of immunity against Epstein - Barr virus infection by adoptive transfer of gene... Barr - virus (EBV)- specific cytotoxic T l ymphocytes (EBV-CTLs) genetically modified to express a c himeric antigen receptor (CAR-GD2) targeting the GD2
Talmadge, J E; Talmadge, C B; Zbar, B; McEwen, R; Meeker, A K; Tribble, H
1987-06-01
The mechanism by which tumor allografts escape host immunologic attack was investigated. B16-BL6 cells (the bladder 6 subline of the B16 melanoma) (H-2b) were transfected with a gene (Dd) encoding an allogeneic class I major histocompatibility complex antigen. Clones that expressed Dd antigen were injected into the footpads of nonimmune syngeneic mice, syngeneic immune mice, and nude mice. Under conditions of immunologic selection a clone that contained multiple copies of the transfected gene formed variants that lacked the transfected gene. Primary tumors and pulmonary metastases of immunized mice and pulmonary metastases of nonimmunized mice had lost the Dd gene and, in most cases, all of the associated plasmid. In contrast, in immunodeficient nude mice, primary tumors and pulmonary metastases retained the Dd gene and the associated plasmid. Deletion of genes encoding cell surface antigens may be one of the mechanisms by which allogeneic tumors escape immunologic attack.
The genetic origin of minor histocompatibility antigens.
Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E
1993-01-01
The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.
Maruyama, Sandra R; Garcia, Gustavo R; Teixeira, Felipe R; Brandão, Lucinda G; Anderson, Jennifer M; Ribeiro, José M C; Valenzuela, Jesus G; Horackova, Jana; Veríssimo, Cecília J; Katiki, Luciana M; Banin, Tamy M; Zangirolamo, Amanda F; Gardinassi, Luiz G; Ferreira, Beatriz R; de Miranda-Santos, Isabel K F
2017-04-26
Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.
Karunakaran, Mohindar M; Göbel, Thomas W; Starick, Lisa; Walter, Lutz; Herrmann, Thomas
2014-04-01
Human Vγ9Vδ2 T cells recognize phosphorylated products of isoprenoid metabolism (phosphoantigens) PAg with TCR comprising Vγ9JP γ-chains and Vδ2 δ-chains dependent on butyrophilin 3 (BTN3) expressed by antigen-presenting cells. They are massively activated in many infections and show anti-tumor activity and so far, they have been considered to exist only in higher primates. We performed a comprehensive analysis of databases and identified the three genes in species of both placental magnorders, but not in rodents. The common occurrence or loss of in silico translatable Vγ9, Vδ2, and BTN3 genes suggested their co-evolution based on a functional relationship. In the peripheral lymphocytes of alpaca (Vicugna pacos), characteristic Vγ9JP rearrangements and in-frame Vδ2 rearrangements were found and could be co-expressed in a TCR-negative mouse T cell hybridoma where they rescued CD3 expression and function. Finally, database sequence analysis of the extracellular domain of alpaca BTN3 revealed complete conservation of proposed PAg binding residues of human BTN3A1. In summary, we show emergence and preservation of Vγ9 and Vδ2 TCR genes with the gene of the putative antigen-presenting molecule BTN3 in placental mammals and lay the ground for analysis of alpaca as candidate for a first non-primate species to possess Vγ9Vδ2 T cells.
Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G
2003-07-22
The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.
Skorodumova, L O; Muraev, A A; Zakharova, E S; Shepelev, M V; Korobko, I V; Zaderenko, I A; Ivanov, S Iu; Gnuchev, N V; Georgiev, G P; Larin, S S
2012-01-01
Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.
Erythrocyte membrane antigen frequencies in patients with Type II congenital smell loss.
Stateman, William A; Henkin, Robert I; Knöppel, Alexandra B; Flegel, Willy A
2015-01-01
The objective of this study was to determine whether there are genetic factors associated with Type II congenital smell loss. The expression frequencies of 16 erythrocyte antigens among patients with Type II congenital smell loss were determined and compared to those of a large control group. Blood samples were obtained from 99 patients with Type II congenital smell loss. Presence of the erythrocyte surface antigens A, B, M, N, S, s, Fy(a), Fy(b), D, C, c, E, e, K, Jk(a), and Jk(b) was analyzed by blood group serology. Comparisons of expression frequencies of these antigens were made between the patients and a large control group. Patients tested for the Duffy b antigen (Fy(b) haplotype) exhibited a statistically significant 11% decrease in expression frequency compared to the controls. There were no significant differences between patients and controls in the expression frequencies for all other erythrocyte antigens (A, B, M, N, S, s, Fy(a), D, C, c, E, e, K, Jk(a), or Jk(b)). These findings describe the presence of a previously unrevealed genetic tendency among patients with Type II congenital smell loss related to erythrocyte surface antigen expression. The deviation in expression rate of Duffy b suggests a target gene and chromosome region in which future research into this form of congenital smell loss may reveal a more specific genetic basis for Type II congenital smell loss. Copyright © 2015 Elsevier Inc. All rights reserved.
Iacono-Connors, L C; Novak, J; Rossi, C; Mangiafico, J; Ksiazek, T
1994-01-01
We developed an antigen capture enzyme-linked immunosorbent assay (ELISA) which does not require purified protective antigen (PA) for detection of human antibodies to Bacillus anthracis PA. Lysates of Spodoptera frugiperda (Sf-9) cells infected with recombinant baculovirus containing the PA gene were used as the source of PA to develop the ELISA. Recombinant PA from crude Sf-9 cell lysates or PA purified from B. anthracis Sterne strain was captured by an anti-PA monoclonal antibody coated onto microtiter plates. We demonstrated that human serum antibody titers to PA were identical in the ELISA whether we used crude Sf-9 cell lysates containing recombinant baculovirus-expressed PA or purified Sterne PA. Finally, false-positive results observed in a direct ELISA were eliminated with this antigen capture ELISA. Thus, the antigen capture ELISA with crude preparations of baculovirus-expressed PA is reliable, safe, and inexpensive for determining anti-PA antibody levels in human sera. PMID:7496927
Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke
2010-03-15
To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal inmore » any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.« less
[Advances and strategies in gene doping detection].
He, Jiangang; Liu, Zhen; Liu, Jing; Dou, Peng; Chen, Hong-Yuan
2008-07-01
This review surveys the recent status of gene doping detection and the strategies for anti-gene doping. The main gene doping candidates for athletes are summarized, and the advances in the detection of the proteins expressed by these genes such as erythropoietin (EPO) and human growth hormone (hGH) are reviewed. The potential detection strategies for further gene doping analysis are also discussed.
Srivastava, Pragya; Paluch, Benjamin E.; Matsuzaki, Junko; James, Smitha R.; Collamat-Lai, Golda; Blagitko-Dorfs, Nadja; Ford, Laurie Ann; Naqash, Rafeh; Lübbert, Michael; Karpf, Adam R.; Nemeth, Michael J.; Griffiths, Elizabeth A.
2016-01-01
Cancer testis antigens (CTAs) are promising cancer associated antigens in solid tumors, but in acute myeloid leukemia, dense promoter methylation silences their expression. Leukemia cell lines exposed to HMAs induce expression of CTAs. We hypothesized that AML patients treated with standard of care decitabine (20mg/m2 per day for 10 days) would demonstrate induced expression of CTAs. Peripheral blood blasts serially isolated from AML patients treated with decitabine were evaluated for CTA gene expression and demethylation. Induction of NY-ESO-1 and MAGEA3/A6, were observed following decitabine. Re-expression of NY-ESO-1 and MAGEA3/A6 was associated with both promoter specific and global (LINE-1) hypomethylation. NY-ESO-1 and MAGEA3/A6 mRNA levels were increased irrespective of clinical response, suggesting that these antigens might be applicable even in patients who are not responsive to HMA therapy. Circulating blasts harvested after decitabine demonstrate induced NY-ESO-1 expression sufficient to activate NY-ESO-1 specific CD8+ T-cells. Induction of CTA expression sufficient for recognition by T-cells occurs in AML patients receiving decitabine. Vaccination against NY-ESO-1 in this patient population is feasible. PMID:26883197
Molecular basis of the Duffy blood group system
Höher, Gabriela; Fiegenbaum, Marilu; Almeida, Silvana
2018-01-01
ACKR1, located on chromosome 1q23.2, is the gene that encodes a glycoprotein expressing the Duffy blood group antigens. This gene is transcribed in two mRNA variants yielding two isoforms, encoding proteins with 338 and 336 amino acids. This review provides a general overview of the Duffy blood group to characterise and elucidate the genetic basis of this system. The Fya and Fyb antigens are encoded by co-dominant FY*A (FY*01) and FY*B (FY*02) alleles, which differ by c.125G>A (rs12075), defining the Fy(a+b−), Fy(a−b+) and Fy(a+b+) phenotypes. The Fy(a−b−) phenotype that occurs in Africans provides an explanation for the apparent absence of Plasmodium vivax in this region: this phenotype arises from homozygosity for the FY*B allele carrying a point mutation c.1-67T>C (rs2814778), which prevents Fyb antigen expression only in red blood cells. The same mutation has also been found on the FY*A allele, but it is very rare. The Fy(a−b−) phenotype in Europeans and Asians arises from mutations in the coding region of the FY*A or FY*B allele, preventing Duffy antigen expression on any cell in the body and thus are true Duffy null phenotypes. According to the International Society for Blood Transfusion, ten alleles are associated with the null expression of the Fy antigens. Furthermore, different allelic forms of FY*B modify Fyb antigen expression, which may result in very weak or equivocal serology results. The mostly common found variants, c.265C>T (rs34599082) and c.298G>A (rs13962) -previously defined in combination only with the FY*B allele - have already been observed in the FY*A allele. Thus, six alleles have been recognised and associated with weak expression of the Fy antigens. Considering the importance of the Duffy blood group system in clinical medicine, additional studies via molecular biology approaches must be performed to resolve and clarify the discrepant results that are present in the erythrocyte phenotyping. PMID:28151395
Molecular basis of the Duffy blood group system.
Höher, Gabriela; Fiegenbaum, Marilu; Almeida, Silvana
2018-01-01
ACKR1, located on chromosome 1q23.2, is the gene that encodes a glycoprotein expressing the Duffy blood group antigens. This gene is transcribed in two mRNA variants yielding two isoforms, encoding proteins with 338 and 336 amino acids. This review provides a general overview of the Duffy blood group to characterise and elucidate the genetic basis of this system. The Fy a and Fy b antigens are encoded by co-dominant FY*A (FY*01) and FY*B (FY*02) alleles, which differ by c.125G>A (rs12075), defining the Fy(a+b-), Fy(a-b+) and Fy(a+b+) phenotypes. The Fy(a-b-) phenotype that occurs in Africans provides an explanation for the apparent absence of Plasmodium vivax in this region: this phenotype arises from homozygosity for the FY*B allele carrying a point mutation c.1-67T>C (rs2814778), which prevents Fy b antigen expression only in red blood cells. The same mutation has also been found on the FY*A allele, but it is very rare. The Fy(a-b-) phenotype in Europeans and Asians arises from mutations in the coding region of the FY*A or FY*B allele, preventing Duffy antigen expression on any cell in the body and thus are true Duffy null phenotypes. According to the International Society for Blood Transfusion, ten alleles are associated with the null expression of the Fy antigens. Furthermore, different allelic forms of FY*B modify Fy b antigen expression, which may result in very weak or equivocal serology results. The mostly common found variants, c.265C>T (rs34599082) and c.298G>A (rs13962) -previously defined in combination only with the FY*B allele - have already been observed in the FY*A allele. Thus, six alleles have been recognised and associated with weak expression of the Fy antigens. Considering the importance of the Duffy blood group system in clinical medicine, additional studies via molecular biology approaches must be performed to resolve and clarify the discrepant results that are present in the erythrocyte phenotyping.
Cai, Xiaohong; Qian, Chengrui; Wu, Wenman; Lei, Hang; Ding, Qiulan; Zou, Wei; Xiang, Dong; Wang, Xuefeng
2017-09-01
The amino acid substitutions caused by ABO gene mutations are usually predicted to impact glycosyltransferase's function or its biosynthesis. Here we report an ABO exonic missense mutation that affects B-antigen expression by decreasing the mRNA level of the ABO gene rather than the amino acid change. Serologic studies including plasma total GTB transfer capacity were performed. The exon sequences of the ABO gene were analyzed by Sanger sequencing. B 310 cDNA with c.28G>A (p.G10R) mutation was expressed in HeLa cells and total GTB transfer capacity in cell supernatant was measured. Flow cytometry was performed on these HeLa cells after transfection, and agglutination of Hela-B weak cells was also examined. The mRNA of the ABO gene was analyzed by direct sequencing and real-time reverse transcriptase-polymerase chain reaction. A minigene construct was prepared to evaluate the potential of splicing. While plasma total GTB transfer capacity was undetectable in this B 3 -like individual, the relative percentage of antigen-expressing cells and mean fluorescence index of the B weak red blood cells (RBCs) were 19 and 14% of normal B RBCs, respectively. There was no significant difference of total GTB transfer capacity in cell supernatant and B-antigen expression on cell surfaces between HeLa cells transfected with B 310 cDNA and B cDNA. The mRNA expression level of B 310 in peripheral whole blood was significantly reduced. The amount of splicing is significantly lower in c.28G>A construct compared to that in wild-type construct after transfection in K562 cells. ABO c.28G>A mutation may cause B 3 -like subgroup by affecting RNA splicing of the ABO gene. © 2017 AABB.
Lempereur, Laetitia; Larcombe, Stephen D; Durrani, Zeeshan; Karagenc, Tulin; Bilgic, Huseyin Bilgin; Bakirci, Serkan; Hacilarlioglu, Selin; Kinnaird, Jane; Thompson, Joanne; Weir, William; Shiels, Brian
2017-06-05
Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.
Ahuja, Jaya; Kampani, Karan; Datta, Suman; Wigdahl, Brian; Flaig, Katherine E; Jain, Pooja
2006-02-01
Human T-cell leukemia virus type 1 (HTLV-1) is etiologically linked to adult T-cell leukemia and a progressive demyelinating disorder termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the most striking features of the immune response in HAM/TSP centers on the expansion of HTLV-1-specific CD8(+) cytotoxic T lymphocyte (CTL) compartment in the peripheral blood and cerebrospinal fluid. More than 90% of the HTLV-1-specific CTLs are directed against the viral Tax (11-19) peptide implying that Tax is available for immune recognition by antigen presenting cells, such as dendritic cells (DCs). DCs obtained from HAM/TSP patients have been shown to be infected with HTLV-1 and exhibit rapid maturation. Therefore, we hypothesized that presentation of Tax peptides by activated DCs to naIve CD8(+) T cells may play an important role in the induction of a Tax-specific CTL response and neurologic dysfunction. In this study, a pathway-specific antigen presenting cell gene array was used to study transcriptional changes induced by exposure of monocyte-derived DCs to extracellular HTLV-1 Tax protein. Approximately 100 genes were differentially expressed including genes encoding toll-like receptors, cell surface receptors, proteins involved in antigen uptake and presentation and adhesion molecules. The differential regulation of chemokines and cytokines characteristic of functional DC activation was also observed by the gene array analyses. Furthermore, the expression pattern of signal transduction genes was also significantly altered. These results have suggested that Tax-mediated DC gene regulation might play a critical role in cellular activation and the mechanisms resulting in HTLV-1-induced disease.
Inositol phosphate pathway controls transcription of telomeric expression sites in trypanosomes
Cestari, Igor; Stuart, Ken
2015-01-01
African trypanosomes evade clearance by host antibodies by periodically changing their variant surface glycoprotein (VSG) coat. They transcribe only one VSG gene at a time from 1 of about 20 telomeric expression sites (ESs). They undergo antigenic variation by switching transcription between telomeric ESs or by recombination of the VSG gene expressed. We show that the inositol phosphate (IP) pathway controls transcription of telomeric ESs and VSG antigenic switching in Trypanosoma brucei. Conditional knockdown of phosphatidylinositol 5-kinase (TbPIP5K) or phosphatidylinositol 5-phosphatase (TbPIP5Pase) or overexpression of phospholipase C (TbPLC) derepresses numerous silent ESs in T. brucei bloodstream forms. The derepression is specific to telomeric ESs, and it coincides with an increase in the number of colocalizing telomeric and RNA polymerase I foci in the nucleus. Monoallelic VSG transcription resumes after reexpression of TbPIP5K; however, most of the resultant cells switched the VSG gene expressed. TbPIP5K, TbPLC, their substrates, and products localize to the plasma membrane, whereas TbPIP5Pase localizes to the nucleus proximal to telomeres. TbPIP5Pase associates with repressor/activator protein 1 (TbRAP1), and their telomeric silencing function is altered by TbPIP5K knockdown. These results show that specific steps in the IP pathway control ES transcription and antigenic switching in T. brucei by epigenetic regulation of telomere silencing. PMID:25964327
Zhou, Fei; Badillo-Corona, Jesus A; Karcher, Daniel; Gonzalez-Rabade, Nuria; Piepenburg, Katrin; Borchers, A-M Inka; Maloney, Alan P; Kavanagh, Tony A; Gray, John C; Bock, Ralph
2008-12-01
Transgene expression from the plant's plastid genome represents a promising strategy in molecular farming because of the plastid's potential to accumulate foreign proteins to high levels and the increased biosafety provided by the maternal mode of organelle inheritance. In this article, we explore the potential of transplastomic plants to produce human immunodeficiency virus (HIV) antigens as potential components of an acquired immunodeficiency syndrome (AIDS) vaccine. It is shown that the HIV antigens p24 (the major target of T-cell-mediated immune responses in HIV-positive individuals) and Nef can be expressed to high levels in plastids of tobacco, a non-food crop, and tomato, a food crop with an edible fruit. Optimized p24-Nef fusion gene cassettes trigger antigen protein accumulation to up to approximately 40% of the plant's total protein, demonstrating the great potential of transgenic plastids to produce AIDS vaccine components at low cost and high yield.
Fox, I J; Chowdhury, N R; Gupta, S; Kondapalli, R; Schilsky, M L; Stockert, R J; Chowdhury, J R
1995-03-01
Viral vectors and protein carriers utilizing asialoglycoprotein receptor (ASGR)-mediated endocytosis are being developed to transfer genes for the correction of bilirubin-UDP-glucuronosyltransferase (bilirubin-UGT) deficiency. Ex vivo evaluation of these gene transfer vectors would be facilitated by a cell system that lacks bilirubin-UGT, but expresses differentiated liver functions, including ASGR. We immortalized primary Gunn rat hepatocytes by transduction with a recombinant Moloney murine leukemia virus expressing a thermolabile mutant SV40 large T antigen (tsA58). At 33 degrees C, the immortalized hepatocyte clones expressed SV40 large T antigen, synthesized DNA, and doubled in number every 2 to 3 days. At this temperature, differentiated hepatocyte markers, e.g., albumin, ASGR, and androsterone-UGT, were expressed at 5% to 10% of the levels found in primary hepatocytes maintained in culture for 24 hours. Glutathione-S-transferase Yp (GST-Yp), an oncofetal protein, was expressed in these cells at 33 degrees C, but was undetectable in primary hepatocytes. In contrast, when the cells were cultured at 39 degrees C or 37 degrees C, the large T antigen was degraded, DNA synthesis and cell growth stopped, and morphologic characteristics of differentiated hepatocytes were observed. The expression of albumin, ASGR, and androsterone-UGT, and their corresponding mRNAs, increased to 25% to 40% of the level in primary hepatocytes, whereas GST-Yp expression decreased. Functionality of ASGR was demonstrated by internalization of Texas red-labeled asialoorosomucoid, and binding and degradation of 125I-asialoorosomucoid. After liposome-mediated transfer of a plasmid containing the coding region of human bilirubin-UGT1, driven by the SV40 large T promoter, active human bilirubin-UGT1 was expressed in these cells. The immortalized cells were not tumorigenic after transplantation into severe combined immunodeficiency mice. These conditionally immortalized cells will be useful for ex vivo evaluation of bilirubin-UGT gene transfer vectors.
Kanagarajan, Selvaraju; Tolf, Conny; Lundgren, Anneli; Waldenström, Jonas; Brodelius, Peter E
2012-01-01
The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA) of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His) tag, and an endoplasmic retention signal (SEKDEL). The construct was cloned into a Cowpea mosaic virus (CPMV)-based vector (pEAQ-HT) and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19) containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0), as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi). Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of vaccine antigen to induce immune response in poultry species.
Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.
Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M
2017-11-07
Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms of antigenic variation used by this pathogen to escape the human immune system, a strategy commonly used by pathogenic microorganisms. Using a new DNA sequencing technology generating long reads, we could characterize the highly repetitive gene families encoding the proteins that are present on the cellular surface of this pest. These gene families are localized in the regions close to the ends of all chromosomes, the subtelomeres. Such chromosomal localization was found to favor genetic recombinations between members of each gene family and to allow diversification of these proteins continuously over time. This pathogen seems to use a strategy of antigenic variation consisting of the continuous production of new subpopulations composed of cells that are antigenically different. Such a strategy is unique among human pathogens. Copyright © 2017 Schmid-Siegert et al.
Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad
2015-05-01
Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the 30 sera of known genotypes. The antigens did not detect antibodies to genotype-3a, but detected antibodies to all genotypes and did not discriminate them genotype wise. A panel of 175 of HCV-suspected serum samples was subjected to comparative analysis with our in-house ELISA assay and with commercial HCV screening assays. After subjecting the results to the formulas for determining the quality parameters, immunoblot assay had 100% sensitivity and specificity, while the ELISA assay had 100% sensitivity and 98.8% specificity as compared to commercially available assays. This study indicates that a mixture of Core and E2 antigens are potentially valuable antigens and there is the possibility of developing serological assays for monitoring HCV infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Singh, Harjeet; Huls, Helen; Cooper, Laurence JN
2014-01-01
Summary The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing approaches to improve the potency of tumor-specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CAR) that provide T cells with ability to directly recognize tumor-associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral-based and non-viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase system improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen-presenting cells (aAPC) can selectively propagate and thus retrieve CAR+ T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost-effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next-generation T cells with improved therapeutic potential. PMID:24329797
Fujiwara, Hiroshi
2014-12-15
Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI) and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL) for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as "cellular drugs". As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs), transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR) gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.
Kumar, Navin; Pande, Veena; Bhatt, R M; Shah, Naman K; Mishra, Neelima; Srivastava, Bina; Valecha, Neena; Anvikar, Anupkumar R
2013-01-01
Genetic polymorphisms in diagnostic antigens are important factors responsible for variable performance of rapid diagnostic tests. Additionally, the failure of antigen expression due to gene deletion may also contribute to variable performance. We report Indian Plasmodium falciparum field isolates lacking both Pfhrp2 and Pfhrp3 genes leading to false negative results of rapid diagnostic tests. The study highlights need to determine the prevalence of P. falciparum isolates lacking these genes in larger field populations in India. Copyright © 2012 Elsevier B.V. All rights reserved.
Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells.
Herbst, H; Dallenbach, F; Hummel, M; Niedobitek, G; Pileri, S; Müller-Lantzsch, N; Stein, H
1991-01-01
Cryostat sections from lymph nodes of 47 Hodgkin disease patients were examined by immunohistology for the Epstein-Barr virus (EBV)-encoded latent membrane protein (LMP), nuclear antigen 2, and late viral glycoprotein gp350/250. A distinct LMP-specific membrane and cytoplasmic staining was detected exclusively in Hodgkin and Reed-Sternberg cells in 18 patients (38%); EBV nuclear antigen 2 and gp350/250 immunoreactivity was absent in all instances. Thirty-two of 47 (68%) cases contained EBV-specific DNA sequences as detected by PCR, all LMP-positive cases being in this category. Our results confirm previous studies establishing the presence of EBV genomes in Hodgkin and Reed-Sternberg cells by demonstrating expression of an EBV-encoded protein in the tumor-cell population. The finding of LMP expression in the absence of EBV nuclear antigen 2 suggests a pattern of EBV gene expression different from that of B-lymphoblastoid cell lines and Burkitt lymphoma, whereas this finding shows similarities with that seen in undifferentiated nasopharyngeal carcinoma. Because the LMP gene has transforming potential, our findings support the concept of a pathoetiological role of EBV in many cases of Hodgkin disease. Images PMID:1647016
Expression of Cancer/Testis Antigens in Prostate Cancer is Associated With Disease Progression
Suyama, Takahito; Shiraishi, Takumi; Zeng, Yu; Yu, Wayne; Parekh, Nehal; Vessella, Robert L.; Luo, Jun; Getzenberg, Robert H.; Kulkarni, Prakash
2011-01-01
Background The cancer/testis antigens (CTAs) are a unique group of proteins normally expressed in germ cells but aberrantly expressed in several types of cancers including prostate cancer (PCa). However, their role in PCa has not been fully explored. Methods CTA expression profiling in PCa samples and cell lines was done utilizing a custom microarray that contained probes for two-thirds of all CTAs. The data were validated by quantitative PCR (Q-PCR). Functional studies were carried out by silencing gene expression with siRNA. DNA methylation was determined by methylation-specific PCR. Results A majority of CTAs expressed in PCa are located on the X chromosome (CT-X antigens). Several CT-X antigens from the MAGEA/CSAG subfamilies are coordinately upregulated in castrate-resistant prostate cancer (CRPC) but not in primary PCa. In contrast, PAGE4 is highly upregulated in primary PCa but is virtually silent in CRPC. Further, there was good correlation between the extent of promoter DNA methylation and CTA expression. Finally, silencing the expression of MAGEA2 the most highly upregulated member, significantly impaired proliferation of prostate cancer cells while increasing their chemosensitivity. Conclusions Considered together, the remarkable stage-specific expression patterns of the CT-X antigens strongly suggests that these CTAs may serve as unique biomarkers that could potentially be used to distinguish men with aggressive disease who need treatment from men with indolent disease not requiring immediate intervention. The data also suggest that the CT-X antigens may be novel therapeutic targets for CRPC for which there are currently no effective therapeutics. PMID:20583133
Analysis of the antibody repertoire of lymphoma patients.
Huang, Shaoming; Preuss, Klaus-Dieter; Xie, Xiaoxun; Regitz, Evi; Pfreundschuh, Michael
2002-12-01
Cancer testis or cancer germline antigens (CGA) are promising vaccine candidates because they are expressed only in malignant but not in normal tissues, except for germ cells in the testis. Since non-Hodgkin's lymphomas (NHL) express the known CGA at low frequencies, we aimed at increasing the number of CGA with frequent expression in NHL by screening a cDNA expression library derived from normal testis for reactivity with high-titered IgG antibodies in the sera of lymphoma patients using SEREX, the serological identification of antigens by recombinant cDNA expression cloning. The analysis of 1.6x10(6) clones with the sera of 25 lymphoma patients revealed 42 clones which coded for 23 antigens, 12 of which had already been included in the SEREX databank. Four cDNA clones coded for unknown and 19 for known genes. Three antigens reacted only with the serum by which they had been detected, 9 antigens reacted with the sera of several NHL patients, but not with that of healthy controls, and 11 antigens reacted with both normal and NHL sera. Most of the antigens were ubiquitously expressed. Only HOM-NHL-6, HOM-NHL-8, HOM-NHL-21 and HOM-NHL-23 showed a restricted expression pattern. HOM-NHL-6 and HOM-NHL-8 were homologous to the previously described CGA NY-ESO-1 and HOM-TES-14/SCP-1, respectively. HOM-NHL-21 was expressed in rare cases of lymphomas, but not in normal tissues except for testis and brain, while HOM-NHL-23 appeared to be a testis-specific antigen. In summary, using the antibody repertoire of these 25 NHL patients, no new CGA were detected. The number of CGA detectable by the classical SEREX approach appears to be limited, and novel strategies are necessary to identify antigens that can serve as a vaccine target in a broad spectrum of NHL patients.
mRNA-Seq Reveals Novel Molecular Mechanisms and a Robust Fingerprint in Graves' Disease
Sachidanandam, Ravi; Morshed, Syed; Latif, Rauf; Shi, Ruijin; Davies, Terry F.
2014-01-01
Context: The immune response in autoimmune thyroid disease has been shown to occur primarily within the thyroid gland in which the most abundant antigens can be found. A variety of capture molecules are known to be expressed by thyroid epithelial cells and serve to attract and help retain an intrathyroidal immune infiltrate. Objective: To explore the entire repertoire of expressed genes in human thyroid tissue, we have deep sequenced the transcriptome (referred to as mRNA-Seq). Design and Patients: We applied mRNA-Seq to thyroid tissue from nine patients with Graves' disease subjected to total thyroidectomy and compared the data with 12 samples of normal thyroid tissue obtained from patients having a thyroid nodule removed. The expression for each gene was calculated from the sequencing data by taking the median of the coverage across the length of the gene. The expression levels were quantile normalized and a gene signature was derived from these. Results: On comparison of expression levels in tissues derived from Graves' patients and controls, there was clear evidence for overexpression of the antigen presentation pathway consisting of HLA and associated genes. We also found a robust disease signature and discovered active innate and adaptive immune signaling networks. Conclusions: These data reveal an active immune defense system in Graves' disease, which involves novel molecular mechanisms in its pathogenesis and development. PMID:24971664
Hematopoietic progenitors express neural genes
Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David
2003-01-01
Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211
Cho, Ki-hyun; Kim, Jeongmi; Yoo, Hyun-ah; Kim, Dae-hee; Park, Seung-yong; Song, Chang-seon; Choi, In-soo; Lee, Joong-bok
2014-12-01
Simple methods for measuring the levels of serum antibody against canine distemper virus (CDV) would assist in the effective vaccination of dogs. To develop an enzyme-linked immunosorbent assay (ELISA) specific for CDV, we expressed hydrophilic extra-viral domain (HEVD) protein of the A75/17-CDV H gene in a pET 28a plasmid-based Escherichia (E.) coli vector system. Expression was confirmed by dot and Western blotting. We proposed that detection of E. coli-expressed H protein might be conformation- dependent because intensities of the reactions observed with these two methods varied. The H gene HEVD protein was further purified and used as an antigen for an ELISA. Samples from dogs with undetectable to high anti-CDV antibody titers were analyzed using this HEVD-specific ELISA and a commercial CDV antibody detection kit (ImmunoComb). Levels of HEVD antigenicity measured with the assays and immunochromatography correlated. These data indicated that the HEDV protein may be used as antigen to develop techniques for detecting antibodies against CDV.
Lu, Jian; Zhou, Bai-ping; Zhou, Yu-sen; Jiang, Xiao-ling; Wen, Li-xia; Le, Xiao-hua; Li, Bing; Xu, Liu-mei; Li, Li-xiong
2005-03-01
To clone and express nucleocapsid (N) protein of the severe acute respiratory syndrome (SARS)-associated coronavirus, and to evaluate its antigenicity and application value in the development of serological diagnostic test for SARS. SARS-associated coronavirus N protein gene was amplified from its genomic RNA by reverse transcript nested polymerase chain reaction (RT-nested-PCR) and cloned into pBAD/Thio-TOPO prokaryotic expression vector. The recombinant N fusion protein was expressed and purified, and its antigenicity and specificity was analyzed by Western Blot, to establish the recombinant N protein-based ELISA for detection of IgG antibodies to SARS-associated coronavirus, and SARS-associated coronavirus lysates-based ELISA was compared parallelly. The recombinant expression vector produced high level of the N fusion protein after induction, and that protein was purified successfully by affinity chromatography and displayed higher antigenicity and specificity as compared with whole virus lysates. The recombinant SARS-associated coronavirus N protein possessed better antigenicity and specificity and could be employed to establish a new, sensitive, and specific ELISA for SARS diagnosis.
Limpers, Annelies; van Royen-Kerkhof, Annet; van Roon, Joel A G; Radstake, Timothy R D J; Broen, Jasper C A
2014-02-01
Inflammatory fibrotic disorders have been of high interest both for dermatologists and rheumatologists. Although the phenotypic end stage of this group of diseases is ultimately the same, namely fibrosis, patients present with different clinical features and are often treated with distinct therapeutic modalities. This review addresses whether there is evidence for different underlying molecular pathways in the various inflammatory fibrotic diseases such as localized scleroderma, pediatric lichen sclerosus, adult lichen sclerosus, eosinophilic fasciitis and systemic sclerosis. To investigate this, a large number of gene expression microarray studies performed on skin or fibroblasts from patients with these aforementioned diseases were described, (re-)analysed, and compared. As suspected by the heterogeneous phenotype, most diseases showed unique gene expression features. Intriguingly, a clear overlap was observed between adult and pediatric lichen sclerosus and localized scleroderma, in antigen processing and the interferon pathway. Delineating the cause and consequence of these pathways may generate novel tools to better characterize and more effectively treat these patients.
Jahn, Lorenz; Hagedoorn, Renate S.; van der Steen, Dirk M.; Hombrink, Pleun; Kester, Michel G.D.; Schoonakker, Marjolein P.; de Ridder, Daniëlle; van Veelen, Peter A.; Falkenburg, J.H. Frederik; Heemskerk, Mirjam H.M.
2016-01-01
CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy. PMID:27689397
Jahn, Lorenz; Hagedoorn, Renate S; van der Steen, Dirk M; Hombrink, Pleun; Kester, Michel G D; Schoonakker, Marjolein P; de Ridder, Daniëlle; van Veelen, Peter A; Falkenburg, J H Frederik; Heemskerk, Mirjam H M
2016-11-01
CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy.
Gabitzsch, Elizabeth S.; Tsang, Kwong Yok; Palena, Claudia; David, Justin M.; Fantini, Massimo; Kwilas, Anna; Rice, Adrian E.; Latchman, Yvette; Hodge, James W.; Gulley, James L.; Madan, Ravi A.; Heery, Christopher R.; Balint, Joseph P.
2015-01-01
Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted. The unique deletions in this platform result in a dramatic decrease in late gene expression, leading to a marked reduction in host immune response to the vector. Ad5 [E1-, E2b-]-CEA vaccine (ETBX-011) has been employed in clinical studies as an active vaccine to induce immune responses to CEA in metastatic colorectal cancer patients. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no “antigenic competition” in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies. PMID:26374823
The stable traits of melanoma genetics: an alternate approach to target discovery
2012-01-01
Background The weight that gene copy number plays in transcription remains controversial; although in specific cases gene expression correlates with copy number, the relationship cannot be inferred at the global level. We hypothesized that genes steadily expressed by 15 melanoma cell lines (CMs) and their parental tissues (TMs) should be critical for oncogenesis and their expression most frequently influenced by their respective copy number. Results Functional interpretation of 3,030 transcripts concordantly expressed (Pearson's correlation coefficient p-value < 0.05) by CMs and TMs confirmed an enrichment of functions crucial to oncogenesis. Among them, 968 were expressed according to the transcriptional efficiency predicted by copy number analysis (Pearson's correlation coefficient p-value < 0.05). We named these genes, "genomic delegates" as they represent at the transcriptional level the genetic footprint of individual cancers. We then tested whether the genes could categorize 112 melanoma metastases. Two divergent phenotypes were observed: one with prevalent expression of cancer testis antigens, enhanced cyclin activity, WNT signaling, and a Th17 immune phenotype (Class A). This phenotype expressed, therefore, transcripts previously associated to more aggressive cancer. The second class (B) prevalently expressed genes associated with melanoma signaling including MITF, melanoma differentiation antigens, and displayed a Th1 immune phenotype associated with better prognosis and likelihood to respond to immunotherapy. An intermediate third class (C) was further identified. The three phenotypes were confirmed by unsupervised principal component analysis. Conclusions This study suggests that clinically relevant phenotypes of melanoma can be retraced to stable oncogenic properties of cancer cells linked to their genetic back bone, and offers a roadmap for uncovering novel targets for tailored anti-cancer therapy. PMID:22537248
Pathak, Shalu Kumari; Kumar, Amit; Bhuwana, G; Sah, Vaishali; Upmanyu, Vikramadiya; Tiwari, A K; Sahoo, A P; Sahoo, A R; Wani, Sajjad A; Panigrahi, Manjit; Sahoo, N R; Kumar, Ravi
2017-09-01
In present investigation, differential expression of transcriptome after classical swine fever (CSF) vaccination has been explored at the cellular level in crossbred and indigenous (desi) piglets. RNA Sequencing by Expectation-Maximization (RSEM) package was used to quantify gene expression from RNA Sequencing data, and differentially expressed genes (DEGs) were identified using EBSeq, DESeq2, and edgeR softwares. After analysis, 5222, 6037, and 6210 common DEGs were identified in indigenous post-vaccinated verses pre-vaccinated, crossbred post-vaccinated verses pre-vaccinated, and post-vaccinated crossbred verses indigenous pigs, respectively. Functional annotation of these DEGs showed enrichment of antigen processing-cross presentation, B cell receptor signaling, T cell receptor signaling, NF-κB signaling, and TNF signaling pathways. The interaction network among the immune genes included more number of genes with greater connectivity in vaccinated crossbred than the indigenous piglets. Higher expression of IRF3, IL1β, TAP1, CSK, SLA2, SLADM, and NF-kB in crossbred piglets in comparison to indigenous explains the better humoral response observed in crossbred piglets. Here, we predicted that the processed CSFV antigen through the T cell receptor signaling cascade triggers the B cell receptor-signaling pathway to finally activate MAPK kinase and NF-κB signaling pathways in B cell. This activation results in expression of genes/transcription factors that lead to B cell ontogeny, auto immunity and immune response through antibody production. Further, immunologically important genes were validated by qRT-PCR.
Bürckert, Jean-Philippe; Dubois, Axel R S X; Faison, William J; Farinelle, Sophie; Charpentier, Emilie; Sinner, Regina; Wienecke-Baldacchino, Anke; Muller, Claude P
2017-01-01
The identification and tracking of antigen-specific immunoglobulin (Ig) sequences within total Ig repertoires is central to high-throughput sequencing (HTS) studies of infections or vaccinations. In this context, public Ig sequences shared by different individuals exposed to the same antigen could be valuable markers for tracing back infections, measuring vaccine immunogenicity, and perhaps ultimately allow the reconstruction of the immunological history of an individual. Here, we immunized groups of transgenic rats expressing human Ig against tetanus toxoid (TT), Modified Vaccinia virus Ankara (MVA), measles virus hemagglutinin and fusion proteins expressed on MVA, and the environmental carcinogen benzo[a]pyrene, coupled to TT. We showed that these antigens impose a selective pressure causing the Ig heavy chain (IgH) repertoires of the rats to converge toward the expression of antibodies with highly similar IgH CDR3 amino acid sequences. We present a computational approach, similar to differential gene expression analysis, that selects for clusters of CDR3s with 80% similarity, significantly overrepresented within the different groups of immunized rats. These IgH clusters represent antigen-induced IgH signatures exhibiting stereotypic amino acid patterns including previously described TT- and measles-specific IgH sequences. Our data suggest that with the presented methodology, transgenic Ig rats can be utilized as a model to identify antigen-induced, human IgH signatures to a variety of different antigens.
Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.
2014-01-01
T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354
Beck, Bo Ram; Lee, Soon Ho; Kim, Daniel; Park, Ji Hye; Lee, Hyun Kyung; Kwon, San-Sung; Lee, Kwan Hee; Lee, Jae Il; Song, Seong Kyu
2017-09-01
Edwardsiellosis is a major fish disease that causes a significant economic damage in the aquaculture industry. Here, we assessed vaccine efficacy after feeding oral vaccines to olive flounder (Paralichthys olivaceus), either L. lactis BFE920 expressing Edwardsiella tarda outer membrane protein A (OmpA), flagellar hook protein D (FlgD), or a fusion antigen of the two. Feed vaccination was done twice with a one-week interval. Fish were fed regular feed adsorbed with the vaccines. Feed vaccination was given over the course of one week to maximize the interaction between the feed vaccines and the fish intestine. Flounder fed the vaccine containing the fusion antigen had significantly elevated levels T cell genes (CD4-1, CD4-2, and CD8α), type 1 helper T cell (Th1) subset indicator genes (T-bet and IFN-γ), and antigen-specific antibodies compared to the groups fed the single antigen-expressing vaccines. Furthermore, the superiority of the fusion vaccine was also observed in survival rates when fish were challenged with E. tarda: OmpA-FlgD-expressing vaccine (82.5% survival); FlgD-vaccine (55.0%); OmpA-vaccine (50%); WT L. lactis BFE920 (37.5%); Ctrl (10%). In addition, vaccine-fed fish exhibited increased weight gain (∼20%) and a decreased feed conversion ratio (∼20%) during the four week vaccination period. Flounder fed the FlgD-expressing vaccine, either the single or the fusion form, had significantly increased expression of TLR5M, IL-1β, and IL-12p40, suggesting that the FlgD may be a ligand of olive flounder TLR5M receptor or closely related to the TLR5M pathway. In conclusion, the present study demonstrated that olive flounder fed L. lactis BFE920 expressing a fusion antigen composed of E. tarda OmpA and FlgD showed a strong protective effect against edwardsiellosis indicating this may be developed as an E. tarda feed vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.
The green vaccine: A global strategy to combat infectious and autoimmune diseases
Davoodi-Semiromi, Abdoreza; Samson, Nalapalli; Daniell, Henry
2009-01-01
Plant derived oral green vaccines eliminate expenses associated with fermenters, purification, cold storage/transportation and sterile delivery. Green vaccines are expressed via the plant nuclear or chloroplast genomes. Chloroplast expression has advantages of hyper-expression of therapeutic proteins (10,000 copies of trans-gene per cell), efficient oral delivery and transgene containment via maternal inheritance. To date, 23 vaccine antigens against 16 different bacterial, viral or protozoan pathogens have been expressed in chloroplasts. Mice subcutaneously immunized with the chloroplast derived anthrax protective antigen conferred 100% protection against lethal doses of the anthrax toxin. Oral immunization (ORV) of F1-V antigens without adjuvant conferred greater protection (88%) against 50-fold lethal dose of aerosolized plague (Yersinia pestis) than subcutaneous (SQV) immunization (33%). Oral immunization of malarial vaccine antigens fused to the cholera antigen (CTB-AMA1/CTB-Msp1) conferred prolonged immunity (50% life span), 100% protection against cholera toxin challenge and inhibited proliferation of the malarial parasite. Protection was correlated with antigen-specific titers of intestinal, serum IgA & IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. High level expression in edible plant chloroplasts ideal for oral delivery and long-term immunity observed should facilitate development of low cost human vaccines for large populations, at times of outbreak. PMID:19430198
1994-01-01
The expression of class I major histocompatibility complex antigens on the surface of cells transformed by adenovirus 12 (Ad12) is generally very low, and correlates with the high oncogenicity of this virus. In primary embryonal fibroblasts from transgenic mice that express both endogenous H-2 genes and a miniature swine class I gene (PD1), Ad12- mediated transformation results in suppression of cell surface expression of all class I antigens. Although class I mRNA levels of PD1 and H-2Db are similar to those in nonvirally transformed cells, recognition of newly synthesized class I molecules by a panel of monoclonal antibodies is impaired, presumably as a result of inefficient assembly and transport of the class I molecules. Class I expression can be partially induced by culturing cells at 26 degrees C, or by coculture of cells with class I binding peptides at 37 degrees C. Analysis of steady state mRNA levels of the TAP1 and TAP2 transporter genes for Ad12-transformed cell lines revealed that they both are significantly reduced, TAP2 by about 100-fold and TAP1 by 5-10-fold. Reconstitution of PD1 and H-2Db, but not H-2Kb, expression is achieved in an Ad12-transformed cell line by stable transfection with a TAP2, but not a TAP1, expression construct. From these data it may be concluded that suppressed expression of peptide transporter genes, especially TAP2, in Ad12-transformed cells inhibits cell surface expression of class I molecules. The failure to fully reconstitute H- 2Db and H-2Kb expression indicates that additional factors are involved in controlling class I gene expression in Ad12-transformed cells. Nevertheless, these results suggest that suppression of peptide transporter genes might be an important mechanism whereby virus- transformed cells escape immune recognition in vivo. PMID:7519239
Cerruti, Fulvia; Martano, Marina; Petterino, Claudio; Bollo, Enrico; Morello, Emanuela; Bruno, Renato; Buracco, Paolo; Cascio, Paolo
2007-01-01
In human tumors, changes in the surface expression and/or function of major histocompatibility complex (MHC) class I antigens are frequently found and may provide malignant cells with a mechanism to escape control of the immune system. This altered human lymphocyte antigen (HLA) class I phenotype can be caused by either structural alterations or dysregulation of genes encoding subunits of HLA class I antigens and/or components of the MHC class I antigen-processing machinery (APM). Herein we analyze the expression of several proteins involved in the generation of MHC class I epitopes in feline injection site sarcoma, a spontaneously occurring tumor in cats that is an informativemodel for the study of tumor biology in other species, including humans. Eighteen surgically removed primary fibrosarcoma lesions were analyzed, and an enhanced expression of two catalytic subunits of immunoproteasomes, PA28 and leucine aminopeptidase, was found in tumors compared to matched normal tissues. As a functional counterpart of these changes in protein levels, proteasomal activities were increased in tissue extracts from fibrosarcomas. Taken together, these results suggest that alterations in the APM system may account for reduced processing of selected tumor antigens and may potentially provide neoplastic fibroblasts with a mechanism for escape from T-cell recognition and destruction. PMID:18030364
Cerruti, Fulvia; Martano, Marina; Petterino, Claudio; Bollo, Enrico; Morello, Emanuela; Bruno, Renato; Buracco, Paolo; Cascio, Paolo
2007-11-01
In human tumors, changes in the surface expression and/or function of major histocompatibility complex (MHC) class I antigens are frequently found and may provide malignant cells with a mechanism to escape control of the immune system. This altered human lymphocyte antigen (HLA) class I phenotype can be caused by either structural alterations or dysregulation of genes encoding subunits of HLA class I antigens and/or components of the MHC class I antigen-processing machinery (APM). Herein we analyze the expression of several proteins involved in the generation of MHC class I epitopes in feline injection site sarcoma, a spontaneously occurring tumor in cats that is an informative model for the study of tumor biology in other species, including humans. Eighteen surgically removed primary fibrosarcoma lesions were analyzed, and an enhanced expression of two catalytic subunits of immunoproteasomes, PA28 and leucine aminopeptidase, was found in tumors compared to matched normal tissues. As a functional counterpart of these changes in protein levels, proteasomal activities were increased in tissue extracts from fibrosarcomas. Taken together, these results suggest that alterations in the APM system may account for reduced processing of selected tumor antigens and may potentially provide neoplastic fibroblasts with a mechanism for escape from T-cell recognition and destruction.
Su, L N; Little, J B
1992-08-01
Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.
Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.
2007-01-01
Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872
Zhang, Yuyao; Ma, Xiuli; Huang, Bing; Li, Yufeng; Yu, Kexiang; Li, Jianliang; Liu, Cunxia; Han, Hongyu; Cui, Yanshun
2015-04-04
To simultaneously detect antibodies against Duck hepatitis A type 1 (DHAV-1) and type 3 (DHAV-3) viruses, we developed an indirect enzyme-linked immunosobent assay (ELISA) with bacterially expressed recombinant viral protein as antigen in Escherichia coli. We amplified the full-length VP3 gene of DHAV-1 and the full-length VP1 gene of DHAV-3 through reverse transcription-polymerase chain reaction (RT-PCR) and then cloned them into pET-32a expression vector, designated as pET-1VP3-3VP1. The fusion protein DHAV-1VP3-3VP1 expressed correctly and was subsequently used to develop an indirect ELISA assay. DHAV-1VP3-3VP1 fusion protein expressed in BL21 (DE3) cells following induction by Isopropyl-beta-D-1-thiogalactopyranoside (IPTG). The expressed protein was very antigenic and reactive to virus-specific antibodies in western blot assay. The optimal working concentration for coating antigen was 1.0 microg per well and the working concentration of serum samples was 1:200 dilution and the cut-off value that distinguished the positive from negative serum samples was OD650 > OR = 0.38. The ELISA method based on the prokaryotic expression of VP3 (DHAV-1) and VP1 proteins (DHAV-3) can be used effectively for the clinical detection antibodies against DHAV-1 and DHAV-3.
Advantages and applications of CAR-expressing natural killer cells
Glienke, Wolfgang; Esser, Ruth; Priesner, Christoph; Suerth, Julia D.; Schambach, Axel; Wels, Winfried S.; Grez, Manuel; Kloess, Stephan; Arseniev, Lubomir; Koehl, Ulrike
2015-01-01
In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy. PMID:25729364
Simkovsky, Ryan; Daniels, Emy F; Tang, Karen; Huynh, Stacey C; Golden, Susan S; Brahamsha, Bianca
2012-10-09
The grazing activity of predators on photosynthetic organisms is a major mechanism of mortality and population restructuring in natural environments. Grazing is also one of the primary difficulties in growing cyanobacteria and other microalgae in large, open ponds for the production of biofuels, as contaminants destroy valuable biomass and prevent stable, continuous production of biofuel crops. To address this problem, we have isolated a heterolobosean amoeba, HGG1, that grazes upon unicellular and filamentous freshwater cyanobacterial species. We have established a model predator-prey system using this amoeba and Synechococcus elongatus PCC 7942. Application of amoebae to a library of mutants of S. elongatus led to the identification of a grazer-resistant knockout mutant of the wzm ABC O-antigen transporter gene, SynPCC7942_1126. Mutations in three other genes involved in O-antigen synthesis and transport also prevented the expression of O-antigen and conferred resistance to HGG1. Complementation of these rough mutants returned O-antigen expression and susceptibility to amoebae. Rough mutants are easily identifiable by appearance, are capable of autoflocculation, and do not display growth defects under standard laboratory growth conditions, all of which are desired traits for a biofuel production strain. Thus, preventing the production of O-antigen is a pathway for producing resistance to grazing by certain amoebae.
Simkovsky, Ryan; Daniels, Emy F.; Tang, Karen; Huynh, Stacey C.; Golden, Susan S.; Brahamsha, Bianca
2012-01-01
The grazing activity of predators on photosynthetic organisms is a major mechanism of mortality and population restructuring in natural environments. Grazing is also one of the primary difficulties in growing cyanobacteria and other microalgae in large, open ponds for the production of biofuels, as contaminants destroy valuable biomass and prevent stable, continuous production of biofuel crops. To address this problem, we have isolated a heterolobosean amoeba, HGG1, that grazes upon unicellular and filamentous freshwater cyanobacterial species. We have established a model predator–prey system using this amoeba and Synechococcus elongatus PCC 7942. Application of amoebae to a library of mutants of S. elongatus led to the identification of a grazer-resistant knockout mutant of the wzm ABC O-antigen transporter gene, SynPCC7942_1126. Mutations in three other genes involved in O-antigen synthesis and transport also prevented the expression of O-antigen and conferred resistance to HGG1. Complementation of these rough mutants returned O-antigen expression and susceptibility to amoebae. Rough mutants are easily identifiable by appearance, are capable of autoflocculation, and do not display growth defects under standard laboratory growth conditions, all of which are desired traits for a biofuel production strain. Thus, preventing the production of O-antigen is a pathway for producing resistance to grazing by certain amoebae. PMID:23012457
2007-12-01
endogenous pyrogens occur slightly earlier in s.c. infections, but are more pro- longed by aerosol. Lymphopenia also seems to be more aggressive in...brain) Brain P-value (lung) Lung P-value (spleen) Spleen Antigen processing, endogenous antigen via MHC class I (BP) HLA-A 213932_x_at 8.58E-05 2.40
Lin, Bing-Ying; Jin, Zhi-Qiang; Li, Mei
2006-11-01
To construct a plant effective expression vector driven by a fruit specific promoter for the expression of hepatitis B virus surface antigen (HBsAg), to further improve the expression of exogenous gene in plant, and to prepare for the development of an effective anti-hepatitis vaccine. Tomato fruit-specific promoters' gene 2A12 and E8 were respectively introduced to pBPFOmega7 to form pB2A12 and pBE8. The DNA fragment containing HBsAg-s gene from plasmid YEP-HBs was inserted respectively into pB2A12 and pBE8 to form pB2A12-HBs and pBE8-HBs. The fragment containing "p35S+2A12+Omega+HBsAg-s+Tnos" of the pB2A12-HBs was sub-cloned into plasmid pCAMBIA1301 to yield the reconstructed plant binary expression plasmid pCAM2A12-HBs, and the fragment containing "p35S+E8+Omega+HBsAg-s+Tnos" of the pBE8-HBs was sub-cloned into plasmid pCAMBIA1301 to yield the plasmid pCAME8-HBs. The inserted gene HBsAg and fruit-specific promoters in the reconstructed plant binary expression vectors were confirmed by sequencing. Then, pCAM2A12-HBs and pCAME8-HBs were directly introduced into Agrobacterium tumefaciens strain EHA105. Digestion with restriction enzymes proved that all recombinant vectors had the inserts with expected length of the target fragments, and the sequencing results were confirmed correct. In this study, plant expression vector containing HBsAg gene driven by fruit specific promoter and CaMV35s promoter was successfully constructed.
Stateman, William A.; Knöppel, Alexandra B.; Flegel, Willy A.; Henkin, Robert I.
2015-01-01
PURPOSE Our previous study of Type II congenital smell loss patients revealed a statistically significant lower prevalence of an FY (ACKR1, formerly DARC) haplotype compared to controls. The present study correlates this genetic feature with subgroups of patients defined by specific smell and taste functions. METHODS Smell and taste function measurements were performed by use of olfactometry and gustometry to define degree of abnormality of smell and taste function. Smell loss was classified as anosmia or hyposmia (types I, II or III). Taste loss was similarly classified as ageusia or hypogeusia (types I, II or III). Based upon these results patient erythrocyte antigen expression frequencies were categorized by smell and taste loss with results compared between patients within the Type II group and published controls. RESULTS Comparison of antigen expression frequencies revealed a statistically significant decrease in incidence of an Fyb haplotype only among patients with type I hyposmia and any form of taste loss (hypogeusia). In all other patient groups erythrocyte antigens were expressed at normal frequencies. CONCLUSIONS Data suggest that Type II congenital smell loss patients who exhibit both type I hyposmia and hypogeusia are genetically distinct from all other patients with Type II congenital smell loss. This distinction is based on decreased Fyb expression which correlated with abnormalities in two sensory modalities (hyposmia type I and hypogeusia). Only patients with these two specific sensory abnormalities expressed the Fyb antigen (encoded by the ACKR1 gene on the long arm of chromosome 1) at frequencies different from controls. PMID:27968956
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-04-10
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.
Zhang, J R; Norris, S J
1998-08-01
The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5' and 3' coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vls cassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.
KP-CoT-23 (CCDC83) is a novel immunogenic cancer/testis antigen in colon cancer.
Song, Myung-Ha; Ha, Jin-Mok; Shin, Dong-Hoon; Lee, Chang-Hun; Old, Lloyd; Lee, Sang-Yull
2012-11-01
Cancer/testis (CT) antigens are considered target molecules for cancer immunotherapy. To identify novel CT antigens, immunoscreening of a testicular cDNA library was performed using serum obtained from a colon cancer patient who was immunized with a new dendritic cell vaccine. We isolated 64 positive cDNA clones comprised of 40 different genes, designated KP-CoT-1 through KP-CoT-40. Three of these putative antigens, including KP-CoT-23 (CCDC83), had testis-specific expression profiles in the Unigene database. RT-PCR analysis showed that the expression of 2 KP-Cot-23 variants was restricted to the testis in normal adult tissues. In addition, KP-CoT-23 variants were frequently expressed in a variety of tumors and cancer cell lines, including colon cancer. A serological western blot assay showed IgG antibodies to the KP-CoT-23 protein in 26 of 37 colon cancer patients and in 4 of 21 healthy patients. These data suggest that KP-CoT-23 is a novel CT antigen that may be useful for the diagnosis and immunotherapy of cancer.
Morales, G; Carrillo, G; Requena, J M; Guzman, F; Gomez, L C; Patarroyo, M E; Alonso, C
1997-06-01
The gp63 gene encoding the major surface antigen of Leishmania infantum has been cloned and sequenced. In spite of the overall sequence homology with the gp63 genes from other Leishmania species, particularly with the constitutively expressed Leishmania chagasi Gp63 gene, the carboxy-terminal ends of these genes are clearly divergent (62% homology). To study the prevalence of anti-gp63 antibodies in the sera from dogs with visceral leishmaniasis, a recombinant L. infantum gp63 protein was expressed in Escherichia coli. It was found that 100% of the sera from these dogs recognized the recombinant gp63 protein, suggesting that it must function as a potent B cell immunogen during natural canine visceral leishmaniasis. However, heterogeneity in the level of response was observed. Fine mapping of the antigenic determinants was performed by means of 6 overlapping subfragments of the gp63 protein and by the use of a library of synthetic peptides. The data showed that there is some degree of immunological restriction in the recognition of the protein since reactivity was observed preferentially against the most divergent region. The epitope mapping of this region showed 2 immunodominant peptides the response to which seems to be preferentially of the IgG2 type.
Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.
2014-01-01
Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306
Li, J; Kasper, D L; Ausubel, F M; Rosner, B; Michel, J L
1997-11-25
The alpha C protein of group B Streptococcus (GBS) is a major surface-associated antigen. Although its role in the biology and virulence of GBS has not been defined, it is opsonic and capable of eliciting protective immunity. The alpha C protein is widely distributed among clinical isolates and is a potential protein carrier and antigen in conjugate vaccines to prevent GBS infections. The structural gene for the alpha C protein, bca, has been cloned and sequenced. The protein encoded by bca is related to a class of surface-associated proteins of gram-positive cocci involved in virulence and immunity. To investigate the potential roles of the alpha C protein, bca null mutants were generated in which the bca gene was replaced with a kanamycin resistance cassette via homologous recombination using a novel shuttle/suicide vector. Studies of lethality in neonatal mice showed that the virulence of the bca null mutants was attenuated 5- to 7-fold when compared with the isogenic wild-type strain A909. Significant differences in mortality occurred in the first 24 h, suggesting that the role of the alpha antigen is important in the initial stages of the infection. In contrast to A909, bca mutants were no longer killed by polymorphonuclear leukocytes in the presence of alpha-specific antibodies in an in vitro opsonophagocytic assay. In contrast to previous studies, alpha antigen expression does not appear to play a role in resistance to opsonophagocytosis in the absence of alpha-specific antibodies. In addition, antibodies to the alpha C protein did not passively protect neonatal mice from lethal challenge with bca mutants, suggesting that these epitopes are uniquely present within the alpha antigen as expressed from the bca gene. Therefore, the alpha C protein is important in the pathogenesis of GBS infection and is a target for protective immunity in the development of GBS vaccines.
The cell proliferation antigen Ki-67 organises heterochromatin
Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel
2016-01-01
Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251
Permyakova, Natalia V; Zagorskaya, Alla A; Belavin, Pavel A; Uvarova, Elena A; Nosareva, Olesya V; Nesterov, Andrey E; Novikovskaya, Anna A; Zav'yalov, Evgeniy L; Moshkin, Mikhail P; Deineko, Elena V
2015-01-01
Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.
Identification and characterization of polyclonal αβ T cells with dendritic cell properties
Kuka, Mirela; Munitic, Ivana; Ashwell, Jonathan D.
2012-01-01
An efficient immune response requires coordination between innate and adaptive immunity, which act through cells different in origin and function. Here we report the identification of thymus-derived αβ TCR+ cells that express CD11c and MHC class II, and require FLT3L for development (TDC). TDC express genes heretofore found uniquely in T cells or DC, as well as a distinctive signature of cytotoxicity-related genes. Unlike other innate T cell subsets, TDC have a polyclonal TCR repertoire andrespond to cognate antigens. However, they differ from conventional T cells in that they do not require help from antigen-presenting cells, respond to TLR-mediated stimulation by producing IL-12 and process and present antigen. The physiologic relevance of TDC, found in mice and humans, is still under investigation, but the fact that they combine key features of T and DC cells suggests that they provide a bridge between the innate and adaptive immune systems. PMID:23187623
Scherer, Christina A; Magness, Charles L; Steiger, Kathryn V; Poitinger, Nicholas D; Caputo, Christine M; Miner, Douglas G; Winokur, Patricia L; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A; Gillham, Martha H; Haulman, N Jean; Stapleton, Jack T; Iadonato, Shawn P
2007-08-29
Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents.
Mouse HLA-DPA homologue H2-Pa: A pseudogene that maps between H2-Pb and H2-Oa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arimura, Y.; Koda, T.; Kishi, M.
1996-12-31
The major histocompatibility complex (MHC) class II subregion contains several subclasses of genes. The classical class II genes, HLA-DP, DQ, and DR homologues, present antigens directly to CD4{sup +} T cells. HLA-DM homologues facilitate the efficacy and transport of antigens to the cell surface by removing the CLIP peptides from the classical class II molecules. HLA-DNA/DOB homologues show unusual expression patterns and limited polymorphism, but their function is yet to be elucidated. 15 refs., 2 figs.
An Overview of Live Attenuated Recombinant Pseudorabies Viruses for Use as Novel Vaccines
Dong, Bo; Zarlenga, Dante S.; Ren, Xiaofeng
2014-01-01
Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. PRV has many nonessential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs expressing both native and foreign antigens are able to stimulate immune responses. In this paper, we review the current status of live attenuated recombinant PRVs and live PRV-based vector vaccines with potential for controlling viral infections in animals. PMID:24995348
Ju, Jung Won; Kim, Ho-Cheol; Shin, Hyun-Il; Kim, Yu Jung; Kim, Dong-Myung
2015-01-01
Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA. PMID:26599101
Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko
2014-02-01
T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.
Abreu-Velez, Ana Maria; Yi, Hong; Howard, Michael S
2017-10-01
We previously described a new variant of endemic pemphigus foliaceus in El Bagre, Colombia, South America (El Bagre-EPF, or pemphigus Abreu-Manu). El Bagre-EPF differs from other types of EPF clinically, epidemiologically, immunologically and in its target antigens. We reported the presence of patient autoantibodies colocalizing with armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), a catenin cell junction protein colocalizing with El Bagre-EPF autoantibodies in the heart and within pilosebaceous units along their neurovascular supply routes. Here we investigate the presence of ARVCF in skin and its possibility as a cutaneous El Bagre-EPF antigen. We used a case-control study, testing sera of 45 patients and 45 controls via direct and indirect immunofluorescence (DIF/IIF), confocal microscopy, immunoelectron microscopy and immunoblotting for the presence of ARVCF and its relationship with El Bagre-EPF autoantibodies in the skin. We also immunoadsorbed samples with desmoglein 1 (Dsg1) ectodomain (El Bagre-EPF antigen) by incubating with the positive ARVCF samples from DIF and IIF. ARVCF was expressed in all the samples from the cases and controls. Immunoadsorption with Dsg1 on positive ARVCF immunofluorescence DIF/IIF cases showed that the immune response was present against non-desmoglein 1 antigen(s). Overall, 40/45 patients showed colocalization of their autoantibodies with ARVCF in the epidermis; no controls from the endemic area displayed colocalization. We demonstrate that ARVCF is expressed in many areas of human skin, and colocalizes with the majority of El Bagre-EPF autoantibodies as a putative antigen.
Abreu-Velez, Ana Maria; Yi, Hong; Howard, Michael S.
2017-01-01
Background We previously described a new variant of endemic pemphigus foliaceus in El Bagre, Colombia, South America (El Bagre-EPF, or pemphigus Abreu-Manu). El Bagre-EPF differs from other types of EPF clinically, epidemiologically, immunologically and in its target antigens. We reported the presence of patient autoantibodies colocalizing with armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), a catenin cell junction protein colocalizing with El Bagre-EPF autoantibodies in the heart and within pilosebaceous units along their neurovascular supply routes. Here we investigate the presence of ARVCF in skin and its possibility as a cutaneous El Bagre-EPF antigen. Methods We used a case-control study, testing sera of 45 patients and 45 controls via direct and indirect immunofluorescence (DIF/IIF), confocal microscopy, immunoelectron microscopy and immunoblotting for the presence of ARVCF and its relationship with El Bagre-EPF autoantibodies in the skin. We also immunoadsorbed samples with desmoglein 1 (Dsg1) ectodomain (El Bagre-EPF antigen) by incubating with the positive ARVCF samples from DIF and IIF. Results ARVCF was expressed in all the samples from the cases and controls. Immunoadsorption with Dsg1 on positive ARVCF immunofluorescence DIF/IIF cases showed that the immune response was present against non-desmoglein 1 antigen(s). Overall, 40/45 patients showed colocalization of their autoantibodies with ARVCF in the epidermis; no controls from the endemic area displayed colocalization. Conclusions We demonstrate that ARVCF is expressed in many areas of human skin, and colocalizes with the majority of El Bagre-EPF autoantibodies as a putative antigen. PMID:29214101
A recombinant Toscana virus nucleoprotein in a diagnostic immunoblot test system.
Schwarz, T F; Gilch, S; Schätzl, H M
1998-01-01
Sandfly fever, a vector-borne disease endemic in the Mediterranean region, is caused by Toscana virus (TOS). The disease is increasingly important as a travel-related infection. Serological diagnosis is currently dependent on viral antigens derived from TOS-infected cell cultures. In this study, we report the cloning and expression of the TOS nucleoprotein (N) in Escherichia coli and evaluation of the recombinant (r) TOS N protein as an antigen for immunoblot assays. The TOS N gene was amplified by reverse-transcriptase polymerase chain reaction and cloned into the bacterial expression vector pTrcHis-A. Sera with known TOS antibody status were used to evaluate the immunoblot assay. The expressed rTOS N protein was purified and used as antigen for immunoblots. By recombinant immunoblot, the TOS antibody status (IgM and/or IgG) of the test panel was correctly identified. No cross-reactivity was detected. The rTOS N protein is useful as an antigen for immunoblot assays, and will enable more laboratories to perform TOS antibody diagnosis.
Antigenic evaluation of a recombinant baculovirus-expressed Sarcocystis neurona SAG1 antigen.
Gupta, G D; Lakritz, J; Saville, W J; Livingston, R S; Dubey, J P; Middleton, J R; Marsh, A E
2004-10-01
Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.
2013-01-01
Background Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection in young children. The degree of disease severity is determined by the host response to infection. Lung macrophages play an important early role in the host response to infection and we have used a systems-based approach to examine the host response in RSV-infected lung-derived macrophage cells. Results Lung macrophage cells could be efficiently infected (>95%) with RSV in vitro, and the expression of several virus structural proteins could be detected. Although we failed to detect significant levels of virus particle production, virus antigen could be detected up until 96 hours post-infection (hpi). Microarray analysis indicated that 20,086 annotated genes were expressed in the macrophage cells, and RSV infection induced an 8.9% and 11.3% change in the global gene transcriptome at 4 hpi and 24 hpi respectively. Genes showing up-regulated expression were more numerous and exhibited higher changes in expression compared to genes showing down-regulated expression. Based on gene ontology, genes with cytokine, antiviral, cell death, and signal transduction functions showed the highest increases in expression, while signalling transduction, RNA binding and protein kinase genes showed the greatest reduction in expression levels. Analysis of the global gene expression profile using pathway enrichment analysis confirmed that up-regulated expression of pathways related to pathogen recognition, interferon signalling and antigen presentation occurred in the lung macrophage cells challenged with RSV. Conclusion Our data provided a comprehensive analysis of RSV-induced gene expression changes in lung macrophages. Although virus gene expression was detected, our data was consistent with an abortive infection and this correlated with the activation of several antivirus signalling pathways such as interferon type I signalling and cell death signalling. RSV infection induced a relatively large increase in pro-inflammatory cytokine expression, however the maintenance of this pro-inflammatory response was not dependent on the production of infectious virus particles. The sustained pro-inflammatory response even in the absence of a productive infection suggests that drugs that control the pro-inflammatory response may be useful in the treatment of patients with severe RSV infection. PMID:23506210
Varma, Sandeep R; Sundaram, R; Gopumadhavan, S; Vidyashankar, Satyakumar; Patki, Pralhad S
2013-01-01
HD-03/ES is a herbal formulation used for the treatment of hepatitis B. However, the molecular mechanism involved in the antihepatitis B (HBV) activity of this drug has not been studied using in vitro models. The effect of HD-03/ES on hepatitis B surface antigen (HBsAg) secretion and its gene expression was studied in transfected human hepatocarcinoma PLC/PRF/5 cells. The anti-HBV activity was tested based on the inhibition of HBsAg secretion into the culture media, as detected by HBsAg-specific antibody-mediated enzyme assay (ELISA) at concentrations ranging from 125 to 1000 μ g/mL. The effect of HD-03/ES on HBsAg gene expression was analyzed using semiquantitative multiplex RT-PCR by employing specific primers. The results showed that HD-03/ES suppressed HBsAg production with an IC50 of 380 μ g/mL in PLC/PRF/5 cells for a period of 24 h. HD-03/ES downregulated HBsAg gene expression in PLC/PRF/5 cells. In conclusion, HD-03/ES exhibits strong anti-HBV properties by inhibiting the secretion of hepatitis B surface antigen in PLC/PRF/5 cells, and this action is targeted at the transcription level. Thus, HD-03/ES could be beneficial in the treatment of acute and chronic hepatitis B infections.
Liu, Qian; Xu, Xue-Nian; Zhou, Yan; Cheng, Na; Dong, Yu-Ting; Zheng, Hua-Jun; Zhu, Yong-Qiang; Zhu, Yong-Qiang
2013-08-01
To find and clone new antigen genes from the lambda-ZAP cDNA expression library of adult Clonorchis sinensis, and determine the immunological characteristics of the recombinant proteins. The cDNA expression library of adult C. sinensis was screened by pooled sera of clonorchiasis patients. The sequences of the positive phage clones were compared with the sequences in EST database, and the full-length sequence of the gene (Cs22 gene) was obtained by RT-PCR. cDNA fragments containing 2 and 3 times tandem repeat sequences were generated by jumping PCR. The sequence encoding the mature peptide or the tandem repeat sequence was respectively cloned into the prokaryotic expression vector pET28a (+), and then transformed into E. coli Rosetta DE3 cells for expression. The recombinant proteins (rCs22-2r, rCs22-3r, rCs22M-2r, and rCs22M-3r) were purified by His-bind-resin (Ni-NTA) affinity chromatography. The immunogenicity of rCs22-2r and rCs22-3r was identified by ELISA. To evaluate the immunological diagnostic value of rCs22-2r and rCs22-3r, serum samples from 35 clonorchiasis patients, 31 healthy individuals, 15 schistosomiasis patients, 15 paragonimiasis westermani patients and 13 cysticercosis patients were examined by ELISA. To locate antigenic determinants, the pooled sera of clonorchiasis patients and healthy persons were analyzed for specific antibodies by ELISA with recombinant protein rCs22M-2r and rCs22M-3r containing the tandem repeat sequences. The full-length sequence of Cs22 antigen gene of C. sinensis was obtained. It contained 13 times tandem repeat sequences of EQQDGDEEGMGGDGGRGKEKGKVEGEDGAGEQKEQA. Bioinformatics analysis indicated that the protein (Cs22) belonged to GPI-anchored proteins family. The recombinant proteins rCs22-2r and rCs22-3r showed a certain level of immunogenicity. The positive rate by ELISA coated with the purified PrCs22-2r and PrCs22-3r for sera of clonorchiasis patients both were 45.7% (16/35), and 3.2% (1/31) for those of healthy persons. There was no cross reaction with sera of schistosomiasis and cysticercosis patients. The cross reaction with sera of paragonimiasis westermani patients was 1/15. The recombinant proteins rCs22M-2r and rCs22M-3r which only contained tandem repeats were specifically recognized by pooled sera of clonorchiasis patients. The Cs22 antigen gene of Clonorchis sinensis is obtained, and the recombinant proteins have certain diagnostic value. The antigenic determinant is located in tandem repeat sequences.
Wasser, Beatrice; Pramanik, Gautam; Hess, Moritz; Klein, Matthias; Luessi, Felix; Dornmair, Klaus; Bopp, Tobias; Zipp, Frauke; Witsch, Esther
2016-12-01
The importance of CD11c + antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c + APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c + APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c + cells is technically difficult. To ask whether the CD11c + APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c + APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.
The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors
NASA Astrophysics Data System (ADS)
Roizman, Bernard
1996-10-01
Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.
Skin Electroporation: Effects on Transgene Expression, DNA Persistence and Local Tissue Environment
Roos, Anna-Karin; Eriksson, Fredrik; Timmons, James A.; Gerhardt, Josefine; Nyman, Ulrika; Gudmundsdotter, Lindvi; Bråve, Andreas; Wahren, Britta; Pisa, Pavel
2009-01-01
Background Electrical pulses have been used to enhance uptake of molecules into living cells for decades. This technique, often referred to as electroporation, has become an increasingly popular method to enhance in vivo DNA delivery for both gene therapy applications as well as for delivery of vaccines against both infectious diseases and cancer. In vivo electrovaccination (gene delivery followed by electroporation) is currently being investigated in several clinical trials, including DNA delivery to healthy volunteers. However, the mode of action at molecular level is not yet fully understood. Methodology/Principal Findings This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA and electroporation induced a significant up-regulation of pro-inflammatory genes. In vivo imaging of luciferase activity after electrovaccination demonstrated a rapid onset (minutes) and a long duration (months) of transgene expression. However, when the more immunogenic prostate specific antigen (PSA) was co-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid. Conclusions/Significance This study provides important insights to how DNA delivery by intradermal electrovaccination affects the local immunological responses of the skin, transgene expression and clearance of the plasmid. As the described vaccination approach is currently being evaluated in clinical trials, the data provided will be of high significance. PMID:19789652
[Production of marker-free plants expressing the gene of the hepatitis B virus surface antigen].
Rukavtsova, E B; Gaiazova, A R; Chebotareva, E N; Bur'ianova, Ia I
2009-08-01
The pBM plasmid, carrying the gene of hepatitis B virus surface antigen (HBsAg) and free of any selection markers of antibiotic or herbicide resistance, was constructed for genetic transformation of plants. A method for screening transformed plant seedlings on nonselective media was developed. Enzyme immunoassay was used for selecting transgenic plants with HBsAg gene among the produced regenerants; this method provides for a high sensitivity detection of HBsAg in plant extracts. Tobacco and tomato transgenic lines synthesizing this antigen at a level of 0.01-0.05% of the total soluble protein were obtained. The achieved level of HBsAg synthesis is sufficient for preclinical trials of the produced plants as a new generation safe edible vaccine. The developed method for selecting transformants can be used for producing safe plants free of selection markers.
Xiang, Xi; Tang, Yuanjiao; Leng, Qianying; Zhang, Lingyan; Qiu, Li
2016-02-01
The purpose of this study was to optimize an ultrasound-targeted microbubble destruction (UTMD) technique to improve the in vivo transfection efficiency of the gene encoding enhanced green fluorescent protein (EGFP) in the synovial pannus in an antigen-induced arthritis rabbit model. A mixture of microbubbles and plasmids was locally injected into the knee joints of an antigen-induced arthritis (AIA) rabbits. The plasmid concentrations and ultrasound conditions were varied in the experiments. We also tested local articular and intravenous injections. The rabbits were divided into five groups: (1) ultrasound+microbubbles+plasmid; (2) ultrasound+plasmid; (3) microbubble+plasmid; (4) plasmid only; (5) untreated controls. EGFP expression was observed by fluorescent microscope and immunohistochemical staining in the synovial pannus of each group. The optimal plasmid dosage and ultrasound parameter were determined based on the results of EGFP expression and the present and absent of tissue damage under light microscopy. The irradiation procedure was performed to observe the duration of the EGFP expression in the synovial pannus and other tissues and organs, as well as the damage to the normal cells. The optimal condition was determined to be a 1-MHz ultrasound pulse applied for 5 min with a power output of 2 W/cm(2) and a 20% duty cycle along with 300 μg of plasmid. Under these conditions, the synovial pannus showed significant EGFP expression without significant damage to the surrounding normal tissue. The EGFP expression induced by the local intra-articular injection was significantly more increased than that induced by the intravenous injection. The EGFP expression in the synovial pannus of the ultrasound+microbubbles+plasmid group was significantly higher than that of the other four groups (P<0.05). The expression peaked on day 5, remained detectable on day 40 and disappeared on day 60. No EGFP expression was detected in the other tissues and organs. The UTMD technique can significantly enhance the in vivo gene transfection efficiency without significant tissue damage in the synovial pannus of an AIA model. Thus, this could become a safe and effective non-viral gene transfection procedure for arthritis therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy.
Yang, Y; Nunes, F A; Berencsi, K; Furth, E E; Gönczöl, E; Wilson, J M
1994-01-01
An important limitation that has emerged in the use of adenoviruses for gene therapy has been loss of recombinant gene expression that occurs concurrent with the development of pathology in the organ expressing the transgene. We have used liver-directed approaches to gene therapy in mice to study mechanisms that underlie the problems with transient expression and pathology that have characterized in vivo applications of first-generation recombinant adenoviruses (i.e., those deleted of E1a and E1b). Our data are consistent with the following hypothesis. Cells harboring the recombinant viral genome express the transgene as desired; however, low-level expression of viral genes also occurs. A virus-specific cellular immune response is stimulated that leads to destruction of the genetically modified hepatocytes, massive hepatitis, and repopulation of the liver with nontransgene-containing hepatocytes. These findings suggest approaches for improving recombinant adenoviruses that are based on further crippling the virus to limit expression of nondeleted viral genes. Images PMID:8183921
Uniform cell-autonomous tumorigenesis of the choroid plexus by papovavirus large T antigens.
Chen, J D; Van Dyke, T
1991-01-01
The simian virus 40 (SV40) large tumor antigen (T antigen) under its natural regulatory elements induces choroid plexus papillomas in transgenic mice. Because these tumors develop focally after several months, it has been suggested that secondary cellular alterations are required to induce a tumor in this tissue. In contrast to SV40, the related lymphotropic papovavirus early region induces rapid nonfocal choroid plexus neoplasia in transgenic mice. Here, using hybrid gene constructs, we showed that T antigen from either virus in in fact sufficient to induce these tumors. Their abilities to induce proliferative abnormalities in other tissues, such as kidney and thymus, were also indistinguishable. Differences in the rate of choroid plexus tumorigenesis reflected differences in the control regions of the two viruses, rather than differences in T antigen per se. Under SV40 regulation, expression was limited to a fraction of the choroid plexus cells prior to the formation of focal tumors. When SV40 T antigen was placed under lymphotropic papovavirus control, in contrast, expression was generally uniform in the choroid plexus and rapid expansion of the tissue ensued. We found a direct relationship between T-antigen expression, morphological transformation, and proliferation of the choroid plexus epithelial cells. Analysis of mosaic transgenic mice indicated further that T antigen exerts its mitogenic effect cell autonomously. These studies form the foundation for elucidating the role of various T-antigen subactivities in tumorigenesis. Images PMID:1658622
Park, Young-Kyoung; Jung, Sang-Min; Lim, Hyung-Kwon; Son, Young-Jin; Park, Yong-Cheol; Seo, Jin-Ho
2012-08-31
The S domain of hepatitis B virus surface antigen (sHBsAg) is the primary component for vaccine development against virus infection. For stable expression of sHBsAg in recombinant Saccharomyces cerevisiae, new accessory genes necessary for foreign protein expression were screened by DNA microarray. Among 600 genes of interest, genes coding for an activating protein of ATPase in Hsp90 (Aha1p), S. cerevisiae DnaJ (Scj1p), thioredoxin 2 (Trx2p) and a GTPase-activator specific for Sar1 (Sec23p) as well as Pdi1p were selected in transcriptome analysis, which are known to facilitate disulfide bond formation or induce protein transport in the secretion pathway. Individual and combinatorial expression of SEC23, TRX2 and PDI1 increased total sHBsAg concentration by 1.9-6.5-fold, relative to the control strain expressing sHBsAg only. Additionally, moderate expression of Kex2p protease able to cut off the signal peptide enhanced the portion of the authentic sHBsAg to total sHBsAg. Fed-batch fermentation of the S. cerevisiae 2805 strain coexpressing the sHBsAg, SEC23, PDI1 and KEX2 genes resulted in 70.6mg/L final sHBsAg concentration which was 5.6 times higher than that of the control. Transmission electron microscopic analysis of the yeast cells elucidated the effects of the accessory gene coexpression on the intracellular localization of sHBsAg. Like PDI1, coexpression of both SEC23 and/or TRX2 newly isolated in this study is expected to improve the target protein expression in S. cerevisiae. Copyright © 2012 Elsevier B.V. All rights reserved.
Haddad, Diana; Bilcikova, Erika; Witney, Adam A.; Carlton, Jane M.; White, Charles E.; Blair, Peter L.; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C.; Carucci, Daniel J.; Weiss, Walter R.
2004-01-01
We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens. PMID:14977966
McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.
2016-01-01
Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218
Santoro, Francesco; Pettini, Elena; Kazmin, Dmitri; Ciabattini, Annalisa; Fiorino, Fabio; Gilfillan, Gregor D; Evenroed, Ida M; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata
2018-01-01
Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream adaptive response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Yasuyuki; Zhang, Qing; Akita, Kaoru
2012-03-02
Highlights: Black-Right-Pointing-Pointer ppGalNAc-T13 was up-regulated in high metastatic sublines of Lewis lung cancer. Black-Right-Pointing-Pointer ppGalNAc-T13 expression enhanced cell invasion activity in low metastatic sublines. Black-Right-Pointing-Pointer Trimeric Tn antigen was induced in the transfectant cells of ppGalNAc-T13 cDNA. Black-Right-Pointing-Pointer A major protein carrying trimeric Tn structure was identified as Syndecan-1. Black-Right-Pointing-Pointer Silencing of ppGalNAc-T13 resulted in the reduction of invasion and of metastasis.. -- Abstract: In order to analyze the mechanisms for cancer metastasis, high metastatic sublines (H7-A, H7-Lu, H7-O, C4-sc, and C4-ly) were obtained by repeated injection of mouse Lewis lung cancer sublines H7 and C4 into C57BL/6 mice. Thesemore » sublines exhibited increased proliferation and invasion activity in vitro. Ganglioside profiles exhibited lower expression of GM1 in high metastatic sublines than the parent lines. Then, we established GM1-Si-1 and GM1-Si-2 by stable silencing of GM1 synthase in H7 cells. These GM1-knockdown clones exhibited increased proliferation and invasion. Then, we explored genes that markedly altered in the expression levels by DNA microarray in the combination of C4 vs. C4-ly or H7 vs. H7 (GM1-Si). Consequently, pp-GalNAc-T13 gene was identified as up-regulated genes in the high metastatic sublines. Stable transfection of pp-GalNAc-T13 cDNA into C4 (T13-TF) resulted in increased invasion and motility. Then, immunoblotting and flow cytometry using various antibodies and lectins were performed. Only anti-trimeric Tn antibody (mAb MLS128), showed increased expression levels of trimeric Tn antigen in T13-TF clones. Moreover, immunoprecipitation/immunoblotting was performed by mAb MLS128, leading to the identification of an 80 kDa band carrying trimeric Tn antigen, i.e. Syndecan-1. Stable silencing of endogenous pp-GalNAc-T13 in C4-sc (T13-KD) revealed that primary tumors generated by subcutaneous injection of T13-KD clones showed lower coalescence to fascia and peritoneum, and significantly reduced lung metastasis than control clones. These data suggested that high expression of pp-GalNAc-T13 gene generated trimeric Tn antigen on Syndecan-1, leading to the enhanced metastasis.« less
Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie
2008-07-01
Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.
Ahmad, Sarfraz; Casey, Garrett; Sweeney, Paul; Tangney, Mark; O'Sullivan, Gerald C
2009-01-01
Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal human prostate and over expressed in prostate cancer. Elevated levels of PSCA protein in prostate cancer correlate with increased tumor stage/grade, with androgen independence and have higher expression in bone metastases. In this study, the PSCA gene was isolated from the transgenic adenocarcinoma mouse prostate cell line (TRAMPC1), and a vaccine plasmid construct was generated. This plasmid PSCA (pmPSCA) was delivered by intramuscular electroporation (EP) and induced effective antitumor immune responses against subcutaneous TRAMPC1 tumors in male C57 BL/6 mice. The pmPSCA vaccination inhibited tumor growth, resulting in cure or prolongation in survival. Similarly, the vaccine inhibited metastases in PSCA expressing B16 F10 tumors. There was activation of Th-1 type immunity against PSCA, indicating the breaking of tolerance to a self-antigen. This immunity was tumor specific and was transferable by adoptive transfer of splenocytes. The mice remained healthy and there was no evidence of collateral autoimmune responses in normal tissues. EP-assisted delivery of the pmPSCA evoked strong specific responses and could, in neoadjuvant or adjuvant settings, provide a safe and effective immune control of prostate cancer, given that there is significant homology between human and mouse PSCA. PMID:19337234
FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes
Brackertz, B; Conrad, H; Daniel, J; Kast, B; Krönig, H; Busch, D H; Adamski, J; Peschel, C; Bernhard, H
2011-01-01
The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD+ myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. Antigens, such as PR-3, RHAMM, Survivin, WT-1 and PRAME, were upregulated by constitutively active FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL). Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin and an AML-directed CTL clone recognized AML cell lines and primary AML blasts expressing FLT3-ITD, as well as FLT3-WT+ myeloid dendritic cells in the presence of FL. Downregulation of FLT3 led to the abolishment of CTL recognition. Comparing our findings concerning LAA upregulation by the FLT3 kinase with those already made for the Bcr-Abl kinase, we found analogies in the LAA expression pattern. Antigens upregulated by both FLT3 and Bcr-Abl may be promising targets for the development of immunotherapeutical approaches against myeloid leukemia of different origin. PMID:22829124
Treating Cancer with Genetically Engineered T Cells
Park, Tristen S.; Rosenberg, Steven A.; Morgan, Richard A.
2011-01-01
Administration of ex-vivo cultured, naturally occurring tumor-infiltrating lymphocytes (TILs) have been shown to mediate durable regression of melanoma tumors. However, the generation of TIL is not possible in all patients and there has been limited success in generating TIL in other cancers. Advances in genetic engineering have overcome these limitations by introducing tumor-antigen-targeting receptors into human T lymphocytes. Physicians can now genetically engineer lymphocytes to express highly active T-cell receptors (TCRs) or chimeric antigen receptors (CARs) targeting a variety of tumor antigens expressed in cancer patients. In this review we discuss the development of TCR and CAR gene transfer technology and the expansion of these therapies into different cancers with the recent demonstration of the clinical efficacy of these treatments. PMID:21663987
2018-01-01
ABSTRACT African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates. PMID:29386289
Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K
2018-04-15
African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates. Copyright © 2018 Jancovich et al.
Scherf, A; Hernandez-Rivas, R; Buffet, P; Bottius, E; Benatar, C; Pouvelle, B; Gysin, J; Lanzer, M
1998-01-01
Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants. This technique has established the framework for examining var gene expression, its regulation and switching. It was found that var gene switching occurs in situ. Ubiquitous transcription of all var gene variants appears to occur in early ring stages. However, var gene expression is tightly regulated in trophozoites and is exerted through a silencing mechanism. Transcriptional control is mutually exclusive in parasites that express defined adhesive phenotypes. In situ var gene switching is apparently mediated at the level of transcriptional initiation, as demonstrated by nuclear run-on analyses. Our results suggest that an epigenetic mechanism(s) is involved in var gene regulation. PMID:9736619
Kasi, Devi; Catherine, Christy; Lee, Seung-Won; Lee, Kyung-Ho; Kim, Yu Jung; Ro Lee, Myeong; Ju, Jung Won; Kim, Dong-Myung
2017-05-01
The rapidly evolving cloning and sequencing technologies have enabled understanding of genomic structure of parasite genomes, opening up new ways of combatting parasite-related diseases. To make the most of the exponentially accumulating genomic data, however, it is crucial to analyze the proteins encoded by these genomic sequences. In this study, we adopted an engineered cell-free protein synthesis system for large-scale expression screening of an expression sequence tag (EST) library of Clonorchis sinensis to identify potential antigens that can be used for diagnosis and treatment of clonorchiasis. To allow high-throughput expression and identification of individual genes comprising the library, a cell-free synthesis reaction was designed such that both the template DNA and the expressed proteins were co-immobilized on the same microbeads, leading to microbead-based linkage of the genotype and phenotype. This reaction configuration allowed streamlined expression, recovery, and analysis of proteins. This approach enabled us to identify 21 antigenic proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:832-837, 2017. © 2017 American Institute of Chemical Engineers.
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-01-01
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088
Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing
2013-01-01
Background Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. Aims The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Methods Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. Results High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. Conclusion High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD. PMID:24312613
USDA-ARS?s Scientific Manuscript database
We have previously identified the mycobacterial high G+C codon usage bias as a limiting factor in heterologous expression of MAP proteins from Lb.salivarius, and demonstrated that codon optimisation of a synthetic coding gene greatly enhances MAP protein production. Here, we effectively demonstrate ...
Expression of the Major Surface Antigen of Plasmodium knowlesi Sporozoites in Yeast
NASA Astrophysics Data System (ADS)
Sharma, Shobhona; Godson, G. Nigel
1985-05-01
The circumsporozoite protein, a surface antigen of the sporozoite stage of the monkey malarial parasite Plasmodium knowlesi, was expressed in the yeast Saccharomyces cerevisiae by using an expression vector containing the 5' regulatory region of the yeast alcohol dehydrogenase I gene. It was necessary to eliminate the entire 5' upstream region of the parasite DNA to obtain the expression of this protein. Only the circumsporozoite precursor protein was produced by the yeast transformants, as detected by immunoblotting. About 55 and 20 percent of the circumsporozoite protein produced in yeast was associated with the 25,000g and 150,000g particulate fractions, respectively. The protein could be solubilized in Triton X-100 and was stable in solubilized extracts.
Zhao, Xinxin; Dai, Qinlong; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Wang, Mingshu; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Cheng, Anchun
2017-01-01
Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBAD rfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella Newport lethal challenge. All of the mice in the three vaccine-immunized groups survived the lethal Salmonella Typhimurium challenge. In contrast, SLT26 (pCZ11) and SLT27 (pCZ11) conferred full protection against lethal Salmonella Newport challenge, but SLT25 (pCZ11) provided only 50% heterologous protection. Thus, we developed two novel Salmonella bivalent vaccines, SLT26 (pCZ11) and SLT27 (pCZ11), suggesting that the delivery of a heterologous O-antigen in attenuated Salmonella strains is a prospective approach for developing Salmonella vaccines with broad serovar coverage. PMID:28929089
TCR hypervariable regions expressed by T cells that respond to effective tumor vaccines.
Jordan, Kimberly R; Buhrman, Jonathan D; Sprague, Jonathan; Moore, Brandon L; Gao, Dexiang; Kappler, John W; Slansky, Jill E
2012-10-01
A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.
Liu, Pei-Feng; Wang, Yanhan; Ulrich, Robert G.; Simmons, Christopher W.; VanderGheynst, Jean S.; Gallo, Richard L.
2018-01-01
Transgene introgression is a major concern associated with transgenic plant-based vaccines. Agroinfiltration can be used to selectively transform nonreproductive organs and avoid introgression. Here, we introduce a new vaccine modality in which Staphylococcal enterotoxin B (SEB) genes are agroinfiltrated into radishes (Raphanw sativus L.), resulting in transient expression and accumulation of SEB in planta. This approach can simultaneously express multiple antigens in a single leaf. Furthermore, the potential of high-throughput vaccine production was demonstrated by simultaneously agroinfiltrating multiple radish leaves using a multichannel pipette. The expression of SEB was detectable in two leaf cell types (epidermal and guard cells) in agroinfiltrated leaves. ICR mice intranasally immunized with homogenized leaves agroinfiltrated with SEB elicited detectable antibody to SEB and displayed protection against SEB-induced interferon-gamma (IFN-γ) production. The concept of encapsulating antigens in leaves rather than purifying them for immunization may facilitate rapid vaccine production during an epidemic disease. PMID:29577048
Sharma, Manoj Kumar; Singh, Nirmal Kumar; Jani, Dewal; Sisodia, Rama; Thungapathra, M; Gautam, J K; Meena, L S; Singh, Yogendra; Ghosh, Amit; Tyagi, Akhilesh Kumar; Sharma, Arun Kumar
2008-02-01
For protection against cholera, it is important to develop efficient vaccine capable of inducing anti-toxin as well as anti-colonizing immunity against Vibrio cholerae infections. Earlier, expression of cholera toxin B subunit (CTB) in tomato was reported by us. In the present investigation, toxin co-regulated pilus subunit A (TCPA), earlier reported to be an antigen capable of providing anti-colonization immunity, has been expressed in tomato. Further, to generate more potent combinatorial antigens, nucleotides encoding P4 or P6 epitope of TCPA were fused to cholera toxin B subunit gene (ctxB) and expressed in tomato. Presence of transgenes in the tomato genome was confirmed by PCR and expression of genes was confirmed at transcript and protein level. TCPA, chimeric CTB-P4 and CTB-P6 proteins were also expressed in E. coli. TCPA protein expressed in E. coli was purified to generate anti-TCPA antibodies in rabbit. Immunoblot and G(M1)-ELISA verified the synthesis and assembly of pentameric chimeric proteins in fruit tissue of transgenic tomato plants. The chimeric protein CTB-P4 and CTB-P6 accumulated up to 0.17 and 0.096% of total soluble protein (TSP), respectively, in tomato fruits. Whereas expression of TCPA, CTB-P4 and CTB-P6 in E. coli can be utilized for development of conventional vaccine, expression of these antigens which can provide both anti-toxin as well as anti-colonization immunity, has been demonstrated in plants, in a form which is potentially capable of inducing immune response against cholera infection.
Shiina, Takashi; Ando, Asako; Suto, Yumiko; Kasai, Fumio; Shigenari, Atsuko; Takishima, Nobusada; Kikkawa, Eri; Iwata, Kyoko; Kuwano, Yuko; Kitamura, Yuka; Matsuzawa, Yumiko; Sano, Kazumi; Nogami, Masahiro; Kawata, Hisako; Li, Suyun; Fukuzumi, Yasuhito; Yamazaki, Masaaki; Tashiro, Hiroyuki; Tamiya, Gen; Kohda, Atsushi; Okumura, Katsuzumi; Ikemura, Toshimichi; Soeda, Eiichi; Mizuki, Nobuhisa; Kimura, Minoru; Bahram, Seiamak; Inoko, Hidetoshi
2001-01-01
Human chromosomes 1q21–q25, 6p21.3–22.2, 9q33–q34, and 19p13.1–p13.4 carry clusters of paralogous loci, to date best defined by the flagship 6p MHC region. They have presumably been created by two rounds of large-scale genomic duplications around the time of vertebrate emergence. Phylogenetically, the 1q21–25 region seems most closely related to the 6p21.3 MHC region, as it is only the MHC paralogous region that includes bona fide MHC class I genes, the CD1 and MR1 loci. Here, to clarify the genomic structure of this model MHC paralogous region as well as to gain insight into the evolutionary dynamics of the entire quadriplication process, a detailed analysis of a critical 1.7 megabase (Mb) region was performed. To this end, a composite, deep, YAC, BAC, and PAC contig encompassing all five CD1 genes and linking the centromeric +P5 locus to the telomeric KRTC7 locus was constructed. Within this contig a 1.1-Mb BAC and PAC core segment joining CD1D to FCER1A was fully sequenced and thoroughly analyzed. This led to the mapping of a total of 41 genes (12 expressed genes, 12 possibly expressed genes, and 17 pseudogenes), among which 31 were novel. The latter include 20 olfactory receptor (OR) genes, 9 of which are potentially expressed. Importantly, CD1, SPTA1, OR, and FCERIA belong to multigene families, which have paralogues in the other three regions. Furthermore, it is noteworthy that 12 of the 13 expressed genes in the 1q21–q22 region around the CD1 loci are immunologically relevant. In addition to CD1A-E, these include SPTA1, MNDA, IFI-16, AIM2, BL1A, FY and FCERIA. This functional convergence of structurally unrelated genes is reminiscent of the 6p MHC region, and perhaps represents the emergence of yet another antigen presentation gene cluster, in this case dedicated to lipid/glycolipid antigens rather than antigen-derived peptides. [The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank databases under accession nos. AB045357–AB045365.] PMID:11337475
Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A; Roland, Kenneth L; Curtiss, Roy
2008-07-08
We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain chi8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 P(R) promoter. An arabinose-regulated c2 gene is present in the chromosome. chi8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of P(R), driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic alpha-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with chi8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable.
Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A.; Roland, Kenneth L.; Curtiss, Roy
2008-01-01
We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain χ8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 PR promoter. An arabinose-regulated c2 gene is present in the chromosome. χ8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of PR, driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic α-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with χ8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable. PMID:18607005
Luo, Dong-jiao; Hu, Ye; Dennin, R H; Yan, Jie
2007-09-01
To reconstruct the nucleotide sequence of Leptospira interrogans lipL21 gene for increasing the output of prokaryotic expression and to understand the changes on immunogenicity of the expression products before and after reconstruction, and to determine the position of envelope lipoprotein LipL21 on the surface of leptospiral body. According to the preferred codons of E.coli, the nucleotide sequence of lipL21 gene was designed and synthesized, and then its prokaryotic expression system was constructed. By using SDS-PAGE plus BioRad agarose image analysor, the expression level changes of lipL21 genes before and after reconstruction were measured. A Western blot assay using rabbit anti-TR/Patoc I serum as the first antibody was performed to identify the immunoreactivity of the two target recombinant proteins rLipL21s before and after reconstruction. The changes of cross agglutination titers of antisera against two rLipL21s before and after reconstruction to the different leptospiral serogroups were demonstrated using microscope agglutination test (MAT). Immuno-electronmicroscopy was applied to confirm the location of LipL21s. The expression outputs of original and reconstructed lipL21 genes were 8.5 % and 46.5 % of the total bacterial proteins, respectively. Both the two rLipL21s could take place immune conjugation reaction with TR/Patoc I antiserum. After immunization with each of the two rLipL21s in rabbits, the animals could produce specific antibody. Similar MAT titers with 1:80 - 1:320 of the two antisera against rLipL21s were present. LipL21 was confirmed to locate on the surface of leptospiral envelope. LipL21 is a superficial antigen of Leptospira interrogans. The expression output of the reconstructed lipL21 gene is remarkably increased. The expression rLipL21 maintains fine antigenicity and immunoreactivity and its antibody still shows an extensive cross immunoagglutination activity. The high expression of the reconstructed lipL21 gene will offer a favorable condition to use its product for further developing a novel universal vaccine as well as detection kit of leptospirosis.
Kebriaei, Partow; Huls, Helen; Jena, Bipulendu; Munsell, Mark; Jackson, Rineka; Lee, Dean A; Hackett, Perry B; Rondon, Gabriela; Shpall, Elizabeth; Champlin, Richard E; Cooper, Laurence J N
2012-05-01
Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR(+) T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR(+) T-cell infusions derived from allogeneic sources.
Lee, Do-Hun; Phi, Ji Hoon; Chung, You-Nam; Lee, Yun-Jin; Kim, Seung-Ki; Cho, Byung-Kyu; Kim, Dong Won; Park, Moon-Sik; Wang, Kyu-Chang
2010-05-01
The aims of this study were to elucidate the processes of neuronal differentiation and ventrodorsal patterning in the spinal cord of the chick embryo from embryonic day (E) 3 to E17 and to study the effect of a prenatal spinal open neural tube defect (ONTD) on these processes. Expression patterns of neuronal antigens (neuronal nuclear antigen, neurofilament-associated protein (NAP), and synaptophysin) and related ventral markers [sonic hedgehog, paired box gene (PAX)6, and islet-1], and dorsal markers (bone morphogenetic protein, Notch homolog 1, and PAX7) were investigated in the normal spinal cord and in a surgically induced spinal ONTD in chick embryos. Four normal and ONTD chick embryos were used for each antigen group. There were no differences in the expression of neuronal and ventrodorsal markers between the control and ONTD groups. NAP and synaptophysin were useful for identifying dorsal structures in the distorted anatomy of the ONTD chicks.
Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease.
Ko, Hyun-Ja; Chung, Jie-Yu; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Toh, Ban-Hock; Alderuccio, Frank
2011-05-01
Haematopoietic stem cell (HSC) transfer coupled with gene therapy is a powerful approach to treating fatal diseases such as X-linked severe combined immunodeficiency. This ability to isolate and genetically manipulate HSCs also offers a strategy for inducing immune tolerance through ectopic expression of autoantigens. We have previously shown that retroviral transduction of bone marrow (BM) with vectors encoding the autoantigen, myelin oligodendrocyte glycoprotein (MOG), can prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, ubiquitous cellular expression of autoantigen driven by retroviral promoters may not be the best approach for clinical translation and a targeted expression approach may be more acceptable. As BM-derived dendritic cells (DCs) play a major role in tolerance induction, we asked whether targeted expression of MOG, a target autoantigen in EAE, to DCs can promote tolerance induction and influence the development of EAE. Self-inactivating retroviral vectors incorporating the mouse CD11c promoter were generated and used to transduce mouse BM cells. Transplantation of gene-modified cells into irradiated recipients resulted in the generation of chimeric mice with transgene expression limited to DCs. Notably, chimeric mice transplanted with MOG-expressing BM cells manifest a significant delay in the development of EAE suggesting that targeted antigen expression to tolerogenic cell types may be a feasible approach to inducing antigen-specific tolerance.
Nuzzolo, Eugenia R; Capodimonti, Sara; Martini, Maurizio; Iachininoto, Maria G; Bianchi, Maria; Cocomazzi, Alessandra; Zini, Gina; Leone, Giuseppe; Larocca, Luigi M; Teofili, Luciana
2014-01-01
Endothelial colony-forming cells (ECFC) are endowed with vascular regenerative ability in vivo and in vitro. In this study we compared the genotypic profile and the immunogenic potential of adult and cord blood ECFC, in order to explore the feasibility of using them as a cell therapy product. ECFC were obtained from cord blood samples not suitable for haematopoietic stem cell transplantation and from adult healthy blood donors after informed consent. Genotypes were analysed by commercially available microarray assays and results were confirmed by real-time polymerase chain reaction analysis. HLA antigen expression was evaluated by flow-cytometry. Immunogenic capacity was investigated by evaluating the activation of allogeneic lymphocytes and monocytes in co-cultures with ECFC. Microarray assays revealed that the genetic profile of cord blood and adult ECFC differed in about 20% of examined genes. We found that cord blood ECFC were characterised by lower pro-inflammatory and pro-thrombotic gene expression as compared to adult ECFC. Furthermore, whereas cord blood and adult ECFCs expressed similar amount of HLA molecules both at baseline and after incubation with γ-interferon, cord blood ECFC elicited a weaker expression of pro-inflammatory cytokine genes. Finally, we observed no differences in the amount of HLA antigens expressed among cord blood ECFC, adult ECFC and mesenchymal cells. Our observations suggest that cord blood ECFC have a lower pro-inflammatory and pro-thrombotic profile than adult ECFC. These preliminary data offer level-headed evidence to use cord blood ECFC as a cell therapy product in vascular diseases.
Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y
2016-05-20
Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality.
Immunodiagnostic Value of Echinococcus Granulosus Recombinant B8/1 Subunit of Antigen B.
Savardashtaki, Amir; Sarkari, Bahador; Arianfar, Farzane; Mostafavi-Pour, Zohreh
2017-06-01
Cystic echinococcosis (CE), as a chronic parasitic disease, is a major health problem in many countries. The performance of the currently available serodiagnostic tests for the diagnosis of CE is unsatisfactory. The current study aimed at sub-cloning a gene, encoding the B8/1 subunit of antigen B (AgB) from Echinococcus granulosus, using gene optimization for the immunodiagnosis of human CE. The coding sequence for AgB8/1 subunit of Echinococcus granulosus was selected from GenBank and was gene-optimized. The sequence was synthesized and inserted into pGEX-4T-1 vector. Purification was performed with GST tag affinity column. Diagnostic performance of the produced recombinant antigen, native antigen B and a commercial ELISA kit were further evaluated in an ELISA system, using a panel of sera from CE patients and controls. SDS-PAGE demonstrated that the protein of interest had a high expression level and purity after GST tag affinity purification. Western blotting verified the immunoreactivity of the produced recombinant antigen with the sera of CE patients. In an ELISA system, the sensitivity and specificity (for human CE diagnosis) of the recombinant antigen, native antigen B and commercial kit were respectively 93% and 92%, 87% and 90% and 97% and 95%. The produced recombinant antigen showed a high diagnostic value which can be recommended for serodiagnosis of CE in Iran and other CE-endemic areas. Utilizing the combination of other subunits of AgB8 would improve the performance value of the introduced ELISA system.
Immunobiologic effects of cytokine gene transfer of the B16-BL6 melanoma.
Strome, S E; Krauss, J C; Cameron, M J; Forslund, K; Shu, S; Chang, A E
1993-12-01
The genetic modification of tumors offers an approach to modulate the host immune response to relatively weak native tumor antigens. We examined the immunobiologic effects of various cytokine genes transferred into the poorly immunogenic B16-BL6 murine melanoma. Retroviral expression vectors containing cDNAs for interleukin 2, interleukin 4, interferon gamma, or a neomycin-resistant control were electroporated into a B16-BL6 tumor clone. Selected transfected clones were examined for in vitro cytokine secretion and in vivo tumorigenicity. When cells from individual clones were injected intradermally into syngeneic mice, the interleukin 4-secreting clone grew significantly slower than did the neomycin-resistant transfected control, while the growth of the interleukin 2- and interferon gamma-expressing clones was not affected. Despite minimal cytokine secretion by interferon gamma-transfected cells, these cells expressed upregulated major histocompatibility class I antigen and were more susceptible to lysis by allosensitized cytotoxic T lymphocytes compared with parental or neomycin-resistant transfected tumor targets. We observed diverse immunobiologic effects associated with cytokine gene transfer into the B16-BL6 melanoma. Interleukin 4 transfection of tumor resulted in decreased in vivo tumorigenicity that may be related to a host immune response. Further studies to evaluate the host T-cell response to these gene-modified tumors are being investigated.
Klein, Andreas; Guhl, Eva; Zollinger, Raphael; Tzeng, Yin-Jeh; Wessel, Ralf; Hummel, Michael; Graessmann, Monika; Graessmann, Adolf
2005-05-01
Microarray studies revealed that as a first hit the SV40 T/t antigen causes deregulation of 462 genes in mammary gland cells (ME cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell proliferation specific and Rb-E2F dependent, causing ME cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal ME cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal ME cells. The profile of retransformants shows that only 38 deregulated genes are tumor-specific, and that none of them is considered to be a typical breast cancer gene.
Liu, Y T; Li, S R; Wang, Z; Xiao, J Z
2016-09-13
Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.
Liang, Cheng-Zhu; Cao, Rui-Bing; Wei, Jian-Chao; Zhu, Lai-Hua; Chen, Pu-Yan
2006-06-01
According to the antigenic analysis of equine arteritis virus (EAV) GL protein, one pair of primers were designed, with which the gene fragment coding the high antigenic domain of EAV GL protein was amplified from the EAV genome. The cloned gene was digested with BamH I and Xho I and then inserted into pET-32a and resulted pET-GL1. The pET-GL1 was transformed into the host cell BL21(DE3) and the expression was optimized including cultivation temperature and concentration of IPTG. The aim protein was highly expressed and the obtained recombinant protein manifested well reactiongenicity as was confirmed by Western blot. The recombinant GL1 protein was purified by the means of His * Bind resin protein purification procedure. Then an indirect ELISA was established to detect antibody against EAV with the purified GL1 protein as the coating antigen. The result showed that the optimal concentration of coated antigen was 9.65 microg/mL and the optimal dilution of serum was 1:80. The positive criterion of this ELISA assay is OD (the tested serum) > 0.4 and OD (the tested serum) /OD (the negative serum) > 2.0. The iGL-ELISA was evaluated versus micro-virus neutralization test. The ELISA was performed on 900 sera from which were preserved by this lab during horse entry/exit inspection, the agreement (94.1%) of these test were considered suitable for individual serological detection. In another test which 180 sera samples were detected by iGL-ELISA and INGEZIM ELISA kit respectively. The agreement ratio between the two methods is 95.6%.
Goldschmidt, R M; Curtiss, R
1990-07-01
Most members of the Streptococcus mutans group of microorganisms specify a major cell surface-associated protein, SpaA, that is defined by its antigenic properties. The region of the spaA gene from Streptococcus sobrinus 6715 encoding the immunodominant determinant of the major antigenic component (antigen I) of the SpaA protein has recently been characterized. This study examined whether recognition of the immunodominant determinant is independent of the immunized animal host and whether antibodies elicited by the immunodominant determinant cross-react with cell surface proteins from S. mutans of various serotypes. Mouse and rabbit antisera to the undenatured SpaA protein reacted similarly both with the immunodominant determinant and with other antigenic structures of the protein in Western immunoblots with SpaA polypeptides that were specified by spaA gene fragments expressed in recombinant Escherichia coli. This suggests that the antibody responses of inbred and outbred animals were similar. Furthermore, antibodies raised against both the S. sobrinus SpaA immunodominant determinant expressed by recombinant E. coli and the purified protein from S. sobrinus displayed similar strain specificities and protein band profiles towards cells surface proteins from S. mutans of various serotypes in immunodot and Western blot analyses, respectively. This suggests that for S. sobrinus serotype g, the immune response against the SpaA protein is governed by the immunodominant determinant of antigen I. In addition, it indicates that the SpaA protein domain containing the immunodominant determinant overlaps the domain conferring cross-reactivity to cell surface proteins of S. mutans of various serotypes.
Wang, Xiaoyu; Hayashi, Shusaku; Umezaki, Masahito; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kondo, Takashi; Kadowaki, Makoto
2014-12-05
Over the last few decades, food allergy (FA) has become a common disease in infants in advanced countries. However, anti-allergic medicines available in the market have no effect on FA, and consequently effective drug therapies for FA are not yet available. We have already demonstrated that mucosal mast cells play an essential role in the development of FA in a murine model. Thus, we screened many constituents from medicinal herbs for the ability to inhibit rat basophilic leukemia-2H3 mast-like cell degranulation, and found that shikonin, a naphthoquinone dye from Lithospermum erythrorhizon, exhibited the most potent inhibitory effect among them. Furthermore, shikonin extremely inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of tumor necrosis factor (TNF)-α mRNA expression in mucosal-type bone marrow-derived mast cells (mBMMCs). Global gene expression analysis confirmed by real-time PCR revealed that shikonin drastically inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of mRNA expression of the nuclear orphan receptor 4a family (Nr4a1, Nr4a2 and Nr4a3) in mBMMCs, and knockdown of Nr4a1 or Nr4a2 suppressed the IgE/antigen-induced upregulation of TNF-α mRNA expression. Computational docking simulation of a small molecule for a target protein is a useful technique to elucidate the molecular mechanisms underlying the effects of drugs. Therefore, the simulation revealed that the predicted binding sites of shikonin to immunophilins (cyclophilin A and FK506 binding protein (FKBP) 12) were almost the same as the binding sites of immunosuppressants (cyclosporin A and FK506) to immunophilins. Indeed, shikonin inhibited the calcineurin activity to a similar extent as cyclosporin A that markedly suppressed the IgE/antigen-enhanced mRNA expression of TNF-α and the Nr4a family in mBMMCs. These findings suggest that shikonin suppresses mucosal mast cell activation by reducing Nr4a family gene expression through the inhibition of calcineurin activity. Therefore, shikonin has therapeutic potential for the treatment of allergic diseases as a new calcineurin inhibitor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Marra, Nicholas J; Richards, Vincent P; Early, Angela; Bogdanowicz, Steve M; Pavinski Bitar, Paulina D; Stanhope, Michael J; Shivji, Mahmood S
2017-01-30
Comparative genomic and/or transcriptomic analyses involving elasmobranchs remain limited, with genome level comparisons of the elasmobranch immune system to that of higher vertebrates, non-existent. This paper reports a comparative RNA-seq analysis of heart tissue from seven species, including four elasmobranchs and three teleosts, focusing on immunity, but concomitantly seeking to identify genetic similarities shared by the two lamnid sharks and the single billfish in our study, which could be linked to convergent evolution of regional endothermy. Across seven species, we identified an average of 10,877 Swiss-Prot annotated genes from an average of 32,474 open reading frames within each species' heart transcriptome. About half of these genes were shared between all species while the remainder included functional differences between our groups of interest (elasmobranch vs. teleost and endotherms vs. ectotherms) as revealed by Gene Ontology (GO) and selection analyses. A repeatedly represented functional category, in both the uniquely expressed elasmobranch genes (total of 259) and the elasmobranch GO enrichment results, involved antibody-mediated immunity, either in the recruitment of immune cells (Fc receptors) or in antigen presentation, including such terms as "antigen processing and presentation of exogenous peptide antigen via MHC class II", and such genes as MHC class II, HLA-DPB1. Molecular adaptation analyses identified three genes in elasmobranchs with a history of positive selection, including legumain (LGMN), a gene with roles in both innate and adaptive immunity including producing antigens for presentation by MHC class II. Comparisons between the endothermic and ectothermic species revealed an enrichment of GO terms associated with cardiac muscle contraction in endotherms, with 19 genes expressed solely in endotherms, several of which have significant roles in lipid and fat metabolism. This collective comparative evidence provides the first multi-taxa transcriptomic-based perspective on differences between elasmobranchs and teleosts, and suggests various unique features associated with the adaptive immune system of elasmobranchs, pointing in particular to the potential importance of MHC Class II. This in turn suggests that expanded comparative work involving additional tissues, as well as genome sequencing of multiple elasmobranch species would be productive in elucidating the regulatory and genome architectural hallmarks of elasmobranchs.
Scavenger receptor WC1 contributes to the γδ T cell response to Leptospira.
Wang, Fei; Herzig, Carolyn T A; Chen, Chuang; Hsu, Haoting; Baldwin, Cynthia L; Telfer, Janice C
2011-03-01
WC1 molecules are exclusively expressed on the surface of γδ T cells. They belong to the scavenger receptor cysteine-rich (SRCR) superfamily and are encoded by a multi-gene family. WC1 molecules have been grouped on the basis of antibody reactivity. The expression of WC1 molecules from these serologically defined groups is correlated with differences in γδ T cell responses. The expression of receptors within the WC1.1 group correlates with the capacity of γδ T cells to respond to Leptospira antigen. In this study, we used RNA interference to directly investigate the role of WC1 expression in the response to Leptospira borgpetersenii. We found that when three out of thirteen WC1 gene products were downregulated by RNA interference, γδ T cell proliferation and IFN-γ production in response to Leptospira antigen was significantly reduced. Our data demonstrate that specific receptors in the WC1 family directly participate in Leptospira recognition and/or activation of γδ T cells. Copyright © 2010 Elsevier Ltd. All rights reserved.
Saidak, Zuzana; Morisse, Mony Chenda; Chatelain, Denis; Sauzay, Chloé; Houessinon, Aline; Guilain, Nelly; Soyez, Marion; Chauffert, Bruno; Dakpé, Stéphanie; Galmiche, Antoine
2018-03-01
The squamous cell carcinoma antigen (SCCA), encoded by the genes SERPINB3/B4, is a tumour marker produced by head and neck squamous cell carcinoma (HNSCC). We aimed to examine SERPINB3/B4 mRNA levels and its clinical significance in the therapeutic context. We retrieved mRNA expression levels, clinical, pathological and genomic data for 520 HNSCC from The Cancer Genome Atlas (TCGA). HNSCC tumours express high levels of SERPINB3/B4 mRNA. SERPINB3 expression differs depending on Human papillomavirus (HPV) infection status, primary tumour location, grade and differentiation, extension to lymph nodes and extracapsular spread. Interestingly, we observed an association between SERPINB3/B4 and the presence of tumour immune infiltrate as well as the expression of the immune checkpoint regulators PD-L1/PD-L2 that depended on HPV status. Our findings point to potential interest of SERPINB3/B4 for the stratification of HNSCC patients in the therapeutic context. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne
2010-10-01
We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.
Karjalainen, Hannu M; Sironen, Reijo K; Elo, Mika A; Kaarniranta, Kai; Takigawa, Masaharu; Helminen, Heikki J; Lammi, Mikko J
2003-01-01
Mechanical forces have a profound effect on cartilage tissue and chondrocyte metabolism. Strenuous loading inhibits the cellular metabolism, while optimal level of loading at correct frequency raises an anabolic response in chondrocytes. In this study, we used Atlas Human Cancer cDNA array to investigate mRNA expression profiles in human chondrosarcoma cells stretched 8% for 6 hours at a frequency of 0.5 Hz. In addition, cultures were exposed to continuous and cyclic (0.5 Hz) 5 MPa hydrostatic pressure. Cyclic stretch had a more profound effect on the gene expression profiles than 5 MPa hydrostatic pressure. Several genes involved with the regulation of cell cycle were increased in stretched cells, as well as mRNAs for PDGF-B, glucose-1-phosphate uridylyltransferase, Tiam1, cdc37 homolog, Gem, integrin alpha6, and matrix metalloproteinase-3. Among down-regulated genes were plakoglobin, TGF-alpha, retinoic acid receptor-alpha and Wnt8b. A smaller number of changes was detected after pressure treatments. Plakoglobin was increased under cyclic and continuous 5 MPa hydrostatic pressure, while mitogen-activated protein kinase-9, proliferating cell nuclear antigen, Rad6, CD9 antigen, integrins alphaE and beta8, and vimentin were decreased. Cyclic and continuous pressurization induces a number of specific changes. In conclusion, a different set of genes were affected by three different types of mechanical stimuli applied on chondrosarcoma cells.
Kurth, Julia; Hansmann, Martin-Leo; Rajewsky, Klaus; Küppers, Ralf
2003-04-15
To assess the impact of the germinal center (GC) reaction on viral spread in Epstein-Barr virus (EBV) infection, we isolated EBV(+) GC B cells from the tonsils of two infectious mononucleosis patients, sequenced their rearranged V genes, and determined expression of the EBV latency genes EBV nuclear antigen 2 and latent membrane protein 1. Most EBV(+) GC B cells belonged to clones of cells harboring somatically mutated V gene rearrangements. Ongoing somatic hypermutation, the hallmark of the GC reaction, was seen only in uninfected GC B cell clones, not in EBV(+) B cell clones. Thus, in infectious mononucleosis, GC and/or memory B cells are directly infected by EBV and expand without somatic hypermutation, whereas the GC passage of EBV-infected naive B cells does not contribute detectably to the generation of infected memory B cells, the main reservoir of EBV during persistence. Most, if not all, EBV-infected cells in GCs exhibited an unusual EBV gene expression pattern in that they were positive for EBV nuclear antigen 2 but negative for latent membrane protein 1. Although the three main types of EBV-associated B cell lymphomas (Burkitt's, Hodgkin's, and posttransplant lymphomas) presumably are derived from GC B cells, EBV(+) GC B cells resembling these EBV(+) GC B cell lymphomas in terms of EBV gene expression and somatic hypermutation pattern could not be identified.
Marvasi, Massimiliano; Cox, Clayton E; Xu, Yimin; Noel, Jason T; Giovannoni, James J; Teplitski, Max
2013-07-01
Enteric pathogens, including non-typhoidal Salmonella spp. and enterovirulent Escherichia coli, are capable of persisting and multiplying within plants. Yet, little is still known about the mechanisms of these interactions. This study identified the Salmonella yihT gene (involved in synthesis of the O-antigen capsule) as contributing to persistence in immature tomato fruit. Deletion of yihT reduced competitive fitness of S. enterica sv. Typhimurium in green (but not ripe, regardless of color) tomato fruit by approximately 3 logs. The yihT recombinase-based in vivo expression technology (RIVET) reporter was strongly activated in unripe tomato fruit, and fitness of the mutant inversely correlated with the level of the yihT gene expression. Expression of yihT in mature tomato fruit was low, and yihT did not affect competitive fitness within mature fruit. To better understand the molecular basis of the phenotype, behaviors of the yihT RIVET reporter and the yihT mutant were tested in tomato fruit defective in ethylene signaling. These experiments suggest a role for functional ethylene-mediated signaling in the persistence of Salmonella spp. within tomato fruit. Furthermore, jasmonic acid and its precursors strongly reduced expression of yihT.
A 310-bp minimal promoter mediates smooth muscle cell-specific expression of telokin.
Smith, A F; Bigsby, R M; Word, R A; Herring, B P
1998-05-01
A cell-specific promoter located in an intron of the smooth muscle myosin light chain kinase gene directs transcription of telokin exclusively in smooth muscle cells. Transgenic mice were generated in which a 310-bp rabbit telokin promoter fragment, extending from -163 to +147, was used to drive expression of simian virus 40 large T antigen. Smooth muscle-specific expression of the T-antigen transgene paralleled that of the endogenous telokin gene in all smooth muscle tissues except uterus. The 310-bp promoter fragment resulted in very low levels of transgene expression in uterus; in contrast, a transgene driven by a 2.4-kb fragment (-2250 to +147) resulted in high levels of transgene expression in uterine smooth muscle. Telokin expression levels correlate with the estrogen status of human myometrial tissues, suggesting that deletion of an estrogen response element (ERE) may account for the low levels of transgene expression driven by the 310-bp rabbit telokin promoter in uterine smooth muscle. Experiments in A10 smooth muscle cells directly showed that reporter gene expression driven by the 2.4-kb, but not 310-bp, promoter fragment could be stimulated two- to threefold by estrogen. This stimulation was mediated through an ERE located between -1447 and -1474. Addition of the ERE to the 310-bp fragment restored estrogen responsiveness in A10 cells. These data demonstrate that in addition to a minimal 310-bp proximal promoter at least one distal cis-acting regulatory element is required for telokin expression in uterine smooth muscle. The distal element may include an ERE between -1447 and -1474.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayata, M.; Hirano, A.; Wong, T.C.
1989-03-01
Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predictedmore » to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M/sub r/ protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general.« less
Barros, Maria C E S; Galasso, Tatiane G C M; Chaib, Antônio J M; Degallier, Nicolas; Nagata, Tatsuya; Ribeiro, Bergmann M
2011-05-27
Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.
ALIZADEH, ASH A.; BOHEN, SEAN P.; LOSSOS, CHEN; MARTINEZ-CLIMENT, JOSE A.; RAMOS, JUAN CARLOS; CUBEDO-GIL, ELENA; HARRINGTON, WILLIAM J.; LOSSOS, IZIDORE S.
2014-01-01
Adult T-cell leukemia–lymphoma (ATLL) is an HTLV-1-associated lymphoproliferative malignancy that is frequently fatal. We compared gene expression profiles (GEPs) of leukemic specimens from nine patients with ATLL at the time of diagnosis and immediately after combination therapy with zidovudine (AZT) and interferon α (IFNα). GEPs were also related to genetic aberrations determined by comparative genomic hybridization. We identified several genes anomalously over-expressed in the ATLL leukemic cells at the mRNA level, including LYN, CSPG2, and LMO2, and confirmed LMO2 expression in ATLL cells at the protein level. In vivo AZT–IFNα therapy evoked a marked induction of interferon-induced genes accompanied by repression of cell-cycle regulated genes, including those encoding ribosomal proteins. Remarkably, patients not responding to AZT–IFNα differed most from responding patients in lower expression of these same IFN-responsive genes, as well as components of the antigen processing and presentation apparatus. Demonstration of specific gene expression signatures associated with response to AZT–IFNα therapy may provide novel insights into the mechanisms of action in ATLL. PMID:20370541
Minagawa, Kentaro; Jamil, Muhammad O.; AL-Obaidi, Mustafa; Pereboeva, Larisa; Salzman, Donna; Erba, Harry P.; Lamb, Lawrence S.; Bhatia, Ravi; Mineishi, Shin
2016-01-01
Background Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia. Methods and findings We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85–90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean) chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a non-therapeutic dimerizer to activate the suicide gene resulted in the elimination of only 76.4±2.0% gene modified cells in vitro, we found that co-administration of the dimerizer with either the BCL-2 inhibitor ABT-199, the pan-BCL inhibitor ABT-737, or mafosfamide, resulted in an additive effect up to complete cell elimination. Conclusions This strategy could be investigated for the safety of CAR T-cell applications, and targeting CD33 could be used as a ‘bridge” therapy for patients coming to allogeneic hematopoietic stem cell transplant, as anti-leukemia activity from infusing CAR.CD33 T-cells has been demonstrated in an ongoing clinical trial. Albeit never performed in the clinical setting, our future plan is to investigate the utility of iC9-CAR.CD33 T-cells as part of the conditioning therapy for an allogeneic hematopoietic stem cell transplant for acute myeloid leukemia, together with other myelosuppressive agents, whilst the activation of the inducible Caspase9 suicide gene would grant elimination of the infused gene modified T-cells prior to stem cell infusion to reduce the risk of engraftment failure as the CD33 is also expressed on a proportion of the donor stem cell graft. PMID:27907031
Pittsburgh Tuskegee Prostate Training Program
2014-05-01
11 . SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT X Approved for public release; distribution...Prostate Specific Membrane Antigen ( Psma ) and Folate Levels on Gene Expression and Proliferation in Prostatic Cancer Cells Denise O’Keefe Table...
From genomes to vaccines: Leishmania as a model.
Almeida, Renata; Norrish, Alan; Levick, Mark; Vetrie, David; Freeman, Tom; Vilo, Jaak; Ivens, Alasdair; Lange, Uta; Stober, Carmel; McCann, Sharon; Blackwell, Jenefer M
2002-01-01
The 35 Mb genome of Leishmania should be sequenced by late 2002. It contains approximately 8500 genes that will probably translate into more than 10 000 proteins. In the laboratory we have been piloting strategies to try to harness the power of the genome-proteome for rapid screening of new vaccine candidate. To this end, microarray analysis of 1094 unique genes identified using an EST analysis of 2091 cDNA clones from spliced leader libraries prepared from different developmental stages of Leishmania has been employed. The plan was to identify amastigote-expressed genes that could be used in high-throughput DNA-vaccine screens to identify potential new vaccine candidates. Despite the lack of transcriptional regulation that polycistronic transcription in Leishmania dictates, the data provide evidence for a high level of post-transcriptional regulation of RNA abundance during the developmental cycle of promastigotes in culture and in lesion-derived amastigotes of Leishmania major. This has provided 147 candidates from the 1094 unique genes that are specifically upregulated in amastigotes and are being used in vaccine studies. Using DNA vaccination, it was demonstrated that pooling strategies can work to identify protective vaccines, but it was found that some potentially protective antigens are masked by other disease-exacerbatory antigens in the pool. A total of 100 new vaccine candidates are currently being tested separately and in pools to extend this analysis, and to facilitate retrospective bioinformatic analysis to develop predictive algorithms for sequences that constitute potentially protective antigens. We are also working with other members of the Leishmania Genome Network to determine whether RNA expression determined by microarray analyses parallels expression at the protein level. We believe we are making good progress in developing strategies that will allow rapid translation of the sequence of Leishmania into potential interventions for disease control in humans. PMID:11839176
Ebola virus infection induces irregular dendritic cell gene expression.
Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla
2015-02-01
Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.
Huang, Yong; Chen, Yabing; Sun, Huan; Lan, Daoliang
2016-01-01
Intestinal epithelial cells, which serve as the first physical barrier to protect intestinal tract from external antigens, have an important role in the local innate immunity. Screening of reference genes that have stable expression levels after viral infection in porcine intestinal epithelial cells is critical for ensuring the reliability of the expression analysis on anti-infection genes in porcine intestinal epithelial cells. In this study, nine common reference genes in pigs, including ACTB, B2M, GAPDH, HMBS, SDHA, HPRT1, TBP, YWHAZ, and RPL32, were chosen as the candidate reference genes. Porcine sapelovirus (PSV) was used as a model virus to infect porcine intestinal epithelial cell line (IPEC-J2). The expression stability of the nine genes was assessed by the geNorm, NormFinder, and BestKeeper software. Moreover, RefFinder program was used to evaluate the analytical results of above three softwares, and a relative expression experiment of selected target gene was used to verify the analysis results. The comprehensive results indicated that the gene combination of TBP and RPL32 has the most stable expression, which could be considered as an appropriate reference gene for research on gene expression after PSV infection in IPEC-J2cells. The results provided essential data for expression analysis of anti-infection genes in porcine intestinal epithelial cells.
Leisegang, Matthias; Engels, Boris; Schreiber, Karin; Yew, Poh Yin; Kiyotani, Kazuma; Idel, Christian; Arina, Ainhoa; Duraiswamy, Jaikumar; Weichselbaum, Ralph R; Uckert, Wolfgang; Nakamura, Yusuke; Schreiber, Hans
2016-06-01
Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602. ©2015 American Association for Cancer Research.
Oral Gene Application Using Chitosan-DNA Nanoparticles Induces Transferable Tolerance
Ensminger, Stephan M.; Spriewald, Bernd M.
2012-01-01
Oral tolerance is a promising approach to induce unresponsiveness to various antigens. The development of tolerogenic vaccines could be exploited in modulating the immune response in autoimmune disease and allograft rejection. In this study, we investigated a nonviral gene transfer strategy for inducing oral tolerance via antigen-encoding chitosan-DNA nanoparticles (NP). Oral application of ovalbumin (OVA)-encoding chitosan-DNA NP (OVA-NP) suppressed the OVA-specific delayed-type hypersensitivity (DTH) response and anti-OVA antibody formation, as well as spleen cell proliferation following OVA stimulation. Cytokine expression patterns following OVA stimulation in vitro showed a shift from a Th1 toward a Th2/Th3 response. The OVA-NP-induced tolerance was transferable from donor to naïve recipient mice via adoptive spleen cell transfer and was mediated by CD4+CD25+ T cells. These findings indicate that nonviral oral gene transfer can induce regulatory T cells for antigen-specific immune modulation. PMID:22933401
Comanducci, Maurizio; Amicizia, Daniela; Ansaldi, Filippo; Canepa, Paola; Orsi, Andrea; Icardi, Giancarlo; Rizzitelli, Emanuela; De Angelis, Gabriella; Bambini, Stefania; Moschioni, Monica; Comandi, Sara; Simmini, Isabella; Boccadifuoco, Giueseppe; Brunelli, Brunella; Giuliani, Marzia Monica; Pizza, Mariagrazia
2014-01-01
Neisseria meningitidis is an obligate human commensal that commonly colonizes the oropharyngeal mucosa. Carriage is age dependent and very common in young adults. The relationships between carriage and invasive disease are not completely understood. In this work, we performed a longitudinal carrier study in adolescents and young adults (173 subjects). Overall, 32 subjects (18.5%) had results that were positive for meningococcal carriage in at least one visit (average monthly carriage rate, 12.1%). Only five subjects tested positive at all four visits. All meningococcal isolates were characterized by molecular and serological techniques. Multilocus sequence typing, PorA typing, and sequencing of the 4CMenB vaccine antigens were used to assess strain diversity. The majority of positive subjects were colonized by capsule null (34.4%) and capsular group B strains (28.1%), accounting for 23.5% and 29.4% of the total number of isolates, respectively. The fHbp and nhba genes were present in all isolates, while the nadA gene was present in 5% of the isolates. The genetic variability of the 4CMenB vaccine antigens in this collection was relatively high compared with that of other disease-causing strain panels. Indications about the persistence of the carriage state were limited to the time span of the study. All strains isolated from the same subject were identical or cumulated minor changes over time. The expression levels and antigenicities of the 4CMenB vaccine antigens in each strain were analyzed by the meningococcal antigen typing system (MATS), which revealed that expression can change over time in the same individual. Future analysis of antigen variability and expression in carrier strains after the introduction of the MenB vaccine will allow for a definition of its impact on nasopharyngeal/oropharyngeal carriage. PMID:24648565
Ogunremi, Oladele; Benjamin, Jane; MacDonald, Lily; Schimpf, Robert
2008-12-01
Newly developed serological tests for diagnosing parelaphostrongylosis in cervids, using the excretory-secretory products (ES) of the infective larvae of Parelaphostrongylus tenuis in enzyme-linked immunosorbent assays (ELISAs), have demonstrable superiority over the traditional method of larval recovery and microscopic identification. To generate a source of ELISA antigen by genetic engineering, we created a complementary DNA (cDNA) expression library by the reverse transcription of mRNA of P. tenuis adult worms, and ligation with the vector lambda-ZAP II. The library was screened using antisera produced in mice by immunization with a somatic antigen preparation of adult worms. Seventeen clones were isolated, sequenced, and checked for similarity to other DNA sequences in GenBank. A previously identified parasite gene encoding an aspartyl protease inhibitor (API) was isolated from the cDNA library, subcloned and expressed using the pET expression vector to produce a glutathione S transferase (GST)-His-S.Tag-P. tenuis API fusion protein (molecular weight = 63 kDa). An enzyme-linked immunosorbent assay utilizing the API fusion protein as the coating antigen was used to serologically diagnose all white-tailed deer (WTD, 10 out of 10) that had been inoculated with 6 - 150 L3 P. tenuis, indicating that the antigen may be a useful serodiagnostic antigen for P. tenuis infection in this cervid species.
Arthur, A K; Höss, A; Fanning, E
1988-01-01
The genomic coding sequence of the large T antigen of simian virus 40 (SV40) was cloned into an Escherichia coli expression vector by joining new restriction sites, BglII and BamHI, introduced at the intron boundaries of the gene. Full-length large T antigen, as well as deletion and amino acid substitution mutants, were inducibly expressed from the lac promoter of pUC9, albeit with different efficiencies and protein stabilities. Specific interaction with SV40 origin DNA was detected for full-length T antigen and certain mutants. Deletion mutants lacking T-antigen residues 1 to 130 and 260 to 708 retained specific origin-binding activity, demonstrating that the region between residues 131 and 259 must carry the essential binding domain for DNA-binding sites I and II. A sequence between residues 302 and 320 homologous to a metal-binding "finger" motif is therefore not required for origin-specific binding. However, substitution of serine for either of two cysteine residues in this motif caused a dramatic decrease in origin DNA-binding activity. This region, as well as other regions of the full-length protein, may thus be involved in stabilizing the DNA-binding domain and altering its preference for binding to site I or site II DNA. Images PMID:2835505
Zhang, Yeping; Zhu, Ping; Shi, Yongjin; Liu, Jihua; Pu, Dingfang; Cao, Xianghong; Zhu, Qiang; Wang, Yijia; Ma, Mingxin; Yu, Jiren
2002-02-01
To investigate the anti-human CEM lymphoma cell activities induced by TCR idiotypic DNA vaccine containing different antigen determinants in BALB/c mice. The specific rearranged gene fragment encoding TCRVbeta region of CEM cell line was obtained by RT-PCR technique. The PCR product was cloned into eukaryocytic expression vector pcDNA3, which was used as DNA vaccine and template for PCR amplifying different antigen determinant. Gene fragments encoding different antigen determinant were amplified and cloned into pcDNA3, separately. The experimental mice were immunized by intramuscular injection of the DNA vaccines. The specific anti-idiotype antibodies were detected by indirect immunofluorescence assay. TCRbetaV of CEM cell line contains five antigen determinants. Specific anti-idiotype antibody was detected in all of the six mice immunized with DNA vaccine containing all the five determinants (the highest titer was 1:480). Although the antibody could also be detected in four of the six mice immunized with DNA vaccine containing four of the five antigen determinants, the antibody titer was lower (the highest titer was 1:80). DNA vaccine containing two of the five determinants could not induce the specific antibody. The idiotypic DNA vaccine containing the whole TCRbetaV five antigen determinants could induce the specific anti-lymphoma idiotypic antibody in BALB/c mice.
Ponsuwanna, Patrath; Kümpornsin, Krittikorn; Chookajorn, Thanat
2014-01-01
Even though antigenic variation is employed among parasitic protozoa for host immune evasion, Tetrahymena thermophila, a free-living ciliate, can also change its surface protein antigens. These cysteine-rich glycosylphosphatidylinositol (GPI)-linked surface proteins are encoded by a family of polymorphic Ser genes. Despite the availability of T. thermophila genome, a comprehensive analysis of the Ser family is limited by its high degree of polymorphism. In order to overcome this problem, a new approach was adopted by searching for Ser candidates with common motif sequences, namely length-specific repetitive cysteine pattern and GPI anchor site. The candidate genes were phylogenetically compared with the previously identified Ser genes and classified into subtypes. Ser candidates were often found to be located as tandem arrays of the same subtypes on several chromosomal scaffolds. Certain Ser candidates located in the same chromosomal arrays were transcriptionally expressed at specific T. thermophila developmental stages. These Ser candidates selected by the motif analysis approach can form the foundation for a systematic identification of the entire Ser gene family, which will contribute to the understanding of their function and the basis of T. thermophila antigenic variation. PMID:25133747
Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A
1991-11-01
To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM.
Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A
1991-01-01
To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM. Images PMID:1656067
Immunogenicity and efficacy of an anthrax/plague DNA fusion vaccine in a mouse model.
Albrecht, Mark T; Eyles, Jim E; Baillie, Les W; Keane-Myers, Andrea M
2012-08-01
The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y . pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B. anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y. pestis. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens.
Mayo, Kristin J; Gonzales, Barbara J; Mason, Hugh S
2006-01-01
This protocol is used to produce stably transformed tobacco (Nicotiana tabacum) NT1 cell lines, using Agrobacterium tumefaciens-mediated DNA delivery of a binary vector containing a gene encoding hepatitis B surface antigen and a gene encoding the kanamycin selection marker. The NT1 cultures, at the appropriate stage of growth, are inoculated with A. tumefaciens containing the binary vector. A 3-day cocultivation period follows, after which the cultures are rinsed and placed on solid selective medium. Transformed colonies ('calli') appear in approximately 4 weeks; they are subcultured until adequate material is obtained for analysis of antigen production. 'Elite' lines are selected based on antigen expression and growth characteristics. The time required for the procedure from preparation of the plant cell materials to callus development is approximately 5 weeks. Growth of selected calli to sufficient quantities for antigen screening may require 4-6 weeks beyond the initial selection. Creation of the plasmid constructs, transformation of the A. tumefaciens line, and ELISA and Bradford assays to assess protein production require additional time.
Johnson, Laura A.; Davis, Jeremy L.; Zheng, Zhili; Woolard, Kevin D.; Reap, Elizabeth A.; Feldman, Steven A.; Chinnasamy, Nachimuthu; Kuan, Chien-Tsun; Song, Hua; Zhang, Wei; Fine, Howard A.; Rosenberg, Steven A.
2012-01-01
Abstract No curative treatment exists for glioblastoma, with median survival times of less than 2 years from diagnosis. As an approach to develop immune-based therapies for glioblastoma, we sought to target antigens expressed in glioma stem cells (GSCs). GSCs have multiple properties that make them significantly more representative of glioma tumors than established glioma cell lines. Epidermal growth factor receptor variant III (EGFRvIII) is the result of a novel tumor-specific gene rearrangement that produces a unique protein expressed in approximately 30% of gliomas, and is an ideal target for immunotherapy. Using PCR primers spanning the EGFRvIII-specific deletion, we found that this tumor-specific gene is expressed in three of three GCS lines. Based on the sequence information of seven EGFRvIII-specific monoclonal antibodies (mAbs), we assembled chimeric antigen receptors (CARs) and evaluated the ability of CAR-engineered T cells to recognize EGFRvIII. Three of these anti-EGFRvIII CAR-engineered T cells produced the effector cytokine, interferon-γ, and lysed antigen-expressing target cells. We concentrated development on a CAR produced from human mAb 139, which specifically recognized GSC lines and glioma cell lines expressing mutant EGFRvIII, but not wild-type EGFR and did not recognize any normal human cell tested. Using the 139-based CAR, T cells from glioblastoma patients could be genetically engineered to recognize EGFRvIII-expressing tumors and could be expanded ex vivo to large numbers, and maintained their antitumor activity. Based on these observations, a γ-retroviral vector expressing this EGFRvIII CAR was produced for clinical application. PMID:22780919
Morgan, Richard A; Johnson, Laura A; Davis, Jeremy L; Zheng, Zhili; Woolard, Kevin D; Reap, Elizabeth A; Feldman, Steven A; Chinnasamy, Nachimuthu; Kuan, Chien-Tsun; Song, Hua; Zhang, Wei; Fine, Howard A; Rosenberg, Steven A
2012-10-01
No curative treatment exists for glioblastoma, with median survival times of less than 2 years from diagnosis. As an approach to develop immune-based therapies for glioblastoma, we sought to target antigens expressed in glioma stem cells (GSCs). GSCs have multiple properties that make them significantly more representative of glioma tumors than established glioma cell lines. Epidermal growth factor receptor variant III (EGFRvIII) is the result of a novel tumor-specific gene rearrangement that produces a unique protein expressed in approximately 30% of gliomas, and is an ideal target for immunotherapy. Using PCR primers spanning the EGFRvIII-specific deletion, we found that this tumor-specific gene is expressed in three of three GCS lines. Based on the sequence information of seven EGFRvIII-specific monoclonal antibodies (mAbs), we assembled chimeric antigen receptors (CARs) and evaluated the ability of CAR-engineered T cells to recognize EGFRvIII. Three of these anti-EGFRvIII CAR-engineered T cells produced the effector cytokine, interferon-γ, and lysed antigen-expressing target cells. We concentrated development on a CAR produced from human mAb 139, which specifically recognized GSC lines and glioma cell lines expressing mutant EGFRvIII, but not wild-type EGFR and did not recognize any normal human cell tested. Using the 139-based CAR, T cells from glioblastoma patients could be genetically engineered to recognize EGFRvIII-expressing tumors and could be expanded ex vivo to large numbers, and maintained their antitumor activity. Based on these observations, a γ-retroviral vector expressing this EGFRvIII CAR was produced for clinical application.
Zhang, Wenhui; Chi, Kaikai; Zhang, Yin; Ma, Baogen; Shi, Jie; Chen, Yuqing; Lei, Pingchong; Li, Yulong; Sun, Kai
2013-01-01
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) down-regulation by preferentially expressed antigen of melanoma (PRAME) is a general phenomenon in different types of solid tumours, but research on the correlation between PRAME and TRAIL gene expression in leukaemia patients is rare. PRAME and TRAIL expression was detected in bone marrow samples from 80 newly diagnosed acute leukaemia (AL) patients and 40 chronic myeloid leukaemia (CML) patients using TaqMan-based real-time quantitative PCR methods, and a linear correlation analysis was performed on their levels of expression. A total of 15 normal bone marrow samples from individuals with non-malignant haematological diseases served as normal controls. PRAME expression was higher in both AL and CML patients compared to controls (both p < 0.001). CML patients in both blast crisis (BC) and the accelerated phase (AP) had significantly higher PRAME levels than CML patients in the chronic phase (CP) (p = 0.006 and 0.0461, respectively). TRAIL expression was higher in both the acute myeloid leukaemia (AML) group and the acute lymphoblastic leukaemia (ALL) group than in the controls (p = 0.039 and 0.047, respectively). In contrast, CML patients had lower TRAIL levels than controls (p = 0.043), and TRAIL expression in CML patients in the advanced phases (BC and AP) was significantly lower than in CML-CP patients (p = 0.006). In CML patients, there was a significant inverse correlation (Spearman's R = -0.6669, p < 0.0001) between PRAME and TRAIL gene expression, while a greater significant inverse correlation was found in patients in the advanced phases (BC and AP) (R = -0.6764). In addition, no correlation was observed in AML and ALL patients. The simultaneous detection of PRAME and TRAIL gene expression may be helpful to monitor condition changes in leukaemia patients and evaluate therapeutic effects in clinical practice, particularly in CML patients. © 2013 S. Karger AG, Basel.
Kuo, Robert; Saito, Eiji; Miller, Stephen D; Shea, Lonnie D
2017-07-05
Targeted approaches to treat autoimmune diseases would improve upon current therapies that broadly suppress the immune system and lead to detrimental side effects. Antigen-specific tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and amount of conjugated antigen both resulted in more durable immune tolerance. To identify active tolerance mechanisms, we investigated downstream cellular and molecular events following nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles indicated suppression of inflammatory signaling pathways. Direct and functional measurement of surface MHC-restricted antigen showed positive correlation with both increasing particle dose from 1 to 100 μg/mL and increasing peptide conjugation by 2-fold. Co-stimulatory analysis of cells expressing MHC-restricted antigen revealed most significant decreases in positive co-stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with higher peptide conjugation, whereas expression of a negative co-stimulatory molecule (PD-L1) remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP 139-151 ) were co-cultured with antigen-presenting cells administered PLP 139-151 -conjugated nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a stronger anti-inflammatory response. These findings indicate several potential mechanisms used by peptide-conjugated nanoparticles to induce antigen-specific tolerance. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Evans, Heather M.; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J.; Pickett, Carol L.
2017-01-01
ABSTRACT The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. PMID:28694293
Laqueyrerie, A; Militzer, P; Romain, F; Eiglmeier, K; Cole, S; Marchal, G
1995-10-01
Effective protection against a virulent challenge with Mycobacterium tuberculosis is induced mainly by previous immunization with living attenuated mycobacteria, and it has been hypothesized that secreted proteins serve as major targets in the specific immune response. To identify and purify molecules present in culture medium filtrate which are dominant antigens during effective vaccination, a two-step selection procedure was used to select antigens able to interact with T lymphocytes and/or antibodies induced by immunization with living bacteria and to counterselect antigens interacting with the immune effectors induced by immunization with dead bacteria. A Mycobacterium bovis BCG 45/47-kDa antigen complex, present in BCG culture filtrate, has been previously identified and isolated (F. Romain, A. Laqueyrerie, P. Militzer, P. Pescher, P. Chavarot, M. Lagranderie, G. Auregan, M. Gheorghiu, and G. Marchal, Infect. Immun. 61:742-750, 1993). Since the cognate antibodies recognize the very same antigens present in M. tuberculosis culture medium filtrates, a project was undertaken to clone, express, and sequence the corresponding gene of M. tuberculosis. An M. tuberculosis shuttle cosmid library was transferred in Mycobacterium smegmatis and screened with a competitive enzyme-linked immunosorbent assay to detect the clones expressing the proteins. A clone containing a 40-kb DNA insert was selected, and by means of subcloning in Escherichia coli, a 2-kb fragment that coded for the molecules was identified. An open reading frame in the 2,061-nucleotide sequence codes for a secreted protein with a consensus signal peptide of 39 amino acids and a predicted molecular mass of 28,779 Da. The gene was referred to as apa because of the high percentages of proline (21.7%) and alanine (19%) in the purified protein. Southern hybridization analysis of digested total genomic DNA from M. tuberculosis (reference strains H37Rv and H37Ra) indicated that the apa gene was present as a single copy on the genome. The N-terminal identity or homology of the M. tuberculosis and M. bovis BCG purified molecules and their similar global and deduced amino acid compositions demonstrated the perfect correspondence between the molecular and chemical analyses. The presence of a high percentage of proline (21.7%) was confirmed and explained the apparent higher molecular mass (45/47 kDa) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis resulting from the increased rigidity of molecules due to proline residues.(ABSTRACT TRUNCATED AT 400 WORDS)
Kløverpris, Henrik N.; McGregor, Reuben; McLaren, James E.; Ladell, Kristin; Stryhn, Anette; Koofhethile, Catherine; Brener, Jacqui; Chen, Fabian; Riddell, Lynn; Graziano, Luzzi; Klenerman, Paul; Leslie, Alasdair; Buus, Søren; Price, David A.; Goulder, Philip
2014-01-01
Objectives: Although CD8+ T cells play a critical role in the control of HIV-1 infection, their antiviral efficacy can be limited by antigenic variation and immune exhaustion. The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1), CD244 and lymphocyte activation gene-3 (LAG-3), which modulate the functional capabilities of CD8+ T cells. Design and methods: Here, we used an array of different human leukocyte antigen (HLA)-B∗15 : 03 and HLA-B∗42 : 01 tetramers to characterize inhibitory receptor expression as a function of differentiation on HIV-1-specific CD8+ T-cell populations (n = 128) spanning 11 different epitope targets. Results: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated by effector memory CD8+ T cells. Conclusion: Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels are influenced by peptide/HLA class I antigen exposure. PMID:24906112
Roszik, János; Sebestyén, Zsolt; Govers, Coen; Guri, Yakir; Szöor, Arpád; Pályi-Krekk, Zsuzsanna; Vereb, György; Nagy, Peter; Szöllosi, János; Debets, Reno
2011-05-01
T-cell receptors (TCRs) can be genetically modified to improve gene-engineered T-cell responses, a strategy considered critical for the success of clinical TCR gene therapy to treat cancers. TCR:ζ, which is a heterodimer of TCRα and β chains each coupled to complete human CD3ζ, overcomes issues of mis-pairing with endogenous TCR chains, shows high surface expression and mediates antigen-specific T-cell functions in vitro. In the current study, we further characterized TCR:ζ in gene-engineered T cells and assessed whether this receptor is able to interact with surface molecules and drive correct synapse formation in Jurkat T cells. The results showed that TCR:ζ mediates the formation of synaptic areas with antigen-positive target cells, interacts closely with CD8α and MHC class I (MHCI), and co-localizes with CD28, CD45 and lipid rafts, similar to WT TCR. TCR:ζ did not closely associate with endogenous CD3ε, despite its co-presence in immune synapses, and TCR:ζ showed enhanced synaptic accumulation in T cells negative for surface-expressed TCR molecules. Notably, synaptic TCR:ζ demonstrated lowered densities when compared with TCR in dual TCR T cells, a phenomenon that was related to both extracellular and intracellular CD3ζ domains present in the TCR:ζ molecule and responsible for enlarged synapse areas. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hyper-reactive cloned mice generated by direct nuclear transfer of antigen-specific CD4+ T cells.
Kaminuma, Osamu; Katayama, Kazufumi; Inoue, Kimiko; Saeki, Mayumi; Nishimura, Tomoe; Kitamura, Noriko; Shimo, Yusuke; Tofukuji, Soichi; Ishida, Satoru; Ogonuki, Narumi; Kamimura, Satoshi; Oikawa, Mami; Katoh, Shigeki; Mori, Akio; Shichijo, Michitaka; Hiroi, Takachika; Ogura, Atsuo
2017-06-01
T-cell receptor (TCR)-transgenic mice have been employed for evaluating antigen-response mechanisms, but their non-endogenous TCR might induce immune response differently than the physiologically expressed TCR Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen-specific CD4 + T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre-rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic-type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter-regulated antigen-specific TCR are a unique animal model with allergic predisposition for investigating CD4 + T-cell-mediated pathogenesis and cellular commitment in immune diseases. © 2017 The Authors.
Sant’Anna Gomes, B M; Estalote, A C; Palatnik, M; Pimenta, G; Pereira, B de B; do Nascimento, E M
2010-01-01
Objective/Aim: The aim of this study is to describe the distribution of the platelet blood group A antigenicity in Euro-Brazilians (EUBs) and Afro-Brazilians (AFBs). Background: A small but significant proportion of individuals express high levels of A or B antigen on their platelets corresponding to the erythrocyte ABO group. The mechanism of increased antigen expression has not been elucidated. Material/Methods: A cohort of 241 blood group A donors was analysed by flow cytometry. Although mean fluorescence intensity (MFI) is a typical continuous variable, platelets were screened and divided into two categories: low expressers (LEs) and high expressers (HEs). A three-generation family was investigated looking for an inheritance mechanism. Results: The prevalence of the HE platelet phenotype among group A1 donors was 2%. The mean of MFI on platelets of A1 subgroup of EUBs differs from that of AFBs (P = 0·0115), whereas the frequency of the HE phenotype was similar between them (P = 0·5251). A significant difference was found between sexes (P = 0·0039). Whereas the serum glycosyltransferase from HE family members converted significantly more H antigen on group O erythrocytes into A antigens compared with that in LE serum, their ABO, FUT1 and FUT2 genes were consensus. The theoretically favourable, transcriptionally four-repeat ABO enhancer was not observed. Conclusion: The occurrence of HE in several members suggests familial aggregation. Indeed, in repeated measures, stability of the MFI values is suggesting an inherited condition. Factors outside the ABO locus might be responsible for the HE phenotype. Whether the real mechanism of inheritance is either of a polygenic or of a discrete Mendelian nature remains to be elucidated. PMID:20553427
Yan, Jie; Zhao, Shou-feng; Mao, Ya-fei; Ruan, Ping; Luo, Yi-hui; Li, Shu-ping; Li, Li-wei
2005-01-01
To construct the eukaryotic expression system of L.interrogans lipL32/1-ompL1/1 fusion gene and to identify the immunoreactivity of expression products. PCR with linking primer was used to construct the fusion gene lipL32/1-ompL1/1. The P.pastoris eukaryotic expression system of the fusion gene, pPIC9K-lipL32/1-ompL1/1-P. pastorisGS115, was constructed after the fusion gene was cloned and sequenced. Colony with phenotype His(+)Mut(+) was isolated by using MD and MM plates and His(+) Mut(+) transformant with high resistance to G418 was screened out by using YPD plate. Using lysate of His(+) Mut(+) colony with high copies of the target gene digested with yeast lyase as the template and 5'AOX1 and 3'AOX1 as the primers, the target fusion gene in chromosome DNA of the constructed P. pastoris engineering strain was detected by PCR. Methanol in BMMY medium was used to induce the target recombinant protein rLipL32/1-rOmpL1/1 expression. rLipL32/1-rOmpL1/1 in the medium supernatant was extracted by using ammonium sulfate precipitation and Ni-NTA affinity chromatography. Output and immunoreactivity of rLipL32/1-rOmpL1/1 were measured by SDS-PAGE and Western blot methods, respectively. Amplification fragments of the obtained fusion gene lipL32/1-ompL1/1 was 1794 bp in size. The homogeneity of nucleotide and putative amino acid sequences of the fusion gene were as high as 99.94 % and 100 %, respectively, compared with the sequences of original lipL32/1 and ompL1/1 genotypes. The constructed eukaryotic expression system was able to secrete rLipL32/1-rOmpL1/1 with an output of 10 % of the total proteins in the supernatant, which located the expected position after SDS-PAGE. The rabbit anti-rLipL32/1 and anti-rOmpL1/1 sera could combine the expressed rLipL32/1-rOmpL1/1. An eukaryotic expression system with high efficiency in P.pastoris of L.interrogans lipL32/1-ompL1/1 fusion gene was successfully constructed in this study. The expressed fusion protein shows specific immunoreactivity, which can be used as a potential antigen for developing a novel vaccine of L.interrogans.
Polymicrobial periodontal pathogens transcriptomes in calvarial bone and soft tissue
Bakthavatchalu, Vasudevan; Meka, Archana; Mans, Jeffrey J.; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Bhattacharyya, Indraneel; Boyce, Brendan F.; Baker, Henry V.; Lamont, Richard J.; Ebersole, Jeffrey L.; Kesavalu, L.
2011-01-01
Summary Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia are consistently associated with adult periodontitis. This study sought to document the host transcriptome to a P. gingivalis, T. denticola, and T. forsythia challenge as a polymicrobial infection using a murine calvarial model of acute inflammation and bone resorption. Mice were infected with P. gingivalis, T. denticola, and T. forsythia over the calvaria, after which the soft tissues and calvarial bones were excised. A Murine GeneChip® array analysis of transcript profiles showed that 6997 genes were differentially expressed in calvarial bones (P < 0.05) and 1544 genes were differentially transcribed in the inflamed tissues after the polymicrobial infection. Of these genes, 4476 and 1035 genes in the infected bone and tissues were differentially expressed by upregulation. Biological pathways significantly impacted by the polymicrobial infection in calvarial bone included leukocyte transendothelial migration (LTM), cell adhesion molecules, adherens junction, major histocompatibility complex antigen, extracellular matrix-receptor interaction (ECM), and antigen processing and presentation resulting in inflammatory/cytokine/chemokine transcripts stimulation in bone and soft tissue. Intense inflammation and increased activated osteoclasts was observed in calvarias compared to sham-infected controls. Quantitative real-time RT-PCR analysis confirmed mRNA level of selected genes corresponded with the microarray expression. The polymicrobial infection regulated several LTM and extracellular membrane (ECM) pathway genes in a manner distinct from monoinfection with P. gingivalis, T. denticola, or T. forsythia. To our knowledge, this is the first definition of the polymicrobial induced transcriptome in calvarial bone and soft tissue in response to periodontal pathogens. PMID:21896157
Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki
2016-07-01
Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.
Balic, Adam; Garcia-Morales, Carla; Vervelde, Lonneke; Gilhooley, Hazel; Sherman, Adrian; Garceau, Valerie; Gutowska, Maria W; Burt, David W; Kaiser, Pete; Hume, David A; Sang, Helen M
2014-08-01
We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens. © 2014. Published by The Company of Biologists Ltd.
Zeier, Zane; Aguilar, J Santiago; Lopez, Cecilia M; Devi-Rao, G B; Watson, Zachary L; Baker, Henry V; Wagner, Edward K; Bloom, David C
2010-01-01
Herpes simplex virus type 1 (HSV-1)–based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the non-replicating vector largely resembles mock infection. PMID:20095947
Variation of expression defects in cell surface 190-kDa protein antigen of Streptococcus mutans.
Lapirattanakul, Jinthana; Nomura, Ryota; Matsumoto-Nakano, Michiyo; Srisatjaluk, Ratchapin; Ooshima, Takashi; Nakano, Kazuhiko
2015-05-01
Streptococcus mutans, which consists of four serotypes, c, e, f, and k, possesses a 190-kDa cell surface protein antigen (PA) for initial tooth adhesion. We used Western blot analysis to determine PA expression in 750 S. mutans isolates from 150 subjects and found a significantly higher prevalence of the isolates with PA expression defects in serotypes f and k compared to serotypes c and e. Moreover, the defect patterns could be classified into three types; no PA expression on whole bacterial cells and in their supernatant samples (Type N1), PA expression mainly seen in supernatant samples (Type N2), and only low expression of PA in the samples of whole bacterial cells (Type W). The underlying reasons for the defects were mutations in the gene encoding PA as well as in the transcriptional processing of this gene for Type N1, defects in the sortase gene for Type N2, and low mRNA expression of PA for Type W. Since cellular hydrophobicity and phagocytosis susceptibility of the PA-defective isolates were significantly lower than those of the normal expression isolates, the potential implication of such defective isolates in systemic diseases involving bacteremia other than dental caries was suggested. Additionally, multilocus sequence typing was utilized to characterize S. mutans clones that represented a proportion of isolates with PA defects of 65-100%. Therefore, we described the molecular basis for variation defects in PA expression of S. mutans. Furthermore, we also emphasized the strong association between PA expression defects and serotypes f and k as well as the clonal relationships among these isolates. Copyright © 2015 Elsevier GmbH. All rights reserved.
Recent advances in the production of recombinant subunit vaccines in Pichia pastoris
Wang, Man; Jiang, Shuai; Wang, Yefu
2016-01-01
ABSTRACT Recombinant protein subunit vaccines are formulated using defined protein antigens that can be produced in heterologous expression systems. The methylotrophic yeast Pichia pastoris has become an important host system for the production of recombinant subunit vaccines. Although many basic elements of P. pastoris expression system are now well developed, there is still room for further optimization of protein production. Codon bias, gene dosage, endoplasmic reticulum protein folding and culture condition are important considerations for improved production of recombinant vaccine antigens. Here we comment on current advances in the application of P. pastoris for the synthesis of recombinant subunit vaccines. PMID:27246656
Plant-based immunocontraceptive control of wildlife--"potentials, limitations, and possums".
Polkinghorne, Ian; Hamerli, Denes; Cowan, Phil; Duckworth, Janine
2005-03-07
Possums (Trichosurus vulpecula), originally introduced from Australia, are spread over 90% of New Zealand and cause major economic and environmental damage. Immunocontraception has been suggested as a humane means to control them. Marsupial-specific reproductive antigens expressed at high levels in edible transgenic plant tissue might provide a safe, effective, and cheap oral delivery bait for immunocontraceptive control. As proof of concept, female possums vaccinated with immunocontraceptive antigens showed reduced fertility, and possums fed with potato-expressed heat labile toxin-B (LT-B) had mucosal and systemic immune responses to the antigen. This demonstrated that immunocontraception was effective in possums and that oral delivery in edible plant material might be possible. Nuclear transformation with reporter genes showed that transgenic carrot roots accumulate high levels of foreign protein in edible tissues, indicating their potential as a delivery vector. However, prior to attempts at large scale production, more effective immunocontraceptive antigen-adjuvant formulations are probably required before plant-based immunocontraception can become a major tool for immunocontraceptive control of overabundant vertebrate pests.
Damania, Blossom; Mital, Renu; Alwine, James C.
1998-01-01
The TATA-binding protein (TBP) is common to the basal transcription factors of all three RNA polymerases, being associated with polymerase-specific TBP-associated factors (TAFs). Simian virus 40 large T antigen has previously been shown to interact with the TBP-TAFII complexes, TFIID (B. Damania and J. C. Alwine, Genes Dev. 10:1369–1381, 1996), and the TBP-TAFI complex, SL1 (W. Zhai, J. Tuan, and L. Comai, Genes Dev. 11:1605–1617, 1997), and in both cases these interactions are critical for transcriptional activation. We show a similar mechanism for activation of the class 3 polymerase III (pol III) promoter for the U6 RNA gene. Large T antigen can activate this promoter, which contains a TATA box and an upstream proximal sequence element but cannot activate the TATA-less, intragenic VAI promoter (a class 2, pol III promoter). Mutants of large T antigen that cannot activate pol II promoters also fail to activate the U6 promoter. We provide evidence that large T antigen can interact with the TBP-containing pol III transcription factor human TFIIB-related factor (hBRF), as well as with at least two of the three TAFs in the pol III-specific small nuclear RNA-activating protein complex (SNAPc). In addition, we demonstrate that large T antigen can cofractionate and coimmunoprecipitate with the hBRF-containing complex TFIIIB derived from HeLa cells infected with a recombinant adenovirus which expresses large T antigen. Hence, similar to its function with pol I and pol II promoters, large T antigen interacts with TBP-containing, basal pol III transcription factors and appears to perform a TAF-like function. PMID:9488448
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis
Worth, Danielle; Huang, Sherri
2018-01-01
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host. PMID:29718996
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis.
Radke, Joshua B; Worth, Danielle; Hong, David; Huang, Sherri; Sullivan, William J; Wilson, Emma H; White, Michael W
2018-05-01
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host.
Coady, A.M.; Murray, A.L.; Elliott, D.G.; Rhodes, L.D.
2006-01-01
Renibacterium salmoninarum, a gram-positive diplococcobacillus that causes bacterial kidney disease among salmon and trout, has two chromosomal loci encoding the major soluble antigen (msa) gene. Because the MSA protein is widely suspected to be an important virulence factor, we used insertion-duplication mutagenesis to generate disruptions of either the msa1 or msa2 gene. Surprisingly, expression of MSA protein in broth cultures appeared unaffected. However, the virulence of either mutant in juvenile Chinook salmon (Oncorhynchus tshawytscha) by intraperitoneal challenge was severely attenuated, suggesting that disruption of the msa1 or msa2 gene affected in vivo expression. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.
Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun
2015-01-01
Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells.
Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun
2015-01-01
Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells. PMID:26339343
Wallace, Aaron; West, Kim; Rothman, Alan L; Ennis, Francis A; Lu, Shan; Wang, Shixia
2013-10-01
In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8(+) T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses.
Zhao, Li-Hui; Yu, Xiang-Hui; Jiang, Chun-Lai; Wu, Yong-Ge; Shen, Jia-Cong; Kong, Wei
2007-05-01
Based on the computer simulation, we analyzed hydrophobicity, potential epitope of recombined subtypes HIV-1 Env protein (851 amino acids) from Guangxi in China. Compared with conservative peptides of other subtypes in env protein, three sequences (469-511aa, 538-674aa, 700-734aa) were selected to recombine into a chimeric gene that codes three conservative epitope peptides with stronger antigencity, and was constructed in the yeast expression plasmid pPICZB. Chimeric proteins were expressed in Pichia pastoris under the induction of methanol, and were analyzed by SDS-PAGE and Westernblot. The results showed that fusion proteins of three-segment antigen were expressed in Pichia pastoris and that specific protein band at the site of 40kD was target protein, which is interacted with HIV-1 serum. The target proteins were purified by metal Ni-sepharose 4B, and were demonstrated to possess good antigenic specificity from the data of ELISA. This chimeric antigen may be used as research and developed into HIV diagnostic reagents.
Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G; Scholler, John; Levine, Bruce L; Albelda, Steven M; June, Carl H
2010-11-15
Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. Copyright © 2010 AACR.
Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M.; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G.; Scholler, John; Levine, Bruce L.; Albelda, Steven M.; June, Carl H.
2010-01-01
Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CARs). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week post electroporation. Multiple injections of RNA CAR electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(−/−) mice. Dramatic tumor reduction also occurred when the pre-existing intraperitoneal human-derived tumors, that had been growing in vivo for over 50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes demonstrating that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. PMID:20926399
Banerjee, Rajanya; Patel, Bhakti; Basu, Madhubanti; Lenka, Saswati S; Paicha, Mahismita; Samanta, Mrinal; Das, Surajit
2017-10-01
The primordial immunoglobulin class, IgD, was the first non-IgM isotype discovered in teleosts. The crucial roles of IgM and IgZ in imparting systemic and mucosal immunity, respectively, in various fish species have been widely established. However, the putative function of a unique IgD isotype during pathogenic invasions has not been well explored. The present study reports the existence of an IgD ortholog in freshwater carp, Catla catla, and further evaluates its differential expression profile in response to bacterial, parasitic and viral antigenic exposure and pathogen associated molecular patterns (PAMPs) stimulation. The IgD of C. catla (CcIgD) cDNA sequence was found to encode 226 amino acids and confirmed homology with heavy chain delta region of Cyprinidae family members. Phylogenetic analysis of CcIgD exhibited greatest similarity with Ctenopharyngodon idella. qRT-PCR analysis revealed significant upregulation (P < 0.001) of IgD gene expression in kidney with respect to other tissues at 24 hr post-Aeromonas hydrophila challenge. CcIgD gene expression in skin was enhanced following Streptococcus uberis infection and in blood following Argulus infection and inactivated rhabdoviral antigen stimulation. Further, the treatment of bacterial and viral products (PAMPs) also triggered significant (P < 0.05) increases in CcIgD mRNA expression in kidney. These findings indicate the functional importance of teleost IgD in orchestrating tissue specific neutralization of antigens on stimulation with different pathogens and PAMPs. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Sánchez-Sampedro, L; Mejías-Pérez, E; S Sorzano, Carlos Óscar; Nájera, J L; Esteban, M
2016-07-15
The NYVAC poxvirus vector is used as vaccine candidate for HIV and other diseases, although there is only limited experimental information on its immunogenicity and effectiveness for use against human pathogens. Here we defined the selective advantage of NYVAC vectors in a mouse model by comparing the immune responses and protection induced by vectors that express the LACK (Leishmania-activated C-kinase antigen), alone or with insertion of the viral host range gene C7L that allows the virus to replicate in human cells. Using DNA prime/virus boost protocols, we show that replication-competent NYVAC-LACK that expresses C7L (NYVAC-LACK-C7L) induced higher-magnitude polyfunctional CD8(+) and CD4(+) primary adaptive and effector memory T cell responses (IFNγ, TNFα, IL-2, CD107a) to LACK antigen than non-replicating NYVAC-LACK. Compared to NYVAC-LACK, the NYVAC-LACK-C7L-induced CD8(+) T cell population also showed higher proliferation when stimulated with LACK antigen. After a challenge by subcutaneous Leishmania major metacyclic promastigotes, NYVAC-LACK-C7L-vaccinated mouse groups showed greater protection than the NYVAC-LACK-vaccinated group. Our results indicate that the type and potency of immune responses induced by LACK-expressing NYVAC vectors is improved by insertion of the C7L gene, and that a replication-competent vector as a vaccine renders greater protection against a human pathogen than a non-replicating vector. Copyright © 2016 Elsevier B.V. All rights reserved.
Orntoft, T F; Greenwell, P; Clausen, H; Watkins, W M
1991-01-01
Blood group antigen expression in the distal human colon is related to the development of the organ and is modified by malignant transformation. To elucidate the biochemical basis for these changes, we have (a) analysed the activity of glycosyltransferases coded for by the H, Se, Le, X, and A genes, in tissue biopsy specimens from normal and malignant proximal and distal human colon; (b) characterised the glycosphingolipids expressed in the various regions of normal and malignant colon by immunostaining of high performance thin layer chromatography plates; and (c) located the antigens on tissue sections from the same subjects by immunohistochemistry. In both secretors and non-secretors we found a significantly higher activity of alpha-2-L-fucosyltransferases in carcinomatous rectal tissue than in tissue from normal subjects, whereas the other transferase activities studied showed no significant differences. The acceptor substrate specificity suggested that both the Se and the H gene dependent alpha-2-L-fucosyltransferases are increased in carcinomas. In non-malignant tissue the only enzyme which showed appreciably higher activity in caecum than in rectum was alpha-2-L-fucosyltransferase. Immunochemistry and immunohistochemistry showed alpha-2-L-fucosylated structures in normal caecum from secretors and in tumour tissue from both secretors and non-secretors. We conclude that the alpha-2-L-fucosyltransferases control the expression of ABH, and Lewis(b) structures in normal and malignant colon. Images Figure 4 PMID:1826491
Pucci, Angela; Mattioli, Claudia; Matteucci, Marco; Lorenzini, Daniele; Panvini, Francesca; Pacini, Simone; Ippolito, Chiara; Celiento, Michele; De Martino, Andrea; Dolfi, Amelio; Belgio, Beatrice; Bortolotti, Uberto; Basolo, Fulvio; Bartoloni, Giovanni
2018-05-22
Cardiac myxomas are rare tumors with a heterogeneous cell population including properly neoplastic (lepidic), endothelial and smooth muscle cells. The assessment of neoplastic (lepidic) cell differentiation pattern is rather difficult using conventional light microscopy immunohistochemistry and/or whole tissue extracts for mRNA analyses. In a preliminary study, we investigated 20 formalin-fixed and paraffin-embedded cardiac myxomas by means of conventional immunohistochemistry; in 10/20 cases, cell differentiation was also analyzed by real-time RT-PCR after laser capture microdissection of the neoplastic cells, whereas calretinin and endothelial antigen CD31 immunoreactivity was localized in 4/10 cases by double immunofluorescence confocal microscopy. Gene expression analyses of α-smooth muscle actin, endothelial CD31 antigen, alpha-cardiac actin, matrix metalloprotease-2 (MMP2) and tissue inhibitor of matrix metalloprotease-1 (TIMP1) was performed on cDNA obtained from either microdissected neoplastic cells or whole tumor sections. We found very little or absent CD31 and α-Smooth Muscle Actin expression in the microdissected cells as compared to the whole tumors, whereas TIMP1 and MMP2 genes were highly expressed in both ones, greater levels being found in patients with embolic phenomena. α-Cardiac Actin was not detected. Confocal microscopy disclosed two different signals corresponding to calretinin-positive myxoma cells and to endothelial CD31-positive cells, respectively. In conclusion, the neoplastic (lepidic) cells showed a distinct gene expression pattern and no consistent overlapping with endothelial and smooth muscle cells or cardiac myocytes; the expression of TIMP1 and MMP2 might be related to clinical presentation; larger series studies using also systematic transcriptome analysis might be useful to confirm the present results.
Durante, Ignacio M.; La Spina, Pablo E.; Carmona, Santiago J.; Agüero, Fernán
2017-01-01
Background The Trypanosoma cruzi genome bears a huge family of genes and pseudogenes coding for Mucin-Associated Surface Proteins (MASPs). MASP molecules display a ‘mosaic’ structure, with highly conserved flanking regions and a strikingly variable central and mature domain made up of different combinations of a large repertoire of short sequence motifs. MASP molecules are highly expressed in mammal-dwelling stages of T. cruzi and may be involved in parasite-host interactions and/or in diverting the immune response. Methods/Principle findings High-density microarrays composed of fully overlapped 15mer peptides spanning the entire sequences of 232 non-redundant MASPs (~25% of the total MASP content) were screened with chronic Chagasic sera. This strategy led to the identification of 86 antigenic motifs, each one likely representing a single linear B-cell epitope, which were mapped to 69 different MASPs. These motifs could be further grouped into 31 clusters of structurally- and likely antigenically-related sequences, and fully characterized. In contrast to previous reports, we show that MASP antigenic motifs are restricted to the central and mature region of MASP polypeptides, consistent with their intracellular processing. The antigenicity of these motifs displayed significant positive correlation with their genome dosage and their relative position within the MASP polypeptide. In addition, we verified the biased genetic co-occurrence of certain antigenic motifs within MASP polypeptides, compatible with proposed intra-family recombination events underlying the evolution of their coding genes. Sequences spanning 7 MASP antigenic motifs were further evaluated using distinct synthesis/display approaches and a large panel of serum samples. Overall, the serological recognition of MASP antigenic motifs exhibited a remarkable non normal distribution among the T. cruzi seropositive population, thus reducing their applicability in conventional serodiagnosis. As previously observed in in vitro and animal infection models, immune signatures supported the concurrent expression of several MASPs during human infection. Conclusions/Significance In spite of their conspicuous expression and potential roles in parasite biology, this study constitutes the first unbiased, high-resolution profiling of linear B-cell epitopes from T. cruzi MASPs during human infection. PMID:28961244
Howe, Daniel K; Gaji, Rajshekhar Y; Marsh, Antoinette E; Patil, Bhagyashree A; Saville, William J; Lindsay, David S; Dubey, J P; Granstrom, David E
2008-05-01
A gene family of surface antigens is expressed by merozoites of Sarcocystis neurona, the primary cause of equine protozoal myeloencephalitis (EPM). These surface proteins, designated SnSAGs, are immunodominant and therefore excellent candidates for development of EPM diagnostics or vaccines. Prior work had identified an EPM isolate lacking the major surface antigen SnSAG1, thus suggesting there may be some diversity in the SnSAGs expressed by different S. neurona isolates. Therefore, a bioinformatic, molecular and immunological study was conducted to assess conservation of the SnSAGs. Examination of an expressed sequence tag (EST) database revealed several notable SnSAG polymorphisms. In particular, the EST information implied that the EPM strain SN4 lacked the major surface antigen SnSAG1. The absence of this surface antigen from the SN4 strain was confirmed by both Western blot and Southern blot. To evaluate SnSAG polymorphisms in the S. neurona population, 14 strains were examined by Western blots using monospecific polyclonal antibodies against the four described SnSAGs. The results of these analyses demonstrated that SnSAG2, SnSAG3, and SnSAG4 are present in all 14 S. neurona strains tested, although some variance in SnSAG4 was observed. Importantly, SnSAG1 was not detected in seven of the strains, which included isolates from four cases of EPM and a case of fatal meningoencephalitis in a sea otter. Genetic analyses by PCR using gene-specific primers confirmed the absence of the SnSAG1 locus in six of these seven strains. Collectively, the data indicated that there is heterogeneity in the surface antigen composition of different S. neurona isolates, which is an important consideration for development of serological tests and prospective vaccines for EPM. Furthermore, the diversity reported herein likely extends to other phenotypes, such as strain virulence, and may have implications for the phylogeny of the various Sarcocystis spp. that undergo sexual stages of their life cycle in opossums.
Sellebjerg, F; Krakauer, M; Khademi, M; Olsson, T; Sørensen, P S
2012-01-01
Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4+CD25high T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied the phenotype of CD4+CD25high T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4+CD25high T cells and higher intracellular CTLA-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4+CD25high T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated with CBLB and ITCH and T helper type 2 cytokine mRNA expression in MS patients. These data link expression of FOXP3, CBLB and ITCH mRNA and CTLA-4 expression on the surface of CD4+CD25high T cell in MS. We hypothesize that this may reflect alterations in the inhibitory effect of CTLA-4 or in regulatory T cell function. PMID:23039885
Peng, Jinbiao; Han, Hongxiao; Hong, Yang; Wang, Yan; Guo, Fanji; Shi, Yaojun; Fu, Zhiqiang; Liu, Jinming; Cheng, Guofeng; Lin, Jiaojiao
2010-03-01
The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.
Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I
2017-11-01
T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.
In vivo induced antigenic determinants of Actinobacillus actinomycetemcomitans.
Cao, Sam Linsen; Progulske-Fox, Ann; Hillman, Jeffrey D; Handfield, Martin
2004-08-01
Actinobacillus actinomycetemcomitans is a Gram-negative capnophilic rod and the etiological agent of localized aggressive periodontitis. The genome-wide survey of A. actinomycetemcomitans using in vivo induced antigen technology (IVIAT) has previously resulted in the discovery of antigenic determinants expressed specifically in diseased patients. The present study evaluated the potential of these antigens as putative disease markers, and investigating their contribution to the pathogenesis of the microorganism. Sera from patients had a significantly greater antibody titer than sera from healthy controls against six antigens, which supports the in vivo expression of these antigens, and suggests their usefulness as disease markers. A. actinomycetemcomitans invasion of epithelium-derived HeLa cells resulted in the induction of all three genes tested, as evidenced by real-time PCR. Isogenic mutants of these three genes were constructed and the adhesion and intracellular survival of the mutants was assayed in a competition assay with the wild-type strain. A significant defect in the intracellular survival of two of these mutant strains (orf1402 and orf859) was found. This defect could not be attributed to an adhesion defect. In contrast, a mutation in vapA, a homologue of a novel putative transcriptional regulator, out-competed the wild-type strain in the same assay. The virulent phenotype was restored for a mutant strain in orf859 upon complementation. This data provided new insight into the pathogenic personality of A. actinomycetemcomitans in vivo and supported the use of HeLa cells as a valid in vitro host-pathogen interactions model for that microorganism. IVIAT is applicable to most pathogens and will undoubtedly lead to the discovery of novel therapies, antibiotics and diagnostic tools.
Nishi, Manami; El-Hage, Sandy; Fox, Barbara A.; Bzik, David J.
2015-01-01
Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4+ T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4+ T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549
2011-01-01
Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine. PMID:21619598
Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, L.H.; Calabi, F.; Lefebvre, F.A.
1987-12-01
The CD1 human antigens are a family of at least three components, CD1a, CD1b, and CD1c, that are characteristic of the cortical stage of thymocyte maturation. CD1a was originally named HTA1 or T6 and thought to be the human equivalent of mouse Tla. The genes coding for all three have not been identified by transfection into mouse cells. The transfectants express the surface antigens that can then be recognized by the corresponding cluster of monoclonal antibodies used to define the three members of CD1. The full sequence of the genomic DNA is described for all three. The intron-exon structure ofmore » CD1a is deduced by comparison with a near-full-length cDNA clone. Similar structures are proposed for the other two, largely based on sequence homology. An unusually long 5'-untranslated exon (280 bases long) is highly conserved between the three genes, suggesting an important but unknown function. CD1c has a duplicated form of this exon that is thought to be spliced out. The major homology between the three antigens is in the ..beta../sub 2/-microglobulin-binding-domain. The general relatedness to major histocompatibility complex class I and class II molecules is significant but low, with no section of higher homology to mouse Tla.« less
Gupta, Bhawna; Iancu, Emanuela M; Gannon, Philippe O; Wieckowski, Sébastien; Baitsch, Lukas; Speiser, Daniel E; Rufer, Nathalie
2012-07-01
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.
Ramamoorthy, R; Povinelli, L; Philipp M, T
1996-01-01
An expression library made with Borrelia burgdorferi DNA in the vector lambda ZapII was screened with serum from a monkey infected with the Lyme disease agent. This serum killed B. burgdorferi in vitro by an antibody-dependent, complement-mediated mechanism and contained antibodies to at least seven spirochetal antigens, none of which were the major outer surface proteins OspA or OspB. Among several positive clones, a clone containing the B. burgdorferi bmpA gene encoding the immunodominant antigen P39 was obtained. Chromosome walking and DNA sequence analysis permitted the identification of two additional upstream genes homologous to the bmpA gene and its related companion, bmpB. The first of these was the recently characterized bmpC gene, and adjacent to it was the fourth and new member of this class, which has been designated bmpD. The gene product encoded by bmpD is 34l residues long, contains a signal sequence with a potential signal peptidase II cleavage site, and has 26% identity with TmpC of Treponema pallidum. Southern blotting confirmed the tandem arrangement of all four bmp genes in the chromosome of B. burgdorferi JD1. However, Northern (RNA) blotting revealed that bmpD is expressed as a monocistronic transcript, which indicates that it is not part of an operon at the bmp locus. The bmpD gene was found to be conserved in representative members of the three species of the B. burgdorferi sensu lato complex, suggesting that it serves an important biological function in the spirochete. PMID:8606088
Encinas, Paloma; Rodriguez-Milla, Miguel A; Novoa, Beatriz; Estepa, Amparo; Figueras, Antonio; Coll, Julio
2010-09-27
Despite rhabdoviral infections being one of the best known fish diseases, the gene expression changes induced at the surface tissues after the natural route of infection (infection-by-immersion) have not been described yet. This work describes the differential infected versus non-infected expression of proteins and immune-related transcripts in fins and organs of zebrafish Danio rerio shortly after infection-by-immersion with viral haemorrhagic septicemia virus (VHSV). Two-dimensional differential gel electrophoresis detected variations on the protein levels of the enzymes of the glycolytic pathway and cytoskeleton components but it detected very few immune-related proteins. Differential expression of immune-related gene transcripts estimated by quantitative polymerase chain reaction arrays and hybridization to oligo microarrays showed that while more transcripts increased in fins than in organs (spleen, head kidney and liver), more transcripts decreased in organs than in fins. Increased differential transcript levels in fins detected by both arrays corresponded to previously described infection-related genes such as complement components (c3b, c8 and c9) or class I histocompatibility antigens (mhc1) and to newly described genes such as secreted immunoglobulin domain (sid4), macrophage stimulating factor (mst1) and a cluster differentiation antigen (cd36). The genes described would contribute to the knowledge of the earliest molecular events occurring in the fish surfaces at the beginning of natural rhabdoviral infections and/or might be new candidates to be tested as adjuvants for fish vaccines.
Huang, Yu; Zhu, Yumin; Dong, Shijuan; Yu, Ruisong; Zhang, Yuanshu; Li, Zhen
2015-01-01
New epidemic broke out in recent year which was suspected to be caused by variant Muscovy duck parvovirus (MDPV). For this reason, new MDPV detection methods are needed for the new virus strains. In this study, a pair of primers were designed according to the full-length genome of MDPV strain SAAS-SHNH, which were identified in 2012, and were used to amplify the vp3 gene of MDPV by polymerase chain reaction. After being sequenced, the vp3 gene was subcloned into the prokaryotic expression vector PET28a. The recombinant plasmid was transformed into E. coli BL21 and induced with IPTG. SDS-PAGE and Western blotting analysis showed the MDPV vp3 gene was successfully expressed. After being purified by Ni2+ affinity chromatography system, the recombinant protein was used as antigen to immunize rabbits to obtain antiserum. Western blotting analysis showed that the acquired antiserum could react specifically with VP3 protein of J3D6 strain and MDPV vaccine strain. The antiserum could also be used for detection of cultured MDPV from primary duck embryo fibroblasts by immune fluorescence assay (IFA). It could be concluded that the VP3 protein and its antibody prepared in the research could be used for detection of VP3 antiserum and antigen respectively.
Souza, Tatyana A.; Stollar, B. David; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.
2005-01-01
Epstein–Barr virus (EBV) establishes a lifelong persistent infection within peripheral blood B cells with the surface phenotype of memory cells. To date there is no proof that these cells have the genotype of true germinal-center-derived memory B cells. It is critical to understand the relative contribution of viral mimicry versus antigen signaling to the production of these cells because EBV encodes proteins that can affect the surface phenotype of infected cells and provide both T cell help and B cell receptor signals in the absence of cognate antigen. To address these questions we have developed a technique to identify single EBV-infected cells in the peripheral blood and examine their expressed Ig genes. The genes were all isotype-switched and somatically mutated. Furthermore, the mutations do not cause stop codons and display the pattern expected for antigen-selected memory cells based on their frequency, type, and location within the Ig gene. We conclude that latently infected peripheral blood B cells display the molecular hallmarks of classical antigen-selected memory B cells. Therefore, EBV does not disrupt the normal processing of latently infected cells into memory, and deviations from normal B cell biology are not tolerated in the infected cells. This article provides definitive evidence that EBV in the peripheral blood persists in true memory B cells. PMID:16330748
Nakazawa, Yozo; Huye, Leslie E; Salsman, Vita S; Leen, Ann M; Ahmed, Nabil; Rollins, Lisa; Dotti, Gianpietro; Gottschalk, Stephen M; Wilson, Matthew H; Rooney, Cliona M
2011-01-01
Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral piggyBac (PB) transposon system as a platform for modifying EBV-CTLs to express a functional human epidermal growth factor receptor 2-specific chimeric antigen receptor (HER2-CAR) thereby directing virus-specific, gene modified CTLs towards HER2-positive cancer cells. Peripheral blood mononuclear cells (PBMCs) were nucleofected with transposons encoding a HER2-CAR and a truncated CD19 molecule for selection followed by specific activation and expansion of EBV-CTLs. HER2-CAR was expressed in ~40% of T cells after CD19 selection with retention of immunophenotype, polyclonality, and function. HER2-CAR-modified EBV-CTLs (HER2-CTLs) killed HER2-positive brain tumor cell lines in vitro, exhibited transient and reversible increases in HER2-CAR expression following antigen-specific stimulation, and stably expressed HER2-CAR beyond 120 days. Adoptive transfer of PB-modified HER2-CTLs resulted in tumor regression in a murine xenograft model. Our results demonstrate that PB can be used to redirect virus-specific CTLs to tumor targets, which should prolong tumor-specific T cell survival in vivo producing more efficacious immunotherapy. PMID:21772253
Nakazawa, Yozo; Huye, Leslie E; Salsman, Vita S; Leen, Ann M; Ahmed, Nabil; Rollins, Lisa; Dotti, Gianpietro; Gottschalk, Stephen M; Wilson, Matthew H; Rooney, Cliona M
2011-12-01
Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral piggyBac (PB) transposon system as a platform for modifying EBV-CTLs to express a functional human epidermal growth factor receptor 2-specific chimeric antigen receptor (HER2-CAR) thereby directing virus-specific, gene modified CTLs towards HER2-positive cancer cells. Peripheral blood mononuclear cells (PBMCs) were nucleofected with transposons encoding a HER2-CAR and a truncated CD19 molecule for selection followed by specific activation and expansion of EBV-CTLs. HER2-CAR was expressed in ~40% of T cells after CD19 selection with retention of immunophenotype, polyclonality, and function. HER2-CAR-modified EBV-CTLs (HER2-CTLs) killed HER2-positive brain tumor cell lines in vitro, exhibited transient and reversible increases in HER2-CAR expression following antigen-specific stimulation, and stably expressed HER2-CAR beyond 120 days. Adoptive transfer of PB-modified HER2-CTLs resulted in tumor regression in a murine xenograft model. Our results demonstrate that PB can be used to redirect virus-specific CTLs to tumor targets, which should prolong tumor-specific T cell survival in vivo producing more efficacious immunotherapy.
Ganapathy, Mathangi; Chakravarthi, M; Charles, S Jason; Harunipriya, P; Jaiganesh, S; Subramonian, N; Kaliraj, P
2015-08-01
Transgenic tobacco plants were developed expressing WbSXP-1, a diagnostic antigen isolated from the cDNA library of L3 stage larvae of Wucheraria bancrofti. This antigen produced by recombinant Escherichia coli has been demonstrated by to be successful as potential diagnostic candidate against lymphatic filariasis. A rapid format simple and qualitative flow through immune-filtration diagnostic kit has been developed for the identification of IgG antibodies to the recombinant WbSXP-1 and is being marketed by M/S Span Diagnostics Ltd in India and Africa. Here, we present the results of experiments on the transformation and expression of the same filarial antigen, WbSXP-1, in tobacco plant, Nicotiana tabacum, to produce plant-based diagnostic antigen. It was possible to successfully transform the tobacco plant with WbSXP-1, the integration of the parasite-specific gene in plants was confirmed by PCR amplification and the expression of the filarial protein by Western blotting. The immunoreactivity of the plant-produced WbSXP-1 was assessed based on its reaction with the monoclonal antibodies developed against the E. coli-produced protein. Immunological screening using clinical sera from patients indicates that the plant-produced protein is comparable to E. coli-produced diagnostic antigen. The result demonstrated that plants can be used as suitable expression systems for the production of diagnostic proteins against lymphatic filariasis, a neglected tropical infectious disease which has a negative impact on socioeconomic development. This is the first report of the integration, expression and efficacy of a diagnostic candidate of lymphatic filariasis in plants.Key MessageTransgenic tobacco plants with WbSXP-1, a filarial diagnostic candidate, were developed. The plant-produced protein showed immunoreactivity on par with the E. coli product.
Jesnowski, R; Zubakov, Dmitri; Faissner, Ralf; Ringel, Jörg; Hoheisel, Jörg D; Lösel, Ralf; Schnölzer, Martina; Löhr, Matthias
2007-01-01
Abstract Pancreatic carcinoma has an extremely bad prognosis due to lack of early diagnostic markers and lack of effective therapeutic strategies. Recently, we have established an in vitro model recapitulating the first steps in the carcinogenesis of the pancreas. SV40 large T antigen-immortalized bovine pancreatic duct cells formed intrapancreatic adenocarcinoma tumors on k-rasmut transfection after orthotopic injection in the nude mouse pancreas. Here we identified genes and proteins differentially expressed in the course of malignant transformation using reciprocal suppression subtractive hybridization and 2D gel electrophoresis and mass spectrometry, respectively. We identified 34 differentially expressed genes, expressed sequence tags, and 15 unique proteins. Differential expression was verified for some of the genes or proteins in samples from pancreatic carcinoma. Among these genes and proteins, the majority had already been described either to be influenced by a mutated ras or to be differentially expressed in pancreatic adenocarcinoma, thus proving the feasibility of our model. Other genes and proteins (e.g., BBC1, GLTSCR2, and rhoGDIα), up to now, have not been implicated in pancreatic tumor development. Thus, we were able to establish an in vitro model of pancreatic carcinogenesis, which enabled us to identify genes and proteins differentially expressed during the early steps of malignant transformation. PMID:17356710
Yoneyama, T; Akatsuka, T; Miyamura, T
1988-08-01
The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.
Byrne, Guerard W; Du, Zeji; Stalboerger, Paul; Kogelberg, Heide; McGregor, Christopher G A
2014-01-01
Xenograft rejection of pigs organs with an engineered mutation in the GGTA-1 gene (GTKO) remains a predominantly antibody mediated process which is directed to a variety of non-Gal protein and carbohydrate antigens. We previously used an expression library screening strategy to identify six porcine endothelial cell cDNAs which encode pig antigens that bind to IgG induced after pig-to-primate cardiac xenotransplantation. One of these gene products was a glycosyltransferase with homology to the bovine β1,4 N-acetylgalactosaminyltransferase (B4GALNT2). We now characterize the porcine B4GALNT2 gene sequence, genomic organization, expression, and functional significance. The porcine B4GALNT2 cDNA was recovered from the original library isolate, subcloned, sequenced, and used to identify a bacterial artificial chromosome (BAC) containing the entire B4GALNT2 locus from the Children's Hospital Oakland Research Institute BACPAC Resource Centre (#AC173453). PCR primers were designed to map the intron/exon genomic organization in the BAC clone. A stable human embryonic kidney (HEK) cell line expressing porcine B4GALNT2 (HEK-B4T) was produced. Expression of porcine B4GALNT2 in HEK-B4T cells was characterized by immune staining and siRNA transfection. The effects of B4GALNT2 expression in HEK-B4T cells was measured by flow cytometry and complement mediated lysis. Antibody binding to HEK and HEK-B4T cells was used to detect an induced antibody response to the B4GALNT2 produced glycan and the results were compared to GTKO PAEC specific non-Gal antibody induction. Expression of porcine B4GALNT2 in pig cells and tissues was measured by qualitative and quantitative real time reverse transcriptase PCR and by Dolichos biflorus agglutinin (DBA) tissue staining. The porcine B4GALNT2 gene shares a conserved genomic organization and encodes an open reading frame with 76 and 70% amino acid identity to the human and murine B4GALNT2 genes, respectively. The B4GALNT2 gene is expressed in porcine endothelial cells and shows a broadly distributed expression pattern. Expression of porcine B4GALNT2 in human HEK cells (HEK-B4T) results in increased binding of antibody to the B4GALNT2 enzyme, and increased reactivity with anti-Sd(a) and DBA. HEK-B4T cells show increased sensitivity to complement mediated lysis when challenged with serum from primates after pig to primate cardiac xenotransplantation. In GTKO and GTKO:CD55 cardiac xenotransplantation recipients there is a significant correlation between the induction of a non-Gal antibody, measured using GTKO PAECs, and the induction of antibodies which preferentially bind to HEK-B4T cells. The functional isolation of the porcine B4GALNT2 gene from a PAEC expression library, the pattern of B4GALNT2 gene expression and its sensitization of HEK-B4T cells to antibody binding and complement mediated lysis indicates that the enzymatic activity of porcine B4GALNT2 produces a new immunogenic non-Gal glycan which contributes in part to the non-Gal immune response detected after pig-to-baboon cardiac xenotransplantation. © 2014 The Authors. Xenotransplantation Published by John Wiley & Sons Ltd.
Coskun, Zeynep Mine; Sacan, Ozlem; Karatug, Ayse; Turk, Neslihan; Yanardag, Refiye; Bolkent, Sehnaz; Bolkent, Sema
2013-09-01
The aim of the study was to determine whether ghrelin treatment has a protective effect on gene expression and biochemical changes in the stomach of newborn streptozotocin (STZ) induced diabetic rats. In this study, four groups of Wistar rats were used: control, ghrelin control, diabetic and diabetic+ghrelin. The rats were sacrificed after four weeks of treatment for diabetes. The gene expressions of: somatostatin, cholecystokinin, apelin and the altered active caspase-3, active caspase-8, proliferating cell nuclear antigen, were investigated in the pyloric region of the stomach and antioxidant parameters were measured in all the stomach. Although ghrelin treatment to diabetic rats lowered the stomach lipid peroxidation levels, the stomach glutathione levels were increased. Exogenous ghrelin caused an increased activities of stomach catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase in diabetic rats. Numbers of somatostatin, cholecystokinin and proliferating cell nuclear antigen immunoreactive cells decreased in the diabetic+ghrelin group compared to the diabetic group. Apelin mRNA expressions were remarkably less in the diabetic+ghrelin rats than in diabetic rats. The results may indicate that ghrelin treatment has a protective effect to some extent on the diabetic rats. This protection is possibly accomplished through the antioxidant activity of ghrelin observed in type 2 diabetes. Consequently exogenous ghrelin may be a candidate for therapeutic treatment of diabetes. Copyright © 2013 Elsevier GmbH. All rights reserved.
Chebolu, S; Daniell, H
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%-31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bio-reactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Chebolu, S.; Daniell, H.
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. PMID:19401820
Analysis of the role of tripeptidyl peptidase II in MHC class I antigen presentation in vivo1
Kawahara, Masahiro; York, Ian A.; Hearn, Arron; Farfan, Diego; Rock, Kenneth L.
2015-01-01
Previous experiments using enzyme inhibitors and RNAi in cell lysates and cultured cells have suggested that tripeptidyl peptidase II (TPPII) plays a role in creating and destroying MHC class I-presented peptides. However, its precise contribution to these processes has been controversial. To elucidate the importance of TPPII in MHC class I antigen presentation, we analyzed TPPII-deficient gene-trapped mice and cell lines from these animals. In these mice, the expression level of TPPII was reduced by >90% compared to wild-type mice. Thymocytes from TPPII gene-trapped mice displayed more MHC class I on the cell surface, suggesting that TPPII normally limits antigen presentation by destroying peptides overall. TPPII gene-trapped mice responded as well as did wild-type mice to four epitopes from lymphocytic choriomeningitis virus (LCMV). The processing and presentation of peptide precursors with long N-terminal extensions in TPPII gene-trapped embryonic fibroblasts was modestly reduced, but in vivo immunization with recombinant lentiviral or vaccinia virus vectors revealed that such peptide precursors induced an equivalent CD8 T cell response in wild type and TPPII-deficient mice. These data indicate while TPPII contributes to the trimming of peptides with very long N-terminal extensions, TPPII is not essential for generating most MHC class I-presented peptides or for stimulating CTL responses to several antigens in vivo. PMID:19841172
Degan, Massimo; Bomben, Riccardo; Bo, Michele Dal; Zucchetto, Antonella; Nanni, Paola; Rupolo, Maurizio; Steffan, Agostino; Attadia, Vincenza; Ballerini, Pier Ferruccio; Damiani, Daniela; Pucillo, Carlo; Poeta, Giovanni Del; Colombatti, Alfonso; Gattei, Valter
2004-07-01
Cases of B-cell chronic lymphocytic leukaemia (B-CLL) with mutated (M) IgV(H) genes have a better prognosis than unmutated (UM) cases. We analysed the IgV(H) mutational status of B-CLL according to the features of a canonical somatic hypermutation (SHM) process, correlating this data with survival. In a series of 141 B-CLLs, 124 cases were examined for IgV(H) gene per cent mutations and skewing of replacement/silent mutations in the framework/complementarity-determining regions as evidence of antigen-driven selection; this identified three B-CLL subsets: significantly mutated (sM), with evidence of antigen-driven selection, not significantly mutated (nsM) and UM, without such evidence and IgV(H) gene per cent mutations above or below the 2% cut-off. sM B-CLL patients had longer survival within the good prognosis subgroup that had more than 2% mutations of IgV(H) genes. sM, nsM and UM B-CLL were also characterized for the biased usage of IgV(H) families, intraclonal IgV(H) gene diversification, preference of mutations to target-specific nucleotides or hotspots, and for the expression of enzymes involved in SHM (translesion DNA polymerase zeta and eta and activation-induced cytidine deaminase). These findings indicate the activation of a canonical SHM process in nsM and sM B-CLLs and underscore the role of the antigen in defining the specific clinical and biological features of B-CLL.
Amambua-Ngwa, Alfred; Tetteh, Kevin K A; Manske, Magnus; Gomez-Escobar, Natalia; Stewart, Lindsay B; Deerhake, M Elizabeth; Cheeseman, Ian H; Newbold, Christopher I; Holder, Anthony A; Knuepfer, Ellen; Janha, Omar; Jallow, Muminatou; Campino, Susana; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Conway, David J
2012-01-01
Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now prioritized for functional study.
Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel
2014-01-01
The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins and lead mainly to an anti-inflammatory response in cultured enterocytes. In addition, the interaction of commensal bacteria and probiotics with the surface of antigen-presenting cells in vitro results in the downregulation of pro-inflammatory genes that are linked to inflammatory signaling pathways, whereas other anti-inflammatory genes are upregulated. The effects of probiotics have been extensively investigated in animal models ranging from fish to mice, rats and piglets. These bacteria induce a tolerogenic and hyporesponsive immune response in which many genes that are related to the immune system, in particular those genes expressing anti-inflammatory cytokines, are upregulated. By contrast, information related to gene expression in human intestinal cells mediated by the action of probiotics is scarce. There is a need for further clinical studies that evaluate the mechanism of action of probiotics both in healthy humans and in patients with chronic diseases. These types of clinical studies are necessary for addressing the influence of these microorganisms in gene expression for different pathways, particularly those that are associated with the immune response, and to better understand the role that probiotics might have in the prevention and treatment of disease. PMID:25400447
Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru
2016-01-01
Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588
Major, Sylvia M; Nishizuka, Satoshi; Morita, Daisaku; Rowland, Rick; Sunshine, Margot; Shankavaram, Uma; Washburn, Frank; Asin, Daniel; Kouros-Mehr, Hosein; Kane, David; Weinstein, John N
2006-04-06
Monoclonal antibodies are used extensively throughout the biomedical sciences for detection of antigens, either in vitro or in vivo. We, for example, have used them for quantitation of proteins on "reverse-phase" protein lysate arrays. For those studies, we quality-controlled > 600 available monoclonal antibodies and also needed to develop precise information on the genes that encode their antigens. Translation among the various protein and gene identifier types proved non-trivial because of one-to-many and many-to-one relationships. To organize the antibody, protein, and gene information, we initially developed a relational database in Filemaker for our own use. When it became apparent that the information would be useful to many other researchers faced with the need to choose or characterize antibodies, we developed it further as AbMiner, a fully relational web-based database under MySQL, programmed in Java. AbMiner is a user-friendly, web-based relational database of information on > 600 commercially available antibodies that we validated by Western blot for protein microarray studies. It includes many types of information on the antibody, the immunogen, the vendor, the antigen, and the antigen's gene. Multiple gene and protein identifier types provide links to corresponding entries in a variety of other public databases, including resources for phosphorylation-specific antibodies. AbMiner also includes our quality-control data against a pool of 60 diverse cancer cell types (the NCI-60) and also protein expression levels for the NCI-60 cells measured using our high-density "reverse-phase" protein lysate microarrays for a selection of the listed antibodies. Some other available database resources give information on antibody specificity for one or a couple of cell types. In contrast, the data in AbMiner indicate specificity with respect to the antigens in a pool of 60 diverse cell types from nine different tissues of origin. AbMiner is a relational database that provides extensive information from our own laboratory and other sources on more than 600 available antibodies and the genes that encode the antibodies' antigens. The data will be made freely available at http://discover.nci.nih.gov/abminer.
Shanley, Thomas P; Cvijanovich, Natalie; Lin, Richard; Allen, Geoffrey L; Thomas, Neal J; Doctor, Allan; Kalyanaraman, Meena; Tofil, Nancy M; Penfil, Scott; Monaco, Marie; Odoms, Kelli; Barnes, Michael; Sakthivel, Bhuvaneswari; Aronow, Bruce J; Wong, Hector R
2007-01-01
We have conducted longitudinal studies focused on the expression profiles of signaling pathways and gene networks in children with septic shock. Genome-level expression profiles were generated from whole blood-derived RNA of children with septic shock (n = 30) corresponding to day one and day three of septic shock, respectively. Based on sequential statistical and expression filters, day one and day three of septic shock were characterized by differential regulation of 2,142 and 2,504 gene probes, respectively, relative to controls (n = 15). Venn analysis demonstrated 239 unique genes in the day one dataset, 598 unique genes in the day three dataset, and 1,906 genes common to both datasets. Functional analyses demonstrated time-dependent, differential regulation of genes involved in multiple signaling pathways and gene networks primarily related to immunity and inflammation. Notably, multiple and distinct gene networks involving T cell- and MHC antigen-related biology were persistently downregulated on both day one and day three. Further analyses demonstrated large scale, persistent downregulation of genes corresponding to functional annotations related to zinc homeostasis. These data represent the largest reported cohort of patients with septic shock subjected to longitudinal genome-level expression profiling. The data further advance our genome-level understanding of pediatric septic shock and support novel hypotheses. PMID:17932561
GENETIC CONTROL OF THE IMMUNE RESPONSE
Lonai, Peter; McDevitt, Hugh O.
1974-01-01
In vitro antigen-induced tritiated thymidine uptake has been used to study the response of sensitized lymphocytes to (T,G)-A--L, (H,G)-A--L, and (Phe,G)-A--L in responder and nonresponder strains of mice. The reaction is T-cell and macrophage dependent. Highly purified T cells (91% Thy 1.2 positive) are also responsive, suggesting that this in vitro lymphocyte transformation system is not B-cell dependent. Lymphocytes from high and low responder mice stimulated in vitro react as responders and nonresponders in a pattern identical to that seen with in vivo immunization. Stimulation occurs only if soluble antigen is added at physiological temperatures; antigen exposure at 4°C followed by washing and incubation at 37°C fails to induce lymphocyte transformation. Stimulation is specific for the immunizing antigen and does not exhibit the serologic cross-reactivity which is characteristic of these three antigens and their respective antisera. The reaction can be inhibited by anti-H-2 sera but not by anti-immunoglobulin sera. The anti-immunoglobulin sera did, however, inhibit lipopolysaccharide or pokeweed mitogen stimulation. These results suggest that the Ir-1A gene(s) are expressed in T cells, and that there are fundamental physiologic differences between T- and B-cell antigen recognition. PMID:4547782
Ching, W.-M.; Wang, H.; Eamsila, C.; Kelly, D. J.; Dasch, G. A.
1998-01-01
The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. The gene encoding this protein from Karp strain was cloned into the expression vector pET11a. The recombinant protein (r56) was expressed as a truncated nonfusion protein (amino acids 80 to 456 of the open reading frame) which formed an inclusion body when expressed in Escherichia coli BL21. Refolded r56 was purified and compared to purified whole-cell lysate of the Karp strain of O. tsutsugamushi by immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for reactivity with rabbit sera prepared against eight antigenic prototypes of O. tsutsugamushi as well as several other species of Rickettsiales and nonrickettsial antigens. Refolded r56 exhibited broad reactivity with the rabbit antisera against the Orientia prototypes, and the ELISA reactions with the r56 and Karp whole-cell lysate antigens correlated well (r = 0.81, n = 22, sensitivity compared to that of standard ELISA of 91%). Refolded r56 did not react with most antisera against other rickettsial species or control antigens (specificity = 92%, n = 13) using a positive cutoff value determined with eight uninfected rabbit sera. Refolded r56 was evaluated further by ELISA, using 128 sera obtained from patients with suspected scrub typhus from Korat, Thailand, and 74 serum specimens from healthy Thai soldiers. By using the indirect immunoperoxidase assay as the reference assay, the recombinant antigen exhibited a sensitivity and specificity of 93% or greater for detection of both IgG and IgM in the ELISA at 1:400 serum dilution. These results strongly suggest that purified r56 is a suitable candidate for replacing the density gradient-purified, rickettsia-derived, whole-cell antigen currently used in the commercial dipstick assay available in the United States. PMID:9665960
Ching, W M; Wang, H; Eamsila, C; Kelly, D J; Dasch, G A
1998-07-01
The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. The gene encoding this protein from Karp strain was cloned into the expression vector pET11a. The recombinant protein (r56) was expressed as a truncated nonfusion protein (amino acids 80 to 456 of the open reading frame) which formed an inclusion body when expressed in Escherichia coli BL21. Refolded r56 was purified and compared to purified whole-cell lysate of the Karp strain of O. tsutsugamushi by immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for reactivity with rabbit sera prepared against eight antigenic prototypes of O. tsutsugamushi as well as several other species of Rickettsiales and nonrickettsial antigens. Refolded r56 exhibited broad reactivity with the rabbit antisera against the Orientia prototypes, and the ELISA reactions with the r56 and Karp whole-cell lysate antigens correlated well (r = 0.81, n = 22, sensitivity compared to that of standard ELISA of 91%). Refolded r56 did not react with most antisera against other rickettsial species or control antigens (specificity = 92%, n = 13) using a positive cutoff value determined with eight uninfected rabbit sera. Refolded r56 was evaluated further by ELISA, using 128 sera obtained from patients with suspected scrub typhus from Korat, Thailand, and 74 serum specimens from healthy Thai soldiers. By using the indirect immunoperoxidase assay as the reference assay, the recombinant antigen exhibited a sensitivity and specificity of 93% or greater for detection of both IgG and IgM in the ELISA at 1:400 serum dilution. These results strongly suggest that purified r56 is a suitable candidate for replacing the density gradient-purified, rickettsia-derived, whole-cell antigen currently used in the commercial dipstick assay available in the United States.
Suppression of lethal autoimmunity by regulatory T cells with a single TCR specificity
Hemmers, Saskia; Schizas, Michail; Faire, Mehlika B.; Konopacki, Catherine; Schmidt-Supprian, Marc; Germain, Ronald N.
2017-01-01
The regulatory T cell (T reg cell) T cell receptor (TCR) repertoire is highly diverse and skewed toward recognition of self-antigens. TCR expression by T reg cells is continuously required for maintenance of immune tolerance and for a major part of their characteristic gene expression signature; however, it remains unknown to what degree diverse TCR-mediated interactions with cognate self-antigens are required for these processes. In this study, by experimentally switching the T reg cell TCR repertoire to a single T reg cell TCR, we demonstrate that T reg cell function and gene expression can be partially uncoupled from TCR diversity. An induced switch of the T reg cell TCR repertoire to a random repertoire also preserved, albeit to a limited degree, the ability to suppress lymphadenopathy and T helper cell type 2 activation. At the same time, these perturbations of the T reg cell TCR repertoire led to marked immune cell activation, tissue inflammation, and an ultimately severe autoimmunity, indicating the importance of diversity and specificity for optimal T reg cell function. PMID:28130403
Regulators of gene expression as biomarkers for prostate cancer
Willard, Stacey S; Koochekpour, Shahriar
2012-01-01
Recent technological advancements in gene expression analysis have led to the discovery of a promising new group of prostate cancer (PCa) biomarkers that have the potential to influence diagnosis and the prediction of disease severity. The accumulation of deleterious changes in gene expression is a fundamental mechanism of prostate carcinogenesis. Aberrant gene expression can arise from changes in epigenetic regulation or mutation in the genome affecting either key regulatory elements or gene sequences themselves. At the epigenetic level, a myriad of abnormal histone modifications and changes in DNA methylation are found in PCa patients. In addition, many mutations in the genome have been associated with higher PCa risk. Finally, over- or underexpression of key genes involved in cell cycle regulation, apoptosis, cell adhesion and regulation of transcription has been observed. An interesting group of biomarkers are emerging from these studies which may prove more predictive than the standard prostate specific antigen (PSA) serum test. In this review, we discuss recent results in the field of gene expression analysis in PCa including the most promising biomarkers in the areas of epigenetics, genomics and the transcriptome, some of which are currently under investigation as clinical tests for early detection and better prognostic prediction of PCa. PMID:23226612
NASA Astrophysics Data System (ADS)
Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin
2016-11-01
Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes ( IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon ( IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.
Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells.
Tarasiuk, K; Woźniakowski, G; Holec-Gąsior, L
2015-01-01
The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.
Roux, K H; Greenberg, A S; Greene, L; Strelets, L; Avila, D; McKinney, E C; Flajnik, M F
1998-09-29
We recently have identified an antigen receptor in sharks called NAR (new or nurse shark antigen receptor) that is secreted by splenocytes but does not associate with Ig light (L) chains. The NAR variable (V) region undergoes high levels of somatic mutation and is equally divergent from both Ig and T cell receptors (TCR). Here we show by electron microscopy that NAR V regions, unlike those of conventional Ig and TCR, do not form dimers but rather are independent, flexible domains. This unusual feature is analogous to bona fide camelid IgG in which modifications of Ig heavy chain V (VH) sequences prevent dimer formation with L chains. NAR also displays a uniquely flexible constant (C) region. Sequence analysis and modeling show that there are only two types of expressed NAR genes, each having different combinations of noncanonical cysteine (Cys) residues in the V domains that likely form disulfide bonds to stabilize the single antigen-recognition unit. In one NAR class, rearrangement events result in mature genes encoding an even number of Cys (two or four) in complementarity-determining region 3 (CDR3), which is analogous to Cys codon expression in an unusual human diversity (D) segment family. The NAR CDR3 Cys generally are encoded by preferred reading frames of rearranging D segments, providing a clear design for use of preferred reading frame in antigen receptor D regions. These unusual characteristics shared by NAR and unconventional mammalian Ig are most likely the result of convergent evolution at the molecular level.
Harris, Katherine E; Aldred, Shelley Force; Davison, Laura M; Ogana, Heather Anne N; Boudreau, Andrew; Brüggemann, Marianne; Osborn, Michael; Ma, Biao; Buelow, Benjamin; Clarke, Starlynn C; Dang, Kevin H; Iyer, Suhasini; Jorgensen, Brett; Pham, Duy T; Pratap, Payal P; Rangaswamy, Udaya S; Schellenberger, Ute; van Schooten, Wim C; Ugamraj, Harshad S; Vafa, Omid; Buelow, Roland; Trinklein, Nathan D
2018-01-01
We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.
2008-01-01
lesions of low -grade prostatic intraepithelial neoplasia (PIN). Over time, osteopontin expressing dysplastic cells seemed to increase in number in high...neoplasia (PIN) lesions, not seen at 2.5 months, were mostly low grade at 12 months and then turning to an abundant combination of low -grade PIN...Prostate specific antigen (PSA) allows the diagnosis of low grade, localized PCa, that allows the physician to offer the patient several efficacious
NASA Technical Reports Server (NTRS)
Wilson, A. B.; Seilly, D.; Willers, C.; Vannais, D. B.; McGraw, M.; Waldren, C. A.; Hei, T. K.; Davies, A.; Chatterjee, A. (Principal Investigator)
1999-01-01
S1 cell membrane antigen is encoded by the MIC1 gene on human chromosome 11. This antigen has been widely used as a marker for studies in gene mapping or in analysis of mutagen-induced gene deletions/mutations, which utilized the human-hamster hybrid cell-line, AL-J1, carrying human chromosome 11. Evidence is presented here which identifies S1 as an epitope of CD59, a cell membrane complement inhibiting protein. E7.1 monoclonal antibody, specific for the S1 determinant, was found to react strongly with membrane CD59 in Western blotting, and to bind to purified, urinary form of CD59 in ELISAs. Cell membrane expression of S1 on various cell lines always correlated with that of CD59 when examined by immunofluorescent staining. In addition, E7.1 antibody inhibited the complement regulatory function of CD59. Identification of S1 protein as CD59 has increased the scope of the AL cell system by enabling analysis of intragenic mutations, and multiplex PCR analysis of mutated cells is described, showing variable loss of CD59 exons.
Carlos, Bianca C; Fotoran, Wesley L; Menezes, Maria J; Cabral, Fernanda J; Bastos, Marcele F; Costa, Fabio T M; Sousa-Neto, Jayme A; Ribolla, Paulo E M; Wunderlich, Gerhard; Ferreira, Marcelo U
2016-11-01
The var gene-encoded erythrocyte membrane protein-1 of Plasmodium falciparum (PfEMP-1) is the main variant surface antigen (VSA) expressed on infected erythrocytes. The rate at which antibody responses to VSA expressed by circulating parasites are acquired depends on the size of the local VSA repertoire and the frequency of exposure to new VSA. Because parasites from areas with declining malaria endemicity, such as the Amazon, typically express a restricted PfEMP-1 repertoire, we hypothesized that Amazonians would rapidly acquire antibodies to most locally circulating VSA. Consistent with our expectations, the analysis of 5878 sequence tags expressed by 10 local P. falciparum samples revealed little PfEMP-1 DBL1α domain diversity. Among the most commonly expressed DBL1α types, 45% were shared by two or more independent parasite lines. Nevertheless, Amazonians displayed major gaps in their repertoire of anti-VSA antibodies, although the breadth of anti-VSA antibody responses correlated positively with their cumulative exposure to malaria. We found little antibody cross-reactivity even when testing VSA from related parasites expressing the same dominant DBL1α types. We conclude that variant-specific immunity to P. falciparum VSAs develops slowly despite the relatively restricted PfEMP-1 repertoire found in low-endemicity settings. Copyright © 2016 Elsevier Inc. All rights reserved.
Tolkach, Yuri; Gevensleben, Heidrun; Bundschuh, Ralph; Koyun, Aydan; Huber, Daniela; Kehrer, Christina; Hecking, Thomas; Keyver-Paik, Mignon-Denise; Kaiser, Christina; Ahmadzadehfar, Hojjat; Essler, Markus; Kuhn, Walther; Kristiansen, Glen
2018-06-01
Prostate-specific membrane antigen (PSMA), a protein product of the folate hydrolase 1 (FOLH1) gene, is gaining increasing acceptance as a target for positron emission tomography/computer tomography (PET/CT) imaging in patients with several cancer types, including breast cancer. So far, PSMA expression in breast cancer endothelia has not been sufficiently characterized. This study comprised 315 cases of invasive carcinoma of no special type (NST) and lobular breast cancer (median follow-up time 9.0 years). PSMA expression on tumor endothelia was detected by immunohistochemistry. Further, vascular mRNA expression of the FOLH1 gene (PSMA) was investigated in a cohort of patients with invasive breast cancer provided by The Cancer Genome Atlas (TCGA). Sixty percent of breast cancer cases exhibited PSMA-positive endothelia with higher expression rates in tumors of higher grade, NST subtype with Her2-positivity, and lack of hormone receptors. These findings were confirmed on mRNA expression levels. The highest PSMA rates were observed in triple-negative carcinomas (4.5 × higher than in other tumors). Further, a case of a patient with metastatic breast cancer showing PSMA expression in PET/CT imaging and undergoing PSMA radionuclide therapy is discussed in detail. This study provides a rationale for the further development of PSMA-targeted imaging in breast cancer, especially in triple-negative tumors.
Czarny, Matthew J; Babcock, Karlee; Baus, Rebecca M; Manoharan, Herbert; Pitot, Henry C
2007-09-01
Previous studies in our laboratory have shown that one of the earliest events during hepatocarcinogenesis in the albumin SV40 T antigen (Alb SV40 T Ag) transgenic rat is the duplication of chromosome 1q3.7-4.3, a region which contains the imprinted and coordinately regulated genes Igf2 and H19. We have also shown that this duplication is associated with the biallelic expression of the normally monoallelically-expressed H19. These results, however, are seemingly at odds with studies in the mouse that have shown a conservation of fetal regulatory patterns of these two genes in hepatic neoplasms. We therefore aimed in this study to determine the allelic origin of Igf2 expression in hepatocellular carcinomas of the Alb SV40 T Ag transgenic rat. Sprague-Dawley Alb SV40 T Ag transgenic rats and Brown Norway rats were reciprocally mated and the expression of Igf2 in hepatocellular carcinomas of the resulting F(1) transgene-positive female rats was analyzed by Northern blotting and RT-PCR. We determined that Igf2 was expressed exclusively from the paternal allele, which prompted the study (by the same methods) of the allelic origin of H19 in the same hepatocellular carcinomas in order to determine if the two genes remained coordinately regulated. Our results demonstrate fetal-like re-expression of Igf2 and deregulation of H19 in singular hepatocellular carcinomas of the rat. These results imply that another regulatory mechanism other than the generally accepted ICR/CTCF mechanism may play a role in the control of Igf2 and H19 expression. (c) 2007 Wiley-Liss, Inc.
Mota, Rodrigo M; Moreira, João Luiz S; Souza, Marcelo R; Fátima Horta, M; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C
2006-01-01
Background The use of lactic acid bacteria as vehicles to delivery antigens to immunize animals is a promising issue. When genetically modified, these bacteria can induce a specific local and systemic immune response against selected pathogens. Gastric acid and bile salts tolerance, production of antagonistic substances against pathogenic microorganisms, and adhesive ability to gut epithelium are other important characteristics that make these bacteria useful for oral immunization. Results Bacteria isolated on de Man, Rogosa and Sharpe medium (MRS) from different gastrointestinal portions of broiler chicks were evaluated for their resistance to artificial gastric acid and bile salts, production of hydrogen peroxide, and cell surface hydrophobicity. Thirty-eight isolates were first typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR amplicons (PCR-ARDRA). An expression cassette was assembled onto the pCR2.1-Topo vector by cloning the promoter, leader peptide, cell wall anchor and terminator sequences derived from the laminin binding S-layer protein gene of L. crispatus strain F5.7 (lbs gene). A sequence encoding the green fluorescent protein (GFP) was inserted as reporter gene, and an erythromycin resistance gene was added as selective marker. All constructs were able to express GFP in the cloning host E. coli XL1-Blue and different Lactobacillus strains as verified by FACS and laser scanning confocal microscopy. Conclusion Lactobacillus isolated from gastrointestinal tract of broiler chickens and selected for probiotic characteristics can be genetically modified by introducing an expression cassette into the lbs locus. The transformed bacteria expressed on its cell wall surface different fluorescent proteins used as reporters of promoter function. It is possible then that similar bacterial model expressing pathogen antigens can be used as live oral vaccines to immunize broilers against infectious diseases. PMID:16396687
Regulatory Serotype Mutations in TETRAHYMENA PYRIFORMIS, Syngen 1
Doerder, F. P.
1973-01-01
A method utilizing allelic exclusion has been developed to isolate mutants of Tetrahymena pyriformis, syngen 1, in which the normal pattern of expression of mutally exclusive surface antigens is altered. Cells homozygous for the recessive mutant allele R-1r do not express the L, H and T serotypes when grown under conditions appropriate for their expression. Rather, a new immobilization antigen, r, is expressed. Cells homozygous for the recessive mutant allele R-3r also express the r antigen instead of H serotypes, but are normal in their expression of T antigens. Genetic analyses show that R-1 and R-3 are not closely linked, that R-1 is linked to T by 9.3 units, and that R-3 may be loosely linked to the mt locus. Different linkage values were obtained, however, when different inbred laboratory strains were used, suggesting the possible existence of crossover modifying genes. The rates of assortment of R-1R/R-1r and R-3R/R-3r heterozygotes into pure sublines expressing either H or r serotypes are close to the values observed for the differentiation of heterozygotes at other loci. The data confirm the previous observation that genetic coupling relationships are not maintained in macronuclear phenotypes and are consistent with the hypothesis that the macronucleus contains 45 assorting subunits. The assortment of the double heterozygote R-1R/R-1r, R-3R/R-3r at Rf=0.0112 suggests that the units of assortment are not individual genetic loci or chromosome fragments, but that the units may be complete genomes. PMID:17248612
Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong
2010-02-19
Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna wasmore » similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.« less
Gautam, A; Dubey, J P; Saville, W J; Howe, D K
2011-12-29
Sarcocystis neurona is a two-host coccidian parasite whose complex life cycle progresses through multiple developmental stages differing at morphological and molecular levels. The S. neurona merozoite surface is covered by multiple, related glycosylphosphatidylinositol-linked proteins, which are orthologous to the surface antigen (SAG)/SAG1-related sequence (SRS) gene family of Toxoplasma gondii. Expression of the SAG/SRS proteins in T. gondii and another related parasite Neospora caninum is life-cycle stage specific and seems necessary for parasite transmission and persistence of infection. In the present study, the expression of S. neurona merozoite surface antigens (SnSAGs) was evaluated in the sporozoite and bradyzoite stages. Western blot analysis was used to compare SnSAG expression in merozoites versus sporozoites, while immunocytochemistry was performed to examine expression of the SnSAGs in merozoites versus bradyzoites. These analyses revealed that SnSAG2, SnSAG3 and SnSAG4 are expressed in sporozoites, while SnSAG5 was appeared to be downregulated in this life cycle stage. In S. neurona bradyzoites, it was found that SnSAG2, SnSAG3, SnSAG4 and SnSAG5 were either absent or expression was greatly reduced. As shown for T. gondii, stage-specific expression of the SnSAGs may be important for the parasite to progress through its developmental stages and complete its life cycle successfully. Thus, it is possible that the SAG switching mechanism by these parasites could be exploited as a point of intervention. As well, the alterations in surface antigen expression during different life cycle stages may need to be considered when designing prospective approaches for protective vaccination. Copyright © 2011 Elsevier B.V. All rights reserved.
Im, Eung Jun; Bais, Anthony J; Yang, Wen; Ma, Qiangzhong; Guo, Xiuyang; Sepe, Steven M; Junghans, Richard P
2014-01-01
Transduction and expression procedures in gene therapy protocols may optimally transfer more than a single gene to correct a defect and/or transmit new functions to recipient cells or organisms. This may be accomplished by transduction with two (or more) vectors, or, more efficiently, in a single vector. Occasionally, it may be useful to coexpress homologous genes or chimeric proteins with regions of shared homology. Retroviridae include the dominant vector systems for gene transfer (e.g., gamma-retro and lentiviruses) and are capable of such multigene expression. However, these same viruses are known for efficient recombination–deletion when domains are duplicated within the viral genome. This problem can be averted by resorting to two-vector strategies (two-chain two-vector), but at a penalty to cost, convenience, and efficiency. Employing a chimeric antigen receptor system as an example, we confirm that coexpression of two genes with homologous domains in a single gamma-retroviral vector (two-chain single-vector) leads to recombination–deletion between repeated sequences, excising the equivalent of one of the chimeric antigen receptors. Here, we show that a degenerate codon substitution strategy in the two-chain single-vector format efficiently suppressed intravector deletional loss with rescue of balanced gene coexpression by minimizing sequence homology between repeated domains and preserving the final protein sequence. PMID:25419532
Chen, Hang; Li, Li; Fang, Jin
2012-04-01
To construct and express the recombinant ND-1-scFv/SEA, a fusion protein of superantigen (staphylococcal enterotoxinA, SEA) and single-chain variable fragment of monoclonal antibody ND-1 against human clolorectal carcinoma, and to enhance the targeted killing effect of SEA. The expression of the fusion protein was induced in E.coli M15 by IPTG. Ni-NTA resin affinity chromatography was used to separate and purify the expressed product. The specific binding activity of the purified ND-1-scFv/SEA protein was examined by indirect immunofluorescence assay and the targeted-cytotoxicity was determined using MTT assay. The expressing vector of fusion gene ND-1scFv/SEA was constructed successfully. ND-1-scFv/SEA protein retained a high binding affinity to antigen-positive human colorectal cancer cell CCL-187 and had a stronger capability to activate PBMC and kill the target cells compared to SEA alone, with a killing rate of 91% at 4 μg/mL. ND-1-scFv/SEA fusion protein could specifically target colorectal cancer cell, enhance the activity of kill tumor cell and has potential applications in the targeted therapy of colorectal cancer.
Gaymalov, Zagit Z; Yang, Zhihui; Pisarev, Vladimir M; Alakhov, Valery Yu; Kabanov, Alexander V
2009-02-01
DNA vaccines can be greatly improved by polymer agents that simultaneously increase transgene expression and activate immunity. We describe here Pluronic P85 (P85), a triblock copolymer of ethylene oxide (EO) and propylene oxide (PO) EO(26)-PO(40)-EO(26). Using a mouse model we demonstrate that co-administration of a bacterial plasmid DNA with P85 in a skeletal muscle greatly increases gene expression in the injection site and distant organs, especially the draining lymph nodes and spleen. The reporter expression colocalizes with the specific markers of myocytes and keratinocytes in the muscle, as well as dendritic cells (DCs) and macrophages in the muscle, lymph nodes and spleen. Furthermore, DNA/P85 and P85 alone increase the systemic expansion of CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural killer) cell populations. DNA/P85 (but not P85) also increases maturation of local DC (CD11c+ CD86+, CD11c+ CD80 +, and CD11c+ CD40+. We suggest that DNA/P85 promotes the activation and recruitment of the antigen-presenting cells, which further incorporate, express and carry the transgene to the immune system organs.
Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli.
Perelle, S; Gibert, M; Boquet, P; Popoff, M R
1993-12-01
The iota toxin which is produced by Clostridium perfringens type E, is a binary toxin consisting of two independent polypeptides: Ia, which is an ADP-ribosyltransferase, and Ib, which is involved in the binding and internalization of the toxin into the cell. Two degenerate oligonucleotide probes deduced from partial amino acid sequence of each component of C. spiroforme toxin, which is closely related to the iota toxin, were used to clone three overlapping DNA fragments containing the iota-toxin genes from C. perfringens type E plasmid DNA. Two genes, in the same orientation, coding for Ia (387 amino acids) and Ib (875 amino acids) and separated by 243 noncoding nucleotides were identified. A predicted signal peptide was found for each component, and the secreted Ib displays two domains, the propeptide (172 amino acids) and the mature protein (664 amino acids). The Ia gene has been expressed in Escherichia coli and C. perfringens, under the control of its own promoter. The recombinant polypeptide obtained was recognized by Ia antibodies and ADP-ribosylated actin. The expression of the Ib gene was obtained in E. coli harboring a recombinant plasmid encompassing the putative promoter upstream of the Ia gene and the Ia and Ib genes. Two residues which have been found to be involved in the NAD+ binding site of diphtheria and pseudomonas toxins are conserved in the predicted Ia sequence (Glu-14 and Trp-19). The predicted amino acid Ib sequence shows 33.9% identity with and 54.4% similarity to the protective antigen of the anthrax toxin complex. In particular, the central region of Ib, which contains a predicted transmembrane segment (Leu-292 to Ser-308), presents 45% identity with the corresponding protective antigen sequence which is involved in the translocation of the toxin across the cell membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi Fuming; Saha, Abhik; Murakami, Masanao
The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3Cmore » with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF{sup Skp2}, cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53{sup -/-}) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.« less
Munkley, Jennifer; Oltean, Sebastian; Vodák, Daniel; Wilson, Brian T.; Livermore, Karen E.; Zhou, Yan; Star, Eleanor; Floros, Vasileios I.; Johannessen, Bjarne; Knight, Bridget; McCullagh, Paul; McGrath, John; Crundwell, Malcolm; Skotheim, Rolf I.; Robson, Craig N.; Leung, Hing Y.; Harries, Lorna W.; Rajan, Prabhakar; Mills, Ian G.; Elliott, David J.
2015-01-01
Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, being significantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression. PMID:26452038
Papapetrou, Eirini P; Kovalovsky, Damian; Beloeil, Laurent; Sant'angelo, Derek; Sadelain, Michel
2009-01-01
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression by targeting complementary sequences, referred to as miRNA recognition elements (MREs), typically located in the 3' untranslated region of mRNAs. miR-181a is highly expressed in developing thymocytes and markedly downregulated in post-thymic T cells. We investigated whether endogenous miR-181a can be harnessed to segregate expression of chimeric antigen receptors (CARs) and TCRs between developing and mature T cells. Lentiviral-encoded antigen receptors were tagged with a miR-181a-specific MRE and transduced into mouse BM cells that were used to generate hematopoietic chimeras. Expression of a CAR specific for human CD19 (hCD19) was selectively suppressed in late double-negative and double-positive thymocytes, coinciding with the peak in endogenous miR-181a expression. Receptor expression was fully restored in post-thymic resting and activated T cells, affording protection against a subsequent challenge with hCD19+ tumors. Hematopoietic mouse chimeras engrafted with a conalbumin-specific TCR prone to thymic clonal deletion acquired peptide-specific T cell responsiveness only when the vector-encoded TCR transcript was similarly engineered to be subject to regulation by miR-181a. These results demonstrate the potential of miRNA-regulated transgene expression in stem cell-based therapies, including cancer immunotherapy.
B cell receptor editing in tolerance and autoimmunity
Luning Prak, Eline T.; Monestier, Marc; Eisenberg, Robert A.
2010-01-01
Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by “editing” the specificities of their receptors with additional antibody gene rearrangements. Nemazee points out, “receptor editing separates receptor selection from cellular selection.”1 As such, editing complicates the Clonal Selection Hypothesis, because edited cells are not simply endowed for life with a single, invariant antigen receptor.2 For example, an edited B cell changes the specificity of its B cell receptor (BCR), and if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated, and the B cell can exhibit two specificities. Here we will describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire. PMID:21251012
Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan
2006-02-01
Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.
Graves' disease: a host defense mechanism gone awry.
Kohn, L D; Napolitano, G; Singer, D S; Molteni, M; Scorza, R; Shimojo, N; Kohno, Y; Mozes, E; Nakazato, M; Ulianich, L; Chung, H K; Matoba, H; Saunier, B; Suzuki, K; Schuppert, F; Saji, M
2000-01-01
In this report we summarize evidence to support a model for the development of Graves' disease. The model suggests that Graves' disease is initiated by an insult to the thyrocyte in an individual with a normal immune system. The insult, infectious or otherwise, causes double strand DNA or RNA to enter the cytoplasm of the cell. This causes abnormal expression of major histocompatibility (MHC) class I as a dominant feature, but also aberrant expression of MHC class II, as well as changes in genes or gene products needed for the thyrocyte to become an antigen presenting cell (APC). These include increased expression of proteasome processing proteins (LMP2), transporters of antigen peptides (TAP), invariant chain (Ii), HLA-DM, and the co-stimulatory molecule, B7, as well as STAT and NF-kappaB activation. A critical factor in these changes is the loss of normal negative regulation of MHC class I, class II, and thyrotropin receptor (TSHR) gene expression, which is necessary to maintain self-tolerance during the normal changes in gene expression involved in hormonally-increased growth and function of the cell. Self-tolerance to the TSHR is maintained in normals because there is a population of CD8- cells which normally suppresses a population of CD4+ cells that can interact with the TSHR if thyrocytes become APCs. This is a host self-defense mechanism that we hypothesize leads to autoimmune disease in persons, for example, with a specific viral infection, a genetic predisposition, or even, possibly, a TSHR polymorphism. The model is suggested to be important to explain the development of other autoimmune diseases including systemic lupus or diabetes.
Gaji, Rajshekhar Y; Howe, Daniel K
2009-07-01
The apicomplexan parasite Sarcocystis neurona undergoes a complex process of intracellular development, during which many genes are temporally regulated. The described study was undertaken to begin identifying the basic promoter elements that control gene expression in S. neurona. Sequence analysis of the 5'-flanking region of five S. neurona genes revealed a conserved heptanucleotide motif GAGACGC that is similar to the WGAGACG motif described upstream of multiple genes in Toxoplasma gondii. The promoter region for the major surface antigen gene SnSAG1, which contains three heptanucleotide motifs within 135 bases of the transcription start site, was dissected by functional analysis using a dual luciferase reporter assay. These analyses revealed that a minimal promoter fragment containing all three motifs was sufficient to drive reporter molecule expression, with the presence and orientation of the 5'-most heptanucleotide motif being absolutely critical for promoter function. Further studies should help to identify additional sequence elements important for promoter function and for controlling gene expression during intracellular development by this apicomplexan pathogen.
Ray, F A; Peabody, D S; Cooper, J L; Cram, L S; Kraemer, P M
1990-01-01
To define the role of SV40 large T antigen in the transformation and immortalization of human cells, we have constructed a plasmid lacking most of the unique coding sequences of small t antigen as well as the SV40 origin of replication. The promoter for T antigen, which lies within the origin of replication, was deleted and replaced by the Rous sarcoma virus promoter. This minimal construct was co-electroporated into normal human fibroblasts of neonatal origin along with a plasmid containing the neomycin resistance gene (neo). Three G418-resistant, T antigen-positive clones were expanded and compared to three T antigen-positive clones that received the pSV3neo plasmid (capable of expressing large and small T proteins and having two origins of replication). Autonomous replication of plasmid DNA was observed in all three clones that received pSV3neo but not in any of the three origin minus clones. Immediately after clonal expansion, several parameters of neoplastic transformation were assayed. Low percentages of cells in T antigen-positive populations were anchorage independent or capable of forming colonies in 1% fetal bovine serum. The T antigen-positive clones generally exhibited an extended lifespan in culture but rarely became immortalized. Large numbers of dead cells were continually generated in all T antigen-positive, pre-crisis populations. Ninety-nine percent of all T antigen-positive cells had numerical or structural chromosome aberrations. Control cells that received the neo gene did not have an extended life span, did not have noticeable numbers of dead cells, and did not exhibit karyotype instability. We suggest that the role of T antigen protein in the transformation process is to generate genetic hypervariability, leading to various consequences including neoplastic transformation and cell death.
Casal, J I; Rodriguez, M J; Sarraseca, J; Garcia, J; Plana-Duran, J; Sanz, A
1998-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein has been identified as the most immunodominant viral protein. The N protein genes from two PRRSV isolates Olot/91 (European) and Quebec 807/94 (North American) were cloned and expressed in Escherichia coli using the pET3x system. The antigenic structure of the PRRSV N protein was dissected using seven monoclonal antibodies (MAbs) and overlapping fragments of the protein expressed in E.coli. Three antigenic sites were found. Four MAbs recognized two discontinuous epitopes that were present in the partially folded protein or at least a large fragment comprising the first 78 residues, respectively. The other three MAbs revealed the presence of a common antigenic site localized in the central region of the protein (amino acids 50 to 66). This hydrophillic region is well conserved among different isolates of European and North American origin. However, since this epitope is not recognized by many pig sera, it is not adequate for diagnostic purposes. Moreover, none of the N protein fragments were able to mimic the antigenicity of the entire N protein.
Bordetella pertussis risA, but Not risS, Is Required for Maximal Expression of Bvg-Repressed Genes
Stenson, Trevor H.; Allen, Andrew G.; al-Meer, Jehan A.; Maskell, Duncan; Peppler, Mark S.
2005-01-01
Expression of virulence determinants by Bordetella pertussis, the primary etiological agent of whooping cough, is regulated by the BvgAS two-component regulatory system. The role of a second two-component regulatory system, encoded by risAS, in this process is not defined. Here, we show that mutation of B. pertussis risA does not affect Bvg-activated genes or proteins. However, mutation of risA resulted in greatly diminished expression of Bvg-repressed antigens and decreased transcription of Bvg-repressed genes. In contrast, mutation of risS had no effect on the expression of Bvg-regulated molecules. Mutation of risA also resulted in decreased bacterial invasion in a HeLa cell model. However, decreased invasion could not be attributed to the decreased expression of Bvg-repressed products, suggesting that mutation of risA may affect the expression of a variety of genes. Unlike the risAS operons in B. parapertussis and B. bronchiseptica, B. pertussis risS is a pseudogene that encodes a truncated RisS sensor. Deletion of the intact part of the B. pertussis risS gene does not affect the expression of risA-dependent, Bvg-repressed genes. These observations suggest that RisA activation occurs through cross-regulation by a heterologous system. PMID:16113320
Masked Chimeric Antigen Receptor for Tumor-Specific Activation.
Han, Xiaolu; Bryson, Paul D; Zhao, Yifan; Cinay, Gunce E; Li, Si; Guo, Yunfei; Siriwon, Natnaree; Wang, Pin
2017-01-04
Adoptive cellular therapy based on chimeric antigen receptor (CAR)-engineered T (CAR-T) cells is a powerful form of cancer immunotherapy. CAR-T cells can be redirected to specifically recognize tumor-associated antigens (TAAs) and induce high levels of antitumor activity. However, they may also display "on-target off-tumor" toxicities, resulting from low-level expression of TAAs in healthy tissues. These adverse effects have raised considerable safety concerns and limited the clinical application of this otherwise promising therapeutic modality. To minimize such side effects, we have designed an epidermal growth factor receptor (EGFR)-specific masked CAR (mCAR), which consists of a masking peptide that blocks the antigen-binding site and a protease-sensitive linker. Proteases commonly active in the tumor microenvironment can cleave the linker and disengage the masking peptide, thereby enabling CAR-T cells to recognize target antigens only at the tumor site. In vitro mCAR showed dramatically reduced antigen binding and antigen-specific activation in the absence of proteases, but normal levels of binding and activity upon treatment with certain proteases. Masked CAR-T cells also showed antitumor efficacy in vivo comparable to that of unmasked CAR. Our study demonstrates the feasibility of improving the safety profile of conventional CARs and may also inspire future design of CAR molecules targeting broadly expressed TAAs. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freund, R.; Bauer, P.H.; Benjamin, T.L.
1994-11-01
The authors have examined the growth properties of polyomavirus large T-antigen mutants that ar unable to bind pRB, the product of the retinoblastoma tumor suppressor gene. These mutants grow poorly on primary mouse cells yet grow well on NIH 3T3 and other established mouse cell lines. Preinfection of primary baby mouse kidney (BMK) epithelial cells with wild-type simian virus 40 renders these cells permissive to growth of pRB-binding polyomavirus mutants. Conversely, NIH 3T3 cells transfected by and expressing wild-type human pRB become nonpermissive. Primary fibroblasts for mouse embryos that carry a homozygous knockout of the RB gene are permissive, whilemore » those from normal littermates are nonpermissive. The host range of polyomavirus pRB-binding mutants is thus determined by expression or lack of expression of functional pRB by the host. These results demonstrate the importance of pRB binding by large T antigen for productive viral infection in primary cells. Failure of pRB-binding mutants to grow well in BMK cells correlates with their failure to induce progression from G{sub 0} or G{sub 1} through the S phase of the cell cycle. Time course studies show delayed synthesis and lower levels of accumulation of large T antigen, viral DNA, and VP1 in mutant compared with wild-type virus-infected BMK cells. These results support a model in which productive infection by polyomavirus in normal mouse cells is tightly coupled to the induction and progression of the cell cycle. 48 refs., 6 figs., 5 tabs.« less
Lim, Dong-Gyun; Park, Youn-Hee; Kim, Sung-Eun; Jeong, Seong-Hee; Kim, Song-Cheol
2013-08-01
The efficient development of tolerance-inducing therapies and safe reduction of immunosuppression should be supported by early diagnosis and prediction of tolerance in transplantation. Using mouse models of donor-specific tolerance to allogeneic skin and islet grafts we tested whether measurement of tolerance-related gene expression in their alloantigen-reactive peripheral T cell fraction efficiently reflected the tolerance status of recipients. We found that Foxp3, Nrn1, and Klrg1 were preferentially expressed in conditions of tolerance compared with rejection or unmanipulated controls if their expression is measured in CD69(+) T cells prepared from coculture of recipient peripheral T cells and donor antigen-presenting cells. The same pattern of gene expression was observed in recipients grafted with either skin or islets, recipients of different genetic origins, and even those taking immunosuppressive drugs. These findings suggest that the expression of tolerance-related genes in the alloantigen-reactive T cell fraction could be used to detect tolerance in the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.
Van Blarcom, Thomas J.; Sofer-Podesta, Carolina; Ang, John; Boyer, Julie L.; Crystal, Ronald G.; Georgiou, George
2013-01-01
Genetic transfer of neutralizing antibodies has been shown to confer strong and persistent protection against bacterial and viral infectious agents. While it is well established that for many exogenous neutralizing antibodies increased antigen affinity correlates with protection, the effect of antigen affinity on antibodies produced in situ following adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal antibody 2C12.4 recognizes the Yersinia pestis Type III secretion apparatus protein LcrV (V antigen) and confers protection in mice when administered as an IgG intraperitoneally or, following genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad) 1. 2C12.4 was expressed as a scFv fragment in E. coli and was shown to display a KD=3.5 nM by surface plasmon resonance (SPR) analysis. The 2C12.4 scFv was subjected to random mutagenesis and variants with increased affinity were isolated by flow cytometry using the Anchored Periplasmic Expression (APEx) bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower KD values (H8, KD=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdαV giving rise to AdαV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen antibodies 3 days post-immunization with 109, 1010 or 1011 particle units. Following intranasal challenge with 363 LD50Y. pestis CO92, 54% of the mice immunized with 1010 pu of AdαV.H8 survived at the 14 day end point compared to only 15% survivors for the group immunized with AdαV expressing the lower affinity 2C12.4 (P<0.04, AdαV versus AdαV.H8). These results indicate that affinity maturation of a neutralizing antibody delivered by genetic transfer may confer increased protection not only for Y. pestis challenge but possibly for other pathogens. PMID:20393511
Oppezzo, P; Dighiero, G
2005-01-01
B-CLL cells express CD5 and IgM/IgD and thus have a mantle zone-like phenotype of naive cells, which, in normal conditions express unmutated Ig genes. However, recent studies have shown that 50%-70% of CLL harbour somatic mutations of VH genes, as if they had matured in a lymphoid follicle. Interestingly, the presence or absence of somatic hypermutation (SHM) process is associated with the use of particular VH genes. Particular alleles of the VH1-69 gene and the VH4-39 gene are preferentially expressed in an unmutated form, while VH4-34 or the majority of VH3 family genes frequently contain somatic mutations. The fact that some genes like VH1-69 and VH3-07 recombine this VH segment to particular JH segments and the restricted use of CDR3 sequences by CLLs expressing the VH4-39 gene suggest that the observed differences in BCR structure in B-CLL could result from selection by distinct antigenic epitopes. It is currently unclear whether this putative antigen-driven process could occur prior to leukaemic transformation and/or that the precursors were transformed into leukaemic cells at distinct maturational stages. The mutational profile of Ig genes has been shown to be associated with disease prognosis. These results could favour the idea that CLL could correspond to two different diseases that look alike in morphologic and phenotypic terms. In CLL with mutated Ig genes, the proliferating B cell may have transited through germinal centres, the physiologic site of hypermutation, whereas in CLL with unmutated Ig genes the malignant B cell may derive from a pre-germinal centre naïve B cell. Despite these clinical and molecular differences, recent studies on gene expression profiling of B-CLL cells showed that CLL is characterized by a common gene expression signature that is irrespective of Ig mutational status and differs from other lymphoid cancers and normal lymphoid subpopulations, suggesting that CLL cases share a common mechanism of transformation and/or cell of origin. Activation induced cytidine deaminase (AID) plays a key role in SHM and class switch recombination (CSR). However, the mechanisms accounting for AID action and control of its expression remain unclear. In a recent work we have shown that in contrast to normal circulating B-cells, AID transcripts are expressed constitutively in CLL patients undergoing active CSR, but interestingly this expression occurs predominately in unmutated CLL B-cells. These data favour the view that AID protein may act differentially on CSR and SHM pathways, but the role-played by AID in both processes remains to be elucidated. Recent work indicates that AID is expressed in a small fraction of tumoral cells, which could suggest that this small fraction of cells may correspond to B-CLL cells that would have recently experienced an AID-inducing stimulus occurring in a specific microenvironment.
Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.
Daniell, Henry
2006-10-01
Transgenic plants offer many advantages, including low cost of production (by elimination of fermenters), storage and transportation; heat stability; and absence of human pathogens. When therapeutic proteins are orally delivered, plant cells protect antigens in the stomach through bioencapsulation and eliminate the need for expensive purification and sterile injections, in addition to development of both systemic and mucosal immunity. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multi-gene expression in a single transformation event. Hyper-expression of vaccine antigens against cholera, tetanus, anthrax, plague or canine parvovirus (4-31% of total soluble protein, tsp) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato), as well as the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes, facilitate oral delivery. Hyper-expression of several therapeutic proteins, including human serum albumin (11.1% tsp), somatotropin (7% tsp), interferon-gamma (6% tsp), anti-microbial peptide (21.5% tsp), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitate assembly of complex multi-subunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLa cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Uhlig, Katharina M.; Schülke, Stefan; Scheuplein, Vivian A. M.; Malczyk, Anna H.; Reusch, Johannes; Kugelmann, Stefanie; Muth, Anke; Koch, Vivian; Hutzler, Stefan; Bodmer, Bianca S.; Schambach, Axel; Buchholz, Christian J.; Waibler, Zoe; Scheurer, Stephan
2015-01-01
ABSTRACT To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8+ T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8+ T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8+ T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of cytotoxic immune responses. Since cytotoxic CD8+ T lymphocytes are a mainstay of antitumoral immune responses, PTVs could be engineered for the transfer of specific tumor antigens provoking tailored antitumoral immunity. Therefore, PTVs can be used as safe and efficient alternatives to gene transfer vectors or live attenuated replicating vector platforms, avoiding genotoxicity or general toxicity in highly immunocompromised patients, respectively. Thereby, the potential for easy envelope exchange allows the circumventing of neutralizing antibodies, e.g., during repeated boost immunizations. PMID:26085166
Joseph, Joan; Fernández-Lloris, Raquel; Pezzat, Elías; Saubi, Narcís; Cardona, Pere-Joan; Mothe, Beatriz; Gatell, Josep Maria
2010-01-01
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors. PMID:20617151
Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.
2018-01-01
To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380
Mutations in the S gene region of hepatitis B virus genotype D in Turkish patients.
Ozaslan, Mehmet; Ozaslan, Ersan; Barsgan, Arzu; Koruk, Mehmet
2007-12-01
The S gene region of the hepatitis B virus (HBV) is responsible for the expression of surface antigens and includes the 'a'-determinant region. Thus, mutation(s) in this region would afford HBV variants a distinct survival advantage, permitting the mutant virus to escape from the immune system. The aim of this study was to search for mutations of the S gene region in different patient groups infected with genotype D variants of HBV, and to analyse the biological significance of these mutations. Moreover, we investigated S gene mutation inductance among family members. Forty HBV-DNA-positive patients were determined among 132 hepatitis B surface antigen (HbsAg) carriers by the first stage of seminested PCR. Genotypes and subtypes were established by sequencing of the amplified S gene regions. Variants were compared with original sequences of these serotypes, and mutations were identified. All variants were designated as genotype D and subtype ayw3. Ten kinds of point mutations were identified within the S region. The highest rates of mutation were found in chronic hepatitis patients and their family members. The amino acid mutations 125 (M -> T) and 127 (T -> P) were found on the first loop of 'a'-determinant. The other consequence was mutation inductance in a family member. We found some mutations in the S gene region known to be stable and observed that some of these mutations affected S gene expression.
Yang, Chao; Li, Zhuo; Kang, Wei; Tian, Yu; Yan, Yuzhu; Chen, Wei
2016-10-10
It has been considered that epigenetic modulation can affect a diverse array of cellular activities, in which ten eleven translocation (TET) methylcytosine dioxygenase family members refer to a group of fundamental components involved in catalyzation of 5-hydroxymethylcytosine and modification of gene expression. Even though the function of TET proteins has been gradually revealed, their roles in immune regulation are still largely unknown. Recent studies provided clues that TET2 could regulate several innate immune-related inflammatory mediators in mammals. This study sought to explore the function of TET family members in potential T-helper (Th) cell differentiation involved in adaptive immunity by utilizing a zebrafish model. As shown by results, soluble antigens could induce expression of zebrafish IL-4/13A (i.e. a pivotal Th2-type cytokine essential in Th2 cell differentiation and functions), and further trigger the expression of Th1- and Th2-related genes. It is noteworthy that this response was accompanied by the up-regulation of two TET family members (TET1 and TET3) both in immune organs (spleen and kidney) and cells (peripheral lymphocytes). Knocking-down of TET1 and TET3 will give rise to the decreased responses of IL-4/13A induction against exogenous soluble antigen stimulation, and further restrain the expression of Th2-related genes, which indicates a restrained Th2 cell differentiation. Nonetheless, TET2 did not exhibit effect on the modification of Th1/Th2 related gene expression. Hence, these data showed that TET1 and TET3 might be two significant epigenetic regulators involved in Th2 differentiation through regulation of IL-4/13A expression. This is the first report to show that TET family members play indispensable roles in Th2-type immunity, indicating an epigenetic modulation manner involved in adaptive immune regulations and responses. Copyright © 2016 Elsevier B.V. All rights reserved.
Cancer-testis antigen expression is shared between epithelial ovarian cancer tumors.
Garcia-Soto, Arlene E; Schreiber, Taylor; Strbo, Natasa; Ganjei-Azar, Parvin; Miao, Feng; Koru-Sengul, Tulay; Simpkins, Fiona; Nieves-Neira, Wilberto; Lucci, Joseph; Podack, Eckhard R
2017-06-01
Cancer-testis (CT) antigens have been proposed as potential targets for cancer immunotherapy. Our objective was to evaluate the expression of a panel of CT antigens in epithelial ovarian cancer (EOC) tumor specimens, and to determine if antigen sharing occurs between tumors. RNA was isolated from EOC tumor specimens, EOC cell lines and benign ovarian tissue specimens. Real time-PCR analysis was performed to determine the expression level of 20 CT antigens. A total of 62 EOC specimens, 8 ovarian cancer cell lines and 3 benign ovarian tissues were evaluated for CT antigen expression. The majority of the specimens were: high grade (62%), serous (68%) and advanced stage (74%). 58 (95%) of the EOC tumors analyzed expressed at least one of the CT antigens evaluated. The mean number of CT antigen expressed was 4.5 (0-17). The most frequently expressed CT antigen was MAGE A4 (65%). Antigen sharing analysis showed the following: 9 tumors shared only one antigen with 62% of the evaluated specimens, while 37 tumors shared 4 or more antigens with 82%. 5 tumors expressed over 10 CT antigens, which were shared with 90% of the tumor panel. CT antigens are expressed in 95% of EOC tumor specimens. However, not a single antigen was universally expressed across all samples. The degree of antigen sharing between tumors increased with the total number of antigens expressed. These data suggest a multi-epitope approach for development of immunotherapy for ovarian cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
LINE1 family member is negative regulator of HLA-G expression.
Ikeno, Masashi; Suzuki, Nobutaka; Kamiya, Megumi; Takahashi, Yuji; Kudoh, Jun; Okazaki, Tsuneko
2012-11-01
Class Ia molecules of human leucocyte antigen (HLA-A, -B and -C) are widely expressed and play a central role in the immune system by presenting peptides derived from the lumen of the endoplasmic reticulum. In contrast, class Ib molecules such as HLA-G serve novel functions. The distribution of HLA-G is mostly limited to foetal trophoblastic tissues and some tumour tissues. The mechanism required for the tissue-specific regulation of the HLA-G gene has not been well understood. Here, we investigated the genomic regulation of HLA-G by manipulating one copy of a genomic DNA fragment on a human artificial chromosome. We identified a potential negative regulator of gene expression in a sequence upstream of HLA-G that overlapped with the long interspersed element (LINE1); silencing of HLA-G involved a DNA secondary structure generated in LINE1. The presence of a LINE1 gene silencer may explain the limited expression of HLA-G compared with other class I genes.
Analysis of DNA-chip and antigen-chip data: studies of cancer, stem cells and autoimmune diseases
NASA Astrophysics Data System (ADS)
Domany, Eytan
2005-07-01
Biology has undergone a revolution during the past decade. Deciphering the human genome has opened new horizons, among which the advent of DNA microarrays has been perhaps the most significant. These miniature measuring devices report the levels at which tens of thousands of genes are expressed in a collection of cells of interest (such as tissue from a tumor). I describe here briefly this technology and present an example of how analysis of data obtained from such high throughput experiments provides insights of possible clinical and therapeutic relevance for Acute Lymphoblastic Leukemia. Next, I describe how gene expression data is used to deduce a new design principle, " Just In Case", used by stem cells. Finally I briefly review a different novel technology, of antigen chips, which provide a fingerprint of a subject's immune system and may become a predictive clinical tool. The work reviewed here was done in collaboration with numerous colleagues and students.
Effects of Chicken Interferon Gamma on Newcastle Disease Virus Vaccine Immunogenicity
Cardenas-Garcia, Stivalis; Dunwoody, Robert P.; Marcano, Valerie; Diel, Diego G.; Williams, Robert J.; Gogal, Robert M.; Brown, Corrie C.; Miller, Patti J.; Afonso, Claudio L.
2016-01-01
More effective vaccines are needed to control avian diseases. The use of chicken interferon gamma (chIFNγ) during vaccination is a potentially important but controversial approach that may improve the immune response to antigens. In the present study, three different systems to co-deliver chIFNγ with Newcastle disease virus (NDV) antigens were evaluated for their ability to enhance the avian immune response and their protective capacity upon challenge with virulent NDV. These systems consisted of: 1) a DNA vaccine expressing the Newcastle disease virus fusion (F) protein co-administered with a vector expressing the chIFNγ gene for in ovo and booster vaccination, 2) a recombinant Newcastle disease virus expressing the chIFNγ gene (rZJ1*L/IFNγ) used as a live vaccine delivered in ovo and into juvenile chickens, and 3) the same rZJ1*L/IFNγ virus used as an inactivated vaccine for juvenile chickens. Co-administration of chIFNγ with a DNA vaccine expressing the F protein resulted in higher levels of morbidity and mortality, and higher amounts of virulent virus shed after challenge when compared to the group that did not receive chIFNγ. The live vaccine system co-delivering chIFNγ did not enhanced post-vaccination antibody response, nor improved survival after hatch, when administered in ovo, and did not affect survival after challenge when administered to juvenile chickens. The low dose of the inactivated vaccine co-delivering active chIFNγ induced lower antibody titers than the groups that did not receive the cytokine. The high dose of this vaccine did not increase the antibody titers or antigen-specific memory response, and did not reduce the amount of challenge virus shed or mortality after challenge. In summary, regardless of the delivery system, chIFNγ, when administered simultaneously with the vaccine antigen, did not enhance Newcastle disease virus vaccine immunogenicity. PMID:27409587
Semini, Geo; Hildmann, Annette; Klein, Andreas; Lucka, Lothar; Schön, Margarete; Schön, Michael P; Shmanai, Vadim; Danker, Kerstin
2014-02-01
In cutaneous inflammatory diseases, such as psoriasis, atopic dermatitis and allergic contact dermatitis, skin-infiltrating T lymphocytes and dendritic cells modulate keratinocyte function via the secretion of pro-inflammatory cytokines. Keratinocytes then produce mediators that recruit and activate immune cells and amplify the inflammatory response. These pathophysiological tissue changes are caused by altered gene expression and the proliferation and maturation of dermal and epidermal cells. We recently demonstrated that the glycosidated phospholipid Ino-C2-PAF down-regulates a plethora of gene products associated with innate and acquired immune responses and inflammation in the HaCaT keratinocyte cell line. To further evaluate the influence of Ino-C2-PAF we established an in vitro 2D-model of epidermal inflammation. The induction of inflammation and the impact of Ino-C2-PAF were assessed in this system using a genome-wide microarray analysis. In addition, the expression of selected genes was validated using qRT-PCR and flow cytometry. Treatment of the keratinocytes with a mix of proinflammatory cytokines resulted in transcriptional effects on a variety of genes involved in cutaneous inflammation and immunity, while additional treatment with Ino-C2-PAF counteracted the induction of many of these genes. Remarkably, Ino-C2-PAF suppressed the expression of a group of targets that are implicated in antigen processing and presentation, including MHC molecules. Thus, it is conceivable that Ino-C2-PAF possess therapeutic potential for inflammatory skin disorders, such as psoriasis and allergic contact dermatitis. Copyright © 2013 Elsevier Inc. All rights reserved.
Kinoshita, Shigeru; Kawasaki, Satoshi; Kitazawa, Koji; Shinomiya, Katsuhiko
2012-01-01
Purpose: To report the establishment of a human conjunctival epithelial cell line lacking the functional tumor-associated calcium signal transducer 2 (TACSTD2) gene to be used as an in vitro model of gelatinous drop-like corneal dystrophy (GDLD), a rare disease in which the corneal epithelial barrier function is significantly compromized by the loss of function mutation of the TACSTD2 gene. Methods: A small piece of conjunctival tissue was obtained from a GDLD patient. The conjunctival epithelial cells were enzymatically separated and dissociated from the tissue and immortalized by the lentiviral introduction of the SV40 large T antigen and human telomerase reverse transcriptase (hTERT) genes. Population doubling, protein expression, and transepithelial resistance (TER) analyses were performed to assess the appropriateness of the established cell line as an in vitro model for GDLD. Results: The life span of the established cell line was found to be significantly elongated compared to nontransfected conjunctival epithelial cells. The SV40 large T antigen and hTERT genes were stably expressed in the established cell line. The protein expression level of the tight junction–related proteins was significantly low compared to the immortalized normal conjunctival epithelial cell line. TER of the established cell line was found to be significantly low compared to the immortalized normal conjunctival epithelial cell line. Conclusions: Our conjunctival epithelial cell line was successfully immortalized and well mimicked several features of GDLD corneas. This cell line may be useful for the elucidation of the pathogenesis of GDLD and for the development of novel treatments for GDLD. PMID:23818740
Manry, Jérémy; Nédélec, Yohann; Fava, Vinicius M; Cobat, Aurélie; Orlova, Marianna; Thuc, Nguyen Van; Thai, Vu Hong; Laval, Guillaume; Barreiro, Luis B; Schurr, Erwin
2017-08-01
Leprosy is a human infectious disease caused by Mycobacterium leprae. A strong host genetic contribution to leprosy susceptibility is well established. However, the modulation of the transcriptional response to infection and the mechanism(s) of disease control are poorly understood. To address this gap in knowledge of leprosy pathogenicity, we conducted a genome-wide search for expression quantitative trait loci (eQTL) that are associated with transcript variation before and after stimulation with M. leprae sonicate in whole blood cells. We show that M. leprae antigen stimulation mainly triggered the upregulation of immune related genes and that a substantial proportion of the differential gene expression is genetically controlled. Indeed, using stringent criteria, we identified 318 genes displaying cis-eQTL at an FDR of 0.01, including 66 genes displaying response-eQTL (reQTL), i.e. cis-eQTL that showed significant evidence for interaction with the M. leprae stimulus. Such reQTL correspond to regulatory variations that affect the interaction between human whole blood cells and M. leprae sonicate and, thus, likely between the human host and M. leprae bacilli. We found that reQTL were significantly enriched among binding sites of transcription factors that are activated in response to infection, and that they were enriched among single nucleotide polymorphisms (SNPs) associated with susceptibility to leprosy per se and Type-I Reaction, and seven of them have been targeted by recent positive selection. Our study suggested that natural selection shaped our genomic diversity to face pathogen exposure including M. leprae infection.
Salmonella-based plague vaccines for bioterrorism.
Calhoun, Leona Nicole; Kwon, Young-Min
2006-04-01
Yersinia pestis, the causative agent of plague, is an emerging threat as a means of bioterrorism. Accordingly, the Working Group on Civilian Biodefense, as well as the Centers for Disease Control and Prevention, has specified Y. pestis as a prime candidate for use in bioterrorism. As the threat of bioterrorism increases, so does the need for an effective vaccine against this potential agent. Experts agree that a stable, non-invasive vaccine would be necessary for the rapid large-scale immunization of a population following a bioterrorism attack. Thus far, live Salmonella-based oral vaccines show the most potential for this purpose. When delivered via a mucosal route, Salmonella-based plague vaccines show the ability to protect against the deadly pneumonic form of plague. Also, mass production, distribution, and administration are easier and less costly for attenuated Salmonella-based plague vaccines than for plague vaccines consisting of purified proteins. Most attenuated Salmonella-based plague vaccines have utilized a plasmid-based expression system to deliver plague antigen(s) to the mucosa. However, these systems are frequently associated with plasmid instability, an increased metabolic burden upon the vaccine strain, and highly undesirable antibiotic resistance genes. The future of Salmonella-based plague vaccines seems to lie in the use of chromosomally encoded plague antigens and the use of in vivo inducible promoters to drive their expression. This method of vaccine development has been proven to greatly increase the retention of foreign genes, and also eliminates the need for antibiotic resistance genes within Salmonella-based vaccines.
Lee, John K.; Bangayan, Nathanael J.; Chai, Timothy; Smith, Bryan A.; Pariva, Tiffany E.; Yun, Sangwon; Vashisht, Ajay; Zhang, Qingfu; Park, Jung Wook; Corey, Eva; Huang, Jiaoti; Wohlschlegel, James; Witte, Owen N.
2018-01-01
Prostate cancer is a heterogeneous disease composed of divergent molecular and histologic subtypes, including prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC). While PrAd is the major histology in prostate cancer, NEPC can evolve from PrAd as a mechanism of treatment resistance that involves a transition from an epithelial to a neurosecretory cancer phenotype. Cell surface markers are often associated with specific cell lineages and differentiation states in normal development and cancer. Here, we show that PrAd and NEPC can be broadly discriminated by cell-surface profiles based on the analysis of prostate cancer gene expression datasets. To overcome a dependence on predictions of human cell-surface genes and an assumed correlation between mRNA levels and protein expression, we integrated transcriptomic and cell-surface proteomic data generated from a panel of prostate cancer cell lines to nominate cell-surface markers associated with these cancer subtypes. FXYD3 and CEACAM5 were validated as cell-surface antigens enriched in PrAd and NEPC, respectively. Given the lack of effective treatments for NEPC, CEACAM5 appeared to be a promising target for cell-based immunotherapy. As a proof of concept, engineered chimeric antigen receptor T cells targeting CEACAM5 induced antigen-specific cytotoxicity in NEPC cell lines. Our findings demonstrate that the surfaceomes of PrAd and NEPC reflect unique cancer differentiation states and broadly represent vulnerabilities amenable to therapeutic targeting. PMID:29686080
Zheng, Li; Pang, Wei; Qi, Zanmei; Luo, Enjie; Cui, Liwang; Cao, Yaming
2016-08-08
Transmission-blocking vaccine (TBV) is a promising strategy for interrupting the malaria transmission cycle. Current TBV candidates include both pre- and post-fertilization antigens expressed during sexual development of the malaria parasites. We tested whether a TBV design combining two sexual-stage antigens has better transmission-blocking activity. Using the rodent malaria model Plasmodium yoelii, we pursued a DNA vaccination strategy with genes encoding the gametocyte antigen Pys48/45 and the major ookinete surface protein Pys25. Immunization of mice with DNA constructs expression either Pys48/45 or Pys25 elicited strong antibody responses, which specifically recognized a ~45 and ~25 kDa protein from gametocyte and ookinete lysates, respectively. Immune sera from mice immunized with DNA constructs expressing Pys48/45 and Pys25 individually and in combination displayed evident transmission-blocking activity in in vitro ookinete culture and direct mosquito feeding experiments. With both assays, the Pys25 sera had higher transmission-blocking activity than the Pys48/45 sera. Intriguingly, compared with the immunization with the individual DNA vaccines, immunization with both DNA constructs produced lower antibody responses against individual antigens. The resultant immune sera from the composite vaccination had significantly lower transmission-blocking activity than those from Pys25 DNA immunization group, albeit the activity was substantially higher than that from the Pys48 DNA vaccination group. This result suggested that vaccination with the two DNA constructs did not achieve a synergistic effect, but rather caused interference in inducing antigen-specific antibody responses. This result has important implications for future design of composite vaccines targeting different sexual antigens.
Pontes, E R; Matos, L C; da Silva, E A; Xavier, L S; Diaz, B L; Small, I A; Reis, E M; Verjovski-Almeida, S; Barcinski, M A; Gimba, E R P
2006-10-01
Here we evaluate auto-antibody response against two potential antigenic determinants of genes highly expressed in low Gleason Score prostate cancer (PC) tumor samples, namely FLJ23438 and VAMP3. RT-PCR assays were used to analyze mRNA expression profiles of FLJ23438 and VAMP3 transcripts. The auto-antibody response against FLJ23438 and VAMP3 recombinant proteins was tested by immunoblot assays using PC, benign prostate hyperplasia (BPH), healthy donors (HD), and other human cancers plasma samples. Our data showed that 37% (10/27) and 7.4% (2/27) of PC plasma samples presented auto-antibodies against FLJ23438 and VAMP3, respectively. Only 8.3% (1/12) of BPH plasma samples were reactive for both auto-antibodies, while none (0/12) of HD plasma samples tested were reactive. The prevalence of 37% of positive PC plasma samples for anti-FLJ23438 antibodies suggests that humoral immune response against this antigenic determinant could be a potential serum marker for this cancer. (c) 2006 Wiley-Liss, Inc.
Slaughter, C A; Jeske, D J; Kuziel, W A; Milner, E C; Capra, J D
1984-06-01
One of the antibody families utilized by the A/J mouse in its response to p-azophenylarsonate (Ars) is characterized by the expression of the major anti-arsonate cross-reactive idiotype (CRI) of the A strain. This family has been termed the Ars-A family. A hybridoma antibody (HP 101F11 ) obtained after immunization of an A/J mouse with Ars was identified initially as displaying the CRI, but was subsequently found to bind antigen at a level much lower than most members of the Ars-A family. The results of binding studies suggested that HP 101F11 possesses reduced avidity for antigen. When isolated light and heavy chains were allowed to recombine with the heavy and light chains of a strongly antigen-binding, strongly CRI-positive antibody of the Ars-A family (HP 93G7 ), the low level of antigen binding by HP 101F11 was found to be due to a structurally variant heavy chain. Whereas antibodies of the Ars-A family with normal avidity for antigen had been shown to use the JH2 joining segment gene, amino acid sequence analysis of HP 101F11 revealed that this antibody has a JH segment with a sequence identical to that encoded by a portion of a different JH gene, JH4 . The implication that 101F11 uses the JH4 gene instead of JH2 was supported by the observation that the productively rearranged gene is associated with an Eco R1 restriction fragment 0.95 Kb smaller than the corresponding fragments of Ars-A hybridomas with normal avidity for antigen. The size difference of 0.95 Kb corresponds exactly to the known distance between the JH2 and JH4 genes in BALB/c germline DNA. In addition to the structural differences immediately attributable to the use of JH4 , HP 101F11 has shown an amino acid interchange in the DH segment, and a single amino acid deletion at the DH-JH boundary. These results show that variation among members of the Ars-A family in the DH and/or JH segments provides alternative structural forms of Ars-A antibodies upon which selective processes can operate during the course of an immune response.
Heufelder, A E
2001-01-01
Graves' ophthalmopathy is thought to result from a complex interplay of genetic and environmental factors. Various genes including those coding for HLA may determine a patient's susceptibility to the disease and its severity, but in addition numerous and often unknown environmental factors may determine its course. The orbital immune process is thought to be initiated, on the background of a permissive immunogenetic milieu, by circulating T cells directed against certain antigens on thyroid follicular cells that also recognize antigenic epitopes which are shared by tissues contained in the orbital space. Analysis of variable region genes of T cell antigen receptors in orbital T cells of patients with active Graves' ophthalmopathy has revealed limited variability of TcR V gene usage, suggesting that antigen-driven selection and/or expansion of specific T cells may occur during the early stages of Graves' ophthalmopathy. T cell recruitment into the orbital tissues is facilitated by certain chemokines and cytokines, which attract T cells by stimulating the expression of several adhesion molecules (e.g. ICAM-1, VCAM-1, CD44) in vascular endothelium and connective tissue cells. Adhesion molecules are known to be important for a variety of interactions between immunocompetent cells, preadipocyte fibroblasts and adipocytes. In addition, these molecules play a central role in lymphocyte activation and localization, facilitating antigen recognition, T cell costimulation, and various effector-target cell functions at the inflammatory sites, which result in amplification of the cellular immune process in active Graves' ophthalmopathy. T cells and macrophages populate the orbital space and release a number of cytokines (most likely a Th-1-type spectrum) into the surrounding tissues. Cytokines, oxygen free radicals and fibrogenic growth factors, released both from infiltrating inflammatory and residential cells, act upon orbital preadipocytes in a paracrine and autocrine manner to stimulate adipogenesis, fibroblast proliferation, glycosaminoglycan synthesis, and the expression of immunomodulatory molecules. Smoking, a well-known aggravating factor in Graves' ophthalmopathy, may aggravate tissue hypoxia and exert important immunomodulatory and pro-oxidant effects. Differentiation of orbital preadipocyte fibroblasts into mature adipocytes expressing increased levels of TSHR may also be driven by stimulation with circulating or locally produced cytokines or effectors. TSHR-directed autoantibodies or T cells may thus play a direct role promoting adipogenesis, glycosaminoglycan synthesis and expression of immunomodulatory proteins within the orbits. Once the net effect of these changes has come to increase the volume of the fatty connective tissues within the orbit, then proptosis, extraocular muscle dysfunction, and periorbital congestion will ensue.
1990-07-01
doanrmsialecgtonptcelsvstsrtinrnsoa Partial primary structure of the alpha and beta chains of human tdomn ctmvity nat Nrento 320 ticl levsis.ti tasoa...L. Moretta. and C. MW. Croce. tlon and RNA splicing defects in five cloned j6- thalassaemia genes. 1987. Tp44 molecules Involved In antigen-independent T cell acti- Na t ure 302:59 1.
Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation
Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard
2011-01-01
Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552
Rauta, Pradipta R; Nayak, Bismita; Monteiro, Gabriel A; Mateus, Marília
2017-01-10
The current investigation aimed at designing DNA vaccines against Aeromonas hydrophila infections. The DNA vaccine candidates were designed to express two antigenic outer membrane protein (Aha1) peptides and to be delivered by a nanoparticle-based delivery system. Gene sequences of conserved regions of antigenic Aha1 [aha1(211-381), aha1(211-381)opt, aha1(703-999) and aha1(703-999)opt] were cloned into pVAX-GFP expression vector. The selected DNA vaccine candidates were purified from E. coli DH5α and transfected into Chinese hamster ovary cells. The expression of the antigenic peptides was measured in cells along post-transfection time, through the fluorescence intensity of the reporter GFP. The lipofection efficiency of aha-pVAX-GFP was highest after 24h incubation. Formulated PLGA-chitosan nanoparticle/plasmid DNA complexes were characterized in terms of size, size distribution and zeta potential. Nanocomplexes with average diameters in the range of 150-170nm transfected in a similar fashion into CHO cells confirmed transfection efficiency comparable to that of lipofection. DNA entrapment and further DNase digestion assays demonstrated ability for pDNA protection by the nanoparticles against enzymatic digestion. Copyright © 2016 Elsevier B.V. All rights reserved.
Lopez, G H; Condon, J A; Wilson, B; Martin, J R; Liew, Y-W; Flower, R L; Hyland, C A
2015-01-01
An Australian Caucasian blood donor consistently presented a serology profile for the Duffy blood group as Fy(a+b+) with Fy(a) antigen expression weaker than other examples of Fy(a+b+) red cells. Molecular typing studies were performed to investigate the reason for the observed serology profile. Blood group genotyping was performed using a commercial SNP microarray platform. Sanger sequencing was performed using primer sets to amplify across exons 1 and 2 of the FY gene and using allele-specific primers. The propositus was genotyped as FY*A/B, FY*X heterozygote that predicted the Fy(a+b+(w) ) phenotype. Sequencing identified the 265T and 298A variants on the FY*A allele. This link between FY*A allele and 265T was confirmed by allele-specific PCR. The reduced Fy(a) antigen reactivity is attributed to a FY*A allele-carrying 265T and 298A variants previously defined in combination only with the FY*B allele and associated with weak Fy(b) antigen expression. This novel allele should be considered in genotyping interpretative algorithms for generating a predicted phenotype. © 2014 International Society of Blood Transfusion.
Iwata, Seiko; Wada, Kaoru; Tobita, Satomi; Gotoh, Kensei; Ito, Yoshinori; Demachi-Okamura, Ayako; Shimizu, Norio; Nishiyama, Yukihiro; Kimura, Hiroshi
2010-01-01
Chronic active Epstein-Barr virus (CAEBV) infection is a systemic Epstein-Barr virus (EBV)-positive lymphoproliferative disorder characterized by persistent or recurrent infectious mononucleosis-like symptoms in patients with no known immunodeficiency. The detailed pathogenesis of the disease is unknown and no standard treatment regimen has been developed. EBV gene expression was analysed in peripheral blood samples collected from 24 patients with CAEBV infection. The expression levels of six latent and two lytic EBV genes were quantified by real-time RT-PCR. EBV-encoded small RNA 1 and BamHI-A rightward transcripts were abundantly detected in all patients, and latent membrane protein (LMP) 2 was observed in most patients. EBV nuclear antigen (EBNA) 1 and LMP1 were detected less frequently and were expressed at lower levels. EBNA2 and the two lytic genes were not detected in any of the patients. The pattern of latent gene expression was determined to be latency type II. EBNA1 was detected more frequently and at higher levels in the clinically active patients. Quantifying EBV gene expression is useful in clarifying the pathogenesis of CAEBV infection and may provide information regarding a patient's disease prognosis, as well as possible therapeutic interventions.
Reyes-López, Felipe E; Romeo, Jose S; Vallejos-Vidal, Eva; Reyes-Cerpa, Sebastián; Sandino, Ana M; Tort, Lluis; Mackenzie, Simon; Imarai, Mónica
2015-11-01
This study aims to identify at the expression level the immune-related genes associated with IPN-susceptible and resistant phenotypes in Atlantic salmon full-sibling families. We have analyzed thirty full-sibling families infected by immersion with IPNV and then classified as resistant or susceptible using a multivariate survival analysis based on a gamma-Cox frailty model and the Kaplan-Meier mortality curves. In four families within each group head kidneys were pooled for real-time PCR and one-color salmon-specific oligonucleotide microarray (21K) analysis at day 1 and 5 post-infection. Transcripts involved in innate response (IL-6, IFN-α), antigen presentation (HSP-70, HSP-90, MHC-I), TH1 response (IL-12, IFN-γ, CRFB6), immunosuppression (IL-10, TGF-β1) and leukocyte activation and migration (CCL-19, CD18) showed a differential expression pattern between both phenotypes, except in IL-6. In susceptible families, except for IFN-γ, the expressions dropped to basal values at day 5 post-infection. In resistant families, unlike susceptible families, levels remained high or increased (except for IL-6) at day 5. Transcriptomic analysis showed that both families have a clear differential expression pattern, resulting in a marked down-regulation in immune related genes involved in innate response, complement system, antigen recognition and activation of immune response in IPN-resistant. Down-regulation of genes, mainly related to tissue differentiation and protein degradation metabolism, was also observed in resistant families. We have identified an immune-related gene patterns associated with susceptibility and resistance to IPNV infection of Atlantic salmon. This suggests that a limited immune response is associated with resistant fish phenotype to IPNV challenge while a highly inflammatory but short response is associated with susceptibility. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L
2009-01-01
Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574
Natural Polymorphisms in Tap2 Influence Negative Selection and CD4∶CD8 Lineage Commitment in the Rat
Tuncel, Jonatan; Haag, Sabrina; Yau, Anthony C. Y.; Norin, Ulrika; Baud, Amelie; Lönnblom, Erik; Maratou, Klio; Ytterberg, A. Jimmy; Ekman, Diana; Thordardottir, Soley; Johannesson, Martina; Gillett, Alan; Stridh, Pernilla; Jagodic, Maja; Olsson, Tomas; Fernández-Teruel, Alberto; Zubarev, Roman A.; Mott, Richard; Aitman, Timothy J.; Flint, Jonathan; Holmdahl, Rikard
2014-01-01
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells. PMID:24586191
Amir, Shahzada; Hartvigsen, Karsten; Hansen, Lotte F.; Woelkers, Douglas; Tsimikas, Sotirios; Binder, Christoph J.; Kipps, Thomas J.; Witztum, Joseph L.
2013-01-01
The immunoglobulins expressed by chronic lymphocytic leukemia (CLL) B cells are highly restricted, suggesting they are selected for binding either self or foreign antigen. Of the immunoglobulin heavy-chain variable (IGHV) genes expressed in CLL, IGHV1-69 is the most common, and often is expressed with little or no somatic mutation, and restricted IGHD and IGHJ gene usage. We found that antibodies encoded by one particular IGHV1-69 subset, designated CLL69C, with the HCDR3 encoded by the IGHD3-3 gene in reading frame 2 and IGHJ6, specifically bound to oxidation-specific epitopes (OSE), which are products of enhanced lipid peroxidation and a major target of innate natural antibodies. Specifically, CLL69C bound immunodominant OSE adducts termed MAA (malondialdehyde–acetaldehyde-adducts), which are found on apoptotic cells, inflammatory tissues, and atherosclerotic lesions. It also reacted specifically with MAA-specific peptide mimotopes. Light chain shuffling indicated that non-stochastically paired L chain of IGLV3-9 contributes to the antigen binding of CLL69C. A nearly identical CLL69C Ig heavy chain was identified from an MAA-enriched umbilical cord phage displayed Fab library, and a derived Fab with the same HCDR3 rearrangement displayed identical MAA-binding properties. These data support the concept that OSE (MAA-epitopes), which are ubiquitous products of inflammation, may play a role in clonal selection and expansion of CLL B cells. PMID:23840319
Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis.
Cheng, Jingwei; Park, Donglim Esther; Berrios, Christian; White, Elizabeth A; Arora, Reety; Yoon, Rosa; Branigan, Timothy; Xiao, Tengfei; Westerling, Thomas; Federation, Alexander; Zeid, Rhamy; Strober, Benjamin; Swanson, Selene K; Florens, Laurence; Bradner, James E; Brown, Myles; Howley, Peter M; Padi, Megha; Washburn, Michael P; DeCaprio, James A
2017-10-01
Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits it to the 15-component EP400 histone acetyltransferase and chromatin remodeling complex. We performed a large-scale immunoprecipitation for ST and identified co-precipitating proteins by mass spectrometry. In addition to protein phosphatase 2A (PP2A) subunits, we identified MYCL and its heterodimeric partner MAX plus the EP400 complex. Immunoprecipitation for MAX and EP400 complex components confirmed their association with ST. We determined that the ST-MYCL-EP400 complex binds together to specific gene promoters and activates their expression by integrating chromatin immunoprecipitation with sequencing (ChIP-seq) and RNA-seq. MYCL and EP400 were required for maintenance of cell viability and cooperated with ST to promote gene expression in MCC cell lines. A genome-wide CRISPR-Cas9 screen confirmed the requirement for MYCL and EP400 in MCPyV-positive MCC cell lines. We demonstrate that ST can activate gene expression in a EP400 and MYCL dependent manner and this activity contributes to cellular transformation and generation of induced pluripotent stem cells.
Cardoso, T C; Ferreira, H L; Okamura, L H; Giroto, T P; Oliveira, B R S M; Fabri, C U F; Gameiro, R; Flores, E F
2016-12-01
The present study reports an investigation on the phenotype of inflammatory and immune cells, cytokine and viral gene expression in the brains of cattle naturally infected with bovine herpesvirus 5 (BHV5). Brain sections of 38 affected animals were analysed for the nature and extent of perivascular cuffs in the Virchow-Robin space and parenchyma. Histopathological changes were severe in the olfactory bulbs (Obs), hippocampus, piriform, frontal, temporal and parietal cortices/lobes and were characterized by inflammatory infiltrates in Virchow-Robin spaces. The histopathological changes correlated positively with the distribution of BHV5 antigens (r = 0.947; P < 0.005). Cells of CD3+ phenotype were predominant in areas with severe perivascular cuffs. Viral antigens and genomic viral DNA were detected in the Obs and piriform lobe, simultaneously (r = 0.987; P < 0.005). Similarly, pro-inflammatory cytokine genes INFG, IL2, TNF and LTBR were expressed in the same brain areas (P < 0.005). These results provide important information on the inflammatory and immunological events accompanying BHV5 neurological infections. Our findings provide the first evidence for increased immune activation followed by inflammatory cytokine expression, positively correlated with viral replication in the cranial areas of the brain. Taken together, these results suggest that the host immune response and inflammation play a crucial role in the pathogenesis of acute encephalitis by BHV5 in cattle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khulape, S A; Maity, H K; Pathak, D C; Mohan, C Madhan; Dey, S
2015-09-01
The outer membrane glycoprotein, hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is important for virus infection and subsequent immune response by host, and offers target for development of recombinant antigen-based immunoassays and subunit vaccines. In this study, the expression of HN protein of NDV is attempted in yeast expression system. Yeast offers eukaryotic environment for protein processing and posttranslational modifications like glycosylation, in addition to higher growth rate and easy genetic manipulation. Saccharomyces cerevisiae was found to be better expression system for HN protein than Pichia pastoris as determined by codon usage analysis. The complete coding sequence of HN gene was amplified with the histidine tag, cloned in pESC-URA under GAL10 promotor and transformed in Saccharomyces cerevisiae. The recombinant HN (rHN) protein was characterized by western blot, showing glycosylation heterogeneity as observed with other eukaryotic expression systems. The recombinant protein was purified by affinity column purification. The protein could be further used as subunit vaccine.
MYC-induced nuclear antigen (MINA) and preeclampsia.
Martinez-Fierro, Margarita L; Reyes-Oliva, Edwin A; Cabral-Pacheco, Griselda A; Garza-Veloz, Idalia; Aceves-Medina, Maria C; Luevano, Martha; Barbosa-Cisneros, Olga Y; Galvan-Valencia, Marisol; Yahuaca-Mendoza, Patricia; Delgado-Enciso, Ivan; Zamudio-Osuna, Michelle; Rodriguez-Sanchez, Iram P; Vazquez-Castro, Rosbel; Guerrero-Saucedo, Marycruz
2016-05-01
Inadequate trophoblast invasion and the subsequent inflammatory response have been implicated in preeclampsia (PE) pathogenesis. Because MYC-induced nuclear antigen (MINA) gene expression is involved in cell proliferation and differentiation, inflammatory response modulation, and the unpaired regulation of which is associated with human diseases, we sought to investigate the connection between MINA and PE. The aim of this study was to evaluate the possible relationship between the MINA rs4857304 variant and susceptibility to PE development as well as to estimate placental MINA gene expression and its association with PE. About 242 pregnant women (126 PE cases and 116 controls) were included. MINA genotyping and gene expression were evaluated by quantitative real-time polymerase chain reaction using TaqMan probes. The G/G genotype of the MINA rs4857304 variant was associated with severe PE (p = 0.027, OR = 1.8, 95% CI = 1.8-3.2). Carriers of one G allele of the MINA rs4857304 variant exhibited a 1.7-fold increased risk of severe PE (p = 0.029, 95% CI = 1.1-3.0). MINA was underexpressed in preeclamptic placentas and MINA expression differed between the mild and severe PE groups. Differences in the expression levels of MINA were found among women with the T/T genotype of the rs4857304 polymorphism and carriers of at least one G allele (p = 0.024). PE and its severity are associated with the underexpression of placental MINA, and the G/G genotype of the MINA rs4857304 variant may modify the risk of severe PE among the PE cases evaluated.
Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia
Ghiotto, Fabio; Fais, Franco; Valetto, Angelo; Albesiano, Emilia; Hashimoto, Shiori; Dono, Mariella; Ikematsu, Hideyuki; Allen, Steven L.; Kolitz, Jonathan; Rai, Kanti R.; Nardini, Marco; Tramontano, Anna; Ferrarini, Manlio; Chiorazzi, Nicholas
2004-01-01
Studies of B cell antigen receptors (BCRs) expressed by leukemic lymphocytes from patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that B lymphocytes with some level of BCR structural restriction become transformed. While analyzing rearranged VHDJH and VLJL genes of 25 non–IgM-producing B-CLL cases, we found five IgG+ cases that display strikingly similar BCRs (use of the same H- and L-chain V gene segments with unique, shared heavy chain third complementarity-determining region [HCDR3] and light chain third complementarity-determining region [LCDR3] motifs). These H- and L-chain characteristics were not identified in other B-CLL cases or in normal B lymphocytes whose sequences are available in the public databases. Three-dimensional modeling studies suggest that these BCRs could bind the same antigenic epitope. The structural features of the B-CLL BCRs resemble those of mAb’s reactive with carbohydrate determinants of bacterial capsules or viral coats and with certain autoantigens. These findings suggest that the B lymphocytes that gave rise to these IgG+ B-CLL cells were selected for this unique BCR structure. This selection could have occurred because the precursors of the B-CLL cells were chosen for their antigen-binding capabilities by antigen(s) of restricted nature and structure, or because the precursors derived from a B cell subpopulation with limited BCR heterogeneity, or both. PMID:15057307
Howard, Leigh M; Hoek, Kristen L; Goll, Johannes B; Samir, Parimal; Galassie, Allison; Allos, Tara M; Niu, Xinnan; Gordy, Laura E; Creech, C Buddy; Prasad, Nripesh; Jensen, Travis L; Hill, Heather; Levy, Shawn E; Joyce, Sebastian; Link, Andrew J; Edwards, Kathryn M
2017-01-01
Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18-49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. ClinicalTrials.gov NCT01573312.
Samir, Parimal; Galassie, Allison; Allos, Tara M.; Niu, Xinnan; Gordy, Laura E.; Creech, C. Buddy; Prasad, Nripesh; Jensen, Travis L.; Hill, Heather; Levy, Shawn E.; Joyce, Sebastian; Link, Andrew J.; Edwards, Kathryn M.
2017-01-01
Background Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. Objective and Methods We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18–49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Results Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Conclusions Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. Trial Registration ClinicalTrials.gov NCT01573312 PMID:28099485
Gene Discovery in Bladder Cancer Progression using cDNA Microarrays
Sanchez-Carbayo, Marta; Socci, Nicholas D.; Lozano, Juan Jose; Li, Wentian; Charytonowicz, Elizabeth; Belbin, Thomas J.; Prystowsky, Michael B.; Ortiz, Angel R.; Childs, Geoffrey; Cordon-Cardo, Carlos
2003-01-01
To identify gene expression changes along progression of bladder cancer, we compared the expression profiles of early-stage and advanced bladder tumors using cDNA microarrays containing 17,842 known genes and expressed sequence tags. The application of bootstrapping techniques to hierarchical clustering segregated early-stage and invasive transitional carcinomas into two main clusters. Multidimensional analysis confirmed these clusters and more importantly, it separated carcinoma in situ from papillary superficial lesions and subgroups within early-stage and invasive tumors displaying different overall survival. Additionally, it recognized early-stage tumors showing gene profiles similar to invasive disease. Different techniques including standard t-test, single-gene logistic regression, and support vector machine algorithms were applied to identify relevant genes involved in bladder cancer progression. Cytokeratin 20, neuropilin-2, p21, and p33ING1 were selected among the top ranked molecular targets differentially expressed and validated by immunohistochemistry using tissue microarrays (n = 173). Their expression patterns were significantly associated with pathological stage, tumor grade, and altered retinoblastoma (RB) expression. Moreover, p33ING1 expression levels were significantly associated with overall survival. Analysis of the annotation of the most significant genes revealed the relevance of critical genes and pathways during bladder cancer progression, including the overexpression of oncogenic genes such as DEK in superficial tumors or immune response genes such as Cd86 antigen in invasive disease. Gene profiling successfully classified bladder tumors based on their progression and clinical outcome. The present study has identified molecular biomarkers of potential clinical significance and critical molecular targets associated with bladder cancer progression. PMID:12875971
Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K
2008-01-01
Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration. PMID:18558011
Ilinykh, Philipp A; Lubaki, Ndongala M; Widen, Steven G; Renn, Lynnsey A; Theisen, Terence C; Rabin, Ronald L; Wood, Thomas G; Bukreyev, Alexander
2015-08-01
Ebola virus (EBOV) causes a severe hemorrhagic fever with a deficient immune response, lymphopenia, and lymphocyte apoptosis. Dendritic cells (DC), which trigger the adaptive response, do not mature despite EBOV infection. We recently demonstrated that DC maturation is unblocked by disabling the innate response antagonizing domains (IRADs) in EBOV VP35 and VP24 by the mutations R312A and K142A, respectively. Here we analyzed the effects of VP35 and VP24 with the IRADs disabled on global gene expression in human DC. Human monocyte-derived DC were infected by wild-type (wt) EBOV or EBOVs carrying the mutation in VP35 (EBOV/VP35m), VP24 (EBOV/VP24m), or both (EBOV/VP35m/VP24m). Global gene expression at 8 and 24 h was analyzed by deep sequencing, and the expression of interferon (IFN) subtypes up to 5 days postinfection was analyzed by quantitative reverse transcription-PCR (qRT-PCR). wt EBOV induced a weak global gene expression response, including markers of DC maturation, cytokines, chemokines, chemokine receptors, and multiple IFNs. The VP35 mutation unblocked the expression, resulting in a dramatic increase in expression of these transcripts at 8 and 24 h. Surprisingly, DC infected with EBOV/VP24m expressed lower levels of many of these transcripts at 8 h after infection, compared to wt EBOV. In contrast, at 24 h, expression of the transcripts increased in DC infected with any of the three mutants, compared to wt EBOV. Moreover, sets of genes affected by the two mutations only partially overlapped. Pathway analysis demonstrated that the VP35 mutation unblocked pathways involved in antigen processing and presentation and IFN signaling. These data suggest that EBOV IRADs have profound effects on the host adaptive immune response through massive transcriptional downregulation of DC. This study shows that infection of DC with EBOV, but not its mutant forms with the VP35 IRAD and/or VP24 IRAD disabled, causes a global block in expression of host genes. The temporal effects of mutations disrupting the two IRADs differ, and the lists of affected genes only partially overlap such that VP35 and VP24 IRADs each have profound effects on antigen presentation by exposed DC. The global modulation of DC gene expression and the resulting lack of their maturation represent a major mechanism by which EBOV disables the T cell response and suggests that these suppressive pathways are a therapeutic target that may unleash the T cell responses during EBOV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Gene expression of stem cells at different stages of ontological human development.
Allegra, Adolfo; Altomare, Roberta; Curcio, Patrizia; Santoro, Alessandra; Lo Monte, Attilio I; Mazzola, Sergio; Marino, Angelo
2013-10-01
To compare multipotent mesenchymal stem cells (MSCs) obtained from chorionic villi (CV), amniotic fluid (AF) and placenta, with regard to their phenotype and gene expression, in order to understand if MSCs derived from different extra-embryonic tissues, at different stages of human ontological development, present distinct stemness characteristics. MSCs obtained from 30 samples of CV, 30 of AF and 10 placentas (obtained from elective caesarean sections) were compared. MSCs at second confluence cultures were characterized by immunophenotypic analysis with flow cytometry using FACS CANTO II. The expression of the genes Oct-4 (Octamer-binding transcription factor 4, also known as POU5F1), Sox-2 (SRY box-containing factor 2), Nanog, Rex-1 (Zfp-42) and Pax-6 (Paired Box Protein-6), was analyzed. Real-time quantitative PCR was performed by ABI Prism 7700, after RNA isolation and retro-transcription in cDNA. Statistical analysis was performed using non-parametric test Kruskal-Wallis (XLSTAT 2011) and confirmed by REST software, to estimate fold changes between samples. Each gene was defined differentially expressed if p-value was <0.05. Cells from all samples were negative for haematopoietic antigens CD45, CD34, CD117 and CD33 and positive for the typical MSCs antigens CD13, CD73 and CD90. Nevertheless, MSCs from AF and placentas showed different fluorescence intensity, reflecting the heterogeneity of these tissues. The gene expression of OCT-4, SOX-2, NANOG was not significantly different among the three groups. In AF, REX-1 and PAX-6 showed a higher expression in comparison to CV. MSCs of different extra-embryonic tissues showed no differences in immunophenotype when collected from second confluence cultures. The expression of OCT-4, NANOG and SOX-2 was not significantly different, demonstrating that all fetal sources are suitable for obtaining MSCs. These results open new possibilities for the clinical use of MSCs derived from easily accessible sources, in order to develop new protocols for clinical and experimental research. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Structure and Expression of Genes for Flavivirus Immunogens
1988-02-01
regions, corresponding to amino acid residues 280 to 414 of the E protien , also reacted with 10 monoclonal antibodies (MAbs) generated against antigens... protien sequence. Furthermore, the presentation of these epitopes apparently requires the formation of a disulfide bridge between Cys-304 and Cys-335. 5
Zhou, Hao; Chen, Shun; Yan, Bing; Chen, Hongjun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Jing, Bo; Cheng, Anchun
2016-01-01
Geese, as aquatic birds, are an important natural reservoir of avian influenza virus (AIV). To characterize the innate antiviral immune response against AIV H9N2 strain infection in geese as well as the probable relationship between the expression of immune-related genes and the distribution of viral antigens, we investigated the levels of immune-related gene transcription both in AIV H9N2 strain-infected geese and in vitro. The patterns of viral location and the tissue distribution of CD4- and CD8α-positive cells were concurrently detected by immunohistochemical staining, which revealed respiratory and digestive organs as the primary sites of antigen-positive signals. Average AIV H9N2 viral loads were detected in the feces, Harderian gland (HG), and trachea, where higher copy numbers were detected compared with the rectum. Our results suggested the strong induction of proinflammatory cytokine expression compared with interferons (IFNs). Notably, in most tissues from the AIV H9N2 strain-infected birds, IFNα and IFNγ gene transcripts were differentially expressed. However, inverse changes in IFNα and IFNγ expression after AIV H9N2 strain infection were observed in vitro. Taken together, the results suggest that AIV H9N2 is widely distributed in multiple tissues, efficiently induces inflammatory cytokines in the HG and spleen of goslings and inversely influences type I and II IFN expression both in vivo and in vitro. The findings of this study further our understanding of host defense mechanisms and the pathogenesis of the H9N2 influenza virus in geese.
Murine cell glycolipids customization by modular expression of glycosyltransferases.
Cid, Emili; Yamamoto, Miyako; Buschbeck, Marcus; Yamamoto, Fumiichiro
2013-01-01
Functional analysis of glycolipids has been hampered by their complex nature and combinatorial expression in cells and tissues. We report an efficient and easy method to generate cells with specific glycolipids. In our proof of principle experiments we have demonstrated the customized expression of two relevant glycosphingolipids on murine fibroblasts, stage-specific embryonic antigen 3 (SSEA-3), a marker for stem cells, and Forssman glycolipid, a xenoantigen. Sets of genes encoding glycosyltansferases were transduced by viral infection followed by multi-color cell sorting based on coupled expression of fluorescent proteins.
Isolation and characterization of lymphocyte-like cells from a lamprey
Mayer, Werner E.; Uinuk-ool, Tatiana; Tichy, Herbert; Gartland, Lanier A.; Klein, Jan; Cooper, Max D.
2002-01-01
Lymphocyte-like cells in the intestine of the sea lamprey, Petromyzon marinus, were isolated by flow cytometry under light-scatter conditions used for the purification of mouse intestinal lymphocytes. The purified lamprey cells were morphologically indistinguishable from mammalian lymphocytes. A cDNA library was prepared from the lamprey lymphocyte-like cells, and more than 8,000 randomly selected clones were sequenced. Homology searches comparing these ESTs with sequences deposited in the databases led to the identification of numerous genes homologous to those predominantly or characteristically expressed in mammalian lymphocytes, which included genes controlling lymphopoiesis, intracellular signaling, proliferation, migration, and involvement of lymphocytes in innate immune responses. Genes closely related to those that in gnathostomes control antigen processing and transport of antigenic peptides could be ascertained, although no sequences with significant similarity to MHC, T cell receptor, or Ig genes were found. The data suggest that the evolution of lymphocytes in the lamprey has reached a stage poised for the emergence of adaptive immunity. PMID:12388781
Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo
2015-01-01
Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.
Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko
2015-06-29
Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema.
Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko
2015-01-01
Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema. PMID:26160987
Ifeonu, Olukemi O.; Simon, Raphael; Tennant, Sharon M.; Sheoran, Abhineet S.; Daly, Maria C.; Felix, Victor; Kissinger, Jessica C.; Widmer, Giovanni; Levine, Myron M.; Tzipori, Saul; Silva, Joana C.
2016-01-01
Human cryptosporidiosis, caused primarily by Cryptosporidium hominis and a subset of Cryptosporidium parvum, is a major cause of moderate-to-severe diarrhea in children under 5 years of age in developing countries and can lead to nutritional stunting and death. Cryptosporidiosis is particularly severe and potentially lethal in immunocompromised hosts. Biological and technical challenges have impeded traditional vaccinology approaches to identify novel targets for the development of vaccines against C. hominis, the predominant species associated with human disease. We deemed that the existence of genomic resources for multiple species in the genus, including a much-improved genome assembly and annotation for C. hominis, makes a reverse vaccinology approach feasible. To this end, we sought to generate a searchable online resource, termed C. hominis gene catalog, which registers all C. hominis genes and their properties relevant for the identification and prioritization of candidate vaccine antigens, including physical attributes, properties related to antigenic potential and expression data. Using bioinformatic approaches, we identified ∼400 C. hominis genes containing properties typical of surface-exposed antigens, such as predicted glycosylphosphatidylinositol (GPI)-anchor motifs, multiple transmembrane motifs and/or signal peptides targeting the encoded protein to the secretory pathway. This set can be narrowed further, e.g. by focusing on potential GPI-anchored proteins lacking homologs in the human genome, but with homologs in the other Cryptosporidium species for which genomic data are available, and with low amino acid polymorphism. Additional selection criteria related to recombinant expression and purification include minimizing predicted post-translation modifications and potential disulfide bonds. Forty proteins satisfying these criteria were selected from 3745 proteins in the updated C. hominis annotation. The immunogenic potential of a few of these is currently being tested. Database URL: http://cryptogc.igs.umaryland.edu PMID:28095366
Fotoohi, Maryam; Ghasemi, Nasrin; Mirghanizadeh, Seyed Ali; Vakili, Mahmood; Samadi, Morteza
2016-07-01
Human leukocyte antigen-E (HLA-E)is a non-classical major histocompatibility complex (MHC) class I antigens which expressed on extra villous cytotrophoblast, which interacts with NKG2A, is an inhibitory receptor on natural killer (NK) cells and leading to down regulation of immune response in the maternal-fetal interface and provides maternal immune tolerance of the fetus. This study was designated to investigate the gene frequencies of E0101 and E0103 in HLA-E gene in Iranian women with recurrent spontaneous abortion (RSA). Amplification Refractory Mutation System (ARMS-PCR) technique was carried out to detect polymorphism in exon 3 of the HLA-E gene in women with RSA and controls (n=200). Differences between groups were analyzed by SPSS19 software using (2) test. There was no significant difference in the allele frequencies of the HLA-E polymorphism between RSA and fertile controls but HLA-E 0101/0103 heterozygous genotype was found to be significantly higher in RSA group (p=0.006, OR=1.73), so this genotype might confer susceptibility to RSA. Our results suggest that HLA-E 0101/0103 heterozygous genotype leads to increase of RSA risk. It seems that by genotyping of HLA-E polymorphism, we can predict the risk of RSA in infertile women.
Akatsuka, Yoshiki; Nishida, Tetsuya; Kondo, Eisei; Miyazaki, Mikinori; Taji, Hirohumi; Iida, Hiroatsu; Tsujimura, Kunio; Yazaki, Makoto; Naoe, Tomoki; Morishima, Yasuo; Kodera, Yoshihisa; Kuzushima, Kiyotaka; Takahashi, Toshitada
2003-01-01
We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1. PMID:12771180
Antigen Loss Variants: Catching Hold of Escaping Foes.
Vyas, Maulik; Müller, Rolf; Pogge von Strandmann, Elke
2017-01-01
Since mid-1990s, the field of cancer immunotherapy has seen steady growth and selected immunotherapies are now a routine and preferred therapeutic option of certain malignancies. Both active and passive cancer immunotherapies exploit the fact that tumor cells express specific antigens on the cell surface, thereby mounting an immune response specifically against malignant cells. It is well established that cancer cells typically lose surface antigens following natural or therapy-induced selective pressure and these antigen-loss variants are often the population that causes therapy-resistant relapse. CD19 and CD20 antigen loss in acute lymphocytic leukemia and chronic lymphocytic leukemia, respectively, and lineage switching in leukemia associated with mixed lineage leukemia (MLL) gene rearrangements are well-documented evidences in this regard. Although increasing number of novel immunotherapies are being developed, majority of these do not address the control of antigen loss variants. Here, we review the occurrence of antigen loss variants in leukemia and discuss the therapeutic strategies to tackle the same. We also present an approach of dual-targeting immunoligand effectively retargeting NK cells against antigen loss variants in MLL-associated leukemia. Novel immunotherapies simultaneously targeting more than one tumor antigen certainly hold promise to completely eradicate tumor and prevent therapy-resistant relapses.
Baculovirus expression of the avian paramyxovirus 2 HN gene for diagnostic applications.
Choi, Kang-Seuk; Kye, Soo-Jeong; Kim, Ji-Ye; Seul, Hee-Jeong; Lee, Hee-Soo; Kwon, Hyuk-Moo; Sung, Haan-Woo
2014-03-01
Avian paramyxovirus 2 (APMV-2) infections are associated with respiratory diseases in poultry worldwide. The hemagglutination inhibition (HI) test is a useful tool for surveillance and monitoring of this virus. In this study, full-length hemagglutinin (HN) gene of APMV-2 was chemically synthesized based on its published sequence, cloned and expressed in Spodoptera frugiperda insect cells using recombinant baculoviruses. The biological, antigenic and immunogenic properties of the expressed protein were evaluated to assess its ability to produce diagnostic reagents for HI testing. Recombinant APMV-2 HN protein showed two distinct bands with molecular masses of 64 and 75kDa, which showed hemagglutination (HA) and neuraminidase activities, respectively. The recombinant HN (rHN) protein extracted from infected cells produced high HA titers (2(13) per 25μL). HA activity of the protein was inhibited by APMV-2 antiserum, although there were weak cross reactions with other APMV serotype antisera. The rHN protein induced high titers of APMV-2-specific antibodies in immunized chickens based on the HI test. These results indicated that recombinant APMV-2 HN protein is a useful alternative to the APMV-2 antigen in HI assays. Copyright © 2013 Elsevier B.V. All rights reserved.
Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K
2015-02-01
Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.
de Laurentiis, Annamaria; Gaspari, Marco; Palmieri, Camillo; Falcone, Cristina; Iaccino, Enrico; Fiume, Giuseppe; Massa, Ornella; Masullo, Mariorosario; Tuccillo, Franca Maria; Roveda, Laura; Prati, Ubaldo; Fierro, Olga; Cozzolino, Immacolata; Troncone, Giancarlo; Tassone, Pierfrancesco; Scala, Giuseppe; Quinto, Ileana
2011-01-01
The UN1 monoclonal antibody recognized the UN1 antigen as a heavily sialylated and O-glycosylated protein with the apparent molecular weight of 100–120 kDa; this antigen was peculiarly expressed in fetal tissues and several cancer tissues, including leukemic T cells, breast, and colon carcinomas. However, the lack of primary structure information has limited further investigation on the role of the UN1 antigen in neoplastic transformation. In this study, we have identified the UN1 antigen as CD43, a transmembrane sialoglycoprotein involved in cell adhesion, differentiation, and apoptosis. Indeed, mass spectrometry detected two tryptic peptides of the membrane-purified UN1 antigen that matched the amino acidic sequence of the CD43 intracellular domain. Immunological cross-reactivity, migration pattern in mono- and bi-dimensional electrophoresis, and CD43 gene-dependent expression proved the CD43 identity of the UN1 antigen. Moreover, the monosaccharide GalNAc-O-linked to the CD43 peptide core was identified as an essential component of the UN1 epitope by glycosidase digestion of specific glycan branches. UN1-type CD43 glycoforms were detected in colon, sigmoid colon, and breast carcinomas, whereas undetected in normal tissues from the same patients, confirming the cancer-association of the UN1 epitope. Our results highlight UN1 monoclonal antibody as a suitable tool for cancer immunophenotyping and analysis of CD43 glycosylation in tumorigenesis. PMID:21372249
Yan, Nana; Xu, Kun; Li, Xinyi; Liu, Yuwan; Bai, Yichun; Zhang, Xiaohan; Han, Baoquan; Chen, Zhilong; Zhang, Zhiying
2015-12-01
Oral delivery of DNA vaccines represents a promising vaccinating method for fish. Recombinant yeast has been proved to be a safe carrier for delivering antigen proteins and DNAs to some species in vivo. However, whether recombinant yeast can be used to deliver functional DNAs for vaccination to fish is still unknown. In this study, red crucian carp (Carassius auratus) was orally administrated with recombinant Saccharomyces cerevisiae harboring CMV-EGFP expression cassette. On day 5 post the first vaccination, EGFP expression in the hindgut was detected under fluorescence microscope. To further study whether the delivered gene could induce specific immune responses, the model antigen ovalbumin (OVA) was used as immunogen, and oral administrations were conducted with recombinant S. cerevisiae harboring pCMV-OVA mammalian gene expression cassette as gene delivery or pADH1-OVA yeast gene expression cassette as protein delivery. Each administration was performed with three different doses, and the OVA-specific serum antibody was detected in all the experimental groups by western blotting and enzyme-linked immunosorbent assay (ELISA). ELISA assay also revealed that pCMV-OVA group with lower dose (pCMV-OVA-L) and pADH1-OVA group with moderate dose (pADH1-OVA-M) triggered relatively stronger antibody response than the other two doses. Moreover, the antibody level induced by pCMV-OVA-L group was significantly higher than pADH1-OVA-M group at the same serum dilutions. All the results suggested that recombinant yeast can be used as a potential carrier for oral DNA vaccines and would help to develop more practical strategies to control infectious diseases in aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Townes, Claire L; Ali, Ased; Gross, Naomi; Pal, Deepali; Williamson, Stuart; Heer, Rakesh; Robson, Craig N; Pickard, Robert S; Hall, Judith
2013-10-01
This study investigated whether the increase in serum prostate specific antigen (PSA) typically seen during male urinary tract infection (UTI) is incidental or reflects an innate defence mechanism of the prostate. The protective roles of the whey-acid-motif-4-disulphide core (WFDC) proteins, secretory leukoproteinase inhibitor (SLPI) and WFDC2, in the prostate were also examined. UTI recurrence was assessed retrospectively in men following initial UTI by patient interview. PSA, SLPI, and WFDC2 gene expression were assessed using biopsy samples. LNCaP and DU145 in vitro prostate cell models were utilized to assess the effects of an Escherichia coli challenge on PSA and WFDC gene expression, and bacterial invasion of the prostate epithelium. The effects of PSA on WFDC antimicrobial properties were studied using recombinant peptides and time-kill assays. Men presenting with PSA >4 ng/ml at initial UTI were less likely to have recurrent (r) UTI than those with PSA <4 ng/ml [2/15 (13%) vs. 7/10 (70%), P < 0.01]. Genes encoding PSA, SLPI and WFDC2, were expressed in prostatic epithelium, and the PSA and SLPI proteins co-localized in vivo. Challenging LNCaP (PSA-positive) cells with E. coli increased PSA, SLPI, and WFDC2 gene expression (P < 0.05), and PSA synthesis (P < 0.05), and reduced bacterial invasion. Pre-incubation of DU145 (PSA-negative) cells with PSA also decreased bacterial invasion. In vitro incubation of recombinant SLPI and WFDC2 with PSA resulted in peptide proteolysis and increased E. coli killing. Increased PSA during UTI appears protective against rUTI and in vitro is linked to proteolysis of WFDC proteins supporting enhanced prostate innate defences. Copyright © 2013 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Antigenic variation allows microbial pathogens to evade immune clearance and establish persistent infection. Anaplasma marginale utilizes gene conversion of a repertoire of silent msp2 alleles into a single active expression site to encode unique Msp2 variants. As the genomic complement of msp2 alle...
Biomarkers identified for prostate cancer patients through genome-scale screening.
Wang, Lei-Yun; Cui, Jia-Jia; Zhu, Tao; Shao, Wei-Hua; Zhao, Yi; Wang, Sai; Zhang, Yu-Peng; Wu, Ji-Chu; Zhang, Le
2017-11-03
Prostate cancer is a threat to men and usually occurs in aged males. Though prostate specific antigen level and Gleason score are utilized for evaluation of the prostate cancer in clinic, the biomarkers for this malignancy have not been widely recognized. Furthermore, the outcome varies across individuals receiving comparable treatment regimens and the underlying mechanism is still unclear. We supposed that genetic feature may be responsible for, at least in part, this process and conducted a two-cohort study to compare the genetic difference in tumorous and normal tissues of prostate cancer patients. The Gene Expression Omnibus dataset were used and a total of 41 genes were found significantly differently expressed in tumor tissues as compared with normal prostate tissues. Four genes (SPOCK3, SPON1, PTN and TGFB3) were selected for further evaluation after Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis and clinical association analysis. MIR1908 was also found decreased expression level in prostate cancer whose target genes were found expressing in both prostate tumor and normal tissues. These results indicated that these potential biomarkers deserve attention in prostate cancer patients and the underlying mechanism should be further investigated.
Xu, Bingfang; Copolla, Michael; Herr, John C; Timko, Michael P
2007-01-01
The murine monoclonal antibody (mAB) S19 recognizes an N-linked carbohydrate antigen designated sperm agglutination antigen-1 (SAGA1) located on the membrane protein CD52. This antigen is added to the sperm surface during epididymal maturation. Binding of the S19 mAB to SAGA-1 causes the rapid agglutination of sperm and blocks pre-fertilization events. Previous studies indicated that the S19 mAB may be a potential specific spermicidal agent (termed a spermistatic) capable of replacing current spermicidal products that contain harsh detergents with harmful side effects. The nucleotide sequences encoding the heavy (H) and light (L) chains of the S19 antibody were cloned. A chimeric gene was constructed using the nucleotide sequences encoding the variable regions of both the H and L chains, and this gene (scFv1 9) was expressed in transgenic tobacco (Nicotiana tabacum L.) to produce a recombinant anti-sperm antibody (RASA). Highest levels of RASA expression were observed in BY-2 plant cell suspension cultures and regenerated N. tabacum cv. Xanthi plants transformant in which the RASA coding sequences were expressed under the control of the Cauliflower Mosaic Virus 35S promoter containing a double-enhancer sequence (2X CaMV 35S). Subsequent modifications of the transgene including the addition of a 5'-untranslated sequence from the tobacco etch virus (TEV leader sequence), N-terminal fusion of the coding region with an endoplasmic reticulum targeting signal of patatin (pat) and C-terminal fusion with the endoplasmic reticulum retention signal peptide KDEL showed further enhancement of RASA expression. The plant-expressed RASA formed intrachain disulfide bonds and was primarily soluble in the cytoplasmic fraction of the cells. Introduction of a poly-histidine (6xHIS) tag in the recombinant RASA protein allowed for rapid purification of the recombinant protein using Ni-NTA chromatography. Optimization of scale-up production and purification of this plant-derived recombinant protein should provide large quantities of an inexpensive spermistatic plantibody.
Zimmerman, Shawn M; Dyke, Jeremy S; Jelesijevic, Tomislav P; Michel, Frank; Lafontaine, Eric R; Hogan, Robert J
2017-08-01
Burkholderia mallei , a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo , elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei , including antigen discovery. Copyright © 2017 American Society for Microbiology.
Zimmerman, Shawn M.; Dyke, Jeremy S.; Jelesijevic, Tomislav P.; Michel, Frank; Lafontaine, Eric R.
2017-01-01
ABSTRACT Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei. Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo. Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery. PMID:28507073
In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum.
Lee, H-R; Rhyu, I-C; Kim, H-D; Jun, H-K; Min, B-M; Lee, S-H; Choi, B-K
2011-04-01
Fusobacterium nucleatum plays a pivotal role in dental plaque biofilm formation and is known to be involved in chronic inflammatory systemic disease. However, limited knowledge of F. nucleatum genes expressed in vivo interferes with our understanding of pathogenesis. In this study, we identified F. nucleatum genes induced in vivo using in-vivo-induced antigen technology (IVIAT). Among 30,000 recombinant clones screened, 87 reacted reproducibly with pooled sera from 10 patients with periodontitis. The clones encoded for 32 different proteins, of which 28 could be assigned to their functions, which were categorized in translation, transcription, transport, energy metabolism, cell envelope, cellular process, fatty acid and phospholipid metabolism, transposition, cofactor biosynthesis, amino acid biosynthesis, and DNA replication. Putative virulence factors detected were ABC transporter, butyrate-acetoacetate CoA-transferase, hemin receptor, hemolysin, hemolysin-related protein, LysR family transcriptional regulator, serine protease, and transposase. Analysis of immune responses to the in-vivo-induced (ivi) antigens in five patients demonstrated that most were reactive to these proteins, confirming results with pooled sera. IVIAT-identified F. nucleatum genes in this study may accelerate the elucidation of F. nucleatum-mediated molecular pathogenesis. © 2011 John Wiley & Sons A/S.
Conditional clustering of temporal expression profiles
Wang, Ling; Montano, Monty; Rarick, Matt; Sebastiani, Paola
2008-01-01
Background Many microarray experiments produce temporal profiles in different biological conditions but common cluster techniques are not able to analyze the data conditional on the biological conditions. Results This article presents a novel technique to cluster data from time course microarray experiments performed across several experimental conditions. Our algorithm uses polynomial models to describe the gene expression patterns over time, a full Bayesian approach with proper conjugate priors to make the algorithm invariant to linear transformations, and an iterative procedure to identify genes that have a common temporal expression profile across two or more experimental conditions, and genes that have a unique temporal profile in a specific condition. Conclusion We use simulated data to evaluate the effectiveness of this new algorithm in finding the correct number of clusters and in identifying genes with common and unique profiles. We also use the algorithm to characterize the response of human T cells to stimulations of antigen-receptor signaling gene expression temporal profiles measured in six different biological conditions and we identify common and unique genes. These studies suggest that the methodology proposed here is useful in identifying and distinguishing uniquely stimulated genes from commonly stimulated genes in response to variable stimuli. Software for using this clustering method is available from the project home page. PMID:18334028
Fujiwara, T; Nakano, K; Kawaguchi, M; Ooshima, T; Sobue, S; Kawabata, S; Nakagawa, I; Hamada, S
2001-10-01
Four out of 522 streptococcal isolates from the peripheral blood of patients with bacteremia exhibited typical properties of Streptococcus mutans in terms of sucrose-dependent adhesion, expression of glucosyltransferases, fermentation profiles of sugars, the presence of surface protein antigen, and DNA-DNA hybridization. Two strains were determined as serotype f and e by immunodiffusion, whereas the other two isolates did not react with the specific antiserum to S. mutans serotype c. e. or f of the eight different serotypes of mutans streptococci. The latter two untypable isolates, however, expressed a new antigenic determinant that was different from serotype c/e/f specificity as revealed by immunodiffusion. Analysis of the cell wall polysaccharides revealed very low contents of glucose in the untypable isolates. Furthermore, Southern blot analysis demonstrated that the untypable strains lacked at least one gene corresponding to a glucose-adding enzyme. These results indicate that the serologically untypable nature is due to the loss of glucosidic residue from the serotype-specific polysaccharide antigens of S. mutans.
NASA Astrophysics Data System (ADS)
Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.
1999-02-01
Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.
The genetics of multiple sclerosis: review of current and emerging candidates
Muñoz-Culla, Maider; Irizar, Haritz; Otaegui, David
2013-01-01
Multiple sclerosis (MS) is a complex disease in which environmental, genetic, and epigenetic factors determine the risk of developing the disease. The human leukocyte antigen region is the strongest susceptibility locus linked to MS, but it does not explain the whole heritability of the disease. To find other non-human leukocyte antigen loci associated with the disease, high-throughput genotyping, sequencing, and gene-expression studies have been performed, producing a valuable quantity of information. An overview of the genomic and expression studies is provided in this review, as well as microRNA-expression studies, highlighting the importance of combining all the layers of information in order to elucidate the causes or pathological mechanisms occurring in the disease. Genetics in MS is a promising field that is presumably going to be very productive in the next decade understanding the cross talk between all the factors contributing to the development of MS. PMID:24019748
Palmer, Guy H; Futse, James E; Knowles, Donald P; Brayton, Kelly A
2006-10-01
Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick-borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer-membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon-linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long-term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.
Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M
2006-03-01
Microglia are the resident antigen-presenting cells within the central nervous system (CNS), and they serve immune-like functions in protecting the brain against injury and invading pathogens. By contrast, activated microglia can secrete numerous reactants that damage neurons. The pathogenesis of various neurodegenerative diseases has been associated with microglial activation, but the signaling pathways that program a neuronally protective or destructive phenotype in microglia are not known. To increase the understanding of microglial activation, microarray analysis was used to profile the transcriptome of BV-2 microglial cells after activation. Microglia were activated by lipopolysaccharide, the HIV neurotoxic protein TAT, and dopamine quinone, each of which has been linked to dopamine neuronal damage. We identified 210 of 9882 genes whose expression was differentially regulated by all activators (116 increased and 94 decreased in expression). Gene ontology analysis assigned up-regulated genes to a number of specific biological processes and molecular functions, including immune response, inflammation, and cytokine/chemokine activity. Genes down-regulated in expression contribute to conditions that are permissive of microglial migration, lowered adhesion to matrix, lessened phagocytosis, and reduction in receptors that oppose chemotaxis and inflammation. These results elaborate a broad profile of microglial genes whose expression is altered by conditions associated with both neurodegenerative diseases and microglial activation.
Holman, David H; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U; Luo, Min; Zhang, Jianghui; Porter, Kevin R; Dong, John Y
2007-02-01
Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.
1989-01-01
The structures of Ia molecules expressed by two BALB/c B cell lymphoma lines, A20-1.11 (A20) and 2PK3, were analyzed in an effort to explain the differences in antigen-presenting capacity displayed by these cells. Alloreactive T cell hybridomas specific for I-Ad and antigen- specific, I-Ad-restricted T cells responded well to A20 as the APC. The same alloreactive T cell hybridomas responded weakly or not at all to 2PK3 and the responses of the antigen-specific, I-Ad-restricted T cells were consistently lower to antigen presented by 2PK3 as compared with A20. T cells restricted to I-Ed responded equally well to either A20 or 2PK3 as APC. Additionally 2PK3, but not A20, stimulated a strong syngeneic mixed lymphocyte response. Structural analyses of the Ia antigens revealed that I-A and I-E molecules were expressed by A20, whereas an I-E and a novel I-A-like molecule were expressed by 2PK3. The novel class II molecule was affinity purified from 2PK3 cells using an mAb specific for Ad beta (MK-D6), and this molecule was subsequently shown by an RIA to react with an E alpha-specific mAb (14-4-4S) as well. Chain-specific polyclonal antisera raised against I-A and I-E alpha and beta chains indicated that the 2PK3 "I-A" alpha chain reacted in immunoblot with E alpha-specific and not A alpha-specific antisera, whereas the beta chain reacted with A beta- and not E beta-specific antisera. Peptide map and partial amino acid sequence analyses indicated that the "I-A" molecule expressed by 2PK3 represented a mixed isotype structure resulting from the pairing of Ed alpha with Ad beta. By immunofluorescence staining analysis, 2PK3 did not react with an mAb specific for Ad alpha. 2PK3 was capable of limited antigen presentation through the mixed isotype molecule to I-Ad-restricted OVA-specific T cell hybridomas, although the responses induced were low compared with presentation through I-A on A20. Previous descriptions of the expression of mixed isotype class II molecules in the mouse have resulted primarily from DNA-mediated gene transfer experiments. The results presented indicate that a mixed isotype class II molecule can be expressed naturally. PMID:2647893
Parra, Zuly E; Lillie, Mette; Miller, Robert D
2012-10-01
The specific recognition of antigen by T cells is critical to the generation of adaptive immune responses in vertebrates. T cells recognize antigen using a somatically diversified T-cell receptor (TCR). All jawed vertebrates use four TCR chains called α, β, γ, and δ, which are expressed as either a αβ or γδ heterodimer. Nonplacental mammals (monotremes and marsupials) are unusual in that their genomes encode a fifth TCR chain, called TCRµ, whose function is not known but is also somatically diversified like the conventional chains. The origins of TCRµ are also unclear, although it appears distantly related to TCRδ. Recent analysis of avian and amphibian genomes has provided insight into a model for understanding the evolution of the TCRδ genes in tetrapods that was not evident from humans, mice, or other commonly studied placental (eutherian) mammals. An analysis of the genes encoding the TCRδ chains in the duckbill platypus revealed the presence of a highly divergent variable (V) gene, indistinguishable from immunoglobulin heavy (IgH) chain V genes (VH) and related to V genes used in TCRµ. They are expressed as part of TCRδ repertoire (VHδ) and similar to what has been found in frogs and birds. This, however, is the first time a VHδ has been found in a mammal and provides a critical link in reconstructing the evolutionary history of TCRµ. The current structure of TCRδ and TCRµ genes in tetrapods suggests ancient and possibly recurring translocations of gene segments between the IgH and TCRδ genes, as well as translocations of TCRδ genes out of the TCRα/δ locus early in mammals, creating the TCRµ locus.
Parra, Zuly E.; Lillie, Mette; Miller, Robert D.
2012-01-01
The specific recognition of antigen by T cells is critical to the generation of adaptive immune responses in vertebrates. T cells recognize antigen using a somatically diversified T-cell receptor (TCR). All jawed vertebrates use four TCR chains called α, β, γ, and δ, which are expressed as either a αβ or γδ heterodimer. Nonplacental mammals (monotremes and marsupials) are unusual in that their genomes encode a fifth TCR chain, called TCRµ, whose function is not known but is also somatically diversified like the conventional chains. The origins of TCRµ are also unclear, although it appears distantly related to TCRδ. Recent analysis of avian and amphibian genomes has provided insight into a model for understanding the evolution of the TCRδ genes in tetrapods that was not evident from humans, mice, or other commonly studied placental (eutherian) mammals. An analysis of the genes encoding the TCRδ chains in the duckbill platypus revealed the presence of a highly divergent variable (V) gene, indistinguishable from immunoglobulin heavy (IgH) chain V genes (VH) and related to V genes used in TCRµ. They are expressed as part of TCRδ repertoire (VHδ) and similar to what has been found in frogs and birds. This, however, is the first time a VHδ has been found in a mammal and provides a critical link in reconstructing the evolutionary history of TCRµ. The current structure of TCRδ and TCRµ genes in tetrapods suggests ancient and possibly recurring translocations of gene segments between the IgH and TCRδ genes, as well as translocations of TCRδ genes out of the TCRα/δ locus early in mammals, creating the TCRµ locus. PMID:22593227
Balta, Burhan; Gumus, Hakan; Bayramov, Ruslan; Korkmaz Bayramov, Keziban; Erdogan, Murat; Oztop, Didem Behice; Dogan, Muhammet Ensar; Taheri, Serpil; Dundar, Munis
2018-05-18
Although there are a large number of sequence variants of different genes and copy number variations at various loci identified in autistic disorder (AD) patients, the pathogenesis of AD has not been elucidated completely. Recently, in AD patients, a large number of expression array and transcriptome studies have shown an increase in the expression of genes especially related to innate immune response. Antimicrobial effects of vitamin D and VDR are exerted through Toll-Like-Receptors (TLR) which have an important role in the innate immune response, are expressed by antigen presenting cells and recognize foreign microorganisms. In this study, age and gender matched 30 patients diagnosed with AD and 30 healthy controls were included in the study. Comparatively whole blood VDR gene expression and rs11568820 and rs4516035 SNP profile of the promoter region of the VDR gene were investigated by real time PCR. Whole blood VDR gene expression was significantly higher in the AD group compared to control subjects (p < 0.0001). There were no significant differences among allele and genotype distribution of rs11568820 and rs4516035 polymorphisms between AD patients and controls. The increase of VDR gene expression in patients with AD may be in accordance with an increase in the innate immune response in patients with AD. Furthermore, this study will stimulate new studies in order to clarify the relationship among AD, vitamin D, VDR, and innate immunity.
NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Guohua; Shi Lingfang; Qiu Daoming
2005-05-01
NF45/ILF2 associates with NF90/ILF3 in the nucleus and regulates IL-2 gene transcription at the antigen receptor response element (ARRE)/NF-AT DNA target sequence (P.N. Kao, L. Chen, G. Brock, J. Ng, A.J. Smith, B. Corthesy, J. Biol. Chem. 269 (1994) 20691-20699). NF45 is widely expressed in normal tissues, especially testis, brain, and kidney, with a predominantly nuclear distribution. NF45 mRNA expression is increased in lymphoma and leukemia cell lines. The human and murine NF45 proteins differ only by substitution of valine by isoleucine at amino acid 142. Fluorescence in situ hybridization localized the human NF45 gene to chromosome 1q21.3, and mousemore » NF45 gene to chromosome 3F1. Promoter analysis of 2.5 kB of the murine NF45 gene reveals that significant activation is conferred by factors, possible including NF-Y, that bind to the CCAAT-box sequence. The function of human NF45 in regulating IL-2 gene expression was characterized in Jurkat T-cells stably transfected with plasmids directing expression of NF45 cDNA in sense or antisense orientations. NF45 sense expression increased IL-2 luciferase reporter gene activity 120-fold, and IL-2 protein expression 2-fold compared to control cells. NF45 is a highly conserved, regulated transcriptional activator, and one target gene is IL-2.« less
BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer
Link, Petra A.; Zhang, Wa; Odunsi, Kunle; Karpf, Adam R.
2013-01-01
Cancer germline (CG) genes are normally expressed in germ cells and aberrantly expressed in a variety of cancers; their immunogenicity has led to the widespread development of cancer vaccines targeting these antigens. BORIS/CTCFL is an autosomal CG antigen and promising cancer vaccine target. BORIS is the only known paralog of CTCF, a gene intimately involved in genomic imprinting, chromatin insulation, and nuclear regulation. We have previously shown that BORIS is expressed in epithelial ovarian cancer (EOC) and that its expression coincides with promoter and global DNA hypomethylation. Recently, 23 different BORIS mRNA variants have been described, and have been functionally grouped into six BORIS isoform families (sf1–sf6). In the present study, we have characterized the expression of BORIS isoform families in normal ovary (NO) and EOC, the latter of which were selected to include two groups with widely varying global DNA methylation status. We find selective expression of BORIS isoform families in NO, which becomes altered in EOC, primarily by the activation of BORIS sf1 in EOC. When comparing EOC samples based on methylation status, we find that BORIS sf1 and sf2 isoform families are selectively activated in globally hypomethylated tumors. In contrast, CTCF is downregulated in EOC, and the ratio of BORIS sf1, sf2, and sf6 isoform families as a function of CTCF is elevated in hypomethylated tumors. Finally, the expression of all BORIS isoform families was induced to varying extents by epigenetic modulatory drugs in EOC cell lines, particularly when DNMT and HDAC inhibitors were used in combination. PMID:23390377
Pathogenesis of ophthalmopathy in autoimmune thyroid disease.
Heufelder, A E
2000-01-01
What causes GO is still a mystery, but the disease process results from a complex interplay of genetic and environmental factors. Genes such as those for HLA genes may determine a patient's susceptibility to the disease and its severity, but environmental factors, often unknown, may determine its course. Once established, the chronic inflammatory process within the orbital tissues appears to take on a momentum of its own. Given our current state of knowledge, the following working scheme for the pathogenesis of GO can be proposed (Fig. 1): On the background of a permissive immunogenetic milieu, circulating T cells in patients with GD, directed against certain antigens on thyroid follicular cells, recognize antigenic epitopes that are shared by tissues contained in the orbital space. Of the cell types residing in these tissues, preadipocytes and fibroblasts, most likely act as target and effector cells of the orbital immune process, respectively. This includes preadipocyte fibroblasts present in the perimysium of extraocular muscles, which do not appear to be immunologically different from those located in the orbital connective tissue. Orbital preadipocyte fibroblasts may be stimulated by unknown circulating or locally produced factors to differentiate into mature adipocytes that express increased levels of TSHr. How autoreactive T cells escape deletion and control by the immune system and come to be directed against a self-antigen presented by cells residing in the thyroid gland and extrathyroidal locations, is still unknown. Proliferation and expansion of autoreactive T cell clones may be due to mimicry of a host antigen by a microorganism, but this remains speculative. T cell recruitment into the orbital tissues is facilitated by certain chemokines and cytokines, which help to attract T cells by stimulating the expression of certain adhesion molecules (e.g., ICAM-1, VCAM-1, CD44) in vascular endothelium and connective tissue cells. These adhesion receptors are known to also play an important costimulatory role by activating T cells and facilitating antigen recognition, which amplifies the cellular immune process. Analysis of variable region genes of T cell antigen receptors in orbital T cells of patients with active GO has revealed their restricted TcR V gene usage, suggesting that antigen-driven selection and/or expansion of specific T cells may occur early in the evolution of GO. T cells and macrophages populating the orbital space are known to synthesize and release a [figure: see text] number of cytokines (most likely a Th1-type spectrum) into the surrounding tissue. Cytokines, oxygen free radicals and fibrogenic growth factors, released both from infiltrating inflammatory and residential cells, act upon orbital preadipocytes in a paracrine and autocrine manner to stimulate adipogenesis, fibroblast proliferation, glycosaminoglycan synthesis, and the expression of immunomodulatory molecules. Smoking, a well-known aggravating factor in GO, may aggravate tissue hypoxia and exert important immunomodulatory effects. The long held hypothesis of a thyroid cross-reactive antigen within the orbital tissues has recently gained significant support by an animal model of GO, and by in vitro and ex vivo studies. If confirmed in immunological studies, these data may well explain the localized infiltration of the orbital tissues by autoreactive lymphocytes that share intriguing molecular features with intrathyroidal lymphocytes. Local release of particular cytokines, TSHr-directed antibodies, or other factors might further enhance adipogenesis, glycosaminoglycan synthesis and expression of immunomodulatory proteins within the orbit. Other factors, including inflammatory cytokines, might act as counterbalancing inhibitors of these effects. However, if the net effect of these changes is to increase the volume of the fatty connective tissues within the orbit, then proptosis, extraocular muscle dysfunction, and periorbital congestion will ensue. Whether this hypothetical sequence of events will finally explain the involvement of the orbit in GD is unknown. Future studies will be aimed at identifying factors that might modulate adipogenesis in orbital cells and clarifying the link between adipogenesis and TSHr expression in the orbit. Taken together, a number of important details in the complex pathogenesis of GO have been resolved in recent years, but many challenges are still ahead. Elucidation of the primary antigen and how it is recognized by the immune system will be key issues.
Rees, Robert C; McArdle, Stephanie; Mian, Shahid; Li, Geng; Ahmad, Murrium; Parkinson, Richard; Ali, Selman A
2002-02-01
Disabled infectious single cycle-herpes simplex viruses (DISC-HSV) have been shown to be safe for use in humans and may be considered efficacious as vectors for immunogene therapy in cancer. Preclinical studies show that DISC-HSV is an efficient delivery system for cytokine genes and antigens. DISC-HSV infects a high proportion of cells, resulting in rapid gene expression for at least 72 h. The DISC-HSV-mGM-CSF vector, when inoculated into tumors, induces tumor regression in a high percentage of animals, concomitant with establishing a cytotoxic T-cell response, which is MHC class I restricted and directed against peptides of known tumor antigens. The inherent properties of DISC-HSV makes it a suitable vector for consideration in human immunogene therapy trials.
Molecular characterization of the Fy(a-b-) phenotype in a Polish family.
Karolak, Ewa; Grodecka, Magdalena; Suchanowska, Anna; Klausa, Elżbieta; Bochenek, Stanisława; Majorczyk, Edyta; Czerwiński, Marcin; Waśniowska, Kazimiera
2013-10-01
The Fy(a-b-) phenotype, very rare in Caucasians and defined by the homozygous FY(*)B-33 allele, is associated with the -33T>C mutation in the promoter region of the FY gene. The allele FY(*)X is correlated with weak expression of Fy(b) antigen due to 265C>T and 298G>A mutations in FY(*)B allele. The purpose of this study was molecular characterization of Fy blood group antigens in Fy(a-b-) members of a Polish family. High-resolution melting analysis was performed to detect single nucleotide polymorphisms in amplified fragments of the FY gene. The Fy(a-b-) phenotype in three siblings of the Polish family was caused by the FY(*)X/FY(*)B-33 genotype. Copyright © 2013 Elsevier Ltd. All rights reserved.
Peyvandi, F; Garagiola, I; Palla, R; Marziliano, N; Mannucci, P M
2005-11-01
Polymorphic variants in the gene encoding factor VII (F7) affect the plasma levels of this coagulation protein and modify the clinical phenotype of FVII deficiency in some patients. In this study we report the in vitro functional analysis of a novel polymorphic variant located in the 3' untranslated region of F7: g.11293_11294insAA. To determine whether this variant regulates FVII expression, we initially compared an expression vector containing FVII cDNA with g.11293_11294insAA with the FVII wild-type (WT) construct. The kinetics of mRNA production showed that the insertion decreases the steady-state FVII mRNA levels. To assess whether the insertion influences the phenotype of FVII-deficient patients, we evaluated its effect on the expression of FVII in a patient with severe FVII deficiency (undetectable FVII activity and antigen) carrying two additional homozygous missense variations (p.Arg277Cys and p.Arg353Gln). The two substitutions alone reduced the expression of FVII activity and antigen in vitro, but with the insertion polymorphism in our expression vector the patient's phenotype of undetectable plasma FVII was recapitulated. The insertion polymorphism in the 3' untranslated region of F7 is another modifier of FVII expression that might explain the poor genotype-phenotype correlation in some FVII-deficient patients. Copyright 2005 Wiley-Liss, Inc.
Bartley, Kathryn; Huntley, John F; Wright, Harry W; Nath, Mintu; Nisbet, Alasdair J
2012-05-01
Vaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PF<0·01). In a survival analysis, fitting a proportional hazards model to the time of death of mites, anti-Dg-CatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PF<0·05). Dg-CatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems.
Expression of Immune Genes on Chromosome 6p21.3-22.1 in Schizophrenia
Sinkus, Melissa L.; Adams, Catherine E.; Logel, Judith; Freedman, Robert; Leonard, Sherry
2013-01-01
Schizophrenia is a common mental illness with a large genetic component. Three genome-wide association studies have implicated the major histocompatibility complex gene region on chromosome 6p21.3-22.1 in schizophrenia. In addition, nicotine, which is commonly abused in schizophrenia, affects the expression of central nervous system immune genes. Messenger RNA levels for genes in the 6p21.3-22.1 region were measured in human postmortem hippocampus of 89 subjects. The effects of schizophrenia diagnosis, smoking and systemic inflammatory illness were compared. Cell-specific expression patterns for the class I major histocompatibility complex gene HLA-A were explored utilizing in situ hybridization. Expression of five genes was altered in schizophrenic subjects. Messenger RNA levels for the class I major histocompatibility complex antigen HLA-B were increased in schizophrenic nonsmokers, while levels for smokers were indistinguishable from those of controls. β2 microglobulin, HLA-A and Notch4 were all expressed in a pattern where inflammatory illness was associated with increased expression in controls but not in subjects with schizophrenia. Schizophrenia was also associated with increased expression of Butyrophilin 2A2. HLA-A was expressed in glutamatergic and GABAergic neurons in the dentate gyrus, hilus, and the stratum pyramidale of the CA1-CA4 regions of the hippocampus, but not in astrocytes. In conclusion, the expression of genes from the major histocompatibility complex region of chromosome 6 with likely roles in synaptic development is altered in schizophrenia. There were also significant interactions between schizophrenia diagnosis and both inflammatory illness and smoking. PMID:23395714
Breakthrough in chloroplast genetic engineering of agronomically important crops
Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie
2012-01-01
Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001
Li, Jianzhong; Chen, Linlin; Wu, Hongyuan; Lu, Yiming; Hu, Zhenlin; Lu, Bin; Zhang, Liming; Chai, Yifeng; Zhang, Junping
2015-01-01
Sulfur mustard (SM) is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH), which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA) of Salvia miltiorrhiza and total flavonoids (TFA) of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50) SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (p < 0.05) reversal in SM-induced GSH depletion. Gene expression profiles revealed that treatment with MSTF had a dramatic effect on gene expression changes caused by SM. Treatment with MSTF prevented SM-induced differential expression of 93.8% (973 genes) of 1037 genes. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries. PMID:26501264
Turner, Arthur K; Beavis, Juliet C; Stephens, Jonathan C; Greenwood, Judith; Gewert, Cornelia; Thomas, Nicola; Deary, Alison; Casula, Gabriella; Daley, Alexandra; Kelly, Paul; Randall, Roger; Darsley, Michael J
2006-02-01
Oral delivery of toxin-negative derivatives of enterotoxigenic Escherichia coli (ETEC) that express colonization factor antigens (CFA) with deletions of the aroC, ompC, ompF, and toxin genes may be an effective approach to vaccination against ETEC-associated diarrhea. We describe the creation and characterization of an attenuated CFA/I-expressing ETEC vaccine candidate, ACAM2010, from a virulent isolate in which the heat-stable enterotoxin (ST) and CFA/I genes were closely linked and on the same virulence plasmid as the enteroaggregative E. coli heat-stable toxin (EAST1) gene. A new suicide vector (pJCB12) was constructed and used to delete the ST and EAST1 genes and to introduce defined deletion mutations into the aroC, ompC, and ompF chromosomal genes. A phase I trial, consisting of an open-label dose escalation phase in 18 adult outpatient volunteers followed by a placebo-controlled double-blind phase in an additional 31 volunteers, was conducted. The vaccine was administered in two formulations, fresh culture and frozen suspension. These were both well tolerated, with no evidence of significant adverse events related to vaccination. Immunoglobulin A (IgA) and IgG antibody-secreting cells specific for CFA/I were assayed by ELISPOT. Positive responses (greater than twofold increase) were seen in 27 of 37 (73%) subjects who received the highest dose level of vaccine (nominally 5 x 10(9) CFU). Twenty-nine of these volunteers were secreting culturable vaccine organisms at day 3 following vaccination; five were still positive on day 7, with a single isolation on day 13. This live attenuated bacterial vaccine is safe and immunogenic in healthy adult volunteers.
New York esophageal squamous cell carcinoma-1 and cancer immunotherapy.
Esfandiary, Ali; Ghafouri-Fard, Soudeh
2015-01-01
New York esophageal squamous cell carcinoma 1 (NY-ESO-1) is a known cancer testis gene with exceptional immunogenicity and prevalent expression in many cancer types. These characteristics have made it an appropriate vaccine candidate with the potential application against various malignancies. This article reviews recent knowledge about the NY-ESO-1 biology, function, immunogenicity and expression in cancers as well as and the results of clinical trials with this antigen.
USDA-ARS?s Scientific Manuscript database
A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on specific pathogen free (SPF) birds immunized with 0.2 ...
ISOANTIGENS OF THE H-2 AND Tla LOCI OF THE MOUSE
Boyse, Edward A.; Stockert, Elisabeth; Old, Lloyd J.
1968-01-01
H-2 and TL isoantigens of the mouse are specified by the closely linked genetic loci H-2 and Tla. A. study of their representation on thymocytes was performed in order to reveal any interactions between the determinant genes or their products affecting the synthesis or disposition of these components of the thymocyte surface. The method employed was quantitative absorption of cytotoxic antibody by viable thymocytes. The phenotypic expression of TL antigens was found to reduce the demonstrable amount of certain H-2 antigens to as little as 34% of the quantity demonstrable on TL- thymocytes. A reduction was observed in all three H-2 types tested, (H-2b, H-2a, and H-2k). As antigenic modulation (change of TL phenotype from TL+ to TL-, produced by TL antibody) is known to entail a compensatory increase in H-2(D) antigen, it is concluded that the TL phenotype, rather than the Tla genotype, influences the surface representation of H-2 antigens. The two known TL+ phenotypes of thymocytes (TL.2 and TL.1,2,3) depress H-2 equally. The H-2 specificities affected are those determined by the D end of the E-2 locus, which is adjacent to Tla; antigens of the K end, which is distal to Tla, are not depressed. The reduction of demonstrable H-2 antigen on the thymocytes of TL+ x TL- progeny is half that of thymocytes of TL+ x TL+ progeny and the reduction affects equally the products of both H-2 alleles (cis and trans in relation to Tla), indicating that the mechanism of H-2 reduction by TL is extrachromosomal. Whether it involves diminished synthesis of H-2 or steric masking by TL at the cell membrane is unknown, but in either case the reciprocal relation of TL and H-2(D) antigens implies that they probably occupy adjacent positions on thymocytes and that the gene order, H-2(K): H-2(D):Tla is reflected in cell surface structure. Extrachromosomal interaction, apparently involving control of synthesis, occurs also within the TL system of antigens. Thymocytes of TL.2 x TL.1,2,3 progeny express the full homozygous quantity of antigens TL.1 and TL.3 (but not of TL.2), in contrast to the half-quantity present in thymocytes of TL- x TL.1,2,3 progeny. Another example of interaction is implicit in the finding that thymocytes of TL-1,2,3 x TL.1,2,3 progeny have more TL.2 antigen than thymocytes of TL.2 x TL.2 progeny, but in this instance there is nothing to indicate whether the mechanism is chromosomal or extrachromosomal. Thus the quantitative surface representation of at least some H-2 and TL antigens is influenced by the cellular complement of H-2:Tla genes as a whole. Comparison of H-2 heterozygous thymocytes with H-2 homozygous thymocytes in quantitative absorption tests shows (a) more than the expected 50% of each parental-type H-2 antigen on heterozygous cells, and (b) a greater suppression of H-2 by TL in H-2 heterozygotes in comparison with H-2 homozygotes. Both results may be explained on the basis of differences in the density of H-2 antigenic sites and consequent differences in the efficiency of absorption of H-2 antibody. These considerations may be useful in other contexts, e.g. in estimating the representation of Rh antigens on the red cells of human subjects homozygous and heterozygous for Rh components. PMID:5662018
Tian, C; Bagley, J; Iacomini, J
2006-09-01
Genetic modification of hematopoietic stem cells (HSCs) resulting in a state of molecular chimerism can be used to induce donor-specific tolerance to allografts. However, the requirements for maintaining tolerance in molecular chimeras remain unknown. Here, we examined whether long-term expression of a retrovirally encoded alloantigen in hematopoietic cells is required to maintain donor-specific tolerance in molecular chimeras. To this end, mice were reconstituted with syngeneic bone marrow transduced with retroviruses carrying the gene encoding the allogeneic MHC class I molecule Kb. Following induction of molecular chimerism, mice were depleted of cells expressing Kb by administration of the anti-Kb monoclonal antibody Y-3. Mice that were effectively depleted of cells expressing the retrovirally encoded MHC class I antigen rejected Kb disparate skin allografts. In contrast, control molecular chimeras accepted Kb disparate skin allografts indefinitely. These data suggest maintenance of tolerance in molecular chimeras requires long-term expression of retrovirally transduced alloantigen on the progeny of retrovirally transduced HSCs.
Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes.
McKinsey, T A; Chu, Z; Tedder, T F; Ballard, D W
2000-01-01
The immunoglobulin superfamily member CD83 is expressed on the surface of mature dendritic cells that present processed antigens to T lymphocytes. In addition, T cells acquire CD83 expression following mitogenic stimulation in vitro. Here we report two lines of evidence demonstrating that this inducible lymphocyte response is genetically programmed by transcription factor NF-kappaB and contingent upon proteolytic breakdown of its cytoplasmic inhibitor IkappaBalpha. First, signal-dependent induction of CD83 mRNA expression is blocked in both transformed and primary T cells harboring a degradation-resistant mutant of IkappaBalpha that constitutively represses NF-kappaB. Second, as revealed in gel retardation assays, the IkappaBalpha constitutive repressor prevents the inducible interaction of NF-kappaB with consensus recognition sites identified in the CD83 promoter. Given that IkappaBalpha is functionally coupled to the T-cell antigen receptor, these findings suggest that the downstream transcription unit for CD83 is triggered by NF-kappaB during an adaptive immune response.
Guerra, Susana; López-Fernández, Luis A.; Conde, Raquel; Pascual-Montano, Alberto; Harshman, Keith; Esteban, Mariano
2004-01-01
The potential use of the modified vaccinia virus Ankara (MVA) strain as a live recombinant vector to deliver antigens and elicit protective immune responses against infectious diseases demands a comprehensive understanding of the effect of MVA infection on human host gene expression. We used microarrays containing more than 15,000 human cDNAs to identify gene expression changes in human HeLa cell cultures at 2, 6, and 16 h postinfection. Clustering of the 410 differentially regulated genes identified 11 discrete gene clusters with altered expression patterns after MVA infection. Clusters 1 and 2 (accounting for 16.59% [68 of 410] of the genes) contained 68 transcripts showing a robust induction pattern that was maintained during the course of infection. Changes in cellular gene transcription detected by microarrays after MVA infection were confirmed for selected genes by Northern blot analysis and by real-time reverse transcription-PCR. Upregulated transcripts in clusters 1 and 2 included 20 genes implicated in immune responses, including interleukin 1A (IL-1A), IL-6, IL-7, IL-8, and IL-15 genes. MVA infection also stimulated the expression of NF-κB and components of the NF-κB signal transduction pathway, including p50 and TRAF-interacting protein. A marked increase in the expression of histone family members was also induced during MVA infection. Expression of the Wiskott-Aldrich syndrome family members WAS, WASF1, and the small GTP-binding protein RAC-1, which are involved in actin cytoskeleton reorganization, was enhanced after MVA infection. This study demonstrates that MVA infection triggered the induction of groups of genes, some of which may be involved in host resistance and immune modulation during virus infection. PMID:15140980