Science.gov

Sample records for antigen presentation capability

  1. Germinal center B cells regulate their capability to present antigen by modulation of HLA-DO.

    PubMed

    Glazier, Kim S; Hake, Sandra B; Tobin, Helen M; Chadburn, Amy; Schattner, Elaine J; Denzin, Lisa K

    2002-04-15

    Peptide acquisition by MHC class II molecules is catalyzed by HLA-DM (DM). In B cells, HLA-DO (DO) inhibits or modifies the peptide exchange activity of DM. We show here that DO protein levels are modulated during B cell differentiation. Remarkably, germinal center (GC) B cells, which have low levels of DO relative to naive and memory B cells, are shown to have enhanced antigen presentation capabilities. DM protein levels also were somewhat reduced in GC B cells; however, the ratio of DM to DO in GC B cells was substantially increased, resulting in more free DM in GC B cells. We conclude that modulation of DM and DO in distinct stages of B cell differentiation represents a mechanism by which B cells regulate their capacity to function as antigen-presenting cells. Efficient antigen presentation in GC B cells would promote GC B cell-T cell interactions that are essential for B cells to survive positive selection in the GC.

  2. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability

    SciTech Connect

    Rivera, Julie A.; McGuire, Travis C. . E-mail: mcguiret@vetmed.wsu.edu

    2005-05-10

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV{sub WSU5} infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with {sup 51}Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection.

  3. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ.

    PubMed

    Chesney, J; Bacher, M; Bender, A; Bucala, R

    1997-06-10

    Recent studies have identified a novel population of blood-borne cells, termed fibrocytes, that have a distinct cell surface phenotype (collagen+/CD13(+)/CD34(+)/CD45(+)), rapidly enter sites of tissue injury, and synthesize connective tissue matrix molecules. We found by flow cytometry that purified human fibrocytes express each of the known surface components that are required for antigen presentation, including class II major histocompatability complex molecules (HLA-DP, -DQ, and -DR), the costimulatory molecules CD80 and CD86, and the adhesion molecules CD11a, CD54, and CD58. Human fibrocytes induced antigen-presenting cell-dependent T cell proliferation when cultured with specific antigen and this proliferative activity was significantly higher than that induced by monocytes and nearly as high as that induced by purified dendritic cells. Mouse fibrocytes also were found to express the surface components required for antigen presentation and to function as potent APCs in vitro. Mouse fibrocytes pulsed in vitro with the HIV-proteins p24 or gp120 and delivered to a site of cutaneous injury were found to migrate to proximal lymph nodes and to specifically prime naive T cells. These data suggest that fibrocytes play an early and important role in the initiation of antigen-specific immunity.

  4. Expression of XCR1 Characterizes the Batf3-Dependent Lineage of Dendritic Cells Capable of Antigen Cross-Presentation

    PubMed Central

    Bachem, Annabell; Hartung, Evelyn; Güttler, Steffen; Mora, Ahmed; Zhou, Xuefei; Hegemann, Anika; Plantinga, Maud; Mazzini, Elisa; Stoitzner, Patrizia; Gurka, Stephanie; Henn, Volker; Mages, Hans W.; Kroczek, Richard A.

    2012-01-01

    Cross-presentation of antigen by dendritic cells (DCs) to CD8+ T cells is a fundamentally important mechanism in the defense against pathogens and tumors. Due to the lack of an appropriate lineage marker, cross-presenting DCs in the mouse are provisionally classified as “Batf3-IRF-8-Id2-dependent DCs” or as “CD8+ DCs” in the spleen, and as “CD103+CD11b− DCs” in the periphery. We have now generated a mAb to XCR1, a chemokine receptor which is specifically expressed on CD8+ DCs and a subpopulation of double negative DCs in the spleen. Using this antibody, we have determined that only XCR1+CD8+ (around 80% of CD8+ DCs) and their probable precursors, XCR1+CD8− DCs, efficiently take up cellular material and excel in antigen cross-presentation. In lymph nodes (LNs) and peripheral tissues, XCR1+ DCs largely, but not fully, correspond to CD103+CD11b− DCs. Most importantly, we demonstrate that XCR1+ DCs in the spleen, LNs, and peripheral tissues are dependent on the growth factor Flt3 ligand and are selectively absent in Batf3-deficient animals. These results provide evidence that expression of XCR1 throughout the body defines the Batf3-dependent lineage of DCs with a special capacity to cross-present antigen. XCR1 thus emerges as the first surface marker characterizing a DC lineage in the mouse and potentially also in the human. PMID:22826713

  5. A comparison of the antigen-presenting capabilities of class II MHC-expressing human lung epithelial and endothelial cells.

    PubMed Central

    Cunningham, A C; Zhang, J G; Moy, J V; Ali, S; Kirby, J A

    1997-01-01

    Human lung alveolar epithelial cells constitutively express class II major histocompatibility complex (MHC). Human lung microvascular endothelial and small airway epithelial cells can be induced to express class II MHC by stimulation with the pro-inflammatory cytokine interferon-gamma. The levels of class II MHC on lung epithelial and endothelial cells were comparable to those seen on an Epstein-Barr virus (EBV)-transformed B-cell line. However, the costimulatory molecules B7-1 and B7-2 were not expressed. The ability of the class II MHC expressing human lung parenchymal cells to present alloantigen to CD4+ T lymphocytes was investigated. Freshly isolated human alveolar epithelial cells (type II pneumocytes) and monolayers of interferon-gamma-stimulated small airway epithelial and lung microvascular endothelial cells were co-cultured with allogeneic CD4+ T lymphocytes and proliferation determined by [3H]thymidine incorporation. A clear difference was observed between effects of the epithelial and endothelial cells on CD4+ T-lymphocyte activation. Alveolar and small airway epithelial cells failed to stimulate the proliferation of allogeneic CD4+ T lymphocytes whereas lung microvascular endothelial cells did stimulate proliferation. This difference could not be explained by the levels of class II MHC or the lack of B7-1 and B7-2 solely. Microvascular endothelial cells, and not alveolar or small airway epithelial cells, possess B7-independent costimulatory pathways. PMID:9301537

  6. A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma elicits CD8+ T cells against the wild-type tumor: correlation with antigen presentation capability

    PubMed Central

    1992-01-01

    To be recognized by CD8+ T lymphocytes, target cells must process and present peptide antigens in the context of major histocompatibility complex (MHC) class I molecules. The nonimmunogenic, low class I- expressing, methylcholanthrene (MCA)-induced murine sarcoma cell line, MCA 101, is a poor presenter of endogenously generated viral antigens to specific CD8+ T lymphocytes and cannot be used to generate tumor infiltrating lymphocytes (TIL). Since interferon gamma (IFN-gamma) has been shown to upregulate three sets of molecules important for antigen processing and presentation, we retrovirally transduced wild-type MCA 101 (101.WT) tumor with the mIFN-gamma cDNA to create the 101.NAT cell line. Unlike 101.WT, some clones of retrovirally transduced 101.NAT tumor expressed high levels of class I, and could be used to generate CD8+ TIL. More importantly, these TIL were therapeutic in vivo against established pulmonary metastases from the wild-type tumor. Although not uniformly cytotoxic amongst several separate cultures, these TIL did specifically release cytokines (IFN-gamma and tumor necrosis factor- alpha) in response to 101.WT targets. 101.WT's antigen presentation deficit was also reversed by gene modification with mIFN-gamma cDNA. 101.NAT had a greatly improved capacity to present viral antigens to CD8+ cytotoxic T lymphocytes. These findings show that a nonimmunogenic tumor, incapable of generating a CD8+ T cell immune response, could be gene-modified to generate a therapeutically useful immune response against the wild-type tumor. This strategy may be useful in developing treatments for tumor histologies not thought to be susceptible to T cell-based immunotherapy. PMID:1588273

  7. Antigen presentation by Hodgkin's disease cells.

    PubMed

    Fisher, R I; Cossman, J; Diehl, V; Volkman, D J

    1985-11-01

    The L428 tumor cell line is a long-term tissue culture of Reed-Sternberg cells which was derived from the pleural effusion of a patient with Hodgkin's disease. The L428 cells express all known cell surface antigens, cytochemical staining, and cytologic features of freshly explanted Reed-Sternberg cells. In addition to the previously described HLA-DR cell surface antigens, the L428 cells are now demonstrated to express both DS and SB alloantigens. Thus, the L428 cells express all of the known subclasses of the human immune response genes that are located in the major histocompatibility complex. Furthermore, the L428 cells are capable of presenting soluble antigen to T cells in a genetically restricted fashion. T cell lines were established from normal donors previously immunized with tetanus toxoid. The T cells utilized were incapable of tetanus toxoid-induced proliferation unless antigen-presenting cells were added to the cultures. However, T cells from the two normal donors, which like the L428 cells expressed HLA-DR 5, demonstrated significant proliferative responses when cultured with tetanus toxoid and L428 cells. No proliferative response was observed when the L428 cells were used as antigen-presenting cells for a DR (4,-), DR (2,-) or DR (1,7) T cell line. The tetanus toxoid dose-response curve was similar regardless of whether autologous mononuclear leukocytes or L428 cells were used as antigen-presenting cells. The T cell proliferation induced by soluble antigen was also blocked by anti-HLA-DR antibody. Thus, functionally, Hodgkin's disease may be classified as a tumor of antigen-presenting cells.

  8. Intestinal Antigen-Presenting Cells

    PubMed Central

    Flannigan, Kyle L.; Geem, Duke; Harusato, Akihito; Denning, Timothy L.

    2016-01-01

    The microbiota that populate the mammalian intestine are critical for proper host physiology, yet simultaneously pose a potential danger. Intestinal antigen-presenting cells, namely macrophages and dendritic cells (DCs), are integral components of the mucosal innate immune system that maintain co-existence with the microbiota in face of this constant threat. Intestinal macrophages and DCs integrate signals from the microenvironment to orchestrate innate and adaptive immune responses that ultimately lead to durable tolerance of the microbiota. Tolerance is not a default response, however, because macrophages and DCs remain poised to vigorously respond to pathogens that breach the epithelial barrier. In this review, we summarize the salient features of macrophages and DCs in the healthy and inflamed intestine and discuss how signals from the microbiota can influence their function. PMID:25976247

  9. Viewfoils for environmental capabilities presentation

    SciTech Connect

    1992-04-01

    This document contains information about the environmental applications of aerial surveys. It discusses the accuracy, dependability, history, advantages, and sensitivity of aerial surveys. Also included, are a brief overview of in-situ gamma spectroscopy and samples of aerial surveys. This document contains entirely of an outline and viewfoils for the presentation.

  10. CD1 antigen presentation: how it works.

    PubMed

    Barral, Duarte C; Brenner, Michael B

    2007-12-01

    The classic concept of self-non-self discrimination by the immune system focused on the recognition of fragments from proteins presented by classical MHC molecules. However, the discovery of MHC-class-I-like CD1 antigen-presentation molecules now explains how the immune system also recognizes the abundant and diverse universe of lipid-containing antigens. The CD1 molecules bind and present amphipathic lipid antigens for recognition by T-cell receptors. Here, we outline the recent advances in our understanding of how the processes of CD1 assembly, trafficking, lipid-antigen binding and T-cell activation are achieved and the new insights into how lipid antigens differentially elicit CD1-restricted innate and adaptive T-cell responses.

  11. Antigen-Presenting Cells and Antigen Presentation in Tertiary Lymphoid Organs

    PubMed Central

    Hughes, Catherine E.; Benson, Robert A.; Bedaj, Marija; Maffia, Pasquale

    2016-01-01

    Tertiary lymphoid organs (TLOs) form in territorialized niches of peripheral tissues characterized by the presence of antigens; however, little is known about mechanism(s) of antigen handling by ectopic lymphoid structures. In this mini review, we will discuss the role of antigen-presenting cells and mechanisms of antigen presentation in TLOs, summarizing what is currently known about this facet of the formation and function of these tissues as well as identifying questions yet to be addressed. PMID:27872626

  12. Antigen cross-presentation of immune complexes.

    PubMed

    Platzer, Barbara; Stout, Madeleine; Fiebiger, Edda

    2014-01-01

    The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of interest to physicians, as well as basic scientists, that aim to establish efficient cell-based cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes is a better understanding of the mechanisms that underlie the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The ability of humans DC to perform cross-presentation is of utmost interest, as this cell type is a main target for cell-based immunotherapy in humans. The outcome of a cross-presentation event is guided by the nature of the antigen, the form of antigen uptake, and the subpopulation of DCs that performs presentation. Generally, CD8α(+) DCs are considered to be the most potent cross-presenting DCs. This paradigm, however, only applies to soluble antigens. During adaptive immune responses, immune complexes form when antibodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG) immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation pathway is a well-described route for the induction of strong CD8(+) T cell responses. IgG-mediated cross-presentation is intriguing because it permits the CD8(-) DCs, which are commonly considered to be weak cross-presenters, to efficiently cross-present. Engaging multiple DC subtypes for cross-presentation might be a superior strategy to boost CTL responses in vivo. We here summarize our current understanding of how DCs use IgG-complexed antigens for the efficient induction of CTL responses. Because of its importance for human cell therapy, we also review the recent advances in the characterization of cross-presentation properties of human DC subsets.

  13. Cyclosporine inhibits macrophage-mediated antigen presentation

    SciTech Connect

    Ziegler, H.K.; Palay, D.; Wentworth, P.; Cluff, C.

    1986-03-01

    The influence of cyclosporine on antigen-specific, macrophage-dependent T cell activation was analyzed in vitro. Murine T cell activation by antigens derived from Listeria monocytogenes was monitored by the production of interleukin-2. Pretreatment (2 hrs., 37/sup 0/C) of macrophages with cyclosporine resulted in a population of macrophages with a markedly diminished capacity to support the activation of T lymphocytes. When cyclosporine-pretreated macrophages were added to cultures of antigen and untreated T cells, the dose of cyclosporine which produced 50% inhibition was 1.5 ..mu..g/ml. Appropriate control experiments indicated that cyclosporine was indeed inhibiting at the macrophage level. The addition of interleukin-1 or indomethacin to the cultures did not alter the inhibitory effect of cyclosporine. Under conditions which produced >90% inhibition of antigen presentation, macrophage surface Ia expression was not altered, and the uptake and catabolism of radiolabelled antigen was normal. Thus, cyclosporine inhibits antigen presentation by a mechanism which appears unrelated to changes in Il-1 elaboration, prostaglandin production, Ia expression, or antigen uptake and catabolism.

  14. Antigen Processing and Remodeling of the Endosomal Pathway: Requirements for Antigen Cross-Presentation

    PubMed Central

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation. PMID:22566920

  15. Antigen Presentation by MHC-Dressed Cells

    PubMed Central

    Nakayama, Masafumi

    2015-01-01

    Professional antigen-presenting cells (APCs) such as conventional dendritic cells (DCs) process protein antigens to MHC-bound peptides and then present the peptide–MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI) and/or MHC class II (MHCII) from neighboring cells through a process of cell–cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide–MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC. PMID:25601867

  16. Effect of present technology on airship capabilities

    NASA Technical Reports Server (NTRS)

    Madden, R. T.

    1975-01-01

    The effect is presented of updating past airship designs using current materials and propulsion systems to determine new airship performance and productivity capabilities. New materials and power plants permit reductions in the empty weights and increases in the useful load capabilities of past airship designs. The increased useful load capability results in increased productivity for a given range, i.e., either increased payload at the same operating speed or increased operating speed for the same payload weight or combinations of both. Estimated investment costs and operating costs are presented to indicate the significant cost parameters in estimating transportation costs of payloads in cents per ton mile. Investment costs are presented considering production lots of 1, 10 and 100 units. Operating costs are presented considering flight speeds and ranges.

  17. Methamphetamine inhibits antigen processing, presentation, and phagocytosis.

    PubMed

    Tallóczy, Zsolt; Martinez, Jose; Joset, Danielle; Ray, Yonaton; Gácser, Attila; Toussi, Sima; Mizushima, Noboru; Nosanchuk, Joshua D; Nosanchuk, Josh; Goldstein, Harris; Loike, John; Sulzer, David; Santambrogio, Laura

    2008-02-08

    Methamphetamine (Meth) is abused by over 35 million people worldwide. Chronic Meth abuse may be particularly devastating in individuals who engage in unprotected sex with multiple partners because it is associated with a 2-fold higher risk for obtaining HIV and associated secondary infections. We report the first specific evidence that Meth at pharmacological concentrations exerts a direct immunosuppressive effect on dendritic cells and macrophages. As a weak base, Meth collapses the pH gradient across acidic organelles, including lysosomes and associated autophagic organelles. This in turn inhibits receptor-mediated phagocytosis of antibody-coated particles, MHC class II antigen processing by the endosomal-lysosomal pathway, and antigen presentation to splenic T cells by dendritic cells. More importantly Meth facilitates intracellular replication and inhibits intracellular killing of Candida albicans and Cryptococcus neoformans, two major AIDS-related pathogens. Meth exerts previously unreported direct immunosuppressive effects that contribute to increased risk of infection and exacerbate AIDS pathology.

  18. Antigen-Presenting Cells in the Skin.

    PubMed

    Kashem, Sakeen W; Haniffa, Muzlifah; Kaplan, Daniel H

    2017-02-06

    Professional antigen-presenting cells (APCs) in the skin include dendritic cells, monocytes, and macrophages. They are highly dynamic, with the capacity to enter skin from the peripheral circulation, patrol within tissue, and migrate through lymphatics to draining lymph nodes. Skin APCs are endowed with antigen sensing, processing, and presenting machinery and play key roles in initiating, modulating, and resolving cutaneous inflammation. Skin APCs are a highly heterogeneous population with functionally specialized subsets that are developmentally imprinted and modulated by local tissue microenvironmental and inflammatory cues. This review explores recent advances that have allowed for a more accurate taxonomy of APC subsets found in both mouse and human skin. It also examines the functional specificity of individual APC subsets and their collaboration with other immune cell types that together promote adaptive T cell and regional cutaneous immune responses during homeostasis, inflammation, and disease. Expected final online publication date for the Annual Review of Immunology Volume 35 is April 26, 2017 . Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  19. Antigen Export Reduces Antigen Presentation and Limits T Cell Control of M. tuberculosis.

    PubMed

    Srivastava, Smita; Grace, Patricia S; Ernst, Joel D

    2016-01-13

    Persistence of Mycobacterium tuberculosis results from bacterial strategies that manipulate host adaptive immune responses. Infected dendritic cells (DCs) transport M. tuberculosis to local lymph nodes but activate CD4 T cells poorly, suggesting bacterial manipulation of antigen presentation. However, M. tuberculosis antigens are also exported from infected DCs and taken up and presented by uninfected DCs, possibly overcoming this blockade of antigen presentation by infected cells. Here we show that the first stage of this antigen transfer, antigen export, benefits M. tuberculosis by diverting bacterial proteins from the antigen presentation pathway. Kinesin-2 is required for antigen export and depletion of this microtubule-based motor increases activation of antigen-specific CD4 T cells by infected cells and improves control of intracellular infection. Thus, although antigen transfer enables presentation by bystander cells, it does not compensate for reduced antigen presentation by infected cells and represents a bacterial strategy for CD4 T cell evasion.

  20. Instrument Pointing Capabilities: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars; Murray, Emmanuell; Scharf, Daniel P.; Aung, Mimi; Bayard, David; Brugarolas, Paul; Hadaegh, Fred; Lee, Allan; Milman, Mark; Sirlin, Sam; Kang, Bryan

    2011-01-01

    This paper surveys the instrument pointing capabilities of past, present and future space telescopes and interferometers. As an important aspect of this survey, we present a taxonomy for "apples-to-apples" comparisons of pointing performances. First, pointing errors are defined relative to either an inertial frame or a celestial target. Pointing error can then be further sub-divided into DC, that is, steady state, and AC components. We refer to the magnitude of the DC error relative to the inertial frame as absolute pointing accuracy, and we refer to the magnitude of the DC error relative to a celestial target as relative pointing accuracy. The magnitude of the AC error is referred to as pointing stability. While an AC/DC partition is not new, we leverage previous work by some of the authors to quantitatively clarify and compare varying definitions of jitter and time window averages. With this taxonomy and for sixteen past, present, and future missions, pointing accuracies and stabilities, both required and achieved, are presented. In addition, we describe the attitude control technologies used to and, for future missions, planned to achieve these pointing performances.

  1. From the antigen-presenting cell to the antigen-presenting vesicle: the exosomes.

    PubMed

    Schartz, Noël Emile Célestin; Chaput, Nathalie; André, Fabrice; Zitvogel, Laurence

    2002-08-01

    Exosomes are membrane vesicles of 30 to 100 nm in diameter, of endocytic origin, and are produced and secreted in vitro by living cells of diverse origin. In vivo and in vitro experiments suggest, from their particular proteomic composition, that exosomes are involved in the transfer of tumor antigens to antigen presenting cells, and in the stimulation of a specific immune response. In this review, we provide a molecular characterization of exosomes. The hypotheses accounting for exosome biogenesis will be outlined. Finally, we will describe their bioactivities and discuss their potential relevance and clinical implementation for cancer immunotherapy.

  2. Isolation and In vivo Transfer of Antigen Presenting Cells

    PubMed Central

    Arora, Pooja; Kharkwal, Shalu Sharma; Porcelli, Steven A.

    2016-01-01

    Transfer of antigen presenting cells in vivo is a method used by immunologists to examine the potency of antigen presentation by a selected population of cells. This method is most commonly used to analyze presentation of protein antigens to MHC class I or II restricted T cells, but it can also be used for studies of nonconventional antigens such as CD1-presented lipids. In a recent study focusing on CD1d-restricted glycolipid antigen presentation to Natural Killer T cells, we compared antigen presenting properties of splenic B cells, CD8αPos dendritc cells (DCs) and CD8αNeg DCs (Arora et al., 2014). This protocol describes the detailed method used for isolation of these cell populations, and their transfer into recipient mice to analyze their antigen presenting properties. PMID:27390759

  3. The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells.

    PubMed

    Koppolu, Bhanuprasanth; Zaharoff, David A

    2013-03-01

    Particle-based vaccine delivery systems are under exploration to enhance antigen-specific immunity against safe but poorly immunogenic polypeptide antigens. Chitosan is a promising biomaterial for antigen encapsulation and delivery due to its ability to form nano- and microparticles in mild aqueous conditions thus preserving the antigenicity of loaded polypeptides. In this study, the influence of chitosan encapsulation on antigen uptake, activation and presentation by antigen presenting cells (APCs) is explored. Fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) and ovalbumin (OVA) were used as model protein antigens and encapsulated in chitosan particles via precipitation-coacervation at loading efficiencies >89%. Formulation conditions were manipulated to create antigen-encapsulated chitosan particles (AgCPs) with discrete nominal sizes (300 nm, 1 μm, and 3 μm). Uptake of AgCPs by dendritic cells and macrophages was found to be dependent on particle size, antigen concentration and exposure time. Flow cytometry analysis revealed that uptake of AgCPs enhanced upregulation of surface activation markers on APCs and increased the release of pro-inflammatory cytokines. Lastly, antigen-specific T cells exhibited higher proliferative responses when stimulated with APCs activated with AgCPs versus soluble antigen. These data suggest that encapsulation of antigens in chitosan particles enhances uptake, activation and presentation by APCs.

  4. Multiphoton microscopy of antigen presenting cells in experimental cancer therapies

    NASA Astrophysics Data System (ADS)

    Watkins, Simon C.; Papworth, Glenn D.; Spencer, Lori A.; Larregina, Adriana T.; Hackstein, Holger

    2002-06-01

    The absence of effective conventional therapy for most cancer patients justifies the application of novel, experimental approaches. One alternative to conventional cytotoxic agents is a more defined molecular approach for cancer immune treatment; promotion of the immune system specifically to target and eliminate tumor cells on the basis of expression of tumor-associated antigens (TAA). TAA could be presented to T-cells by professional antigen-presenting cells (APC) that generate a more efficient and effective anti-tumor immune response. In fact, it has been well documented that dendritic cells, the most immunologically potent APC, are capable of recognizing, processing and presenting TAA, in turn initiating a specific antitumor immune response. Results from several laboratories and clinical trials suggested significant but still limited efficacy of TAA-pulsed dendritic cells administered to tumor-bearing hosts. Following such delivery, it is fundamentally necessary to dynamically assess cell abundance within the microenvironment of the tumor in the presence of the appropriate therapeutic agent. Multiphoton microscopy was used to assess the trafficking of pulsed dendritic cells and other APC in skin, lymph nodes and brain of several animal tumor models, following different routes of administration.

  5. Antigen presentation for priming T cells in central system.

    PubMed

    Dasgupta, Shaoni; Dasgupta, Subhajit

    2017-01-01

    Generation of myelin antigen-specific T cells is a major event in neuroimmune responses that causes demyelination. The antigen-priming of T cells and its location is important in chronic and acute inflammation. In autoimmune multiple sclerosis, the effector T cells are considered to generate in periphery. However, the reasons for chronic relapsing-remitting events are obscure. Considering mechanisms, a feasible aim of research is to investigate the role of antigen-primed T cells in lupus cerebritis. Last thirty years of investigations emphasize the relevance of microglia and infiltrated dendritic cells/macrophages as antigen presenting cells in the central nervous system. The recent approach towards circulating B-lymphocytes is an important area in the context. Here, we analyze the existing findings on antigen presentation in the central nervous system. The aim is to visualize signaling events of myelin antigen presentation to T cells and lead to the strategy of future goals on immunotherapy research.

  6. Antigenically Modified Human Pluripotent Stem Cells Generate Antigen-Presenting Dendritic Cells

    PubMed Central

    Zeng, Jieming; Wu, Chunxiao; Wang, Shu

    2015-01-01

    Human pluripotent stem cells (hPSCs) provide a promising platform to produce dendritic cell (DC) vaccine. To streamline the production process, we investigated a unique antigen-loading strategy that suits this novel platform. Specifically, we stably modified hPSCs using tumour antigen genes in the form of a full-length tumour antigen gene or an artificial tumour antigen epitope-coding minigene. Such antigenically modified hPSCs were able to differentiate into tumour antigen-presenting DCs. Without conventional antigen-loading, DCs derived from the minigene-modified hPSCs were ready to prime a tumour antigen-specific T cell response and further expand these specific T cells in restimulation processes. These expanded tumour antigen-specific T cells were potent effectors with central memory or effector memory phenotype. Thus, we demonstrated that immunocompetent tumour antigen-loaded DCs can be directly generated from antigenically modified hPSCs. Using such strategy, we can completely eliminate the conventional antigen-loading step and significantly simplify the production of DC vaccine from hPSCs. PMID:26471005

  7. MHC structure and function – antigen presentation. Part 1

    PubMed Central

    Goldberg, Anna Carla; Rizzo, Luiz Vicente

    2015-01-01

    The setting for the occurrence of an immune response is that of the need to cope with a vast array of different antigens from both pathogenic and non-pathogenic sources. When the first barriers against infection and innate defense fail, adaptive immune response enters the stage for recognition of the antigens by means of extremely variable molecules, namely immunoglobulins and T-cell receptors. The latter recognize the antigen exposed on cell surfaces, in the form of peptides presented by the HLA molecule. The first part of this review details the central role played by these molecules, establishing the close connection existing between their structure and their antigen presenting function. PMID:25807245

  8. A Role For Mitochondria In Antigen Processing And Presentation.

    PubMed

    Bonifaz, Lc; Cervantes-Silva, Mp; Ontiveros-Dotor, E; López-Villegas, Eo; Sánchez-García, Fj

    2014-09-23

    Immune synapse formation is critical for T lymphocyte activation, and mitochondria have a role in this process, by localizing close to the immune synapse, regulating intracellular calcium concentration, and providing locally required ATP. The interaction between antigen presenting cells (APCs) and T lymphocytes is a two-way signaling process. However, the role of mitochondria in antigen presenting cells during this process remains unknown. For APCs to be able to activate T lymphocytes, they must first engage in an antigen-uptake, -processing, and -presentation process. Here we show that HEL-loaded B lymphocytes, as a type of APCs, undergo a small but significant mitochondrial depolarization by 1-2 h following antigen exposure thus suggesting an increase in their metabolic demands. Inhibition of ATP synthase (oligomycin) or mitochondrial Ca(2+) uniporter (MCU) (Ruthenium red) had no effect on antigen uptake. Therefore, antigen processing and antigen presentation were further analyzed. Oligomycin treatment reduced the amount of specific MHC-peptide complexes but not total MHC II on the cell membrane of B lymphocytes which correlated with a decrease in antigen presentation. However, oligomycin also reduced antigen presentation by B lymphocytes that endogenously express HEL and by B lymphocytes loaded with the HEL48-62 peptide, although to a lesser extent. ATP synthase inhibition and MCU inhibition had a clear inhibitory effect on antigen processing (DQ-OVA). Taking together these results suggest that ATP synthase and MCU are relevant for antigen processing and presentation. Finally, APCs mitochondria were found to re-organize towards the APC-T immune synapse. This article is protected by copyright. All rights reserved.

  9. The Role of Heat Shock Proteins in Antigen Cross Presentation

    PubMed Central

    Murshid, Ayesha; Gong, Jianlin; Calderwood, Stuart K.

    2012-01-01

    Heat shock proteins (HSPs) are molecular chaperones that bind tumor antigens and mediate their uptake into antigen presenting cells. HSP–antigen complexes are then directed toward either the MHC class I pathway through antigen cross presentation or the conventional class II pathway, leading to activation of T cell subsets. Uptake of HSP-chaperoned polypeptides can involve both receptor-mediated and receptor-independent routes, and mechanisms of antigen sorting between the Class I and II pathways after uptake are currently under investigation. The processes involved in internalization of HSP–antigen complexes differ somewhat from the mechanisms previously determined for (unchaperoned) particulate and free soluble antigens. A number of studies show that HSP-facilitated antigen cross presentation requires uptake of the complexes by scavenger receptors (SR) followed by processing in the proteasome, and loading onto MHC class I molecules. In this review we have examined the roles of HSPs and SR in antigen uptake, sorting, processing, cell signaling, and activation of innate and adaptive immunity. PMID:22566944

  10. Germinal center reaction: antigen affinity and presentation explain it all.

    PubMed

    Oropallo, Michael A; Cerutti, Andrea

    2014-07-01

    The selection and expansion of B cells undergoing affinity maturation in the germinal center is a hallmark of humoral immunity. A recent paper in Nature provides new insights into the relationships between the affinity of the immunoglobulin receptor for antigen, the ability of B cells to present antigen to T cells, and the processes of selection, mutation, and clonal expansion in the germinal center.

  11. A role for mitochondria in antigen processing and presentation

    PubMed Central

    Bonifaz, Laura C; Cervantes-Silva, Mariana P; Ontiveros-Dotor, Elizabeth; López-Villegas, Edgar O; Sánchez-García, F Javier

    2015-01-01

    Immune synapse formation is critical for T-lymphocyte activation, and mitochondria have a role in this process, by localizing close to the immune synapse, regulating intracellular calcium concentration, and providing locally required ATP. The interaction between antigen-presenting cells (APCs) and T lymphocytes is a two-way signalling process. However, the role of mitochondria in APCs during this process remains unknown. For APCs to be able to activate T lymphocytes, they must first engage in an antigen-uptake, -processing and -presentation process. Here we show that hen egg white lysozyme (HEL) -loaded B lymphocytes, as a type of APC, undergo a small but significant mitochondrial depolarization by 1–2 hr following antigen exposure, suggesting an increase in their metabolic demands. Inhibition of ATP synthase (oligomycin) or mitochondrial Ca2+ uniporter (MCU) (Ruthenium red) had no effect on antigen uptake. Therefore, antigen processing and antigen presentation were further analysed. Oligomycin treatment reduced the amount of specific MHC–peptide complexes but not total MHC II on the cell membrane of B lymphocytes, which correlated with a decrease in antigen presentation. However, oligomycin also reduced antigen presentation by B lymphocytes, which endogenously express HEL and by B lymphocytes loaded with the HEL48–62 peptide, although to a lesser extent. ATP synthase inhibition and MCU inhibition had a clear inhibitory effect on antigen processing (DQ-OVA). Taken together these results suggest that ATP synthase and MCU are relevant for antigen processing and presentation. Finally, APC mitochondria were found to re-organize towards the APC–T immune synapse. PMID:25251370

  12. Modes of Antigen Presentation by Lymph Node Stromal Cells and Their Immunological Implications.

    PubMed

    Hirosue, Sachiko; Dubrot, Juan

    2015-01-01

    Antigen presentation is no longer the exclusive domain of cells of hematopoietic origin. Recent works have demonstrated that lymph node stromal cell (LNSC) populations, such as fibroblastic reticular cells, lymphatic and blood endothelial cells, not only provide a scaffold for lymphocyte interactions but also exhibit active immunomodulatory roles that are critical to mounting and resolving effective immune responses. Importantly, LNSCs possess the ability to present antigens and establish antigen-specific interactions with T cells. One example is the expression of peripheral tissue antigens, which are presented on major histocompatibility complex (MHC)-I molecules with tolerogenic consequences on T cells. Additionally, exogenous antigens, including self and tumor antigens, can be processed and presented on MHC-I complexes, which result in dysfunctional activation of antigen-specific CD8(+) T cells. While MHC-I is widely expressed on cells of both hematopoietic and non-hematopoietic origins, antigen presentation via MHC-II is more precisely regulated. Nevertheless, LNSCs are capable of endogenously expressing, or alternatively, acquiring MHC-II molecules. Transfer of antigen between LNSC and dendritic cells in both directions has been recently suggested to promote tolerogenic roles of LNSCs on the CD4(+) T cell compartment. Thus, antigen presentation by LNSCs is thought to be a mechanism that promotes the maintenance of peripheral tolerance as well as generates a pool of diverse antigen-experienced T cells for protective immunity. This review aims to integrate the current and emerging literature to highlight the importance of LNSCs in immune responses, and emphasize their role in antigen trafficking, retention, and presentation.

  13. The Cellular Redox Environment Alters Antigen Presentation*

    PubMed Central

    Trujillo, Jonathan A.; Croft, Nathan P.; Dudek, Nadine L.; Channappanavar, Rudragouda; Theodossis, Alex; Webb, Andrew I.; Dunstone, Michelle A.; Illing, Patricia T.; Butler, Noah S.; Fett, Craig; Tscharke, David C.; Rossjohn, Jamie; Perlman, Stanley; Purcell, Anthony W.

    2014-01-01

    Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5–10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response. PMID:25135637

  14. Self-Antigen Presentation by Dendritic Cells in Autoimmunity

    PubMed Central

    Hopp, Ann-Katrin; Rupp, Anne; Lukacs-Kornek, Veronika

    2014-01-01

    The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies. PMID:24592266

  15. Ceramide Inhibits Antigen Uptake and Presentation by Dendritic Cells

    PubMed Central

    Sallusto, Federica; Nicolò, Chiara; De Maria, Ruggero; Corinti, Silvia; Testi, Roberto

    1996-01-01

    Ceramides are intramembrane diffusible mediators involved in transducing signals originated from a variety of cell surface receptors. Different adaptive and differentiative cellular responses, including apoptotic cell death, use ceramide-mediated pathways as an essential part of the program. Here, we show that human dendritic cells respond to CD40 ligand, as well as to tumor necrosis factor-α and IL-1β, with intracellular ceramide accumulation, as they are induced to differentiate. Dendritic cells down-modulate their capacity to take up soluble antigens in response to exogenously added or endogenously produced ceramides. This is followed by an impairment in presenting soluble antigens to specific T cell clones, while cell viability and the capacity to stimulate allogeneic responses or to present immunogenic peptides is fully preserved. Thus, ceramide-mediated pathways initiated by different cytokines can actively modulate professional antigen-presenting cell function and antigen-specific immune responses. PMID:8976196

  16. Kinetics of Antigen Expression and Epitope Presentation during Virus Infection

    PubMed Central

    Croft, Nathan P.; Smith, Stewart A.; Wong, Yik Chun; Tan, Chor Teck; Dudek, Nadine L.; Flesch, Inge E. A.; Lin, Leon C. W.; Tscharke, David C.; Purcell, Anthony W.

    2013-01-01

    Current knowledge about the dynamics of antigen presentation to T cells during viral infection is very poor despite being of fundamental importance to our understanding of anti-viral immunity. Here we use an advanced mass spectrometry method to simultaneously quantify the presentation of eight vaccinia virus peptide-MHC complexes (epitopes) on infected cells and the amounts of their source antigens at multiple times after infection. The results show a startling 1000-fold range in abundance as well as strikingly different kinetics across the epitopes monitored. The tight correlation between onset of protein expression and epitope display for most antigens provides the strongest support to date that antigen presentation is largely linked to translation and not later degradation of antigens. Finally, we show a complete disconnect between the epitope abundance and immunodominance hierarchy of these eight epitopes. This study highlights the complexity of viral antigen presentation by the host and demonstrates the weakness of simple models that assume total protein levels are directly linked to epitope presentation and immunogenicity. PMID:23382674

  17. Lipid peroxidation causes endosomal antigen release for cross-presentation.

    PubMed

    Dingjan, Ilse; Verboogen, Daniëlle Rj; Paardekooper, Laurent M; Revelo, Natalia H; Sittig, Simone P; Visser, Linda J; Mollard, Gabriele Fischer von; Henriet, Stefanie Sv; Figdor, Carl G; Ter Beest, Martin; van den Bogaart, Geert

    2016-02-24

    Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer.

  18. Lipid peroxidation causes endosomal antigen release for cross-presentation

    PubMed Central

    Dingjan, Ilse; Verboogen, Daniëlle RJ; Paardekooper, Laurent M; Revelo, Natalia H; Sittig, Simone P; Visser, Linda J; Mollard, Gabriele Fischer von; Henriet, Stefanie SV; Figdor, Carl G; ter Beest, Martin; van den Bogaart, Geert

    2016-01-01

    Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer. PMID:26907999

  19. Viral immune evasion: Lessons in MHC class I antigen presentation.

    PubMed

    van de Weijer, Michael L; Luteijn, Rutger D; Wiertz, Emmanuel J H J

    2015-03-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.

  20. Two genetically identical antigen-presenting cell clones display heterogeneity in antigen processing.

    PubMed Central

    Michalek, M T; Benacerraf, B; Rock, K L

    1989-01-01

    Evidence from various antigen systems suggests that antigen processing can be one factor that determines the repertoire of immunogenic peptides. Thus, processing events may account for some of the disparity between the available and expressed helper T-cell repertoires. In this report, we demonstrate that the immunodominant T-cell determinant in ovalbumin [p323-339; ovalbumin-(323-339) heptadecapeptide] is processed differently by two genetically identical antigen-presenting cell lines, M12 and A20. The ovalbumin-specific T-cell-T-cell hybridomas, DO-11.10 and 3DO-54.8, were used to detect processed antigen. These T-T hybridomas have different fine specificities for the p323-339 determinant. A20 cells presented native ovalbumin well to both T-T hybridomas, whereas M12 cells presented native ovalbumin well to 3DO-54.8 but very inefficiently to DO-11.10. M12 and A20 cells effectively stimulated both T-T hybridomas with the same concentrations of the immunogenic synthetic peptide p323-339. Therefore, M12 cells and DO-11.10 can interact with each other, and both T-T hybridomas have similar sensitivities for the same immunogenic peptide. We conclude that genetically identical antigen-presenting cells can display heterogeneity in the fine processing of an immunodominant T-cell determinant, and synthetic model peptides that represent the minimal stimulatory sequence of a T-cell determinant are not necessarily identical to the structure of in vivo processed antigen. Heterogeneity in antigen processing by individual antigen-presenting cells would serve to increase the repertoire of immunogenic peptides that are presented to T cells. PMID:2470101

  1. Neutrophils acquire the capacity for antigen presentation to memory CD4(+) T cells in vitro and ex vivo.

    PubMed

    Vono, Maria; Lin, Ang; Norrby-Teglund, Anna; Koup, Richard A; Liang, Frank; Loré, Karin

    2017-04-06

    Neutrophils are critical cells of the innate immune system and rapidly respond to tissue injury and infection. Increasing evidence also indicates that neutrophils have versatile functions in contributing to adaptive immunity by internalizing and transporting antigen and influencing antigen-specific responses. Here, we demonstrate that freshly isolated human neutrophils can function as antigen-presenting cells (APCs) to memory CD4(+) T cells. Neutrophils pulsed with the cognate antigens cytomegalovirus pp65 or influenza hemagglutinin were able to present the antigens to autologous antigen-specific CD4(+) T cells in a major histocompatibility complex class II (MHC-II; HLA-DR)-dependent manner. Although myeloid dendritic cells and monocytes showed superior presenting ability, neutrophils consistently displayed antigen presentation capability. Upregulation of HLA-DR on neutrophils required the presence of the antigen-specific or activated T cells whereas exposure to innate stimuli such as Toll-like receptor ligands was not sufficient. Neutrophils sorted from vaccine-draining lymph nodes from rhesus macaques also showed expression of HLA-DR and were capable of presenting vaccine antigen to autologous antigen-specific memory CD4(+) T cells ex vivo. Altogether, the data demonstrate that neutrophils can adapt a function as APCs and, in combination with their abundance in the immune system, may have a significant role in regulating antigen-specific T-cell responses.

  2. MHC structure and function − antigen presentation. Part 2

    PubMed Central

    Goldberg, Anna Carla; Rizzo, Luiz Vicente

    2015-01-01

    The second part of this review deals with the molecules and processes involved in the processing and presentation of the antigenic fragments to the T-cell receptor. Though the nature of the antigens presented varies, the most significant class of antigens is proteins, processed within the cell to be then recognized in the form of peptides, a mechanism that confers an extraordinary degree of precision to this mode of immune response. The efficiency and accuracy of this system is also the result of the myriad of mechanisms involved in the processing of proteins and production of peptides, in addition to the capture and recycling of alternative sources aiming to generate further diversity in the presentation to T-cells. PMID:25807243

  3. Comparative Analysis of Gingival Tissue Antigen Presentation Pathways in Aging and Periodontitis

    PubMed Central

    Gonzalez, O.A.; Novak, M.J.; Kirakodu, S.; Orraca, L.; Chen, K.C.; Strom-berg, A.; Gonzalez-Martinez, J.; Ebersole, J. L.

    2014-01-01

    Aim Gingival tissues of periodontitis lesions contribute to local elevations in mediators, including both specific T cell and antibody immune responses to oral bacterial antigens. Thus, antigen processing and presentation activities must exist in these tissues to link antigen-presenting cells with adaptive immunity. We hypothesized that alterations in the transcriptome of antigen processing and presentation genes occur in aging gingival tissues and that periodontitis enhances these differences reflecting tissues less capable of immune resistance to oral pathogens. Materials and Methods Rhesus monkeys (n=34) from 3–23 years of age were examined. A buccal gingival sample from healthy or periodontitis sites were obtained, total RNA isolated, and microarray analysis was used to describe the transcriptome. Results The results demonstrated increased transcription of genes related to the MHC class II and negative regulation of NK cells with aging in healthy gingival tissues. In contrast, both adult and aging periodontitis tissues showed decreased transcription of genes for MHC class II antigens, coincident with up-regulation of MHC class I-associated genes. Conclusion These transcriptional changes suggest a response of healthy aging tissues through the class II pathway (i.e., endocytosed antigens) and altered responses in periodontitis that could reflect host-associated self-antigens or targeting cytosolic intra-cellular microbial pathogens. PMID:24304139

  4. HLA class II antigen presentation by prostate cancer cells.

    PubMed

    Younger, A R; Amria, S; Jeffrey, W A; Mahdy, A E M; Goldstein, O G; Norris, J S; Haque, A

    2008-01-01

    Prostate cancer is the second most commonly diagnosed cancer in men. Recent evidence suggests that reduced expression of target protein antigens and human leukocyte antigen (HLA) molecules is the predominant immune escape mechanism of malignant prostate tumor cells. The purpose of this study was to investigate the prospect of antigen specific immunotherapy against prostate cancer via the HLA class II pathway of immune recognition. Here, we show for the first time that prostate cancer cells express HLA class II proteins that are recognized by CD4+ T cells. Prostate tumor cells transduced with class II molecules efficiently presented tumor-associated antigens/peptides to CD4+ T cells. This data suggests that malignant prostate tumors can be targeted via the HLA class II pathway, and that class II-positive tumors could be employed for direct antigen presentation, and CD4+ T-cell mediated tumor immunotherapy.Prostate Cancer and Prostatic Diseases (2008) 11, 334-341; doi:10.1038/sj.pcan.4501021; published online 16 October 2007.

  5. Activated Brain Endothelial Cells Cross-Present Malaria Antigen.

    PubMed

    Howland, Shanshan W; Poh, Chek Meng; Rénia, Laurent

    2015-06-01

    In the murine model of cerebral malaria caused by P. berghei ANKA (PbA), parasite-specific CD8+ T cells directly induce pathology and have long been hypothesized to kill brain endothelial cells that have internalized PbA antigen. We previously reported that brain microvessel fragments from infected mice cross-present PbA epitopes, using reporter cells transduced with epitope-specific T cell receptors. Here, we confirm that endothelial cells are the population responsible for cross-presentation in vivo, not pericytes or microglia. PbA antigen cross-presentation by primary brain endothelial cells in vitro confers susceptibility to killing by CD8+ T cells from infected mice. IFNγ stimulation is required for brain endothelial cross-presentation in vivo and in vitro, which occurs by a proteasome- and TAP-dependent mechanism. Parasite strains that do not induce cerebral malaria were phagocytosed and cross-presented less efficiently than PbA in vitro. The main source of antigen appears to be free merozoites, which were avidly phagocytosed. A human brain endothelial cell line also phagocytosed P. falciparum merozoites. Besides being the first demonstration of cross-presentation by brain endothelial cells, our results suggest that interfering with merozoite phagocytosis or antigen processing may be effective strategies for cerebral malaria intervention.

  6. Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy

    PubMed Central

    Escors, David

    2014-01-01

    Since the beginning of the 20th century, scientists have tried to stimulate the anti-tumour activities of the immune system to fight against cancer. However, the scientific effort devoted on the development of cancer immunotherapy has not been translated into the expected clinical success. On the contrary, classical anti-neoplastic treatments such as surgery, radiotherapy and chemotherapy are the first line of treatment. Nevertheless, there is compelling evidence on the immunogenicity of cancer cells, and the capacity of the immune system to expand cancer-specific effector cytotoxic T cells. However, the effective activation of anti-cancer T cell responses strongly depends on efficient tumour antigen presentation from professional antigen presenting cells such as dendritic cells (DCs). Several strategies have been used to boost DC antigen presenting functions, but at the end cancer immunotherapy is not as effective as would be expected according to preclinical models. In this review we comment on these discrepancies, focusing our attention on the contribution of regulatory T cells and myeloid-derived suppressor cells to the lack of therapeutic success of DC-based cancer immunotherapy. PMID:24634791

  7. Antigen processing and presentation: evolution from a bird's eye view.

    PubMed

    Kaufman, Jim

    2013-09-01

    Most detailed knowledge of the MHC outside of mammals has come from studies of chickens, originally due to the economic importance of the poultry industry. We have used our discoveries about the chicken MHC to develop a framework for understanding the evolution of the MHC, based on the importance of genomic organisation for gene co-evolution. In humans, MHC class I molecules are polymorphic and determine the specificity of peptide presentation, while the molecules involved in antigen processing are functionally monomorphic. The genes for tapasin, transporters associated with antigen presentation (TAPs) and inducible proteasome components (LMPs) are located in and beyond the class II region, far away from the class I genes in the class I region. In contrast, chickens express only one class I locus at high levels, which can result in strong MHC associations with resistance to particular infectious pathogens. The chicken TAP and tapasin genes are located very close to the class I genes, and have high levels of allelic polymorphism and moderate sequence diversity, co-evolving their specificities to work optimally with the dominantly expressed class I molecule. The salient features of the chicken MHC are found in many if not most non-mammalian species examined, and are likely to represent the ancestral organisation of the MHC. Comparison with the MHC organisation of humans and typical mammals suggests that a large inversion brought the class III region into the middle of the MHC, separating the antigen processing genes from the class I gene, breaking the co-evolutionary relationships and allowing a multigene family of well-expressed class I genes. Such co-evolution in the primordial MHC was likely responsible for the appearance of the antigen presentation pathways and receptor-ligand interactions at the birth of the adaptive immune system. Of course, much further work is required to understand this evolutionary framework in more detail.

  8. Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells.

    PubMed

    Peters, Haley L; Tripathi, Satyendra C; Kerros, Celine; Katayama, Hiroyuki; Garber, Haven R; St John, Lisa S; Federico, Lorenzo; Meraz, Ismail M; Roth, Jack A; Sepesi, Boris; Majidi, Mourad; Ruisaard, Kathryn; Clise-Dwyer, Karen; Roszik, Jason; Gibbons, Don L; Heymach, John V; Swisher, Stephen G; Bernatchez, Chantale; Alatrash, Gheath; Hanash, Samir; Molldrem, Jeffrey J

    2017-03-02

    Immunotherapies targeting immune checkpoints have proven efficacious in reducing the burden of lung cancer in patients; however, the antigenic targets of these reinvigorated T cells remain poorly defined. Lung cancer tumors contain tumor-associated macrophages (TAM) and neutrophils, which release the serine proteases neutrophil elastase (NE) and proteinase 3 (P3) into the tumor microenvironment. NE and P3 shape the antitumor adaptive immune response in breast cancer and melanoma. In this report, we demonstrate that lung cancer cells cross-presented the tumor-associated antigen PR1, derived from NE and P3. Additionally, NE and P3 enhanced the expression of human leukocyte antigen (HLA) class I molecules on lung cancer cells and induced unique, endogenous peptides in the immunopeptidome, as detected with mass spectrometry sequencing. Lung cancer patient tissues with high intratumoral TAMs were enriched for MHC class I genes and T-cell markers, and patients with high TAM and cytotoxic T lymphocyte (CTL) infiltration had improved overall survival. We confirmed the immunogenicity of unique, endogenous peptides with cytotoxicity assays against lung cancer cell lines, using CTLs from healthy donors that had been expanded against select peptides. Finally, CTLs specific for serine proteases-induced endogenous peptides were detected in lung cancer patients using peptide/HLA-A2 tetramers and were elevated in tumor-infiltrating lymphocytes. Thus, serine proteases in the tumor microenvironment of lung cancers promote the presentation of HLA class I immunogenic peptides that are expressed by lung cancer cells, thereby increasing the antigen repertoire that can be targeted in lung cancer. Cancer Immunol Res; 5(4); 1-11. ©2017 AACR.

  9. Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.

  10. Antigen presentation by peritoneal macrophages from young adult and old mice

    SciTech Connect

    Perkins, E.H.; Massucci, J.M.; Glover, P.L.

    1982-01-01

    Macrophages perform vital inductive and regulatory functions in immune processes and host defense mechanisms. However, macrophage function during senescence has not been extensively studied. Although antibody response is dramatically reduced in old animals, antigen presentation has never been directly assessed. Therefore, the antigen-presenting capabilities of purified peritoneal macrophages from young adult and old mice were studied by quantitatively measuring their ability to induce antigen specific proliferation of lymph node T lymphocytes. Increasing numbers (10/sup 2/ to 10/sup 5/) of macrophages from nonimmunized young adult (3 to 6 months) or aged (27 to 36 months) animals were cultured in the presence of antigen with a constant number (2 x 10/sup 5/) of column-separated popliteal lymph node cells from young adult mice. The latter had been immunized with the dinitrophenyl conjugate of bovine ..gamma..-globulin in complete Freund's adjuvant by footpad injection. Macrophages from old animals were equal to macrophages from young adult in stimulating T-lymphocyte proliferation, and the kinetics of incorporation was identical with increasing numbers of macrophages from either young adult or old animals. However, greater numbers of resident or induced peritoneal macrophages were always harvested from old animals. Differences in macrophage activity as assessed by different functional parameters may be reconciled by implicating subpopulations of macrophages that perform separate functions, e.g. Ia-positive antigen presenter and Ia-negative scavenger macrophages.

  11. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Zouhair Atassi, M. Z.

    1989-01-01

    Non-immune SJL (H-2s) spleen cells were fused with non-secreting, non-antigen presenting (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B-cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones presented both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  12. Inhibitory effects of thymus-independent type 2 antigens on MHC class II-restricted antigen presentation: comparative analysis of carbohydrate structures and the antigen presenting cell.

    PubMed

    González-Fernández, M; Carrasco-Marín, E; Alvarez-Domínguez, C; Outschoorn, I M; Leyva-Cobián, F

    1997-02-25

    The role of thymus-independent type 2 (TI-2) antigens (polysaccharides) on the MHC-II-restricted processing of protein antigens was studied in vitro. In general, antigen presentation is inhibited when both peritoneal and splenic macrophages (M phi) as well as Küpffer cells (KC) are preincubated with acidic polysaccharides or branched dextrans. However, the inhibitory effect of neutral polysaccharides was minimal when KC were used as antigen presenting cells (APC). Morphological evaluation of the uptake of fluoresceinated polysaccharides clearly correlates with this selective and differential interference. Polysaccharides do not block MHC-I-restricted antigen presentation. Some chemical characteristics shared by different saccharides seem to be specially related to their potential inhibitory abilities: (i) those where two anomeric carbon atoms of two interlinked sugars and (ii) those containing several sulfate groups per disaccharide repeating unit. No polysaccharide being inhibitory in M phi abrogated antigen processing in other APC: lipopolysaccharide-activated B cells, B lymphoma cells, or dendritic cells (DC). Using radiolabeled polysaccharides it was observed that DC and B cells incorporated less radioactivity as a function of time than M phi. Morphological evaluation of these different APC incubated for extended periods of time with inhibitory concentrations of polysaccharides revealed intense cytoplasmic vacuolization in M phi but not in B cells or DC. The large majority of M phi lysosomes containing polysaccharides fail to fuse with incoming endocytic vesicles and delivery of fluid-phase tracers was reduced, suggesting that indigestible carbohydrates reduced the fusion of these loaded lysosomes with endosomes containing recently internalized tracers. It is suggested that the main causes of this antigen presentation blockade are (i) the chemical characteristics of certain carbohydrates and whether the specific enzymatic machinery for their intracellular

  13. The Role of Antigen Presenting Cells in Multiple Sclerosis

    PubMed Central

    Chastain, Emily M. L.; Duncan, D'Anne S.; Rodgers, Jane M.; Miller, Stephen D.

    2010-01-01

    Multiple Sclerosis (MS) is a debilitating T cell-mediated autoimmune disease of the central nervous system (CNS). Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus-Induced demyelinating disease (TMEV-IDD) have given light to cellular mechanisms involved in the initiation and progression of this organ-specific autoimmune disease. Within the CNS, antigen presenting cells (APC) such as microglia and astrocytes participate as first line defenders against infections or inflammation. However, during chronic inflammation they can participate in perpetuating the self-destructive environment by secretion of inflammatory factors and/or presentation of myelin epitopes to autoreactive T cells. Dendritic cells (DC) are also participants in the presentation of antigen to T cells, even within the CNS. While the APCs alone are not solely responsible for mediating the destruction to the myelin sheath, they are critical players in perpetuating the inflammatory milieu. This review will highlight relevant studies which have provided insight to the roles played by microglia, DCs and astrocytes in the context of CNS autoimmunity. PMID:20637861

  14. Past and Present Large Solid Rocket Motor Test Capabilities

    NASA Technical Reports Server (NTRS)

    Kowalski, Robert R.; Owen, David B., II

    2011-01-01

    A study was performed to identify the current and historical trends in the capability of solid rocket motor testing in the United States. The study focused on test positions capable of testing solid rocket motors of at least 10,000 lbf thrust. Top-level information was collected for two distinct data points plus/minus a few years: 2000 (Y2K) and 2010 (Present). Data was combined from many sources, but primarily focused on data from the Chemical Propulsion Information Analysis Center s Rocket Propulsion Test Facilities Database, and heritage Chemical Propulsion Information Agency/M8 Solid Rocket Motor Static Test Facilities Manual. Data for the Rocket Propulsion Test Facilities Database and heritage M8 Solid Rocket Motor Static Test Facilities Manual is provided to the Chemical Propulsion Information Analysis Center directly from the test facilities. Information for each test cell for each time period was compiled and plotted to produce a graphical display of the changes for the nation, NASA, Department of Defense, and commercial organizations during the past ten years. Major groups of plots include test facility by geographic location, test cells by status/utilization, and test cells by maximum thrust capability. The results are discussed.

  15. Phenotypic and functional profiling of mouse intestinal antigen presenting cells

    PubMed Central

    Harusato, Akihito; Flannigan, Kyle L.; Geem, Duke; Denning, Timothy L.

    2015-01-01

    The microbiota that populates the mammalian intestine consists of hundreds of trillions of bacteria that are separated from underlying immune cells by a single layer of epithelial cells. The intestinal immune system effectively tolerates components of the microbiota that provide benefit to the host while remaining poised to eliminate those that are harmful. Antigen presenting cells, especially macrophages and dendritic cells, play important roles in maintaining intestinal homeostasis via their ability to orchestrate appropriate responses to the microbiota. Paramount to elucidating intestinal macrophage- and dendritic cell-mediated functions is the ability to effectively isolate and identify these cells from a complex cellular environment. In this review, we summarize methodology for the isolation and phenotypic characterization of macrophages and DCs from the mouse intestine and discuss how this may be useful for gaining insight into the mechanisms by which mucosal immune tolerance is maintained. PMID:25891794

  16. Antigen presenting cells in situ: their identification and involvement in immunopathology.

    PubMed Central

    Poulter, L W

    1983-01-01

    Macrophages and other dendritic non-lymphoid cells have been shown to be functionally capable of presenting antigen to induce lymphocyte responses. These cells can now be studied in situ and distinguished, one from another, within normal tissues and sites of cellular infiltration. Analysis of the microenvironment within which these cells are found can be made with immunohistological methods using monoclonal antibodies (McAbs) and cytochemical techniques. In some cases McAbs are specific for particular types of antigen presenting cell. Using such reagents, evidence is accumulating that these cells may be intimately involved in the pathogenesis of immunoregulatory disorders. What is now required is a more definitive correlation between functional capacity and cell phenotype established with cells isolated from blood, and from normal and pathological tissues. If this is possible the immunopathologist may be able, not only to analyse complex microenvironments but also directly determine the interactions and mechanisms at play within the diseased tissues. PMID:6352095

  17. Modulation for antigen presentation in tuberculosis by using synthetic peptides.

    PubMed

    Méndez-Samperio, P; Jiménez-Zamudio, L

    1991-01-01

    Competition assay technology has been a very useful tool in the study of parasite antigens and has been inferred but never proven that this approach can be applied to select T-cell epitopes by using another microorganisms. In this study, HLA-restricted T-cell clones specific to synthetic peptides derived from the 65 kDa mycobacterial protein were used to investigate whether these peptides are able to compete with each other at the level of MHC-binding sites in tuberculosis. Fixed APCs were pulsed with suboptimal concentration of stimulator peptide in the presence of various concentrations of competitor peptide. The results showed that two peptides from this protein were able to compete with each other inducing a significant inhibition in the proliferation assays while there was no competition by using a control peptide. The amount of cross-reactivity was influenced by the peptide concentrations. More important was the observation that these peptides were able to bind to the same HLA-class II molecules therefore blocking the binding of each other. The fact that these peptides have not an identical amino acid sequence support the idea that the MHC-peptide interaction must have a broad specificity to be able to bind a large number of peptides. These results demonstrate that it is possible to modulate the antigen presentation by blocking the peptide MHC-class II interaction in tuberculosis and support the idea that this approach facilitates the selection of appropriate T-cell epitopes to be incorporated in a vaccine.

  18. Carbohydrate-Mediated Targeting of Antigen to Dendritic Cells Leads to Enhanced Presentation of Antigen to T Cells

    PubMed Central

    Adams, Eddie W.; Ratner, Daniel M.; Seeberger, Peter H.; Hacohen, Nir

    2009-01-01

    The unique therapeutic value of dendritic cells (DCs) for the treatment of allergy, autoimmunity and transplant rejection is predicated upon our ability to selectively deliver antigens, drugs or nucleic acids to DCs in vivo. Here we describe a method for delivering whole protein antigens to DCs based on carbohydrate-mediated targeting of DC-expressed lectins. A series of synthetic carbohydrates was chemically-coupled to a model antigen, ovalbumin (OVA), and each conjugate was evaluated for its ability to increase the efficiency of antigen presentation by murine DCs to OVA-specific T cells (CD4+ and CD8+). In vitro data are presented that demonstrate that carbohydrate modification of OVA leads to a 50-fold enhancement of presentation of antigenic peptide to CD4+ T cells. A tenfold enhancement is observed for CD8+ T cells; this indicates that the targeted lectin(s) can mediate cross-presentation of antigens on MHC class I. Our data indicate that the observed enhancements in antigen presentation are unique to OVA that is conjugated to complex oligosaccharides, such as a high-mannose nonasaccharide, but not to monosaccharides. Taken together, our data suggest that a DC targeting strategy that is based upon carbohydrate-lectin interactions is a promising approach for enhancing antigen presentation via class I and class II molecules. PMID:18186095

  19. Differential presentation of tumor antigen-derived epitopes by MHC-class I and antigen-positive tumor cells.

    PubMed

    Held, Gerhard; Neumann, Frank; Sturm, Christine; Kaestner, Lars; Dauth, Nina; de Bruijn, Diederik R; Renner, Christoph; Lipp, Peter; Pfreundschuh, Michael

    2008-10-15

    SSX2 is a member of the family of cancer/testis antigens. The SSX2 derived peptide SSX2(103-111) has been shown to be presented to cytotoxic T-lymphocytes (CTL) by Major-Histocompatibility (MHC) Class-I complexes after endogenous processing, more precisely by the allele HLA-A*0201. The HLA-A*0201- and SSX2-positive melanoma cell line SK-Mel-37 but not Me275 had been shown to elicit reactivity in SSX2(103-111) specific cytotoxic T-lymphocytes. To analyze the correlation between SSX2(103-111) presentation and T-cell stimulation, we intended to visualize presentation of SSX2(103-111) in these melanoma cell lines. Fab-antibodies were established from a human phage library with specificity for SSX2(103-111)/HLA-A*0201 complexes (but non-reactive with HLA-A*0201 or SSX2(103-111) alone) and used to visualize the presentation of SSX2(103-111) in the context of HLA-A*0201 by fluorescence microscopy. Presentation of SSX2(103-111) the context of HLA-A*0201 was demonstrated for the majority of SK-Mel-37, but for only a small fraction (<1%) of Me275 as indicated by a clear membrane-staining pattern in fluorescence microscopy. The presentation of SSX2(103-111) on SK-Mel37 and Me275, but not the expression of the SSX2 protein correlated with the capability of these cells to stimulate cells of an SSX2(103-111)-specific T-cell clone. MHC-peptide specific antibodies are a valuable tool for the analysis of antigenic peptides in the context of MHC-I molecules and for the structural definition of immunodominant epitopes.

  20. A new TLR2 agonist promotes cross-presentation by mouse and human antigen presenting cells.

    PubMed

    Santone, Melissa; Aprea, Susanna; Wu, Tom Y H; Cooke, Michael P; Mbow, M Lamine; Valiante, Nicholas M; Rush, James S; Dougan, Stephanie; Avalos, Ana; Ploegh, Hidde; De Gregorio, Ennio; Buonsanti, Cecilia; D'Oro, Ugo

    2015-01-01

    Cross-presentation is the process by which professional APCs load peptides from an extracellularly derived protein onto class I MHC molecules to trigger a CD8(+) T cell response. The ability to enhance this process is therefore relevant for the development of antitumor and antiviral vaccines. We investigated a new TLR2-based adjuvant, Small Molecule Immune Potentiator (SMIP) 2.1, for its ability to stimulate cross-presentation. Using OVA as model antigen, we demonstrated that a SMIP2.1-adjuvanted vaccine formulation induced a greater CD8(+) T cell response, in terms of proliferation, cytokine production and cytolytic activity, than a non-adjuvanted vaccine. Moreover, using an OVA-expressing tumor model, we showed that the CTLs induced by the SMIP2.1 formulated vaccine inhibits tumor growth in vivo. Using a BCR transgenic mouse model we found that B cells could cross-present the OVA antigen when stimulated with SMIP2.1. We also used a flow cytometry assay to detect activation of human CD8(+) T cells isolated from human PBMCs of cytomegalovirus-seropositive donors. Stimulation with SMIP2.1 increased the capacity of human APCs, pulsed in vitro with the pp65 CMV protein, to activate CMV-specific CD8(+) T cells. Therefore, vaccination with an exogenous antigen formulated with SMIP2.1 is a successful strategy for the induction of a cytotoxic T cell response along with antibody production.

  1. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1988-01-01

    Non-immune SJL (H-2s) spleen cells were fused with (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B- cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones were able to present both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  2. Viral Sequestration of Antigen Subverts Cross Presentation to CD8+ T Cells

    PubMed Central

    Tewalt, Eric F.; Grant, Jean M.; Granger, Erica L.; Palmer, Douglas C.; Heuss, Neal D.; Gregerson, Dale S.; Restifo, Nicholas P.; Norbury, Christopher C.

    2009-01-01

    Virus-specific CD8+ T cells (TCD8+) are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC). Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector TCD8+. Direct presentation of vaccinia virus (VACV) antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated TCD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the TCD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation must also be taken into

  3. Isolation of a peptide binding protein and its role in antigen presentation

    SciTech Connect

    Lakey, E.; Pierce, S.K.; Margoliash, E.

    1986-03-05

    A mouse T cell hybrid, TPc9.1, recognizes pigeon cytochrome c (Pc) as processed and presented by histocompatible antigen presenting cells (APC). When paraformaldehyde fixed APC are employed, only a peptide fragment of Pc, Pc 81-104, and not the native Pc, is capable of stimulating TPc9.1 cells. Pc 81-104 appears to associate tightly with the APC surface since paraformaldehyde fixed APC which have been incubated with Pc 81-104 remain stimulatory following extensive washing. When APC are surface labeled with /sup 125/I, solubilized and affinity purified on Pc 81-104-Sepharose 4B columns, two predominant polypeptides of approximately 72 and 74 kd are isolated. Little or no immunoglobulin, Class I or Class II proteins are obtained under these conditions. Antisera from rabbits immunized with the affinity purified material, but not preimmune sera, block the activation of TPc 9.1 cells by Pc as well as Pc 81-104 when presented by live APC. Furthermore, these antisera are even more effective in blocking the activation of TPc9.1 cells by either APC which had been pulsed with Pc and then paraformaldehyde fixed, or by Pc 81-104 when added to paraformaldehyde fixed APC, suggesting that these antisera were not affecting antigen processing. Thus, these peptide binding proteins may play a role in antigen presentation, and they are being further characterized.

  4. Limited sufficiency of antigen presentation by dendritic cells in models of central nervous system autoimmunity.

    PubMed

    Wu, Gregory F; Shindler, Kenneth S; Allenspach, Eric J; Stephen, Tom L; Thomas, Hannah L; Mikesell, Robert J; Cross, Anne H; Laufer, Terri M

    2011-02-01

    Experimental autoimmune encephalomyelitis (EAE), a model for the human disease multiple sclerosis (MS), is dependent upon the activation and effector functions of autoreactive CD4 T cells. Multiple interactions between CD4 T cells and major histocompatibility class II (MHCII)+ antigen presenting cells (APCs) must occur in both the periphery and central nervous system (CNS) to elicit autoimmunity. The identity of the MHCII+ APCs involved throughout this process remains in question. We investigated which APC in the periphery and CNS mediates disease using transgenic mice with MHCII expression restricted to dendritic cells (DCs). MHCII expression restricted to DCs results in normal susceptibility to peptide-mediated EAE. Indeed, radiation-sensitive bone marrow-derived DCs were sufficient for all APC functions during peptide-induced disease. However, DCs alone were inefficient at promoting disease after immunization with the myelin protein myelin oligodendrocyte glycoprotein (MOG), even in the presence of MHCII-deficient B cells. Consistent with a defect in disease induction following protein immunization, antigen presentation by DCs alone was incapable of mediating spontaneous optic neuritis. These results indicate that DCs are capable of perpetuating CNS-targeted autoimmunity when antigens are readily available, but other APCs are required to efficiently initiate pathogenic cognate CD4 T cell responses.

  5. Wheeling and Dealing With Antigen Presentation in Tuberculosis.

    PubMed

    Hudrisier, Denis; Neyrolles, Olivier

    2016-03-01

    In tuberculosis, antigens are transferred from infected to uninfected dendritic cells. Does this favor T lymphocyte response and anti-mycobacterial host defense? In a recent report published in Cell Host & Microbe, Ernst and colleagues show that Mycobacterium tuberculosis seems to have hijacked this mechanism for its own benefit.

  6. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  7. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.

    PubMed

    Hey, Ying-Ying; O'Neill, Helen C

    This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.

  8. Polymer blend particles with defined compositions for targeting antigen to both class I and II antigen presentation pathways.

    PubMed

    Tran, Kenny K; Zhan, Xi; Shen, Hong

    2014-05-01

    Defense against many persistent and difficult-to-treat diseases requires a combination of humoral, CD4(+) , and CD8(+) T-cell responses, which necessitates targeting antigens to both class I and II antigen presentation pathways. In this study, polymer blend particles are developed by mixing two functionally unique polymers, poly(lactide-co-glycolide) (PLGA) and a pH-responsive polymer, poly(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate) (DMAEMA-co-PAA-co-BMA). Polymer blend particles are shown to enable the delivery of antigens into both class I and II antigen presentation pathways in vitro. Increasing the ratio of the pH-responsive polymer in blend particles increases the degree of class I antigen presentation, while maintaining high levels of class II antigen presentation. In a mouse model, it is demonstrated that a significantly higher and sustained level of CD4(+) and CD8(+) T-cell responses, and comparable antibody responses, are elicited with polymer blend particles than PLGA particles and a conventional vaccine, Alum. The polymer blend particles offer a potential vaccine delivery platform to generate a combination of humoral and cell-mediated immune responses that insure robust and long-lasting immunity against many infectious diseases and cancers.

  9. Modulation of antigen presentation by autoreactive B cell clones specific for GAD65 from a type I diabetic patient

    PubMed Central

    BANGA, J P; MOORE, J K; DUHINDAN, N; MADEC, A M; VAN ENDERT, P M; ORGIAZZI, J; ENDL, J

    2004-01-01

    We used a GAD65-specific human B–T cell line cognate system in vitro to investigate the modulation of GAD65 presentation by autoantibody, assessed in a proliferation assay. Generally, if the T cell determinant overlaps or resides within the antibody epitope, effects of presentation are blunted while if they are distant can lead to potent presentation. For three different autoreactive B–T cell line cognate pairs, the modulation of GAD65 presentation followed the mode of overlapping or distant epitopes with resultant potent or undetectable presentation. However, other cognate pairs elicited variability in this pattern of presentation. Notably, one B cell line, DPC, whose antibody epitope did not overlap with the T cell determinants, was consistently poor in presenting GAD65. Using the fluorescent dye Alexa Fluor 647 conjugated to GAD65 to study receptor-mediated antigen endocytosis showed that all the antigen-specific B cell clones were efficient in intracellular accumulation of the antigen. Additionally, multicolour immunofluorescence microscopy showed that the internalized GAD65/surface IgG complexes were rapidly targeted to a perinuclear compartment in all GAD-specific B cell clones. This analysis also demonstrated that HLA-DM expression was reduced strongly in DPC compared to the stimulatory B cell clones. Thus the capability of antigen-specific B cells to capture and present antigen to human T cell lines is dependent on the spatial relationship of B and T cell epitopes as well other factors which contribute to the efficiency of presentation. PMID:14678267

  10. A central role for HSC70 in regulating antigen trafficking and MHC class II presentation.

    PubMed

    Deffit, Sarah N; Blum, Janice S

    2015-12-01

    Cells rely on multiple intracellular trafficking pathways to capture antigens for proteolysis. The resulting peptides bind to MHC class II molecules to promote CD4(+) T cell recognition. Endocytosis enhances the capture of extracellular and cell surface bound antigens for processing and presentation, while autophagy pathways shunt cytoplasmic and nuclear antigens for presentation in the context of MHC class II molecules. Understanding how physiological changes and cellular stress alter antigen trafficking and the repertoire of peptides presented by class II molecules remains challenging, yet important in devising novel approaches to boost immune responses to pathogens and tumors. An abundant, constitutively expressed cytoplasmic chaperone, HSC70 plays a central role in modulating antigen transport within cells to control MHC class II presentation during nutrient stress. HSC70 may serve as a molecular switch to modulate endocytic and autophagy pathways, impacting the source of antigens delivered for MHC class II presentation during cellular stress.

  11. Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen Presenting Cells, Critical for T cell Immunity

    PubMed Central

    Broz, Miranda; Binnewies, Mikhail; Boldajipour, Bijan; Nelson, Amanda; Pollock, Joshua; Erle, David; Barczak, Andrea; Rosenblum, Michael; Daud, Adil; Barber, Diane; Amigorena, Sebastian; van’t Veer, Laura J.; Sperling, Anne; Wolf, Denise; Krummel, Matthew F.

    2014-01-01

    SUMMARY It is well understood that antigen-presenting cells (APC) within tumors typically do not maintain cytotoxic T cell (CTL) function, despite engaging them. Across multiple mouse tumor models and human tumor biopsies, we have delineated the intratumoral dendritic-cell (DC) populations as distinct from macrophage populations. Within these, CD103+ DCs are extremely sparse and yet remarkably capable CTL stimulators. These are uniquely dependent upon IRF8, Zbtb46 and Batf3 transcription factors and generated by GM-CSF and Flt3L cytokines. Regressing tumors have higher proportions of these cells, T-cell dependent immune clearance relies upon them, and abundance of their transcripts in human tumors correlates with clinical outcome. This cell type presents opportunities for prognostic and therapeutic approaches across multiple cancer types. PMID:25446897

  12. Characterization of defectiveness in endogenous antigen presentation of novel murine cells established from methylcholanthrene-induced fibrosarcomas.

    PubMed Central

    Kuroda, K; Yamashina, K; Kitatani, N; Kagishima, A; Hamaoka, T; Hosaka, Y

    1995-01-01

    Three cell lines (4A1, 4C2 and 6D1 cells) derived from fibrosarcoma induced by the inoculation of 3-methylcholanthrene into C3H/HeN (H-2k) mice were examined for their ability to present antigens to CD8+ cytotoxic T lymphocytes (CTL). 6D1 and 4C2 cells were deficient in presenting endogenously synthesized influenza virus antigens to CTL, but they were able to present antigens when they were sensitized with a synthetic epitope peptide. The expression of the H-2 Kk gene in 4C2 and 6D1 cells was much reduced and was detectable only with Northern blot hybridization. The expression of two transporter genes (TAP1 and TAP2), examined by Northern hybridization, was also reduced in both cells, and negligible particularly in 4C2 cells. Interferon-gamma (IFN-gamma) treatment of these cells induced expression of Kk, TAP1 and TAP2 genes and rescued the defect of class I-restricted antigen presentation in 4C2 and 6D1 cells. Even after this treatment, however, antigen-presentation capability of 4C2 cells was still much lower than that of normal 4A1 cells. This finding suggests that 4C2 cells might have an additional defective gene(s), whose products are involved in the processing of class I-restricted antigen, besides the Kk and TAP genes, and this may explain the difficulty of 4C2 cells to induce tumour-specific immunity, as described previously. To our knowledge, the 4C2 cell is the first tumour cell postulated to have more than three defective genes involved in class I-restricted antigen presentation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:7890298

  13. Quantitative immunophenotypic analysis of antigen-presenting cells involved in ectromelia virus antigen presentation in BALB/c and C57BL/6 mice.

    PubMed

    Szulc-Dąbrowska, Lidia; Gieryńska, Małgorzata; Boratyńska-Jasińska, Anna; Martyniszyn, Lech; Winnicka, Anna; Niemiałtowski, Marek G

    2013-08-01

    During mousepox in resistant (C57BL/6) or susceptible (BALB/c) strains of mice, stimulation of Th1 or Th2 cytokine immune response, respectively, is observed. Because mechanisms of different polarization of T cells remain elusive, in this study, we quantitatively assessed the phenotype of antigen-presenting cells (APCs) involved in ectromelia virus (ECTV) antigen presentation and cluster formation with effector cells in secondary lymphoid organs of BALB/c and C57BL/6 mice. We showed that both strains of mice display similar dynamics and kinetics of viral antigen presentation by CD11c(+) , CD11b(+) , and CD19(+) cells. CD11c(+) and CD11b(+) cells highly participated in viral antigen presentation during all stages of mousepox, whereas CD19(+) cells presented viral peptides later in infection. The main population of dendritic cells (DCs) engaged in ECTV antigen presentation and cell junction formation with effector cells was a population of myeloid CD11b(+) DCs (mDCs). We suggest that, on the one hand, ECTV may differentially affect the functions of APCs depending on the strain of mice. On the other hand, we suggest that some types of APCs, such as mDCs or other DCs subsets, have different abilities to direct the shape of immune response depending on the host resistance to mousepox.

  14. Impaired antigen presentation and potent phagocytic activity identifying tumor-tolerant human monocytes.

    PubMed

    Soares-Schanoski, Alessandra; Jurado, Teresa; Córdoba, Raúl; Siliceo, María; Fresno, Carlos Del; Gómez-Piña, Vanesa; Toledano, Victor; Vallejo-Cremades, Maria T; Alfonso-Iñiguez, Sergio; Carballo-Palos, Arkaitz; Fernández-Ruiz, Irene; Cubillas-Zapata, Carolina; Biswas, Subhra K; Arnalich, Francisco; García-Río, Francisco; López-Collazo, Eduardo

    2012-06-29

    Monocyte exposure to tumor cells induces a transient state in which these cells are refractory to further exposure to cancer. This phenomenon, termed "tumor tolerance", is characterized by a decreased production of proinflammatory cytokines in response to tumors. In the past, we found that this effect comprises IRAK-M up regulation and TLR4 and CD44 activation. Herein we have established a human model of tumor tolerance and have observed a marked down-regulation of MHCII molecules as well as the MHCII master regulator, CIITA, in monocytes/macrophages. These cells combine an impaired capability for antigen presentation with potent phagocytic activity and exhibit an M2-like phenotype. In addition circulating monocytes isolated from Chronic Lymphocytic Leukemia patients exhibited the same profile as tumor tolerant cells after tumor ex vivo exposition.

  15. The Other Function: Class II-Restricted Antigen Presentation by B Cells

    PubMed Central

    Adler, Lital N.; Jiang, Wei; Bhamidipati, Kartik; Millican, Matthew; Macaubas, Claudia; Hung, Shu-chen; Mellins, Elizabeth D.

    2017-01-01

    Mature B lymphocytes (B cells) recognize antigens using their B cell receptor (BCR) and are activated to become antibody-producing cells. In addition, and integral to the development of a high-affinity antibodies, B cells utilize the specialized major histocompatibility complex class II (MHCII) antigen presentation pathway to process BCR-bound and internalized protein antigens and present selected peptides in complex with MHCII to CD4+ T cells. This interaction influences the fate of both types of lymphocytes and shapes immune outcomes. Specific, effective, and optimally timed antigen presentation by B cells requires well-controlled intracellular machinery, often regulated by the combined effects of several molecular events. Here, we delineate and summarize these events in four steps along the antigen presentation pathway: (1) antigen capture and uptake by B cells; (2) intersection of internalized antigen/BCRs complexes with MHCII in peptide-loading compartments; (3) generation and regulation of MHCII/peptide complexes; and (4) exocytic transport for presentation of MHCII/peptide complexes at the surface of B cells. Finally, we discuss modulation of the MHCII presentation pathway across B cell development and maturation to effector cells, with an emphasis on the shaping of the MHCII/peptide repertoire by two key antigen presentation regulators in B cells: HLA-DM and HLA-DO. PMID:28386257

  16. Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy.

    PubMed

    Perica, Karlo; Bieler, Joan Glick; Schütz, Christian; Varela, Juan Carlos; Douglass, Jacqueline; Skora, Andrew; Chiu, Yen Ling; Oelke, Mathias; Kinzler, Kenneth; Zhou, Shibin; Vogelstein, Bert; Schneck, Jonathan P

    2015-07-28

    Adoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation. Enrichment + Expansion resulted in greater than 1000-fold expansion of both mouse and human tumor-specific T cells in 1 week, with nano-aAPC based enrichment conferring a proliferation advantage during both in vitro culture and after adoptive transfer in vivo. Robust T cell responses were seen not only for shared tumor antigens, but also for computationally predicted neo-epitopes. Streamlining the rapid generation of large numbers of tumor-specific T cells in a cost-effective fashion through Enrichment + Expansion can be a powerful tool for immunotherapy.

  17. Direct laser writing of auxetic structures: present capabilities and challenges

    NASA Astrophysics Data System (ADS)

    Hengsbach, Stefan; Díaz Lantada, Andrés

    2014-08-01

    Auxetic materials (or metamaterials) are those with a negative Poisson ratio (NPR) and that display the unexpected property of lateral expansion when stretched, as well as an equal and opposing densification when compressed. Such geometries are being progressively employed in the development of novel products, especially in the fields of intelligent expandable actuators, shape morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic geometries and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of direct laser writing. The process stands out for its precision and complex three-dimensional (3D) geometries attainable without the need of supporting structures. To our knowledge it represents one of the first examples of the application of this technology to the manufacture of auxetic geometries and mechanical metamaterials, with details even more remarkable than those shown in very recent studies, almost reaching the current limit of this additive manufacturing technology. We have used some special 3D auxetic designs whose remarkable NPR has been previously highlighted.

  18. RNAi screen for kinases and phosphatases that play a role in antigen presentation by dendritic cells.

    PubMed

    Moita, Catarina F; Chora, Ângelo; Hacohen, Nir; Moita, Luis F

    2012-07-01

    Effective CD8(+) T-cell responses against tumor or microbial antigens that are not directly expressed in antigen-presenting cells (APCs) depend on the cross-presentation of these antigens on MHC class I in APCs. To identify signaling molecules that regulate cross-presentation, we used lentiviral-based RNA interference to test the roles of hundreds of kinases and phosphatases in this process. Our study uncovered eight previously unknown genes, consisting of one positive and seven negative regulators of antigen cross-presentation. Depletion of Acvr1c, a type I receptor for TGF-β family of signaling molecules, led to an increase in CD80 and CD86 co-stimulator surface expression and secreted IL-12 in mouse bone marrow-derived DCs, as well as antigen-specific T-cell proliferation.

  19. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation.

    PubMed

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J; Hu, Qingang; Hu, Hongming

    2017-12-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  20. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    NASA Astrophysics Data System (ADS)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  1. Regulation of MHC II and CD1 antigen presentation: from ubiquity to security.

    PubMed

    Gelin, Catherine; Sloma, Ivan; Charron, Dominique; Mooney, Nuala

    2009-02-01

    MHC class II and CD1-mediated antigen presentation on various APCs [B cells, monocytes, and dendritic cells (DC)] are subject to at least three distinct levels of regulation. The first one concerns the expression and structure of the antigen-presenting molecules; the second is based on the extracellular environment and signals of danger detected. However, a third level of regulation, which has been largely overlooked, is determined by lateral associations between antigen-presenting molecules and other proteins, their localization in specialized microdomains within the plasma membrane, and their trafficking pathways. This review focuses on features common to MHC II and CD1 molecules in their ability to activate specific T lymphocytes with the objective of addressing one basic question: What are the mechanisms regulating antigen presentation by MHC II and CD1 molecules within the same cell? Recent studies in immature DC, where MHC II and CD1 are coexpressed, suggest that the invariant chain (Ii) regulates antigen presentation by either protein. Ii could therefore favor MHC II or CD1 antigen presentation and thereby discriminate between antigens.

  2. A fully synthetic glycopeptide antitumor vaccine based on multiple antigen presentation on a hyperbranched polymer.

    PubMed

    Glaffig, Markus; Palitzsch, Björn; Hartmann, Sebastian; Schüll, Christoph; Nuhn, Lutz; Gerlitzki, Bastian; Schmitt, Edgar; Frey, Holger; Kunz, Horst

    2014-04-07

    For antitumor vaccines both the selected tumor-associated antigen, as well as the mode of its presentation, affect the immune response. According to the principle of multiple antigen presentation, a tumor-associated MUC1 glycopeptide combined with the immunostimulating T-cell epitope P2 from tetanus toxoid was coupled to a multi-functionalized hyperbranched polyglycerol by "click chemistry". This globular polymeric carrier has a flexible dendrimer-like structure, which allows optimal antigen presentation to the immune system. The resulting fully synthetic vaccine induced strong immune responses in mice and IgG antibodies recognizing human breast-cancer cells.

  3. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection.

    PubMed

    Cram, Erik D; Simmons, Ryan S; Palmer, Amy L; Hildebrand, William H; Rockey, Daniel D; Dolan, Brian P

    2015-11-23

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.

  4. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection

    PubMed Central

    Cram, Erik D.; Simmons, Ryan S.; Palmer, Amy L.; Hildebrand, William H.; Rockey, Daniel D.

    2015-01-01

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8+ cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8+ T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8+ killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. PMID:26597986

  5. Synovial fluid antigen-presenting cells unmask peripheral blood T cell responses to bacterial antigens in inflammatory arthritis.

    PubMed Central

    Life, P F; Viner, N J; Bacon, P A; Gaston, J S

    1990-01-01

    We and others have previously shown that synovial fluid (SF) mononuclear cells (MC) from patients with both reactive arthritis and other inflammatory arthritides proliferate in vitro in response to bacteria clinically associated with the triggering of reactive arthritis. In all cases, such SFMC responses are greater than the corresponding peripheral blood (PB) MC responses, often markedly so, and the mechanism for this is unclear. We have investigated this phenomenon by comparing the relative abilities of irradiated non-T cells derived from PB and SF to support autologous T cell responses to ReA-associated bacteria. Seven patients whose SFMC had been shown previously to respond to bacteria were studied. We demonstrate antigen-specific responses of PB T cells to bacteria in the presence of SF non-T cells which are in marked contrast to the minimal responses of either unfractionated PBMC or PB T cells reconstituted with PB non-T cells. We also show that PB, but not SF T cells respond strongly to autologous SF non-T cells in the absence of antigen or mitogen. These findings demonstrate that SF antigen-presenting cells (APC) are potent activators of PB T cells. We conclude that the contrasting responses of SFMC and PBMC to bacterial antigens may be accounted for at least in part by an enhanced ability of SF APC to support T cell proliferative responses. PMID:2311298

  6. All-in-one dual-aptasensor capable of rapidly quantifying carcinoembryonic antigen.

    PubMed

    Khang, Harriet; Cho, Kelly; Chong, Stephanie; Lee, Ji Hoon

    2017-04-15

    Using a dual DNA aptamer (CEA aptamer linked to hemin aptamer), capable of rapidly capturing carcinoembryonic antigen (CEA) and hemin, an all-in-one dual-aptasensor with 1,1'-oxalyldiimidazole (ODI) chemiluminescence detection was developed for the early diagnosis of human cancer. CEA and hemin competitively bound with the dual DNA aptamer while the mixture in a detection cell was incubated for 30min at room temperature. When Amplex Red and H2O2 were added in the detection cell after the incubation, the yield of resorufin formed from the reaction Amplex Red and H2O2 depended on the concentration of HRP-mimicking G-quardruplex DNAzyme formed from the binding interaction between hemin and the dual DNA aptamer. Bright red light was observed with the addition of ODI and H2O2 in the detection cell containing resorufin. Relative CL intensity of all-in-one dual-aptasensor, operated with the competitive reaction of CEA and hemin in the presence of the dual aptamer, was exponentially decreased with the increase of CEA concentration in human serum. The limit of detection (LOD=3σ) of the all-in-one dual-aptasensor which operated with excellent accuracy, precision, and reproducibility was as low as 0.58ng/ml. The good correlation between the easy to use all-in-one dual-aptasensor and conventional enzyme-linked immunosorbent assay (ELISA), operated with time consuming procedures (e.g., long incubations and multiple washings), indicates that the rapid all-in-one dual-aptasensor can be applied as a novel clinical tool for the early diagnosis of breast cancer.

  7. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis*

    PubMed Central

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M.; Concepcion, Erlinda; David, Chella S.; Kastrinsky, David B.; Ohlmeyer, Michael; Tomer, Yaron

    2016-01-01

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. PMID:26703475

  8. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    PubMed

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD.

  9. Identification of a peptide binding protein that plays a role in antigen presentation

    SciTech Connect

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-03-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from (/sup 35/S)methionine-labeled cells, appears as two discrete bands of approx. =72 and 74 kDa after NaDodSO/sub 4//PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation.

  10. Killer Artificial Antigen Presenting Cells (KaAPC) for Efficient In Vitro Depletion of Human Antigen-specific T Cells

    PubMed Central

    Schütz, Christian; Fleck, Martin; Schneck, Jonathan P.; Oelke, Mathias

    2014-01-01

    Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion. PMID:25145915

  11. B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines

    PubMed Central

    Colluru, Viswa Teja; McNeel, Douglas G.

    2016-01-01

    In spite of remarkable preclinical efficacy, DNA vaccination has demonstrated low immunogenicity in humans. While efforts have focused on increasing cross-presentation of DNA-encoded antigens, efforts to increase DNA vaccine immunogenicity by targeting direct presentation have remained mostly unexplored. In these studies, we compared the ability of different APCs to present antigen to T cells after simple co-culture with plasmid DNA. We found that human primary peripheral B lymphocytes, and not monocytes or in vitro derived dendritic cells (DCs), were able to efficiently encode antigen mRNA and expand cognate tumor antigen-specific CD8 T cells ex vivo. Similarly, murine B lymphocytes co-cultured with plasmid DNA, and not DCs, were able to prime antigen-specific T cells in vivo. Moreover, B lymphocyte-mediated presentation of plasmid antigen led to greater Th1-biased immunity and was sufficient to elicit an anti-tumor effect in vivo. Surprisingly, increasing plasmid presentation by B cells, and not cross presentation of peptides by DCs, further augmented traditional plasmid vaccination. Together, these data suggest that targeting plasmid DNA to B lymphocytes, for example through transfer of ex vivo plasmidloaded B cells, may be novel means to achieve greater T cell immunity from DNA vaccines. PMID:27661128

  12. Skin-Resident Antigen-Presenting Cells: Instruction Manual for Vaccine Development

    PubMed Central

    Fehres, Cynthia M.; Garcia-Vallejo, Juan J.; Unger, Wendy W. J.; van Kooyk, Yvette

    2013-01-01

    The induction of antigen-specific effector T cells is driven by proper antigen presentation and co-stimulation by dendritic cells (DCs). For this reason strategies have been developed to instruct DCs for the induction of CD4+ and CD8+ T cell responses. Since DCs are localized, amongst other locations, in peripheral tissues such as the skin, new vaccines are aiming at targeting antigens to DCs in situ. Optimal skin-DC targeting in combination with adequate adjuvant delivery facilitates DC maturation and migration to draining lymph nodes and enhances antigen cross-presentation and T cell priming. In this review we describe what DC subsets populate the human skin, as well as current vaccination strategies based on targeting strategies and alternative administration for the induction of robust long-lived anti-cancer effector T cells. PMID:23801994

  13. Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation.

    PubMed

    Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming

    2017-03-31

    We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.

  14. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis.

    PubMed

    Hari, Aswin; Ganguly, Anutosh; Mu, Libing; Davis, Shevaun P; Stenner, Melanie D; Lam, Raymond; Munro, Fay; Namet, Inana; Alghamdi, Enaam; Fürstenhaupt, Tobias; Dong, Wei; Detampel, Pascal; Shen, Lian Jun; Amrein, Matthias W; Yates, Robin M; Shi, Yan

    2015-02-01

    Peptides presented by MHC class I molecules are mostly derived from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. Here, we report that mouse dendritic cell (DC) engagement to a phagocytic target alters endocytic processing and inhibits the proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression toward the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Taken together, our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway.

  15. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis

    PubMed Central

    Hari, Aswin; Ganguly, Anutosh; Mu, Libing; Davis, Shevaun P.; Stenner, Melanie D.; Lam, Raymond; Munro, Fay; Namet, Inana; Alghamdi, Enaam; Fürstenhaupt, Tobias; Dong, Wei; Detampel, Pascal; Shen, Lian Jun; Amrein, Matthias W.; Yates, Robin M.; Shi, Yan

    2014-01-01

    Peptides presented by MHC class I molecules are derived mostly from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are derived predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. We report that mouse dendritic cell engagement of a phagocytic target alters endocytic processing and inhibits their proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression towards the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway. PMID:25378230

  16. Role of Metalloproteases in Vaccinia Virus Epitope Processing for Transporter Associated with Antigen Processing (TAP)-independent Human Leukocyte Antigen (HLA)-B7 Class I Antigen Presentation*

    PubMed Central

    Lorente, Elena; García, Ruth; Mir, Carmen; Barriga, Alejandro; Lemonnier, François A.; Ramos, Manuel; López, Daniel

    2012-01-01

    The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8+ lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8+ T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections. PMID:22298786

  17. Antigen presentation by non-immune B-cell hybridoma clones: presentation of synthetic antigenic sites reveals clones that exhibit no specificity and clones that present only one epitope

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1989-01-01

    Recently, we reported the preparation and antigen-presenting properties of hybridoma B-cell clones obtained after fusing non-secreting, non-antigen presenting Balb/c 653-myeloma cells with non-immune SJL spleen cells. It was found that antigen presentation at the clonal level can be specific or non-specific, depending on the particular B-cell clone. In the present work, one specific and one general presenter B-cell clones were tested for their epitope presentation ability to SJL T-cells that were specific to lysozyme or myoglobin. B-cell clone A1G12, a general presenter which presented both lysozyme and myoglobin to their respective T-cell lines, was found to present all five myoglobin epitopes while clone A1L16, a lysozyme specific presenter presented only one of the three epitopes of lysozyme. The latter reveals a hitherto unknown submolecular specificity (to a given epitope within a protein) for antigen presenting cells at the clonal level. Therefore, the specificity of T-cell recognition does not only derive from the T-cell but may also be dependent on the epitope specificity of the antigen-presenting B-cell.

  18. Killer artificial antigen-presenting cells: the synthetic embodiment of a 'guided missile'.

    PubMed

    Schütz, Christian; Oelke, Mathias; Schneck, Jonathan P; Mackensen, Andreas; Fleck, Martin

    2010-07-01

    At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells ('guided missiles'). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based 'killer artificial antigen-presenting cell' strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity.

  19. Exosomes function in antigen presentation during an in vivo Mycobacterium tuberculosis infection

    PubMed Central

    Smith, Victoria L.; Cheng, Yong; Bryant, Barry R.; Schorey, Jeffrey S.

    2017-01-01

    Mycobacterium tuberculosis-infected macrophages and dendritic cells are limited in their ability to present antigen to CD4+ T cells suggesting that other mechanism of antigen presentation are driving the robust T cell response observed during an M. tuberculosis infection. These mechanisms could include antigens present in apoptotic bodies, necrotic debris, exosomes or even release of non-vesicular antigen from infected cells. However, there is limited data to support any of these mechanisms as important in driving T cell activation in vivo. In the present study we use Rab27a-deficient mice which show diminished trafficking of mycobacterial components to exosomes as well as M. tuberculosis strains that express recombinant proteins which traffic or fail to traffic to exosomes. We observed that exosomes released during a mouse M. tuberculosis infection contribute significantly to its T cell response. These finding imply that exosomes function to promote T cell immunity during a bacterial infection and are an important source of extracellular antigen. PMID:28262829

  20. Exosomes function in antigen presentation during an in vivo Mycobacterium tuberculosis infection.

    PubMed

    Smith, Victoria L; Cheng, Yong; Bryant, Barry R; Schorey, Jeffrey S

    2017-03-06

    Mycobacterium tuberculosis-infected macrophages and dendritic cells are limited in their ability to present antigen to CD4+ T cells suggesting that other mechanism of antigen presentation are driving the robust T cell response observed during an M. tuberculosis infection. These mechanisms could include antigens present in apoptotic bodies, necrotic debris, exosomes or even release of non-vesicular antigen from infected cells. However, there is limited data to support any of these mechanisms as important in driving T cell activation in vivo. In the present study we use Rab27a-deficient mice which show diminished trafficking of mycobacterial components to exosomes as well as M. tuberculosis strains that express recombinant proteins which traffic or fail to traffic to exosomes. We observed that exosomes released during a mouse M. tuberculosis infection contribute significantly to its T cell response. These finding imply that exosomes function to promote T cell immunity during a bacterial infection and are an important source of extracellular antigen.

  1. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation

    PubMed Central

    Adiko, Aimé Cézaire; Babdor, Joel; Gutiérrez-Martínez, Enric; Guermonprez, Pierre; Saveanu, Loredana

    2015-01-01

    Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization. PMID:26191062

  2. Tumor Antigen Cross-Presentation and the Dendritic Cell: Where it All Begins?

    PubMed Central

    McDonnell, Alison M.; Robinson, Bruce W. S.; Currie, Andrew J.

    2010-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that are critical for the generation of effective cytotoxic T lymphocyte (CTL) responses; however, their function and phenotype are often defective or altered in tumor-bearing hosts, which may limit their capacity to mount an effective tumor-specific CTL response. In particular, the manner in which exogenous tumor antigens are acquired, processed, and cross-presented to CD8 T cells by DCs in tumor-bearing hosts is not well understood, but may have a profound effect on antitumor immunity. In this paper, we have examined the role of DCs in the cross-presentation of tumor antigen in terms of their subset, function, migration, and location with the intention of examining the early processes that contribute to the development of an ineffective anti-tumor immune response. PMID:20976125

  3. Estimation of low frequency antigen presenting cells with a novel RELISPOT assay

    PubMed Central

    Dzutsev, Amiran K.; Belyakov, Igor M.; Isakov, Dmitry V.; Gagnon, Susan J.; Margulies, David H.; Berzofsky, Jay A.

    2008-01-01

    Adequate presentation of self and foreign antigens is a key factor for efficient T-cell immunosurveillance against pathogens and tumors. Cells presenting foreign antigens usually comprise a rare population and are difficult to detect even at the peak of infection. Here we demonstrate a CD8+ T-cell-based approach that allows detection of specific antigen-presenting cells (APC) at a frequency of less than 0.0005%. When T cells are in excess, they form rosettes with rare APCs, which appear as single spots in an IFN-γ ELISPOT assay. Using this RELISPOT (Rosette ELISPOT) method we demonstrate the dynamic interplay between CD8 T cells and professional and non-professional APCs following virus challenge. PMID:18294650

  4. A catalytically inactive mutant of the deubiquitylase YOD-1 enhances antigen cross-presentation

    PubMed Central

    Sehrawat, Sharvan; Koenig, Paul-Albert; Kirak, Oktay; Schlieker, Christian; Fankhauser, Manuel

    2013-01-01

    Antigen presenting cells (APCs) that express a catalytically inactive version of the deubiquitylase YOD1 (YOD1-C160S) present exogenous antigens more efficiently to CD8+ T cells, both in vitro and in vivo. Compared with controls, immunization of YOD1-C160S mice led to greater expansion of specific CD8+ T cells and showed improved control of infection with a recombinant γ-herpes virus, MHV-68, engineered to express SIINFEKL peptide, the ligand for the ovalbumin-specific TCR transgenic OT-I cells. Enhanced expansion of specific CD8+ T cells was likewise observed on infection of YOD1-C160S mice with a recombinant influenza A virus expressing SIINFEKL. YOD1-C160S APCs retained antigen longer than did control APCs. Enhanced cross-presentation by YOD1-C160S APCs was transporter associated with antigen processing (TAP1)–independent but sensitive to inclusion of inhibitors of acidification and of the proteasome. The activity of deubiquitylating enzymes may thus help control antigen-specific CD8+ T-cell responses during immunization. PMID:23243279

  5. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines.

    PubMed

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  6. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    PubMed Central

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines. PMID:26583156

  7. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages.

    PubMed Central

    Kovacsovics-Bankowski, M; Clark, K; Benacerraf, B; Rock, K L

    1993-01-01

    Antigens in extracellular fluids can be processed and presented with major histocompatibility complex (MHC) class I molecules by a subset of antigen presenting cells (APCs). Chicken egg ovalbumin (Ova) linked to beads was presented with MHC class I molecules by these cells up to 10(4)-fold more efficiently than soluble Ova. This enhanced presentation was observed with covalently or noncovalently linked Ova and with beads of different compositions. A key parameter in the activity of these conjugates was the size of the beads. The APC that is responsible for this form of presentation is a macrophage. These cells internalize the antigen constructs through phagocytosis, since cytochalasin B inhibited presentation. Processing of the antigen and association with MHC class I molecules appears to occur intracellularly as presentation was observed under conditions where there was no detectable release of peptides into the extracellular fluids. When injected in vivo in C57BL/6 mice, Ova-beads, but not soluble Ova, primed CD4- CD8+ cytotoxic T lymphocytes (CTLs). Similar results were obtained in BALB/c mice immunized with beta-galactosidase-beads. The implications of these findings for development of nonliving vaccines that stimulate CTL immunity are discussed. PMID:8506338

  8. Serum proteases alter the antigenicity of peptides presented by class I major histocompatibility complex molecules.

    PubMed Central

    Falo, L D; Colarusso, L J; Benacerraf, B; Rock, K L

    1992-01-01

    Any effect of serum on the antigenicity of peptides is potentially relevant to their use as immunogens in vivo. Here we demonstrate that serum contains distinct proteases that can increase or decrease the antigenicity of peptides. By using a functional assay, we show that a serum component other than beta 2-microglobulin enhances the presentation of ovalbumin peptides produced by cyanogen bromide cleavage. Three features of this serum activity implicate proteolysis: it is temperature dependent, it results in increased antigenicity in a low molecular weight peptide fraction, and it is inhibited by the protease inhibitor leupeptin. Conversely, presentation of the synthetic peptide OVA-(257-264) is inhibited by serum. This inhibition is unaffected by leupeptin but is blocked by bestatin, a protease inhibitor with distinct substrate specificities. Implications for peptide-based vaccine design and immunotherapy are discussed. PMID:1518868

  9. No Major Role for Insulin-Degrading Enzyme in Antigen Presentation by MHC Molecules

    PubMed Central

    Hsu, Hsiang-Ting; Burgevin, Anne; Guénette, Suzanne; Moser, Anna; van Endert, Peter

    2014-01-01

    Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE) was shown to produce an antigenic peptide derived from the tumor antigen MAGE-A3 in an entirely proteasome-independent manner, raising the question of the global impact of IDE in MHC class I antigen processing. Here we report that IDE knockdown in human cell lines, or knockout in two different mouse strains, has no effect on cell surface expression of various MHC class I molecules, including allomorphs such as HLA-A3 and HLA-B27 suggested to be loaded in an at least a partly proteasome-independent manner. Moreover, reduced or absent IDE expression does not affect presentation of five epitopes including epitopes derived from beta amyloid and proinsulin, two preferred IDE substrates. Thus, IDE does not play a major role in MHC class I antigen processing, confirming the dominant and almost exclusive role of the proteasome in cytosolic production of MHC class I ligands. PMID:24516642

  10. Uptake and presentation of exogenous antigen and presentation of endogenously produced antigen by skin dendritic cells represent equivalent pathways for the priming of cellular immune responses following biolistic DNA immunization.

    PubMed

    Sudowe, Stephan; Dominitzki, Sabine; Montermann, Evelyn; Bros, Matthias; Grabbe, Stephan; Reske-Kunz, Angelika B

    2009-09-01

    Gene gun-mediated biolistic DNA vaccination with beta-galactosidase (betaGal)-encoding plasmid vectors efficiently modulated antigen-induced immune responses in an animal model of type I allergy, including the inhibition of immunoglobulin E (IgE) production. Here we show that CD4(+) as well as CD8(+) T cells from mice biolistically transfected with a plasmid encoding betaGal under the control of the fascin promoter (pFascin-betaGal) are capable of inhibiting betaGal-specific IgE production after adoptive transfer into naïve recipients. Moreover, suppression of IgE production was dependent on interferon (IFN)-gamma. To analyse the modalities of activation of CD4(+) and CD8(+) T cells regarding the localization of antigen synthesis following gene gun-mediated DNA immunization, we used the fascin promoter and the keratin 5 promoter (pK5-betaGal) to direct betaGal production mainly to dendritic cells (DCs) and to keratinocytes, respectively. Gene gun-mediated DNA immunization with each vector induced considerable activation of betaGal-specific CD8(+) cytotoxic T cells. Cytokine production by re-stimulated CD4(+) T cells in draining lymph nodes and immunoglobulin isotype profiles in sera of immunized mice indicated that immunization with pFascin-betaGal induced a T helper type 1 (Th1)-biased immune response, whereas immunization with pK5-betaGal generated a mixed Th1/Th2 immune response. Nevertheless, DNA vaccination with pFascin-betaGal and pK5-betaGal, respectively, efficiently inhibited specific IgE production in the mouse model of type I allergy. In conclusion, our data show that uptake of exogenous antigen produced by keratinocytes and its presentation by untransfected DCs as well as the presentation of antigen synthesized endogenously in DCs represent equivalent pathways for efficient priming of cellular immune responses.

  11. Unique Transcompartmental Bridge: Antigen-Presenting Cells Sampling across Endothelial and Mucosal Barriers

    PubMed Central

    Allen, Frederick; Tong, Alexander A.; Huang, Alex Y.

    2016-01-01

    Potentially harmful pathogens can gain access to tissues and organ systems through body sites that are in direct contact with the outside environment, such as the skin, the gut, and the airway mucosa. Antigen-presenting cells (APCs) represent a bridge between the innate and adaptive immunity, and their capacity for constant immune surveillance and rapid sampling of incoming pathogens and other potentially harmful antigens is central for mounting an effective and robust protective host response. The classical view is that APCs perform this task efficiently within the tissue to sense invading agents intra-compartmentally. However, recent data based on high resolution imaging support an additional transcompartmental surveillance behavior by APC by reaching across intact physical barriers. In this review, we summarize intravital microscopic evidences of APC to sample antigens transcompartmentally at the gut mucosa and other body sites. PMID:27375624

  12. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47.

    PubMed

    Saini, Neeraj K; Baena, Andres; Ng, Tony W; Venkataswamy, Manjunatha M; Kennedy, Steven C; Kunnath-Velayudhan, Shajo; Carreño, Leandro J; Xu, Jiayong; Chan, John; Larsen, Michelle H; Jacobs, William R; Porcelli, Steven A

    2016-08-15

    Suppression of major histocompatibility complex (MHC) class II antigen presentation is believed to be among the major mechanisms used by Mycobacterium tuberculosis to escape protective host immune responses. Through a genome-wide screen for the genetic loci of M. tuberculosis that inhibit MHC class II-restricted antigen presentation by mycobacteria-infected dendritic cells, we identified the PE_PGRS47 protein as one of the responsible factors. Targeted disruption of the PE_PGRS47 (Rv2741) gene led to attenuated growth of M. tuberculosis in vitro and in vivo, and a PE_PGRS47 mutant showed enhanced MHC class II-restricted antigen presentation during in vivo infection of mice. Analysis of the effects of deletion or over-expression of PE_PGRS47 implicated this protein in the inhibition of autophagy in infected host phagocytes. Our findings identify PE_PGRS47 as a functionally relevant, non-redundant bacterial factor in the modulation of innate and adaptive immunity by M. tuberculosis, suggesting strategies for improving antigen presentation and the generation of protective immunity during vaccination or infection.

  13. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis

    PubMed Central

    Obuchowski, Michał; Nidzworski, Dawid

    2016-01-01

    Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e) features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human—avian—swine—human M2e (M2eH-A-S-H) peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system. PMID:27902762

  14. New Design of MHC Class II Tetramers to Accommodate Fundamental Principles of Antigen Presentation

    PubMed Central

    Landais, Elise; Romagnoli, Pablo A.; Corper, Adam L.; Shires, John; Altman, John D.; Wilson, Ian A.; Garcia, K. Christopher; Teyton, Luc

    2009-01-01

    Direct identification and isolation of antigen-specific T cells became possible with the development of “MHC tetramers”, based on fluorescent avidins displaying biotinylated peptide-MHC (pMHC) complexes. This approach, extensively used for MHC class I–restricted T cells, has met very limited success with MHC class II tetramers (pMHCT-2) for the detection of CD4+ specific T cells. In addition, a very large number of these reagents while capable of specifically activating T cells after being coated on solid support, are still unable to stain. In order to try to understand this puzzle and design usable tetramers, we examined each parameter critical for the production of pMHCT-2 using the I-Ad-OVA system as a model. Through this process the geometry of pMHC display by avidin tetramers was examined, as well as the stability of recombinant MHC molecules. However, we discovered that the most important factor limiting the reactivity of pMHCT-2 was the display of peptides. Indeed, long peptides, as presented by MHC class II molecules, can be bound to I-A/HLA-DQ molecules in more than one register as suggested by structural studies. This mode of anchorless peptide binding allows the selection of a broader repertoire on single peptides and should favor anti-infectious immune responses. Thus, beyond the technical improvements that we propose, the redesign of pMHCT-2 will give us the tools to evaluate the real size of the CD4 repertoire and help us in the production and testing of new vaccines. PMID:19923463

  15. Regulation of NK-cell function by mucins via antigen-presenting cells.

    PubMed

    Laskarin, G; Redzovic, A; Medancic, S Srsen; Rukavina, D

    2010-12-01

    Decidual antigen-presenting cells including dendritic cells (DCs) and CD14(+) macrophages, as mediators of the first encounter with fetal antigens, appear to be critically involved in the initiation of primary immune response by regulating innate- and adaptive immunity. Interleukin-15, produced by them, permits the proliferation and differentiation of CD3(-)CD16(-)CD94(+)NKG2A(+)CD56(+bright) decidual NK cells that identify trophoblast cells. These cells are able to kill them after Th1 cytokine overstimulation and by increasing the release of preformed cytotoxic mediators. Thus, the local microenvironment is a potent modulator of antigen-presenting cell functions. Tumor associated glycoprotein-72 (TAG-72) and mucine 1 (MUC-1) are glycoproteins secreted by uterine epithelial cells. Our hypothesis is that TAG-72 and MUC-1 are the natural ligands for carbohydrate recognition domains (CRDs) of endocytic mannose receptor (MR or CD206) and DC-specific ICAM non-integrin (DC-SIGN or CD209) expressed on decidual CD14(+) macrophages and CD1a(+) DCs. They might be able to condition antigen-presenting cells to produce distinct profiles of cyto/chemokines with consequential reduction in NK-cell numbers and cytotoxic potential leading to insufficient control over trophoblast growth. This hypothesis could explain the disappearance of MUC-1 beneath the attached embryo during the process of successful implantation when tight regulation of trophoblast invasion is needed. As IL-15 is the earliest and the most important factor in NK-cell proliferation, differentiation, and maturation, we expected primarily an increase of IL-15 expression in antigen-presenting cells concomitant with the disappearance of mucins and the enhancement in NK cells numbers and of cytotoxic potential after their close contact with early pregnancy decidual antigen-presenting cells. If our hypothesis is correct, it would contribute to the understanding of the role of mucins in the redirection of immune response

  16. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis

    PubMed Central

    Salao, Kanin; Jiang, Lele; Li, Hui; Tsai, Vicky W.-W.; Husaini, Yasmin; Curmi, Paul M. G.; Brown, Louise J.; Brown, David A.

    2016-01-01

    ABSTRACT Intracellular chloride channel protein 1 (CLIC1) participates in inflammatory processes by regulating macrophage phagosomal functions such as pH and proteolysis. Here, we sought to determine if CLIC1 can regulate adaptive immunity by actions on dendritic cells (DCs), the key professional antigen presenting cells. To do this, we first generated bone marrow-derived DCs (BMDCs) from germline CLIC1 gene-deleted (CLIC1−/−) and wild-type (CLIC1+/+) mice, then studied them in vitro and in vivo. We found phagocytosis triggered cytoplasmic CLIC1 translocation to the phagosomal membrane where it regulated phagosomal pH and proteolysis. Phagosomes from CLIC1−/− BMDCs displayed impaired acidification and proteolysis, which could be reproduced if CLIC1+/+, but not CLIC1−/− cells, were treated with IAA94, a CLIC family ion channel blocker. CLIC1−/− BMDC displayed reduced in vitro antigen processing and presentation of full-length myelin oligodendrocyte glycoprotein (MOG) and reduced MOG-induced experimental autoimmune encephalomyelitis. These data suggest that CLIC1 regulates DC phagosomal pH to ensure optimal processing of antigen for presentation to antigen-specific T-cells. Further, they indicate that CLIC1 is a novel therapeutic target to help reduce the adaptive immune response in autoimmune diseases. PMID:27113959

  17. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  18. Effect of antigen/antibody ratio on macrophage uptake, processing, and presentation to T cells of antigen complexed with polyclonal antibodies

    PubMed Central

    1991-01-01

    Activation of a galactosidase-specific murine T hybridoma clone and of a human tetanus toxoid-specific T clone by antigen-presenting cells (APC) was used to evaluate the regulatory function of antibodies complexed with the relevant antigen. Complexed antigen, in fact, is taken up with high efficiency thanks to Fc receptors borne by APC. Antibody/antigen ratio in the complexes proved to be a critical parameter in enhancing antigen presentation. Complexes in moderate antibody excess provided optimal T cell activation independently of the physical state of the complexes (precipitated by a second antibody or solubilized by complement). Complexes in extreme antibody excess, on the contrary, did not yield T cell activation although taken up by APC efficiently. The effect of antibodies at extreme excess was observed with substimulatory dose of antigen (loss of potentiation) and with optimal dose of antigen (loss of stimulation). An excess of specific polyclonal antibodies hampers proteolytic degradation of antigen in vitro, supporting the view that a similar mechanism may operate within the APC that have internalized immune complexes in extreme antibody excess. The possibility that immune complex forming in extreme antibody excess may turn off the T cell response is proposed as a regulatory mechanism. PMID:1985125

  19. Salt bridge residues between I-Ak dimer of dimers alpha-chains modulate antigen presentation.

    PubMed

    Yadati, S; Nydam, T; Demian, D; Wade, T K; Gabriel, J L; Barisas, B G; Wade, W F

    1999-03-15

    Class II dimers of dimers are predicted to have functional significance in antigen presentation. The putative contact amino acids of the I-Ak class II dimer of dimers have been identified by molecular modeling based on the DR1 crystal structure (Nydam et al., Int. Immunol. 10, 1237,1998). We have previously reported the role in antigen presentation of dimer of dimers contact amino acids located in the C-terminal domains of the alpha- and beta-chains of class II. Our calculations show that residues Ealpha89 and Ralpha145 in the alpha2-domain form an inter alpha-chain salt bridge between pairs of alphabeta-heterodimers. Other residues, Qalpha92 and Nalpha115, may be involved in close association in that part of the alpha-chain. We investigated the role of these amino acids on class II expression and antigen presentation. Class II composed of an Ealpha89K substituted alpha-chain paired with a wt beta-chain exhibited inhibited antigen presentation and expression of alpha-chain serologic epitopes. In contrast, mutation of Ralpha145E had less affect on antigen presentation and did not affect I-Ak serologic epitopes. Interchanging charges of the salt bridge residues by expressing both Ralpha145E and Ealpha89K on the same chain obviated the large negative effect of the Ealpha89K mutation on antigen presentation but not on the serologic epitopes. Our results are similar for those reported for mutation of DR3's inter-chain salt bridge with the exception that double mutants did not moderate the DR3 defect. Interestingly, the amino acids differences between I-A and DR change the location of the inter-chain salt bridges. In DR1 these residues are located at positions Ealpha88 and Kalpha111; in I-Ak these residues are located at position Ealpha89 and Ralpha145. Inter alpha-chain salt bridges are thus maintained in various class II molecules by amino acids located in different parts of the alpha2-domain. This conservation of structure suggests that considerable functional

  20. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells

    PubMed Central

    Mittelbrunn, María; Gutiérrez-Vázquez, Cristina; Villarroya-Beltri, Carolina; González, Susana; Sánchez-Cabo, Fátima; González, Manuel Ángel; Bernad, Antonio; Sánchez-Madrid, Francisco

    2011-01-01

    The immune synapse is an exquisitely evolved means of communication between T cells and antigen-presenting cells (APCs) during antigen recognition. Recent evidence points to the transfer of RNA via exosomes as a novel mode of intercellular communication. Here we show that exosomes of T, B and dendritic immune cells contain microRNA (miRNA) repertoires that differ from those of their parent cells. We investigate whether miRNAs are exchanged during cognate immune interactions, and demonstrate the existence of antigen-driven unidirectional transfer of miRNAs from the T cell to the APC, mediated by the delivery of CD63+ exosomes on immune synapse formation. Inhibition of exosome production by targeting neutral sphingomyelinase-2 impairs transfer of miRNAs to APCs. Moreover, miRNAs transferred during immune synapsis are able to modulate gene expression in recipient cells. Thus, our results support a mechanism of cellular communication involving antigen-dependent, unidirectional intercellular transfer of miRNAs by exosomes during immune synapsis. PMID:21505438

  1. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation

    PubMed Central

    Huang, Man; Zhang, Wei; Guo, Jie; Wei, Xundong; Phiwpan, Krung; Zhang, Jianhua; Zhou, Xuyu

    2016-01-01

    HLA class I (HLA-I) transgenic mice have proven to be useful models for studying human MHC-related immune responses over the last two decades. However, differences in the processing and presentation machinery between humans and mice may have profound effects on HLA-I restricted antigen presentation. In this study, we generated a novel human TAP-LMP (hTAP-LMP) gene cluster transgenic mouse model carrying an intact human TAP complex and two human immunoproteasome LMP subunits, PSMB8/PSMB9. By crossing the hTAP-LMP strain with different HLA-I transgenic mice, we found that the expression levels of human HLA-I molecules, especially the A3 supertype members (e.g., A11 and A33), were remarkably enhanced in corresponding HLA-I/hTAP-LMP transgenic mice. Moreover, we found that humanized processing and presentation machinery increased antigen presentation of HLA-A11-restricted epitopes and promoted the rapid reduction of hepatitis B virus (HBV) infection in HLA-A11/hTAP-LMP mice. Together, our study highlights that HLA-I/hTAP-LMP mice are an improved model for studying antigen presentation of HLA-I molecules and their related CTL responses. PMID:27634283

  2. Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Anti-Tumor Immune Responses via Cross-Presentation of Tumor Antigen

    PubMed Central

    Sharabi, Andrew B.; Nirschl, Christopher J.; Kochel, Christina M.; Nirschl, Thomas R.; Francisca, Brian J.; Velarde, Esteban; Deweese, Theodore L.; Drake, Charles G.

    2014-01-01

    The immune-modulating effects of radiation therapy have gained considerable interest recently and there have been multiple reports of synergy between radiation and immunotherapy. However, additional pre-clinical studies are needed to demonstrate the antigen-specific nature of radiation-induced immune responses and elucidate potential mechanisms of synergy with immunotherapy. Here we demonstrate the ability of stereotactic radiotherapy to induce endogenous antigen-specific immune responses when combined with anti-PD-1 checkpoint blockade immunotherapy. Using the small animal radiation research platform (SARRP), image-guided stereotactic radiotherapy delivered to B16-OVA melanoma or 4T1-HA breast carcinoma tumors resulted in the development of antigen-specific T and B cell-mediated immune responses. These immune-stimulating effects of radiotherapy were significantly increased when combined with either anti-PD-1 therapy or regulatory T cell (Treg) depletion, resulting in improved local tumor control. Phenotypic analyses of antigen-specific CD8 T cells revealed that radiotherapy increased the percentage of antigen-experienced T cells and effector memory T cells. Mechanistically we found that radiotherapy up-regulates tumor-associated antigen-MHC complexes, enhances antigen cross-presentation in the draining lymph node, and increased T-cell infiltration into tumors. These findings demonstrate the ability of radiotherapy to prime an endogenous antigen-specific immune response and provide additional mechanistic rationale for combining radiation with PD-1 blockade in the clinic. PMID:25527358

  3. Delivery of a viral antigen to the class I processing and presentation pathway by Listeria monocytogenes

    PubMed Central

    1994-01-01

    Listeria monocytogenes is a facultative intracellular pathogen that grows in the cytoplasm of infected host cells. We examined the capacity of L. monocytogenes to introduce influenza nucleoprotein (NP) into the class I pathway of antigen presentation both in vitro and in vivo. Recombinant L. monocytogenes secreting a fusion of listeriolysin O and NP (LLO-NP) targeted infected cells for lysis by NP-specific class I- restricted cytotoxic T cells. Antigen presentation occurred in the context of three different class I haplotypes in vitro. A hemolysin- negative L. monocytogenes strain expressing LLO-NP was able to present in a class II-restricted manner. However, it failed to target infected cells for lysis by CD8+ T cells, indicating that hemolysin-dependent bacterial escape from the vacuole is necessary for class I presentation in vitro. Immunization of mice with a recombinant L. monocytogenes strain that stably expressed and secreted LLO-NP induced NP-specific CD8+ cytotoxic T lymphocytes. These studies have implications for the use of L. monocytogenes to deliver potentially any antigen to the class I pathway in vivo. PMID:7964496

  4. Autologous Dendritic Cells Prolong Allograft Survival Through Tmem176b-Dependent Antigen Cross-Presentation

    PubMed Central

    Charnet, P.; Savina, A.; Tilly, G.; Gautreau, L.; Carretero-Iglesia, L.; Beriou, G.; Cebrian, I.; Cens, T.; Hepburn, L.; Chiffoleau, E.; Floto, R. A.; Anegon, I.; Amigorena, S.; Hill, M.; Cuturi, M. C.

    2015-01-01

    The administration of autologous (recipient-derived) tolerogenic dendritic cells (ATDCs) is under clinical evaluation. However, the molecular mechanisms by which these cells prolong graft survival in a donor-specific manner is unknown. Here, we tested mouse ATDCs for their therapeutic potential in a skin transplantation model. ATDC injection in combination with anti-CD3 treatment induced the accumulation of CD8+CD11c+ T cells and significantly prolonged allograft survival. TMEM176B is an intracellular protein expressed in ATDCs and initially identified in allograft tolerance. We show that Tmem176b−/− ATDCs completely failed to trigger both phenomena but recovered their effect when loaded with donor peptides before injection. These results strongly suggested that ATDCs require TMEM176B to cross-present antigens in a tolerogenic fashion. In agreement with this, Tmem176b−/− ATDCs specifically failed to cross-present male antigens or ovalbumin to CD8+ T cells. Finally, we observed that a Tmem176b-dependent cation current controls phagosomal pH, a critical parameter in cross-presentation. Thus, ATDCs require TMEM176B to cross-present donor antigens to induce donor-specific CD8+CD11c+ T cells with regulatory properties and prolong graft survival. PMID:24731243

  5. Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles

    PubMed Central

    He, Linling; de Val, Natalia; Morris, Charles D.; Vora, Nemil; Thinnes, Therese C.; Kong, Leopold; Azadnia, Parisa; Sok, Devin; Zhou, Bin; Burton, Dennis R.; Wilson, Ian A; Nemazee, David; Ward, Andrew B.; Zhu, Jiang

    2016-01-01

    Structures of BG505 SOSIP.664 trimer in complex with broadly neutralizing antibodies (bNAbs) have revealed the critical role of trimeric context for immune recognition of HIV-1. Presentation of trimeric HIV-1 antigens on nanoparticles may thus provide promising vaccine candidates. Here we report the rational design, structural analysis and antigenic evaluation of HIV-1 trimer-presenting nanoparticles. We first demonstrate that both V1V2 and gp120 can be presented in native-like trimeric conformations on nanoparticles. We then design nanoparticles presenting various forms of stabilized gp140 trimer based on ferritin and a large, 60-meric E2p that displays 20 spikes mimicking virus-like particles (VLPs). Particle assembly is confirmed by electron microscopy (EM), while antigenic profiles are generated using representative bNAbs and non-NAbs. Lastly, we demonstrate high-yield gp140 nanoparticle production and robust stimulation of B cells carrying cognate VRC01 receptors by gp120 and gp140 nanoparticles. Together, our study provides an arsenal of multivalent immunogens for HIV-1 vaccine development. PMID:27349934

  6. Processing and presentation of an antigen of Mycobacterium avium require access to an acidified compartment with active proteases.

    PubMed Central

    Holsti, M A; Allen, P M

    1996-01-01

    We have generated a murine T-cell hybridoma, 1C9, which recognizes an antigen expressed by a virulent clinical isolate of Mycobacterium avium. Both peritoneal exudate macrophages and bone marrow-derived macrophages infected in vitro with M. avium process and present the antigen to the T-cell hybridoma. Gel filtration chromatography of a sonicate of M. avium followed by T-cell Western blotting (immunoblotting) demonstrated that the antigen recognized by hybridoma 1C9 is approximately 50 kDa. In addition, treatment of macrophages with the lysosomotropic agent chloroquine or with inhibitors of acid proteases inhibits processing and presentation of the antigen. These results indicate that the antigen must encounter an acidic compartment with active proteases for processing and presentation to occur. Our results are discussed in the context of our current understanding of how mycobacterial antigens are processed and presented by infected macrophages to T cells. PMID:8926074

  7. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major.

    PubMed Central

    ElHassan, A M; Gaafar, A; Theander, T G

    1995-01-01

    In this study biopsies from skin lesions and draining lymph nodes of patients suffering from cutaneous leishmaniasis caused by Leishmania major were examined by immunohistochemistry, and by light and electron microscopy to identify the types of antigen-presenting cells (APC) and their location. APC, identified morphologically and by their expression of specific cell markers, included Langerhans cells, macrophages, follicular dendritic cells, and interdigitating reticulum cells of the paracortex of lymph nodes. These cells expressed MHC class II antigens and contained Leishmania antigen. Since some keratinocytes and endothelial cells also showed these characteristics, they may also act as APC. By examining tissue samples from skin lesions and draining lymph nodes it was possible to follow the probable route of trafficking of various inflammatory cells between the skin lesion and lymph nodes. Leishmania antigen containing Langerhans cells were found in the epidermis, dermis and the regional lymph nodes. We believe these cells translocate from the epidermis to the dermis, where they take up antigen and migrate to the paracortex of the regional lymph nodes. There they are intimately associated with cells of the paracortex, and could be involved in the generation of Leishmania-specific T memory cells. LFA-1-positive T cells of the CD45RO phenotype were found in the skin lesion. Venular endothelium in the skin lesions expressed intercellular adhesion molecule-1 (ICAM-1), which is the ligand for LFA-1. The migration of lymphocytes from the vascular lumen to the site of inflammation is possibly a result of the interaction of these two adhesion molecules. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7882568

  8. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    PubMed Central

    Shenoda, Botros B.; Ajit, Seena K.

    2016-01-01

    Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages. PMID:27660518

  9. Ethanol Metabolism Alters Major Histocompatibility Complex Class I-Restricted Antigen Presentation In Liver Cells

    PubMed Central

    Osna, Natalia A.; White, Ronda L.; Thiele, Geoffrey M.; Donohue, Terrence M.

    2009-01-01

    The proteasome is a major enzyme that cleaves proteins for antigen presentation. Cleaved peptides traffic to the cell surface, where they are presented in the context of MHC class I. Recognition of these complexes by cytotoxic T lymphocytes is crucial for elimination of cells bearing “non-self” proteins. Our previous studies revealed that ethanol suppresses proteasome function in ethanol-metabolizing liver cells. We hypothesized that proteasome suppression reduces the hydrolysis of antigenic peptides, thereby decreasing the presentation of the peptide-MHC class I-complexes on the cell surface. To test this, we used the mouse hepatocyte cell line (CYP2E1/ADH-transfected HepB5 cells) or primary mouse hepatocytes, both derived from livers of C57Bl/6 mice, which present the ovalbumin peptide, SIINFEKL, complexed with H2Kb. To induce H2Kb expression, HepB5 cells were treated with interferon gamma (IFNγ) and then exposed to ethanol. In these cells, ethanol metabolism decreased not only proteasome activity, but also hydrolysis of the C-extended peptide, SIINFEKL-TE and the presentation of SIINFEKL-H2Kb complexes measured after the delivery of SIINFEKL-TE to cytoplasm. The suppressive effects of ethanol were, in part, attributed to ethanol-elicited impairment of IFNγ signaling. However, in primary hepatocytes, even in the absence of IFNγ, we observed a similar decline in proteasome activity and antigen presentation after ethanol exposure. We conclude that proteasome function is directly suppressed by ethanol metabolism and indirectly, by preventing the activating effects of IFNγ. Ethanol-elicited reduction in proteasome activity contributes to the suppression of SIINFEKL-H2Kb presentation on the surface of liver cells. Immune response to viral antigens plays a crucial role in the pathogenesis of hepatitis C or B viral infections (HCV and HBV, respectively). Professional antigen-presenting cells (dendritic cells and macrophages) are responsible for priming the

  10. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens

    PubMed Central

    Gao, Jie; Ochyl, Lukasz J; Yang, Ellen; Moon, James J

    2017-01-01

    Cationic liposomes (CLs) have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs), and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation – the process by which APCs internalize extracellular protein antigens, degrade them into minimal CD8+ T-cell epitopes, and present them in the context of major histocompatibility complex-I (MHC-I). However, the precise mechanisms behind CL-mediated induction of cross-presentation and cross-priming of CD8+ T-cells remain to be elucidated. In this study, we have developed two distinct CL systems and examined their impact on the lysosomal pH in dendritic cells (DCs), antigen degradation, and presentation of peptide:MHC-I complexes to antigen-specific CD8+ T-cells. To achieve this, we have used 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as the prototypical components of CLs with tertiary amine groups and compared the effect of CLs and anionic liposomes on lysosomal pH, antigen degradation, and cross-presentation by DCs. Our results showed that CLs, but not anionic liposomes, elevated the lysosomal pH in DCs and reduced antigen degradation, thereby promoting cross-presentation and cross-priming of CD8+ T-cell responses. These studies shed new light on CL-mediated cross-presentation and suggest that intracellular fate of vaccine components and subsequent immunological responses can be controlled by rational design of nanomaterials. PMID:28243087

  11. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens.

    PubMed

    Gao, Jie; Ochyl, Lukasz J; Yang, Ellen; Moon, James J

    2017-01-01

    Cationic liposomes (CLs) have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs), and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation - the process by which APCs internalize extracellular protein antigens, degrade them into minimal CD8(+) T-cell epitopes, and present them in the context of major histocompatibility complex-I (MHC-I). However, the precise mechanisms behind CL-mediated induction of cross-presentation and cross-priming of CD8(+) T-cells remain to be elucidated. In this study, we have developed two distinct CL systems and examined their impact on the lysosomal pH in dendritic cells (DCs), antigen degradation, and presentation of peptide:MHC-I complexes to antigen-specific CD8(+) T-cells. To achieve this, we have used 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as the prototypical components of CLs with tertiary amine groups and compared the effect of CLs and anionic liposomes on lysosomal pH, antigen degradation, and cross-presentation by DCs. Our results showed that CLs, but not anionic liposomes, elevated the lysosomal pH in DCs and reduced antigen degradation, thereby promoting cross-presentation and cross-priming of CD8(+) T-cell responses. These studies shed new light on CL-mediated cross-presentation and suggest that intracellular fate of vaccine components and subsequent immunological responses can be controlled by rational design of nanomaterials.

  12. Measuring antigen presentation in mouse brain endothelial cells ex vivo and in vitro.

    PubMed

    Howland, Shanshan W; Gun, Sin Yee; Claser, Carla; Poh, Chek Meng; Rénia, Laurent

    2015-12-01

    We have recently demonstrated that brain endothelial cells cross-present parasite antigen during mouse experimental cerebral malaria (ECM). Here we describe a 2-d protocol to detect cross-presentation by isolating the brain microvessels and incubating them with a reporter cell line that expresses lacZ upon detection of the relevant peptide-major histocompatibility complex. After X-gal staining, a typical positive result consists of hundreds of blue spots, compared with fewer than 20 spots from a naive brain. The assay is generalizable to other disease contexts by using reporter cells that express appropriate specific T cell receptors. Also described is the protocol for culturing endothelial cells from brain microvessels isolated from naive mice. After 7-10 d, an in vitro cross-presentation assay can be performed by adding interferon-γ, antigen (e.g., Plasmodium berghei-infected red blood cells) and reporter cells in sequence over 3 d. This is useful for comparing different antigen forms or for probing the effects of various interventions.

  13. Assessing Preservice Teachers' Presentation Capabilities: Contrasting the Modes of Communication with the Constructed Impression

    ERIC Educational Resources Information Center

    Bower, Matt G.; Moloney, Robyn A.; Cavanagh, Michael S.; Sweller, Naomi

    2013-01-01

    A research-based understanding of how to develop and assess classroom presentation skills is vital for the effective development of pre-service teacher communication capabilities. This paper identifies and compares two different models of assessing pre-service teachers' presentation performance--one based on the Modes of Communication (voice,…

  14. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis.

    PubMed

    Marquis, Jean-François; Kapoustina, Oxana; Langlais, David; Ruddy, Rebecca; Dufour, Catherine Rosa; Kim, Bae-Hoon; MacMicking, John D; Giguère, Vincent; Gros, Philippe

    2011-06-01

    IRF8 (Interferon Regulatory Factor 8) plays an important role in defenses against intracellular pathogens, including several aspects of myeloid cells function. It is required for ontogeny and maturation of macrophages and dendritic cells, for activation of anti-microbial defenses, and for production of the Th1-polarizing cytokine interleukin-12 (IL-12) in response to interferon gamma (IFNγ) and protection against infection with Mycobacterium tuberculosis. The transcriptional programs and cellular pathways that are regulated by IRF8 in response to IFNγ and that are important for defenses against M. tuberculosis are poorly understood. These were investigated by transcript profiling and chromatin immunoprecipitation on microarrays (ChIP-chip). Studies in primary macrophages identified 368 genes that are regulated by IRF8 in response to IFNγ/CpG and that behave as stably segregating expression signatures (eQTLs) in F2 mice fixed for a wild-type or mutant allele at IRF8. A total of 319 IRF8 binding sites were identified on promoters genome-wide (ChIP-chip) in macrophages treated with IFNγ/CpG, defining a functional G/AGAAnTGAAA motif. An analysis of the genes bearing a functional IRF8 binding site, and showing regulation by IFNγ/CpG in macrophages and/or in M. tuberculosis-infected lungs, revealed a striking enrichment for the pathways of antigen processing and presentation, including multiple structural and enzymatic components of the Class I and Class II MHC (major histocompatibility complex) antigen presentation machinery. Also significantly enriched as IRF8 targets are the group of endomembrane- and phagosome-associated small GTPases of the IRG (immunity-related GTPases) and GBP (guanylate binding proteins) families. These results identify IRF8 as a key regulator of early response pathways in myeloid cells, including phagosome maturation, antigen processing, and antigen presentation by myeloid cells.

  15. Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes

    PubMed Central

    Alfaro, Carlos; Suarez, Natalia; Oñate, Carmen; Perez-Gracia, Jose L.; Martinez-Forero, Ivan; Hervas-Stubbs, Sandra; Rodriguez, Inmaculada; Perez, Guiomar; Bolaños, Elixabet; Palazon, Asis; de Sanmamed, Miguel Fernandez; Morales-Kastresana, Aizea; Gonzalez, Alvaro; Melero, Ignacio

    2011-01-01

    Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2d) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2d) are coinjected in the footpad of mice with autologous DC (H-2b). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC. PMID:22206007

  16. Fusion of Antigen to a Dendritic Cell Targeting Chemokine Combined with Adjuvant Yields a Malaria DNA Vaccine with Enhanced Protective Capabilities

    PubMed Central

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A.; Markham, Richard B.

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80–100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine. PMID:24599116

  17. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    PubMed

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  18. An Overview of B-1 Cells as Antigen-Presenting Cells

    PubMed Central

    Popi, Ana F.; Longo-Maugéri, Ieda M.; Mariano, Mario

    2016-01-01

    The role of B cells as antigen-presenting cells (APCs) has been extensively studied, mainly in relation to the activation of memory T cells. Considering the B cell subtypes, the role of B-1 cells as APCs is beginning to be explored. Initially, it was described that B-1 cells are activated preferentially by T-independent antigens. However, some reports demonstrated that these cells are also involved in a T-dependent response. The aim of this review is to summarize information about the ability of B-1 cells to play a role as APCs and to briefly discuss the role of the BCR and toll-like receptor signals in this process. Furthermore, some characteristics of B-1 cells, such as natural IgM production and phagocytic ability, could interfere in the participation of these cells in the onset of an adaptive response. PMID:27148259

  19. ImmunoChip study implicates antigen presentation to T cells in narcolepsy.

    PubMed

    Faraco, Juliette; Lin, Ling; Kornum, Birgitte Rahbek; Kenny, Eimear E; Trynka, Gosia; Einen, Mali; Rico, Tom J; Lichtner, Peter; Dauvilliers, Yves; Arnulf, Isabelle; Lecendreux, Michel; Javidi, Sirous; Geisler, Peter; Mayer, Geert; Pizza, Fabio; Poli, Francesca; Plazzi, Giuseppe; Overeem, Sebastiaan; Lammers, Gert Jan; Kemlink, David; Sonka, Karel; Nevsimalova, Sona; Rouleau, Guy; Desautels, Alex; Montplaisir, Jacques; Frauscher, Birgit; Ehrmann, Laura; Högl, Birgit; Jennum, Poul; Bourgin, Patrice; Peraita-Adrados, Rosa; Iranzo, Alex; Bassetti, Claudio; Chen, Wei-Min; Concannon, Patrick; Thompson, Susan D; Damotte, Vincent; Fontaine, Bertrand; Breban, Maxime; Gieger, Christian; Klopp, Norman; Deloukas, Panos; Wijmenga, Cisca; Hallmayer, Joachim; Onengut-Gumuscu, Suna; Rich, Stephen S; Winkelmann, Juliane; Mignot, Emmanuel

    2013-01-01

    Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.

  20. A Systems Approach to Understand Antigen Presentation and the Immune Response.

    PubMed

    Dudek, Nadine L; Croft, Nathan P; Schittenhelm, Ralf B; Ramarathinam, Sri H; Purcell, Anthony W

    2016-01-01

    The mammalian immune system has evolved to respond to pathogenic, environmental, and cellular changes in order to maintain the health of the host. These responses include the comparatively primitive innate immune response, which represents a rapid and relatively nonspecific reaction to challenge by pathogens and the more complex cellular adaptive immune response. This adaptive response evolves with the pathogenic challenge, involves the cross talk of several cell types, and is highly specific to the pathogen due to the liberation of peptide antigens and their presentation on the surface of affected cells. Together these two forms of immunity provide a surveillance mechanism for the system-wide scrutiny of cellular function, environment, and health. As such the immune system is best understood at a systems biology level, and studies that combine gene expression, protein expression, and liberation of peptides for antigen presentation can be combined to provide a detailed understanding of immunity. This chapter details our experience in identifying peptide antigens and combining this information with more traditional proteomics approaches to understand the generation of immune responses on a holistic level.

  1. Direct binding of a myasthenia gravis related epitope to MHC class II molecules on living murine antigen-presenting cells.

    PubMed Central

    Mozes, E; Dayan, M; Zisman, E; Brocke, S; Licht, A; Pecht, I

    1989-01-01

    MHC gene products present antigenic epitopes to the antigen receptor on T cells. Nevertheless, direct binding of such epitopes to MHC class II proteins on normal living antigen-presenting cells (APCs) has not yet been demonstrated. We have previously shown a significant difference in the ability of T cells of myasthenia gravis (MG) patients to proliferate in response to the synthetic peptide p195-212 of the human acetylcholine receptor (AChR) alpha-subunit in comparison to healthy controls. The observed proliferative responses correlated significantly with HLA-DR5. Moreover, lymph node cells of various mouse strains that were primed with the T cell epitope, p195-212, were found to proliferate to different extents. To investigate these observations further, we designed an assay for direct binding of p195-212 to MHC class II proteins on the surface of freshly prepared splenic adherent cells. Binding of a biotinylated p195-212 was monitored using phycoerythrin-avidin by flow cytometry. Fifteen to sixty per cent of the cells were labeled following incubation with the biotinylated peptide. Binding was observed only to splenic adherent cells derived from mouse strains of which T cells were capable of proliferating in response to p195-212. The binding specificity, in terms of epitope structure and its site of interaction on the cells, was shown by its inhibition with an excess of the unlabeled peptide or with the relevant monoclonal anti-I-A antibodies. These results constitute the first direct evidence for the specific binding of a T cell epitope to live APC. PMID:2480232

  2. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer.

    PubMed Central

    Korkolopoulou, P.; Kaklamanis, L.; Pezzella, F.; Harris, A. L.; Gatter, K. C.

    1996-01-01

    Presentation of endogenous antigenic peptides to cytotoxic T lymphocytes is mediated by the major histocompatibility complex (MHC) class I molecules. For the stable assembly of MHC class I complex it is necessary that the antigenic peptide is transported by the MHC-encoded transporters TAP-1 and TAP-2 into a pre-Golgi region. T-cell-mediated host-vs-tumour response might therefore depend on the presence of these molecules on tumour cells. The presence of MHC class I antigens and TAP-1 was studied in a series of 93 resection specimens of non-small-cell lung carcinomas (NSCLCs) by immunohistochemical methods using antibodies against the assembled class I molecule, beta 2-microglobulin (beta 2-m), heavy-chain A locus, A2 allele and TAP-1 protein. Eighty-six patients were included in the survival analysis. Total loss of class I molecule was observed in 38% of the cases and was usually accompanied by loss of beta 2-m and of heavy chain A locus. Selective loss of A locus was seen in 8.3% and of A2 allele in 27% of the cases. TAP-1 loss was always combined with beta 2-m and/or heavy chain A locus loss. No correlation was found between the expressional status of any of the above molecules, including the selective A2 allelic loss and histological type, degree of differentiation, tumoral stage, nodal stage and survival. Our findings suggest that loss of antigen-presenting molecules (including both MHC class I alleles and TAP-1) is a frequent event in lung cancer. However, the immunophenotypic profile of MHC class I and TAP-1 seems to be unrelated in vivo to the phenotype, growth or survival of NSCLC. Images Figure 1 PMID:8546899

  3. Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells.

    PubMed

    Schütz, Christian; Fleck, Martin; Mackensen, Andreas; Zoso, Alessia; Halbritter, Dagmar; Schneck, Jonathan P; Oelke, Mathias

    2008-04-01

    Several cell-based immunotherapy strategies have been developed to specifically modulate T cell-mediated immune responses. These methods frequently rely on the utilization of tolerogenic cell-based antigen-presenting cells (APCs). However, APCs are highly sensitive to cytotoxic T-cell responses, thus limiting their therapeutic capacity. Here, we describe a novel bead-based approach to modulate T-cell responses in an antigen-specific fashion. We have generated killer artificial APCs (kappaaAPCs) by coupling an apoptosis-inducing alpha-Fas (CD95) IgM mAb together with HLA-A2 Ig molecules onto beads. These kappaaAPCs deplete targeted antigen-specific T cells in a Fas/Fas ligand (FasL)-dependent fashion. T-cell depletion in cocultures is rapidly initiated (30 minutes), dependent on the amount of kappaaAPCs and independent of activation-induced cell death (AICD). kappaaAPCs represent a novel technology that can control T cell-mediated immune responses, and therefore has potential for use in treatment of autoimmune diseases and allograft rejection.

  4. Biomimetic biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanoma.

    PubMed

    Kosmides, A K; Meyer, R A; Hickey, J W; Aje, K; Cheung, K N; Green, J J; Schneck, J P

    2017-02-01

    Biomimetic materials that target the immune system and generate an anti-tumor responses hold promise in augmenting cancer immunotherapy. These synthetic materials can be engineered and optimized for their biodegradability, physical parameters such as shape and size, and controlled release of immune-modulators. As these new platforms enter the playing field, it is imperative to understand their interaction with existing immunotherapies since single-targeted approaches have limited efficacy. Here, we investigate the synergy between a PLGA-based artificial antigen presenting cell (aAPC) and a checkpoint blockade molecule, anti-PD1 monoclonal antibody (mAb). The combination of antigen-specific aAPC-based activation and anti-PD-1 mAb checkpoint blockade induced the greatest IFN-γ secretion by CD8+ T cells in vitro. Combination treatment also acted synergistically in an in vivo murine melanoma model to result in delayed tumor growth and extended survival, while either treatment alone had no effect. This was shown mechanistically to be due to decreased PD-1 expression and increased antigen-specific proliferation of CD8+ T cells within the tumor microenvironment and spleen. Thus, biomaterial-based therapy can synergize with other immunotherapies and motivates the translation of biomimetic combinatorial treatments.

  5. Nanoengineering approaches to the design of artificial antigen-presenting cells

    PubMed Central

    Sunshine, Joel C; Green, Jordan J

    2014-01-01

    Artificial antigen-presenting cells (aAPCs) have shown great initial promise for ex vivo activation of cytotoxic T cells. The development of aAPCs has focused mainly on the choice of proteins to use for surface presentation to T cells when conjugated to various spherical, microscale particles. We review here biomimetic nanoengineering approaches that have been applied to the development of aAPCs that move beyond initial concepts about aAPC development. This article also discusses key technologies that may be enabling for the development of nano- and micro-scale aAPCs with nanoscale features, and suggests several future directions for the field. PMID:23837856

  6. The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture

    PubMed Central

    Schnorrer, Petra; Behrens, Georg M. N.; Wilson, Nicholas S.; Pooley, Joanne L.; Smith, Christopher M.; El-Sukkari, Dima; Davey, Gayle; Kupresanin, Fiona; Li, Ming; Maraskovsky, Eugene; Belz, Gabrielle T.; Carbone, Francis R.; Shortman, Ken; Heath, William R.; Villadangos, Jose A.

    2006-01-01

    Mouse spleens contain three populations of conventional (CD11chigh) dendritic cells (DCs) that play distinct functions. The CD8+ DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8+ DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8+ DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8+ and CD8− DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8+ DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8+ DC but largely absent from CD8− DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC. PMID:16807294

  7. COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS

    EPA Science Inventory

    Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends

    A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...

  8. Human Plasmacytoid Dendritic Cells Efficiently Capture HIV-1 Envelope Glycoproteins via CD4 for Antigen Presentation

    PubMed Central

    Sandgren, Kerrie J; Smed-Sörensen, Anna; Forsell, Mattias N; Soldemo, Martina; Adams, William C; Liang, Frank; Perbeck, Leif; Koup, Richard A; Wyatt, Richard T; Hedestam, Gunilla B Karlsson; Loré, Karin

    2013-01-01

    Advances in HIV-1 vaccine clinical trials and preclinical research indicate that the virus envelope glycoproteins (Env) are likely to be an essential component of a prophylactic vaccine. Efficient antigen uptake and presentation by dendritic cells (DCs) is important for strong CD4+ T helper cell responses and the development of effective humoral immune responses. Here, we examined the capacity of distinct primary human DC subsets to internalise and present recombinant Env to CD4+ T cells. Consistent with their specific receptor expression, skin DCs bound and internalised Env via C-type lectin receptors (CLRs) while blood DC subsets, including CD1c+ myeloid DCs (MDCs), CD123+ plasmacytoid DCs (PDCs) and CD141+ DCs exhibited a restricted repertoire of CLRs and relied on CD4 for uptake of Env. Despite a generally poor capacity for antigen uptake compared to MDCs, the high expression of CD4 on PDCs allowed them to bind and internalise Env very efficiently. CD4-mediated uptake delivered Env to EEA1+ endosomes that progressed to Lamp1+ and MHC class II+ lysosomes where internalised Env was degraded rapidly. Finally, all three blood DC subsets were able to internalise an Env-CMV pp65 fusion protein via CD4 and stimulate pp65-specific CD4+ T cells. Thus, in the in vitro systems described here, CD4-mediated uptake of Env is a functional pathway leading to antigen presentation and this may therefore be a mechanism utilised by blood DCs, including PDCs, for generating immune responses to Env-based vaccines. PMID:23729440

  9. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy.

    PubMed

    Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Lapointe, Réjean

    2012-09-01

    The success of immunotherapy relies on the participation of all arms of the immune system and the role of CD4+ T lymphocytes in preventing tumor growth is now well established. Understanding how tumors evade immune responses holds the key to the development of cancer immunotherapies. In this review, we discuss how MHC Class II expression varies in cancer cells and how this influences antitumor immune responses. We also discuss the means that are currently available for harnessing the MHC Class II antigen presentation pathway for the development of efficient vaccines to activate the immune system against cancer.

  10. Survival and signaling changes in antigen presenting cell subsets after radiation

    NASA Astrophysics Data System (ADS)

    Parker, Jennifer Janell

    Radiation therapy is a widely used cancer treatment that has the potential to influence anti-tumor immune responses. Both myeloablative and non-myeloablative radiation are often used as part of preparatory regimens for hematopoetic stem cell transplantation, in combination with other chemotherapy or immuno-modulatory (e.g. Anti-thymocyte globulin (ATG)) therapies for both cytotoxic and immune modulatory purposes. However, the mechanisms responsible for the effect of radiation on antigen presenting cell (APC) responsiveness and radioresistance are poorly understood. The first studies described in this thesis were designed to identify and characterize early radiation-induced signaling changes in antigen presenting cells and to determine the effects of these signaling changes on APC receptor expression and function. The NFkappaB pathway in antigen presenting cells was chosen for study because it is activated by radiation in a wide range of other cell types and plays a vital role in the maintenance and regulation of the immune system. The effects of therapeutically relevant doses radiation (2 and 20 Gy) were compared at various timepoints in the human monocytic cell line (U937) using phospho-flow cytometry staining methods and cytometric analysis. These studies demonstrated that radiation-induced changes in the phosphorylation state of NFkappaB family members that were p53 independent. However, these changes were dependent upon activation of ATM in response to single or double-stranded breaks in DNA, as shown in experiments using an inhibitor of ATM and ATM siRNA knockdown U937 cells. In addition, studies examining the effect of radiation on co-stimulatory receptors with and without inhibition of the NFkappaB pathway via phospho-flow cytometry revealed that radiation-induced phosphorylation of NEMO promoted the activation and functional maturation of U937 cells. Furthermore, functional studies using both phospho-flow cytometry and/or mixed lymphocyte reactions to

  11. Ly6C+ monocyte efferocytosis and cross-presentation of cell-associated antigens

    PubMed Central

    Larson, S R; Atif, S M; Gibbings, S L; Thomas, S M; Prabagar, M G; Danhorn, T; Leach, S M; Henson, P M; Jakubzick, C V

    2016-01-01

    Recently it was shown that circulating Ly6C+ monocytes traffic from tissue to the draining lymph nodes (LNs) with minimal alteration in their overall phenotype. Furthermore, in the steady state, Ly6C+ monocytes are as abundant as classical dendritic cells (DCs) within the draining LNs, and even more abundant during inflammation. However, little is known about the functional roles of constitutively trafficking Ly6C+ monocytes. In this study we investigated whether Ly6C+ monocytes can efferocytose (acquire dying cells) and cross-present cell-associated antigen, a functional property particularly attributed to Batf3+ DCs. We demonstrated that Ly6C+ monocytes intrinsically efferocytose and cross-present cell-associated antigen to CD8+ T cells. In addition, efferocytosis was enhanced upon direct activation of the Ly6C+ monocytes through its corresponding TLRs, TLR4 and TLR7. However, only ligation of TLR7, and not TLR4, enhanced cross-presentation by Ly6C+ monocytes. Overall, this study outlines two functional roles, among others, that Ly6C+ monocytes have during an adaptive immune response. PMID:26990659

  12. Collective Genetic Interaction Effects and the Role of Antigen-Presenting Cells in Autoimmune Diseases

    PubMed Central

    Woo, Hyung Jun; Yu, Chenggang; Reifman, Jaques

    2017-01-01

    Autoimmune diseases occur when immune cells fail to develop or lose their tolerance toward self and destroy body’s own tissues. Both insufficient negative selection of self-reactive T cells and impaired development of regulatory T cells preventing effector cell activation are believed to contribute to autoimmunity. Genetic predispositions center around the major histocompatibility complex (MHC) class II loci involved in antigen presentation, the key determinant of CD4+ T cell activation. Recent studies suggested that variants in the MHC region also exhibit significant non-additive interaction effects. However, collective interactions involving large numbers of single nucleotide polymorphisms (SNPs) contributing to such effects are yet to be characterized. In addition, relatively little is known about the cell-type-specificity of such interactions in the context of cellular pathways. Here, we analyzed type 1 diabetes (T1D) and rheumatoid arthritis (RA) genome-wide association data sets via large-scale, high-performance computations and inferred collective interaction effects involving MHC SNPs using the discrete discriminant analysis. Despite considerable differences in the details of SNP interactions in T1D and RA data, the enrichment pattern of interacting pairs in reference epigenomes was remarkably similar: statistically significant interactions were epigenetically active in cell-type combinations connecting B cells to T cells and intestinal epithelial cells, with both helper and regulatory T cells showing strong disease-associated interactions with B cells. Our results provide direct genetic evidence pointing to the important roles B cells play as antigen-presenting cells toward CD4+ T cells in the context of central and peripheral tolerance. In addition, they are consistent with recent experimental studies suggesting that the repertoire of B cell-specific self-antigens in the thymus are critical to the effective control of corresponding autoimmune activation

  13. Oxidative bioactivation of abacavir in subcellular fractions of human antigen presenting cells.

    PubMed

    Bell, Catherine C; Santoyo Castelazo, Anahi; Yang, Emma L; Maggs, James L; Jenkins, Rosalind E; Tugwood, Jonathan; O'Neill, Paul M; Naisbitt, Dean J; Park, B Kevin

    2013-07-15

    Human exposure to abacavir, a primary alcohol antiretroviral, is associated with the development of immunological drug reactions in individuals carrying the HLA risk allele B*57:01. Interaction of abacavir with antigen presenting cells results in cell activation through an Hsp70-mediated Toll-like receptor pathway and the provision of T-cell antigenic determinants. Abacavir's electrophilic aldehyde metabolites are potential precursors of neoantigens. Herein, we have used mass spectrometry to study the oxidative metabolism of abacavir in EBV-transformed human B-cells. RNA and protein were isolated from the cells and subjected to transcriptomic and mass spectrometric analyses to identify the redox enzymes expressed. Low levels of isomeric abacavir carboxylic acids were detected in subcellular fractions of EBV-transformed human B-cells incubated with abacavir. Metabolite formation was time-dependent but was not reduced by an inhibitor of Class I alcohol dehydrogenases. Relatively high levels of mRNA were detected for several redox enzymes, including alcohol dehydrogenase 5 (Class III), aldehyde dehydrogenases (ALDH3A2, ALDH6A1, and ALDH9A1), CYP1B1, CYP2R1, CYP7B1, and hydroxysteroid dehydrogenase 10. Over 2600 proteins were identified by mass spectrometry. More than 1000 of these proteins exhibited catalytic activity, and 80 were oxido-reductases. This is the first proteomic inventory of enzymes in antigen presenting cells. However, neither of the hepatic alcohol dehydrogenases of Class I which metabolize abacavir in vitro was expressed at the protein level. Nevertheless the metabolic production of abacavir carboxylic acids by B-cell fractions implies abacavir-treated immune cells might be exposed to the drug's protein-reactive aldehyde metabolites in vivo.

  14. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    NASA Astrophysics Data System (ADS)

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md.; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  15. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8(+) T Cells.

    PubMed

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-02

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8(+) cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4(+) and CD8(+) T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4(+) and CD8(+) T cells. Furthermore, lymphoid CD8(+) T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8(+) T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8(+) T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  16. STAT3 promotes CD1d-mediated lipid antigen presentation by regulating a critical gene in glycosphingolipid biosynthesis.

    PubMed

    Iyer, Abhirami K; Liu, Jianyun; Gallo, Richard M; Kaplan, Mark H; Brutkiewicz, Randy R

    2015-11-01

    Cytokines that regulate the immune response signal through the Janus kinase / signal transducer and activation of transcription (JAK/STAT) pathway, but whether this pathway can regulate CD1d-mediated lipid antigen presentation to natural killer T (NKT) cells is unknown. Here, we found that STAT3 promotes antigen presentation by CD1d. Antigen-presenting cells (APCs) in which STAT3 expression was inhibited exhibited markedly reduced endogenous lipid antigen presentation to NKT cells without an impact on exogenous lipid antigen presentation by CD1d. Consistent with this observation, in APCs where STAT3 was knocked down, dramatically decreased levels of UDP glucose ceramide glucosyltransferase (UGCG), an enzyme involved in the first step of glycosphingolipid biosynthesis, were observed. Impaired lipid antigen presentation was reversed by ectopic expression of UGCG in STAT3-silenced CD1d(+) APCs. Hence, by controlling a fundamental step in CD1d-mediated lipid antigen presentation, STAT3 signalling promotes innate immune responses driven by CD1d.

  17. Pseudomonas aeruginosa Cif protein enhances the ubiquitination and proteasomal degradation of the transporter associated with antigen processing (TAP) and reduces major histocompatibility complex (MHC) class I antigen presentation.

    PubMed

    Bomberger, Jennifer M; Ely, Kenneth H; Bangia, Naveen; Ye, Siying; Green, Kathy A; Green, William R; Enelow, Richard I; Stanton, Bruce A

    2014-01-03

    Cif (PA2934), a bacterial virulence factor secreted in outer membrane vesicles by Pseudomonas aeruginosa, increases the ubiquitination and lysosomal degradation of some, but not all, plasma membrane ATP-binding cassette transporters (ABC), including the cystic fibrosis transmembrane conductance regulator and P-glycoprotein. The goal of this study was to determine whether Cif enhances the ubiquitination and degradation of the transporter associated with antigen processing (TAP1 and TAP2), members of the ABC transporter family that play an essential role in antigen presentation and intracellular pathogen clearance. Cif selectively increased the amount of ubiquitinated TAP1 and increased its degradation in the proteasome of human airway epithelial cells. This effect of Cif was mediated by reducing USP10 deubiquitinating activity, resulting in increased polyubiquitination and proteasomal degradation of TAP1. The reduction in TAP1 abundance decreased peptide antigen translocation into the endoplasmic reticulum, an effect that resulted in reduced antigen available to MHC class I molecules for presentation at the plasma membrane of airway epithelial cells and recognition by CD8(+) T cells. Cif is the first bacterial factor identified that inhibits TAP function and MHC class I antigen presentation.

  18. Interleukin 10 (IL-10)-mediated Immunosuppression: MARCH-I INDUCTION REGULATES ANTIGEN PRESENTATION BY MACROPHAGES BUT NOT DENDRITIC CELLS.

    PubMed

    Mittal, Sharad K; Cho, Kyung-Jin; Ishido, Satoshi; Roche, Paul A

    2015-11-06

    Efficient immune responses require regulated antigen presentation to CD4 T cells. IL-10 inhibits the ability of dendritic cells (DCs) and macrophages to stimulate antigen-specific CD4 T cells; however, the mechanisms by which IL-10 suppresses antigen presentation remain poorly understood. We now report that IL-10 stimulates expression of the E3 ubiquitin ligase March-I in activated macrophages, thereby down-regulating MHC-II, CD86, and antigen presentation to CD4 T cells. By contrast, IL-10 does not stimulate March-I expression in DCs, does not suppress MHC-II or CD86 expression on either resting or activated DCs, and does not affect antigen presentation by activated DCs. IL-10 does, however, inhibit the process of DC activation itself, thereby reducing the efficiency of antigen presentation in a March-I-independent manner. Thus, IL-10 suppression of antigen presenting cell function in macrophages is March-I-dependent, whereas in DCs, suppression is March- I-independent.

  19. Inhibition of CD1d-mediated antigen presentation by the transforming growth factor-β/Smad signalling pathway.

    PubMed

    Bailey, Jennifer C; Iyer, Abhirami K; Renukaradhya, Gourapura J; Lin, Yinling; Nguyen, Hoa; Brutkiewicz, Randy R

    2014-12-01

    CD1d-mediated lipid antigen presentation activates a subset of innate immune lymphocytes called invariant natural killer T (NKT) cells that, by virtue of their potent cytokine production, bridge the innate and adaptive immune systems. Transforming growth factor (TGF-β) is a known immune modulator that can activate the mitogen-activated protein kinase p38; we have previously shown that p38 is a negative regulator of CD1d-mediated antigen presentation. Several studies implicate a role for TGF-β in the activation of p38. Therefore, we hypothesized that TGF-β would impair antigen presentation by CD1d. Indeed, a dose-dependent decrease in CD1d-mediated antigen presentation and impairment of lipid antigen processing was observed in response to TGF-β treatment. However, it was found that this inhibition was not through p38 activation. Instead, Smads 2, 3 and 4, downstream elements of the TGF-β canonical signalling pathway, contributed to the observed effects. In marked contrast to that observed with CD1d, TGF-β was found to enhance MHC class II-mediated antigen presentation. Overall, these results suggest that the canonical TGF-β/Smad pathway negatively regulates an important arm of the host's innate immune responses - CD1d-mediated lipid antigen presentation to NKT cells.

  20. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation.

    PubMed

    Wang, Ce; Li, Ping; Liu, Lanlan; Pan, Hong; Li, Hongchang; Cai, Lintao; Ma, Yifan

    2016-02-01

    MHC class I (MHC I) antigen presentation of exogenous antigens (so called "cross presentation") is a central mechanism of CD8(+) cytotoxic T lymphocyte (CTL) responses essential for successful vaccine-based cancer immunotherapy. The present study constructed amphiphilic pH-sensitive galactosyl dextran-retinal (GDR) nanogels for cancer vaccine delivery, in which dextran was conjugated with all-trans retinal (a metabolite of vitamin A) through a pH-sensitive hydrazone bond, followed by galactosylation to acquire dendritic cell (DC)-targeting ability. Our results showed that pH-sensitive GDR nanogel was a self-adjuvanted vaccine carrier that not only promoted DC maturation through activating retinoic acid receptor (RAR) signaling, but also facilitated antigen uptake and cytosolic antigen release in DCs. Furthermore, pH-sensitive GDR nanogel effectively augmented MHC I antigen presentation and evoked potent anti-cancer immune responses in vivo. More importantly, we first reported that nanoparticle-triggered lysosome rupture could directly induce ROS production in DCs, which was found to be essential for augmenting proteasome activity and downstream MHC I antigen presentation. Hence, DC-targeted pH-sensitive GDR nanogels could be a potent delivery system for cancer vaccine development. Triggering lyososomal rupture in DCs with pH-sensitive nanoparticles might be a plausible strategy to elevate intracellular ROS production for promoting antigen cross presentation, thereby improving cancer vaccine efficacy.

  1. Interview: glycolipid antigen presentation by CD1d and the therapeutic potential of NKT cell activation.

    PubMed

    Kronenberg, Mitchell

    2007-01-01

    Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d--the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.

  2. Antigen Presented by Tumors in Vivo Determines the Nature of CD8+ T Cell Cytotoxicity

    PubMed Central

    Shanker, Anil; Brooks, Alan D.; Jacobsen, Kristen M.; Wine, John W.; Wiltrout, Robert H.; Yagita, Hideo; Sayers, Thomas J.

    2009-01-01

    The biological relevance of the perforin and Fas ligand (FasL) cytolytic pathways of CD8+ T lymphocytes (CTL) for cancer immunotherapy is controversial. We investigated the importance of these pathways in a murine renal cell carcinoma expressing influenza viral hemagglutinin as a defined surrogate antigen (Renca-HA). Following Renca-HA injection, all FasL-dysfunctional FasLgld/gld mice (n = 54) died from Renca-HA tumors by day 62. By contrast, perforin−/− (51%, n = 45) and Faslpr/lpr (55%, n = 51) mice remained tumor-free at day 360. Blocking FasL in vivo inhibited tumor rejection in these mice. Moreover, established Renca-HA tumors were cleared more efficiently by adoptively transferred HA518–526-specific T cell receptor-transgenic CTL utilizing FasL rather than perforin. Strikingly, a range of mouse tumor cells presenting low concentrations of immunogenic peptide were all preferentially lysed by the FasL but not the Pfp-mediated effector pathway of CTL, whereas at higher peptide concentrations the preference in effector pathway usage by CTL was lost. Interestingly, a number of human renal cancer lines were also susceptible to FasL-mediated cytotoxicity. Therefore, the FasL cytolytic pathway may be particularly important for eradicating Fas-sensitive tumors presenting low levels of MHC class-I-associated antigens following adoptive T cell therapy. PMID:19654302

  3. Oxidation matters: the ubiquitin proteasome system connects innate immune mechanisms with MHC class I antigen presentation.

    PubMed

    Warnatsch, Annika; Bergann, Theresa; Krüger, Elke

    2013-09-01

    During innate immune responses the delicate balance of protein synthesis, quality control and degradation is severely challenged by production of radicals and/or the massive synthesis of pathogen proteins. The regulated degradation of ubiquitin-tagged proteins by the ubiquitin proteasome system (UPS) represents one major pathway for the maintenance of cellular proteostasis and regulatory processes under these conditions. In addition, MHC class I antigen presentation is strictly dependent on an appropriate peptide supply by the UPS to efficiently prime CD8(+) T cells and to initiate an adaptive immune response. We here discuss recent efforts in defining the link between innate immune mechanisms like cytokine and ROS production, the induction of an efficient adaptive immune response and the specific involvement of the UPS therein. Cytokines and/or infections induce translation and the production of free radicals, which in turn confer oxidative damage to nascent as well as folded proteins. In parallel, the same signaling cascades are able to accelerate the protein turnover by the concomitantly induced ubiquitin conjugation and degradation of such damaged polypeptides by immunoproteasomes. The ability of immunoproteasomes to efficiently degrade such oxidant-damaged ubiquitylated proteins protects cells from accumulating toxic ubiquitin-rich aggregates. At the same time, this innate immune mechanism facilitates a sufficient peptide supply for MHC class I antigen presentation and connects it to initiation of adaptive immunity.

  4. Human γδ T Cells Augment Antigen Presentation in Listeria Monocytogenes Infection

    PubMed Central

    Zhu, Yuli; Wang, Huaishan; Xu, Yi; Hu, Yu; Chen, Hui; Cui, Lianxian; Zhang, Jianmin; He, Wei

    2016-01-01

    Circulating γδ T cells in healthy individuals rapidly respond to bacterial and viral pathogens. Many studies have demonstrated that γδ T cells are activated and expanded by Listeria monocytogenes (L. monocytogenes), a foodborne bacterial pathogen with high fatality rates. However, the roles of γδ T cells during L. monocytogenes infection are not clear. In the present study, we characterized the morphological characteristics of phagocytosis in γδ T cells after L. monocytogenes infection using transmission electron microscopy. Results show activation markers including human leucocyte antigen DR (HLA–DR) and lymph node–homing receptor CCR7 on γδ T cells were upregulated after stimulation via L. monocytogenes. Significant proliferation and differentiation of primary αβ T cells was also observed after coculture of peripheral blood mononuclear cells with γδ T cells anteriorly stimulated by L. monocytogenes. L. monocytogenes infection decreased the percentage of γδ T cells in mouse intraepithelial lymphocytes (IELs) and increased MHC-II expression on the surface of γδ T cells in vivo. Our findings shed light on antigen presentation of γδ T cells during L. monocytogenes infection. PMID:27652377

  5. Aptamers directly radiolabeled with technetium-99m as a potential agent capable of identifying carcinoembryonic antigen (CEA) in tumor cells T84.

    PubMed

    Correa, Cristiane Rodrigues; de Barros, André Luís Branco; Ferreira, Carolina de Aguiar; de Goes, Alfredo Miranda; Cardoso, Valbert Nascimento; de Andrade, Antero Silva Ribeiro

    2014-04-15

    Aptamers are small oligonucleotides that are selected to bind with high affinity and specificity to a target molecule. Aptamers are emerging as a new class of molecules for radiopharmaceutical development. In this study a new method to radiolabel aptamers with technetium-99m ((99m)Tc) was developed. Two aptamers (Apt3 and Apt3-amine) selected against the carcinoembryonic antigen (CEA) were used. Labeling was done by the direct method and the developed complex was subjected to quality control tests. Radiochemical purity and stability were monitored by Thin Layer Chromatography. Binding and specificity assays were carried out in the T84 cell line (CEA+) to evaluate tumor affinity and specificity after radiolabeling. Aptamers were successfully labeled with (99m)Tc in high radiochemical yields, showing in vitro stability in presence of plasma and cystein. In binding assays the radiolabeled aptamer Apt3-amine showed the highest affinity to T84 cells. When evaluated with HeLa cells (CEA-), lower uptake was observed, suggesting high specificity for this aptamer. These results suggest that the Apt3-amine aptamer directly labeled with (99m)Tc could be considered a promising agent capable of identifying the carcinoembryonic antigen (CEA) present in tumor cells.

  6. Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles

    PubMed Central

    Sayour, Elias J.; Pham, Christina; Grippin, Adam; Kemeny, Hanna; Chua, Joshua; Sampson, John H.; Sanchez-Perez, Luis; Flores, Catherine; Mitchell, Duane A.

    2017-01-01

    ABSTRACT While RNA-pulsed dendritic cell (DC) vaccines have shown promise, the advancement of cellular therapeutics is fraught with developmental challenges. To circumvent the challenges of cellular immunotherapeutics, we developed clinically translatable nanoliposomes that can be combined with tumor-derived RNA to generate personalized tumor RNA-nanoparticles (NPs) with considerable scale-up capacity. RNA-NPs bypass MHC restriction, are amenable to central distribution, and can provide near immediate immune induction. We screened commercially available nanoliposomal preparations and identified the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as an efficient mRNA courier to antigen-presenting cells (APCs). When administered intravenously, RNA-NPs mediate systemic activation of APCs in reticuloendothelial organs such as the spleen, liver, and bone marrow. RNA-NPs increase percent expression of MHC class I/II, B7 co-stimulatory molecules, and maturation markers on APCs (all vital for T-cell activation). RNA-NPs also increase activation markers on tumor APCs and elicit potent expansion of antigen-specific T-cells superior to peptide vaccines formulated in complete Freund's adjuvant. We demonstrate that both model antigen-encoding and physiologically-relevant tumor-derived RNA-NPs expand potent antitumor T-cell immunity. RNA-NPs were shown to induce antitumor efficacy in a vaccine model and functioned as a suitable alternative to DCs in a stringent cellular immunotherapy model for a radiation/temozolomide resistant invasive murine high-grade glioma. Although cancer vaccines have suffered from weak immunogenicity, we have advanced a RNA-NP formulation that systemically activates host APCs precipitating activated T-cell frequencies necessary to engender antitumor efficacy. RNA-NPs can thus be harnessed as a more feasible and effective immunotherapy to re-program host-immunity. PMID:28197373

  7. P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells

    PubMed Central

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity. PMID:23940597

  8. A strategy of antigen incorporation into exosomes: comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles.

    PubMed

    Lattanzi, Laura; Federico, Maurizio

    2012-11-26

    Among strategies aimed at developing new nanoparticle-based vaccines, exosomes hold much promise. They are nanovesicles released by basically all eukaryotic cell types originating from intraluminal vesicles which accumulate in multivesicular bodies. Exosomes have immunogenic properties whose strength correlates with the amounts of associated antigens. Engineering antigens to target them in exosomes represents the last frontier in terms of nanoparticle-based vaccines. Here we report a new method to incorporate protein antigens in exosomes relying on the unique properties of a mutant of the HIV-1 Nef protein, Nef(mut). This is a biologically inactive mutant we found incorporating into exosomes at high levels also when fused at its C-terminus with foreign proteins. We compared both biochemical and antigenic properties of Nef(mut) exosomes with those of previously characterized Nef(mut) -based lentiviral virus-like particles (VLPs). We found that exosomes incorporate Nef(mut) and fusion protein derivatives with similar efficiency of VLPs. When an envelope fusion protein was associated with both exosomes and VLPs to favor cross-presentation of associated antigens, Nef(mut) and its derivatives incorporated in exosomes were cross-presented at levels at least similar to what observed when the antigens were delivered by engineered VLPs. This occurred despite exosomes entered target cells with an apparent lower efficiency than VLPs. The unique properties of HIV-1 Nef(mut) in terms of exosome incorporation efficiency, carrier of foreign antigens, and lack of anti-cellular effects open the way toward the development of a flexible, safe, cost-effective exosome-based CD8(+) T cell vaccine platform.

  9. Genetic modulation of antigen presentation by HLA-B27 molecules

    PubMed Central

    1992-01-01

    In studies of antigenic peptide presentation, we have found a healthy volunteer whose lymphoblastoid cells were unable to present three different virus-derived epitopes to cytotoxic T lymphocytes (CTL) despite expressing the correct restricting HLA-B27 molecules on the cell surface. B cell lines were established from other members of the donor's family, including individuals suffering from ankylosing spondylitis and related diseases, and were tested for their ability to function as target cells in the same assay. None of the eight B cell lines that expressed HLA-B27 presented a known peptide epitope to CTL. However, cells from a family member that expressed HLA-B8 could present an epitope peptide restricted by that molecule. The B27 molecule in this family proved to be the B2702 subtype on isoelectric focusing gels, appearing in exactly the same position as B2702 from other cell lines that did present the peptide. To exclude mutations resulting in noncharged amino acid substitutions, cDNA coding for B2702 was cloned from the proband's cell line and sequenced. No coding changes were found. The cloned cDNA was transfected into HLA-A- and B-negative HMy/C1R cells, and the B2702 molecules generated in this environment rendered these cells, after incubation with peptide, susceptible to lysis by peptide-specific CTL. These data are compatible with the presence of a factor(s), possibly HLA linked, interfering with antigen presentation by otherwise normal B2702 molecules in this family. PMID:1370680

  10. Enhanced antigen-presenting capacity of cultured Langerhans' cells is associated with markedly increased expression of Ia antigen

    SciTech Connect

    Shimada, S.; Caughman, S.W.; Sharrow, S.O.; Stephany, D.; Katz, S.I.

    1987-10-15

    Recent studies indicate that when epidermal Langerhans' cells (LC) are cultured for 2 to 3 days they, in comparison to freshly prepared LC, exhibit markedly enhanced ability to stimulate T cell proliferative responses in oxidative mitogenesis and in the mixed epidermal-leukocyte reaction. In this study, we determined whether cultured LC enhance antigen-specific T cell responses, and whether such enhanced stimulatory capacity correlates with the level of Ia antigen expressed on LC. We used C3H/He (Iak) epidermal cells as stimulators and, as responder cells, both the trinitrophenyl-specific clones D8 and SE4, which were assayed for (/sup 3/H)dThd incorporation, and the pigeon cytochrome c specific hybridoma 2C2, which was assayed for interleukin 2 production. Cultured LC induced 10 to 100 times greater proliferation or interleukin 2 production by responder cells than did freshly prepared LC. The intensity of I-Ak and I-Ek, expressed on cultured LC as assessed by immunofluorescence and flow cytometry, was found to be 10 to 36 times greater on a per cell basis than that on freshly prepared LC. Depletion of LC from fresh epidermal cell suspensions by anti-Iak and complement or treatment with 50 mJ/cm/sup 2/ medium range ultraviolet light or cycloheximide before culture abrogated both the increase in Ia expression and antigen-specific clonal proliferation. The results suggest that when LC are removed from their usual epidermal milieu, they express increased amounts of Ia and become more potent stimulators of T cell responses.

  11. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    PubMed Central

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  12. B7 expression and antigen presentation by human brain endothelial cells: requirement for proinflammatory cytokines.

    PubMed

    Prat, A; Biernacki, K; Becher, B; Antel, J P

    2000-02-01

    Interaction between systemic immune cells with cells of the blood-brain barrier is a central step in development of CNS-directed immune responses. Endothelial cells are the first cells of the blood-brain barrier encountered by migrating lymphocytes. To investigate the antigen-presenting capacity of human adult brain endothelial cells (HBECs), we used HBECs derived from surgically resected temporal lobe tissue, cocultured with allogeneic peripheral blood derived CD4+ T lymphocytes. HBECs in response to IFN-gamma, but not under basal culture conditions, expressed HLA-DR, B7.1 and B7.2 antigens. Despite such up-regulation, these IFN-gamma-treated HBECs, in contrast to human microglia and PB monocytes, did not sustain allogeneic CD4+ cell proliferation, supported only low levels of IL-2 and IFN-gamma production, and did not stimulate IL-2 receptor expression. CD4+ T cell proliferation and increased IL-2 receptor expression could be obtained by addition of IL-2. Our data suggests that, although HBECs cannot alone support T cell proliferation and cytokine production, HBECs acting in concert with cytokines derived from a proinflammatory environment could support such a response.

  13. HLA-DO as the Optimizer of Epitope Selection for MHC Class II Antigen Presentation

    PubMed Central

    Poluektov, Yuri O.; Kim, AeRyon; Hartman, Isamu Z.; Sadegh-Nasseri, Scheherazade

    2013-01-01

    Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM. To directly study DO functions, we designed a recombinant soluble DO and expressed it in insect cells. The kinetics of binding and dissociation of several peptides to HLA-DR1 (DR1) molecules in the presence of DM and DO were measured. We found that DO reduced binding of DR1 to some peptides, and enhanced the binding of some other peptides to DR1. Interestingly, these enhancing and reducing effects were observed in the presence, or absence, of DM. We found that peptides that were negatively affected by DO were DM-sensitive, whereas peptides that were enhanced by DO were DM-resistant. The positive and negative effects of DO could only be measured on binding kinetics as peptide dissociation kinetics were not affected by DO. Using Surface Plasmon Resonance, we demonstrate direct binding of DO to a peptide-receptive, but not a closed conformation of DR1. We propose that DO imposes another layer of control on epitope selection during antigen processing. PMID:23951115

  14. Cowpox virus employs a two-pronged strategy to outflank MHCI antigen presentation.

    PubMed

    McCoy, William H; Wang, Xiaoli; Yokoyama, Wayne M; Hansen, Ted H; Fremont, Daved H

    2013-09-01

    Smallpox decimated humanity for thousands of years before being eradicated by vaccination, a success facilitated by the fact that humans are the only host of variola virus. In contrast, other orthopoxviruses such as cowpox virus can infect a variety of mammalian species, although its dominant reservoir appears to be rodents. This difference in host specificity suggests that cowpox may have developed promiscuous immune evasion strategies to facilitate zoonosis. Recent experiments have established that cowpox can disrupt MHCI antigen presentation during viral infection of both human and murine cells, a process enabled by two unique proteins, CPXV012 and CPXV203. While CPXV012 inhibits antigenic peptide transport from the cytosol to the ER, CPXV203 blocks MHCI trafficking to the cell surface by exploiting the KDEL-receptor recycling pathway. Our recent investigations of CPXV203 reveal that it binds a diverse array of classical and non-classical MHCI proteins with dramatically increased affinities at the lower pH of the Golgi relative to the ER, thereby providing mechanistic insight into how it works synergistically with KDEL receptors to block MHCI surface expression. The strategy used by cowpox to both limit peptide supply and disrupt trafficking of fully assembled MHCI acts as a dual-edged sword that effectively disables adaptive immune surveillance of infected cells.

  15. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    NASA Astrophysics Data System (ADS)

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-06-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2-24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines.

  16. Mechanism of Action of Probiotic Bacteria on Intestinal and Systemic Immunities and Antigen-Presenting Cells.

    PubMed

    Fong, Fiona Long Yan; Shah, Nagendra P; Kirjavainen, Pirkka; El-Nezami, Hani

    2016-05-03

    Immunomodulation has been shown to be one of the major functions of probiotic bacteria. This review is presented to provide detailed information on the immunomodulatory properties of probiotics in various animal models and clinical practices. Probiotics can regulate helper T (Th) responses and release of cytokines in a strain-specific manner. For example, Lactobacillus rhamnosus GG can induce beneficial Th1 immunomodulatory effect in infants with cow's milk allergy and relieve intestinal inflammation in atopic children by promoting IL-10 generation. Mechanism of action of probiotics on antigen-presenting cells at gastrointestinal tract is also postulated in this review. Probiotic bacterial cells and their soluble factors may activate dendritic cells, macrophages, and to certain extent monocytes via toll-like-receptor recognition and may further provoke specific Th responses. They are speculated to elicit immunomodulatory effects on intestinal and systemic immunities.

  17. Immunology by numbers: quantitation of antigen presentation completes the quantitative milieu of systems immunology!

    PubMed

    Purcell, Anthony W; Croft, Nathan P; Tscharke, David C

    2016-06-01

    We review approaches to quantitate antigen presentation using a variety of biological and biochemical readouts and highlight the emerging role of mass spectrometry (MS) in defining and quantifying MHC-bound peptides presented at the cell surface. The combination of high mass accuracy in the determination of the molecular weight of the intact peptide of interest and its signature pattern of fragmentation during tandem MS provide an unambiguous and definitive identification. This is in contrast to the potential receptor cross-reactivity towards closely related peptides and variable dose responsiveness seen in biological readouts. In addition, we gaze into the not too distant future where big data approaches in MS can be accommodated to quantify whole immunopeptidomes both in vitro and in vivo.

  18. Uptake of HLA Alloantigens via CD89 and CD206 Does Not Enhance Antigen Presentation by Indirect Allorecognition

    PubMed Central

    Breman, Eytan; Ruben, Jurjen M.; Franken, Kees L.; Heemskerk, Mirjam H. M.; Roelen, Dave L.; Claas, Frans H.

    2016-01-01

    In organ transplantation, alloantigens are taken up by antigen presenting cells and presented via the indirect pathway to T-cells which in turn can induce allograft rejection. Monitoring of these T-cells is of major importance; however no reliable assay is available to routinely monitor indirect allorecognition. Recently we showed that HLA monomers can be successfully used to monitor indirect allorecognition. Targeting antigens to endocytic receptors on antigen presenting cells may further enhance the presentation of antigens via HLA class II and improve the efficiency of this assay. In the current study we explored targeting of HLA monomers to either CD89 expressing monocytes or mannose receptor expressing dendritic cells. Monomer-antibody complexes were generated using biotin-labeled monomers and avidin labeling of the antibodies. We demonstrate that targeting the complexes to these receptors resulted in a dose-dependent HLA class II mediated presentation to a T-cell clone. The immune-complexes were efficiently taken up and presented to T-cells. However, the level of T-cell reactivity was similar to that when only exogenous antigen was added. We conclude that HLA-A2 monomers targeted for presentation through CD89 on monocytes or mannose receptor on dendritic cells lead to proper antigen presentation but do not enhance indirect allorecognition via HLA-DR. PMID:27413760

  19. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens.

    PubMed

    Fehres, Cynthia M; Kalay, Hakan; Bruijns, Sven C M; Musaafir, Sara A M; Ambrosini, Martino; van Bloois, Louis; van Vliet, Sandra J; Storm, Gert; Garcia-Vallejo, Juan J; van Kooyk, Yvette

    2015-04-10

    Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based antigen targeting to both the human DC-specific C-type lectin receptor (CLR) DC-SIGN and the LC-specific CLR langerin. Since DC-SIGN and langerin are able to recognize the difucosylated oligosaccharide Lewis Y (Le(Y)), we prepared neoglycoconjugates bearing this glycan epitope to allow targeting of both lectins. Le(Y)-modified liposomes, with an approximate diameter of 200nm, were significantly endocytosed by DC-SIGN(+) DCs and mediated efficient antigen presentation to CD4(+) and CD8(+) T cells. Surprisingly, although langerin bound to Le(Y)-modified liposomes, LCs exposed to Le(Y)-modified liposomes could not endocytose liposomes nor mediate antigen presentation to T cells. However, LCs mediated an enhanced cross-presentation when antigen was delivered through langerin using Le(Y)-modified synthetic long peptides. In contrast, Le(Y)-modified synthetic long peptides were recognized by DC-SIGN, but did not trigger antigen internalization nor antigen cross-presentation. These data demonstrate that langerin and DC-SIGN have different size requirements for antigen uptake. Although using glycans remains an interesting option in the design of anti-cancer vaccines targeting multiple CLRs, aspects such as molecule size and conformation need to be taken in consideration.

  20. Herpes simplex virus γ34.5 interferes with autophagosome maturation and antigen presentation in dendritic cells.

    PubMed

    Gobeil, Philipe A M; Leib, David A

    2012-10-16

    The cellular autophagy response induced by herpes simplex virus 1 (HSV-1) is countered by the viral γ34.5 protein. γ34.5 modulates autophagy by binding to the host autophagy protein Beclin-1 and through this binding inhibits the formation of autophagosomes in fibroblasts and neurons. In contrast, in this study dendritic cells (DCs) infected with HSV-1 showed an accumulation of autophagosomes and of the long-lived protein p62. No such accumulations were observed in DCs infected with a γ34.5-null virus or a virus lacking the Beclin-binding domain (BBD) of γ34.5. To explore this further, we established stably transduced DC lines to show that γ34.5 expression alone induced autophagosome accumulation yet prevented p62 degradation. In contrast, DCs expressing a BBD-deleted mutant of γ34.5 were unable to modulate autophagy. DCs expressing γ34.5 were less capable of stimulating T-cell activation and proliferation in response to intracellular antigens, demonstrating an immunological consequence of inhibiting autophagy. Taken together, these data show that in DCs, γ34.5 antagonizes the maturation of autophagosomes and T cell activation in a BBD-dependent manner, illustrating a unique interface between HSV and autophagy in antigen-presenting cells. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a highly prevalent pathogen causing widespread morbidity and some mortality. HSV infections are lifelong, and there are no vaccines or antivirals to cure HSV infections. The ability of HSV to modulate host immunity is critical for its virulence. HSV inhibits host autophagy, a pathway with importance in many areas of health and disease. Autophagy is triggered by many microbes, some of which harness autophagy for replication; others evade autophagy or prevent it from occurring. Autophagy is critical for host defense, either by directly degrading the invading pathogen ("xenophagy") or by facilitating antigen presentation to T cells. In this study, we show that HSV manipulates

  1. Expanded Human Blood-Derived γδT Cells Display Potent Antigen-Presentation Functions

    PubMed Central

    Khan, Mohd Wajid A.; Curbishley, Stuart M.; Chen, Hung-Chang; Thomas, Andrew D.; Pircher, Hanspeter; Mavilio, Domenico; Steven, Neil M.; Eberl, Matthias; Moser, Bernhard

    2014-01-01

    Cell-based immunotherapy strategies target tumors directly (via cytolytic effector cells) or aim at mobilizing endogenous anti-tumor immunity. The latter approach includes dendritic cells (DC) most frequently in the form of in vitro cultured peripheral blood monocytes-derived DC. Human blood γδT cells are selective for a single class of non-peptide agonists (“phosphoantigens”) and develop into potent antigen-presenting cells (APC), termed γδT-APC within 1–3 days of in vitro culture. Availability of large numbers of γδT-APC would be advantageous for use as a novel cellular vaccine. We here report optimal γδT cell expansion (>107 cells/ml blood) when peripheral blood mononuclear cells (PBMC) from healthy individuals and melanoma patients were stimulated with zoledronate and then cultured for 14 days in the presence of IL-2 and IL-15, yielding γδT cell cultures of variable purity (77 ± 21 and 56 ± 26%, respectively). They resembled effector memory αβT (TEM) cells and retained full functionality as assessed by in vitro tumor cell killing as well as secretion of pro-inflammatory cytokines (IFNγ, TNFα) and cell proliferation in response to stimulation with phosphoantigens. Importantly, day 14 γδT cells expressed numerous APC-related cell surface markers and, in agreement, displayed potent in vitro APC functions. Day 14 γδT cells from PBMC of patients with cancer were equally effective as their counterparts derived from blood of healthy individuals and triggered potent CD8+ αβT cell responses following processing and cross-presentation of simple (influenza M1) and complex (tuberculin purified protein derivative) protein antigens. Of note, and in clear contrast to peripheral blood γδT cells, the ability of day 14 γδT cells to trigger antigen-specific αβT cell responses did not depend on re-stimulation. We conclude that day 14 γδT cell cultures provide a convenient source of autologous APC for use in immunotherapy of patients

  2. Expanded Human Blood-Derived γδT Cells Display Potent Antigen-Presentation Functions.

    PubMed

    Khan, Mohd Wajid A; Curbishley, Stuart M; Chen, Hung-Chang; Thomas, Andrew D; Pircher, Hanspeter; Mavilio, Domenico; Steven, Neil M; Eberl, Matthias; Moser, Bernhard

    2014-01-01

    Cell-based immunotherapy strategies target tumors directly (via cytolytic effector cells) or aim at mobilizing endogenous anti-tumor immunity. The latter approach includes dendritic cells (DC) most frequently in the form of in vitro cultured peripheral blood monocytes-derived DC. Human blood γδT cells are selective for a single class of non-peptide agonists ("phosphoantigens") and develop into potent antigen-presenting cells (APC), termed γδT-APC within 1-3 days of in vitro culture. Availability of large numbers of γδT-APC would be advantageous for use as a novel cellular vaccine. We here report optimal γδT cell expansion (>10(7) cells/ml blood) when peripheral blood mononuclear cells (PBMC) from healthy individuals and melanoma patients were stimulated with zoledronate and then cultured for 14 days in the presence of IL-2 and IL-15, yielding γδT cell cultures of variable purity (77 ± 21 and 56 ± 26%, respectively). They resembled effector memory αβT (TEM) cells and retained full functionality as assessed by in vitro tumor cell killing as well as secretion of pro-inflammatory cytokines (IFNγ, TNFα) and cell proliferation in response to stimulation with phosphoantigens. Importantly, day 14 γδT cells expressed numerous APC-related cell surface markers and, in agreement, displayed potent in vitro APC functions. Day 14 γδT cells from PBMC of patients with cancer were equally effective as their counterparts derived from blood of healthy individuals and triggered potent CD8(+) αβT cell responses following processing and cross-presentation of simple (influenza M1) and complex (tuberculin purified protein derivative) protein antigens. Of note, and in clear contrast to peripheral blood γδT cells, the ability of day 14 γδT cells to trigger antigen-specific αβT cell responses did not depend on re-stimulation. We conclude that day 14 γδT cell cultures provide a convenient source of autologous APC for use in immunotherapy of patients

  3. EpsinR, a target for pyrenocine B, role in endogenous MHC-II-restricted antigen presentation.

    PubMed

    Shishido, Tatsuya; Hachisuka, Masami; Ryuzaki, Kai; Miura, Yuko; Tanabe, Atsushi; Tamura, Yasuaki; Kusayanagi, Tomoe; Takeuchi, Toshifumi; Kamisuki, Shinji; Sugawara, Fumio; Sahara, Hiroeki

    2014-11-01

    While the presentation mechanism of antigenic peptides derived from exogenous proteins by MHC class II molecules is well understood, relatively little is known about the presentation mechanism of endogenous MHC class II-restricted antigens. We therefore screened a chemical library of 200 compounds derived from natural products to identify inhibitors of the presentation of endogenous MHC class II-restricted antigens. We found that pyrenocine B, a compound derived from the fungus Pyrenochaeta terrestris, inhibits presentation of endogenous MHC class II-restricted minor histocompatibility antigen IL-4 inducible gene 1 (IL4I1) by primary dendritic cells (DCs). Phage display screening and surface plasmon resonance (SPR) analysis were used to investigate the mechanism of suppressive action by pyrenocine B. EpsinR, a target molecule for pyrenocine B, mediates endosomal trafficking through binding of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Lentiviral-mediated short hairpin (sh) RNA downregulation of EpsinR expression in DCs resulted in a decrease in the responsiveness of CD4+ T cells. Our data thus suggest that EpsinR plays a role in antigen presentation, which provides insight into the mechanism of presentation pathway of endogenous MHC class II-restricted antigen.

  4. Intestinal Antigen-Presenting Cells: Key Regulators of Immune Homeostasis and Inflammation.

    PubMed

    Flannigan, Kyle L; Geem, Duke; Harusato, Akihito; Denning, Timothy L

    2015-07-01

    The microbiota that populate the mammalian intestine are critical for proper host physiology, yet simultaneously pose a potential danger. Intestinal antigen-presenting cells, namely macrophages and dendritic cells (DCs), are integral components of the mucosal innate immune system that maintain co-existence with the microbiota in face of this constant threat. Intestinal macrophages and DCs integrate signals from the microenvironment to orchestrate innate and adaptive immune responses that ultimately lead to durable tolerance of the microbiota. Tolerance is not a default response, however, because macrophages and DCs remain poised to vigorously respond to pathogens that breach the epithelial barrier. In this review, we summarize the salient features of macrophages and DCs in the healthy and inflamed intestine and discuss how signals from the microbiota can influence their function.

  5. The role of antigen-presenting cells in filoviral hemorrhagic fever: gaps in current knowledge

    PubMed Central

    Martinez, Osvaldo; Leung, Lawrence W.; Basler, Christopher F.

    2012-01-01

    The filoviruses, ebolavirus (EBOV) and marburgvirus (MARV), are highly lethal zoonotic agents of concern as emerging pathogens and potential bioweapons. Antigen-presenting cells (APCs), particularly macrophages and dendritic cells, are targets of filovirus infection in vivo. Infection of these cell types has been proposed to contribute to the inflammation, activation of coagulation cascades and ineffective immune responses characteristic of filovirus hemorrhagic fever. However, many aspects of filovirus-APC interactions remain to be clarified. Among the unanswered questions: What determines the ability of filoviruses to replicate in different APC subsets? What are the cellular signaling pathways that sense infection and lead to production of copious quantities of cytokines, chemokines and tissue factor? What are the mechanisms by which innate antiviral responses are disabled by these viruses, and how may these mechanisms contribute to inadequate adaptive immunity? A better understanding of these issues will clarify the pathogenesis of filoviral hemorrhagic fever and provide new avenues for development of therapeutics. PMID:22333482

  6. Tubulin and Actin Interplay at the T Cell and Antigen-Presenting Cell Interface

    PubMed Central

    Martín-Cófreces, Noa Beatriz; Alarcón, Balbino; Sánchez-Madrid, Francisco

    2011-01-01

    T cells reorganize their actin and tubulin-based cytoskeletons to provide a physical basis to the immune synapse. However, growing evidence shows that their roles on T cell activation are more dynamic than merely serving as tracks or scaffold for different molecules. The crosstalk between both skeletons may be important for the formation and movement of the lamella at the immunological synapse by increasing the adhesion of the T cell to the antigen-presenting cells (APC), thus favoring the transport of components toward the plasma membrane and in turn regulating the T-APC intercellular communication. Microtubules and F-actin appear to be essential for the transport of the different signaling microclusters along the membrane, therefore facilitating the propagation of the signal. Finally, they can also be important for regulating the endocytosis, recycling, and degradation of the T cell receptor signaling machinery, thus helping both to sustain the activated state and to switch it off. PMID:22566814

  7. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    PubMed

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  8. Emergence of distinct multi-armed immunoregulatory antigen presenting cells during persistent viral infection

    PubMed Central

    Wilson, Elizabeth B.; Kidani, Yoko; Elsaesser, Heidi; Barnard, Jennifer; Raff, Laura; Karp, Christopher L.; Bensinger, Steven; Brooks, David G.

    2012-01-01

    During persistent viral infection, adaptive immune responses are suppressed by immunoregulatory factors, contributing to viral persistence. Although this suppression is mediated by inhibitory factors, the mechanisms by which virus-specific T cells encounter and integrate immunoregulatory signals during persistent infection are unclear. We show that a distinct population of IL-10-expressing immunoregulatory antigen presenting cells (APC) is amplified during chronic versus acute lymphocytic choriomeningitis virus (LCMV) infection and suppresses T cell responses. Although acute LCMV infection induces the expansion of immunoregulatory APC, they subsequently decline. However, during persistent LCMV infection, immunoregulatory APC are amplified and parallel the viral replication kinetics. Further characterization demonstrates that immunoregulatory APC are molecularly and metabolically distinct, and exhibit increased expression of T cell-interacting molecules and negative regulatory factors that suppress T cell responses. Thus, immunoregulatory APC are amplified during viral persistence and deliver inhibitory signals that suppress antiviral T cell immunity and likely contribute to persistent infection. PMID:22607801

  9. CD169+ MACROPHAGES PRESENT LIPID ANTIGENS TO MEDIATE EARLY ACTIVATION OF INVARIANT NKT CELLS IN LYMPH NODES

    PubMed Central

    Barral, Patricia; Polzella, Paolo; Bruckbauer, Andreas; van Rooijen, Nico; Besra, Gurdyal S.; Cerundolo, Vincenzo; Batista, Facundo D.

    2010-01-01

    Invariant NKT (iNKT) cells are involved in host defence against microbial infections. While it is known that iNKT cells recognize glycolipids presented by CD1d, how and where they encounter antigen in vivo remains unclear. We used multi-photon microscopy to visualize the dynamics and activation of iNKT cells in lymph nodes. Following antigen administration, iNKT cells become confined in a CD1d-dependent manner in close proximity to subcapsular sinus CD169+ macrophages. These macrophages retain, internalize and present lipid antigen, and are required for iNKT cell activation, cytokine production and expansion. Thus, CD169+ macrophages can act as bona fide antigen presenting cells controlling early iNKT cell activation and favouring fast initiation of immune responses. PMID:20228797

  10. CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes.

    PubMed

    Barral, Patricia; Polzella, Paolo; Bruckbauer, Andreas; van Rooijen, Nico; Besra, Gurdyal S; Cerundolo, Vincenzo; Batista, Facundo D

    2010-04-01

    Invariant natural killer T cells (iNKT cells) are involved in the host defense against microbial infection. Although it is known that iNKT cells recognize glycolipids presented by CD1d, how and where they encounter antigen in vivo remains unclear. Here we used multiphoton microscopy to visualize the dynamics and activation of iNKT cells in lymph nodes. After antigen administration, iNKT cells became confined in a CD1d-dependent manner in close proximity to subcapsular sinus CD169(+) macrophages. These macrophages retained, internalized and presented lipid antigen and were required for iNKT cell activation, cytokine production and population expansion. Thus, CD169(+) macrophages can act as true antigen-presenting cells controlling early iNKT cell activation and favoring the fast initiation of immune responses.

  11. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway

    SciTech Connect

    Tooker, Brian C.; Brindley, Stephen M.; Chiarappa-Zucca, Marina L.; Turteltaub, Kenneth W.; Newman, Lee S.

    2014-06-16

    We report that exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstrate that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, we determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) then HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.

  12. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway

    DOE PAGES

    Tooker, Brian C.; Brindley, Stephen M.; Chiarappa-Zucca, Marina L.; ...

    2014-06-16

    We report that exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstratemore » that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, we determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) then HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.« less

  13. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway.

    PubMed

    Tooker, Brian C; Brindley, Stephen M; Chiarappa-Zucca, Marina L; Turteltaub, Kenneth W; Newman, Lee S

    2015-01-01

    Exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstrate that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, it was determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) than HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.

  14. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung

    PubMed Central

    Thornton, Emily E.; Looney, Mark R.; Bose, Oishee; Sen, Debasish; Sheppard, Dean; Locksley, Richard; Huang, Xiaozhu

    2012-01-01

    Asthma pathogenesis is focused around conducting airways. The reasons for this focus have been unclear because it has not been possible to track the sites and timing of antigen uptake or subsequent antigen presentation to effector T cells. In this study, we use two-photon microscopy of the lung parenchyma and note accumulation of CD11b+ dendritic cells (DCs) around the airway after allergen challenge but very limited access of these airway-adjacent DCs to the contents of the airspace. In contrast, we observed prevalent transepithelial uptake of particulate antigens by alveolar DCs. These distinct sites are temporally linked, as early antigen uptake in alveoli gives rise to DC and antigen retention in the airway-adjacent region. Antigen-specific T cells also accumulate in the airway-adjacent region after allergen challenge and are activated by the accumulated DCs. Thus, we propose that later airway hyperreactivity results from selective retention of allergen-presenting DCs and antigen-specific T cells in airway-adjacent interaction zones, not from variation in the abilities of individual DCs to survey the lung. PMID:22585735

  15. Characterization of antigen-presenting cells from the porcine respiratory system.

    PubMed

    López-Robles, Guadalupe; Silva-Campa, Erika; Burgara-Estrella, Alexel; Hernández, Jesús

    2015-06-01

    Antigen-presenting cells (APCs) are strategically placed in all anatomic sites with high antigen exposure such as the respiratory system. The aim of this study was to evaluate phenotypic and functional properties of APCs from the lung (L-Cs), mediastinal lymph node (LN-Cs) and bronchoalveolar lavage cells (BAL-Cs). The APCs were first analyzed based on forward scatter and side scatter profiles and the selection of MHC-II(high)CD172a(+) cells (referred to as APCs); then the expression of CD1a, CD163, CD206, CD16 and CD11R3 was evaluated in the APCs. The results showed that CD1a, CD163 and CD206 were differentially expressed among L-Cs, LN-Cs and BAL-Cs, suggesting the phenotype MHC-II(high)CD172a(+)CD1a(low/-)CD163(low)CD206(-) for L-Cs and MHC-II(high)CD172a(+)CD1a(+)CD163(low/-)CD206(+) for LN-Cs. BAL-Cs were MHC-II(high)CD172a(+)CD1a(-)CD163(high)CD206(+/-). The functional characteristics of L-Cs and LN-Cs were different from those of BAL-Cs, confirming that L-Cs and LN-Cs resemble specialized APCs. In conclusion, we present the characterization of APCs from L-Cs, LN-Cs and BAL-Cs of the porcine respiratory system.

  16. Extracts from presumed "reduced harm" cigarettes induce equivalent or greater toxicity in antigen-presenting cells.

    PubMed

    Vassallo, Robert; Wang, Lei; Hirano, Yoshimi; Walters, Paula; Grill, Diane

    2015-09-01

    The tobacco industry has promoted certain cigarette products with claims that their use may be less harmful to the smoker as they purportedly deliver lower amounts of toxic chemicals compared to conventional cigarettes. This study was designed to compare the relative antigen presenting cellular toxicity of Eclipse, a presumed reduced exposure product (PREP) cigarette, when compared with the reference research 3R4F cigarettes (Kentucky University). Utilizing a murine macrophage cell line, murine bone marrow derived dendritic cells (DCs) and human monocyte-derived DCs incubated with extracts generated from Eclipse and Kentucky reference 3R4F cigarettes, we determined the relative toxic effects of the different cigarette smoke extracts on cellular viability, oxidative stress, T-helper-1 (Th-1) polarizing cytokine production and general gene expression. Eclipse and 3R4F cigarette smoke extracts induced equivalent oxidatively-mediated cellular heme oxygenase-1 (HO-1) protein levels in macrophages and DCs. Cellular viability determination demonstrated greater induction of cell death by apoptosis and necrosis by Eclipse extracts in DCs. The production of the key Th-1 polarizing cytokine interleukin-12 (IL-12) by activated DCs or macrophages was suppressed to an equivalent or greater extent by Eclipse extracts. Microarray studies performed on bone marrow derived murine DCs incubated with Eclispe or 3R4F cigarette extracts showed identical genotoxic profiles. These studies imply that presumed reduced harm Eclipse cigarettes induce equivalent or greater antigen presenting cell dysfunction relative to 3R4F cigarettes and illustrate the importance of independent validation and testing of similar products claimed to be associated with reduced toxicity relative to other cigarettes.

  17. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization.

    PubMed

    Porgador, A; Irvine, K R; Iwasaki, A; Barber, B H; Restifo, N P; Germain, R N

    1998-09-21

    Cutaneous gene (DNA) bombardment results in substantial expression of the encoded antigen in the epidermal layer as well as detectable expression in dendritic cells (DC) in draining lymph nodes (LNs). Under these conditions, two possible modes of DC antigen presentation to naive CD8+ T cells might exist: (a) presentation directly by gene-transfected DC trafficking to local lymph nodes, and (b) cross-presentation by untransfected DC of antigen released from or associated with transfected epidermal cells. The relative contributions of these distinct modes of antigen presentation to priming for cytotoxic T cell (CTL) responses have not been clearly established. Here we show that LN cells directly expressing the DNA-encoded antigen are rare; 24 h after five abdominal skin bombardments, the number of these cells does not exceed 50-100 cells in an individual draining LN. However, over this same time period, the total number of CD11c+ DC increases more than twofold, by an average of 20,000-30,000 DC per major draining node. This augmentation is due to gold bombardment and is independent of the presence of plasmid DNA. Most antigen-bearing cells in the LNs draining the site of DNA delivery appear to be DC and can be depleted by antibodies to an intact surface protein encoded by cotransfected DNA. This finding of predominant antigen presentation by directly transfected cells is also consistent with data from studies on cotransfection with antigen and CD86-encoding DNA, showing that priming of anti-mutant influenza nucleoprotein CTLs with a single immunization is dependent upon coexpression of the DNAs encoding nucleoprotein and B7.2 in the same cells. These observations provide insight into the relative roles of direct gene expression and cross-presentation in CD8+ T cell priming using gene gun immunization, and indicate that augmentation of direct DC gene expression may enhance such priming.

  18. Polymer nanoparticles for cross-presentation of exogenous antigens and enhanced cytotoxic T-lymphocyte immune response

    PubMed Central

    Song, Chanyoung; Noh, Young-Woock; Lim, Yong Taik

    2016-01-01

    Effective induction of an antigen-specific cytotoxic T lymphocyte (CTL) immune response is one of the key goals of cancer immunotherapy. We report the design and fabrication of polyethylenimine (PEI)-coated polymer nanoparticles (NPs) as efficient antigen-delivery carriers that can induce antigen cross-presentation and a strong CTL response. After synthesis of poly(d,l-lactide-co-glycolide) (PLGA) NPs containing ovalbumin (OVA) by the double-emulsion solvent-evaporation method, cationic-charged PLGA NPs were generated by coating them with PEI. In a methyl tetrazolium salt assay, no discernible cytotoxic effect of PEI-coated PLGA (OVA) NPs was observed. The capacity and mechanism of PEI-coated PLGA (OVA) NPs for antigen delivery and cross-presentation on dendritic cells (DCs) were determined by fluorescence microscopy and flow cytometry. PEI-coated PLGA (OVA) NPs were internalized efficiently via phagocytosis or macropinocytosis in DCs and induced efficient cross-presentation of the antigen on MHC class I molecules via both endosome escape and a lysosomal processing mechanism. The DCs treated with PEI-coated PLGA (OVA) NPs induced a release of IL-2 cytokine from OVA-specific CD8-OVA1.3 T cells more efficiently than DCs treated with PLGA (OVA) NPs. Therefore, the PEI-coated PLGA (OVA) NPs can induce antigen cross-presentation and are expected to be used for induction of a strong CTL immune response and for efficient anticancer immunotherapy. PMID:27540289

  19. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes

    PubMed Central

    2011-01-01

    Background Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs) with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application. Methods To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs) for the direct and rapid expansion of TILs isolated from primary cancer specimens. Results TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures. Conclusion Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy. PMID:21827675

  20. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells

    PubMed Central

    Horst, Andrea Kristina; Neumann, Katrin; Diehl, Linda; Tiegs, Gisa

    2016-01-01

    The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the “liver tolerance effect”. Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process. PMID:27041638

  1. Cross-Presentation of Cell-Associated Antigens by Mouse Splenic Dendritic Cell Populations

    PubMed Central

    Thacker, Robert I.; Janssen, Edith M.

    2012-01-01

    Cross-presentation of cell-associated antigens (Ag) plays an important role in the induction of anti-tumor responses, autoimmune diseases, and transplant rejection. While several dendritic cell (DC) populations can induce pro-inflammatory CD8+ T cell responses to cell-associated Ag during infection, in the absence of infection, cross-priming of naïve CD8+ T cells is highly restricted. Comparison of the main splenic DC populations in mice – including the classic, cross-presenting CD8α DC and the recently described merocytic DC (mcDC) – reveals that cross-priming DCs display a distinct phenotype in cell-associated Ag uptake, endosomal/lysosomal trafficking, lysosomal acidification, and Ag persistence compared to non-cross-priming DC populations. Although the CD8α DC and mcDC subsets utilize similar processing pathways to cross-present cell-associated Ag, cross-priming by CD8α DCs is associated with IL-12 production, while the superior priming of the mcDC is critically dependent on type I IFN production. This discussion illustrates how subtle differences in internal processing pathways and their signaling sequelae significantly affect the duration of Ag cross-presentation and cytokine production by DCs, thereby shaping the ensuing CD8+ T cell response. PMID:22566924

  2. Changes in antigen-presenting cell function in the spleen and lymph nodes of ultraviolet-irradiated mice

    SciTech Connect

    Gurish, M.F.; Lynch, D.H.; Daynes, R.A.

    1982-03-01

    It has been previously reported that mice exposed to ultraviolet (UV) radiation exhibit a decrease in splenic antigen-presenting cell (APC) function. The results presented here confirm this observation and further demonstrate that animals exposed daily to UV for extended periods of time (5 weeks instead of 6 days) no longer exhibit this depressed capability. In spite of the depression in splenic APC activity found in 6-day UV-irradiated mice, lymph node APC function from these same animals was elevated compared with that found in the lymph nodes from normal animals. Lymph node APC activity in animals that were splenectomized prior to the UV irradiation, however, was not enhanced over controls. Treatment of animals with a chemical irritant (turpentine) also caused a depression in splenic APC function without modifying lymph node activity. Collectively, our findings suggest that the observed decrease in splenic APC activity, found after the first week of UV exposures, may be attributable to the migration of splenic APC to peripheral lymphoid tissue which drain the site of epidermal inflammation.

  3. Fcγ receptor antigen targeting potentiates cross-presentation by human blood and lymphoid tissue BDCA-3+ dendritic cells.

    PubMed

    Flinsenberg, Thijs W H; Compeer, Ewoud B; Koning, Dan; Klein, Mark; Amelung, Femke J; van Baarle, Debbie; Boelens, Jaap Jan; Boes, Marianne

    2012-12-20

    The reactivation of human cytomegalovirus (HCMV) poses a serious health threat to immune compromised individuals. As a treatment strategy, dendritic cell (DC) vaccination trials are ongoing. Recent work suggests that BDCA-3(+) (CD141(+)) subset DCs may be particularly effective in DC vaccination trials. BDCA-3(+) DCs had however been mostly characterized for their ability to cross-present antigen from necrotic cells. We here describe our study of human BDCA-3(+) DCs in elicitation of HCMV-specific CD8(+) T-cell clones. We show that Fcgamma-receptor (FcγR) antigen targeting facilitates antigen cross-presentation in several DC subsets, including BDCA-3(+) DCs. FcγR antigen targeting stimulates antigen uptake by BDCA-1(+) rather than BDCA-3(+) DCs. Conversely, BDCA-3(+) DCs and not BDCA-1(+) DCs show improved cross-presentation by FcγR targeting, as measured by induced release of IFNγ and TNF by antigen-specific CD8(+) T cells. FcγR-facilitated cross-presentation requires antigen processing in both an acidic endosomal compartment and by the proteasome, and did not induce substantial DC maturation. FcγRII is the most abundantly expressed FcγR on both BDCA-1(+) and BDCA-3(+) DCs. Furthermore we show that BDCA-3(+) DCs express relatively more stimulatory FcγRIIa than inhibitory FcγRIIb in comparison with BDCA-1(+) DCs. These studies support the exploration of FcγR antigen targeting to BDCA-3(+) DCs for human vaccination purposes.

  4. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

    PubMed

    Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S

    2015-03-01

    Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell

  5. Ectopic expression of HLA-DO in mouse dendritic cells diminishes MHC class II antigen presentation.

    PubMed

    Fallas, Jennifer L; Tobin, Helen M; Lou, Olivia; Guo, Donglin; Sant'Angelo, Derek B; Denzin, Lisa K

    2004-08-01

    The MHC class II-like molecule HLA-DM (DM) (H-2M in mice) catalyzes the exchange of CLIP for antigenic peptides in the endosomes of APCs. HLA-DO (DO) (H-2O in mice) is another class II-like molecule that is expressed in B cells, but not in other APCs. Studies have shown that DO impairs or modifies the peptide exchange activity of DM. To further evaluate the role of DO in Ag processing and presentation, we generated transgenic mice that expressed the human HLA-DOA and HLA-DOB genes under the control of a dendritic cell (DC)-specific promoter. Our analyses of DCs from these mice showed that as DO levels increased, cell surface levels of A(b)-CLIP also increased while class II-peptide levels decreased. The presentation of some, but not all, exogenous Ags to T cells or T hybridomas was significantly inhibited by DO. Surprisingly, H-2M accumulated in DO-expressing DCs and B cells, suggesting that H-2O/DO prolongs the half-life of H-2M. Overall, our studies showed that DO expression impaired H-2M function, resulting in Ag-specific down-modulation of class II Ag processing and presentation.

  6. Rab22a controls MHC-I intracellular trafficking and antigen cross-presentation by dendritic cells.

    PubMed

    Cebrian, Ignacio; Croce, Cristina; Guerrero, Néstor A; Blanchard, Nicolas; Mayorga, Luis S

    2016-12-01

    Cross-presentation by MHC class I molecules allows the detection of exogenous antigens by CD8(+) T lymphocytes. This process is crucial to initiate cytotoxic immune responses against many pathogens (i.e., Toxoplasma gondii) and tumors. To achieve efficient cross-presentation, dendritic cells (DCs) have specialized endocytic pathways; however, the molecular effectors involved are poorly understood. In this work, we identify the small GTPase Rab22a as a key regulator of MHC-I trafficking and antigen cross-presentation by DCs. Our results demonstrate that Rab22a is recruited to DC endosomes and phagosomes, as well as to the vacuole containing T. gondii parasites. The silencing of Rab22a expression did not affect the uptake of exogenous antigens or parasite invasion, but it drastically reduced the intracellular pool and the recycling of MHC-I molecules. The knockdown of Rab22a also hampered the cross-presentation of soluble, particulate and T. gondii-associated antigens, but not the endogenous MHC-I antigen presentation through the classical secretory pathway. Our findings provide compelling evidence that Rab22a plays a central role in the MHC-I endocytic trafficking, which is crucial for efficient cross-presentation by DCs.

  7. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    PubMed

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-07-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generated a strong p17-specific CD4+ T helper response preceding both p17-specific humoral and effector T cell responses. Moreover, we show that T0-p17 infection did not interfere with the endogenous processing of the transgene encoded antigen, since infected APCs were able to evoke a strong recall response in vitro. Our results demonstrate that replication-deficient HSV vectors can be appealing candidates for the development of vaccines able to trigger T helper responses.

  8. Mannose receptor-mediated gene delivery into antigen presenting dendritic cells.

    PubMed

    Diebold, Sandra S; Plank, Christian; Cotten, Matt; Wagner, Ernst; Zenke, Martin

    2002-11-01

    Dendritic cells are professional antigen presenting cells and are unique in their ability to prime naïve T cells. Gene modification of dendritic cells is of particular interest for immunotherapy of diseases where the immune system has failed or is aberrantly regulated, such as in cancer or autoimmune disease, respectively. Dendritic cells abundantly express mannose receptor and mannose receptor-related receptors, and receptor-mediated gene transfer via mannose receptor offers a versatile tool for targeted gene delivery into these cells. Accordingly, mannose polyethylenimine DNA transfer complexes were generated and used for gene delivery into dendritic cells. Mannose receptor belongs to the group of scavenger receptors that allow dendritic cells to take up pathogenic material, which is directed for degradation and MHC class II presentation. Therefore, a limiting step of transgene expression by mannose receptor-mediated gene delivery is endosomal degradation of DNA. Several strategies have been explored to overcome this limitation including the addition of endosomolytic components to DNA transfer complexes like adenovirus particles and influenza peptides. Here, we review the current understanding of mannose receptor-mediated gene delivery into dendritic cells and discuss strategies to identify appropriate endosomolytic agents to improve DNA transfer efficacy.

  9. The first step of peptide selection in antigen presentation by MHC class I molecules

    PubMed Central

    Garstka, Malgorzata A.; Fish, Alexander; Celie, Patrick H. N.; Joosten, Robbie P.; Janssen, George M. C.; Berlin, Ilana; Hoppes, Rieuwert; Stadnik, Magda; Janssen, Lennert; Ovaa, Huib; van Veelen, Peter A.; Perrakis, Anastassis; Neefjes, Jacques

    2015-01-01

    MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2Kb considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2Kb in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2Kb–peptide complexes suggest that a conformational adaptation of H-2Kb drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire. PMID:25605945

  10. Cytosolic aminopeptidases influence MHC class I-mediated antigen presentation in an allele-dependent manner.

    PubMed

    Kim, Eunkyung; Kwak, Heechun; Ahn, Kwangseog

    2009-12-01

    Antigenic peptides presented by MHC class I molecules are generated mainly by the proteasome in the cytosol. Several cytosolic aminopeptidases further trim proteasomal products to form mature epitopes or individual amino acids. However, the distinct function of cytosolic aminopeptidases in MHC class I Ag processing remains to be elucidated. In this study, we show that cytosolic aminopeptidases differentially affect the cell surface expression of MHC class I molecules in an allele-dependent manner in human cells. In HeLa cells, knockdown of puromycin-sensitive aminopeptidase (PSA) by RNA interference inhibited optimal peptide loading of MHC class I molecules, and their cell surface expression was correspondingly reduced. In contrast, depletion of bleomycin hydrolase (BH) enhanced optimal peptide loading and cell surface expression of MHC class I molecules. We did not find evidence on the effect of leucine aminopeptidase knockdown on the MHC class I Ag presentation. Moreover, we demonstrated that PSA and BH influence the peptide loading and surface expression of MHC class I in an allele-specific manner. In the absence of either PSA or BH, the surface expression and peptide-dependent stability of HLA-A68 were reduced, whereas those of HLA-B15 were enhanced. The surface expression and peptide-dependent stability of HLA-A3 were enhanced by BH knockdown, although those of HLA-B8 were increased in PSA-depleted conditions.

  11. Regulation of Hemichannels and Gap Junction Channels by Cytokines in Antigen-Presenting Cells

    PubMed Central

    Shoji, Kenji F.; Aguirre, Adam; Sáez, Juan C.

    2014-01-01

    Autocrine and paracrine signals coordinate responses of several cell types of the immune system that provide efficient protection against different challenges. Antigen-presenting cells (APCs) coordinate activation of this system via homocellular and heterocellular interactions. Cytokines constitute chemical intercellular signals among immune cells and might promote pro- or anti-inflammatory effects. During the last two decades, two membrane pathways for intercellular communication have been demonstrated in cells of the immune system. They are called hemichannels (HCs) and gap junction channels (GJCs) and provide new insights into the mechanisms of the orchestrated response of immune cells. GJCs and HCs are permeable to ions and small molecules, including signaling molecules. The direct intercellular transfer between contacting cells can be mediated by GJCs, whereas the release to or uptake from the extracellular milieu can be mediated by HCs. GJCs and HCs can be constituted by two protein families: connexins (Cxs) or pannexins (Panxs), which are present in almost all APCs, being Cx43 and Panx1 the most ubiquitous members of each protein family. In this review, we focus on the effects of different cytokines on the intercellular communication mediated by HCs and GJCs in APCs and their impact on purinergic signaling. PMID:25301274

  12. Presentation of antigen in immune complexes is boosted by soluble bacterial immunoglobulin binding proteins.

    PubMed

    Léonetti, M; Galon, J; Thai, R; Sautès-Fridman, C; Moine, G; Ménez, A

    1999-04-19

    Using a snake toxin as a proteic antigen (Ag), two murine toxin-specific monoclonal antibodies (mAbs), splenocytes, and two murine Ag-specific T cell hybridomas, we showed that soluble protein A (SpA) from Staphylococcus aureus and protein G from Streptococcus subspecies, two Ig binding proteins (IBPs), not only abolish the capacity of the mAbs to decrease Ag presentation but also increase Ag presentation 20-100-fold. Five lines of evidence suggest that this phenomenon results from binding of an IBP-Ab-Ag complex to B cells possessing IBP receptors. First, we showed that SpA is likely to boost presentation of a free mAb, suggesting that the IBP-boosted presentation of an Ag in an immune complex results from the binding of IBP to the mAb. Second, FACS analyses showed that an Ag-Ab complex is preferentially targeted by SpA to a subpopulation of splenocytes mainly composed of B cells. Third, SpA-dependent boosted presentation of an Ag-Ab complex is further enhanced when splenocytes are enriched in cells containing SpA receptors. Fourth, the boosting effect largely diminishes when splenocytes are depleted of cells containing SpA receptors. Fifth, the boosting effect occurs only when IBP simultaneously contains a Fab and an Fc binding site. Altogether, our data suggest that soluble IBPs can bridge immune complexes to APCs containing IBP receptors, raising the possibility that during an infection process by bacteria secreting these IBPs, Ag-specific T cells may activate IBP receptor-containing B cells by a mechanism of intermolecular help, thus leading to a nonspecific immune response.

  13. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein.

    PubMed

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus; Broekema, Marjoleine F; de Haar, Colin; Schipper, Henk S; Boes, Marianne; Mandrup, Susanne; Kalkhoven, Eric

    2014-08-08

    Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-β and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis.

  14. CD1d-mediated Presentation of Endogenous Lipid Antigens by Adipocytes Requires Microsomal Triglyceride Transfer Protein*

    PubMed Central

    Rakhshandehroo, Maryam; Gijzel, Sanne M. W.; Siersbæk, Rasmus; Broekema, Marjoleine F.; de Haar, Colin; Schipper, Henk S.; Boes, Marianne; Mandrup, Susanne; Kalkhoven, Eric

    2014-01-01

    Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-β and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPβ and –δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis. PMID:24966328

  15. HLA Class II Antigen Presentation in Prostate Cancer Cells: A Novel Approach to Prostate Tumor Immunotherapy.

    PubMed

    Doonan, Bently Patrick; Haque, Azizul

    2010-01-01

    Prostate cancer is a deadly disease that is in drastic need of new treatment strategies for late stage and metastatic prostate cancer. Immunotherapy has emerged as a viable option to fill this void. Clinical trials have been conducted that induce tumor clearance through cytotoxic T lymphocyte (CTL) activation, these studies have had mixed outcomes with the overlying problem being the lack of a complete immune response with sustained killing and the formation of tumor specific memory cells. To overcome this, we have outlined the need for activating the HLA class II pathway in inducing a sustained CD8+ T cell response and the development of effective memory. We have also discussed the ability of prostate cancer cells to express stable HLA class II molecules that can be manipulated for tumor antigen (Ag) processing and presentation. This review also sets to outline new directions that exist for the use of class II-restricted Ags/peptides in devising cancer vaccines as well as combined chemoimmunotherapy. A better understanding of these concepts will improve future cancer vaccine studies and further the field of cancer immunobiology.

  16. Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy.

    PubMed

    Fang, Ronnie H; Kroll, Ashley V; Zhang, Liangfang

    2015-11-04

    Immunotherapeutic approaches for treating cancer overall have been receiving a considerable amount of interest due to the recent approval of several clinical formulations. Among the different modalities, anticancer vaccination acts by training the body to endogenously generate a response against tumor cells. However, despite the large amount of work that has gone into the development of such vaccines, the near absence of clinically approved formulations highlights the many challenges facing those working in the field. The generation of potent endogenous anticancer responses poses unique challenges due to the similarity between cancer cells and normal, healthy cells. As researchers continue to tackle the limited efficacy of vaccine formulations, fresh and novel approaches are being sought after to address many of the underlying problems. Here the application of nanoparticle technology towards the development of anticancer vaccines is discussed. Specifically, there is a focus on the benefits of using such strategies to manipulate antigen presenting cells (APCs), which are essential to the vaccination process, and how nanoparticle-based platforms can be rationally engineered to elicit appropriate downstream immune responses.

  17. The Transcription Factor NFAT Exhibits Signal Memory during Serial T Cell Interactions with Antigen Presenting Cells

    PubMed Central

    Marangoni, Francesco; Murooka, Thomas T.; Manzo, Teresa; Kim, Edward Y.; Carrizosa, Esteban; Elpek, Natalie M.; Mempel, Thorsten R.

    2012-01-01

    Summary Interactions with antigen-presenting cells (APCs) interrupt T cell migration through tissues and trigger signaling pathways that converge on the activation of transcriptional regulators, including NFAT, which control T cell function and differentiation. Both stable and unstable modes of cognate T cell-APC interactions have been observed in vivo, but the functional significance of unstable, serial contacts has remained unclear. Here we used multiphoton intravital microscopy in lymph nodes and tumors to show that while NFAT nuclear import was fast (t1/2 max~1min), nuclear export was slow (t1/2~20min) in T cells. During delayed export, nuclear NFAT constituted a short-term imprint of transient TCR signals and remained transcriptionally active for the T cell tolerance gene Egr2, but not for the effector gene Ifng, which required continuous TCR triggering for expression. This provides a potential mechanistic basis for the observation that a predominance of unstable APC interactions correlates with the induction of T cell tolerance. PMID:23313588

  18. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue.

    PubMed

    Majdoubi, Abdelilah; Kishta, Osama A; Thibodeau, Jacques

    2016-06-01

    Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.

  19. Herpes virus oncolytic therapy reverses tumor immune dysfunction and facilitates tumor antigen presentation.

    PubMed

    Benencia, Fabian; Courrèges, Maria C; Fraser, Nigel W; Coukos, George

    2008-08-01

    We have previously shown that intratumor administration of HSV-1716 (an ICP34.5 null mutant) resulted in significant reduction of tumor growth and a significant survival advantage in a murine model of ovarian cancer. Herewith we report that oncolytic HSV-1716 generates vaccination effects in the same model. Upon HSV-1716 infection, mouse ovarian tumor cells showed high levels of expression viral glycoproteins B and D and were highly phagocyted by dendritic cells (DCs). Interestingly, increased phagocytosis of tumor-infected cells by DCs was impaired by heparin, and anti-HSV glycoproteins B and D, indicating that viral infection enhances adhesive interactions between DCs and tumor apoptotic bodies. Moreover, HSV-1716 infected cells expressed high levels of heat shock proteins 70 and GRP94, molecules that have been reported to induce maturation of DCs, increase cross-presentation of antigens and promote antitumor immune response. After phagocytosis of tumor-infected cells, DCs acquired a mature status in vitro and in vivo, upregulated the expression of costimulatory molecule and increased migration towards MIP-3beta. Furthermore, HSV-1716 oncolytic treatment markedly reduced vascular endothelial growth factor (VEGF) levels in tumor-bearing animals thus abrogating tumor immunosuppressive milieu. These mechanisms may account for the highly enhanced antitumoral immune responses observed in HSV-1716 treated animals. Oncolytic treatment induced a significantly higher frequency of tumor-reactive IFNgamma producing cells, and induced a robust tumor infiltration by T cells. These results indicate that oncolytic therapy with HSV-1716 facilitates antitumor immune responses.

  20. Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting Cells.

    PubMed

    Kempe, Kristian; Xiang, Sue D; Wilson, Paul; Rahim, Md Arifur; Ju, Yi; Whittaker, Michael R; Haddleton, David M; Plebanski, Magdalena; Caruso, Frank; Davis, Thomas P

    2017-02-22

    Hollow glycopolymer microcapsules were fabricated by hydrogen-bonded layer-by-layer (LbL) assembly, and their interactions with a set of antigen presenting cells (APCs), including dendritic cells (DCs), macrophages (MACs), and myeloid derived suppressor cells (MDSCs), were investigated. The glycopolymers were obtained by cascade postpolymerization modifications of poly(oligo(2-ethyl-2-oxazoline methacrylate)-stat-glycidyl methacrylate) involving the modification of the glycidyl groups with propargylamine and the subsequent attachment of mannose azide by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Multilayer assembly of the hydrogen-bonding pair (glycopolymer/poly(methacrylic acid) (PMA)) onto planar and particulate supports (SiO2 particles, d = 1.16 μm) yielded stable glycopolymer films upon cross-linking by CuAAC. The silica (SiO2) particle templates were removed yielding hollow monodisperse capsules, as demonstrated by fluorescence and scanning electron microscopy. Cellular uptake studies using flow cytometry revealed the preferential uptake of the capsules by DCs when compared to MACs or MDSCs. Mannosylated capsules showed a cytokine independent cis-upregulation of CD80 specifically on DCs and a trans-downregulation of PDL-1 on MDSCs. Thus, the glycopolymer capsules may have potential as vaccine carriers, as they are able to upregulate costimulatory molecules for immune cell stimulation on DCs and at the same time downregulate immune inhibitory receptors on suppressor APC such as MDSCs.

  1. Deep reactive ion etching of auxetic structures: present capabilities and challenges

    NASA Astrophysics Data System (ADS)

    Muslija, Alban; Díaz Lantada, Andrés

    2014-08-01

    Auxetic materials (or metamaterials) have negative Poisson ratios (NPR) and display the unexpected properties of lateral expansion when stretched, and equal and opposing densification when compressed. Such auxetic materials are being used more frequently in the development of novel products, especially in the fields of intelligent expandable actuators, shape-morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic materials and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study, we present a very promising approach for the development of auxetic materials and devices based on the use of deep reactive ion etching (DRIE). The process stands out for its precision and its potential applications to mass production. To our knowledge, it represents the first time this technology has been applied to the manufacture of auxetic materials with nanometric details. We take into account the present capabilities and challenges linked to the use of DRIE in the development of auxetic materials and auxetic-based devices.

  2. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.

    PubMed

    Comber, Joseph D; Philip, Ramila

    2014-05-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.

  3. Effects of messenger RNA structure and other translational control mechanisms on major histocompatibility complex-I mediated antigen presentation.

    PubMed

    Murat, Pierre; Tellam, Judy

    2015-01-01

    Effective T-cell surveillance of antigen-presenting cells is dependent on the expression of an array of antigenic peptides bound to major histocompatibility complex (MHC) class I (MHC-I) or class II (MHC-II) molecules. Pathogens co-evolving with their hosts exploit crucial translational regulatory mechanisms in order to evade host immune recognition and thereby sustain their infection. Evasion strategies that downregulate viral protein synthesis and thereby restrict antigen presentation to cytotoxic T-cells through the endogenous MHC-I pathway have been implicated in the pathogenesis of viral-associated malignancies. An understanding of the mechanisms by which messenger RNA (mRNA) structure modulates both viral mRNA translation and the antigen processing machinery to escape immune surveillance, will stimulate the development of alternative therapeutic strategies focused on RNA-directed drugs designed to enhance immune responses against infected cells. In this review, we discuss regulatory aspects of the MHC-I pathway and summarize current knowledge of the role attributed by mRNA structure and other translational regulatory mechanisms in immune evasion. In particular we highlight the impact of recently identified G-quadruplex structures within virally encoded transcripts as unique regulatory signals for translational control and antigen presentation.

  4. A Toll-like receptor 2 agonist-fused antigen enhanced antitumor immunity by increasing antigen presentation and the CD8 memory T cells population

    PubMed Central

    Wu, Chiao-Chieh; Liu, Shih-Jen; Chen, Hsin-Wei; Shen, Kuan-Yin; Leng, Chih-Hsiang

    2016-01-01

    The induction of long-lived effector CD8+ T cells is key to the development of efficient cancer vaccines. In this study, we demonstrated that a Toll-like receptor 2 (TLR2) agonist-fused antigen increased antigen presentation via TLR2 signaling and induced effector memory-like CD8+ T cells against cancer after immunization. The N-terminus of ovalbumin (OVA) was biologically fused with a bacterial lipid moiety TLR2 agonist to produce a recombinant lipidated ovalbumin (rlipo-OVA). We demonstrated that rlipo-OVA activated bone marrow-derived dendritic cells (BM-DCs) maturation and increased antigen presentation by major histocompatibility complex (MHC) class I via TLR2. After immunization, rlipo-OVA skewed the immune response towards T helper (Th) 1 and induced OVA-specific cytotoxic T lymphocyte (CTL) responses. Moreover, immunization with rlipo-OVA induced higher numbers of effector memory (CD44+CD62L−) CD8+ T cells compared with recombinant ovalbumin (rOVA) alone or rOVA mixed with the TLR2 agonist Pam3CSK4. Accordingly, the CD27+CD43+ effector memory CD8+ T cells expressed high levels of the long-lived CD127 marker. The administration of rlipo-OVA could inhibit tumor growth, but the anti-tumor effects were lost after the depletion of CD8 or CD127 cells in vivo. These findings suggested that the TLR2 agonist-fused antigen induced long-lived memory CD8+ T cells for efficient cancer therapy. PMID:27127171

  5. Cell surface phenotype and ultramicroscopic analysis of purified human enterocytes: a possible antigen-presenting cell in the intestine.

    PubMed

    Martín-Villa, J M; Ferre-López, S; López-Suárez, J C; Corell, A; Pérez-Blas, M; Arnaiz-Villena, A

    1997-12-01

    Epithelial cells of the intestine seem to act as antigen-presenting cells to surrounding lymphoid tissue and may be crucial to maintain the pool of peripheral T lymphocytes. The scope of this study was to carry out an immunophenotypic and ultramicroscopic analysis of purified human enterocytes to elucidate their role as antigen-presenting cells, in the immune responses in the gut-associated lymphoid tissue. A method has been developed to obtain purified and viable human enterocyte populations, later labeled with relevant monoclonal antibodies directed to leukocyte antigens and subjected to cytofluorometric analysis. Phenotypic analysis revealed the presence of markers common to "classical" antigen-presenting cells (CD14, CD35, CD39, CD43, CD63 and CD64), reinforcing the idea that enterocytes may act as such. Moreover, several integrins (CD11b, CD11c, CD18, CD41a, CD61 and CD29) were also found. CD25 (IL-2 receptor alpha chain) and CD28, characteristic of T cells, were detected on the surface of these cells; this latter finding rises the possibility that enterocytes could be activated by IL-2 and/or via CD28 through binding to its ligands CD80 or CD86. Finally, the presence of CD21, CD32, CD35 and CD64 that may bind immune complexes via Fc or C3, suggests their participation in the metabolism of immune complexes. Furthermore, the finding of a Birbeck's-like granule in the cytoplasm of the cells, shows that enterocytes contain an ultramicroscopic feature previously thought to be characteristic of Langerhans' cells, an antigen-presenting cell. The phenotype detected on the surface of enterocytes, along with their ultramicroscopic characteristics, suggests that they may play an important role in the immune responses elicited in the gut, presenting antigens to surrounding lymphoid cells, and establishing cognate interactions with them.

  6. Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets.

    PubMed

    Chiang, Meng-Chieh; Tullett, Kirsteen M; Lee, Yoke Seng; Idris, Adi; Ding, Yitian; McDonald, Kylie J; Kassianos, Andrew; Leal Rojas, Ingrid M; Jeet, Varinder; Lahoud, Mireille H; Radford, Kristen J

    2016-02-01

    Cross-presentation is the mechanism by which exogenous Ag is processed for recognition by CD8(+) T cells. Murine CD8α(+) DCs are specialized at cross-presenting soluble and cellular Ag, but in humans this process is poorly characterized. In this study, we examined uptake and cross-presentation of soluble and cellular Ag by human blood CD141(+) DCs, the human equivalent of mouse CD8α(+) DCs, and compared them with human monocyte-derived DCs (MoDCs) and blood CD1c(+) DC subsets. MoDCs were superior in their capacity to internalize and cross-present soluble protein whereas CD141(+) DCs were more efficient at ingesting and cross-presenting cellular Ag. Whilst cross-presentation by CD1c(+) DCs and CD141(+) DCs was dependent on the proteasome, and hence cytosolic translocation, cross-presentation by MoDCs was not. Inhibition of endosomal acidification enhanced cross-presentation by CD1c(+) DCs and MoDCs but not by CD141(+) DCs. These data demonstrate that CD1c(+) DCs, CD141(+) DCs, and MoDCs are capable of cross-presentation; however, they do so via different mechanisms. Moreover, they demonstrate that human CD141(+) DCs, like their murine CD8α(+) DC counterparts, are specialized at cross-presenting cellular Ag, most likely mediated by an enhanced capacity to ingest cellular Ag combined with subtle changes in lysosomal pH during Ag processing and use of the cytosolic pathway.

  7. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  8. Association of Polymorphisms in HLA Antigen Presentation-Related Genes with the Outcomes of HCV Infection

    PubMed Central

    Lu, Xiaomei; Xu, Yin; Wang, Jie; Zhang, Yun; Yu, Rongbin; Su, Jing

    2015-01-01

    Antigen-presentation genes play a vital role in the pathogenesis of HCV infection. However, the relationship of variants of these genes with spontaneous outcomes of HCV infection has not been fully investigated. To explore novel loci in the Chinese population, 34 tagging-SNPs in 9 candidate genes were genotyped for their associations with the outcomes of HCV infection. The distributions of different genotypes and haplotypes were compared among 773 HCV-negative controls, 246 subjects with HCV natural clearance, and 218 HCV persistent carriers recruited from hemodialysis patients and intravenous drug users. Our study implicated that TAP2, HLA-DOA, HLA-DOB, and tapasin loci were novel candidate regions for susceptibility to HCV infection and viral clearance in the Chinese population. Logistic regression analyses showed that TAP2 rs1800454 A (OR = 1.48, P = 0.002) and HLA-DOB rs2071469 G (OR = 1.23, P = 0.048) were significantly associated with increased susceptibility to establishment of HCV infection. However, high-risk behavior exposure and age were stronger predictors of HCV infection. Mutation of tapasin rs9277972 T (OR = 1.57, P =0.043) increased the risk of HCV chronicity, and HLA-DOA rs3128935 C (OR = 0.62, P = 0.019) increased the chance of viral resolution. With regards to the effect of rs3128925, interactions were found with high-risk behavior (P = 0.013) and age (P = 0.035). The risk effect of rs3128925 T for persistent HCV infection was higher in injecting drug users (vs. dialysis patients) and in subjects ≥ 40 years old (vs. < 40 years old). PMID:25874709

  9. Prior stimulation of antigen-presenting cells with Lactobacillus regulates excessive antigen-specific cytokine responses in vitro when compared with Bacteroides

    PubMed Central

    Tsuda, Masato; Yanagibashi, Tsutomu; Hachimura, Satoshi; Hirayama, Kazuhiro; Itoh, Kikuji; Takahashi, Kyoko; Kaminogawa, Shuichi

    2007-01-01

    The development of allergy is related to differences in the intestinal microbiota. Therefore, it is suggested that the immune responses induced by different genera of bacteria might be regulated through adaptive as well as innate immunity. In this study, we examined whether antigen-specific immune responses were affected by stimulation with the different genera of intestinal bacteria in vitro. Mesenteric lymph node (MLN) cells isolated from germ-free ovalbumin (OVA)-specific T cell receptor transgenic (OVA-Tg) mice were stimulated with OVA and intestinal bacteria. Cecal contents from conventional mice but not germ-free mice could induce OVA-specific cytokine production. Among the murine intestinal bacteria, Bacteroides acidofaciens (BA) enhanced OVA-specific IFN-γ and IL-10 production while Lactobacillusjohnsonii (LA) increased OVA-specific IL-10 production only. The expression of cell surface molecules and cytokine production by antigen-presenting cells (APCs) from germ-free Balb/c mice were analyzed. BA increased the expression of MHC II and co-stimulatory molecules on APCs compared with LA. BA increased IL-6 and IL-10 production but induced less IL-12p40 than LA. To examine the effects of prior stimulation of APCs by intestinal bacteria on the induction of antigen-specific immune responses, cytokine production was determined following co-culture with OVA, CD4+ T cells from OVA-Tg mice, and APCs which were pre-stimulated with the bacteria or not. APCs pre-stimulated with LA did not enhance OVA-specific cytokine production while BA stimulated OVA-specific IL-10 production. These results suggest that the prior stimulation of intestinal immunocytes by Lactobacillus might regulate excessive antigen-specific cytokine responses via APCs when compared with prior stimulation by Bacteroides. PMID:19002998

  10. The proteasome activator 11 S REG (PA28) and class I antigen presentation.

    PubMed Central

    Rechsteiner, M; Realini, C; Ustrell, V

    2000-01-01

    There are two immune responses in vertebrates: humoral immunity is mediated by circulating antibodies, whereas cytotoxic T lymphocytes (CTL) confer cellular immunity. CTL lyse infected cells upon recognition of cell-surface MHC Class I molecules complexed with foreign peptides. The displayed peptides are produced in the cytosol by degradation of host proteins or proteins from intracellular pathogens that might be present. Proteasomes are cylindrical multisubunit proteases that generate many of the peptides eventually transferred to the cell surface for immune surveillance. In mammalian proteasomes, six active sites face a central chamber. As this chamber is sealed off from the enzyme's surface, there must be mechanisms to promote entry of substrates. Two protein complexes have been found to bind the ends of the proteasome and activate it. One of the activators is the 19 S regulatory complex of the 26 S proteasome; the other activator is '11 S REG' [Dubiel, Pratt, Ferrell and Rechsteiner (1992) J. Biol. Chem. 267, 22369-22377] or 'PA28' [Ma, Slaughter and DeMartino (1992) J. Biol. Chem. 267, 10515-10523]. During the past 7 years, our understanding of the structure of REG molecules has increased significantly, but much less is known about their biological functions. There are three REG subunits, namely alpha, beta and gamma. Recombinant REGalpha forms a ring-shaped heptamer of known crystal structure. 11 S REG is a heteroheptamer of alpha and beta subunits. REGgamma is also presumably a heptameric ring, and it is found in the nuclei of the nematode work Caenorhabditis elegans and higher organisms, where it may couple proteasomes to other nuclear components. REGalpha and REGbeta, which are abundant in vertebrate immune tissues, are located mostly in the cytoplasm. Synthesis of REG alpha and beta subunits is induced by interferon-gamma, and this has led to the prevalent hypothesis that REG alpha/beta hetero-oligomers play an important role in Class I antigen

  11. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis

    PubMed Central

    Rosenthal, Kenneth S.; Mikecz, Katalin; Steiner, Harold L.; Glant, Tibor T.; Finnegan, Alison; Carambula, Roy E.; Zimmerman, Daniel H.

    2016-01-01

    The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions. PMID:25787143

  12. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis.

    PubMed

    Rosenthal, Kenneth S; Mikecz, Katalin; Steiner, Harold L; Glant, Tibor T; Finnegan, Alison; Carambula, Roy E; Zimmerman, Daniel H

    2015-06-01

    The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions.

  13. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42.

    PubMed Central

    Stowers, L; Yelon, D; Berg, L J; Chant, J

    1995-01-01

    The mechanisms by which cells rapidly polarize in the direction of external signals are not understood. Helper T cells, when contacted by an antigen-presenting cell, polarize their cytoskeletons toward the antigen-presenting cell within minutes. Here we show that, in T cells, the mammalian Ras-related GTPase CDC42 (the homologue of yeast CDC42, a protein involved in budding polarity) can regulate the polarization of both actin and microtubules toward antigen-presenting cells but is not involved in other T-cell signaling processes such as those which culminate in interleukin 2 production. Although T-cell polarization appears dispensable for signaling leading to interleukin 2 production, polarization may direct lymphokine secretion towards the correct antigen-presenting cell in a crowded cellular environment. Inhibitor experiments suggest that phosphatidylinositol 3-kinase is required for cytoskeletal polarization but that calcineurin activity, known to be important for other aspects of signaling, is not. Apparent conservation of CDC42 function between yeast and T cells suggests that this GTPase is a general regulator of cytoskeletal polarity in many cell types. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7761442

  14. Human invariant chain isoform p35 restores thymic selection and antigen presentation in CD74-deficient mice.

    PubMed

    Genève, Laetitia; Chemali, Magali; Desjardins, Michel; Labrecque, Nathalie; Thibodeau, Jacques

    2012-10-01

    The invariant chain (Ii) has pleiotropic functions and is a key factor in antigen presentation. Ii associates with major histocompatibility complex class II molecules in the endoplasmic reticulum (ER) and targets the complex in the endocytic pathway to allow antigenic peptide loading. The human Iip35 isoform includes a cytoplasmic extension containing a di-arginine motif causing ER retention. This minor isoform does not exist in mice and its function in humans has not been thoroughly investigated. We have recently generated transgenic mice expressing Iip35 and these were crossed with Ii-deficient mice to generate animals (Tgp35/mIiKO) expressing exclusively the human isoform. In these mice, we show that Iip35 is expressed in antigen presenting cells and is inducible by interferon gamma (IFN-γ). Despite the low constitutive expression of the protein and some minor differences in the Vβ repertoire of Tgp35/mIiKO mice, Iip35 restored thymic selection of CD4(+) T cells and of invariant natural killer T cells. In vitro functional assays using purified primary macrophages treated with IFN-γ showed that Iip35 allows presentation of an Ii-dependent ovalbumin T-cell epitope. Altogether, our results suggest that Iip35 is functional and does not require co-expression of other isoforms for antigen presentation.

  15. Octaarginine-modified liposomes enhance cross-presentation by promoting the C-terminal trimming of antigen peptide.

    PubMed

    Nakamura, Takashi; Ono, Kouhei; Suzuki, Yoshiteru; Moriguchi, Rumiko; Kogure, Kentaro; Harashima, Hideyoshi

    2014-08-04

    Exogenous antigen proteolysis by proteasomes and amino peptidases is essential for the production of mature major histocompatibility complex class I (MHC-I) peptides to induce cross-presentation. We report here that when liposomes are modified with octaarginine (R8-Lip), a type of cell-penetrating peptide, the production of the mature MHC-I peptide is enhanced by promoting the C-terminal trimming of the antigen peptide. The efficiency of cross-presentation of ovalbumin (OVA) using the R8-Lip was dramatically higher than that by octalysine modified liposomes (K8-Lip) in mouse bone-marrow derived dendritic cells (BMDCs), although the physical characters of both liposomes were comparable. In this study, we investigated the mechanism responsible for the enhancement in cross-presentation by R8-Lip. Although the efficiencies of cellular uptake, endosomal escape, proteolysis of OVA and DC maturation between the two systems were essentially the same, an analysis of peptide trimming to SIINFEKL (mature MHC-I peptide of OVA) by using R8-Lip and K8-Lip encapsulating peptides of various length clearly indicates that the use of R8-Lip enhances the efficiency of the C-terminal cleavage of antigen-derived peptides. This finding provides a new strategy for achieving efficient cross-presentation by using R8 peptide and arginine-rich peptides. Moreover, this result may contribute to the development of a new paradigm regarding the machinery associated with antigen peptide production.

  16. The effect of CpG-ODN on antigen presenting cells of the foal

    PubMed Central

    Flaminio, M Julia BF; Borges, Alexandre S; Nydam, Daryl V; Horohov, David W; Hecker, Rolf; Matychak, Mary Beth

    2007-01-01

    Background Cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN) has been used successfully to induce immune responses against viral and intracellular organisms in mammals. The main objective of this study was to test the effect of CpG-ODN on antigen presenting cells of young foals. Methods Peripheral blood monocytes of foals (n = 7) were isolated in the first day of life and monthly thereafter up to 3 months of life. Adult horse (n = 7) monocytes were isolated and tested once for comparison. Isolated monocytes were stimulated with IL-4 and GM-CSF (to obtain dendritic cells, DC) or not stimulated (to obtain macrophages). Macrophages and DCs were stimulated for 14–16 hours with either CpG-ODN, LPS or not stimulated. The stimulated and non-stimulated cells were tested for cell surface markers (CD86 and MHC class II) using flow cytometry, mRNA expression of cytokines (IL-12, IFNα, IL-10) and TLR-9 using real time quantitative RT-PCR, and for the activation of the transcription factor NF-κB p65 using a chemiluminescence assay. Results The median fluorescence of the MHC class II molecule in non-stimulated foal macrophages and DCs at birth were 12.5 times and 11.2 times inferior, respectively, than adult horse cells (p = 0.009). That difference subsided at 3 months of life (p = 0.3). The expression of the CD86 co-stimulatory molecule was comparable in adult horse and foal macrophages and DCs, independent of treatment. CpG-ODN stimulation induced IL-12p40 (53 times) and IFNα (23 times) mRNA expression in CpG-ODN-treated adult horse DCs (p = 0.078), but not macrophages, in comparison to non-stimulated cells. In contrast, foal APCs did not respond to CpG-ODN stimulation with increased cytokine mRNA expression up to 3 months of age. TLR-9 mRNA expression and NF-kB activation (NF-kB p65) in foal DCs and macrophages were comparable (p > 0.05) to adult horse cells. Conclusion CpG-ODN treatment did not induce specific maturation and cytokine expression in foal

  17. Granuloma cells in chronic inflammation express CD205 (DEC205) antigen and harbor proliferating T lymphocytes: similarity to antigen-presenting cells.

    PubMed

    Ohtani, Haruo

    2013-02-01

    Granulomas are classified as immune or foreign body granulomas. Of these, the immune granulomas, a hallmark of granulomatous inflammation, are closely related to cell-mediated immune responses. The aim of the present study is to characterize immune granuloma cells in 33 patients with granulomatous inflammation focusing on the expression of CD205 (DEC205), a cell surface marker of antigen presenting cells, and their spatial relationship to T cells. CD205 was frequently expressed by immune granuloma cells, in contrast to foreign body granuloma cells that lacked CD205 expression. T cells were not only distributed in a lymphocyte collar around the granuloma, but also present among the granuloma cells (termed 'intra-granuloma T cells'). Intra-granuloma T cells stained positive for Ki-67 (median positivity = 9.4%) by double immunostaining for CD3 and Ki-67. This indicated the presence of proliferative stimuli within the granuloma that could activate the intra-granuloma T cells. The labeling index of Ki-67 in intra-granuloma T cells was significantly higher than that of T cells in the lymphocyte collar (P < 0.0001) or T cells in the T cell zone (paracortex) of chronic tonsillitis or reactive lymphadenitis (P = 0.002). These data indicate a close similarity between immune granulomas and antigen presenting cells.

  18. Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Garcia, Jerry L.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.

  19. Perceptions of Present and Future Capability among a Sample of Rural British Columbia Youth Perceptions

    ERIC Educational Resources Information Center

    Kapil, Meg E.; Shepard, Blythe C.

    2011-01-01

    A cross-sectional survey explored 96 rural adolescents' perceptions of their rural context and how their self-concept is related to perceptions of capability regarding hopes and fears for the future. The youth surveyed, from the Kootenay Boundary region of British Columbia, indicated ambivalence about staying in their communities after leaving…

  20. Innate autoreactive B cells as antigen-presenting cells in the induction of tolerance to conserved keratin polypeptide.

    PubMed

    Fu, Meng; Li, Wei; Tian, Rong; Gao, Jixin; Xing, Ying; Li, Chengxin; Wang, Gang; Li, Chunying; Gao, Tianwen; Han, Hua; Liu, Yufeng

    2013-01-01

    Innate B cells account for a substantial proportion of total B lymphocytes and express autoreactive B cell receptors directed against self-constituents. However, whether innate autoreactive B cells present auto-antigens to T cells, and if so, whether they trigger an autoimmune response, are unclear. In this study, we have characterized splenic keratin-reactive B cells from naïve mice and investigated their roles in keratin antigen presentation. We observed that splenic keratin-reactive B cells expressed germline encoded VH and VK genes based on Igs from anti-keratin hybridomas. Moreover, they frequently utilized gene segment of DFL16.2 and JK2 in the CDR3 regions of heavy and light chain, suggesting that these cells are probably selected on the basis of the specificity of their BCRs. In the presence of keratin antigen, splenic keratin-reactive B cells stimulated significant IL-2 productions from keratin-specific T hybridomas, which were augmented by increasing the concentration of keratin and the numbers of keratin-reactive B cells. By contrast, keratin-reactive B cells failed to stimulate the proliferations of freshly isolated keratin-specific T cells from lymph nodes. The phenotypic analysis of splenic keratin-reactive B cells indicated that low expressions of B7-1 and B7-2 might be the underlying mechanisms for this incomplete function of B cell presentation. Our experiments indicate that splenic keratin-reactive B cells are ineffective in activating freshly isolated T cells from lymph nodes, suggesting a role for innate autoreactive B cells as antigen-presenting cells in tolerance to self-antigens.

  1. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells.

    PubMed

    Moffat, Jessica M; Cheong, Wan-Shoo; Villadangos, José A; Mintern, Justine D; Netter, Hans J

    2013-04-26

    Virus-like particles (VLPs) represent high density displays of viral proteins that efficiently trigger immunity. VLPs composed of the small hepatitis B virus envelope protein (HBsAgS) are useful vaccine platforms that induce humoral and cellular immune responses. Notably, however, some studies suggest HBsAgS VLPs impair dendritic cell (DC) function. Here we investigated HBsAgS VLP interaction with DC subsets and antigen access to major histocompatibility complex (MHC) class I and II antigen presentation pathways in primary DCs. HBsAgS VLPs impaired plasmacytoid DC (pDC) interferon alpha (IFNα) production in response to CpG in vitro, but did not alter conventional DC (cDC) or pDC phenotype when administered in vivo. To assess cellular immune responses, HBsAgS VLPs were generated containing the ovalbumin (OVA) model epitopes OVA(257-264) and OVA(323-339) to access MHCI and MHCII antigen presentation pathways, respectively; both in vitro and following immunisation in vivo. HBsAgS VLP-OVA(257-264) elicited CTL responses in vivo that were not enhanced by inclusion of an additional MHCII helper epitope. HBsAgS VLP-OVA(257-264) administered in vivo was cross-presented by CD8(+) DCs, but not CD8(-) DCs. Therefore, HBsAgS VLPs can deliver antigen to both MHCI and MHCII antigen presentation pathways in primary DCs and promote cytotoxic and helper T cell priming despite their suppressive effect on pDCs.

  2. Intestinal antigen-presenting cells in mucosal immune homeostasis: crosstalk between dendritic cells, macrophages and B-cells.

    PubMed

    Mann, Elizabeth R; Li, Xuhang

    2014-08-07

    The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance of the commensal microbiota. Inflammatory bowel disease (IBD) involves a breakdown in tolerance towards the microbiota. Dendritic cells (DC), macrophages (MΦ) and B-cells are known as professional antigen-presenting cells (APC) due to their specialization in presenting processed antigen to T-cells, and in turn shaping types of T-cell responses generated. Intestinal DC are migratory cells, unique in their ability to generate primary T-cell responses in mesenteric lymph nodes or Peyer's patches, whilst MΦ and B-cells contribute to polarization and differentiation of secondary T-cell responses in the gut lamina propria. The antigen-sampling function of gut DC and MΦ enables them to sample bacterial antigens from the gut lumen to determine types of T-cell responses generated. The primary function of intestinal B-cells involves their secretion of large amounts of immunoglobulin A, which in turn contributes to epithelial barrier function and limits immune responses towards to microbiota. Here, we review the role of all three types of APC in intestinal immunity, both in the steady state and in inflammation, and how these cells interact with one another, as well as with the intestinal microenvironment, to shape mucosal immune responses. We describe mechanisms of maintaining intestinal immune tolerance in the steady state but also inappropriate responses of APC to components of the gut microbiota that contribute to pathology in IBD.

  3. Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g.

    PubMed

    Gérard, Audrey; Patino-Lopez, Genaro; Beemiller, Peter; Nambiar, Rajalakshmi; Ben-Aissa, Khadija; Liu, Yin; Totah, Fadi J; Tyska, Matthew J; Shaw, Stephen; Krummel, Matthew F

    2014-07-31

    To mount an immune response, T lymphocytes must successfully search for foreign material bound to the surface of antigen-presenting cells. How T cells optimize their chances of encountering and responding to these antigens is unknown. T cell motility in tissues resembles a random or Levy walk and is regulated in part by external factors including chemokines and lymph-node topology, but motility parameters such as speed and propensity to turn may also be cell intrinsic. Here we found that the unconventional myosin 1g (Myo1g) motor generates membrane tension, enforces cell-intrinsic meandering search, and enhances T-DC interactions during lymph-node surveillance. Increased turning and meandering motility, as opposed to ballistic motility, is enhanced by Myo1g. Myo1g acts as a "turning motor" and generates a form of cellular "flânerie." Modeling and antigen challenges show that these intrinsically programmed elements of motility search are critical for the detection of rare cognate antigen-presenting cells.

  4. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity

    PubMed Central

    Omokoko, Tana A.; Luxemburger, Uli; Bardissi, Shaheer; Simon, Petra; Utsch, Magdalena; Breitkreuz, Andrea; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard 51Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT) RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the 51Cr release and further confirmed the assay's ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay's combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies. PMID:27057556

  5. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses

    PubMed Central

    Silva, Mariana; Silva, Zélia; Marques, Graça; Ferro, Tiago; Gonçalves, Márcia; Monteiro, Mauro; van Vliet, Sandra J.; Mohr, Elodie; Lino, Andreia C.; Fernandes, Alexandra R.; Lima, Flávia A.; van Kooyk, Yvette; Matos, Teresa; Tadokoro, Carlos E.; Videira, Paula A.

    2016-01-01

    Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280–288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs' ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy. PMID:27203391

  6. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses.

    PubMed

    Silva, Mariana; Silva, Zélia; Marques, Graça; Ferro, Tiago; Gonçalves, Márcia; Monteiro, Mauro; van Vliet, Sandra J; Mohr, Elodie; Lino, Andreia C; Fernandes, Alexandra R; Lima, Flávia A; van Kooyk, Yvette; Matos, Teresa; Tadokoro, Carlos E; Videira, Paula A

    2016-07-05

    Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280-288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs' ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy.

  7. Synthesis of protein-loaded hydrogel particles in an aqueous two-phase system for coincident antigen and CpG oligonucleotide delivery to antigen-presenting cells.

    PubMed

    Jain, Siddhartha; Yap, Woon Teck; Irvine, Darrell J

    2005-01-01

    Materials that effectively deliver protein antigens together with activating ligands to antigen-presenting cells are sought for improved nonviral vaccines. To this end, we synthesized protein-loaded poly(ethylene glycol) (PEG)-based hydrogel particles by cross-linking PEG within the polymer-rich phase of an emulsion formed by a poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer in saturated aqueous salt solution. These particles (500-nm diameter) contained high levels of encapsulated protein (approximately 75% of dry mass), which was selectively released by proteolytic enzymes normally present in the phagosomal/endosomal compartments of dendritic cells (DCs). For co-delivery of cellular activation signals, gel particles were surface-modified by sequential adsorption of poly(l-arginine) and CpG oligonucleotides. DCs pulsed with protein-loaded particles activated naïve T cells in vitro approximately 10-fold more efficiently than DCs incubated with soluble protein. This organic solvent-free strategy for protein encapsulation within submicron-sized hydrophilic particles is attractive for macromolecule delivery to a variety of phagocytic and nonphagocytic cells.

  8. In vivo administration of artificial antigen-presenting cells activates low-avidity T cells for treatment of cancer.

    PubMed

    Ugel, Stefano; Zoso, Alessia; De Santo, Carmela; Li, Yu; Marigo, Ilaria; Zanovello, Paola; Scarselli, Elisa; Cipriani, Barbara; Oelke, Mathias; Schneck, Jonathan P; Bronte, Vincenzo

    2009-12-15

    The development of effective antitumor immune responses is normally constrained by low-avidity, tumor-specific CTLs that are unable to eradicate the tumor. Strategies to rescue antitumor activity of low-avidity melanoma-specific CTLs in vivo may improve immunotherapy efficacy. To boost the in vivo effectiveness of low-avidity CTLs, we immunized mice bearing lung melanoma metastases with artificial antigen-presenting cells (aAPC), made by covalently coupling (pep)MHC-Ig dimers and B7.1-Ig molecules to magnetic beads. aAPC treatment induced significant tumor reduction in a mouse telomerase antigen system, and complete tumor eradication in a mouse TRP-2 antigen system, when low-avidity CTLs specific for these antigens were adoptively transferred. In addition, in an in vivo treatment model of subcutaneous melanoma, aAPC injection also augmented the activity of adoptively transferred CTLs and significantly delayed tumor growth. In vivo tumor clearance due to aAPC administration correlated with in situ proliferation of the transferred CTL. In vitro studies showed that aAPC effectively stimulated cytokine release, enhanced CTL-mediated lysis, and TCR downregulation in low-avidity CTLs. Therefore, in vivo aAPC administration represents a potentially novel approach to improve cancer immunotherapy.

  9. Cordyceps militaris Enhances MHC-restricted Antigen Presentation via the Induced Expression of MHC Molecules and Production of Cytokines

    PubMed Central

    Shin, Seulmee; Park, Yoonhee; Kim, Seulah; Oh, Hee-Eun; Ko, Young-Wook; Han, Shinha; Lee, Seungjeong; Lee, Chong-Kil; Cho, Kyunghae

    2010-01-01

    Background Cordyceps militarys water extract (CME) has been reported to exert antitumor and immunomodulatory activities in vivo and in vitro. However, the therapeutic mechanism has not yet been elucidated. In this study, we examined the effects of CME on the antigen presenting function of antigen presenting cells (APCs). Methods Dendritic cells (DCs) were cultured in the presence of CME, and then allowed to phagocytose microspheres containing ovalbumin (OVA). After washing and fixing the efficacy of OVA, peptide presentation by DCs were evaluated using CD8 and CD4 T cells. Also, we confirmed the protein levels of proinflammatory cytokines through western blot analysis. Results CME enhanced both MHC class I and class II-restricted presentation of OVA in DCs. In addition, the expression of both MHC class I and II molecules was enhanced, but there was no changes in the phagocytic activity of exogenous OVA. Furthermore, CME induced the protein levels of iNOS, COX-2, proinflammatory cytokines, and nuclear p65 in a concentration-dependent manner, as determined by western blot. Conclusion These results provide an understanding of the mechanism of the immuno-enhancing activity of CME on the induction of MHC-restricted antigen presentation in relation to their actions on APCs. PMID:20844738

  10. Enhancement of antigen acquisition by dendritic cells and MHC class II-restricted epitope presentation to CD4+ T cells using VP22 DNA vaccine vectors that promote intercellular spreading following initial transfection.

    PubMed

    Mwangi, Waithaka; Brown, Wendy C; Splitter, Gary A; Zhuang, Yan; Kegerreis, Kimberly; Palmer, Guy H

    2005-08-01

    Induction of immune responses against microbial antigens using DNA is an attractive strategy to mimic the immunity induced by live vaccines. Although DNA vaccines are efficacious in murine models, the requirement for multiple immunizations using high doses in outbred animals and humans has hindered deployment. This requirement is, in part, a result of poor vaccine spreading and suboptimal DC transfection efficiency. Incorporation of a signal that directs intercellular spreading of a DNA-encoded antigen is proposed to mimic live vaccine spreading and increase dendritic cell (DC) presentation. Bovine herpes virus 1 tegument protein, BVP22, is capable of trafficking to surrounding cells. To test the hypothesis that BVP22 enhances spreading and antigen presentation to CD4+ T cells, a DNA construct containing BVP22, fused in-frame to a sequence encoding a T cell epitope of Anaplasma marginale, was generated. A construct with reversed BVP22 sequence served as a negative control. Immunocytometric analysis of transfected primary keratinocytes, human embryonic kidney 293, COS-7, and Chinese hamster ovary cells showed that BVP22 enhanced intercellular spreading by > or = 150-fold. Flow cytometric analysis of antigen-presenting cells (APCs) positively selected from cocultures of transfected cells and APCs showed that 5% of test APCs were antigen-positive, compared with 0.6% of control APCs. Antigen-specific CD4+ T cell proliferation demonstrated that BVP22 enhanced DC antigen presentation by > or = 20-fold. This first report of the ability of BVP22 to increase DNA-encoded antigen acquisition by DCs and macrophages, with subsequent enhancement of major histocompatibility complex class II-restricted CD4+ T cell responses, supports incorporating a spreading motif in a DNA vaccine to target CD4+ T cell-dependent immunity in outbred animals.

  11. Self-Antigen Presentation by Keratinocytes in the Inflamed Adult Skin Modulates T-Cell Auto-Reactivity.

    PubMed

    Meister, Michael; Tounsi, Amel; Gaffal, Evelyn; Bald, Tobias; Papatriantafyllou, Maria; Ludwig, Julia; Pougialis, Georg; Bestvater, Felix; Klotz, Luisa; Moldenhauer, Gerhard; Tüting, Thomas; Hämmerling, Günter J; Arnold, Bernd; Oelert, Thilo

    2015-08-01

    Keratinocytes have a pivotal role in the regulation of immune responses, but the impact of antigen presentation by these cells is still poorly understood, particularly in a situation where the antigen will be presented only in adult life. Here, we generated a transgenic mouse model in which keratinocytes exclusively present a myelin basic protein (MBP) peptide covalently linked to the major histocompatibility complex class II β-chain, solely under inflammatory conditions. In these mice, inflammation caused by epicutaneous contact sensitizer treatment resulted in keratinocyte-mediated expansion of MBP-specific CD4(+) T cells in the skin. Moreover, repeated contact sensitizer application preceding a systemic MBP immunization reduced the reactivity of the respective CD4(+) T cells and lowered the symptoms of the resulting experimental autoimmune encephalomyelitis. This downregulation was CD4(+) T-cell-mediated and dependent on the presence of the immune modulator Dickkopf-3. Thus, presentation of a neo self-antigen by keratinocytes in the inflamed, adult skin can modulate CD4(+) T-cell auto-aggression at a distal organ.

  12. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    SciTech Connect

    Han, Hui; Peng, Ji-Run; Chen, Peng-Cheng; Gong, Lei; Qiao, Shi-Shi; Wang, Wen-Zhen; Cui, Zhu-Qingqing; Yu, Xin; Wei, Yu-Hua; Leng, Xi-Sheng

    2011-08-05

    Highlights: {yields} Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. {yields} An ideal artificial APCs system was successfully prepared in vivo. {yields} Controlled release of IL-2 leads to much more T-cell expansion. {yields} This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  13. Changes in the localization of antigen presenting cells and T cells in the utero-vaginal junction after repeated artificial insemination in laying hens.

    PubMed

    Das, Shubash Chandra; Nagasaka, Naohiro; Yoshimura, Yukinori

    2005-10-01

    The goal of our present study was to observe whether the populations of antigen presenting cells (Ia+ cells) and T cell subsets (CD4+ and CD8+ T cells) change in the utero-vaginal junction (UVJ) of Rhode Island Red laying hens that showed dramatic declines in fertility after repeated artificial insemination (AI). Rhode Island Red laying hens were divided into two groups: a virgin group (R-V) and artificial inseminated group (R-AI), which was exposed to weekly AI for a period of 3 mo. Undiluted fresh semen collected from healthy Tosa-Jidori roosters, a native Japanese breed maintained in Kochi Prefecture, was used for AI. The UVJ tissues were processed for frozen sections, and Ia+ cells and CD4+ and CD8+ T cells were identified by immunohistochemistry. The Ia+ cells and CD4+ and CD8+ T cells were observed in the stroma and mucosal epithelium of UVJ in both the R-AI and R-V birds. The frequencies of them in the stroma were significantly higher in R-AI than R-V. The higher frequency of Ia+ cells in the UVJ of R-AI group indicated a greater potential capability for antigen presentation to CD4+ cells. The significant increase in CD8+ and CD4+ T cells in the UVJ of R-AI birds might be the result of a homing process of lymphocytes, which may affect sperm survivability and fertility.

  14. Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro

    PubMed Central

    Benson, Kathleen F; Redman, Kimberlee A; Carter, Steve G; Keller, David; Farmer, Sean; Endres, John R; Jensen, Gitte S

    2012-01-01

    AIM: To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells. METHODS: Ganeden Bacillus coagulans 30 (GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction. A second fraction was made to generate a crude cell-wall-enriched fraction, by centrifugation and lysis, followed by washing. A preparation of MET was subjected to size exclusion centrifugation, generating three fractions: < 3 kDa, 3-30 kDa, and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes. The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14, CD16, CD80 and CD86 and analyzed by flow cytometry. RESULTS: Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes. The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells, and this property was associated with the high molecular weight metabolite fraction. Changes were also seen for the dendritic cell maturation markers CD80 and CD86. On CD14dim cells, an increase in both CD80 and CD86 expression was seen, in contrast to a selective increase in CD86 expression on CD14bright cells. The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation. The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells. CONCLUSION: The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells, important for immunological decision-making. PMID:22563167

  15. Present capabilities and new developments in antenna modeling with the numerical electromagnetics code NEC

    SciTech Connect

    Burke, G.J.

    1988-04-08

    Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.

  16. Loss of proliferation and antigen presentation activity following internalization of polydispersed carbon nanotubes by primary lung epithelial cells.

    PubMed

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells.

  17. Usage of Murine T-cell Hybridoma Cells as Responder Cells Reveals Interference of Helicobacter Pylori with Human Dendritic Cell-mediated Antigen Presentation

    PubMed Central

    Fehlings, Michael; Drobbe, Lea; Beigier-Bompadre, Macarena; Viveros, Pablo Renner; Moos, Verena; Schneider, Thomas; Meyer, Thomas F.; Aebischer, Toni; Ignatius, Ralf

    2016-01-01

    Direct effects of Helicobacter pylori (H. pylori) on human CD4+ T-cells hamper disentangling a possible bacterial-mediated interference with major histocompatibility complex class II (MHC-II)-dependent antigen presentation to these cells. To overcome this limitation, we employed a previously described assay, which enables assessing human antigen-processing cell function by using murine T-cell hybridoma cells restricted by human leukocyte antigen (HLA) alleles. HLA-DR1+ monocyte-derived dendritic cells were exposed to H. pylori and pulsed with the antigen 85B from Mycobacterium tuberculosis (M. tuberculosis). Interleukin-2 (IL-2) secretion by AG85Baa97-112-specific hybridoma cells was then evaluated as an integral reporter of cognate antigen presentation. This methodology enabled revealing of interference of H. pylori with the antigen-presenting capacity of human dendritic cells. PMID:27980859

  18. Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells.

    PubMed

    Pen, J J; Keersmaecker, B D; Heirman, C; Corthals, J; Liechtenstein, T; Escors, D; Thielemans, K; Breckpot, K

    2014-03-01

    The release of cytokines by T cells strongly defines their functional activity in vivo. The ability to produce multiple cytokines has been associated with beneficial immune responses in cancer and infectious diseases, while their progressive loss is associated with T-cell exhaustion, senescence and anergy. Consequently, strategies that enhance the multifunctional status of T cells are a key for immunotherapy. Dendritic cells (DCs) are professional antigen presenting cells that regulate T-cell functions by providing positive and negative co-stimulatory signals. A key negative regulator of T-cell activity is provided by binding of programmed death-1 (PD-1) receptor on activated T cells, to its ligand PD-L1, expressed on DCs. We investigated the impact of interfering with PD-L1/PD-1 co-stimulation on the multifunctionality of T cells, by expression of the soluble extracellular part of PD-1 (sPD-1) or PD-L1 (sPD-L1) in human monocyte-derived DCs during antigen presentation. Expression, secretion and binding of these soluble molecules after mRNA electroporation were demonstrated. Modification of DCs with sPD-1 or sPD-L1 mRNA resulted in increased levels of the co-stimulatory molecule CD80 and a distinct cytokine profile, characterized by the secretion of IL-10 and TNF-α, respectively. Co-expression in DCs of sPD-1 and sPD-L1 with influenza virus nuclear protein 1 (Flu NP1) stimulated Flu NP1 memory T cells, with a significantly higher number of multifunctional T cells and increased cytokine secretion, while it did not induce regulatory T cells. These data provide a rationale for the inclusion of interfering sPD-1 or sPD-L1 in DC-based immunotherapeutic strategies.

  19. Epstein-Barr virus latent membrane protein 2A exacerbates experimental autoimmune encephalomyelitis and enhances antigen presentation function

    PubMed Central

    Chang, Rhoda A.; Miller, Stephen D.; Longnecker, Richard

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory, autoimmune disease of the central nervous system. The cause of MS is still unknown but epidemiological and immunological studies have implicated Epstein-Barr virus (EBV), which infects B cells, as a possible etiological agent involved in disease. Of particular interest is EBV latent membrane protein 2A (LMP2A) because previous studies have demonstrated that LMP2A enhances the expansion and differentiation of B cells upon antigen stimulation, revealing a potential contribution of this protein in autoimmunity. Since B cells are thought to contribute to MS, we examined the role of LMP2A in the animal model experimental autoimmune encephalomyelitis (EAE). In this model, transgenic mice in which B cells express LMP2A show increased severity and incidence of disease. This difference was not due to lymphocyte recruitment into the CNS or differences in T cell activation, rather, we show that LMP2A enhances antigen presentation function. PMID:22616025

  20. The Novel Toll-Like Receptor 2 Agonist SUP3 Enhances Antigen Presentation and T Cell Activation by Dendritic Cells

    PubMed Central

    Guo, Xueheng; Wu, Ning; Shang, Yingli; Liu, Xin; Wu, Tao; Zhou, Yifan; Liu, Xin; Huang, Jiaoyan; Liao, Xuebin; Wu, Li

    2017-01-01

    Dendritic cells (DCs) are highly specialized antigen-presenting cells that play crucial roles in innate and adaptive immunity. Previous studies suggested that Toll-like receptor (TLR) agonists could be used as potential adjuvants, as activation of TLRs can boost DC-induced immune responses. TLR2 agonists have been shown to enhance DC-mediated immune responses. However, classical TLR2 agonists such as Pam3CSK4 are not stable enough in vivo, which limits their clinical applications. In this study, a novel structurally stable TLR2 agonist named SUP3 was designed. Functional analysis showed that SUP3 induced much stronger antitumor response than Pam3CSK4 by promoting cytotoxic T lymphocytes activation in vivo. This effect was achieved through the following mechanisms: SUP3 strongly enhanced the ability of antigen cross-presentation by DCs and subsequent T cell activation. SUP3 upregulated the expression of costimulatory molecules on DCs and increased antigen deposition in draining lymph nodes. More interestingly, SUP3 induced less amount of pro-inflammatory cytokine production in vivo compared to other TLR agonists such as lipopolysaccharide. Taken together, SUP3 could serve as a novel promising immune adjuvant in vaccine development and immune modulations. PMID:28270814

  1. Mycobacterium avium ssp. paratuberculosis recombinant heat shock protein 70 interaction with different bovine antigen-presenting cells.

    PubMed

    Langelaar, M F M; Hope, J C; Rutten, V P M G; Noordhuizen, J P T M; van Eden, W; Koets, A P

    2005-03-01

    Abstract Heat shock proteins (Hsp) can deliver antigen into the major histocompatibility complex class I presentation pathway of antigen-presenting cells (APC), a process called cross priming, thus stimulating antigen-specific CD8+ T-cell reactions. Hsp were shown to elicit proinflammatory responses in APC. Both processes require interaction of Hsp with APC via specific receptors. This study describes the interaction of recombinant Hsp70 (rHsp70) of Mycobacterium avium subspecies paratuberculosis with bovine peripheral blood mononuclear cells that was restricted to CD14+ cells. Characterized monocyte-derived macrophages, monocyte-derived dendritic cells (DC) and BoMac, an immortalized bovine macrophage cell line, were used to investigate the interaction of rHsp70 with different bovine APC. Saturation of immature DC with high concentrations of rHsp70 is demonstrated, and it was found that interaction of rHsp70 with DC was related to the maturation stage of the DC. Involvement of CD91 as a cellular receptor for rHsp70 was demonstrated; however, competition studies with immature DC demonstrated that other receptors exist on bovine APC. These data suggest that rHsp70-based vaccines may be useful for the successful immunization of cattle.

  2. Direct activation of antigen-presenting cells is required for CD8+ T-cell priming and tumor vaccination

    PubMed Central

    Kratky, Wolfgang; Reis e Sousa, Caetano; Oxenius, Annette; Spörri, Roman

    2011-01-01

    Successful priming of adaptive immune responses is crucially dependent on innate activation signals that convert resting antigen-presenting cells (APCs) into immunogenic ones. APCs expressing the relevant innate pattern recognition receptors can be directly activated by pathogen-associated molecular patterns (PAMPs) to become competent to prime T-cell responses. Alternatively, it has been suggested that APCs could be activated indirectly by proinflammatory mediators synthesized by PAMP-exposed cells. However, data obtained with CD4+ T cells suggest that inflammatory signals often cannot substitute for direct pattern recognition in APC activation for the priming of T helper responses. To test whether the same is true for CD8+ T cells, we studied cytotoxic T lymphocyte development in vitro and in mixed chimeric mice in which coexisting APCs can either present a preprocessed model antigen or directly recognize a given PAMP, but not both. We show that indirectly activated APCs promote antigen-specific proliferation of naïve CD8+ T cells but fail to support their survival and cytotoxic T lymphocyte differentiation. Furthermore, CD8+ T cells primed by indirectly activated APCs are unable to reject tumors. Thus, inflammation cannot substitute for direct recognition of single PAMPs in CD8+ T-cell priming. These findings have important practical implications for vaccine design, indicating that adjuvants must be judiciously chosen to trigger the relevant pattern recognition receptors in APCs. PMID:21987815

  3. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8+ T lymphocytes

    PubMed Central

    Rodriguez, Galaxia M.; Bobbala, Diwakar; Serrano, Daniel; Mayhue, Marian; Champagne, Audrey; Saucier, Caroline; Steimle, Viktor; Kufer, Thomas A.; Menendez, Alfredo; Ramanathan, Sheela; Ilangumaran, Subburaj

    2016-01-01

    ABSTRACT Cancers can escape immunesurveillance by diminishing the expression of MHC class-I molecules (MHC-I) and components of the antigen-processing machinery (APM). Developing new approaches to reverse these defects could boost the efforts to restore antitumor immunity. Recent studies have shown that the expression of MHC-I and antigen-processing molecules is transcriptionally regulated by NOD-like receptor CARD domain containing 5 (NLRC5). To investigate whether NLRC5 could be used to improve tumor immunogenicity, we established stable lines of B16-F10 melanoma cells expressing NLRC5 (B16-5), the T cell co-stimulatory molecule CD80 (B16-CD80) or both (B16-5/80). Cells harboring NLRC5 constitutively expressed MHC-I and LMP2, LMP7 and TAP1 genes of the APM. The B16-5 cells efficiently presented the melanoma antigenic peptide gp10025–33 to Pmel-1 TCR transgenic CD8+ T cells and induced their proliferation. In the presence of CD80, B16-5 cells stimulated Pmel-1 cells even without the addition of gp100 peptide, indicating that NLRC5 facilitated the processing and presentation of endogenous tumor antigen. Upon subcutaneous implantation, B16-5 cells showed markedly reduced tumor growth in C57BL/6 hosts but not in immunodeficient hosts, indicating that the NLRC5-expressing tumor cells elicited antitumor immunity. Following intravenous injection, B16-5 and B16-5/80 cells formed fewer lung tumor foci compared to control cells. In mice depleted of CD8+ T cells, B16-5 cells formed large subcutaneous and lung tumors. Finally, immunization with irradiated B16-5 cells conferred protection against challenge by parental B16 cells. Collectively, our findings indicate that NLRC5 could be exploited to restore tumor immunogenicity and to stimulate protective antitumor immunity. PMID:27471621

  4. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells.

    PubMed

    León, Beatriz; Ballesteros-Tato, André; Randall, Troy D; Lund, Frances E

    2014-07-28

    The commitment of naive CD8 T cells to effector or memory cell fates can occur after a single day of antigenic stimulation even though virus-derived antigens (Ags) are still presented by DCs long after acute infection is resolved. However, the effects of extended Ag presentation on CD8 T cells are undefined and the mechanisms that regulate prolonged Ag presentation are unknown. We showed that the sustained presentation of two different epitopes from influenza virus by DCs prevented the premature contraction of the primary virus-specific CD8 T cell response. Although prolonged Ag presentation did not alter the number of memory CD8 T cells that developed, it was essential for programming the capacity of these cells to proliferate, produce cytokines, and protect the host after secondary challenge. Importantly, prolonged Ag presentation by DCs was dependent on virus-specific, isotype-switched antibodies (Abs) that facilitated the capture and cross-presentation of viral Ags by FcγR-expressing DCs. Collectively, our results demonstrate that B cells and Abs can regulate the quality and functionality of a subset of antiviral CD8 T cell memory responses and do so by promoting sustained Ag presentation by DCs during the contraction phase of the primary T cell response.

  5. Anti-TNF monoclonal antibodies prevent haemorrhage-induced suppression of Kupffer cell antigen presentation and MHC class II antigen expression.

    PubMed Central

    Ertel, W; Morrison, M H; Ayala, A; Perrin, M M; Chaudry, I H

    1991-01-01

    Kupffer cells (KC), by virtue of their ability to present antigen (AP) and express major histocompatibility complex (MHC) class II antigen (Ia), play a pivotal role in the host defence system against invading micro-organisms. Although haemorrhagic shock depresses the above KC functions, it is not known whether increased KC tumour necrosis factor (TNF) production and elevated TNF plasma levels following haemorrhage are responsible for it. To study this, C3H/HeN mice were pretreated intraperitoneally with either anti-murine TNF antibody (anti-TNF Ab) or saline. Twenty hours later mice were bled and maintained at a mean blood pressure of 35 mmHg for 60 min followed by adequate fluid resuscitation. Two and 24 hr later, plasma was collected and KC were isolated. AP was measured by co-culturing KC with the D10.G4.1 Th cell clone. Ia expression was determined by direct immunofluorescence. Interleukin (IL)-1, IL-6 and TNF levels in KC supernatants and plasma were measured with bioassays or ELISA. Haemorrhage increased circulating TNF levels by 215% at 2 hr and by 76% at 24 hr (P less than 0.05), which was prevented by pretreatment with anti-TNF Ab. Haemorrhage-induced increase of circulating IL-6 was abolished (P less than 0.05) at 2 hr but not at 24 hr in the anti-TNF Ab group. The suppression of KC AP (P less than 0.05) and Ia expression (P less than 0.05) due to haemorrhage was attenuated (P less than 0.05) in anti-TNF Ab-treated mice at 2 and 24 hr and KC IL-1 and TNF synthesis was further (P less than 0.01) increased. These results indicate that TNF plays a critical role in the initiation and regulation of KC AP, Ia expression, and cytokine production following haemorrhage. PMID:1748476

  6. Second-Generation Fuel Cell Stack Durability and Freeze Capability from National FCV Learning Demonstration (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-11-18

    This presentation provides information about the objectives and partners of the National Fuel Cell Vehicle Learning Demonstration, the status of vehicle and station deployment, and results of vehicle and infrastructure analysis.

  7. Robert Feulgen Prize Lecture 1995. Electronic light microscopy: present capabilities and future prospects.

    PubMed

    Shotton, D M

    1995-08-01

    Electronic light microscopy involves the combination of microscopic techniques with electronic imaging and digital image processing, resulting in dramatic improvements in image quality and ease of quantitative analysis. In this review, after a brief definition of digital images and a discussion of the sampling requirements for the accurate digital recording of optical images, I discuss the three most important imaging modalities in electronic light microscopy--video-enhanced contrast microscopy, digital fluorescence microscopy and confocal scanning microscopy--considering their capabilities, their applications, and recent developments that will increase their potential. Video-enhanced contrast microscopy permits the clear visualisation and real-time dynamic recording of minute objects such as microtubules, vesicles and colloidal gold particles, an order of magnitude smaller than the resolution limit of the light microscope. It has revolutionised the study of cellular motility, and permits the quantitative tracking of organelles and gold-labelled membrane bound proteins. In combination with the technique of optical trapping (optical tweezers), it permits exquisitely sensitive force and distance measurements to be made on motor proteins. Digital fluorescence microscopy enables low-light-level imaging of fluorescently labelled specimens. Recent progress has involved improvements in cameras, fluorescent probes and fluorescent filter sets, particularly multiple bandpass dichroic mirrors, and developments in multiparameter imaging, which is becoming particularly important for in situ hybridisation studies and automated image cytometry, fluorescence ratio imaging, and time-resolved fluorescence. As software improves and small computers become more powerful, computational techniques for out-of-focus blur deconvolution and image restoration are becoming increasingly important. Confocal microscopy permits convenient, high-resolution, non-invasive, blur-free optical

  8. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation.

    PubMed

    Salio, Mariolina; Speak, Anneliese O; Shepherd, Dawn; Polzella, Paolo; Illarionov, Petr A; Veerapen, Natacha; Besra, Gurdyal S; Platt, Frances M; Cerundolo, Vincenzo

    2007-12-18

    Invariant natural killer T (iNKT) cells are a subset of nonconventional T cells recognizing endogenous and/or exogenous glycolipid antigens in the context of CD1d molecules. It remains unclear whether innate stimuli can modify the profile of endogenous lipids recognized by iNKT cells on the surface of antigen-presenting cells (APCs). We report that activation of human APCs by Toll-like receptor ligands (TLR-L) modulates the lipid biosynthetic pathway, resulting in enhanced recognition of CD1d-associated lipids by iNKT cells, as defined by IFN-gamma secretion. APC-derived soluble factors further increase CD1d-restricted iNKT cell activation. Finally, using soluble tetrameric iNKT T cell receptors (TCR) as a staining reagent, we demonstrate specific up-regulation of CD1d-bound ligand(s) on TLR-mediated APC maturation. The ability of innate stimuli to modulate the lipid profile of APCs resulting in iNKT cell activation and APC maturation underscores the role of iNKT cells in assisting priming of antigen-specific immune responses.

  9. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation

    PubMed Central

    Salio, Mariolina; Speak, Anneliese O.; Shepherd, Dawn; Polzella, Paolo; Illarionov, Petr A.; Veerapen, Natacha; Besra, Gurdyal S.; Platt, Frances M.; Cerundolo, Vincenzo

    2007-01-01

    Invariant natural killer T (iNKT) cells are a subset of nonconventional T cells recognizing endogenous and/or exogenous glycolipid antigens in the context of CD1d molecules. It remains unclear whether innate stimuli can modify the profile of endogenous lipids recognized by iNKT cells on the surface of antigen-presenting cells (APCs). We report that activation of human APCs by Toll-like receptor ligands (TLR-L) modulates the lipid biosynthetic pathway, resulting in enhanced recognition of CD1d-associated lipids by iNKT cells, as defined by IFN-γ secretion. APC-derived soluble factors further increase CD1d-restricted iNKT cell activation. Finally, using soluble tetrameric iNKT T cell receptors (TCR) as a staining reagent, we demonstrate specific up-regulation of CD1d-bound ligand(s) on TLR-mediated APC maturation. The ability of innate stimuli to modulate the lipid profile of APCs resulting in iNKT cell activation and APC maturation underscores the role of iNKT cells in assisting priming of antigen-specific immune responses. PMID:18077358

  10. Nonspecific Presentation of a Multiloculated Prostatic Abscess After Transurethral Prostatic Biopsy for Elevated Prostate-specific Antigen Level

    PubMed Central

    Gandhi, Nilay M.; Lin, Joseph; Schaeffer, Edward

    2014-01-01

    Prostate postbiopsy infectious complications typically present in the form of prostatitis and uncommonly urosepsis. Prostatic abscesses are generally found after multiple bouts of prostatitis and are associated with a clinically septic picture requiring intensive care unit admission and resuscitation. We report the case of a 65-year-old man who presented with prostatic abscess in the setting of nonspecific urinary symptoms after transrectal ultrasonography–guided prostate biopsy. At 4-month follow-up, he is currently free of disease with undetectable prostate-specific antigen level and negative imaging. PMID:26958487

  11. Circulating immune complexes of Hodgkin's disease contain an antigen that is present in Hodgkin and Reed-Sternberg cells.

    PubMed

    Bepler, G; Zhen, Q Y; Havemann, K

    1985-01-01

    Circulating immune complexes (CIC), isolated from the serum of a patient with Hodgkin's disease (HD) and from control serum (CS) of healthy adults, were used to generate heterologous antisera in rabbits. The antiserum directed against CIC from HD (AS-HD) and the antiserum directed against CIC from CS (AS-CS) were used to identify immunoglobulins, complement factors and alpha2-macroglobulin as immune complex components. After adsorbing both antisera with normal human sera, we found that the adsorbed AS-HD was immunoreactive with radio-labelled CIC from HD serum but not with radiolabelled CIC from CS. Sera of patients with different diseases and sera of healthy adults were assessed for the occurrence of this Hodgkin immune complex-associated antigen (HIC-Ag). The HIC-Ag was present in 37% (12/33) of sera from patients with HD, 8% (8/101) of sera from patients with nonmalignant diseases, and 0% (0/6) of sera from healthy adults. This antigen was equally distributed among HD patients with and without symptoms, but its occurrence correlated with an advanced clinical stage of the disease. Using the adsorbed AS-HD in the immunoperoxidase technique, we identified the HIC-Ag as a cytoplasmic antigen in Hodgkin and Reed-Sternberg cells; whereas, the adsorbed AS-CS did not reveal any staining. These data indicate the presence of an HIC-Ag in the sera of patients with HD and suggest that the adsorbed AS-HD might be useful for isolation and characterization of this antigen for future use as a tumour marker.

  12. Processing and MHC class II presentation of exogenous soluble antigen involving a proteasome-dependent cytosolic pathway in CD40-activated B cells.

    PubMed

    Becker, Hans Jiro; Kondo, Eisei; Shimabukuro-Vornhagen, Alexander; Theurich, Sebastian; von Bergwelt-Baildon, Michael S

    2016-08-01

    Activated B cells have the capacity to present antigen and induce immune responses as potent antigen-presenting cells (APCs). As in other APCs, antigen presentation by B cells involves antigen internalization, antigen processing, and peptide loading onto MHC molecules. However, while the mechanism of antigen processing has been studied extensively in other APCs, this pathway remains elusive in B cells. The aim of this study was to investigate the MHC class II processing pathway in CD40-activated B cells (CD40Bs), as a model for activated, antigen-presenting B cells. Using CMV pp65 as a model antigen, we evaluated processing and presentation of the CD4 + T-cell epitope 509-523 (K509) by human CD40Bs in ELISPOT assays. As expected, stimulation of specific CD4 + T-cell clones was attenuated after pretreatment of CD40Bs with inhibitors of classic class II pathway components. However, proteasome inhibitors such as epoxomicin limited antigen presentation as well. This suggests that the antigen is processed in a non-classical, cytosolic MHC class II pathway. Further experiments with truncated protein variants revealed involvement of the proteasome in processing of the N and C extensions of the epitope. Access to the cytosol was shown to be size dependent. Epoxomicin sensitivity exclusively in CD40B cells, but not in dendritic cells, suggests a novel processing mechanism unique to this APC. Our data suggest that B cells process antigen using a distinct, non-classical class II pathway.

  13. Influence of Endosomal Escape and Degradation of α-Galactosylceramide Loaded Liposomes on CD1d Antigen Presentation.

    PubMed

    Nakamura, Takashi; Kuroi, Moeka; Harashima, Hideyoshi

    2015-08-03

    Alpha-galactosylceramide (GC), a lipid antigen present on CD1d molecules, is a unique adjuvant that enables a strong antitumor effect to be induced via activation of natural killer T cells. We previously reported that a liposomal formulation of GC significantly enhanced GC presentation via CD1d and antitumor immunity. However, the influence of the intracellular fate of liposomes controlled by the lipid composition on GC presentation using GC-loaded liposomes (GC-Lip) remains unclear. In this study, we prepared a GC-Lip formulation by incorporating dioleoyl-phosphatidylethanolamine (DOPE)/cholesterol, egg phosphatidylcholine (EPC)/cholesterol, and distearoyl phosphocholine (DSPC)/cholesterol, and investigated the relationship between the intracellular trafficking of GC-Lip and GC presentation in antigen-presenting cells. When GC-Lip was prepared using DOPE, a fusogenic lipid, the endosomal escape of liposomes was enhanced, resulting in a decrease in GC presentation of CD1d, compared to the EPC based GC-Lip (EPC/GC-Lip). The stability of liposomes in endosomes/lysosomes had no influence on GC presentation. The DSPC based GC-Lip (DSPC/GC-Lip) induced GC presentation without any detectable degradation in liposomal structure, although the EPC/GC-Lip induced GC presentation with degradation of liposomal structure. The efficiency of GC presentation between EPC/GC-Lip and DSPC/GC-Lip was comparable. These GC presentations that were independent of the degradation of liposomes were dominated by saposins, sphingolipid activator proteins. Our findings reveal that GC presentation on CD1d from the fluid liposomes involves the action of saposins, regardless of whether liposome degradation occurs. This insight can be of use in terms of developing GC-Lip formulation for efficient GC presentation.

  14. Development of a Highly Sensitive Bioluminescent Enzyme Immunoassay for Hepatitis B Virus Surface Antigen Capable of Detecting Divergent Mutants

    PubMed Central

    Takehara, Shizuka; Takahashi, Masaharu

    2013-01-01

    Hepatitis B virus (HBV) infections are sometimes overlooked when using commercial kits to measure hepatitis B virus surface antigen (HBsAg) due to their low sensitivities and reactivities to mutant strains of various genotypes. We developed an ultrasensitive bioluminescent enzyme immunoassay (BLEIA) for HBsAg using firefly luciferase, which is adaptable to a variety of HBsAg mutants, by combining four monoclonal antibodies with a polyclonal antibody against HBsAg. The measurement of seroconversion panels showed trace amounts of HBsAg during the early infection phase by the BLEIA because of its high sensitivity of 5 mIU/ml. The BLEIA detected HBsAg as early as did PCR in five of seven series and from 2.1 to 9.4 days earlier than commercial immunoassay methods. During the late infection phase, the BLEIA successfully detected HBsAg even 40 days after the disappearance of HBV DNA and the emergence of antibodies against HBsAg. The HBsAg BLEIA successfully detected all 13 recombinant HBsAg and 45 types of HBsAg mutants with various mutations within amino acids 90 to 164 in the S gene product. Some specimens had higher values determined by the BLEIA than those by a commercial chemiluminescent immunoassay; this suggests that such discrepancies were caused by the dissociation of preS1/preS2 peptides from the particle surface. With its highly sensitive detection of low-titer HBsAg, including various mutants, the HBsAg BLEIA is considered to be useful for the early diagnosis and prevention of HBV infection because of the shorter window of infection prior to detection, which facilitates early prediction of recurrence in HBV-infected individuals. PMID:23761660

  15. Reassessing the role of HLA-DRB3 T-cell responses: evidence for significant expression and complementary antigen presentation.

    PubMed

    Faner, Rosa; James, Eddie; Huston, Laurie; Pujol-Borrel, Ricardo; Kwok, William W; Juan, Manel

    2010-01-01

    In humans, several HLA-DRB loci (DRB1/3/4/5) encode diverse beta-chains that pair with alpha-chains to form DR molecules on the surface of APC. While DRB1 and DRB5 have been extensively studied, the role of DRB3/4 products of DR52/DR53 haplotypes has been largely neglected. To clarify the relative expression of DRB3, we quantified DRB3 mRNA levels in comparison with DRB1 mRNA from the same haplotype in both B cells and monocytes, observing quantitatively significant DRB3 synthesis. In CD19+ cells, DRB1*03/11/13 was 3.5-fold more abundant than DRB3, but in CD14+ this difference was only two-fold. Monocytes also had lower overall levels of DR mRNA compared with B cells, which was confirmed by cell surface staining of DRB1 and DRB3. To evaluate the functional role of DRB3, tetramer-guided epitope mapping was used to detect T cells against tetanus toxin and several influenza antigens presented by DRB3*0101/0202 or DRB1*03/11/13. None of the epitopes discovered were shared among any of the DR molecules. Quantitative assessment of DRB3-tetanus toxin specific T cells revealed that they are present at similar frequencies as those observed for DRB1. These results suggest that DRB3 plays a significant role in antigen presentation with different epitopic preferences to DRB1. Therefore, DRB3, like DRB5, serves to extend and complement the peptide repertoire of DRB1 in antigen presentation.

  16. Kinetics of adeno-associated virus serotype 2 (AAV2) and AAV8 capsid antigen presentation in vivo are identical.

    PubMed

    He, Yi; Weinberg, Marc S; Hirsch, Matt; Johnson, Mark C; Tisch, Roland; Samulski, R Jude; Li, Chengwen

    2013-05-01

    Adeno-associated viral (AAV) vectors 2 and 8 have been used in clinical trials for patients with hemophilia, and data suggest that the capsid-specific CD8⁺ T cell response has had a negative impact on therapeutic success. To date the pattern of capsid cross-presentation from AAV2 and AAV8 transduction in vivo has not been elucidated. Previously, we have demonstrated that an engineered AAV2 virus carrying the immune-dominant SIINFEKL peptide in the capsid backbone was indistinguishable from wild type with respect to titer, tropism, and the ability to induce capsid-specific CD8⁺ T cell responses in vivo. In this study, we used the same strategy to engineer an AAV8 vector and demonstrated that antigen from SIINFEKL peptide-integrated AAV8 capsid was effectively presented via either plasmid transfection or AAV8 transduction in vitro. The tissue tropism and transgene expression kinetics of the engineered AAV8 vector in vivo were identical to that of wild-type AAV8. Animal studies show that capsid antigen presentation from AAV transduction was dose dependent, and more importantly, the proliferation of capsid-specific CD8⁺ T cells had similar kinetics (detectable before 30 days and undetectable after 40 days) for both AAV2 and AAV8 vectors. Elucidation of the kinetics of capsid antigen presentation from AAV transduction by various serotypes provides new insight into the potential impact CD8⁺ T cells can have during clinical trials and may help with rational design of effective strategies to prevent capsid-specific CD8⁺ T cell-mediated elimination of AAV-transduced target cells.

  17. Brucella suis prevents human dendritic cell maturation and antigen presentation through regulation of tumor necrosis factor alpha secretion.

    PubMed

    Billard, Elisabeth; Dornand, Jacques; Gross, Antoine

    2007-10-01

    Brucella is a facultative intracellular pathogen and the etiological agent of brucellosis. In some cases, human brucellosis results in a persistent infection that may reactivate years after the initial exposure. The mechanisms by which the parasite evades clearance by the immune response to chronically infect its host are unknown. We recently demonstrated that dendritic cells (DCs), which are critical components of adaptive immunity, are highly susceptible to Brucella infection and are a preferential niche for the development of the bacteria. Here, we report that in contrast to several intracellular bacteria, Brucella prevented the infected DCs from engaging in their maturation process and impaired their capacities to present antigen to naïve T cells and to secrete interleukin-12. Moreover, Brucella-infected DCs failed to release tumor necrosis factor alpha (TNF-alpha), a defect involving the bacterial protein Omp25. Exogenous TNF-alpha addition to Brucella-infected DCs restored cell maturation and allowed them to present antigens. Two avirulent mutants of B. suis, B. suis bvrR and B. suis omp25 mutants, which do not express the Omp25 protein, triggered TNF-alpha production upon DC invasion. Cells infected with these mutants subsequently matured and acquired the ability to present antigens, two properties which were dramatically impaired by addition of anti-TNF-alpha antibodies. In light of these data, we propose a model in which virulent Brucella alters the maturation and functions of DCs through Omp25-dependent control of TNF-alpha production. This model defines a specific evasion strategy of the bacteria by which they can escape the immune response to chronically infect their host.

  18. Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges

    NASA Astrophysics Data System (ADS)

    Díaz Lantada, Andrés; de Blas Romero, Adrián; Schwentenwein, Martin; Jellinek, Christopher; Homa, Johannes

    2016-05-01

    Auxetic metamaterials are known for having a negative Poisson’s ratio (NPR) and for displaying the unexpected properties of lateral expansion when stretched and densification when compressed. Even though a wide set of micro-manufacturing resources have been used for the development of auxetic metamaterials and related devices, additional precision and an extension to other families of materials is needed for their industrial expansion. In addition, their manufacture using ceramic materials is still challenging. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of lithography-based ceramic manufacturing. The process stands out for its precision and complex three-dimensional geometries attainable, without the need of supporting structures, and for enabling the manufacture of ceramic auxetics with their geometry controlled from the design stage with micrometric precision. To our knowledge it represents the first example of application of this technology to the manufacture of auxetic geometries using ceramic materials. We have used a special three-dimensional auxetic design whose remarkable NPR has been previously highlighted.

  19. High-density lipoprotein affects antigen presentation by interfering with lipid raft: a promising anti-atherogenic strategy.

    PubMed

    Wang, S-H; Yuan, S-G; Peng, D-Q; Zhao, S-P

    2010-05-01

    Atherosclerosis is a chronic inflammatory disease. Immunomodulation of atherosclerosis emerges as a promising approach to prevention and treatment of this widely prevalent disease. The function of high-density lipoprotein (HDL) to promote reverse cholesterol transport may explain the ability of its protection against atherosclerosis. Findings that HDL and apolipoprotein A-I (apoA-I) inhibited the ability of antigen presenting cells (APCs) to stimulate T cells might be attributed to lipid raft, a cholesterol-rich microdomain exhibiting functional properties depending largely upon its lipid composition. Thus, modulating cholesterol in lipid raft may provide a promising anti-atherogenic strategy.

  20. The consequences of the intracellular retention of pathogen-derived T-cell-independent antigens on protein presentation to T cells.

    PubMed

    Leyva-Cobián, F; Outschoorn, I M; Carrasco-Marín, E; Alvarez-Domínguez, C

    1997-10-01

    Intracellular pathogens can be considered as particulate antigens chemically composed of a complex mixture of T-cell-dependent antigens (TD) (peptides and proteins) and T-cell-independent antigens (TI) (glycolipids and complex polysaccharides). A large range of saccharides (from oligosaccharides to complex polysaccharides) derived from pathogenic microorganisms are being isolated and characterized. They are currently implicated in signaling systems and concomitant host-parasite relationships. However, there are not many structure-function relationships described for these pathogens. This is particularly true of polysaccharides. In this report we have reviewed the role of defined TI antigens in the processing and presentation of defined TD antigens to specific T cells by antigen-presenting cells (APC). We also considered the importance of some of the chemical characteristics shared by different carbohydrates implicated in the inhibition of antigen presentation. These findings are discussed in relation to the clear immunopathological consequences of long retention periods of complex carbohydrate molecules derived from intracellular parasites inside certain APC and the absence of antigen presentation impairment in physiological situations such as the removal of senescent or damaged red blood cells by splenic macrophages or intracellular accumulation of carbohydrates in colostrum and milk macrophages during lactation.

  1. Microbe-specific unconventional T-cells induce human neutrophil differentiation into antigen cross-presenting cells

    PubMed Central

    Liuzzi, Anna Rita; Tyler, Christopher J.; Khan, Mohd Wajid A.; Szakmany, Tamas; Hall, Judith E.; Moser, Bernhard; Eberl, Matthias

    2014-01-01

    The early immune response to microbes is dominated by the recruitment of neutrophils whose primary function is to clear invading pathogens. However, there is emerging evidence that neutrophils play additional effector and regulatory roles. The present study demonstrates that human neutrophils assume antigen cross-presenting functions, and suggests a plausible scenario for the local generation of APC-like neutrophils through the mobilization of unconventional T-cells in response to microbial metabolites. Vγ9/Vδ2 T-cells and MAIT cells are abundant in blood, inflamed tissues and mucosal barriers. Here, both human cell types responded rapidly to neutrophils after phagocytosis of Gram-positive and Gram-negative bacteria producing the corresponding ligands, and in turn mediated the differentiation of neutrophils into APCs for both CD4+ and CD8+ T-cells through secretion of GM-CSF, IFN-γ and TNF-α. In patients with acute sepsis, circulating neutrophils displayed a similar APC-like phenotype and readily processed soluble proteins for cross-presentation of antigenic peptides to CD8+ T-cells, at a time when peripheral Vγ9/Vδ2 T-cells were highly activated. Our findings indicate that unconventional T-cells represent key controllers of neutrophil-driven innate and adaptive responses to a broad range of pathogens. PMID:25165152

  2. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    PubMed Central

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193

  3. Recruitment of bone marrow CD11b+Gr-1+ cells by polymeric nanoparticles for antigen cross-presentation

    PubMed Central

    Yang, Ya-Wun; Luo, Wen-Hui

    2017-01-01

    The objective of this study was to investigate the function of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on the activation of antigen-specific CD8+ T cell responses via the CD11b+Gr−1+ myeloid subpopulations in murine bone marrow (BM). PLGA NPs containing ovalbumin (OVA) were fabricated by the double-emulsion method. The CD11b+Gr-1lowLy-6Chigh and CD11b+Gr-1highLy-6Clow subsets from mice bone marrow were sorted and treated with the PLGA/OVA NPs, followed by co-culture with the carboxyfluorescein succinimidyl ester (CFSE)-labelled OT-I CD8+ cells. Co-culture of OT-I CD8+ T cells with PLGA/OVA NPs-primed CD11b+Gr-1+ subsets upregulated the expression of IL-2, TNF-α, INF-γ, granzyme B, and perforin, resulting in proliferation of CD8+ T cells and differentiation into effector cytotoxic T lymphocytes (CTLs). In vivo proliferation of CFSE-labelled OT-I CD8+ cells in response to OVA was also obtained in the animals immunized with PLGA/OVA NPs. The results presented in this study demonstrate the ability of polymeric NPs to recruit two CD11b+Gr−1+ myeloid subsets for effective presentation of exogenous antigen to OT-I CD8+ T cells in the context of major histocompatibility complex (MHC) class I, leading to an induction of antigen-specific cell proliferation and differentiation into effector cells. PMID:28317931

  4. Recruitment of bone marrow CD11b+Gr-1+ cells by polymeric nanoparticles for antigen cross-presentation

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Wun; Luo, Wen-Hui

    2017-03-01

    The objective of this study was to investigate the function of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on the activation of antigen-specific CD8+ T cell responses via the CD11b+Gr‑1+ myeloid subpopulations in murine bone marrow (BM). PLGA NPs containing ovalbumin (OVA) were fabricated by the double-emulsion method. The CD11b+Gr-1lowLy-6Chigh and CD11b+Gr-1highLy-6Clow subsets from mice bone marrow were sorted and treated with the PLGA/OVA NPs, followed by co-culture with the carboxyfluorescein succinimidyl ester (CFSE)-labelled OT-I CD8+ cells. Co-culture of OT-I CD8+ T cells with PLGA/OVA NPs-primed CD11b+Gr-1+ subsets upregulated the expression of IL-2, TNF-α, INF-γ, granzyme B, and perforin, resulting in proliferation of CD8+ T cells and differentiation into effector cytotoxic T lymphocytes (CTLs). In vivo proliferation of CFSE-labelled OT-I CD8+ cells in response to OVA was also obtained in the animals immunized with PLGA/OVA NPs. The results presented in this study demonstrate the ability of polymeric NPs to recruit two CD11b+Gr‑1+ myeloid subsets for effective presentation of exogenous antigen to OT-I CD8+ T cells in the context of major histocompatibility complex (MHC) class I, leading to an induction of antigen-specific cell proliferation and differentiation into effector cells.

  5. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation

    PubMed Central

    Brooks, Craig R; Yeung, Melissa Y; Brooks, Yang S; Chen, Hui; Ichimura, Takaharu; Henderson, Joel M; Bonventre, Joseph V

    2015-01-01

    Phagocytosis of apoptotic cells by both professional and semi-professional phagocytes is required for resolution of organ damage and maintenance of immune tolerance. KIM-1/TIM-1 is a phosphatidylserine receptor that is expressed on epithelial cells and can transform the cells into phagocytes. Here, we demonstrate that KIM-1 phosphorylation and association with p85 results in encapsulation of phagosomes by lipidated LC3 in multi-membrane organelles. KIM-1-mediated phagocytosis is not associated with increased ROS production, and NOX inhibition does not block LC3 lipidation. Autophagy gene expression is required for efficient clearance of apoptotic cells and phagosome maturation. KIM-1-mediated phagocytosis leads to pro-tolerogenic antigen presentation, which suppresses CD4 T-cell proliferation and increases the percentage of regulatory T cells in an autophagy gene-dependent manner. Taken together, these data reveal a novel mechanism of epithelial biology linking phagocytosis, autophagy and antigen presentation to regulation of the inflammatory response. PMID:26282792

  6. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    PubMed

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  7. Corruption of dendritic cell antigen presentation during acute GVHD leads to regulatory T-cell failure and chronic GVHD.

    PubMed

    Leveque-El Mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A; Cheong, Melody; Kuns, Rachel D; Lineburg, Katie E; Teal, Bianca E; Alexander, Kylie A; Clouston, Andrew D; Blazar, Bruce R; Hill, Geoffrey R; MacDonald, Kelli P A

    2016-08-11

    Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD.

  8. The immunogenicity of L1210 lymphoma clones correlates with their ability to function as antigen-presenting cells.

    PubMed

    Cycon, Kelly A; Clements, James L; Holtz, Renae; Fuji, Hiroshi; Murphy, Shawn P

    2009-09-01

    Major histocompatibility complex class II (MHCII) antigen expression is directly correlated with immunogenicity, and inversely correlated with tumorigenicity, in clones of the L1210 murine B lymphoma. Moreover, loss of MHCII expression on human diffuse large B-cell lymphoma is associated with dramatic decreases in patient survival. Thus, the role that MHCII antigens play in the progression of B-cell lymphomas is clinically important. In this study, we investigated the basis for the immunogenicity of MHCII(+) L1210 clones. Immunogenic, but not tumorigenic L1210 clones stimulated the proliferation of naïve T cells and their interleukin (IL)-2 production, which indicates that the immunogenic clones can function as antigen-presenting cells (APCs). However, subclonal variants of the immunogenic L1210 clones, which form tumours slowly in mice, could not activate T cells. The costimulatory molecules B7-1, B7-2 and CD40 were expressed on the immunogenic L1210 clones, but not the tumorigenic clones. Importantly, the tumour-forming subclonal variants expressed MHCII and B7-1, but lacked B7-2 and CD40. These results suggest that MHCII and B7-1 expression on L1210 cells is insufficient to activate naïve T cells, and, furthermore, loss of B7-2 and/or CD40 expression contributes to the decreased immunogenicity of L1210 subclones. Blocking B7-1 or B7-2 function on immunogenic L1210 cells reduced their capacity to activate naïve T cells. Furthermore, incubation of immunogenic L1210 cells with CD40 antibodies significantly enhanced APC function. Therefore, the immunogenicity of L1210 cells directly correlates (i) with their ability to stimulate naïve T cells, and (ii) with the concomitant expression of MHCII, B7-1, B7-2, and CD40.

  9. HIV Protease Inhibitor-Induced Cathepsin Modulation Alters Antigen Processing and Cross-Presentation.

    PubMed

    Kourjian, Georgio; Rucevic, Marijana; Berberich, Matthew J; Dinter, Jens; Wambua, Daniel; Boucau, Julie; Le Gall, Sylvie

    2016-05-01

    Immune recognition by T cells relies on the presentation of pathogen-derived peptides by infected cells, but the persistence of chronic infections calls for new approaches to modulate immune recognition. Ag cross-presentation, the process by which pathogen Ags are internalized, degraded, and presented by MHC class I, is crucial to prime CD8 T cell responses. The original degradation of Ags is performed by pH-dependent endolysosomal cathepsins. In this article, we show that HIV protease inhibitors (PIs) prescribed to HIV-infected persons variably modulate cathepsin activities in human APCs, dendritic cells and macrophages, and CD4 T cells, three cell subsets infected by HIV. Two HIV PIs acted in two complementary ways on cathepsin hydrolytic activities: directly on cathepsins and indirectly on their regulators by inhibiting Akt kinase activities, reducing NADPH oxidase 2 activation, and lowering phagolysosomal reactive oxygen species production and pH, which led to enhanced cathepsin activities. HIV PIs modified endolysosomal degradation and epitope production of proteins from HIV and other pathogens in a sequence-dependent manner. They altered cross-presentation of Ags by dendritic cells to epitope-specific T cells and T cell-mediated killing. HIV PI-induced modulation of Ag processing partly changed the MHC self-peptidome displayed by primary human cells. This first identification, to our knowledge, of prescription drugs modifying the regulation of cathepsin activities and the MHC-peptidome may provide an alternate therapeutic approach to modulate immune recognition in immune disease beyond HIV.

  10. Suboptimal Antigen Presentation Contributes to Virulence of Mycobacterium tuberculosis In Vivo.

    PubMed

    Grace, Patricia S; Ernst, Joel D

    2016-01-01

    Mycobacterium tuberculosis commonly causes persistent or chronic infection, despite the development of Ag-specific CD4 T cell responses. We hypothesized that M. tuberculosis evades elimination by CD4 T cell responses by manipulating MHC class II Ag presentation and CD4 T cell activation and tested this hypothesis by comparing activation of Ag85B-specific CD4 T cell responses to M. tuberculosis and M. bovis bacillus Calmette-Guérin (BCG) Pasteur in vivo and in vitro. We found that, although M. tuberculosis persists in lungs of immunocompetent mice, M. bovis BCG is cleared, and clearance is T cell dependent. We further discovered that M. tuberculosis-infected macrophages and dendritic cells activate Ag85B-specific CD4 T cells less efficiently and less effectively than do BCG-infected cells, in vivo and in vitro, despite higher production and secretion of Ag85B by M. tuberculosis. During BCG infection, activation of Ag85B-specific CD4 T cells requires fewer infected dendritic cells and fewer Ag-producing bacteria than during M. tuberculosis infection. When dendritic cells containing equivalent numbers of M. tuberculosis or BCG were transferred to mice, BCG-infected cells activated proliferation of more Ag85B-specific CD4 T cells than did M. tuberculosis-infected cells. Differences in Ag85B-specific CD4 T cell activation were attributable to differential Ag presentation rather than differential expression of costimulatory or inhibitory molecules. These data indicate that suboptimal Ag presentation contributes to persistent infection and that limiting Ag presentation is a virulence property of M. tuberculosis.

  11. The Role of XCR1 and its Ligand XCL1 in Antigen Cross-Presentation by Murine and Human Dendritic Cells

    PubMed Central

    Kroczek, Richard A.; Henn, Volker

    2012-01-01

    Recently, the chemokine receptor XCR1 has been found to be exclusively expressed on a subset of dendritic cell (DC) known to be involved in antigen cross-presentation. This review aims to summarize the known biology of the XCR1 receptor and its chemokine ligand XCL1, both in the mouse and the human. Further, any involvement of this receptor–ligand pair in antigen uptake, cross-presentation, and induction of innate and adaptive cytotoxic immunity is explored. The concept of antigen delivery to DC via the XCR1 receptor is discussed as a vaccination strategy for selective induction of cytotoxic immunity against certain pathogens or tumors. PMID:22566900

  12. Antigen recognition. V. Requirement for histocompatibility between antigen-presenting cell and B cell in the response to a thymus- dependent antigen, and lack of allogeneic restriction between T and B cells

    PubMed Central

    1981-01-01

    The restrictions imposed by the major histocompatibility complex on T-B- antigen-presenting cell (APC) interactions were studied with an in vivo adoptive transfer system, using mutually tolerant T and B cells taken from one-way fetal liver chimeras. It was found that the B cells and adoptive recipient (which provides APC function) have to share determinants encoded by the left-hand end of the H-2 complex for cooperation, whereas there is apparently no such requirement for T-B cell syngeneicity. Suppression arising from allogeneic effects between the host and the transferred T or B cells was excluded by the use of tolerant as well as normal adoptive recipients; both were functionally equivalent. We conclude that under experimental conditions, unrestricted helper T cell function and concurrent APC-B cell genetic restriction can be demonstrated in vivo. PMID:7276826

  13. Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells.

    PubMed

    Liao, Yu-Pei; Wang, Chun-Chieh; Butterfield, Lisa H; Economou, James S; Ribas, Antoni; Meng, Wilson S; Iwamoto, Keisuke S; McBride, William H

    2004-08-15

    Radiation is generally considered to be an immunosuppressive agent that acts by killing radiosensitive lymphocytes. In this study, we demonstrate the noncytotoxic effects of ionizing radiation on MHC class I Ag presentation by bone marrow-derived dendritic cells (DCs) that have divergent consequences depending upon whether peptides are endogenously processed and loaded onto MHC class I molecules or are added exogenously. The endogenous pathway was examined using C57BL/6 murine DCs transduced with adenovirus to express the human melanoma/melanocyte Ag recognized by T cells (AdVMART1). Prior irradiation abrogated the ability of AdVMART1-transduced DCs to induce MART-1-specific T cell responses following their injection into mice. The ability of these same DCs to generate protective immunity against B16 melanoma, which expresses murine MART-1, was also abrogated by radiation. Failure of AdVMART1-transduced DCs to generate antitumor immunity following irradiation was not due to cytotoxicity or to radiation-induced block in DC maturation or loss in expression of MHC class I or costimulatory molecules. Expression of some of these molecules was affected, but because irradiation actually enhanced the ability of DCs to generate lymphocyte responses to the peptide MART-1(27-35) that is immunodominant in the context of HLA-A2.1, they were unlikely to be critical. The increase in lymphocyte reactivity generated by irradiated DCs pulsed with MART-1(27-35) also protected mice against growth of B16-A2/K(b) tumors in HLA-A2.1/K(b) transgenic mice. Taken together, these results suggest that radiation modulates MHC class I-mediated antitumor immunity by functionally affecting DC Ag presentation pathways.

  14. B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis.

    PubMed

    Parker Harp, Chelsea R; Archambault, Angela S; Sim, Julia; Ferris, Stephen T; Mikesell, Robert J; Koni, Pandelakis A; Shimoda, Michiko; Linington, Christopher; Russell, John H; Wu, Gregory F

    2015-06-01

    B cells are increasingly regarded as integral to the pathogenesis of multiple sclerosis, in part as a result of the success of B cell-depletion therapy. Multiple B cell-dependent mechanisms contributing to inflammatory demyelination of the CNS have been explored using experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-dependent animal model for multiple sclerosis. Although B cell Ag presentation was suggested to regulate CNS inflammation during EAE, direct evidence that B cells can independently support Ag-specific autoimmune responses by CD4 T cells in EAE is lacking. Using a newly developed murine model of in vivo conditional expression of MHC class II, we reported previously that encephalitogenic CD4 T cells are incapable of inducing EAE when B cells are the sole APC. In this study, we find that B cells cooperate with dendritic cells to enhance EAE severity resulting from myelin oligodendrocyte glycoprotein (MOG) immunization. Further, increasing the precursor frequency of MOG-specific B cells, but not the addition of soluble MOG-specific Ab, is sufficient to drive EAE in mice expressing MHCII by B cells alone. These data support a model in which expansion of Ag-specific B cells during CNS autoimmunity amplifies cognate interactions between B and CD4 T cells and have the capacity to independently drive neuroinflammation at later stages of disease.

  15. Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms.

    PubMed

    Oliaro, Jane; Van Ham, Vanessa; Sacirbegovic, Faruk; Pasam, Anupama; Bomzon, Ze'ev; Pham, Kim; Ludford-Menting, Mandy J; Waterhouse, Nigel J; Bots, Michael; Hawkins, Edwin D; Watt, Sally V; Cluse, Leonie A; Clarke, Chris J P; Izon, David J; Chang, John T; Thompson, Natalie; Gu, Min; Johnstone, Ricky W; Smyth, Mark J; Humbert, Patrick O; Reiner, Steven L; Russell, Sarah M

    2010-07-01

    Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naive CD8(+) T cells undergoing initial division while attached to dendritic cells during Ag presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with APCs provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the APC. The cue from the APC is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes, and orientation of the mitotic spindle during division is orchestrated by the partner of inscuteable/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division.

  16. Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes

    PubMed Central

    Cole, Steven W.; Hawkley, Louise C.; Arevalo, Jesusa M. G.; Cacioppo, John T.

    2011-01-01

    To clarify the biological rationale for social regulation of gene expression, this study sought to identify the specific immune cell types that are transcriptionally sensitive to subjective social isolation (loneliness). Using reference distributions for the expression of each human gene in each major leukocyte subtype, we mapped the cellular origin of transcripts found to be differentially expressed in the circulating immune cells from chronically lonely individuals. Loneliness-associated genes derived primarily from plasmacytoid dendritic cells, monocytes, and, to a lesser extent, B lymphocytes. Those dynamics reflected per-cell changes in the expression of inducible genes and related more strongly to the subjective experience of loneliness than to objective social network size. Evolutionarily ancient myeloid antigen-presenting cells appear to have evolved a transcriptional sensitivity to socioenvironmental conditions that may allow them to shift basal gene expression profiles to counter the changing microbial threats associated with hostile vs. affine social conditions. PMID:21300872

  17. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies.

    PubMed

    Lord, Phillip; Spiering, Rachel; Aguillon, Juan C; Anderson, Amy E; Appel, Silke; Benitez-Ribas, Daniel; Ten Brinke, Anja; Broere, Femke; Cools, Nathalie; Cuturi, Maria Cristina; Diboll, Julie; Geissler, Edward K; Giannoukakis, Nick; Gregori, Silvia; van Ham, S Marieke; Lattimer, Staci; Marshall, Lindsay; Harry, Rachel A; Hutchinson, James A; Isaacs, John D; Joosten, Irma; van Kooten, Cees; Lopez Diaz de Cerio, Ascension; Nikolic, Tatjana; Oral, Haluk Barbaros; Sofronic-Milosavljevic, Ljiljana; Ritter, Thomas; Riquelme, Paloma; Thomson, Angus W; Trucco, Massimo; Vives-Pi, Marta; Martinez-Caceres, Eva M; Hilkens, Catharien M U

    2016-01-01

    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application.

  18. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies

    PubMed Central

    Spiering, Rachel; Aguillon, Juan C.; Anderson, Amy E.; Appel, Silke; Benitez-Ribas, Daniel; ten Brinke, Anja; Broere, Femke; Cools, Nathalie; Cuturi, Maria Cristina; Diboll, Julie; Geissler, Edward K.; Giannoukakis, Nick; Gregori, Silvia; van Ham, S. Marieke; Lattimer, Staci; Marshall, Lindsay; Harry, Rachel A.; Hutchinson, James A.; Isaacs, John D.; Joosten, Irma; van Kooten, Cees; Lopez Diaz de Cerio, Ascension; Nikolic, Tatjana; Oral, Haluk Barbaros; Sofronic-Milosavljevic, Ljiljana; Ritter, Thomas; Riquelme, Paloma; Thomson, Angus W.; Trucco, Massimo; Vives-Pi, Marta; Martinez-Caceres, Eva M.

    2016-01-01

    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application. PMID:27635311

  19. Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells.

    PubMed

    Deauvieau, Florence; Ollion, Vincent; Doffin, Anne-Claire; Achard, Carole; Fonteneau, Jean-François; Verronese, Estelle; Durand, Isabelle; Ghittoni, Raffaella; Marvel, Jacqueline; Dezutter-Dambuyant, Colette; Walzer, Thierry; Vie, Henri; Perrot, Ivan; Goutagny, Nadège; Caux, Christophe; Valladeau-Guilemond, Jenny

    2015-03-01

    Dendritic cells (DCs) cross-present antigen (Ag) to initiate T-cell immunity against most infections and tumors. Natural killer (NK) cells are innate cytolytic lymphocytes that have emerged as key modulators of multiple DC functions. Here, we show that human NK cells promote cross-presentation of tumor cell-derived Ag by DC leading to Ag-specific CD8(+) T-cell activation. Surprisingly, cytotoxic function of NK cells was not required. Instead, we highlight a critical and nonredundant role for IFN-γ and TNF-α production by NK cells to enhance cross-presentation by DC using two different Ag models. Importantly, we observed that NK cells promote cell-associated Ag cross-presentation selectively by monocytes-derived DC (Mo-DC) and CD34-derived CD11b(neg) CD141(high) DC subsets but not by myeloid CD11b(+) DC. Moreover, we demonstrate that triggering NK cell activation by monoclonal antibodies (mAbs)-coated tumor cells leads to efficient DC cross-presentation, supporting the concept that NK cells can contribute to therapeutic mAbs efficiency by inducing downstream adaptive immunity. Taken together, our findings point toward a novel role of human NK cells bridging innate and adaptive immunity through selective induction of cell-associated Ag cross-presentation by CD141(high) DC, a process that could be exploited to better harness Ag-specific cellular immunity in immunotherapy.

  20. Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8(+) and CD4(+) T Cells.

    PubMed

    Yin, Wenjie; Gorvel, Laurent; Zurawski, Sandra; Li, Dapeng; Ni, Ling; Duluc, Dorothée; Upchurch, Katherine; Kim, JongRok; Gu, Chao; Ouedraogo, Richard; Wang, Zhiqing; Xue, Yaming; Joo, HyeMee; Gorvel, Jean-Pierre; Zurawski, Gerard; Oh, SangKon

    2016-03-01

    Dendritic cells (DCs) are major antigen-presenting cells that can efficiently prime and cross-prime antigen-specific T cells. Delivering antigen to DCs via surface receptors is thus an appealing strategy to evoke cellular immunity. Nonetheless, which DC surface receptor to target to yield the optimal CD8(+) and CD4(+) T cell responses remains elusive. Herein, we report the superiority of CD40 over 9 different lectins and scavenger receptors at evoking antigen-specific CD8(+) T cell responses. However, lectins (e.g., LOX-1 and Dectin-1) were more efficient than CD40 at eliciting CD4(+) T cell responses. Common and distinct patterns of subcellular and intracellular localization of receptor-bound αCD40, αLOX-1 and αDectin-1 further support their functional specialization at enhancing antigen presentation to either CD8(+) or CD4(+) T cells. Lastly, we demonstrate that antigen targeting to CD40 can evoke potent antigen-specific CD8(+) T cell responses in human CD40 transgenic mice. This study provides fundamental information for the rational design of vaccines against cancers and viral infections.

  1. Mannose-poly(ethylene glycol)-linked SPION targeted to antigen presenting cells for magnetic resonance imaging on lymph node.

    PubMed

    Muthiah, Muthunarayanan; Vu-Quang, Hieu; Kim, You-Kyoung; Rhee, Joon Haeng; Kang, Sang Hyeon; Jun, Soo Youn; Choi, Yun-Jaie; Jeong, Yong Yeon; Cho, Chong-Su; Park, In-Kyu

    2013-02-15

    The aim of this study is to prepare biocompatible and targetable nanoparticles in lymph nodes (LNs) for lymph node-specific magnetic resonance (MR) imaging. Mannan-coated superparamagnetic iron oxide nanoparticles (SPIONs) (mannan-SPION), carboxylic mannan-coated SPION (CM-SPION), and β-glucan-coated SPION (Glucan-SPION) have been developed to target antigen-presenting cells (APCs), for lymph node detection by MR imaging. In this study, mannose-polyethylene glycol (PEG) was prepared by conjugating D-mannopyranosylphenyl isothiocyanate and amine-PEG-carboxyl. The 3-aminopropyltriethoxysilane (APTES)-activated SPION and the mannose-PEG were cross-linked to produce mannose-PEG-linked SPION (Mannose-PEG-SPION). Mannose-PEG-SPION carrying mannose on the surface were assumed efficient at targeting APCs through the specific interactions of the mannose tethered on the Mannose-PEG-SPION and the mannose receptors on the antigen presenting cells. The hydrophilic PEG corona layer in the Mannose-PEG-SPION could be prevented from aggregation during the systemic circulation with accompanying enhanced specificity and minimized systemic toxicity. The accumulation of SPION in the lymph nodes led to increased negative enhancement in the MR images. In the in vivo study, rats were injected intravenously with Mannose-PEG-SPION and PEG-SPION, as a control and then tracked by MR imaging after 1 h, 2 h, 3 h, and 24 h. MR imaging on lymph nodes clearly revealed the preferential uptake of Mannose-PEG-SPION in immune cell-rich lymph nodes. The predominant accumulation of Mannose-PEG-SPION in the lymph nodes was also confirmed by Prussian blue staining. Based on these results, Mannose-PEG-SPION shows great potential for lymph node-specific MR imaging.

  2. Interleukin-10 Modulates Antigen Presentation by Dendritic Cells through Regulation of NLRP3 Inflammasome Assembly during Chlamydia Infection

    PubMed Central

    Omosun, Yusuf; McKeithen, Danielle; Ryans, Khamia; Kibakaya, Caroline; Blas-Machado, Uriel; Li, Duo; Singh, Rajesh; Inoue, Koichi; Xiong, Zhi-Gang; Eko, Francis; Black, Carolyn; Igietseme, Joseph

    2015-01-01

    Interleukin-10 (IL-10) has been implicated in susceptibility to genital chlamydial infection and the development of tubal pathologies. IL-10 limitation also resulted in the rapid elicitation of immune responses against Chlamydia, and decreased levels of IL-10 correlated with protective anti-Chlamydia immunity. To investigate the molecular basis for these effects, we compared the reproductive pathologies and fertility rates in Chlamydia-infected wild-type (WT) and IL-10-knockout (IL-10−/−) mice; we also analyzed the expression of the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily, IL-1β production, NLRP3 inflammasome assembly and activation, and the immunostimulatory capacity and apoptotic predilection of Chlamydia-exposed dendritic cells (DCs) from WT and IL-10−/− mice. Our results revealed that, in addition to the rapid clearance of infection, genitally infected IL-10−/− mice were protected from tubal pathologies and infertility, whereas WT (IL-10+/+) mice were not. Chlamydia-pulsed IL-10−/− DCs expressed larger numbers of TLR4/IL-1R molecules and had enhanced IL-1β production. In addition, NLRP3 inflammasome assembly was suppressed in IL-10−/− DCs through the inhibition of the P2X purinoceptor 7 (P2X7) receptor (P2X7R), an ATP-gated ion channel, and a decrease in intracellular Ca2+ levels, which inhibited DC apoptosis. Thus, the potent immunostimulatory capacity of IL-10-deficient DCs is due, at least in part, to the suppression of the intracellular inflammasome assembly, which prevents DC apoptosis, allowing efficient antigen presentation. The results indicate that IL-10 deficiency enables efficient antigen presentation by DCs for rapid and enhanced immune activation against Chlamydia, which results in rapid microbial clearance, which prevents tubal pathologies during infection. Our finding has important implications for the induction of protective immunity against Chlamydia and other infectious and noninfectious

  3. Presentation of high antigen-dose by splenic B220(lo) B cells fosters a feedback loop between T helper type 2 memory and antibody isotype switching.

    PubMed

    Ellis, Jason S; Guloglu, F Betul; Zaghouani, Habib

    2016-04-01

    Effective humoral immunity ensues when antigen presentation by B cells culminates in productive cooperation with T lymphocytes. This collaboration, however, remains ill-defined because naive antigen-specific B cells are rare and difficult to track in vivo. Herein, we used a defined transfer model to examine how B lymphocytes, as antigen-presenting cells, shape the development of T-cell memory suitable for generation of relevant antibody responses. Specifically, we examined how B cells presenting different doses of antigen during the initial priming phase shape the development of CD4 T-cell memory and its influence on humoral immunity. The findings indicate that B cells presenting low dose of antigen favour the development of T helper type 1 (Th1) type memory, while those presenting a high antigen dose yielded better Th2 memory cells. The memory Th2 cells supported the production of antibodies by effector B cells and promoted isotype switching to IgG1. Moreover, among the B-cell subsets tested for induction of Th2 memory, the splenic but not peritoneal B220(lo) cells were most effective in sustaining Th2 memory development as well as immunoglobulin isotype switching, and this function involved a tight control by programmed death 1-programmed death ligand 2 interactions.

  4. Assessment of the present NASA optical metrology capabilities and recommendations for establishing an in-house NASA Optical Metrology Group

    NASA Technical Reports Server (NTRS)

    Parks, Robert E.

    1991-01-01

    An investigation into when it was first recognized that there was a deficiency in NASA optical metrology oversight capability, why this deficiency existed unnoticed for so long, and a proposal for correcting the problem is presented. It is explained why this optical metrology oversight is so critical to program success and at the same time, why it is difficult to establish due to the nature of the technology. The solution proposed is the establishment of an Optics Metrology Group within the NASA/MSFC Optics Branch with a line of authority from NASA S & MA.

  5. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07.

    PubMed

    Marino, Fabio; Mommen, Geert P M; Jeko, Anita; Meiring, Hugo D; van Gaans-van den Brink, Jacqueline A M; Scheltema, Richard A; van Els, Cécile A C M; Heck, Albert J R

    2017-01-06

    Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA peptides have already received attention, arginine methylated HLA class I peptide presentation has not been characterized in detail. In a human B-cell line we detected 149 HLA class I peptides harboring mono- and/or dimethylated arginine residues by mass spectrometry. A striking preference was observed in the presentation of arginine (di)methylated peptides for HLA-B*07 molecules, likely because the binding motifs of this allele resemble consensus sequences recognized by arginine methyl-transferases. Moreover, HLA-B*07-bound peptides preferentially harbored dimethylated groups at the P3 position, thus consecutively to the proline anchor residue. Such a proline-arginine sequence has been associated with the arginine methyl-transferases CARM1 and PRMT5. Making use of the specific neutral losses in fragmentation spectra, we found most of the peptides to be asymmetrically dimethylated, most likely by CARM1. These data expand our knowledge of the processing and presentation of arginine (di)methylated HLA class I peptides and demonstrate that these types of modified peptides can be presented for recognition by T-cells. HLA class I peptides with mono- and dimethylated arginine residues may therefore offer a novel target for immunotherapy.

  6. Immune Tolerance Maintained by Cooperative Interactions between T Cells and Antigen Presenting Cells Shapes a Diverse TCR Repertoire

    PubMed Central

    Best, Katharine; Chain, Benny; Watkins, Chris

    2015-01-01

    The T cell population in an individual needs to avoid harmful activation by self peptides while maintaining the ability to respond to an unknown set of foreign peptides. This property is acquired by a combination of thymic and extra-thymic mechanisms. We extend current models for the development of self/non-self discrimination to consider the acquisition of self-tolerance as an emergent system level property of the overall T cell receptor repertoire. We propose that tolerance is established at the level of the antigen presenting cell/T cell cluster, which facilitates and integrates cooperative interactions between T cells of different specificities. The threshold for self-reactivity is therefore imposed at a population level, and not at the level of the individual T cell/antigen encounter. Mathematically, the model can be formulated as a linear programing optimization problem that can be implemented as a multiplicative update algorithm, which shows a rapid convergence to a stable state. The model constrains self-reactivity within a predefined threshold, but maintains repertoire diversity and cross reactivity which are key characteristics of human T cell immunity. We show further that the size of individual clones in the model repertoire becomes heterogeneous, and that new clones can establish themselves even when the repertoire has stabilized. Our study combines the salient features of the “danger” model of self/non-self discrimination with the concepts of quorum sensing, and extends repertoire generation models to encompass the establishment of tolerance. Furthermore, the dynamic and continuous repertoire reshaping, which underlies tolerance in this model, suggests opportunities for therapeutic intervention to achieve long-term tolerance following transplantation. PMID:26300880

  7. Antigen-Specific B Cells Reactivate an Effective Cytotoxic T Cell Response against Phagocytosed Salmonella through Cross-Presentation

    PubMed Central

    de Wit, Jelle; Souwer, Yuri; Jorritsma, Tineke; Klaasse Bos, Hanny; ten Brinke, Anja; Neefjes, Jacques; van Ham, S. Marieke

    2010-01-01

    Background The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8+ T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8+ T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons. Methodology/Principal Findings Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8+ T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8+ T cells is dependent on CD4+ T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis. Conclusions/Significance B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection. PMID:20885961

  8. Distinct temporal programming of naive CD4+ T cells for cell division versus TCR-dependent death susceptibility by antigen-presenting macrophages.

    PubMed

    Schrum, Adam G; Palmer, Ed; Turka, Laurence A

    2005-02-01

    Naive T cells become programmed for clonal expansion and contraction during the early hours of antigenic signaling. Recent studies support an 'autopilot' model, wherein the commitment to proliferate and the magnitude of the proliferative response are simultaneously determined during a single, brief period of antigen exposure. Here, we have examined whether the proliferation of naive CD4+ T cells must occur on 'autopilot', or whether extended periods of antigenic signaling can impact primary proliferative responses to antigen-presenting macrophages (macrophage APC). We found that a single exposure to antigen (18 h) simultaneously committed T cells to (1) up-regulate surface TCR above the level expressed on naive T cells, (2) undergo minimal cell division, and (3) acquire susceptibility to TCR-dependent activation-induced cell death. However, continued antigenic signaling between 18 and 72 h was required to amplify the number of daughter cells derived from the already committed T cells. Thus, a discrete commitment time was followed by a 'tuning' period, where extended antigenic signaling determined the volume of the proliferative response. We conclude that T cell commitment to full clonal expansion versus TCR-dependent death susceptibility represent two separate programming events whose timing can be segregated by macrophage APC.

  9. Identification of a prostate-specific membrane antigen-derived peptide capable of eliciting both cellular and humoral immune responses in HLA-A24+ prostate cancer patients.

    PubMed

    Kobayashi, Kazuhiko; Noguchi, Masanori; Itoh, Kyogo; Harada, Mamoru

    2003-07-01

    We tried to identify prostate-specific membrane antigen (PSMA)-derived peptides capable of eliciting both cellular and humoral immune responses in peripheral blood mononuclear cells (PBMCs) and plasma of HLA-A24(+) prostate cancer patients, respectively. For cellular response, peptide-specific and prostate cancer-reactive responses of in vitro-stimulated PBMCs were examined with regard to interferon (IFN)-gamma production and cytotoxicity against both a parental HLA-A24(-) prostate cancer cell line (PC-93) and an HLA-A24-expressing transfectant cell line (PC93-A24). For humoral response, patients' plasma was tested for reactivity to the peptides by means of an enzyme-linked immunosorbent assay (ELISA). Among 13 PSMA peptides, PSMA 624-632 peptide induced peptide-specific and tumor-reactive cytotoxic T lymphocytes (CTLs) most effectively. The PSMA 624-632 peptide-stimulated PBMCs from either healthy donors or prostate cancer patients produced a significant level of IFN-gamma in response to prostate cancer cells in an HLA-A24-restricted manner, and also showed a higher level of cytotoxicity against PC93-A24 than against PC93. Antibodies to the PSMA 624-632 peptide, but not to any others, were detected in prostate cancer patients. These results demonstrate that the PSMA 624-632 peptide could be an appropriate molecule for use in specific immunotherapy of HLA-A24(+) patients with prostate cancer.

  10. Spatial separation of the processing and MHC class I loading compartments for cross-presentation of the tumor-associated antigen HER2/neu by human dendritic cells.

    PubMed

    Baleeiro, Renato B; Rietscher, René; Diedrich, Andrea; Czaplewska, Justyna A; Lehr, Claus-Michael; Scherließ, Regina; Hanefeld, Andrea; Gottschaldt, Michael; Walden, Peter

    2015-11-01

    Cross-presentation is the process by which professional antigen presenting cells (APCs) (B cells, dendritic cells (DCs) and macrophages) present endocytosed antigens (Ags) via MHC-I to CD8(+) T cells. This process is crucial for induction of adaptive immune responses against tumors and infected cells. The pathways and cellular compartments involved in cross-presentation are unresolved and controversial. Among the cells with cross-presenting capacity, DCs are the most efficient, which was proposed to depend on prevention of endosomal acidification to block degradation of the epitopes. Contrary to this view, we show in this report that some cargoes induce strong endosomal acidification following uptake by human DCs, while others not. Moreover, processing of the tumor-associated antigen HER2/neu delivered in nanoparticles (NP) for cross-presentation of the epitope HER2/neu369-377 on HLA-A2 depended on endosomal acidification and cathepsin activity as well as proteasomes, and newly synthesized HLA class I. However, the HLA-A*0201/HER2/neu369-377 complexes were not found in the endoplasmic reticulum (ER) nor in endolysosomes but in hitherto not described vesicles. The data thus indicate spatial separation of antigen processing and loading of MHC-I for cross-presentation: antigen processing occurs in the uptake compartment and the cytosol whereas MHC-I loading with peptide takes place in a distinct subcellular compartment. The findings further elucidate the cellular pathways involved in the cross-presentation of a full-length, clinically relevant tumor-associated antigen by human DCs, and the impact of the vaccine formulation on antigen processing and CD8(+) T cell induction.

  11. Presentation of HCV antigens to naive CD8+T cells: why the where, when, what and how are important for virus control and infection outcome.

    PubMed

    Racanelli, Vito; Manigold, Tobias

    2007-07-01

    T cell-mediated protection against HCV depends on constantly activated effector CD8(+)T cells that control emergence, spread and expansion of the virus. Why these cells fail to contain HCV replication in 70-80% of the individuals who develop persistent viremia is not clear. Although many reviews have focused on HCV's ability to interfere with the process of antigen presentation by dendritic cells (DC), only few have discussed the mechanisms whereby HCV-derived antigens become available for presentation to naive CD8(+)T cells. The importance of these mechanisms has been recently brought to light by new insight into DC biology, antigen processing, HCV replication and the immune system's functional anatomy. This review explores the different immunological scenarios in which CD8(+)T cell responses against HCV may be initiated. It describes the critical factors limiting antigen sensing and capture by APC and antigen recognition by T cells, and discusses how these factors may favor chronicity of HCV infection. Despite the lack of critical detail and hard experimental proof, this review proposes a model whereby liver seclusion, unproductive infection of professional antigen presenting cells and lack of direct tissue damage hamper the launch of a virus-specific CD8(+)T cell response. The implications for vaccine development are also discussed.

  12. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity

    PubMed Central

    Slawin, Kevin M.; Levitt, Jonathan M.; Spencer, David M.

    2016-01-01

    Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in “atypical” antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways. PMID:27741278

  13. Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer

    PubMed Central

    Perrin, George Q; Zolotukhin, Irene; Sherman, Alexandra; Biswas, Moanaro; de Jong, Ype P; Terhorst, Cox; Davidoff, Andrew M; Herzog, Roland W

    2016-01-01

    The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8) vector expressing cytoplasmic ovalbumin (OVA) into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal) are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages) and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products. PMID:27933310

  14. Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes

    PubMed Central

    Carretero, Rafael; Wang, Ena; Rodriguez, Ana I.; Reinboth, Jennifer; Ascierto, Maria L.; Engle, Alyson M.; Liu, Hui; Camacho, Francisco M.; Marincola, Francesco M.; Garrido, Federico; Cabrera, Teresa

    2012-01-01

    We present the results of a comparative gene expression analysis of 15 metastases (10 regressing and 5 progressing) obtained from 2 melanoma patients with mixed response following different forms of immunotherapy. Whole genome transcriptional analysis clearly indicate that regression of melanoma metastases is due to an acute immune rejection mediated by the upregulation of genes involved in antigen presentation and interferon mediated response (STAT-1/IRF-1) in all the regressing metastases from both patients. In contrast, progressing metastases showed low transcription levels of genes involved in these pathways. Histological analysis showed T cells and HLA-DR positive infiltrating cells in the regressing but not in the progressing metastases. Quantitative expression analysis of HLA-A, B and C genes on microdisected tumoral regions indicate higher HLA expression in regressing than in progressing metastases. The molecular signature obtained in melanoma rejection appeared to be similar to that observed in other forms of immune-mediated tissue-specific rejection such as allograft, pathogen clearance, graft versus host or autoimmune disease, supporting the immunological constant of rejection. We favor the idea that the major factor determining the success or failure of immunotherapy is the nature of HLA Class I alterations in tumor cells and not the type of immunotherapy used. If the molecular alteration is reversible by the immunotherapy, the HLA expression will be upregulated and the lesion will be recognized and rejected. In contrast, if the defect is structural the MHC Class I expression will remain unchanged and the lesion will progress. PMID:21964766

  15. Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation

    PubMed Central

    Kretzschmar, Warren W.; Cannons, Jennifer L.; Lee-Lin, Shih-Queen; Hurle, Belen; Schwartzberg, Pamela L.; Bustamante, Carlos D.; Nielsen, Rasmus; Clark, Andrew G.; Green, Eric D.

    2010-01-01

    A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. PMID:20976248

  16. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen.

    PubMed

    Saluja, Sandeep S; Hanlon, Douglas J; Sharp, Fiona A; Hong, Enping; Khalil, David; Robinson, Eve; Tigelaar, Robert; Fahmy, Tarek M; Edelson, Richard L

    2014-01-01

    Targeting antigen to dendritic cells (DCs) is a powerful and novel strategy for vaccination. Priming or loading DCs with antigen controls whether subsequent immunity will develop and hence whether effective vaccination can be achieved. The goal of our present work was to increase the potency of DC-based antitumor vaccines by overcoming inherent limitations associated with antigen stability and cross-presentation. Nanoparticles prepared from the biodegradable polymer poly(lactic-co-glycolic acid) have been extensively used in clinical settings for drug delivery and are currently the subject of intensive investigation as antigen delivery vehicles for vaccine applications. Here we describe a nanoparticulate delivery system with the ability to simultaneously carry a high density of protein-based antigen while displaying a DC targeting ligand on its surface. Utilizing a targeting motif specific for the DC-associated surface ligand DEC-205, we show that targeted nanoparticles encapsulating a MART-127-35 peptide are both internalized and cross-presented with significantly higher efficiency than isotype control-coated nanoparticles in human cells. In addition, the DEC-205-labeled nanoparticles rapidly escape from the DC endosomal compartment and do not colocalize with markers of early (EEA-1) or late endosome/lysosome (LAMP-1). This indicates that encapsulated antigens delivered by nanoparticles may have direct access to the class I cytoplasmic major histocompatibility complex loading machinery, overcoming the need for "classical" cross-presentation and facilitating heightened DC stimulation of anti-tumor CD8(+) T-cells. These results indicate that this delivery system provides a flexible and versatile methodology to deliver melanoma-associated antigen to DCs, with both high efficiency and heightened potency.

  17. Differential response of antigen presenting cells from susceptible and resistant strains of mice to Taenia crassiceps infection.

    PubMed

    Reyes, José L; Terrazas, César A; Vera-Arias, Laura; Terrazas, Luis I

    2009-12-01

    Antigen presenting cells (APCs) are critically involved in the interaction between pathogens and the host immune system. Here, we examined two different populations of APCs in mice that are susceptible (BALB/c) or resistant (C57BL/6) to Taenia crassiceps cysticercosis. Bone marrow-derived dendritic cells (BMDCs) from both strains of mice were exposed to T. crassiceps excreted/secreted antigens (TcES) and, at the same time, to the Toll-like receptor (TLR) ligand LPS. BMDCs from BALB/c mice underwent a partial maturation when incubated with TcES and displayed decreased responses to TLR-dependent stimuli associated with low CD80, CD86, CD40 and CCR7 expression and impaired IL-15 production. These BMDCs-induced impaired allogenic responses. In contrast, BMDCs from C57BL/6 mice displayed normal maturation and induced strong allogenic responses. Moreover, the exposure to TcES resulted in a lower production of IL-12 and TNF-alpha by LPS-activated DCs from BALB/c mice compared to C57BL/6 DCs. Three parameters of macrophage activation were assessed during Taenia infection: LPS+IFN-gamma-induced production of IL-12, TNF-alpha and nitric oxide (NO) in vitro; infection-induced markers for alternatively activated macrophages (Arginase-1, RELM-alpha, Ym-1 and TREM-2 expression) and suppressive activity. The maximum response to LPS+IFN-gamma-induced TNF-alpha, IL-12 and NO production by macrophages from both strains of mice occurred 2 wk post-infection. However, as infection progressed, the production of these molecules by BALB/c macrophages declined. While the BALB/c macrophages displayed impaired pro-inflammatory responses, these macrophages showed strong Arginase-1, Ym-1, RELM-alpha and TREM-2 expression. By contrast, C57BL/6 macrophages maintained a pro-inflammatory profile and low transcripts for alternative activation markers. Macrophages from T. crassiceps-infected BALB/c mice showed stronger suppressive activity than those from C57BL/6 mice. These findings suggest that

  18. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines.

    PubMed

    van Montfoort, Nadine; van der Aa, Evelyn; Woltman, Andrea M

    2014-01-01

    Effective viral clearance requires the induction of virus-specific CD8(+) cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL. Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated. We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy.

  19. Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice.

    PubMed

    Sevilla, L M; Richter, S S; Miller, J

    2001-06-15

    MHC class II-restricted antigen presentation requires trafficking of newly synthesized class II-invariant chain complexes from the trans-Golgi network to endosomal, peptide-loading compartments. This transport is mediated by dileucine-like motifs within the cytosolic tail of the invariant chain. Although these signals have been well characterized, the cytosolic proteins that interact with these dileucine signals and mediate Golgi sorting and endosomal transport have not been identified. Recently, an adaptor complex, AP-3, has been identified that interacts with dileucine motifs and mediates endosomal/lysosomal transport in yeast, Drosophila, and mammals. In this report, we have assessed class II-invariant chain trafficking in a strain of mice (mocha) which lacks expression of AP-3. Our studies demonstrate that the lack of AP-3 does not affect the kinetics of invariant chain degradation, the route of class II-invariant chain transport, or the rate and extent of class II-peptide binding as assessed by the generation of SDS-stable dimers. The possible role of other known or unknown adaptor complexes in class II-invariant chain transport is discussed.

  20. Ectopic ATP synthase facilitates transfer of HIV-1 from antigen-presenting cells to CD4+ target cells

    PubMed Central

    Yavlovich, Amichai; Viard, Mathias; Zhou, Ming; Veenstra, Timothy D.; Wang, Ji Ming; Gong, Wanghua; Heldman, Eliahu; Blumenthal, Robert

    2012-01-01

    Antigen-presenting cells (APCs) act as vehicles that transfer HIV to their target CD4+ cells through an intercellular junction, termed the virologic synapse. The molecules that are involved in this process remain largely unidentified. In this study, we used photoaffinity labeling and a proteomic approach to identify new proteins that facilitate HIV-1 transfer. We identified ectopic mitochondrial ATP synthase as a factor that mediates HIV-1 transfer between APCs and CD4+ target cells. Monoclonal antibodies against the β-subunit of ATP synthase inhibited APC-mediated transfer of multiple strains HIV-1 to CD4+ target cells. Likewise, the specific inhibitors of ATPase, citreoviridin and IF1, completely blocked APC-mediated transfer of HIV-1 at the APC-target cell interaction step. Confocal fluorescent microscopy showed localization of extracellular ATP synthase at junctions between APC and CD4+ target cells. We conclude that ectopic ATP synthase could be an accessible molecular target for inhibiting HIV-1 proliferation in vivo. PMID:22753871

  1. B7-H1–expressing antigen-presenting cells mediate polarization of protumorigenic Th22 subsets

    PubMed Central

    Kuang, Dong-Ming; Xiao, Xiao; Zhao, Qiyi; Chen, Min-Min; Li, Xue-Feng; Liu, Rui-Xian; Wei, Yuan; Ouyang, Fang-Zhu; Chen, Dong-Ping; Wu, Yan; Lao, Xiang-Ming; Deng, Hong; Zheng, Limin

    2014-01-01

    Classical IL-22–producing T helper cells (Th22 cells) mediate inflammatory responses independently of IFN-γ and IL-17; however, nonclassical Th22 cells have been recently identified and coexpress IFN-γ and/or IL-17 along with IL-22. Little is known about how classical and nonclassical Th22 subsets in human diseases are regulated. Here, we used samples of human blood, normal and peritumoral liver, and hepatocellular carcinoma (HCC) to delineate the phenotype, distribution, generation, and functional relevance of various Th22 subsets. Three nonclassical Th22 subsets constituted the majority of all Th22 cells in human liver and HCC tissues, although the classical Th22 subset was predominant in blood. Monocytes activated by TLR2 and TLR4 agonists served as the antigen-presenting cells (APCs) that most efficiently triggered the expansion of nonclassical Th22 subsets from memory T cells and classical Th22 subsets from naive T cells. Moreover, B7-H1–expressing monocytes skewed Th22 polarization away from IFN-γ and toward IL-17 through interaction with programmed death 1 (PD-1), an effect that can create favorable conditions for in vivo aggressive cancer growth and angiogenesis. Our results provide insight into the selective modulation of Th22 subsets and suggest that strategies to influence functional activities of inflammatory cells may benefit anticancer therapy. PMID:25244097

  2. Glucose-Regulated Protein 78-Induced Myeloid Antigen-Presenting Cells Maintained Tolerogenic Signature upon LPS Stimulation

    PubMed Central

    Yang, Muyang; Zhang, Fan; Qin, Kai; Wu, Min; Li, Heli; Zhu, Huifen; Ning, Qin; Lei, Ping; Shen, Guanxin

    2016-01-01

    The 78-kDa glucose-regulated protein (Grp78) is stress-inducible chaperone that mostly reside in the endoplasmic reticulum. Grp78 has been described to be released at times of cellular stress and as having extracellular properties that are anti-inflammatory or favor the resolution of inflammation. As antigen-presenting cells (APCs) play a critical role in both the priming of adaptive immune responses and the induction of self-tolerance, herein, we investigated the effect of Grp78 on the maturation of murine myeloid APCs (CD11c+ cells). Results showed that CD11c+ cells could be bound by AF488-labeled Grp78 and that Grp78 treatment induced a tolerogenic phenotype comparable to immature cells. Furthermore, when exposed to lipopolysaccharide, Grp78-treated CD11c+ cells (DCGrp78) did not adopt a mature dendritic cell phenotype. DCGrp78-primed T cells exhibited reduced proliferation along with a concomitant expansion of CD4+CD25+FoxP3+ cells in pancreaticoduodenal lymph nodes and induction of T cell apoptosis in vitro and ex vivo. The above work suggests that Grp78 is an immunomodulatory molecule that could aid resolution of inflammation. It may thus contribute to induce durable tolerance to be of potential therapeutic benefit in transplanted allogeneic grafts and autoimmune diseases such as type I diabetes. PMID:27990144

  3. IL-4 abrogates TH17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells

    PubMed Central

    Guenova, Emmanuella; Skabytska, Yuliya; Hoetzenecker, Wolfram; Weindl, Günther; Sauer, Karin; Tham, Manuela; Kim, Kyu-Won; Park, Ji-Hyeon; Seo, Ji Hae; Ignatova, Desislava; Cozzio, Antonio; Levesque, Mitchell P.; Volz, Thomas; Köberle, Martin; Kaesler, Susanne; Thomas, Peter; Mailhammer, Reinhard; Ghoreschi, Kamran; Schäkel, Knut; Amarov, Boyko; Eichner, Martin; Schaller, Martin; Clark, Rachael A.; Röcken, Martin; Biedermann, Tilo

    2015-01-01

    Interleukin 4 (IL-4) can suppress delayed-type hypersensitivity reactions (DTHRs), including organ-specific autoimmune diseases in mice and humans. Despite the broadly documented antiinflammatory effect of IL-4, the underlying mode of action remains incompletely understood, as IL-4 also promotes IL-12 production by dendritic cells (DCs) and IFN-γ–producing TH1 cells in vivo. Studying the impact of IL-4 on the polarization of human and mouse DCs, we found that IL-4 exerts opposing effects on the production of either IL-12 or IL-23. While promoting IL-12–producing capacity of DCs, IL-4 completely abrogates IL-23. Bone marrow chimeras proved that IL-4–mediated suppression of DTHRs relies on the signal transducer and activator of transcription 6 (STAT6)-dependent abrogation of IL-23 in antigen-presenting cells. Moreover, IL-4 therapy attenuated DTHRs by STAT6- and activating transcription factor 3 (ATF3)-dependent suppression of the IL-23/TH17 responses despite simultaneous enhancement of IL-12/TH1 responses. As IL-4 therapy also improves psoriasis in humans and suppresses IL-23/TH17 responses without blocking IL-12/TH1, selective IL-4–mediated IL-23/TH17 silencing is promising as treatment against harmful inflammation, while sparing the IL-12–dependent TH1 responses. PMID:25646481

  4. Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization.

    PubMed

    Dillard, Pierre; Pi, Fuwei; Lellouch, Annemarie C; Limozin, Laurent; Sengupta, Kheya

    2016-03-14

    We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation.

  5. The Effect of the Nonionic Block Copolymer Pluronic P85 on Gene Expression in Mouse Muscle and Antigen Presenting Cells

    PubMed Central

    Gaymalov, Zagit Z.; Yang, Zhihui; Pisarev, Vladimir M.; Alakhov, Valery Yu.; Kabanov, Alexander V.

    2008-01-01

    DNA vaccines can be greatly improved by polymer agents that simultaneously increase transgene expression and activate immunity. We describe here Pluronic P85 (P85), a triblock copolymer of ethylene oxide (EO) and propylene oxide (PO) EO26-PO40-EO26,. Using a mouse model we demonstrate that co-administration of a bacterial plasmid DNA with P85 in a skeletal muscle greatly increases gene expression in the injection site and distant organs, especially the draining lymph nodes and spleen. The reporter expression colocalizes with the specific markers of myocytes and keratinocytes in the muscle, as well as dendritic cells (DC) and macrophages in the muscle, lymph nodes and spleen. Furthermore, DNA/P85 and P85 alone increase the systemic expansion of CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural killer) cell populations. DNA/P85 (but not P85) also increases maturation of local DC (CD11c+CD86+, CD11c+CD80+, and CD11c+CD40+). We suggest that DNA/P85 promotes the activation and recruitment of the antigen-presenting cells, which further incorporate, express and carry the transgene to the immune system organs. PMID:19064283

  6. Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes.

    PubMed

    Nasir, Waqas; Frank, Martin; Kunze, Angelika; Bally, Marta; Parra, Francisco; Nyholm, Per-Georg; Höök, Fredrik; Larson, Göran

    2017-03-27

    Virus entry depends on biomolecular recognition at the surface of cell membranes. In the case of glycolipid receptors, these events are expected to be influenced by how the glycan epitope close to the membrane is presented to the virus. This presentation of membrane-associated glycans is more restricted than that of glycans in solution, particularly because of orientational constraints imposed on the glycolipid through its lateral interactions with other membrane lipids and proteins. We have developed and employed a total internal reflection fluorescence microscopy-based binding assay and a scheme for molecular dynamics (MD) membrane simulations to investigate the consequences of various glycan presentation effects. The system studied was histo-blood group antigen (HBGA) epitopes of membrane-bound glycosphingolipids (GSLs) derived from small intestinal epithelium of humans (type 1 chain) and dogs (type 2 chain) interacting with GII.4 norovirus-like particles. Our experimental results showed strong binding to all lipid-linked type 1 chain HBGAs but no or only weak binding to the corresponding type 2 chain HBGAs. This is in contrast to results derived from STD experiments with free HBGAs in solution where binding was observed for Lewis x. The MD data suggest that the strong binding to type 1 chain glycolipids was due to the well-exposed (1,2)-linked α-l-Fucp and (1,4)-linked α-l-Fucp residues, while the weaker binding or lack of binding to type 2 chain HBGAs was due to the very restricted accessibility of the (1,3)-linked α-l-Fucp residue when the glycolipid is embedded in a phospholipid membrane. Our results not only contribute to a general understanding of protein-carbohydrate interactions on model membrane surfaces, particularly in the context of virus binding, but also suggest a possible role of human intestinal GSLs as potential receptors for norovirus uptake.

  7. The 2.5 Å Structure of CD1c in Complex with a Mycobacterial Lipid Reveals an Open Groove Ideally Suited for Diverse Antigen Presentation

    SciTech Connect

    Scharf, Louise; Li, Nan-Sheng; Hawk, Andrew J.; Garzón, Diana; Zhang, Tejia; Fox, Lisa M.; Kazen, Allison R.; Shah, Sneha; Haddadian, Esmael J.; Gumperz, Jenny E.; Saghatelian, Alan; Faraldo-Gómez, José D.; Meredith, Stephen C.; Piccirilli, Joseph A.; Adams, Erin J.

    2011-08-24

    CD1 molecules function to present lipid-based antigens to T cells. Here we present the crystal structure of CD1c at 2.5 {angstrom} resolution, in complex with the pathogenic Mycobacterium tuberculosis antigen mannosyl-{beta}1-phosphomycoketide (MPM). CD1c accommodated MPM's methylated alkyl chain exclusively in the A pocket, aided by a unique exit portal underneath the {alpha}1 helix. Most striking was an open F pocket architecture lacking the closed cavity structure of other CD1 molecules, reminiscent of peptide binding grooves of classical major histocompatibility complex molecules. This feature, combined with tryptophan-fluorescence quenching during loading of a dodecameric lipopeptide antigen, provides a compelling model by which both the lipid and peptide moieties of the lipopeptide are involved in CD1c presentation of lipopeptides.

  8. Evaluation of Cross-presentation in Bone Marrow-derived Dendritic Cells in vitro and Splenic Dendritic Cells ex vivo Using Antigen-coated Beads

    PubMed Central

    Alloatti, Andrés; Kotsias, Fiorella; Hoffmann, Eik; Amigorena, Sebastian

    2017-01-01

    Antigen presentation by MHC class I molecules, also referred to as cross-presentation, elicits cytotoxic immune responses. In particular, dendritic cells (DC) are the most proficient cross-presenting cells, since they have developed unique means to control phagocytic and degradative pathways. This protocol allows the evaluation of antigen cross-presentation both in vitro (by using bone marrow-derived DC) and ex vivo (by purifying CD8+ DC from spleen after incorporation of particulate antigen) using ovalbumin (OVA)-coupled particles. Cross-presentation efficiency is measured by three different readouts: the B3Z hybridoma T cell line (Karttunen et al., 1992) and stimulation of antigen-specific CD8+ T cells (OT-I) (Kurts et al., 1996), either analyzing OT-I activation by CD69 expression or OT-I proliferation after labeling them with carboxyfluorescein succinimidyl ester (CFSE). By using this approach, we could show recently that DCs are able to increase cross-presentation efficiency transiently upon engagement of TLR4 (Alloatti et al., 2015). PMID:28239619

  9. Disruption of HLA class II antigen presentation in Burkitt lymphoma: implication of a 47,000 MW acid labile protein in CD4+ T-cell recognition.

    PubMed

    God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul

    2014-07-01

    While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4(+) T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4(+) T cells via the HLA class II pathway. This defect in CD4(+) T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4(+) T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II-peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4(+) T-cell recognition. Biochemical analysis showed that these molecules were greater than 30,000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47,000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies.

  10. Structural Characteristics and Antioxidative Capability of the Soluble Polysaccharides Present in Dictyophora indusiata (Vent. Ex Pers.) Fish Phallaceae

    PubMed Central

    Ker, Yaw-Bee; Chen, Kuan-Chou; Peng, Chiung-Chi; Hsieh, Chiu-Lan; Peng, Robert Y.

    2011-01-01

    Dictyophora indusiata (Vent. ex Pers.) Fish Phallaceae (Chinese name Zhu-Sūn, the bamboo fungi) has been used as a medicinal mushroom to treat many inflammatory, gastric and neural diseases since 618 AD in China. We hypothesize that the soluble polysaccharides (SP) present in D. indusiata and their monosaccharide profiles can act as an important role affecting the antioxidative capability, which in turn would influence the biological activity involving anti-inflammatory, immune enhancing and anticancer. We obtained six SP fractions and designated them as D1, a galactoglucan; D2, a galactan; D3, the isoelectrically precipitated riboglucan from 2% NaOH; D4, a myoinositol; D5 and D6, the mannogalactans. The total SP accounted for 37.44% w/w, their molecular weight (MW) ranged within 801–4656 kDa. D3, having the smallest MW 801 kDa, exhibited the most potent scavenging effect against the α,α-diphenyl-β-picrylhydrazyl, •OH−, and •O2− radicals, yielding IC50 values 0.11, 1.02 and 0.64 mg mL−1, respectively. Thus we have confirmed our hypothesis that the bioactivity of D. indusiata is related in majority, if not entirely, to its soluble polysaccharide type regarding the MW and monosaccharide profiles. PMID:21799678

  11. The chemistry and immunochemistry of blood group A, B, H, and Lewis antigens: past, present and future.

    PubMed

    Lloyd, K O

    2000-01-01

    This article traces reseach on the chemistry and immunochemistry of blood group A, B, H, and Lewis antigens from early work on the identification of soluble sources of these antigens, through the elucidation of the structures of the carbohydrate epitopes responsible for these specificities, to recent work on exploring their possible use as cancer vaccines. The various approaches used in the isolation of oligosaccharides from mucins for use in structural studies are discussed, as are recent efforts in the chemical systhesis of blood group-active oligosaccharides.

  12. PD-1 on Immature and PD-1 Ligands on Migratory Human Langerhans Cells Regulate Antigen-Presenting Cell Activity

    PubMed Central

    Peña-Cruz, Victor; McDonough, Sean M.; Diaz-Griffero, Felipe; Crum, Christopher P.; Carrasco, Ruben D.; Freeman, Gordon J.

    2010-01-01

    Langerhans cells (LCs) are known as “sentinels” of the immune system that function as professional antigen-presenting cells (APCs) after migration to draining lymph node. LCs are proposed to have a role in tolerance and the resolution of cutaneous immune responses. The Programmed Death-1 (PD-1) receptor and its ligands, PD-L1 and PD-L2, are a co-inhibitory pathway that contributes to the negative regulation of T-lymphocyte activation and peripheral tolerance. Surprisingly, we found PD-1 to be expressed on immature LCs (iLCs) in situ. PD-1 engagement on iLCs reduced IL-6 and macrophage inflammatory protein (MIP)-1α cytokine production in response to TLR2 signals but had no effect on LC maturation. PD-L1 and PD-L2 were expressed at very low levels on iLCs. Maturation of LCs upon migration from epidermis led to loss of PD-l expression and gain of high expression of PD-L1 and PD-L2 as well as co-stimulatory molecules. Blockade of PD-L1 and/or PD-L2 on migratory LCs (mLCs) and DDCs enhanced T-cell activation, as has been reported for other APCs. Thus the PD-1 pathway is active in iLCs and inhibits iLC activities, but expression of receptor and ligands reverses upon maturation and PD-L1 and PD-L2 on mLC function to inhibit T-cell responses. PMID:20445553

  13. Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells

    PubMed Central

    2014-01-01

    Background Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. Results We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer’s patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN–α and –β in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1β, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs. Conclusions It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge. PMID:24886142

  14. Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule.

    PubMed

    Wynne, James W; Woon, Amanda P; Dudek, Nadine L; Croft, Nathan P; Ng, Justin H J; Baker, Michelle L; Wang, Lin-Fa; Purcell, Anthony W

    2016-06-01

    Bats are a major reservoir of emerging and re-emerging infectious diseases, including severe acute respiratory syndrome-like coronaviruses, henipaviruses, and Ebola virus. Although highly pathogenic to their spillover hosts, bats harbor these viruses, and a large number of other viruses, with little or no clinical signs of disease. How bats asymptomatically coexist with these viruses is unknown. In particular, little is known about bat adaptive immunity, and the presence of functional MHC molecules is mostly inferred from recently described genomes. In this study, we used an affinity purification/mass spectrometry approach to demonstrate that a bat MHC class I molecule, Ptal-N*01:01, binds antigenic peptides and associates with peptide-loading complex components. We identified several bat MHC class I-binding partners, including calnexin, calreticulin, protein disulfide isomerase A3, tapasin, TAP1, and TAP2. Additionally, endogenous peptide ligands isolated from Ptal-N*01:01 displayed a relatively broad length distribution and an unusual preference for a C-terminal proline residue. Finally, we demonstrate that this preference for C-terminal proline residues was observed in Hendra virus-derived peptides presented by Ptal-N*01:01 on the surface of infected cells. To our knowledge, this is the first study to identify endogenous and viral MHC class I ligands for any bat species and, as such, provides an important avenue for monitoring and development of vaccines against major bat-borne viruses both in the reservoir and spillover hosts. Additionally, it will provide a foundation to understand the role of adaptive immunity in bat antiviral responses.

  15. Comparative study of the role of professional versus semiprofessional or nonprofessional antigen presenting cells in the rejection of vascularized organ allografts.

    PubMed

    Sundstrom, J B; Ansari, A A

    1995-12-01

    The immune systems of transplant recipients are progressively challenged with exposure to the multiple lineages of donor cells that comprise the vascularized organ allograft. Each lineage of such donor tissue constitutively expresses or can be induced to express varying densities of MHC antigens ranging from no expression of MHC to MHC class I only to both MHC class I and class II. In addition, the cell surface expression of a diverse assortment of costimulatory and cell adhesion molecules also varies in density in a tissue specific fashion within the allograft. The MHC class I/II molecules displayed on the donor cells contain within their clefts a constellation of processed protein antigens in the form of peptides derived from intracellular and to some extent extracellular sources. Therefore, the potential for each cell lineage to induce alloactivation and serve as a target for allospecific immune responses is dependent on the diversity and density of peptide-bearing MHC molecules, costimulatory molecules, and cell adhesion molecules. In addition, the T cell receptor repertoire of the recipient also contributes to the magnitude of the allogeneic response. Consequently, the variety of clinical outcomes following organ transplantation even with the institution of potent immunosuppressive (drug) therapies is not surprising, as it appears reasonable for such therapies to influence the allogeneic response against distinct lineages differentially. Our failure to prevent chronic human allograft rejection may therefore be due to our limited appreciation of the full spectrum of alloactivating experiences encountered by host T cells as they interact with donor cells of diverse tissue lineages. Investigations by our laboratory of the immunopathogenesis of chronic cardiac allograft rejection have revealed an intrinsic inability of human cardiac myocytes to process and present antigens, not only for primary but also for secondary alloimmune responses. One obvious explanation

  16. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells.

    PubMed

    Rancan, Fiorenza; Amselgruber, Sarah; Hadam, Sabrina; Munier, Sevérine; Pavot, Vincent; Verrier, Bernard; Hackbarth, Steffen; Combadiere, Behazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2014-02-28

    Transcutaneous immunization is a promising vaccination strategy for the treatment of infectious diseases and cancer. In this study, we investigate the combination of cyanoacrylate skin surface stripping (CSSS) and particle-based antigen delivery to target the HIV-1 p24 protein to skin antigen presenting cells (APC). The CSSS treatment pre-activates skin APC and opens hair follicles, where protein-loaded particles accumulate and allow for sustained delivery of the loaded antigen to perifollicular APC. We found that poly-lactic acid (PLA) and polystyrene (PS) particles targeted the adsorbed HIV-1 p24 protein to the hair follicles. Small amounts of PS and PLA particles were found to translocate to the epidermis and be internalized by skin cells, whereas most of the particles aggregated in the hair follicle canal, where they released the loaded antigen. The p24 protein diffused to the epidermis and dermis and was detected in skin cells, especially in Langerhans cells and dermal dendritic cells. Furthermore, the combination of CSSS and particle-based delivery resulted in activation and maturation of Langerhans cells (HLA-DR, CD80 and CD83). We conclude that particle-based antigen delivery across partially disrupted skin barrier is a feasible and effective approach to needle-free transcutaneous vaccination.

  17. Parasite Manipulation of the Invariant Chain and the Peptide Editor H2-DM Affects Major Histocompatibility Complex Class II Antigen Presentation during Toxoplasma gondii Infection

    PubMed Central

    Nishi, Manami; El-Hage, Sandy; Fox, Barbara A.; Bzik, David J.

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4+ T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4+ T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549

  18. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells.

    PubMed

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A

    2015-08-18

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.

  19. Analysis of HLA-DR glycoproteins by DNA-mediated gene transfer. Definition of DR2 beta gene products and antigen presentation to T cell clones from leprosy patients

    PubMed Central

    1988-01-01

    We have used DNA-mediated gene transfer to express HLA class II molecules in mouse L cells for serological, biochemical, and functional analysis. cDNA clones encoding the DR2 beta a and DR2 beta b products of the DR2Dw2 haplotype were subcloned into a mouse Moloney leukemia virus-based expression vector (pJ4) and transfected separately into mouse L cells together with a HLA-DR alpha/pJ4 construct. These transfectants have allowed differential analysis of the two DR2 beta products in a manner normally prohibited by the concomitant expression seen in B cells. Two-dimensional SDS-PAGE analysis of the transfectants defines the more acidic beta chain as the product of the DR2 beta a sequence, and the more basic chain as the product of the DR2 beta b sequence. The LDR2a transfectants present antigen efficiently to M.leprae-specific T cell clones and are capable of presenting synthetic peptide, 65-kD recombinant mycobacterial antigen and M.leprae. Of the DR2Dw2-restricted T cell clones we have tested, all use the DR2 beta a chain as their restriction element. Inhibition studies with mAbs demonstrate the dependence of presentation by the transfectant on class II and CD4, while mAbs against LFA-1, which substantially inhibit presentation by B-lymphoblastoid cell lines, do not inhibit transfectant presentation. PMID:3128633

  20. Increased translocation of antigens to endosomes and TLR4 mediated endosomal recruitment of TAP contribute to nicotine augmented cross-presentation.

    PubMed

    Wang, Yan Yan; Hu, Chun Fang; Li, Juan; You, Xiang; Gao, Feng Guang

    2016-06-21

    Cross-presentation by dendritic cells (DCs) requires surface molecules such as lectin, CD40, langerin, heat shock protein, mannose receptor, mediated endocytosis, the endosomal translocation of internalized antigen, and the relocation of transporter associated with antigen processing (TAP). Although the activation of α7 nicotinic acetylcholine receptor (α7 nAchR) up-regulate surface molecule expression, augment endocytosis, and enhance cross-presentation, the molecular mechanism of α7 nAchR activation-increased cross-presentation is still poorly understood. In this study, we investigated the role of mannose receptor in nicotine-increased cross-presentation and the mechanism that endotoxins orchestrating the recruitment of TAP toward endosomes. We demonstrated that nicotine increase the expressiones of mannose receptor and Toll-like receptor 4 (TLR4) via PI3K-Akt-mTOR-p70S6 pathway. Both endosomal translocation of mannose receptor-internalized antigens and TLR4 sig- naling are necessary for nicotine-augmented cross-presentation and cross-priming. Importantly, the recruitment of TAP toward endosomes via TLR4-MyD88-IRAK4 signaling contributes to nicotine-increased cross-presentation and cross-activation of T cells. Thus, these data suggest that increased recruitment of TAP to Ag-containing vesicles contributes to the superior cross-presentation efficacy of α7 nAchR activated DCs.

  1. Toll-like Receptor 4 Engagement on Dendritic Cells Restrains Phago-Lysosome Fusion and Promotes Cross-Presentation of Antigens.

    PubMed

    Alloatti, Andrés; Kotsias, Fiorella; Pauwels, Anne-Marie; Carpier, Jean-Marie; Jouve, Mabel; Timmerman, Evy; Pace, Luigia; Vargas, Pablo; Maurin, Mathieu; Gehrmann, Ulf; Joannas, Leonel; Vivar, Omar I; Lennon-Duménil, Ana-Maria; Savina, Ariel; Gevaert, Kris; Beyaert, Rudi; Hoffmann, Eik; Amigorena, Sebastian

    2015-12-15

    The initiation of cytotoxic immune responses by dendritic cells (DCs) requires the presentation of antigenic peptides derived from phagocytosed microbes and infected or dead cells to CD8(+) T cells, a process called cross-presentation. Antigen cross-presentation by non-activated DCs, however, is not sufficient for the effective induction of immune responses. Additionally, DCs need to be activated through innate receptors, like Toll-like receptors (TLRs). During DC maturation, cross-presentation efficiency is first upregulated and then turned off. Here we show that during this transient phase of enhanced cross-presentation, phago-lysosome fusion was blocked by the topological re-organization of lysosomes into perinuclear clusters. LPS-induced lysosomal clustering, inhibition of phago-lysosome fusion and enhanced cross-presentation, all required expression of the GTPase Rab34. We conclude that TLR4 engagement induces a Rab34-dependent re-organization of lysosomal distribution that delays antigen degradation to transiently enhance cross-presentation, thereby optimizing the priming of CD8(+) T cell responses against pathogens.

  2. Membrane Ia expression and antigen-presenting accessory cell function of L cells transfected with class II major histocompatibility complex genes

    PubMed Central

    1984-01-01

    To study the relationship between the structure and function of Ia antigens, as well as the physiologic requirements for antigen presentation to major histocompatibility complex-restricted T cells, class II A alpha and A beta genes from the k and d haplotypes were transfected into Ltk- fibroblasts using the calcium phosphate coprecipitation technique. Individually transfected genes were actively transcribed in the L cells without covalent linkage to, or cotransformation with, viral enhancer sequences. However, cell surface expression of detectable I-A required the presence of transfected A alpha dA beta d or A alpha kA beta k pairs in a single cell. The level of I-A expression under these conditions was 1/5-1/10 that of Ia+ B lymphoma cells, or B lymphoma cells expressing transfected class II genes. These I-A-expressing transfectants were tested for accessory cell function and shown to present polypeptide and complex protein antigens to T cell clones and hybridomas in the context of the transfected gene products. One T cell clone, restricted to I-Ak plus GAT (L-glutamic acid60-L-alanine30-L-tyrosine10), had a profound cytotoxic effect on I-Ak- but not I-Ad-expressing transfectants in the presence of specific antigen. Assays of unprimed T cells showed that both Ia+ and Ia- L cells could serve as accessory cells for concanavalin A-induced proliferative responses. These data indicate that L cells can transcribe, translate, and express transfected class II genes and that such I-A-bearing L cells possess the necessary metabolic mechanisms for presenting these antigens to T lymphocytes in the context of their I-A molecules. PMID:6436430

  3. Monoclonal antibodies to guinea pig Ia antigens. II. Effect on alloantigen-, antigen-, and mitogen-induced T lymphocyte proliferation in vitro

    PubMed Central

    1980-01-01

    Four xenographic monoclonal antibodies to guinea pig Ia antigens were tested for their inhibitory effects on antigen-, alloantigen-, and mitogen-induced T cell proliferation. All four monoclonal antibodies reacted with strain 2 Ia antigens, and all four were capable of inhibiting the strain 13 against strain 2 mixed leukocyte reaction (MLR) by 50-70%; the two monoclonals that reacted with strain 13 Ia antigens were also capable of inhibiting the strain 2 against strain 13 MLR. In contrast, an analysis of the effects of a single monoclonal antibody on the responses to several antigens demonstrated a selective monoclonal pattern of inhibition in that the responses to some, but not all, antigens were inhibited. These results suggest that monoclonal antibodies react with different parts of Ia molecules that may have different functional roles and that certain parts of an Ia molecule participate in the presentation of certain antigens, whereas other regions of the same molecule present different antigens. PMID:6158543

  4. Evaluation of a new syringe presentation of reduced-antigen content diphtheria, tetanus, and acellular pertussis vaccine in healthy adolescents - A single blind randomized trial

    PubMed Central

    Pavia-Ruz, Noris; Abarca, Katia; Lepetic, Alejandro; Cervantes-Apolinar, Maria Yolanda; Hardt, Karin; Jayadeva, Girish; Kuriyakose, Sherine; Han, Htay Htay; de la O, Manuel

    2015-01-01

    Reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) vaccine, Boostrix™, is indicated for booster vaccination of children, adolescents and adults. The original prefilled disposable dTpa syringe presentation was recently replaced by another prefilled-syringe presentation with latex-free tip-caps and plunger-stoppers. 671 healthy adolescents aged 10–15 years who had previously received 5 or 6 previous DT(P)/dT(pa) vaccine doses, were randomized (1:1) to receive dTpa booster, injected using the new (dTpa-new) or previous syringe (dTpa-previous) presentations. Immunogenicity was assessed before and 1-month post-booster vaccination; safety/reactogenicity were assessed during 31-days post-vaccination. Non-inferiority of dTpa-new versus dTpa-previous was demonstrated for all antigens (ULs 95% CIs for GMC ratios ranged between 1.03-1.13). 1-month post-booster, immune responses were in similar ranges for all antigens with both syringe presentations. dTpa delivered using either syringe presentation was well-tolerated. These clinical results complement the technical data and support the use of the new syringe presentation to deliver the dTpa vaccine. PMID:26075317

  5. Differential capacity of human interleukin-4 and interferon-α monocyte-derived dendritic cells for cross-presentation of free versus cell-associated antigen.

    PubMed

    Ruben, Jurjen M; Bontkes, Hetty J; Westers, Theresia M; Hooijberg, Erik; Ossenkoppele, Gert J; de Gruijl, Tanja D; van de Loosdrecht, Arjan A

    2015-11-01

    Dendritic cells (DC) vaccination is a potent therapeutic approach for inducing tumor-directed immunity, but challenges remain. One of the particular interest is the induction of an immune response targeting multiple (unknown) tumor-associated antigens (TAA), which requires a polyvalent source of TAA. Previously, we described the preferred use of apoptotic cell-derived blebs over the larger apoptotic cell remnants, as a source of TAA for both in situ loading of skin-resident DC and in vitro loading of monocyte-derived DC (MoDC). Recent reports suggest that MoDC cultured in the presence of GM-CSF supplemented with IFNα (IFNα MoDC), as compared to IL-4 (IL-4 MoDC), have an increased capacity to cross-present antigen to CD8(+) T cells. As culture conditions, maturation methods and antigen sources differ between the conducted studies, we analyzed the functional differences between IL-4 MoDC and IFNα MoDC, loaded with blebs, in a head-to-head comparison using commonly used protocols. Our data show that both MoDC types are potent (cross-) primers of CD8(+) T cells. Whereas IFNα MoDC were more potent in their capacity to cross-present a 25-mer MART-1 synthetic long peptide (SLP) to a MART-1aa26-35 recognizing CD8(+) T cell line, IL-4 MoDC proved more potent cross-primers of antigen-specific CD8(+) T cells when loaded with blebs. The latter is likely due to the observed greater capacity of IL-4 MoDC to ingest apoptotic blebs. In conclusion, our data indicate the use of IFNα MoDC over IL-4 MoDC in the context of DC vaccination with SLP, whereas IL-4 MoDC are preferred for vaccination with bleb-derived antigens.

  6. Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant.

    PubMed

    Kass, E; Panicali, D L; Mazzara, G; Schlom, J; Greiner, J W

    2001-01-01

    Recombinant avian poxviruses [fowlpox and canarypox (ALVAC)], restricted for replication in nonavian cell substrates and expressing granulocyte/macrophage-colony stimulating factor (avipox-GM-CSF), were evaluated for their ability to enrich an immunization site with antigen-presenting cells (APCs) and, in turn, function as biological vaccine adjuvants. Avipox-GM-CSF administered as a single s.c. injection significantly enhanced the percentage and absolute number of APCs in the regional lymph nodes that drain the injection site. Both the magnitude and duration of the cellular and phenotypic increases within the lymph nodes induced by the avipox-GM-CSF viruses were significantly (P < 0.05) greater than those measured in mice treated with four daily injections of recombinant GM-CSF protein. Temporal studies revealed that the APC enrichment of regional lymph nodes was sustained for 21-28 days after injection of the recombinant avipox virus expressing GM-CSF and, moreover, three injections of the recombinant virus could be given without any appreciable loss of in vivo bioactivity. Mice expressing human carcinoembryonic antigen (CEA) as a transgene (CEA.Tg) developed CEA-specific humoral and cell-mediated immunity after being immunized with avipox-CEA. The coadministration of recombinant avipox viruses expressing CEA and GM-CSF significantly enhanced CEA-specific host immunity with an accompanying immunotherapeutic response in tumor-bearing CEA.Tg mice. The optimal use of avipox-GM-CSF, in terms of dose and dose schedule, especially when used with different immunogens, remains to be determined. Nonetheless, the present findings demonstrate: (a) the effective delivery of GM-CSF to an immunization site using a recombinant avian poxvirus; (b) the compatibility of delivering an antigen and GM-CSF in replication-defective viruses to enhance antigen-specific immunity; and (c) the combined use of recombinant avipox viruses expressing CEA and GM-CSF to generate antitumor

  7. Lipid antigen presentation through CD1d pathway in mouse lung epithelial cells, macrophages and dendritic cells and its suppression by poly-dispersed single-walled carbon nanotubes.

    PubMed

    Rizvi, Zaigham Abbas; Puri, Niti; Saxena, Rajiv K

    2015-09-01

    Effect of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNTs) was examined on lipid antigen presentation through CD1d pathway on three cell lines, LA4, MHS, and JAWSII used as prototype antigen presenting cells (APCs). CD1d molecule was expressed on 80-90% MHS (prototype macrophages) and JAWSII (prototype dendritic cells) cells whereas <5% LA4 cells (lung epithelial cells, non-classical APCs) expressed CD1d. Treatment with AF-SWCNTs but not with pristine SWCNTs resulted in a significant decline in the level of CD1d mRNA as well as mRNA levels of some other intracellular proteins involved in lipid antigen presentation pathway (MTP, ApoE, prosaposin, SR-BI and LDLr). Lipid antigen presentation was assessed by first incubating the cells with a prototype lipid antigen (α-Glactosylceramide or αGC) and then staining with L363 monoclonal antibody that detects αGC bound to CD1d molecule. While 100% MHS and JAWSII cells presented αGC, only 20% LA4 cells presented the CD1d antigen. Treatment with AF-SWCNTs resulted in a 30-40% decrease in αGC antigen presentation in all three cell lines. These results show that AF-SWCNT treatment down regulated the lipid antigen presentation pathway in all three cell lines and significantly lowered the ability of these cell lines to present αGC antigen.

  8. Detection of functional class II-associated antigen: role of a low density endosomal compartment in antigen processing

    PubMed Central

    1995-01-01

    We have developed a functional assay to identify processed antigen in subcellular fractions from antigen-presenting cells; stimulatory activity in this assay may be caused by either free peptide fragments or by complexes of peptide fragments and class II molecules present on organellar membrane sheets and vesicles. In addition, we have developed a functional assay to identify proteolytic activity in subcellular fractions capable of generating antigenic peptides from intact proteins. These techniques permit the direct identification of intracellular sites of antigen processing and class II association. Using a murine B cell line stably transfected with a phosphorylcholine (PC)-specific membrane-bound immunoglobulin (Ig), we show that PC- conjugated antigens are rapidly internalized and efficiently degraded to generate processed antigen within an early low density compartment. Proteolytic activity capable of generating antigenic peptide fragments from intact proteins is found within low density endosomes and a dense compartment consistent with lysosomes. However, neither processed peptide nor peptide-class II complexes are detected in lysosomes from antigen-pulsed cells. Furthermore, blocking the intracellular transport of internalized antigen from the low density endosome to lysosomes does not inhibit the generation of processed antigen. Therefore, antigens internalized in association with membrane Ig on B cells can be efficiently processed in low density endosomal compartments without the contribution of proteases present within denser organelles. PMID:7722450

  9. Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex.

    PubMed

    Vigneron, Nathalie; Van den Eynde, Benoît J

    2014-11-18

    The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides.

  10. Inhibition of dopamine receptor D3 signaling in dendritic cells increases antigen cross-presentation to CD8(+) T-cells favoring anti-tumor immunity.

    PubMed

    Figueroa, Claudio; Gálvez-Cancino, Felipe; Oyarce, Cesar; Contreras, Francisco; Prado, Carolina; Valeria, Catalina; Cruz, Sebastián; Lladser, Alvaro; Pacheco, Rodrigo

    2017-02-15

    Dendritic cells (DCs) display the unique ability for cross-presenting antigens to CD8(+) T-cells, promoting their differentiation into cytotoxic T-lymphocytes (CTLs), which play a pivotal role in anti-tumor immunity. Emerging evidence points to dopamine receptor D3 (D3R) as a key regulator of immunity. Accordingly, we studied how D3R regulates DCs function in anti-tumor immunity. The results show that D3R-deficiency in DCs enhanced expansion of CTLs in vivo and induced stronger anti-tumor immunity. Co-culture experiments indicated that D3R-inhibition in DCs potentiated antigen cross-presentation and CTLs activation. Our findings suggest that D3R in DCs constitutes a new therapeutic target to strengthen anti-tumor immunity.

  11. Characterisation of Antigen B Protein Species Present in the Hydatid Cyst Fluid of Echinococcus canadensis G7 Genotype.

    PubMed

    Folle, Ana Maite; Kitano, Eduardo S; Lima, Analía; Gil, Magdalena; Cucher, Marcela; Mourglia-Ettlin, Gustavo; Iwai, Leo K; Rosenzvit, Mara; Batthyány, Carlos; Ferreira, Ana María

    2017-01-01

    The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in

  12. Characterisation of Antigen B Protein Species Present in the Hydatid Cyst Fluid of Echinococcus canadensis G7 Genotype

    PubMed Central

    Folle, Ana Maite; Kitano, Eduardo S.; Lima, Analía; Gil, Magdalena; Cucher, Marcela; Mourglia-Ettlin, Gustavo; Iwai, Leo K.; Rosenzvit, Mara; Batthyány, Carlos

    2017-01-01

    The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in

  13. Chronic pulmonary accumulation of iron oxide nanoparticles induced Th1-type immune response stimulating the function of antigen-presenting cells.

    PubMed

    Park, Eun-Jung; Oh, Seung Yun; Lee, Sang Jin; Lee, Kyuhong; Kim, Younghun; Lee, Byoung-Seok; Kim, Jong Sung

    2015-11-01

    Although there is growing evidence that suggests that pulmonary exposure to nanoparticles causes adverse health effects by modulating immune system of the body, available information is very limited. In this study, we investigated immune response following chronic pulmonary accumulation of iron oxide nanoparticles (FeNPs, Fe2O3). FeNPs have a needle-like shape in suspension (101.3±4.2 nm). On day 90 after a single intratracheal instillation (0.5, 1, and 2 mg/kg), the FeNPs remained in the lung and particle-laden macrophages were clearly observed in the BAL fluid of the treated-mice. The number of total cells and proportions of neutrophils and lymphocytes significantly increased at 2 mg/kg dose, and the percentage of apoptotic cells and LDH release increased in a dose-dependent manner. We also found that Th1-polarized inflammatory response was induced in the lung of the treated group accompanying the elevated secretion of chemokines, including GM-CSF, MCP-1, and MIP-1. Additionally, FeNPs enhanced the expression of antigen presentation-related proteins, including CD80, CD86, and MHC class II, on antigen-presenting cells in BAL fluid. Taken together, we suggest that chronic pulmonary accumulation of FeNPs may induce Th1-polarized immune response augmenting the function of antigen-presenting cells in the lung.

  14. Effect of denervation on a cholinergic-specific ganglioside antigen (Chol-1) present in Torpedo electromotor presynaptic plasma membranes.

    PubMed

    Ferretti, P; Borroni, E

    1984-04-01

    The presence of Chol-1, an antigen identified in the plasma membrane of cholinergic electromotor nerve terminals of Torpedo marmorata, was investigated in Torpedo electric organ after 3, 6, and 9 weeks' denervation. Denervation was monitored by the cessation of stimulus-evoked discharge potentials, by the reduction in nerve terminals seen morphologically, and by the decrease in ACh and ChAT contents. The content of ganglioside-bound sialic acid did not show any appreciable change with time. Some modification of ganglioside pattern on TLC was observed after 9 weeks' denervation. The presence of Chol-1 after denervation was assayed by its activity in inhibiting the selective complement-induced lysis of the cholinergic subpopulation of guinea pig cortical synaptosome which is mediated by the anti-Chol-1 antiserum. Denervation did not affect Chol-1 immunoreactivity although it did alter the distribution of the immunoreactivity among gangliosides. The possible significance of the results is discussed.

  15. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    SciTech Connect

    Blokhina, Elena A.; Kuprianov, Victor V.; Stepanova, Ludmila A.; Tsybalova, Ludmila M.; Kiselev, Oleg I.; Ravin, Nikolai V.; Skryabin, Konstantin G.

    2013-01-20

    Hepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a 'binding tag' allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge.

  16. Organic extract of diesel exhaust particles stimulates expression of Ia and costimulatory molecules associated with antigen presentation in rat peripheral blood monocytes but not in alveolar macrophages

    SciTech Connect

    Koike, Eiko . E-mail: ekoike@nies.go.jp; Kobayashi, Takahiro

    2005-12-15

    We hypothesized that diesel exhaust particles (DEP) induce the activation of antigen-presenting cells (APC) in lung. The present study was designed to clarify the following about DEP: (1) whether it affects the expression of Ia and B7 molecules in alveolar macrophages (AM) as a mature cell or in peripheral blood monocytes (PBM) as an immature cell (2) if it affects the antigen-presenting (AP) activity of PBM (3) what component of DEP is responsible for the effects, and (4) whether the effect of DEP is related to oxidative stress. DEP was extracted with methylene chloride. Cells were exposed to whole DEP, organic extract, or residual particles for 24 h. Cell-surface molecules were measured by flow cytometry. AP activity was assessed by antigen-specific T cell proliferation. Whole DEP or organic extract significantly increased the expression of Ia and B7 molecules on PBM but not on AM. No significant effect of residual particles was observed. A low concentration of organic extract also increased the AP activity of PBM. When the induction of an antioxidative enzyme was assessed, heme oxygenase-1 protein was found to be significantly increased by exposure to whole DEP, and the organic extract was more effective than the residual particles. Furthermore, the organic extract-induced expression of Ia antigen on PBM was reduced by the addition of an antioxidative agent. These results suggest that DEP may act on immature APC and enhance their AP activity and that the action contributing to oxidative stress may be mediated by organic compounds of DEP.

  17. Cross-Species Protection Mediated by a Bordetella bronchiseptica Strain Lacking Antigenic Homologs Present in Acellular Pertussis Vaccines▿

    PubMed Central

    Sukumar, Neelima; Sloan, Gina Parise; Conover, Matt S.; Love, Cheraton F.; Mattoo, Seema; Kock, Nancy D.; Deora, Rajendar

    2010-01-01

    The Bordetella species are Gram-negative bacterial pathogens that are characterized by long-term colonization of the mammalian respiratory tract and are causative agents of respiratory diseases in humans and animals. Despite widespread and efficient vaccination, there has been a world-wide resurgence of pertussis, which remains the leading cause of vaccine-preventable death in developed countries. It has been proposed that current acellular vaccines (Pa) composed of only a few bacterial proteins may be less efficacious because of vaccine-induced antigenic shifts and adaptations. To gain insight into the development of a newer generation of vaccines, we constructed a Bordetella bronchiseptica strain (LPaV) that does not express the antigenic homologs included in any of the Pa vaccines currently in use. This strain also lacks adenylate cyclase toxin, an essential virulence factor, and BipA, a surface protein. While LPaV colonized the mouse nose as efficiently as the wild-type strain, it was highly deficient in colonization of the lower respiratory tract and was attenuated in induction of inflammation and injury to the lungs. Strikingly, to our surprise, we found that in an intranasal murine challenge model, LPaV elicited cross-species protection against both B. bronchiseptica and Bordetella pertussis. Our data suggest the presence of immunogenic protective components other than those included in the pertussis vaccine. Combined with the whole-genome sequences of many Bordetella spp. that are available, the results of this study should serve as a platform for strategic development of the next generation of acellular pertussis vaccines. PMID:20176797

  18. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells

    PubMed Central

    Cong, Yu; McArthur, Monica A.; Cohen, Melanie; Jahrling, Peter B.; Janosko, Krisztina B.; Josleyn, Nicole; Kang, Kai; Zhang, Tengfei; Holbrook, Michael R.

    2016-01-01

    Humans infected with yellow fever virus (YFV), a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM) and dendritic cells (MoDC) from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease. PMID:27191161

  19. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    PubMed

    Cong, Yu; McArthur, Monica A; Cohen, Melanie; Jahrling, Peter B; Janosko, Krisztina B; Josleyn, Nicole; Kang, Kai; Zhang, Tengfei; Holbrook, Michael R

    2016-05-01

    Humans infected with yellow fever virus (YFV), a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM) and dendritic cells (MoDC) from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.

  20. The monoclonal antibody GZS-1 detects a maturation-associated antigen of human spermatozoa that is also present on the surface of human mononuclear blood cells.

    PubMed

    Hutter, H; Hammer, A; Blaschitz, A; Hartmann, M; Mahnert, W; Sedlmayr, P; Primus, G; Rosenkranz, C; Gebru, G; Henkel, R; Dohr, G

    1996-05-01

    A monoclonal antibody (GZS-1) has been generated by fusion of mouse myeloma cells with spleen cells from BALB/c mice immunised with human sperm cells. The antibody was determined to be an IgG1. The corresponding antigen is present on the whole surface of ejaculated human spermatozoa. It is not detectable on spermatozoa of other mammalian species (rabbit, cat, dog, sheep, boar, bull, horse). In human male genital organs, immunostaining with GZS-1 is observed on sperm cells in the epididymis and the ductus deferens together with the lining epithelium of those organs. No reactivity of sperm cells or germ cell precursors in the testis has been detected. Functional tests using the antibody show a strong inhibitory effect of human sperm in the hamster egg penetration assay. Furthermore, the GZS-1 antigen is detectable on the surface of human lymphocytes and monocytes by immunogold electron microscopy and FACS analysis. By Western blotting of human sperm and seminal plasma performed under reducing conditions immunostaining was detected at 21-25, 31, 51-54, and 62 kDa. The reaction with human lymphocytes shows one major band at 62 kDa and additional bands at 31 and 54 kDa. The results suggest that the monoclonal antibody GZS-1 may recognise an antigen which is secreted from the epithelial cells of the epididymis and binds to ejaculated spermatozoa as a sperm coating antigen. This component may be involved in the capacitation of the sperm and the acrosome reaction. Molecules that are expressed both on sperm and on immunocompetent cells may be relevant for the regulation of immunological processes or for the development of the related immunological tolerance of sperm in the female reproductive tract.

  1. Cathepsin B in Antigen-Presenting Cells Controls Mediators of the Th1 Immune Response during Leishmania major Infection

    PubMed Central

    Gonzalez-Leal, Iris J.; Röger, Bianca; Schwarz, Angela; Schirmeister, Tanja; Reinheckel, Thomas; Lutz, Manfred B.; Moll, Heidrun

    2014-01-01

    Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb) and L (Ctsl) play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC) and macrophages (BMM) from Ctsb−/− and Ctsl−/− mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb−/− BMDC express higher levels of MHC class II molecules than wild-type (WT) and Ctsl−/− BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb−/− mice significantly up-regulated the levels of interleukin 12 (IL-12) expression, a key Th1-inducing cytokine. These findings indicate that Ctsb−/− BMDC display more pro-Th1 properties than their WT and Ctsl−/− counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression. PMID:25255101

  2. Use of human antigen presenting cell gene array profiling to examine the effect of human T-cell leukemia virus type 1 Tax on primary human dendritic cells.

    PubMed

    Ahuja, Jaya; Kampani, Karan; Datta, Suman; Wigdahl, Brian; Flaig, Katherine E; Jain, Pooja

    2006-02-01

    Human T-cell leukemia virus type 1 (HTLV-1) is etiologically linked to adult T-cell leukemia and a progressive demyelinating disorder termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the most striking features of the immune response in HAM/TSP centers on the expansion of HTLV-1-specific CD8(+) cytotoxic T lymphocyte (CTL) compartment in the peripheral blood and cerebrospinal fluid. More than 90% of the HTLV-1-specific CTLs are directed against the viral Tax (11-19) peptide implying that Tax is available for immune recognition by antigen presenting cells, such as dendritic cells (DCs). DCs obtained from HAM/TSP patients have been shown to be infected with HTLV-1 and exhibit rapid maturation. Therefore, we hypothesized that presentation of Tax peptides by activated DCs to naIve CD8(+) T cells may play an important role in the induction of a Tax-specific CTL response and neurologic dysfunction. In this study, a pathway-specific antigen presenting cell gene array was used to study transcriptional changes induced by exposure of monocyte-derived DCs to extracellular HTLV-1 Tax protein. Approximately 100 genes were differentially expressed including genes encoding toll-like receptors, cell surface receptors, proteins involved in antigen uptake and presentation and adhesion molecules. The differential regulation of chemokines and cytokines characteristic of functional DC activation was also observed by the gene array analyses. Furthermore, the expression pattern of signal transduction genes was also significantly altered. These results have suggested that Tax-mediated DC gene regulation might play a critical role in cellular activation and the mechanisms resulting in HTLV-1-induced disease.

  3. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance.

    PubMed

    Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Rivera, Miguel; Nussenzweig, Michel C; Steinman, Ralph M

    2002-12-16

    To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal alphaDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c- cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When alphaDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4-48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of alphaDEC-205:OVA to DCs in the steady state initially induced 4-7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with alphaDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic alphaCD40 antibody produced large amounts of interleukin 2 and interferon gamma, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.

  4. Efficient Targeting of Protein Antigen to the Dendritic Cell Receptor DEC-205 in the Steady State Leads to Antigen Presentation on Major Histocompatibility Complex Class I Products and Peripheral CD8+ T Cell Tolerance

    PubMed Central

    Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Rivera, Miguel; Nussenzweig, Michel C.; Steinman, Ralph M.

    2002-01-01

    To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation. PMID:12486105

  5. Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

    SciTech Connect

    Churchfield, M. J.

    2013-06-01

    This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.

  6. DNA prime Listeria boost induces a cellular immune response to SIV antigens in the rhesus macaque model that is capable of limited suppression of SIV239 viral replication.

    PubMed

    Boyer, Jean D; Robinson, Tara M; Maciag, Paulo C; Peng, Xiaohui; Johnson, Ross S; Pavlakis, George; Lewis, Mark G; Shen, Anding; Siliciano, Robert; Brown, Charles R; Weiner, David B; Paterson, Yvonne

    2005-03-01

    DNA vaccines and recombinant Listeria monocytogenes that express and secrete SIV Gag and Env antigens were combined in a nonhuman primate prime-boost immunogenicity study followed by a challenge with SIV239. We report that recombinant DNA vaccine delivered intramuscularly, and recombinant L. monocytogenes delivered orally each individually have the ability to induce CD8+ and CD4+ T cell immune responses in a nonhuman primate. Four rhesus monkeys were immunized at weeks 0, 4, 8, and 12 with the pCSIVgag and pCSIVenv DNA plasmids and boosted with SIV expressing L. monocytogenes vaccines at weeks 16, 20, and 28. Four rhesus monkeys received only the L. monocytogenes vaccines at weeks 16, 20, and 28. A final group of monkeys served as a control group. Blood samples were taken before vaccination and 2 weeks post each injection and analyzed by ELISPOT for CD4+ and CD8+ T cell responses. Moderate vaccine induced SIV-specific cellular immune responses were observed following immunization with either DNA or L. monocytogenes vectors. However, the SIV antigen-specific immune responses were significantly increased when Rhesus macaques were primed with SIV DNA vaccines and boosted with the SIV expressing L. monocytogenes vectors. In addition, the combined vaccine was able to impact SIV239 viral replication following an intrarectal challenge. This study demonstrates for the first time that oral L. monocytogenes can induce a cellular immune response in a nonhuman primate and is able to enhance the efficacy of a DNA vaccine as well as provide modest protection against SIV239 challenge.

  7. Bruton's tyrosine kinase defect in dendritic cells from X-linked agammaglobulinaemia patients does not influence their differentiation, maturation and antigen-presenting cell function

    PubMed Central

    GAGLIARDI, M C; FINOCCHI, A; ORLANDI, P; CURSI, L; CANCRINI, C; MOSCHESE, V; MIYAWAKI, T; ROSSI, P

    2003-01-01

    X-linked agammaglobulinaemia (XLA) is a primary immunodeficiency disease characterized by very low levels or even absence of circulating antibodies. The immunological defect is caused by deletions or mutations of Bruton's tyrosine kinase gene (Btk), whose product is critically involved in the maturation of pre-B lymphocytes into mature B cells. Btk is expressed not only in B lymphocytes but also in cells of the myeloid lineage, including dendritic cells (DC). These cells are professional antigen presenting cells (APC) that play a fundamental role in the induction and regulation of T-cell responses. In this study, we analysed differentiation, maturation, and antigen-presenting function of DC derived from XLA patients (XLA-DC) as compared to DC from age-matched healthy subjects (healthy-DC). We found that XLA-DC normally differentiate from monocyte precursors and mature in response to lipopolysaccharide (LPS) as assessed by de novo expression of CD83, up-regulation of MHC class II, B7·1 and B7·2 molecules as well as interleukin (IL)-12 and IL-10 production. In addition, we demonstrated that LPS stimulated XLA-DC acquire the ability to prime naïve T cells and to polarize them toward a Th1 phenotype, as observed in DC from healthy donors stimulated in the same conditions. In conclusion, these data indicate that Btk defect is not involved in DC differentiation and maturation, and that XLA-DC can act as fully competent antigen presenting cells in T cell-mediated immune responses. PMID:12823285

  8. Phenotypic and Functional Properties of Human Steady State CD14+ and CD1a+ Antigen Presenting Cells and Epidermal Langerhans Cells

    PubMed Central

    Fehres, Cynthia. M.; Bruijns, Sven C. M.; Sotthewes, Brigit N.; Kalay, Hakan; Schaffer, Lana; Head, Steven R.; de Gruijl, Tanja D.; Garcia-Vallejo, Juan J.; van Kooyk, Yvette

    2015-01-01

    Cutaneous antigen presenting cells (APCs) are critical for the induction and regulation of skin immune responses. The human skin contains phenotypically and functionally distinct APCs subsets that are present at two separated locations. While CD1ahigh LCs form a dense network in the epidermis, the CD14+ and CD1a+ APCs reside in the dermal compartment. A better understanding of the biology of human skin APC subsets is necessary for the improvement of vaccine strategies that use the skin as administration route. In particular, progress in the characterization of uptake and activatory receptors will certainly improve APC-targeting strategies in vaccination. Here we performed a detailed analysis of the expression and function of glycan-binding and pattern-recognition receptors in skin APC subsets. The results demonstrate that under steady state conditions human CD1a+ dermal dendritic cells (DCs) were phenotypically most mature as measured by the expression of CD83 and CD86, whereas the CD14+ cells showed a higher expression of the CLRs DC-SIGN, mannose receptor and DCIR and had potent antigen uptake capacity. Furthermore, steady state LCs showed superior antigen cross-presentation as compared to the dermal APC subsets. Our results also demonstrate that the TLR3 ligand polyribosinic-polyribocytidylic acid (pI:C) was the most potent stimulator of cytokine production by both LCs and dDCs. These studies warrant further exploration of human CD1a+ dDCs and LCs as target cells for cancer vaccination to induce anti-tumor immune responses. PMID:26605924

  9. PROCEEDINGS OF THE 1983 DPF WORKSHOP ON COLLIDER DETECTORS: PRESENT CAPABILITIES AND FUTURE POSSIBILITIES, FEB. 28 - MARCH 4, 1983.

    SciTech Connect

    Loken Ed, S.C.; Nemethy Ed, P.

    1983-04-01

    It is useful before beginning our work here to restate briefly the purpose of this workshop in the light of the present circumstances of elementary particle physics in the U.S. The goal of our field is easily stated in a general way: it is to reach higher center of mass energies and higher luminosities while employing more sensitive and more versatile event detectors, all in order to probe more deeply into the physics of elementary particles. The obstacles to achieving this goal are equally apparent. Escalating costs of construction and operation of our facilities limit alternatives and force us to make hard choices among those alternatives. The necessity to be highly selective in the choice of facilities, in conjunction with the need for increased manpower concentrations to build accelerators and mount experiments, leads to complex social problems within the science. As the frontier is removed ever further, serious technical difficulties and limitations arise. Finally, competition, much of which is usually healthy, now manifests itself with greater intensity on a regional basis within our country and also on an international scale. In the far ({ge}20 yr) future, collaboration on physics facilities by two or more of the major economic entities of the world will possibly be forthcoming. In the near future, we are left to bypass or overcome these obstacles on a regional scale as best we can. The choices we face are in part indicated in the list of planned and contemplated accelerators shown in Table I. The facilities indicated with an asterisk pose immediate questions: (1) Do we need them all and what should be their precise properties? (2) How are the ones we choose to be realized? (3) What is the nature of the detectors to exploit those facilities? (4) How do we respond to the challenge of higher luminosity as well as higher energy in those colliders? The decision-making process in this country and elsewhere depends on the answers to these technical questions

  10. A solid phase enzyme-linked immunosorbent assay for the antigenic detection of Legionella pneumophila (serogroup 1): A compliment for the space station diagnostic capability

    NASA Technical Reports Server (NTRS)

    Hejtmancik, Kelly E.

    1987-01-01

    It is necessary that an adequate microbiology capability be provided as part of the Health Maintenance Facility (HMF) to support expected microbial disease events and environmental monitoring during long periods of space flight. The application of morphological and biochemical studies to confirm the presence of certain bacterial and fungal disease agents are currently available and under consideration. This confirmation would be facilitated through employment of serological methods to aid in the identification of bacterial, fungal, and viral agents. A number of serological approaches are currently being considered, including the use of Enzyme Linked Immunosorbent Assay (ELISA) technology, which could be utilized during microgravity conditions. A solid phase, membrane supported ELISA for the detection of Legionella pneumophila, an expected disease agent, was developed to show a potential model system that would meet the HMF requirements and specifications for the future space station. These studies demonstrate the capability of membrane supported ELISA systems for identification of expected microbial disease agents as part of the HMF.

  11. Potent costimulation of human CD8 T cells by anti-4-1BB and anti-CD28 on synthetic artificial antigen presenting cells.

    PubMed

    Rudolf, Despina; Silberzahn, Tobias; Walter, Steffen; Maurer, Dominik; Engelhard, Johanna; Wernet, Dorothee; Bühring, Hans-Jörg; Jung, Gundram; Kwon, Byoung S; Rammensee, Hans-Georg; Stevanović, Stefan

    2008-02-01

    The in vitro generation of cytotoxic T lymphocytes (CTLs) for anticancer immunotherapy is a promising approach to take patient-specific therapy from the bench to the bedside. Two criteria must be met by protocols for the expansion of CTLs: high yield of functional cells and suitability for good manufacturing practice (GMP). The antigen presenting cells (APCs) used to expand the CTLs are the key to achieving both targets but they pose a challenge: Unspecific stimulation is not feasible because only memory T cells are expanded and not rare naïve CTL precursors; in addition, antigen-specific stimulation by cell-based APCs is cumbersome and problematic in a clinical setting. However, synthetic artificial APCs which can be loaded reproducibly with MHC-peptide monomers and antibodies specific for costimulatory molecules could resolve these problems. The purpose of this study was to investigate the potential of complex synthetic artificial APCs in triggering the costimulatory molecules CD28 and 4-1BB on the T cell. Anti-4-1BB antibodies were added to an established system of microbeads coated with MHC-peptide monomers and anti-CD28. Triggering via CD28 and 4-1BB resulted in strong costimulatory synergy. The quantitative ratio between these signals determined the outcome of the stimulation with optimal results when anti-4-1BB and anti-CD28 were applied in a 3:1 ratio. Functional CTLs of an effector memory subtype (CD45RA(-) CCR7(-)) were generated in high numbers. We present a highly defined APC platform using off-the-shelf reagents for the convenient generation of large numbers of antigen-specific CTLs.

  12. Murine Melanoma-Infiltrating Dendritic Cells Are Defective in Antigen Presenting Function Regardless of the Presence of CD4+CD25+ Regulatory T Cells

    PubMed Central

    Ataera, Haley; Hyde, Evelyn; Price, Kylie M.; Stoitzner, Patrizia; Ronchese, Franca

    2011-01-01

    Tumor-infiltrating dendritic cells are often ineffective at presenting tumor-derived antigen in vivo, a defect usually ascribed to the suppressive tumor environment. We investigated the effects of depleting CD4+CD25+ “natural” regulatory T cells (Treg) on the frequency, phenotype and function of total dendritic cell populations in B16.OVA tumors and in tumor-draining lymph nodes. Intraperitoneal injection of the anti-CD25 monoclonal antibody PC61 reduced Treg frequency in blood and tumors, but did not affect the frequency of tumor-infiltrating dendritic cells, or their expression of CD40, CD86 and MHCII. Tumor-infiltrating dendritic cells from PC61-treated or untreated mice induced the proliferation of allogeneic T cells in vitro, but could not induce proliferation of OVA-specific OTI and OTII T cells unless specific peptide antigen was added in culture. Some proliferation of naïve, OVA-specific OTI T cells, but not OTII T cells, was observed in the tumor-draining LN of mice carrying B16.OVA tumors, however, this was not improved by PC61 treatment. Experiments using RAG1−/− hosts adoptively transferred with OTI and CD25-depleted OTII cells also failed to show improved OTI and OTII T cell proliferation in vivo compared to C57BL/6 hosts. We conclude that the defective presentation of B16.OVA tumor antigen by tumor-infiltrating dendritic cells and in the tumor-draining lymph node is not due to the presence of “natural” CD4+CD25+ Treg. PMID:21390236

  13. Human Articular Chondrocytes Regulate Immune Response by Affecting Directly T Cell Proliferation and Indirectly Inhibiting Monocyte Differentiation to Professional Antigen-Presenting Cells

    PubMed Central

    Pereira, Rui C.; Martinelli, Daniela; Cancedda, Ranieri; Gentili, Chiara; Poggi, Alessandro

    2016-01-01

    Autologous chondrocyte implantation is the current gold standard cell therapy for cartilage lesions. However, in some instances, the heavily compromised health of the patient can either impair or limit the recovery of the autologous chondrocytes and a satisfactory outcome of the implant. Allogeneic human articular chondrocytes (hAC) could be a good alternative, but the possible immunological incompatibility between recipient and hAC donor should be considered. Herein, we report that allogeneic hAC inhibited T lymphocyte response to antigen-dependent and -independent proliferative stimuli. This effect was maximal when T cells and hAC were in contact and it was not relieved by the addition of exogenous lymphocyte growth factor interleukin (IL)-2. More important, hAC impaired the differentiation of peripheral blood monocytes induced with granulocyte monocyte colony-stimulating factor and IL-4 (Mo) to professional antigen-presenting cells, such as dendritic cells (DC). Indeed, a marked inhibition of the onset of the CD1a expression and an ineffective downregulation of CD14 antigens was observed in Mo–hAC co-cultures. Furthermore, compared to immature or mature DC, Mo from Mo–hAC co-cultures did not trigger an efficacious allo-response. The prostaglandin (PG) E2 present in the Mo–hAC co-culture conditioned media is a putative candidate of the hAC-mediated inhibition of Mo maturation. Altogether, these findings indicate that allogeneic hAC inhibit, rather than trigger, immune response and strongly suggest that an efficient chondrocyte implantation could be possible also in an allogeneic setting. PMID:27822208

  14. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy.

    PubMed

    McDonnell, Alison M; Lesterhuis, Willem Joost; Khong, Andrea; Nowak, Anna K; Lake, Richard A; Currie, Andrew J; Robinson, Bruce W S

    2015-01-01

    Cross-presentation defines the unique capacity of an APC to present exogenous Ag via MHC class I molecules to CD8(+) T cells. DCs are specialized cross-presenting cells and as such have a critical role in antitumor immunity. DCs are routinely found within the tumor microenvironment, but their capacity for endogenous or therapeutically enhanced cross-presentation is not well characterized. In this study, we examined the tumor and lymph node DC cross-presentation of a nominal marker tumor Ag, HA, expressed by the murine mesothelioma tumor AB1-HA. We found that tumors were infiltrated by predominantly CD11b(+) DCs with a semimature phenotype that could not cross-present tumor Ag, and therefore, were unable to induce tumor-specific T-cell activation or proliferation. Although tumor-infiltrating DCs were able to take up, process, and cross-present exogenous cell-bound and soluble Ags, this was significantly impaired relative to lymph node DCs. Importantly, however, systemic chemotherapy using gemcitabine reversed the defect in Ag cross-presentation of tumor DCs. These data demonstrate that DC cross-presentation within the tumor microenvironment is defective, but can be reversed by chemotherapy. These results have important implications for anticancer therapy, particularly regarding the use of immunotherapy in conjunction with cytotoxic chemotherapy.

  15. IgE-mediated enhancement of CD4+ T cell responses requires antigen presentation by CD8α− conventional dendritic cells

    PubMed Central

    Ding, Zhoujie; Dahlin, Joakim S.; Xu, Hui; Heyman, Birgitta

    2016-01-01

    IgE, forming an immune complex with small proteins, can enhance the specific antibody and CD4+ T cell responses in vivo. The effects require the presence of CD23 (Fcε-receptor II)+ B cells, which capture IgE-complexed antigens (Ag) in the circulation and transport them to splenic B cell follicles. In addition, also CD11c+ cells, which do not express CD23, are required for IgE-mediated enhancement of T cell responses. This suggests that some type of dendritic cell obtains IgE-Ag complexes from B cells and presents antigenic peptides to T cells. To elucidate the nature of this dendritic cell, mice were immunized with ovalbumin (OVA)-specific IgE and OVA, and different populations of CD11c+ cells, obtained from the spleens four hours after immunization, were tested for their ability to present OVA. CD8α− conventional dendritic cells (cDCs) were much more efficient in inducing specific CD4+ T cell proliferation ex vivo than were CD8α+ cDCs or plasmacytoid dendritic cells. Thus, IgE-Ag complexes administered intravenously are rapidly transported to the spleen by recirculating B cells where they are delivered to CD8α− cDCs which induce proliferation of CD4+ T cells. PMID:27306570

  16. Cholera Toxin Promotes Th17 Cell Differentiation by Modulating Expression of Polarizing Cytokines and the Antigen-Presenting Potential of Dendritic Cells

    PubMed Central

    Kang, Jung-Ok; Lee, Jee-Boong

    2016-01-01

    Cholera toxin (CT), an exotoxin produced by Vibrio cholera, acts as a mucosal adjuvant. In a previous study, we showed that CT skews differentiation of CD4 T cells to IL-17-producing Th17 cells. Here, we found that intranasal administration of CT induced migration of migratory dendritic cell (DC) populations, CD103+ DCs and CD11bhi DCs, to the lung draining mediastinal lymph nodes (medLN). Among those DC subsets, CD11bhi DCs that were relatively immature had a major role in Th17 cell differentiation after administration of CT. CT-treated BMDCs showed reduced expression of MHC class II and CD86, similar to CD11bhi DCs in medLN, and these BMDCs promoted Th17 cell differentiation more potently than other BMDCs expressing higher levels of MHC class II and CD86. By analyzing the expression of activation markers such as CD25 and CD69, proliferation and IL-2 production, we determined that CT-treated BMDCs showed diminished antigen-presenting potential to CD4+ T cells compared with normal BMDCs. We also found that CT-stimulated BMDCs promote activin A expression as well as IL-6 and IL-1β, and activin A had a synergic role with TGF-β1 in CT-mediated Th17 cell differentiation. Taken together, our results suggest that CT-stimulated DCs promote Th17 cell differentiation by not only modulating antigen-presenting potential but also inducing Th polarizing cytokines. PMID:27271559

  17. The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells

    PubMed Central

    Wang, Bei; Kuroiwa, Janelle M.Y.; He, Li-Zhen; Charalambous, Anna; Keler, Tibor; Steinman, Ralph M.

    2010-01-01

    To develop a tumor vaccine directly targeting tumor antigen to dendritic cells in situ, we engineered human mesothelin (MSLN) into an antibody specific for mouse DEC-205, a receptor for antigen presentation. We then characterized both T cell and humoral responses to human MSLN and compared immunizing efficacy of DEC-205-targeted MSLN to nontargeted protein after a single dose immunization. Targeting human MSLN to DEC-205 receptor induced stronger CD4+ T cell responses compared to high doses of mesothelin protein. ∼0.5% CD4+ T cells were primed to produce IFN-γ, TNF-α and IL-2 via intracellular cytokine staining, and the T cells also could proliferate rapidly. The immune response exhibited breadth because the primed CD4+ T cells responded to at least three epitopes in the H-2b background. Targeting MSLN protein to DEC-205 receptor also resulted in cross-presentation to CD8+ T cells. Antibody responses against human MSLN were also detected in serum from primed mice by ELISA assays. In summary, targeting of MSLN to DEC-205 improves the induction of CD4+ and CD8+ T cell immunity accompanied by an antibody response. DEC-205-targeting could be valuable to enhance immunity to MSLN in the setting of cancers where this nonmutated protein is expressed. PMID:19769731

  18. CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease

    PubMed Central

    Luca, Antonella De; Iannitti, Rossana G.; Bozza, Silvia; Beau, Remi; Casagrande, Andrea; D’Angelo, Carmen; Moretti, Silvia; Cunha, Cristina; Giovannini, Gloria; Massi-Benedetti, Cristina; Carvalho, Agostinho; Boon, Louis; Latgé, Jean-Paul; Romani, Luigina

    2012-01-01

    Aspergillus fumigatus is a model fungal pathogen and a common cause of infection in individuals with the primary immunodeficiency chronic granulomatous disease (CGD). Although primarily considered a deficiency of innate immunity, CGD is also linked to dysfunctional T cell reactivity. Both CD4+ and CD8+ T cells mediate vaccine-induced protection from experimental aspergillosis, but the molecular mechanisms leading to the generation of protective immunity and whether these mechanisms are dysregulated in individuals with CGD have not been determined. Here, we show that activation of either T cell subset in a mouse model of CGD is contingent upon the nature of the fungal vaccine, the involvement of distinct innate receptor signaling pathways, and the mode of antigen routing and presentation in DCs. Aspergillus conidia activated CD8+ T cells upon sorting to the Rab14+ endosomal compartment required for alternative MHC class I presentation. Cross-priming of CD8+ T cells failed to occur in mice with CGD due to defective DC endosomal alkalinization and autophagy. However, long-lasting antifungal protection and disease control were successfully achieved upon vaccination with purified fungal antigens that activated CD4+ T cells through the endosome/lysosome pathway. Our study thus indicates that distinct intracellular pathways are exploited for the priming of CD4+ and CD8+ T cells to A. fumigatus and suggests that CD4+ T cell vaccination may be able to overcome defective antifungal CD8+ T cell memory in individuals with CGD. PMID:22523066

  19. A minor subset of Batf3-dependent antigen presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes

    PubMed Central

    Ferris, Stephen T.; Carrero, Javier A.; Mohan, James F.; Calderon, Boris; Murphy, Kenneth M.; Unanue, Emil R.

    2014-01-01

    Summary Autoimmune diabetes is characterized by inflammatory infiltration; however the initiating events are poorly understood. We found that the islets of Langerhans in young non-obese diabetic (NOD) mice contained two antigen presenting cell (APC) populations: a major macrophage and a minor CD103+ dendritic cell (DC) population. By four weeks of age, CD4+ T cells entered islets coincident with an increase of CD103+ DCs. In order to examine the role of the CD103+ DCs in diabetes, we examined Batf3-deficient NOD mice that lacked the CD103+ DCs in islets and pancreatic lymph nodes. This led to a lack of autoreactive T cells in islets and, importantly, no incidence of diabetes. Additional examination revealed that presentation of major histocompatibility complex (MHC) class I epitopes in the pancreatic lymph nodes was absent with a partial impairment of MHC class II presentation. Altogether, this study reveals that CD103+ DCs were essential for autoimmune diabetes development. PMID:25367577

  20. A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes.

    PubMed

    Ferris, Stephen T; Carrero, Javier A; Mohan, James F; Calderon, Boris; Murphy, Kenneth M; Unanue, Emil R

    2014-10-16

    Autoimmune diabetes is characterized by inflammatory infiltration; however, the initiating events are poorly understood. We found that the islets of Langerhans in young nonobese diabetic (NOD) mice contained two antigen-presenting cell (APC) populations: a major macrophage and a minor CD103(+) dendritic cell (DC) population. By 4 weeks of age, CD4(+) T cells entered islets coincident with an increase in CD103(+) DCs. In order to examine the role of the CD103(+) DCs in diabetes, we examined Batf3-deficient NOD mice that lacked the CD103(+) DCs in islets and pancreatic lymph nodes. This led to a lack of autoreactive T cells in islets and, importantly, no incidence of diabetes. Additional examination revealed that presentation of major histocompatibility complex (MHC) class I epitopes in the pancreatic lymph nodes was absent with a partial impairment of MHC class II presentation. Altogether, this study reveals that CD103(+) DCs are essential for autoimmune diabetes development.

  1. Neutrophil surface presentation of the anti-neutrophil cytoplasmic antibody-antigen proteinase 3 depends on N-terminal processing

    PubMed Central

    von Vietinghoff, S; Eulenberg, C; Wellner, M; Luft, F C; Kettritz, R

    2008-01-01

    The neutrophil serine protease proteinase 3 (PR3) is a main autoantigen in anti-neutrophil cytoplasmic antibody-associated vasculitis. PR3 surface presentation on neutrophilic granulocytes, the main effector cells, is pathogenically important. PR3 is presented by the NB1 (CD177) glycoprotein, but how the presentation develops during neutrophil differentiation is not known. An N-terminally unprocessed PR3 (proPR3) is produced early during neutrophil development and promotes myeloid cell differentiation. We therefore investigated if PR3 presentation depended on NB1 during neutrophil differentiation and if PR3 and proPR3 could both be presented by NB1. In contrast to mature neutrophils, differentiating neutrophils showed an early NB1-independent PR3 surface display that was recognized by only two of four monoclonal anti-PR3 antibodies and occurred in parallel with proPR3, but not PR3 secretion, suggesting that the NB1-independent surface PR3 was proPR3. PR3 gene expression preceeded NB1. When the NB1 receptor was detected on the surface, a mode of PR3 surface display similar to mature neutrophils developed together with the degranulation system. Ectopic expression studies showed that NB1 was a sufficient receptor for PR3 but not proPR3. ProPR3 display on the plasma membrane may influence the bone marrow microenvironment. NB1-mediated PR3 presentation depended on PR3 N-terminal processing implicating the PR3–N-terminus as NB1-binding site. PMID:18462208

  2. Effect of gamma radiation on resting B lymphocytes. II. Functional characterization of the antigen-presentation defect

    SciTech Connect

    Ashwell, J.D.; Jenkins, M.K.; Schwartz, R.H.

    1988-10-15

    The effect of radiation on three discrete Ag-presentation functions in resting B cells was examined: 1) Ag uptake and processing, 2) expression of processed Ag in the context of functional class II molecules, and 3) provision of necessary co-stimulatory, or second, signals. Analysis of radiation's effect on B cell presentation of intact vs fragmented Ag or its effect on presentation by Ag-pulsed B cells indicated that damage to Ag uptake and processing could not account for the bulk of the radiation-induced Ag-presentation defect. Experiments with phosphatidylinositol hydrolysis as an indirect measure of TCR occupancy suggested that irradiation caused a fairly rapid (within 1 to 2 h) decrease in the ability of the B cell APC to display a stimulatory combination of Ag and class II molecule. Ag dose-response analyses demonstrated that when presenting a fragment of the Ag pigeon cytochrome c to a T cell clone, 3000 rad-treated B cell APC were able to stimulate approximately 50% as much phosphatidylinositol turnover as unirradiated B cells. It was also found that, in contrast to their inability to initiate T cell proliferation, and similarly to chemically cross-linked splenocytes, heavily irradiated resting B cells plus Ag induced a state of Ag hyporesponsiveness in T cell clones. This effect on T cells had the same Ag- and MHC-specificity as did receptor occupancy required for proliferation, indicating that heavily irradiated resting B cells bear functional class II molecules. Co-culture of T cells with allogeneic B cells and syngeneic heavily irradiated B cells or chemically cross-linked splenic APC plus Ag resulted in T cell proliferation and interfered with the induction of the hyporesponsive state. This co-stimulatory function was radiosensitive in resting allogeneic B cells.

  3. LAMP-2C Inhibits MHC Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated Autophagy.

    PubMed

    Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J; Deffit, Sarah N; Zhou, Delu; Blum, Janice S

    2016-03-15

    Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags.

  4. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis.

    PubMed

    Sosa, Rebecca A; Forsthuber, Thomas G

    2011-10-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4(+) T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process.

  5. The Critical Role of Antigen-Presentation-Induced Cytokine Crosstalk in the Central Nervous System in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Sosa, Rebecca A.

    2011-01-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4+ T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process. PMID:21919736

  6. Cloning and sequence analysis of human breast epithelial antigen BA46 reveals an RGD cell adhesion sequence presented on an epidermal growth factor-like domain.

    PubMed

    Couto, J R; Taylor, M R; Godwin, S G; Ceriani, R L; Peterson, J A

    1996-04-01

    The BA46 antigen of the human milk fat globule (HMFG) membrane is expressed in human breast carcinomas and has been used successfully as a target for experimental breast cancer radioimmunotherapy. To characterize this antigen further, we obtained the entire cDNA sequence and focused on its possible role in cell adhesion. The derived protein sequence of BA46 encodes a 387-residue precursor composed of a putative signal peptide, an amino-terminal epidermal growth factor (EGF)-like domain containing the cell adhesion tripeptide arginine-glycine-aspartic acid (RGD), and human factor V and factor VIII C1/C2-like domains. The EGF-like domain of BA46 is similar to the calcium-binding EGF-like domains of several coagulation factors, but the BA46 domain lacks a residue required for calcium binding and the coagulation factor domains do not include an RGD sequence. Assuming that all EGF-like domains fold into a similar structure, the RGD-containing sequence in BA46 is inserted between two antiparallel beta strands. This positioning suggests a novel function for the EGF-like domain as a scaffold for RGD presentation.

  7. Rainbow trout CK9, a CCL25-like ancient chemokine that attracts and regulates B cells and macrophages, the main antigen presenting cells in fish

    PubMed Central

    Aquilino, Carolina; Granja, Aitor G.; Castro, Rosario; Wang, Tiehui; Abos, Beatriz; Parra, David; Secombes, Christopher J.; Tafalla, Carolina

    2016-01-01

    CK9 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to mammalian CCL25. Although CK9 is known to be transcriptionally regulated in response to inflammation particularly in mucosal tissues, its functionality has never been revealed. In the current work, we have demonstrated that CK9 is chemoattractant for antigen presenting cells (APCs) expressing major histocompatibility complex class II (MHC II) on the cell surface. Among these APCs, CK9 has a strong chemotactic capacity for both B cells (IgM+ and IgT+) and macrophages. Along with its chemotactic capacities, CK9 modulated the MHC II turnover of B lymphocytes and up-regulated the phagocytic capacity of both IgM+ cells and macrophages. Although CK9 had no lymphoproliferative effects, it increased the survival of IgT+ lymphocytes. Furthermore, we have established that the chemoattractant capacity of CK9 is strongly increased after pre-incubation of leukocytes with a T-independent antigen, whereas B cell receptor (BCR) cross-linking strongly abrogated their capacity to migrate to CK9, indicating that CK9 preferentially attracts B cells at the steady state or under BCR-independent stimulation. These results point to CK9 being a key regulator of B lymphocyte trafficking in rainbow trout, able to modulate innate functions of teleost B lymphocytes and macrophages. PMID:27003360

  8. Artificial antigen-presenting cells expressing AFP(158-166) peptide and interleukin-15 activate AFP-specific cytotoxic T lymphocytes.

    PubMed

    Sun, Longhao; Guo, Hao; Jiang, Ruoyu; Lu, Li; Liu, Tong; Zhang, Zhixiang; He, Xianghui

    2016-04-05

    Professional antigen-presenting cells (APCs) are potent generators of tumor antigen-specific cytotoxic T lymphocytes (CTLs) for adoptive immunotherapy; however, generation of APCs is cumbersome, expensive, and subject to the tumor microenvironment. Artificial APCs (aAPCs) have been developed as a cost-effective alternative to APCs. We developed a cellular aAPC that efficiently generated alpha-fetoprotein (AFP)-specific CTLs. We genetically modified the human B cell lymphoma cell line BJAB with a lentiviral vector to establish an aAPC called BA15. The expression of AFP(158-166)-HLA-A*02:01 complex, CD80, CD86, and interleukin (IL)-15 in BA15 cells was assessed. The efficiency of BA15 at generating AFP-specific CTLs and the specific cytotoxicity of CTLs against AFP+ cells were also determined. BA15 cells expressed high levels of AFP(158-166) peptide, HLA-A2, CD80, CD86, and IL-15. BA15 cells also exhibited higher efficiency in generating AFP-specific CTLs than did dendritic cells. These CTLs had greater cytotoxicity against AFP+ hepatocellular carcinoma cells than did CTLs obtained from dendritic cells in vitro and in vivo. Our novel aAPC system could provide a robust platform for the generation of functional AFP-specific CTLs for adoptive immunotherapy of hepatocellular carcinoma.

  9. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation.

    PubMed

    Bijker, Martijn S; van den Eeden, Susan J F; Franken, Kees L; Melief, Cornelis J M; van der Burg, Sjoerd H; Offringa, Rienk

    2008-04-01

    Anti-tumor vaccines consisting of extended CTL peptides in combination with CpG-ODN were shown to be superior to those comprising minimal CTL epitopes and CpG-ODN, in that they elicit stronger effector CTL responses with greater tumoricidal potential. We now demonstrate that this improved performance is primarily due to the focusing of CTL epitope presentation onto activated DC in the inflamed lymph nodes draining the vaccination site. In the case of vaccination with minimal peptides, additional APC including T and B cells are also loaded with CTL epitopes. Our data suggest that circulation of these peptide-loaded lymphocytes leads to epitope presentation in non-inflamed lymphoid organs distal from the vaccination site, in the absence of potent costimulatory signals required for efficient CTL priming. The resulting blend of pro-immunogenic and tolerogenic signals, which results in suboptimal activation of the CTL response, is avoided by vaccinating with extended CTL peptides. An additional advantage of extended CTL peptide vaccines is an increased duration of in vivo epitope presentation.

  10. The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells

    PubMed Central

    Willemen, Yannick; Van den Bergh, Johan M.J.; Bonte, Sarah M.; Anguille, Sébastien; Heirman, Carlo; Stein, Barbara M.H.; Goossens, Herman; Kerre, Tessa; Thielemans, Kris; Peeters, Marc; Van Tendeloo, Viggo F.I.

    2016-01-01

    We formerly demonstrated that vaccination with Wilms’ tumor 1 (WT1)-loaded autologous monocyte-derived dendritic cells (mo-DCs) can be a well-tolerated effective treatment in acute myeloid leukemia (AML) patients. Here, we investigated whether we could introduce the receptor for hyaluronic acid-mediated motility (RHAMM/HMMR/CD168), another clinically relevant tumor-associated antigen, into these mo-DCs through mRNA electroporation and elicit RHAMM-specific immune responses. While RHAMM mRNA electroporation significantly increased RHAMM protein expression by mo-DCs, our data indicate that classical mo-DCs already express and present RHAMM at sufficient levels to activate RHAMM-specific T cells, regardless of electroporation. Moreover, we found that RHAMM-specific T cells are present at vaccination sites in AML patients. Our findings implicate that we and others who are using classical mo-DCs for cancer immunotherapy are already vaccinating against RHAMM. PMID:27659531

  11. Inhibition of phagosome maturation by mycobacteria does not interfere with presentation of mycobacterial antigens by MHC molecules.

    PubMed

    Majlessi, Laleh; Combaluzier, Benoit; Albrecht, Imke; Garcia, Jessica E; Nouze, Clémence; Pieters, Jean; Leclerc, Claude

    2007-08-01

    Pathogenic mycobacteria escape host innate immune responses by surviving within phagosomes of host macrophages and blocking their delivery to lysosomes. Avoiding lysosomal delivery may also be involved in the capacity of living mycobacteria to modulate MHC class I- or II-dependent T cell responses, which may contribute to their pathogenicity in vivo. In this study, we show that the presentation of mycobacterial Ags is independent of the site of intracellular residence inside professional APCs. Infection of mouse macrophages or dendritic cells in vitro with mycobacterial mutants that are unable to escape lysosomal transfer resulted in an identical efficiency of Ag presentation compared with wild-type mycobacteria. Moreover, in vivo, such mutants induced CD4(+) Th1 or CD8(+) CTL responses in mice against various mycobacterial Ags that were comparable to those induced by their wild-type counterparts. These results suggest that the limiting factor for the generation of an adaptive immune response against mycobacteria is not the degree of lysosomal delivery. These findings are important in the rational design of improved vaccines to combat mycobacterial diseases.

  12. Hetero-organic thymus antigens.

    PubMed

    Beletskaya, L V; Gnezditskaya, E V

    1985-01-01

    The use of sera containing antibodies to tissue-specific antigens of highly specialized organs (skeletal muscles, heart, skin, excretory glands) enabled us to detect, by immunofluorescence, cells capable of synthesizing analogous antigens (i.e. hetero-organic thymus antigens) in human and animal thymus. Detection of hetero-organic antigens in the thymus is the basis for the hypothesis that natural immunological tolerance to tissue self antigens is formed within the thymus in the course of T-lymphocyte maturation, with thymus antigens taking part in the process.

  13. A Brucella spp. Protease Inhibitor Limits Antigen Lysosomal Proteolysis, Increases Cross-Presentation, and Enhances CD8+ T Cell Responses.

    PubMed

    Coria, Lorena M; Ibañez, Andrés E; Tkach, Mercedes; Sabbione, Florencia; Bruno, Laura; Carabajal, Marianela V; Berguer, Paula M; Barrionuevo, Paula; Schillaci, Roxana; Trevani, Analía S; Giambartolomei, Guillermo H; Pasquevich, Karina A; Cassataro, Juliana

    2016-05-15

    In this study, we demonstrate that the unlipidated (U) outer membrane protein (Omp) 19 from Brucella spp. is a competitive inhibitor of human cathepsin L. U-Omp19 inhibits lysosome cathepsins and APC-derived microsome activity in vitro and partially inhibits lysosomal cathepsin L activity within live APCs. Codelivery of U-Omp19 with the Ag can reduce intracellular Ag digestion and increases Ag half-life in dendritic cells (DCs). U-Omp19 retains the Ag in Lamp-2(+) compartments after its internalization and promotes a sustained expression of MHC class I/peptide complexes in the cell surface of DCs. Consequently, U-Omp19 enhances Ag cross-presentation by DCs to CD8(+) T cells. U-Omp19 s.c. delivery induces the recruitment of CD11c(+)CD8α(+) DCs and monocytes to lymph nodes whereas it partially limits in vivo Ag proteolysis inside DCs. Accordingly, this protein is able to induce CD8(+) T cell responses in vivo against codelivered Ag. Antitumor responses were elicited after U-Omp19 coadministration, increasing survival of mice in a murine melanoma challenge model. Collectively, these results indicate that a cysteine protease inhibitor from bacterial origin could be a suitable component of vaccine formulations against tumors.

  14. IL-27 in human secondary lymphoid organs attracts myeloid dendritic cells and impairs HLA class I-restricted antigen presentation.

    PubMed

    Morandi, Fabio; Di Carlo, Emma; Ferrone, Soldano; Petretto, Andrea; Pistoia, Vito; Airoldi, Irma

    2014-03-15

    Different cytokines play crucial roles in inflammation and in polarizing immune responses, including IL-27 that exerts pro- and anti-inflammatory functions. Although the activity of IL-27 is well characterized in murine immune cells, only limited information is available regarding the natural cellular sources of IL-27 in humans and its effects on human immune cells. Dendritic cells (DCs) are the most potent professional APCs that in the immature state are positioned throughout peripheral tissues by acting as sentinels, sensing the presence of Ags. Activated DCs migrate into the lymph nodes and direct Ag-specific T cell responses, thus acting as key players in both adaptive and innate immunity. In this study we asked whether IL-27 is produced by human secondary lymphoid organs and what is its functional role on human DCs. To our knowledge, we provide the first evidence that 1) in lymph nodes, macrophages are the major source for IL-27; 2) immature and mature human DCs express functional IL-27R; 3) IL-27 exerts immunosuppressive activity by crippling the Ag processing machinery in immature DCs under steady-state conditions and after pulsing with a viral Ag; and 4) IL-27 is chemotactic for human DCs. Our findings highlight novel mechanisms underlying the immunosuppressive activity of IL-27, suggesting that this cytokine may function as a homeostatic cytokine in secondary lymphoid organs by limiting duration and/or intensity of ongoing adaptive immune responses. The results presented in this study pave the way to future studies aimed at investigating whether dysregulation of IL-27 expression and function may be involved in pathogenesis of autoimmune disease and cancer.

  15. [Hepatitis B virus (HBV) and the inflammatory/immune response. I. The natural environment of the antigen presentation and immunologic chaos induced by the virus].

    PubMed

    Villarrubia, V G; Alvarez-Mon, M; Chirigos, M A; Herrerías, J M

    1997-12-01

    In this paper, the authors update on the immunopathology of hepatitis B virus (HBV) infection, with special reference to the roles of inflammatory and natural immune responses (macrophages and NK cells) in the viral clearance. The role of specific immune responses being related to the influence of the environment of the antigen presentation (macrophages, NK cells, and their related cytokines IL-12 and IFN-gamma) on Th cells within the liver. The viral scape leading to chronic hepatitis B is thought to be due (a) to the suppressive actions of the virus on NK cells and IFN-gamma production (b) to the downregulation of IL-12/IL-15 production provoked by the inflammatory response (factor C3 of the complement system) on IL-12-producing macrophages: immunologic chaos.

  16. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure.

    PubMed Central

    Odermatt, B; Eppler, M; Leist, T P; Hengartner, H; Zinkernagel, R M

    1991-01-01

    Virus-induced acquired immune suppression in mice infected with lymphocytic choriomeningitis virus is shown here to be caused by the CD8+-T-cell-dependent elimination of macrophages/antigen-presenting cells. Surprisingly, this is associated with severe destruction of the follicular organization of lymphoid organs, indicating a crucial role for dendritic cells and marginal zone macrophages in maintaining follicular structure. Once established, this immunopathology cannot be readily reversed by the elimination of CD8+ effector cells. Such a T-cell-mediated pathogenesis may play a pivotal role in acquired virus-induced immunosuppression and may represent one strategy by which virus escapes immune surveillance and establishes persistent infections in initially immunocompetent hosts. Images PMID:1910175

  17. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer's disease-like cerebral amyloidosis.

    PubMed

    Ferretti, M T; Merlini, M; Späni, C; Gericke, C; Schweizer, N; Enzmann, G; Engelhardt, B; Kulic, L; Suter, T; Nitsch, R M

    2016-05-01

    Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer's disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen-presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow-cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg and tg mice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments. These results indicate that cerebral amyloidosis promotes T-cell infiltration but interferes with local antigen presentation and T-cell activation. The inability of the brain immune surveillance to orchestrate a protective immune response to amyloid-beta peptide might contribute to the accumulation of amyloid in the progression of the disease.

  18. Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs

    PubMed Central

    Du Four, Stephanie; Maenhout, Sarah K; Niclou, Simone P; Thielemans, Kris; Neyns, Bart; Aerts, Joeri L

    2016-01-01

    Melanoma brain metastases (MBM) occur in 10% to 50% of melanoma patients. They are often associated with a high morbidity and despite the improvements in the treatment of advanced melanoma, including immunotherapy, patients with MBM still have a poor prognosis. Antiangiogenic treatment was shown to reduce the immunosuppressive tumor microenvironment. Therefore we investigated the effect of the combination of VEGFR- and CTLA-4 blockade on the immune cells within the tumor microenvironment. In this study we investigated the effect of the combination of axitinib, a TKI against VEGFR-1, -2 and -3, with therapeutic inhibition of CTLA-4 in subcutaneous and intracranial mouse melanoma models. The combination of axitinib with αCTLA-4 reduced tumor growth and increased survival in both intracranial and subcutaneous models. Investigation of the splenic immune cells showed an increased number of CD4+ and CD8+ T cells after combination treatment. Moreover, combination treatment increased the number of intratumoral dendritic cells (DCs) and monocytic myeloid-derived suppressor cells (moMDSCs). When these immune cell populations were sorted from the subcutaneous and intracranial tumors of mice treated with axitinib+αCTLA-4, we observed an increased antigen-presenting function of DCs and a reduced suppressive capacity of moMDSCs on a per cell basis. Our results suggest that the combination of antiangiogenesis and checkpoint inhibition can lead to an enhanced antitumor effect leading to increased survival. We found that this effect is in part due to an enhanced antitumor immune response generated by an increased antigen-presenting function of intratumoral DCs in combination with a reduced suppressive capacity of intratumoral moMDSCs. PMID:27904768

  19. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse

    PubMed Central

    Bollyky, Paul L; Evanko, Stephen P; Wu, Rebecca P; Potter-Perigo, Susan; Long, S Alice; Kinsella, Brian; Reijonen, Helena; Guebtner, Kelly; Teng, Brandon; Chan, Christina K; Braun, Kathy R; Gebe, John A; Nepom, Gerald T; Wight, Thomas N

    2010-01-01

    Hyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular ‘glue' directly mediating T cell–DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis. Furthermore, T cells regulate HA production by DCs via T cell-derived cytokines in a T helper (Th) subset-specific manner, as demonstrated by the observation that cell-culture supernatants from Th1 but not Th2 clones promote HA production. Similar effects were seen upon the addition of exogenous Th1 cytokines, IL-2, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α). The critical factors which determined the extent of DC–T cell binding in this system were the nature of the pre-treatment the DCs received and their capacity to synthesize HA, as T-cell clones which were pre-treated with monensin, added to block cytokine secretion, bound equivalently irrespective of their Th subset. These data support the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA, which in turn affects the extent of DC–T cell binding. We also document the presence of focal deposits of HA at the immune synapse between T-cells and APC and on dendritic processes thought to be important in antigen presentation. These data point to a pivotal role for HA in DC–T cell interactions at the IS. PMID:20228832

  20. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse.

    PubMed

    Bollyky, Paul L; Evanko, Stephen P; Wu, Rebecca P; Potter-Perigo, Susan; Long, S Alice; Kinsella, Brian; Reijonen, Helena; Guebtner, Kelly; Teng, Brandon; Chan, Christina K; Braun, Kathy R; Gebe, John A; Nepom, Gerald T; Wight, Thomas N

    2010-05-01

    Hyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular 'glue' directly mediating T cell-DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis. Furthermore, T cells regulate HA production by DCs via T cell-derived cytokines in a T helper (Th) subset-specific manner, as demonstrated by the observation that cell-culture supernatants from Th1 but not Th2 clones promote HA production. Similar effects were seen upon the addition of exogenous Th1 cytokines, IL-2, interferon gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). The critical factors which determined the extent of DC-T cell binding in this system were the nature of the pre-treatment the DCs received and their capacity to synthesize HA, as T-cell clones which were pre-treated with monensin, added to block cytokine secretion, bound equivalently irrespective of their Th subset. These data support the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA, which in turn affects the extent of DC-T cell binding. We also document the presence of focal deposits of HA at the immune synapse between T-cells and APC and on dendritic processes thought to be important in antigen presentation. These data point to a pivotal role for HA in DC-T cell interactions at the IS.

  1. Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs.

    PubMed

    Du Four, Stephanie; Maenhout, Sarah K; Niclou, Simone P; Thielemans, Kris; Neyns, Bart; Aerts, Joeri L

    2016-01-01

    Melanoma brain metastases (MBM) occur in 10% to 50% of melanoma patients. They are often associated with a high morbidity and despite the improvements in the treatment of advanced melanoma, including immunotherapy, patients with MBM still have a poor prognosis. Antiangiogenic treatment was shown to reduce the immunosuppressive tumor microenvironment. Therefore we investigated the effect of the combination of VEGFR- and CTLA-4 blockade on the immune cells within the tumor microenvironment. In this study we investigated the effect of the combination of axitinib, a TKI against VEGFR-1, -2 and -3, with therapeutic inhibition of CTLA-4 in subcutaneous and intracranial mouse melanoma models. The combination of axitinib with αCTLA-4 reduced tumor growth and increased survival in both intracranial and subcutaneous models. Investigation of the splenic immune cells showed an increased number of CD4(+) and CD8(+) T cells after combination treatment. Moreover, combination treatment increased the number of intratumoral dendritic cells (DCs) and monocytic myeloid-derived suppressor cells (moMDSCs). When these immune cell populations were sorted from the subcutaneous and intracranial tumors of mice treated with axitinib+αCTLA-4, we observed an increased antigen-presenting function of DCs and a reduced suppressive capacity of moMDSCs on a per cell basis. Our results suggest that the combination of antiangiogenesis and checkpoint inhibition can lead to an enhanced antitumor effect leading to increased survival. We found that this effect is in part due to an enhanced antitumor immune response generated by an increased antigen-presenting function of intratumoral DCs in combination with a reduced suppressive capacity of intratumoral moMDSCs.

  2. Distinct roles for transforming growth factor-β2 and tumour necrosis factor-α in immune deviation elicited by hapten-derivatized antigen-presenting cells

    PubMed Central

    Hecker, K H; Niizeki, H; Streilein, J W

    1999-01-01

    The role of antigen-presenting cells (APC) in the induction of antigen-specific unresponsiveness was examined, using two functionally distinct murine macrophage hybridomas, #59 and #63 cells. Derivatized with the hapten (dinitrofluorobenzene; DNFB), #59 cells induced contact hypersensitivity (CH) in mice. Hapten-derivatized #63 cells failed to induce CH. Instead, they prevented recipients from acquiring CH when exposed subsequently to a sensitizing dose of the hapten. Similarly, hapten-derivatized #59 cells, pretreated in vitro with transforming growth factor-β2 (TGF-β2) lost their capacity to evoke CH, and induced tolerance. Hapten-derivatized #63 cells and TGF-β2-treated #59 cells eliminated CH in mice sensitized to hapten. Reverse transcription–polymerase chain reaction analysis of mRNAs for various accessory molecules important in T-cell activation revealed that #63 and TGF-β2-treated #59 cells differed only in their expression of tumour necrosis factor-α (TNF-α) mRNA. The latter expressed higher levels of TNF-α mRNA than did untreated #59 cells. As a consequence, #63 and TGF-β2-treated #59 cells, both of which induce tolerance, secrete TNF-α protein unlike untreated #59 cells, which do not induce tolerance to hapten. Since neutralizing anti-TNF-α antibodies abrogated the tolerogenic potential of #63 cells in vivo, we conclude that TGF-β2 equips hapten-bearing APC with the capacity to evoke systemic immune deviation in which CH is selectively silenced. We speculate that one effect of TGF-β2 is to cause APC to up-regulate TNF-α production. In turn, this cytokine biases the functional property of responding hapten-specific T cells in a direction that not only interferes with acquisition, but suppresses induction of CH. PMID:10233718

  3. Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2'-deoxycytidine.

    PubMed

    Daurkin, Irina; Eruslanov, Evgeniy; Vieweg, Johannes; Kusmartsev, Sergei

    2010-05-01

    Tumor-recruited CD11b myeloid cells, including myeloid-derived suppressor cells, play a significant role in tumor progression, as these cells are involved in tumor-induced immune suppression and tumor neovasculogenesis. On the other hand, the tumor-infiltrated CD11b myeloid cells could potentially be a source of immunostimulatory antigen-presenting cells (APCs), since most of these cells represent common precursors of both dendritic cells and macrophages. Here, we investigated the possibility of generating mature APCs from tumor-infiltrated CD11b myeloid cells. We demonstrate that in vitro exposure of freshly excised mouse tumors to DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (decitabine, AZA) results in selective elimination of tumor cells, but, surprisingly it also enriches CD45(+) tumor-infiltrated cells. The majority of "post-AZA" surviving CD45(+) tumor-infiltrated cells were represented by CD11b myeloid cells. A culture of isolated tumor-infiltrated CD11b cells in the presence of AZA and GM-CSF promoted their differentiation into mature F4/80/CD11c/MHC class II-positive APCs. These tumor-derived myeloid APCs produced substantially reduced amounts of immunosuppressive (IL-13, IL-10, PGE(2)), pro-angiogenic (VEGF, MMP-9) and pro-inflammatory (IL-1beta, IL-6, MIP-2) mediators than their precursors, freshly isolated tumor-infiltrated CD11b cells. Vaccinating naïve mice with ex vivo generated tumor-derived APCs resulted in the protection of 70% mice from tumor outgrowth. Importantly, no loading of tumor-derived APC with exogenous antigen was needed to stimulate T cell response and induce the anti-tumor effect. Collectively, our results for the first time demonstrate that tumor-infiltrated CD11b myeloid cells can be enriched and differentiated in the presence of DNA demethylating agent 5-aza-2'-deoxycytidine into mature tumor-derived APCs, which could be used for cancer immunotherapy.

  4. A NOVEL ROLE FOR HISTONE DEACETYLASE 6 (HDAC6) IN THE REGULATION OF THE TOLEROGENIC STAT3/IL-10 PATHWAY IN ANTIGEN PRESENTING CELLS

    PubMed Central

    Cheng, Fengdong; Lienlaf, Maritza; Wang, Hong-Wei; Perez-Villarroel, Patricio; Lee, Calvin; Woan, Karrune; Rock-Klotz, Jennifer; Sahakian, Eva; Woods, David; Pinilla-Ibarz, Javier; Kalin, Jay; Tao, Jianguo; Hancock, Wayne; Kozikowski, Alan; Seto, Edward; Villagra, Alejandro; Sotomayor, Eduardo M.

    2014-01-01

    Antigen-presenting cells (APCs) are critical in T-cell activation and in the induction of T-cell tolerance. Epigenetic modifications of specific genes in the APC play a key role in this process, and among them, histone deacetylases (HDACs) have emerged as key participants. HDAC6, one of the members of this family of enzymes, has been shown to be involved in regulation of inflammatory and immune responses. Here we show for the first time, that genetic or pharmacologic disruption of HDAC6 in macrophages and dendritic cells resulted in diminished production of the immunosuppressive cytokine IL-10, and induction of inflammatory APCs that effectively activate antigen-specific naïve T-cells and restore the responsiveness of anergic CD4+ T-cells. Mechanistically, we have found that HDAC6 forms a previously unknown molecular complex with STAT3, association that was detected in both the cytoplasmic and nuclear compartments of the APC. By using HDAC6 recombinant mutants we identified the domain comprising aminoacids 503-840 as being required for HDAC6 interaction with STAT3. Furthermore, by re-chromatin immunoprecipitation we confirmed that HDAC6 and STAT3 are both recruited to the same DNA sequence within the Il10 gene promoter. Of note, disruption of this complex by knocking down HDAC6 resulted in decreased STAT3 phosphorylation -but no changes in STAT3 acetylation- as well as diminished recruitment of STAT3 to the Il10 gene promoter region. The additional demonstration that a selective HDAC6 inhibitor disrupts this STAT3/IL-10 tolerogenic axis points to HDAC6 as a novel molecular target in APCs to overcome immune tolerance and tips the balance towards T-cell immunity. PMID:25108026

  5. miR-24, miR-30b and miR-142-3p interfere with antigen processing and presentation by primary macrophages and dendritic cells

    PubMed Central

    Naqvi, Afsar Raza; Fordham, Jezrom B.; Ganesh, Balaji; Nares, Salvador

    2016-01-01

    Antigen uptake, processing and presentation by antigen presenting cells (APCs) are tightly coupled processes which consequently lead to the activation of innate and adaptive immune responses. However, the regulatory role of microRNA (miRNAs) in these critical pathways is poorly understood. In this study, we show that overexpression of miR-24, miR-30b and miR-142-3p attenuates uptake and processing of soluble antigen ovalbumin (Ova) in primary human macrophages and dendritic cells. MiRNA mimic transfected APCs exhibit defects in antigen presentation (Ova and CMV antigen) to CD4+ T-cells leading to reduced cell proliferation. Using transgenic OT-II mice we demonstrated that this impairment in T-cell proliferation is specific to antigen provided i.e., Ova. Further, human T-cells co-cultured with miRNA transfected dendritic cells secrete low levels of T helper (Th)-1 polarization associated cytokines. Analysis of molecules regulating APC and T-cell receptor interaction shows miRNA-mediated induced expression of Programmed Death-Ligand 1 (PD-L1) which inhibits T-cell proliferation. Blocking PD-L1 with antibodies rescues miRNA-mediated inhibition of T cell priming by DCs. These results uncover regulatory functions of miR-24, miR-30b and miR-142-3p in pairing innate and adaptive components of immunity. PMID:27611009

  6. Vanilloid Receptor 1 Agonists, Capsaicin and Resiniferatoxin, Enhance MHC Class I-restricted Viral Antigen Presentation in Virus-infected Dendritic Cells

    PubMed Central

    Lee, Young-Hee; Im, Sun-A; Kim, Ji-Wan

    2016-01-01

    DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-Kb complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses. PMID:27574502

  7. A three-dimensional tumor cell defect in activating autologous CTLs is associated with inefficient antigen presentation correlated with heat shock protein-70 down-regulation.

    PubMed

    Dangles-Marie, Virginie; Richon, Sophie; El-Behi, Mohamed; Echchakir, Hamid; Dorothée, Guillaume; Thiery, Jérôme; Validire, Pierre; Vergnon, Isabelle; Menez, Jeanne; Ladjimi, Moncef; Chouaib, Salem; Bellet, Dominique; Mami-Chouaib, Fathia

    2003-07-01

    We described previously a CTL clone able to lyse the autologous carcinoma cell line IGR-Heu after specific recognition of an HLA-A2/mutated alpha-actinin-4 peptide complex. Here, we used IGR-Heu, cultured either as standard two-dimensional monolayers or as three-dimensional spheroids, to further analyze the influence of target architecture on CTL reactivity. Interestingly, we found that changes in the tumor structure from two- to three-dimensional induced a dramatic decrease in its capacity to activate autologous CTL, as measured by IFN-gamma and tumor necrosis factor-alpha secretion. These functional alterations were attributable neither to MHC class I expression nor to tumor antigen (Ag) down-regulation, because IGR-Heu, cultured as two- or three-dimensional, expressed similar levels of HLA-A2 and alpha-actinin-4. More importantly, incubation of three-dimensional cells with synthetic epitope completely restored cytokine release by CTL. This defective Ag presentation correlated with a decrease in heat shock protein (hsp)70 expression by three-dimensional tumors compared with two-dimensional cells. Furthermore, transfection of the tumor cells with hsp70 cDNA completely restored the Ag-presenting potential of spheroids and, therefore, cytokine production by T cells. These data strongly suggest that hsp70 down-regulation in three-dimensional cells may result in tumor resistance to the immune response.

  8. Evolutionary and functional relationships of B cells from fish and mammals: insights into their novel roles in phagocytosis and presentation of particulate antigen.

    PubMed

    Sunyer, J Oriol

    2012-06-01

    been shown that phagocytic B-1 B cells have a potent ability to present particulate antigen to CD4+ T cells. Thus, studies carried out originally on fish B cells have lead to the discovery of new innate and adaptive roles of B cells in mammals. This review will concentrate on the evolutionary and functional relationships of fish and mammalian B cells, focusing mainly on the newly discovered roles of these cells in phagocytosis, intracellular killing and presentation of particulate antigen.

  9. Refining human T-cell immunotherapy of cytomegalovirus disease: a mouse model with 'humanized' antigen presentation as a new preclinical study tool.

    PubMed

    Lemmermann, Niels A W; Reddehase, Matthias J

    2016-12-01

    by 'humanizing' antigen presentation using antigenically chimeric CMV and HLA-transgenic mice to allow for an in vivo testing of the antiviral function of human CMV-specific T cells. As an important new message, this model predicts that T cell immunotherapy is most efficient if CD4 T cells are equipped with a transduced TCR directed against an epitope presented by MHC/HLA class-I for local delivery of 'cognate' help to CD8 effector T cells at infected MHC/HLA class-II-negative host tissue cells.

  10. GM-CSF-neuroantigen fusion proteins reverse experimental autoimmune encephalomyelitis and mediate tolerogenic activity in adjuvant-primed environments: association with inflammation-dependent, inhibitory antigen presentation2

    PubMed Central

    Islam, S.M. Touhidul; Curtis, Alan D.; Taslim, Najla; Wilkinson, Daniel S.; Mannie, Mark D.

    2014-01-01

    Single-chain fusion proteins comprised of GM-CSF and neuroantigen (NAg) are potent, NAg-specific inhibitors of experimental autoimmune encephalomyelitis (EAE). An important question was whether GMCSF-NAg tolerogenic vaccines retained inhibitory activity within inflammatory environments or were contingent upon steady-state conditions. A GMCSF-MOG fusion protein reversed established paralytic disease in both passive and active models of EAE in C57BL/6 mice. The fusion protein also reversed EAE in CD4-deficient and B cell-deficient mice. Notably, GMCSF-MOG inhibited EAE when co-injected adjacent to the MOG35-55/CFA emulsion. GMCSF-MOG also retained dominant inhibitory activity when directly emulsified with MOG35-55 in the CFA emulsion in both C57BL/6 or B cell-deficient models of EAE. Likewise, when combined with PLP139-151 in CFA, GMCSF-PLP inhibited EAE in SJL mice. When deliberately emulsified in CFA with the NAg, GMCSF-NAg inhibited EAE even though NAg was present at more than a 30-fold molar excess. In vitro studies revealed that the GMCSF domain of GMCSF-MOG stimulated growth and differentiation of inflammatory dendritic cells (DC) and simultaneously targeted the MOG35-55 domain for enhanced presentation by these DC. These inflammatory DC presented MOG35-55 to MOG-specific T cells by an inhibitory mechanism that was mediated in part by IFN-γ signaling and NO production. In conclusion, GMCSF-NAg was tolerogenic in CFA-primed pro-inflammatory environments by a mechanism associated with targeted antigen presentation by inflammatory DC and an inhibitory IFN-γ/ NO pathway. The inhibitory activity of GMCSF-NAg in CFA-primed lymphatics distinguishes GMCSF-NAg fusion proteins as a unique class of inflammation-dependent tolerogens that are mechanistically distinct from naked peptide or protein-based tolerogens. PMID:25049359

  11. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    SciTech Connect

    Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi; Bhatnagar, Rakesh . E-mail: rakbhat01@yahoo.com; Banerjee-Bhatnagar, Nirupama . E-mail: nirupama@icgeb.res.in

    2006-12-22

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine.

  12. Processing and cross-presentation of individual HLA-A, -B, or -C epitopes from NY-ESO-1 or an HLA-A epitope for Melan-A differ according to the mode of antigen delivery.

    PubMed

    Robson, Neil C; McAlpine, Tristan; Knights, Ashley J; Schnurr, Max; Shin, Amanda; Chen, Weisan; Maraskovsky, Eugene; Cebon, Jonathan

    2010-07-15

    The ability of dendritic cells (DCs) to cross-present protein tumor antigens to cytotoxic T lymphocytes (CTLs) underpins the success of therapeutic cancer vaccines. We studied cross-presentation of the cancer/testis antigen, NY-ESO-1, and the melanoma differentiation antigen, Melan-A by human DC subsets. Monocyte-derived DCs (MoDCs) efficiently cross-presented human leukocyte associated (HLA)-A2-restricted epitopes from either a formulated NY-ESO-1/ISCOMATRIX vaccine or when either antigen was mixed with ISCOMATRIX adjuvant. HLA-A2 epitope generation required endosomal acidification and was proteasome-independent for NY-ESO-1 and proteasome-dependent for Melan-A. Both MoDCs and CD1c(+) blood DCs cross-presented NY-ESO-1-specific HLA-A2(157-165)-, HLA-B7(60-72)-, and HLA-Cw3(92-100)-restricted epitopes when formulated as an NY-ESO-1/ISCOMATRIX vaccine, but this was limited when NY-ESO-1 and ISCOMATRIX adjuvant were added separately to the DC cultures. Finally, cross-presentation of NY-ESO-1(157-165)/HLA-A2, NY-ESO-1(60-72)/HLA-B7, and NY-ESO-1(92-100)/HLA-Cw3 epitopes was proteasome-dependent when formulated as immune complexes (ICs) but only proteasome-dependent for NY-ESO-1(60-72)/HLA-B7-restricted cross-presentation facilitated by ISCOMATRIX adjuvant. We demonstrate, for the first time, proteasome-dependent and independent cross-presentation of HLA-A-, B-, and C-restricted epitopes within the same full-length tumor antigen by human DCs. Our findings identify important differences in the capacities of human DC subsets to cross-present clinically relevant, full-length tumor antigens and how vaccine formulation impacts CTL responses in vivo.

  13. Pharmacologic IKK/NF-κB inhibition causes antigen presenting cells to undergo TNFα dependent ROS-mediated programmed cell death

    NASA Astrophysics Data System (ADS)

    Tilstra, Jeremy S.; Gaddy, Daniel F.; Zhao, Jing; Davé, Shaival H.; Niedernhofer, Laura J.; Plevy, Scott E.; Robbins, Paul D.

    2014-01-01

    Monocyte-derived antigen presenting cells (APC) are central mediators of the innate and adaptive immune response in inflammatory diseases. As such, APC are appropriate targets for therapeutic intervention to ameliorate certain diseases. APC differentiation, activation and functions are regulated by the NF-κB family of transcription factors. Herein, we examined the effect of NF-κB inhibition, via suppression of the IκB Kinase (IKK) complex, on APC function. Murine bone marrow-derived macrophages and dendritic cells (DC), as well as macrophage and DC lines, underwent rapid programmed cell death (PCD) after treatment with several IKK/NF-κB inhibitors through a TNFα-dependent mechanism. PCD was induced proximally by reactive oxygen species (ROS) formation, which causes a loss of mitochondrial membrane potential and activation of a caspase signaling cascade. NF-κB-inhibition-induced PCD of APC may be a key mechanism through which therapeutic targeting of NF-κB reduces inflammatory pathologies.

  14. Mitomycin C-treated antigen-presenting cells as a tool for control of allograft rejection and autoimmunity: from bench to bedside.

    PubMed

    Terness, Peter; Kleist, Christian; Simon, Helmut; Sandra-Petrescu, Flavius; Ehser, Sandra; Chuang, Jing-Jing; Mohr, Elisabeth; Jiga, Lucian; Greil, Johann; Opelz, Gerhard

    2009-07-01

    Cells have been previously used in experimental models for tolerance induction in organ transplantation and autoimmune diseases. One problem with the therapeutic use of cells is standardization of their preparation. We discuss an immunosuppressive strategy relying on cells irreversibly transformed by a chemotherapeutic drug. Dendritic cells (DCs) of transplant donors pretreated with mitomycin C (MMC) strongly prolonged rat heart allograft survival when injected into recipients before transplantation. Likewise, MMC-DCs loaded with myelin basic protein suppressed autoreactive T cells of MS patients in vitro and prevented experimental autoimmune encephalitis in mice. Comprehensive gene microarray analysis identified genes that possibly make up the suppressive phenotype, comprising glucocorticoid leucine zipper, immunoglobulin-like transcript 3, CD80, CD83, CD86, and apoptotic genes. Based on these findings, a hypothetical model of tolerance induction by MMC-treated DCs is delineated. Finally, we describe the first clinical application of MMC-treated monocyte-enriched donor cells in an attempt to control the rejection of a haploidentical stem cell transplant in a sensitized recipient and discuss the pros and cons of using MMC-treated antigen-presenting cells for tolerance induction. Although many questions remain, MMC-treated cells are a promising clinical tool for controlling allograft rejection and deleterious immune responses in autoimmune diseases.

  15. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    PubMed

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  16. Tat engagement of p38 MAP kinase and IRF7 pathways leads to activation of interferon-stimulated genes in antigen-presenting cells.

    PubMed

    Kim, Nayoung; Kukkonen, Sami; Martinez-Viedma, Maria Del Pilar; Gupta, Sumeet; Aldovini, Anna

    2013-05-16

    As a result of its interaction with transcription factors, HIV type 1 (HIV-1) Tat can modulate the expression of both HIV and cellular genes. In antigen-presenting cells Tat induces the expression of a subset of interferon (IFN)-stimulated genes (ISGs) in the absence of IFNs. We investigated the genome-wide Tat association with promoters in immature dendritic cells and in monocyte-derived macrophages. Among others, Tat associated with the MAP2K6, MAP2K3, and IRF7 promoters that are functionally part of IL-1 and p38 mitogen-activated protein kinase (MAPK) signaling pathways. The association correlated with their increased gene expression, increased activation of p38 MAPK and of phosphorylated signal transducer and activator of transcription 1 (STAT1), and consequent induction of ISGs. Probing these pathways with RNA interference, pharmacological p38 MAPK inhibition, and in cell lines lacking STAT1s or the type I IFN receptor chain confirmed the role of MAPKKs and IRF7 in Tat-mediated modulation of ISGs and excluded the involvement of IFNs in this modulation. Tat interaction with the 2 MAPKK and IRF7 promoters in HIV-1-infected cells and the resulting persistent activation of ISGs, which include inflammatory cytokines and chemokines, can contribute to the increased immune activation that characterizes HIV infection.

  17. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    PubMed

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors.

  18. Early Signaling in Primary T Cells Activated by Antigen Presenting Cells Is Associated with a Deep and Transient Lamellal Actin Network

    PubMed Central

    Roybal, Kole T.; Mace, Emily M.; Mantell, Judith M.; Verkade, Paul; Orange, Jordan S.; Wülfing, Christoph

    2015-01-01

    Cellular signaling transduction critically depends on molecular interactions that are in turn governed by dynamic subcellular distributions of the signaling system components. Comprehensive insight into signal transduction requires an understanding of such distributions and cellular structures driving them. To investigate the activation of primary murine T cells by antigen presenting cells (APC) we have imaged more than 60 signaling intermediates during T cell stimulation with microscopy across resolution limits. A substantial number of signaling intermediates associated with a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell, as characterized in detail here. By mapping the more than 60 signaling intermediates onto the spatiotemporal features of cell biological structures, the lamellum and other ones previously described, we also define distinct spatial and temporal characteristics of T cell signal initiation, amplification, and core signaling in the activation of primary T cells by APCs. These characteristics differ substantially from ones seen when T cells are activated using common reductionist approaches. PMID:26237050

  19. Influence of the Tissue Microenvironment on Toll-Like Receptor Expression by CD11c+ Antigen-Presenting Cells Isolated from Mucosal Tissues▿

    PubMed Central

    Takenaka, Shunsuke; McCormick, Sarah; Safroneeva, Ekaterina; Xing, Zhou; Gauldie, Jack

    2009-01-01

    It is recognized that functional activities of antigen-presenting cells (APCs) in mucosal tissue sites differ from those of systemic APCs; however, it is unknown whether there are further differences between APC populations residing in different mucosal sites. In this study, we directly compared murine CD11c+ APCs isolated from colon, lung, and spleen and found that APCs isolated from these tissues differ considerably in Toll-like receptor (TLR) expression and responses to in vitro TLR ligand stimulation. We also provide evidence that tissue microenvironments dictate distinct patterns of TLR expression by CD11c+ APCs in different mucosal tissues. Moreover, CD11c+ cells isolated from different tissues have varied capacities to induce the development of T helper 1 (Th1), Th2, or regulatory CD4+ T cells. Thus, unique tissue microenvironments have a significant influence on determining TLR expression by CD11c+ cells that migrate to and reside in each mucosal tissue and are likely to modulate their functional activities. PMID:19776199

  20. Understanding the Impact of ErbB Activating Events and Signal Transduction on Antigen Processing and Presentation: MHC Expression as a Model

    PubMed Central

    Kersh, Anna E.; Sasaki, Maiko; Cooper, Lee A.; Kissick, Haydn T.; Pollack, Brian P.

    2016-01-01

    Advances in molecular pathology have changed the landscape of oncology. The ability to interrogate tissue samples for oncogene amplification, driver mutations, and other molecular alterations provides clinicians with an enormous level of detail about their patient’s cancer. In some cases, this information informs treatment decisions, especially those related to targeted anti-cancer therapies. However, in terms of immune-based therapies, it is less clear how to use such information. Likewise, despite studies demonstrating the pivotal role of neoantigens in predicting responsiveness to immune checkpoint blockade, it is not known if the expression of neoantigens impacts the response to targeted therapies despite a growing recognition of their diverse effects on immunity. To realize the promise of ‘personalized medicine’, it will be important to develop a more integrated understanding of the relationships between oncogenic events and processes governing anti-tumor immunity. One area of investigation to explore such relationships centers on defining how ErbB/HER activation and signal transduction influences antigen processing and presentation. PMID:27729860

  1. Stat6-Dependent Inhibition of Mincle Expression in Mouse and Human Antigen-Presenting Cells by the Th2 Cytokine IL-4

    PubMed Central

    Hupfer, Thomas; Schick, Judith; Jozefowski, Katrin; Voehringer, David; Ostrop, Jenny; Lang, Roland

    2016-01-01

    The C-type lectin receptors (CLRs) Mincle, Mcl, and Dectin-2 bind mycobacterial and fungal cell wall glycolipids and carbohydrates. Recently, we described that expression of these CLR is downregulated during differentiation of human monocytes to dendritic cells (DC) in the presence of GM-CSF and IL-4. Here, we demonstrate that the Th2 cytokine IL-4 specifically inhibits expression of Mincle, Mcl, and Dectin-2 in human antigen-presenting cells (APC). This inhibitory effect of IL-4 was observed across species, as murine macrophages and DC treated with IL-4 also downregulated these receptors. IL-4 blocked upregulation of Mincle and Mcl mRNA expression and cell surface protein by murine macrophages in response to the Mincle ligand Trehalose-6,6-dibehenate (TDB), whereas the TLR4 ligand LPS overcame inhibition by IL-4. Functionally, downregulation of Mincle expression by IL-4 was accompanied by reduced cytokine production upon stimulation with TDB. These inhibitory effects of IL-4 were dependent on the transcription factor Stat6. Together, our results show that the key Th2 cytokine IL-4 exerts a negative effect on the expression of Mincle and other Dectin-2 cluster CLR in mouse and human macrophages and DC, which may render these sentinel cells less vigilant for sensing mycobacterial and fungal ligands. PMID:27790218

  2. Role of antigen-presenting cells in activation of human T cells by the streptococcal M protein superantigen: requirement for secreted and membrane-associated costimulatory factors.

    PubMed Central

    Majumdar, G; Ohnishi, H; Tomai, M A; Geller, A M; Wang, B; Dockter, M E; Kotb, M

    1993-01-01

    The requirements for T-cell activation by the streptococcal superantigen (SAg), pepsin-extracted M protein from type 5 streptococci (pep M5), were studied by monitoring Ca2+ influx and cell proliferation. Cells from a pep M5-specific T-cell line showed no change in intracellular Ca2+ levels in response to pep M5 when added alone or with freshly isolated autologous antigen-presenting cells (APC). However, after being incubated with pep M5 overnight, the APC secreted soluble factors that together with pep M5 induced a marked increase in intracellular Ca2+ levels in pep M5-specific T cells or freshly isolated, purified T cells. Removal of the SAg from the overnight APC-derived supernatants resulted in loss of the Ca(2+)-mobilizing activity, which was restored within seconds of addition of SAg, suggesting that both the SAg and the soluble factors synergize to induce the Ca2+ influx. Induction of cell proliferation required additional signals inasmuch as the activated APC-derived supernatant failed to synergize with pep M5 to induce the proliferation of purified T cells and required the presence of phorbol myristate acetate for this activity. Metabolically inactive, fixed APC were impaired in their ability to present pep M5 to T cells. Presentation of pep M5 by fixed APC was, however, restored when the APC-derived soluble costimulatory factors were added to the culture. Our data suggest that pep M5-induced activation of T cells is dependent on APC-derived soluble factors and an APC membrane-associated costimulatory molecule(s). These interactions may be important in regulating the in vivo responses to M proteins, could contribute to the severity or progression of infections with Streptococcus pyogenes, and may influence the susceptibility of individuals to its associated nonsuppurative autoimmune sequelae. PMID:8423107

  3. Bacillus subtilis-specific poly-gamma-glutamic acid regulates development pathways of naive CD4(+) T cells through antigen-presenting cell-dependent and -independent mechanisms.

    PubMed

    Kim, Sunghoon; Yang, Jun Young; Lee, Kyuheon; Oh, Kyu Heon; Gi, Mia; Kim, Jung Mogg; Paik, Doo Jin; Hong, Seokmann; Youn, Jeehee

    2009-08-01

    Peripheral naive CD4(+) T cells selectively differentiate to type 1 T(h), type 2 T(h) and IL-17-producing T(h) (T(h)17) cells, depending on the priming conditions. Since these subsets develop antagonistically to each other to elicit subset-specific adaptive immune responses, balance between these subsets can regulate the susceptibility to diverse immune diseases. The present study was undertaken to determine whether poly-gamma-glutamic acid (gamma-PGA), an edible and safe exopolymer that is generated by microorganisms such as Bacillus subtilis, could modulate the development pathways of T(h) subsets. The presence of gamma-PGA during priming promoted the development of T(h)1 and T(h)17 cells but inhibited development of T(h)2 cells. gamma-PGA up-regulated the expression of T-bet and ROR-gammat, the master genes of T(h)1 and T(h)17 cells, respectively, whereas down-regulating the level of GATA-3, the master gene of T(h)2 cells. gamma-PGA induced the expression of IL-12p40, CD80 and CD86 in dendritic cells (DC) and macrophages in a Toll-like receptor-4-dependent manner, and the effect of gamma-PGA on T(h)1/T(h)2 development was dependent on the presence of antigen-presenting cells (APC). Furthermore, gamma-PGA-stimulated DC favored the polarization of naive CD4(+) T cells toward T(h)1 cells rather than T(h)2 cells. In contrast, gamma-PGA affected T(h)17 cell development, regardless of the presence or absence of APC. Thus, these data demonstrate that gamma-PGA has the potential to regulate the development pathways of naive CD4(+) T cells through APC-dependent and -independent mechanisms and to be applicable to treating T(h)2-dominated diseases.

  4. Immunobiotic Lactobacillus jensenii modulates the Toll-like receptor 4-induced inflammatory response via negative regulation in porcine antigen-presenting cells.

    PubMed

    Villena, Julio; Suzuki, Rie; Fujie, Hitomi; Chiba, Eriko; Takahashi, Takuya; Tomosada, Yohsuke; Shimazu, Tomoyuki; Aso, Hisashi; Ohwada, Shyuichi; Suda, Yoshihito; Ikegami, Shuji; Itoh, Hiroyuki; Alvarez, Susana; Saito, Tadao; Kitazawa, Haruki

    2012-07-01

    Previously, we demonstrated that Lactobacillus jensenii TL2937 attenuates the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial cells. In view of the critical importance of antigen-presenting cell (APC) polarization in immunoregulation, the objective of the present study was to examine the effect of strain TL2937 on the activation patterns of APCs from swine Peyer's patches (PPs). We demonstrated that direct exposure of porcine APCs to L. jensenii in the absence of inflammatory signals increased expression of interleukin-10 (IL-10) and transforming growth factor β in CD172a(+) APCs and caused them to display tolerogenic properties. In addition, pretreatment of CD172a(+) APCs with L. jensenii resulted in differential modulation of the production of pro- and anti-inflammatory cytokines in response to TLR4 activation. The immunomodulatory effect of strain TL2937 was not related to a downregulation of TLR4 but was related to an upregulation of the expression of three negative regulators of TLRs: single immunoglobulin IL-1-related receptor (SIGIRR), A20, and interleukin-1 receptor-associated kinase M (IRAK-M). Our results also indicated that TLR2 has an important role in the anti-inflammatory activity of L. jensenii TL2937, since anti-TLR2 antibodies blocked the upregulation of SIGIRR and IRAK-M in CD172a(+) APCs and the production of IL-10 in response to TLR4 activation. We performed, for the first time, a precise functional characterization of porcine APCs from PPs, and we demonstrated that CD172a(+) cells were tolerogenic. Our findings demonstrate that adherent cells and isolated CD172a(+) cells harvested from swine PPs were useful for in vitro study of the inflammatory responses in the porcine gut and the immunomodulatory effects of immunobiotic microorganisms.

  5. Defective antigen presentation by monocytes in ESRD patients not responding to hepatitis B vaccination: impaired HBsAg internalization and expression of ICAM-1 and HLA-DR/Ia molecules

    PubMed Central

    Barth, C.; Pollok, M.; Michałkiewicz, J.; Madaliński, K.; Maciejewski, J.; Baldamis, C. A.

    1995-01-01

    This study was undertaken to evaluate the monocyte function of uraemic non-responders to hepatitis B vaccination. Therefore, some parameters concerning antigen processing by monocytes (Mo) as antigen presenting cells (APC) were analysed. It was found that in uraemic non-responders, (1) the internalization of HBsAg by monocytes was significantly decreasjed—HBsAg complexed with specific IgG or as immune complex isolated from patients is better internalized compared with free HBsAg; (2) during antigen presentation the expression of adhesion (ICAM-1) and accessory (HLA-DR/Ia) molecules was significantly decreased in uraemic patients, especially in non-responders; and (3) impaired internalization of HBsAg as well as a decrease in ICAM-1 and HLA-DR/Ia expression, correlated well with the blunted proliferation of CD4+ T cells stimulated by autologous monocytes induced by HBsAg. PMID:18475616

  6. Proteomic analysis uncovers common effects of IFN-γ and IL-27 on the HLA class I antigen presentation machinery in human cancer cells

    PubMed Central

    Inglese, Elvira; Lavarello, Chiara; Pistillo, Maria Pia; Rigo, Valentina; Croce, Michela; Longo, Luca; Martini, Stefania; Vacca, Paola

    2016-01-01

    IL-27, a member of the IL-12-family of cytokines, has shown anti-tumor activity in several pre-clinical models due to anti-proliferative, anti-angiogenic and immune-enhancing effects. On the other hand, IL-27 demonstrated immune regulatory activities and inhibition of auto-immunity in mouse models. Also, we reported that IL-27, similar to IFN-γ, induces the expression of IL-18BP, IDO and PD-L1 immune regulatory molecules in human cancer cells. Here, a proteomic analysis reveals that IL-27 and IFN-γ display a broad overlap of functions on human ovarian cancer cells. Indeed, among 990 proteins modulated by either cytokine treatment in SKOV3 cells, 814 showed a concordant modulation by both cytokines, while a smaller number (176) were differentially modulated. The most up-regulated proteins were common to both IFN-γ and IL-27. In addition, functional analysis of IL-27-regulated protein networks highlighted pathways of interferon signaling and regulation, antigen presentation, protection from natural killer cell-mediated cytotoxicity, regulation of protein polyubiquitination and proteasome, aminoacid catabolism and regulation of viral protein levels. Importantly, we found that IL-27 induced HLA class I molecule expression in human cancer cells of different histotypes, including tumor cells showing very low expression. IL-27 failed only in a cancer cell line bearing a homozygous deletion in the B2M gene. Altogether, these data point out to a broad set of activities shared by IL-27 and IFN-γ, which are dependent on the common activation of the STAT1 pathway. These data add further explanation to the anti-tumor activity of IL-27 and also to its dual role in immune regulation. PMID:27683036

  7. Notch pathway plays a novel and critical role in regulating responses of T and antigen-presenting cells in aGVHD.

    PubMed

    Luo, Xiaodan; Xu, Lihua; Li, Yangqiu; Tan, Huo

    2017-04-01

    Graft-versus-host disease (GVHD) induced by host antigen-presenting cells (APCs) and donor-derived T cells remains the major limitation of allogeneic bone marrow transplantation (allo-BMT). Notch signaling pathway is a highly conserved cell-cell communication that is important in T cell development. Recently, Notch signaling pathway is reported to be involved in regulating GVHD. To investigate the role of Notch inhibition in modulating GVHD, we established MHC-mismatched murine allo-BMT model. We found that inhibition of Notch signaling pathway by γ-secretase inhibitor in vivo could reduce aGVHD, which was shown by the onset time of aGVHD, body weight, clinical aGVHD scores, pathology aGVHD scores, and survival. Inhibition of Notch signaling pathway by DAPT ex vivo only reduced pathology aGVHD scores in the liver and intestine and had no impact on the onset time and clinical aGVHD scores. We investigated the possible mechanism by analyzing the phenotype of host APCs and donor-derived T cells. Notch signaling pathway had a broad effect on both host APCs and donor-derived T cells. The expressions of CD11c, CD40, and CD86 as the markers of activated dendritic cells (DCs) were decreased. The proliferative response of CD8+ T cell decreased, while CD4(+) Notch-deprived T cells had preserved expansion with increased expressions of CD25 and Foxp3 as markers of regulatory T cells (Tregs). In conclusion, Notch inhibition may minimize aGVHD by decreasing proliferation and activation of DCs and CD8(+) T cells while preserving Tregs expansion.

  8. Toll-Like Receptor Ligand-Based Vaccine Adjuvants Require Intact MyD88 Signaling in Antigen-Presenting Cells for Germinal Center Formation and Antibody Production

    PubMed Central

    Mosaheb, Munir M.; Reiser, Michael L.; Wetzler, Lee M.

    2017-01-01

    Vaccines are critical in the fight against infectious diseases, and immune-stimulating adjuvants are essential for enhancing vaccine efficacy. However, the precise mechanisms of action of most adjuvants are unknown. There is an urgent need for customized and adjuvant formulated vaccines against immune evading pathogens that remain a risk today. Understanding the specific role of various cell types in adjuvant-induced protective immune responses is vital for an effective vaccine design. We have investigated the role of cell-specific MyD88 signaling in vaccine adjuvant activity in vivo, using Neisserial porin B (PorB), a TLR2 ligand-based adjuvant, compared with an endosomal TLR9 ligand (CpG) and toll-like receptor (TLR)-independent (alum, MF59) adjuvants. We found that intact MyD88 signaling is essential, separately, in all three antigen-presenting cell types [B cells, macrophages, and dendritic cells (DCs)] for optimal TLR ligand-based adjuvant activity. The role of MyD88 signaling in B cell and DC in vaccine adjuvant has been previously investigated. In this study, we now demonstrate that the immune response was also reduced in mice with macrophage-specific MyD88 deletion (Mac-MyD88−/−). We demonstrate that TLR-dependent adjuvants are potent inducers of germinal center (GC) responses, but GCs are nearly absent in Mac-MyD88−/− mice following immunization with TLR-dependent adjuvants PorB or CpG, but not with TLR-independent adjuvants MF59 or alum. Our findings reveal a unique and here-to-for unrecognized importance of intact MyD88 signaling in macrophages, to allow for a robust vaccine-induced immune responses when TLR ligand-based adjuvants are used. PMID:28316602

  9. Cross-Presentation of the Oncofetal Tumor Antigen 5T4 from Irradiated Prostate Cancer Cells--A Key Role for Heat-Shock Protein 70 and Receptor CD91.

    PubMed

    Salimu, Josephine; Spary, Lisa K; Al-Taei, Saly; Clayton, Aled; Mason, Malcolm D; Staffurth, John; Tabi, Zsuzsanna

    2015-06-01

    Immune responses contribute to the success of radiotherapy of solid tumors; however, the mechanism of triggering CD8(+) T-cell responses is poorly understood. Antigen cross-presentation from tumor cells by dendritic cells (DC) is a likely dominant mechanism to achieve CD8(+) T-cell stimulation. We established a cross-presentation model in which DCs present a naturally expressed oncofetal tumor antigen (5T4) from irradiated DU145 prostate cancer cells to 5T4-specific T cells. The aim was to establish which immunogenic signals are important in radiation-induced cross-presentation. Radiation (12 Gy) caused G2-M cell-cycle arrest and cell death, increased cellular 5T4 levels, high-mobility protein group-B1 (HMGB1) release, and surface calreticulin and heat-shock protein-70 (Hsp70) expression in DU145 cells. DCs phagocytosed irradiated tumor cells efficiently, followed by upregulation of CD86 on phagocytic DCs. CD8(+) 5T4-specific T cells, stimulated with these DCs, proliferated and produced IFNγ. Inhibition of HMGB1 or the TRIF/MyD88 pathway only had a partial effect on T-cell stimulation. Unlike previous investigators, we found no evidence that DCs carrying Asp299Gly Toll-like receptor-4 (TLR4) single-nucleotide polymorphism had impaired ability to cross-present tumor antigen. However, pretreatment of tumor cells with Hsp70 inhibitors resulted in a highly statistically significant and robust prevention of antigen cross-presentation and CD86 upregulation on DCs cocultured with irradiated tumor cells. Blocking the Hsp70 receptor CD91 also abolished cross-presentation. Together, the results from our study demonstrate that irradiation induces immunologically relevant changes in tumor cells, which can trigger CD8(+) T-cell responses via a predominantly Hsp70-dependent antigen cross-presentation process.

  10. Direct presentation regulates the magnitude of the CD8+ T cell response to cell-associated antigen through prolonged T cell proliferation.

    PubMed

    Tatum, Angela M; Watson, Alan M; Schell, Todd D

    2010-09-01

    The magnitude and complexity of Ag-specific CD8(+) T cell responses is determined by intrinsic properties of the immune system and extrinsic factors, such as vaccination. We evaluated mechanisms that regulate the CD8(+) T cell response to two distinct determinants derived from the same protein Ag, SV40 T Ag (T Ag), following immunization of C57BL/6 mice with T Ag-transformed cells. The results show that direct presentation of T cell determinants by T Ag-transformed cells regulates the magnitude of the CD8(+) T cell response in vivo but not the immunodominance hierarchy. The immunodominance hierarchy was reversed in a dose-dependent manner by addition of excess naive T cells targeting the subdominant determinant. However, T cell competition played only a minor role in limiting T cell accumulation under physiological conditions. We found that the magnitude of the T cell response was regulated by the ability of T Ag-transformed cells to directly present the T Ag determinants. The hierarchy of the CD8(+) T cell response was maintained when Ag presentation in vivo was restricted to cross-presentation, but the presence of T Ag-transformed cells capable of direct presentation dramatically enhanced T cell accumulation at the peak of the response. This enhancement was due to a prolonged period of T cell proliferation, resulting in a delay in T cell contraction. Our findings reveal that direct presentation by nonprofessional APCs can dramatically enhance accumulation of CD8(+) T cells during the primary response, revealing a potential strategy to enhance vaccination approaches.

  11. A critical role for Syk protein tyrosine kinase in Fc receptor-mediated antigen presentation and induction of dendritic cell maturation.

    PubMed

    Sedlik, Christine; Orbach, Daniel; Veron, Philippe; Schweighoffer, Edina; Colucci, Francesco; Gamberale, Romina; Ioan-Facsinay, Andrea; Verbeek, Sjef; Ricciardi-Castagnoli, Paola; Bonnerot, Christian; Tybulewicz, Victor L J; Di Santo, James; Amigorena, Sebastian

    2003-01-15

    Dendritic cells (DCs) are the only APCs capable of initiating adaptive immune responses. The initiation of immune responses requires that DCs 1) internalize and present Ags; and 2) undergo a differentiation process, called "maturation", which transforms DCs into efficient APCs. DC maturation may be initiated by the engagement of different surface receptors, including certain cytokine receptors (such as TNFR), Toll-like receptors, CD40, and FcRs. The early activation events that link receptor engagement and DC maturation are not well characterized. We found that FcR engagement by immune complexes induced the phosphorylation of Syk, a protein tyrosine kinase acting immediately downstream of FcRs. Syk was dispensable for DC differentiation in vitro and in vivo, but was strictly required for immune complexes internalization and subsequent Ag presentation to T lymphocytes. Importantly, Syk was also required for the induction of DC maturation and IL-12 production after FcR engagement, but not after engagement of other surface receptors, such as TNFR or Toll-like receptors. Therefore, protein tyrosine phosphorylation by Syk represents a novel pathway for the induction of DC maturation.

  12. Transcutaneous antigen delivery system

    PubMed Central

    Lee, Mi-Young; Shin, Meong-Cheol; Yang, Victor C.

    2013-01-01

    Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy. [BMB Reports 2013; 46(1): 17-24] PMID:23351379

  13. Vector-primed mice display hypo-responsiveness to foreign antigen presented by recombinant Salmonella regardless of the route of delivery.

    PubMed

    Attridge, Stephen R; Vindurampulle, Christofer J

    2005-01-01

    Our previous studies have shown that mice which have been orally primed with an attenuated Salmonella vector [S. enterica serovar Stanley] are hypo-responsive to foreign antigens later delivered orally by the same vector strain, responding with significantly impaired serum and intestinal antibody responses compared with those seen in unprimed controls. Initial vector priming of the gut-associated lymphoid tissue (GALT) is likely to result in impaired persistence of recombinant Salmonella later administered orally. Delivery of recombinant bacteria by the intra-peritoneal or intra-nasal route, to avoid exposure to a primed GALT, did not allow vector-primed recipients to mount normal antibody responses to the foreign pilus protein K88. The negative impact of vector priming could be largely overcome, however, if mice were exposed to the foreign protein just prior to priming with the vector strain. Using this strategy, vector-primed mice displayed normal gut IgA and intermediate serum IgG responses to K88 following oral administration of recombinant Salmonella. Our findings are compatible with the concept of epitopic suppression, in which failure to respond to the foreign vaccine antigen reflects the clonal dominance of B cells specific for epitopes associated with the vector strain.

  14. Costimulator B7-1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor alpha leads to autoimmunity in transgenic mice.

    PubMed Central

    Guerder, S; Picarella, D E; Linsley, P S; Flavell, R A

    1994-01-01

    Tolerance to peripheral antigens is thought to result from the inability of parenchymal tissue to stimulate T cells--an inability that is believed to relate to the lack of expression of the costimulatory signal(s) required for T-cell activation. To test this model, we generated transgenic mice expressing costimulatory molecule B7-1 on the B cells of the pancreas. We find that islets from these transgenic mice are immunogenic for naive T cells in vitro and in vivo. Nonetheless, mice expressing the costimulator B7-1 specifically on beta cells do not develop diabetes, suggesting that expression of the B7-1 costimulator is not sufficient to abrogate the tolerance to peripheral antigens. We have reported that tumor necrosis factor alpha subunit (TNF-alpha) expressed by beta cells leads to a local inflammation but no islet destruction. Strikingly, however, the combination of a local inflammation due to the expression of the cytokine TNF-alpha and the expression of B7-1 results in tissue destruction and diabetes. Images PMID:7515187

  15. The class I myosin Myo1e regulates TLR4-triggered macrophage spreading, chemokine release and antigen presentation via MHC class II

    PubMed Central

    Wenzel, Jens; Ouderkirk, Jessica L.; Krendel, Mira; Lang, Roland

    2014-01-01

    TLR-mediated recognition of microbial danger induces substantial changes in macrophage migration, adherence and phagocytosis. Recently, we described the LPS-regulated phosphorylation of many cytoskeleton-associated proteins by phosphoproteomics. The functional role of these cytoskeletal and motor proteins in innate immune cell responses is largely unexplored. Here, we first identified both long-tailed class I myosins Myo1e and Myo1f as important contributors to LPS-triggered macrophage spreading. Mouse bone marrow-derived macrophages and dendritic cells (DCs) deficient in Myo1e selectively secreted increased amounts of the chemokine CCL2. In addition, the cell surface expression of MHC class II (MHC-II) on both cell types was reduced in the absence of Myo1e. However, transcriptional changes in CCL2 and MHC-II were not observed in the absence of Myo1e, indicating that Myo1e regulates specific intracellular transport processes. The capacity of macrophages and DCs lacking Myo1e to stimulate antigen-specific CD4+ T-cell proliferation was impaired, consistent with the reduced MHC-II surface protein levels. Surprisingly, in Myo1e-deficient DCs, the proteolytic cleavage of endocytosed antigen was also increased. Together, our results provide evidence for a non-redundant function of the motor protein Myo1e in the regulation of TLR4-controlled, cytoskeleton-associated functional properties of macrophages and DCs, and in induction of a full MHC-II-restricted adaptive immune response. PMID:25263281

  16. Naturally processed peptides spanning the HPA-1a polymorphism are efficiently generated and displayed from platelet glycoprotein by HLA-DRB3*0101-positive antigen-presenting cells.

    PubMed

    Anani Sarab, Gholamreza; Moss, Michael; Barker, Robert N; Urbaniak, Stanislaw J

    2009-08-27

    In neonatal alloimmune thrombocytopenia, almost all human platelet antigen (HPA)-1b1b mothers who produce anti-HPA-1a antibody through carrying an HPA-1a fetus are human histocompatibility leukocyte antigen (HLA)-DRB3*0101 positive. It is predicted that the HPA-1a Leu(33) polymorphism forms part of an HLA-DRB3*0101-restricted T-helper epitope, and acts as an anchor residue for binding this class II molecule. However, it is not known whether any corresponding peptides are naturally processed and presented from platelet glycoprotein. In this study, peptides displayed by a homozygous HLA-DRB3*0101 antigen-presenting cell line were identified after pulsing with recombinant HPA-1a (Leu(33) plexin-semaphorin-integrin domain). The peptides were eluted from HLA-DR molecules, fractionated by high performance liquid chromatography, and analyzed by tandem mass spectrometry. A "nested set" of naturally presented HPA-1a-derived peptides, each containing the Trp(25)-Leu(33) core epitope, was identified, with the most abundant member being the 16-mer Met(22)-Arg(37). These peptides may provide the basis for novel treatments to tolerize the corresponding T-helper response in women at risk of neonatal alloimmune thrombocytopenia.

  17. Comparison of immune responses induced by rat RT-1 antigens presented as inserts into liposomes, as protein micelles and as intact cells.

    PubMed

    Hedlund, G; Jansson, B; Sjögren, H O

    1984-09-01

    Partially purified rat transplantation antigens (RT-1) were inserted into liposomes composed of various types of lipids and used for immunization. The immune responses induced by the liposomes were compared with responses induced by RT-1 as protein micelles, alone or emulsified in Freund's incomplete adjuvant, or intact cells. Liposomes gave generally a higher humoral response than protein micelles. Each type of RT-1 immunization gave a particular pattern of specific Ig (sub)class responses. Freund's incomplete adjuvant was not only lacking in potentiating effect on low protein dose immunization but had a significant inhibitory effect. Besides intact cells only distearoyl-phosphatidylcholine liposomes had the potential to induce a cell-mediated cytotoxic response.

  18. Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation.

    PubMed

    Lee, Sung-Jong; Song, Liwen; Yang, Ming-Chieh; Mao, Chih-Ping; Yang, Benjamin; Yang, Andrew; Jeang, Jessica; Peng, Shiwen; Wu, T-C; Hung, Chien-Fu

    2015-03-24

    Immunotherapy has emerged as a promising treatment strategy for the control of HPV-associated malignancies. Various therapeutic HPV vaccines have elicited potent antigen-specific CD8+ T cell mediated antitumor immune responses in preclinical models and are currently being tested in several clinical trials. Recent evidence indicates the importance of local immune activation, and higher number of immune cells in the site of lesion correlates with positive prognosis. Granulocyte macrophage colony-stimulating factor (GMCSF) has been reported to posses the ability to induce migration of antigen presentation cells and CD8+ T cells. Therefore, in the current study, we employ a combination of systemic therapeutic HPV DNA vaccination with local GMCSF application in the TC-1 tumor model. We show that intramuscular vaccination with CRT/E7 DNA followed by GMCSF intravaginal administration effectively controls cervicovaginal TC-1 tumors in mice. Furthermore, we observe an increase in the accumulation of E7-specific CD8+ T cells and dendritic cells in vaginal tumors following the combination treatment. In addition, we show that GMCSF induces activation and maturation in dendritic cells and promotes antigen cross-presentation. Our results support the clinical translation of the combination treatment of systemic therapeutic vaccination followed by local GMCSF administration as an effective strategy for tumor treatment.

  19. Interleukin-19: A Constituent of the Regulome That Controls Antigen Presenting Cells in the Lungs and Airway Responses to Microbial Products

    PubMed Central

    Hoffman, Carol; Park, Sung-Hyun; Daley, Eleen; Emson, Claire; Louten, Jennifer; Sisco, Maureen; de Waal Malefyt, Rene; Grunig, Gabriele

    2011-01-01

    Background Interleukin (IL)-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+) alveolar macrophages and lung dendritic cells. Methodology/Principal Findings IL-19-deficient (IL-19-/-) mice were studied at baseline (naïve) and following intranasal challenge with microbial products, or recombinant cytokines. Naïve IL-19-/- mixed background mice had a decreased percentage of CD11c+ cells in the bronchoalveolar-lavage (BAL) due to the deficiency in IL-19 and a trait inherited from the 129-mouse strain. BAL CD11c+ cells from fully backcrossed IL-19-/- BALB/c or C57BL/6 mice expressed significantly less Major Histocompatibility Complex class II (MHCII) in response to intranasal administration of lipopolysaccharide, Aspergillus antigen, or IL-13, a pro-allergic cytokine. Neurogenic-locus-notch-homolog-protein-2 (Notch2) expression by lung monocytes, the precursors of BAL CD11c+ cells, was dysregulated: extracellular Notch2 was significantly decreased, transmembrane/intracellular Notch2 was significantly increased in IL-19-/- mice relative to wild type. Instillation of recombinant IL-19 increased extracellular Notch2 expression and dendritic cells cultured from bone marrow cells in the presence of IL-19 showed upregulated extracellular Notch2. The CD205 positive subset among the CD11c+ cells was 3-5-fold decreased in the airways and lungs of naïve IL-19-/- mice relative to wild type. Airway inflammation and histological changes in the lungs were ameliorated in IL-19-/- mice challenged with Aspergillus antigen that induces T lymphocyte-dependent allergic inflammation but not in IL-19-/- mice challenged with lipopolysaccharide or IL-13. Conclusions/Significance Because MHCII is the molecular platform that displays peptides to T lymphocytes and Notch2

  20. Capability Disillusionment

    DTIC Science & Technology

    2011-08-01

    Defense AT&L: July–August 2011 22 Capability Disillusionment Cochrane is an operations research analyst and has worked for the past 6 years at the... Disillusionment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...unsup- ported by either academic investigation or practical utility. The definition of “capability” in the literature suggests that capabilities are

  1. Antigen specificity of invariant natural killer T-cells.

    PubMed

    Birkholz, Alysia M; Kronenberg, Mitchell

    2015-12-01

    Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.

  2. Endogenous antigen presentation by autoantigen-transfected Epstein-Barr virus-lymphoblastoid cells. I. Generation of human thyroid peroxidase-reactive T cells and their T cell receptor repertoire.

    PubMed Central

    Martin, A; Magnusson, R P; Kendler, D L; Concepcion, E; Ben-Nun, A; Davies, T F

    1993-01-01

    To develop a model for endogenous thyroid autoantigen presentation, we transfected EBV-transformed B lymphoblastoid cell lines (EBV-LCL), established from patients with autoimmune thyroid disease and normal controls, with cDNA for the human thyroid autoantigen thyroid peroxidase (hTPO). hTPO-antigen presentation to patient peripheral blood T cells was demonstrated after stimulation in vitro for 7 d with irradiated hTPO-transfected or untransfected autologous EBV-LCL. Anti-hTPO-reactive T cells were subsequently cloned in the presence of irradiated, autologous hTPO-transfected EBV-LCL and IL-2.10 T cell-cloned lines exhibited specific hTPO-induced proliferation (stimulation indices of 2.1-7.9) towards autologous hTPO-transfected EBV-LCL, and were subjected to human T cell receptor (hTCR) V gene analysis, using the PCR for the detection of V alpha and V beta hTcR gene families. The results indicated a preferential use of hTCR V alpha 1 and/or V alpha 3 in 9 of the 10 lines. In contrast, hTCR V beta gene family use was more variable. These data demonstrate a model for the endogenous presentation of human thyroid peroxidase in the absence of other thyroid specific antigens. The high frequency of antigen-specific T cells obtained from PBMC using this technique will facilitate further studies at both the functional and hTCR V gene level. Images PMID:7682574

  3. Type 1 Diabetes and NKT Cells: A Report on the 3rd International Workshop on NKT Cells and CD1-Mediated Antigen Presentation, September 2004, Heron Island, QLD, Australia

    PubMed Central

    Fletcher, Julie M.; Jordan, Margaret A.; Baxter, Alan G.

    2004-01-01

    NKT cells play a major role in regulating the vigor and character of a broad range of immune responses. Defects in NKT cell numbers and function have been associated with type 1 diabetes, especially in the NOD mouse model. The 3rd International Workshop on NKT Cells and CD1-Mediated Antigen Presentation provided an opportunity for researchers in the field of NKT cell biology to discuss their latest results, many of which have direct relevance to understanding the etiology and pathogenesis of diabetes. PMID:17491677

  4. Engineering Capabilities and Partnerships

    NASA Technical Reports Server (NTRS)

    Poulos, Steve

    2010-01-01

    This slide presentation reviews the engineering capabilities at Johnson Space Center, The presentation also reviews the partnerships that have resulted in successfully designed and developed projects that involved commercial and educational institutions.

  5. The Neck Region of the C-type Lectin DC-SIGN Regulates Its Surface Spatiotemporal Organization and Virus-binding Capacity on Antigen-presenting Cells*

    PubMed Central

    Manzo, Carlo; Torreno-Pina, Juan A.; Joosten, Ben; Reinieren-Beeren, Inge; Gualda, Emilio J.; Loza-Alvarez, Pablo; Figdor, Carl G.; Garcia-Parajo, Maria F.; Cambi, Alessandra

    2012-01-01

    The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and role in viral binding remain enigmatic. By combining biochemical and advanced biophysical techniques, including optical superresolution and single particle tracking, we demonstrate that DC-SIGN intrinsic nanoclustering strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian diffusion on the cell membrane. Truncation of the extracellular neck region, known to abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity on nanocluster density and spatial distribution confers broader binding capabilities to DC-SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, driven by intermolecular interactions between the neck regions, and receptor diffusion to provide DC-SIGN with the exquisite ability to dock pathogens at the virus length scale. Insight into how virus receptors are organized prior to virus binding and how they assemble into functional platforms for virus docking is helpful to develop novel strategies to prevent virus entry and infection. PMID:23019323

  6. A review of atomic clock technology, the performance capability of present spaceborne and terrestrial atomic clocks, and a look toward the future

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.

    1989-01-01

    Clocks have played a strong role in the development of general relativity. The concept of the proper clock is presently best realized by atomic clocks, whose development as precision instruments has evolved very rapidly in the last decades. To put a historical prospective on this progress since the year AD 1000, the time stability of various clocks expressed in terms of seconds of time error over one day of operation is shown. This stability of operation must not be confused with accuracy. Stability refers to the constancy of a clock operation as compared to that of some other clocks that serve as time references. Accuracy, on the other hand, is the ability to reproduce a previously defined frequency. The issues are outlined that must be considered when accuracy and stability of clocks and oscillators are studied. In general, the most widely used resonances result from the hyperfine interaction of the nuclear magnetic dipole moment and that of the outermost electron, which is characteristic of hydrogen and the alkali atoms. During the past decade hyperfine resonances of ions have also been used. The principal reason for both the accuracy and the stability of atomic clocks is the ability of obtaining very narrow hyperfine transition resonances by isolating the atom in some way so that only the applied stimulating microwave magnetic field is a significant source of perturbation. It is also important to make resonance transitions among hyperfine magnetic sublevels where separation is independent, at least to first order, of the magnetic field. In the case of ions stored in traps operating at high magnetic fields, one selects the trapping field to be consistent with a field-independent transition of the trapped atoms.

  7. Antigen-Presenting Human γδ T Cells Promote Intestinal CD4(+) T Cell Expression of IL-22 and Mucosal Release of Calprotectin.

    PubMed

    Tyler, Christopher J; McCarthy, Neil E; Lindsay, James O; Stagg, Andrew J; Moser, Bernhard; Eberl, Matthias

    2017-03-22

    The cytokine IL-22 plays a critical role in mucosal barrier defense, but the mechanisms that promote IL-22 expression in the human intestine remain poorly understood. As human microbe-responsive Vγ9/Vδ2 T cells are abundant in the gut and recognize microbiota-associated metabolites, we assessed their potential to induce IL-22 expression by intestinal CD4(+) T cells. Vγ9/Vδ2 T cells with characteristics of APCs were generated from human blood and intestinal organ cultures, then cocultured with naive and memory CD4(+) T cells obtained from human blood or the colon. The potency of blood and intestinal γδ T-APCs was compared with that of monocytes and dendritic cells, by assessing CD4(+) T cell phenotypes and proliferation as well as cytokine and transcription factor profiles. Vγ9/Vδ2 T cells in human blood, colon, and terminal ileum acquired APC functions upon microbial activation in the presence of microenvironmental signals including IL-15, and were capable of polarizing both blood and colonic CD4(+) T cells toward distinct effector fates. Unlike monocytes or dendritic cells, gut-homing γδ T-APCs employed an IL-6 independent mechanism to stimulate CD4(+) T cell expression of IL-22 without upregulating IL-17. In human intestinal organ cultures, microbial activation of Vγ9/Vδ2 T cells promoted mucosal secretion of IL-22 and ICOSL/TNF-α-dependent release of the IL-22 inducible antimicrobial protein calprotectin without modulating IL-17 expression. In conclusion, human γδ T-APCs stimulate CD4(+) T cell responses distinct from those induced by myeloid APCs to promote local barrier defense via mucosal release of IL-22 and calprotectin. Targeting of γδ T-APC functions may lead to the development of novel gut-directed immunotherapies and vaccines.

  8. XRCF Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)

    2001-01-01

    The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.

  9. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells.

    PubMed

    Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha

    2012-04-15

    Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.

  10. The central repeat domain 1 of Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) prevents cis MHC class I peptide presentation

    SciTech Connect

    Kwun, Hyun Jin; Ramos da Silva, Suzane; Qin Huilian; Ferris, Robert L.; Tan Rusung; Chang Yuan; Moore, Patrick S.

    2011-04-10

    KSHV LANA1, a latent protein expressed during chronic infection to maintain a viral genome, inhibits major histocompatibility complex class I (MHC I) peptide presentation in cis as a means of immune evasion. Through deletional cloning, we localized this function to the LANA1 central repeat 1 (CR1) subregion. Other CR subregions retard LANA1 translation and proteasomal processing but do not markedly inhibit LANA1 peptide processing by MHC I. Inhibition of proteasomal processing ablates LANA1 peptide presentation. Direct expression of LANA1 within the endoplasmic reticulum (ER) overcomes CR1 inhibition suggesting that CR1 acts prior to translocation of cytoplasmic peptides into the ER. By physically separating CR1 from other subdomains, we show that LANA1 evades MHC I peptide processing by a mechanism distinct from other herpesviruses including Epstein-Barr virus (EBV). Although LANA1 and EBV EBNA1 are functionally similar, they appear to use different mechanisms to evade host cytotoxic T lymphocyte surveillance.

  11. The highly antigenic 53/25 kDa Taenia solium protein fraction with cathepsin-L like activity is present in the oncosphere/cysticercus and induces non-protective IgG antibodies in pigs.

    PubMed

    Zimic, Mirko; Pajuelo, Mónica; Gilman, Robert H; Gutiérrez, Andrés H; Rueda, Luis D; Flores, Myra; Chile, Nancy; Verástegui, Manuela; Gonzalez, Armando; García, Héctor H; Sheen, Patricia

    2012-01-15

    Cathepsin L-like proteases are secreted by several parasites including Taenia solium. The mechanism used by T. solium oncospheres to degrade and penetrate the intestine and infect the host is incompletely understood. It is assumed that intestinal degradation is driven by the proteolytic activity of enzymes secreted by the oncosphere. Blocking the proteolytic activity by an antibody response would prevent the oncosphere penetration and further infection. Serine and cysteine proteases including chymotrypsin, trypsin, elastase, and cathepsin L, are secreted by T. solium and Taenia saginata oncospheres when cultured in vitro, being potential vaccine candidates. However, the purification of a sufficient quantity of proteases secreted by oncospheres to conduct a vaccine trial is costly and lengthy. A 53/25 kDa cathepsin L-like fraction partially purified from T. solium cyst fluid was described previously as an important antigen for immunodiagnostics. In this study we found that this antigen is present in the T. solium oncosphere and is also secreted by the cysticercus. This protein fraction was tested for its ability to protect pigs against an oral challenge with T. solium oncospheres in a vaccine trial. IgG antibodies against the 53/25 kDa cathepsin L-like protein fraction were elicited in the vaccinated animals but did not confer protection.

  12. Detection of aberrant transcription of major histocompatibility complex class II antigen presentation genes in chronic lymphocytic leukaemia identifies HLA-DOA mRNA as a prognostic factor for survival.

    PubMed

    Souwer, Yuri; Chamuleau, Martine E D; van de Loosdrecht, Arjan A; Tolosa, Eva; Jorritsma, Tineke; Muris, Jettie J F; Dinnissen-van Poppel, Marion J; Snel, Sander N; van de Corput, Lisette; Ossenkoppele, Gert J; Meijer, Chris J L M; Neefjes, Jacques J; Marieke van Ham, S

    2009-05-01

    In human B cells, effective major histocompatibility complex (MHC) class II-antigen presentation depends not only on MHC class II, but also on the invariant chain (CD74 or Ii), HLA-DM (DM) and HLA-DO (DO), the chaperones regulating the antigen loading process of MHC class II molecules. We analysed immediate ex vivo expression of HLA-DR (DR), CD74, DM and DO in B cell chronic lymphocytic leukaemia (B-CLL). Real-time reverse transcription polymerase chain reaction demonstrated a highly significant upregulation of DRA, CD74, DMB, DOA and DOB mRNA in purified malignant cells compared to B cells from healthy donors. The increased mRNA levels were not translated into enhanced protein levels but could reflect aberrant transcriptional regulation. Indeed, upregulation of DRA, DMB, DOA and DOB mRNA correlated with enhanced expression of class II transactivator (CIITA). In-depth analysis of the various CIITA transcripts demonstrated a significant increased activity of the interferon-gamma-inducible promoter CIITA-PIV in B-CLL. Comparison of the aberrant mRNA levels with clinical outcome identified DOA mRNA as a prognostic indicator for survival. Multivariate analysis revealed that the prognostic value of DOA mRNA was independent of the mutational status of the IGHV genes. Thus, aberrant transcription of DOA forms a novel and additional prognostic indicator for survival in B-CLL.

  13. Increased antigen presentation but impaired T cells priming after upregulation of interferon-beta induced by lipopolysaccharides is mediated by upregulation of B7H1 and GITRL.

    PubMed

    Wang, Fang; Wang, Yan Yan; Li, Juan; You, Xiang; Qiu, Xin Hui; Wang, Yi Nan; Gao, Feng Guang

    2014-01-01

    Dendritic cells are able to present Ag-derived peptides on MHC class I and II molecules and induce T cells priming. Lipopolysaccharides (LPS), an activator of Toll-like 4 receptor (TLR4) signaling, has been demonstrated to facilitate Ag-presentation, up-regulate surface molecules expression but impair T cells priming. In this study, we investigated the effect of LPS on nicotine-enhanced DCs-dependent T cells priming and the mechanisms of LPS orchestrating the immunosuppressive program. We could demonstrate that the treatment with LPS resulted in increased surface molecules expression, enhanced Ag-presentation, up-regulated release of TGF-beta, TNF-alpha, IL-6, and IFN-beta. Concomititantly, the upregulation of IFN-beta in DCs induces the up-regulation of coinhibitory molecules B7H1 and GITRL, which cause an impaired activation of naïve Ag-specific T cells and the induction of T cell tolerance by enhancing B7H1-PD-1 interactions and promoting GITRL-GITL facilitated Treg generation, respectively. These data provide a mechanistic basis for the immunomodulatory action of IFN-beta which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune response and persistent infection.

  14. GM-CSF-neuroantigen fusion proteins reverse experimental autoimmune encephalomyelitis and mediate tolerogenic activity in adjuvant-primed environments: association with inflammation-dependent, inhibitory antigen presentation.

    PubMed

    Islam, S M Touhidul; Curtis, Alan D; Taslim, Najla; Wilkinson, Daniel S; Mannie, Mark D

    2014-09-01

    Single-chain fusion proteins comprised of GM-CSF and neuroantigen (NAg) are potent, NAg-specific inhibitors of experimental autoimmune encephalomyelitis (EAE). An important question was whether GMCSF-NAg tolerogenic vaccines retained inhibitory activity within inflammatory environments or were contingent upon steady-state conditions. GM-CSF fused to the myelin oligodendrocyte glycoprotein MOG35-55 peptide (GMCSF-MOG) reversed established paralytic disease in both passive and active models of EAE in C57BL/6 mice. The fusion protein also reversed EAE in CD4-deficient and B cell-deficient mice. Notably, GMCSF-MOG inhibited EAE when coinjected adjacent to the MOG35-55/CFA emulsion. GMCSF-MOG also retained dominant inhibitory activity when directly emulsified with MOG35-55 in the CFA emulsion in both C57BL/6 or B cell-deficient models of EAE. Likewise, when combined with proteolipid protein 139-151 in CFA, GM-CSF fused to proteolipid protein 139-151 peptide inhibited EAE in SJL mice. When deliberately emulsified in CFA with the NAg, GMCSF-NAg inhibited EAE even though NAg was present at >30-fold molar excess. In vitro studies revealed that the GM-CSF domain of GMCSF-MOG stimulated growth and differentiation of inflammatory dendritic cells (DC) and simultaneously targeted the MOG35-55 domain for enhanced presentation by these DC. These inflammatory DC presented MOG35-55 to MOG-specific T cells by an inhibitory mechanism that was mediated in part by IFN-γ signaling and NO production. In conclusion, GMCSF-NAg was tolerogenic in CFA-primed proinflammatory environments by a mechanism associated with targeted Ag presentation by inflammatory DC and an inhibitory IFN-γ/NO pathway. The inhibitory activity of GMCSF-NAg in CFA-primed lymphatics distinguishes GMCSF-NAg fusion proteins as a unique class of inflammation-dependent tolerogens that are mechanistically distinct from naked peptide or protein-based tolerogens.

  15. CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses.

    PubMed

    Hutten, Tim J A; Thordardottir, Soley; Fredrix, Hanny; Janssen, Lisanne; Woestenenk, Rob; Tel, Jurjen; Joosten, Ben; Cambi, Alessandra; Heemskerk, Mirjam H M; Franssen, Gerben M; Boerman, Otto C; Bakker, Lex B H; Jansen, Joop H; Schaap, Nicolaas; Dolstra, Harry; Hobo, Willemijn

    2016-10-01

    Potent immunotherapies are urgently needed to boost antitumor immunity and control disease in cancer patients. As dendritic cells (DCs) are the most powerful APCs, they are an attractive means to reinvigorate T cell responses. An appealing strategy to use the effective Ag processing and presentation machinery, T cell stimulation and cross-talk capacity of natural DC subsets is in vivo tumor Ag delivery. In this context, endocytic C-type lectin receptors are attractive targeting molecules. In this study, we investigated whether CLEC12A efficiently delivers tumor Ags into human DC subsets, facilitating effective induction of CD4(+) and CD8(+) T cell responses. We confirmed that CLEC12A is selectively expressed by myeloid cells, including the myeloid DC subset (mDCs) and the plasmacytoid DC subset (pDCs). Moreover, we demonstrated that these DC subsets efficiently internalize CLEC12A, whereupon it quickly translocates to the early endosomes and subsequently routes to the lysosomes. Notably, CLEC12A Ab targeting did not negatively affect DC maturation or function. Furthermore, CLEC12A-mediated delivery of keyhole limpet hemocyanin resulted in enhanced proliferation and cytokine secretion by keyhole limpet hemocyanin-experienced CD4(+) T cells. Most importantly, CLEC12A-targeted delivery of HA-1 long peptide resulted in efficient Ag cross-presentation by mDCs and pDCs, leading to strong ex vivo activation of HA-1-specific CD8(+) T cells of patients after allogeneic stem cell transplantation. Collectively, these data indicate that CLEC12A is an effective new candidate with great potential for in vivo Ag delivery into mDCs and pDCs, thereby using the specialized functions and cross-talk capacity of these DC subsets to boost tumor-reactive T cell immunity in cancer patients.

  16. Application of surface-linked liposomal antigens to the development of vaccines that induce both humoral and cellular immunity.

    PubMed

    Uchida, Tetsuya; Taneichi, Maiko

    2014-01-01

    The first characteristic identified in surface-linked liposomal antigens was the ability to induce antigen-specific, IgE-selective unresponsiveness. These results remained consistent even when different coupling procedures were employed for antigens with liposomes or for liposomes with different lipid components. The potential usefulness of surface-linked liposomal antigens for application to vaccine development was further investigated. During this investigation, a significant difference was observed in the recognition of liposomal antigens by antigen-presenting cells between liposomes with different lipid components, and this difference correlated closely with the adjuvant activity of liposomes. In addition to this "quantitative" difference between liposomes with differential lipid components, a "qualitative" difference (i.e., a differential ability to induce cross-presentation) was observed between liposomes with different lipid components. Therefore, by utilizing the ability to induce cross-presentation, surface-linked lipos