Science.gov

Sample records for antigen presentation capability

  1. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability

    SciTech Connect

    Rivera, Julie A.; McGuire, Travis C. . E-mail: mcguiret@vetmed.wsu.edu

    2005-05-10

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV{sub WSU5} infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with {sup 51}Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection.

  2. Presentation of hepatocellular antigens

    PubMed Central

    Grakoui, Arash; Crispe, Ian Nicholas

    2016-01-01

    The liver is an organ in which antigen-specific T-cell responses manifest a bias toward immune tolerance. This is clearly seen in the rejection of allogeneic liver transplants, and multiple other phenomena suggest that this effect is more general. These include tolerance toward antigens introduced via the portal vein, immune failure to several hepatotropic viruses, the lack of natural liver-stage immunity to malaria parasites, and the frequent metastasis of cancers to the liver. Here we review the mechanisms by which T cells engage with hepatocellular antigens, the context in which such encounters occur, and the mechanisms that act to suppress a full T-cell response. While many mechanisms play a role, we will argue that two important processes are the constraints on the cross-presentation of hepatocellular antigens, and the induction of negative feedback inhibition driven by interferons. The constant exposure of the liver to microbial products from the intestine may drive innate immunity, rendering the local environment unfavorable for specific T-cell responses through this mechanism. Nevertheless, tolerance toward hepatocellular antigens is not monolithic and under specific circumstances allows both effective immunity and immunopathology. PMID:26924525

  3. A functional recombinant single-chain T cell receptor fragment capable of selectively targeting antigen-presenting cells.

    PubMed

    Epel, Malka; Ellenhorn, Joshua D; Diamond, Don J; Reiter, Yoram

    2002-11-01

    Specificity in the immune system is dictated and regulated by specific recognition of peptide/major histocompatibility complexes (MHC) by the T cell receptor (TCR). Such peptide/MHC complexes are a desirable target for novel approaches in immunotherapy because of their highly restricted fine specificity. Recently a potent anti-human p53 CD8(+) cytotoxic T lymphocyte (CTL) response has been developed in HLA-A2 transgenic mice after immunization with peptides corresponding to HLA-A2 motifs from human p53. An alpha/beta T-cell receptor was cloned from such CTL which exhibited a moderately high affinity to the human p53(149-157) peptide. In this report, we investigated the possibility of using a recombinant tumor-specific TCR for antigen-specific elimination of cells that express the specific MHC-peptide complex. To this end, we constructed a functional single-chain Fv fragment from the cloned TCR and fused it to a very potent cytotoxic molecule, a truncated form of Pseudomonas exotoxin A (PE38). The p53 TCR scFv-P38 fusion protein was generated by in vitro refolding from bacterially-expressed inclusion bodies, and was found to be functional by its ability to bind antigen-presenting cells (APC) which express the specific p53-derived peptide. Moreover, we have shown that the p53-specific TCR scFv-PE38 molecule specifically kills APC in a peptide-dependent manner. These results represent the first time that a TCR-derived recombinant single-chain Fv fragment has been used as a targeting moiety to deliver a cytotoxic effector molecule to cells and has been able to mediate the efficient killing of the particular cell population that expresses the specific MHC/peptide complex. Similarly to antibody-based targeting approaches, TCR with tumor cell specificity represent attractive candidates for generating new, very specific targeting moieties for various modes of cancer immunotherapy. PMID:12384808

  4. A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma elicits CD8+ T cells against the wild-type tumor: correlation with antigen presentation capability

    PubMed Central

    1992-01-01

    To be recognized by CD8+ T lymphocytes, target cells must process and present peptide antigens in the context of major histocompatibility complex (MHC) class I molecules. The nonimmunogenic, low class I- expressing, methylcholanthrene (MCA)-induced murine sarcoma cell line, MCA 101, is a poor presenter of endogenously generated viral antigens to specific CD8+ T lymphocytes and cannot be used to generate tumor infiltrating lymphocytes (TIL). Since interferon gamma (IFN-gamma) has been shown to upregulate three sets of molecules important for antigen processing and presentation, we retrovirally transduced wild-type MCA 101 (101.WT) tumor with the mIFN-gamma cDNA to create the 101.NAT cell line. Unlike 101.WT, some clones of retrovirally transduced 101.NAT tumor expressed high levels of class I, and could be used to generate CD8+ TIL. More importantly, these TIL were therapeutic in vivo against established pulmonary metastases from the wild-type tumor. Although not uniformly cytotoxic amongst several separate cultures, these TIL did specifically release cytokines (IFN-gamma and tumor necrosis factor- alpha) in response to 101.WT targets. 101.WT's antigen presentation deficit was also reversed by gene modification with mIFN-gamma cDNA. 101.NAT had a greatly improved capacity to present viral antigens to CD8+ cytotoxic T lymphocytes. These findings show that a nonimmunogenic tumor, incapable of generating a CD8+ T cell immune response, could be gene-modified to generate a therapeutically useful immune response against the wild-type tumor. This strategy may be useful in developing treatments for tumor histologies not thought to be susceptible to T cell-based immunotherapy. PMID:1588273

  5. The ABCs of artificial antigen presentation.

    PubMed

    Kim, Jiyun V; Latouche, Jean-Baptiste; Rivière, Isabelle; Sadelain, Michel

    2004-04-01

    Artificial antigen presentation aims to accelerate the establishment of therapeutic cellular immunity. Artificial antigen-presenting cells (AAPCs) and their cell-free substitutes are designed to stimulate the expansion and acquisition of optimal therapeutic features of T cells before therapeutic infusion, without the need for autologous antigen-presenting cells. Compelling recent advances include fibroblast AAPCs that process antigens, magnetic beads that are antigen specific, novel T-cell costimulatory combinations, the augmentation of therapeutic potency of adoptively transferred T lymphocytes by interleukin-15, and the safe use of dendritic cell-derived exosomes pulsed with tumor antigen. Whereas the safety and potency of the various systems warrant further preclinical and clinical studies, these emerging technologies are poised to have a major impact on adoptive T-cell therapy and the investigation of T cell-mediated immunity. PMID:15060556

  6. Fibroblasts as Efficient Antigen-Presenting Cells in Lymphoid Organs

    NASA Astrophysics Data System (ADS)

    Kundig, Thomas M.; Bachmann, Martin F.; Dipaolo, Claudio; Simard, John J. L.; Battegay, Manuel; Lother, Heinz; Gessner, Andre; Kuhlcke, Klaus; Ohashi, Pamela S.; Hengartner, Hans; Zinkernagel, Rolf M.

    1995-06-01

    Only so-called "professional" antigen-presenting cells (APCs) of hematopoietic origin are believed capable of inducing T lymphocyte responses. However, fibroblasts transfected with viral proteins directly induced antiviral cytotoxic T lymphocyte responses in vivo, without involvement of host APCs. Fibroblasts induced T cells only in the milieu of lymphoid organs. Thus, antigen localization affects self-nonself discrimination and cell-based vaccine strategies.

  7. Cyclosporine inhibits macrophage-mediated antigen presentation

    SciTech Connect

    Ziegler, H.K.; Palay, D.; Wentworth, P.; Cluff, C.

    1986-03-01

    The influence of cyclosporine on antigen-specific, macrophage-dependent T cell activation was analyzed in vitro. Murine T cell activation by antigens derived from Listeria monocytogenes was monitored by the production of interleukin-2. Pretreatment (2 hrs., 37/sup 0/C) of macrophages with cyclosporine resulted in a population of macrophages with a markedly diminished capacity to support the activation of T lymphocytes. When cyclosporine-pretreated macrophages were added to cultures of antigen and untreated T cells, the dose of cyclosporine which produced 50% inhibition was 1.5 ..mu..g/ml. Appropriate control experiments indicated that cyclosporine was indeed inhibiting at the macrophage level. The addition of interleukin-1 or indomethacin to the cultures did not alter the inhibitory effect of cyclosporine. Under conditions which produced >90% inhibition of antigen presentation, macrophage surface Ia expression was not altered, and the uptake and catabolism of radiolabelled antigen was normal. Thus, cyclosporine inhibits antigen presentation by a mechanism which appears unrelated to changes in Il-1 elaboration, prostaglandin production, Ia expression, or antigen uptake and catabolism.

  8. Antigen Processing and Remodeling of the Endosomal Pathway: Requirements for Antigen Cross-Presentation

    PubMed Central

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation. PMID:22566920

  9. Antigen Presentation by MHC-Dressed Cells

    PubMed Central

    Nakayama, Masafumi

    2015-01-01

    Professional antigen-presenting cells (APCs) such as conventional dendritic cells (DCs) process protein antigens to MHC-bound peptides and then present the peptide–MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI) and/or MHC class II (MHCII) from neighboring cells through a process of cell–cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide–MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC. PMID:25601867

  10. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells

    PubMed Central

    Vela Ramirez, J.E.; Roychoudhury, R.; Habte, H.H.; Cho, M. W.; Pohl, N. L. B.; Narasimhan, B.

    2015-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells, and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by dendritic cells. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and antigen presenting cells and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  11. Antigen presenting cells - diversity, differentiation, and regulation

    SciTech Connect

    Schook, L.B. ); Tew, J.G. )

    1988-01-01

    This book contains 35 papers. Some of the titles are: DNA-mediated gene transfer as a tool for analyzing Ia structure-function relationships and antigen presentation; Regulation of immune-associated genes during macrophage differentiation; Presentation of arsonate-tyrosine to cloned T-cells by L-Cells transfected with class II genes; and The duration of class II MHC glycoprotein expression by mononuclear phagocytes is regulated by the Bcg gene.

  12. Effect of present technology on airship capabilities

    NASA Technical Reports Server (NTRS)

    Madden, R. T.

    1975-01-01

    The effect is presented of updating past airship designs using current materials and propulsion systems to determine new airship performance and productivity capabilities. New materials and power plants permit reductions in the empty weights and increases in the useful load capabilities of past airship designs. The increased useful load capability results in increased productivity for a given range, i.e., either increased payload at the same operating speed or increased operating speed for the same payload weight or combinations of both. Estimated investment costs and operating costs are presented to indicate the significant cost parameters in estimating transportation costs of payloads in cents per ton mile. Investment costs are presented considering production lots of 1, 10 and 100 units. Operating costs are presented considering flight speeds and ranges.

  13. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells.

    PubMed

    Vela Ramirez, J E; Roychoudhury, R; Habte, H H; Cho, M W; Pohl, N L B; Narasimhan, B

    2014-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells (APCs), and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells (DCs) and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by DCs. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and APCs and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  14. [Mucose associated lymphoid tissue. Antigen presenting cells].

    PubMed

    Luzardo-Baptista, Mario J; Luzardo, José Rafael

    2013-12-01

    We studied samples of normal and abnormal human mucosae, including oral tissue and uterine cervix, using electron microscopy. Special attention was given to the functions and mechanisms of defense carried out by the epithelial (EC) and dendritic cells (DC). Activated epithelial cells posses the capacity to uptake and process antigens, in order to present them, subsequently, to the dendritic cells. The structures and elements of the cells intervening on this function are: micropinocytic vesicles, multivesicular bodies, lysosomes, phagosomes, clathrin-covered vesicles, dense granules covered by a unit membrane, granules with onion likes leaves, microbodies, and dense granules with acid phosphatase activity. When they first arrive within the epithelial layers, the DC are clear with long cytoplasmic projections, which later become short, and the density of their cytoplasm increases. They possess mycropinocytic vesicles, some clathrine-covered vesicles, lysososmes and Birbeck granules. At this moment, they are known as Langerhans cells. EC and DC present many surface folds rich in micropynocytic vesicles. Between EC and DC there are many contacts (close junctions or tight junctions), through which antigens, phagocitized and processed by the EC, are given to the DC. These cells join them to major histocompatibility complex molecules or to other molecules with similar functions (CD1). Then the Langerhans cells travel to the lymphatic node to activate T cells and continue the immunologic task. So, in this way, both the EC and the DC are a link between the natural and the acquired immunological mechanisms. PMID:24502183

  15. Properties of glycolipid-enriched membrane rafts in antigen presentation.

    PubMed

    Rodgers, William; Smith, Kenneth

    2005-01-01

    Presentation of antigen to T cells represents one of the central events in the engagement of the immune system toward the defense of the host against pathogens. Accordingly, understanding the mechanisms by which antigen presentation occurs is critical toward our understanding the properties of host defense against foreign antigen, as well as insight into other features of the immune system, such as autoimmune disease. The entire antigen-presentation event is complex, and many features of it remain poorly understood. However, recent studies have provided evidence showing that glycolipid-enriched membrane rafts are important for efficient antigen presentation; the studies suggest that one such function of rafts is trafficking of antigen-MHC II complexes to the presentation site on the surface of the antigen-presenting cell. Here, we present a critical discussion of rafts and their proposed functions in antigen presentation. Emerging topics of rafts and antigen presentation that warrant further investigation are also highlighted.

  16. Antigen Processing and Presentation Mechanisms in Myeloid Cells.

    PubMed

    Roche, Paul A; Cresswell, Peter

    2016-06-01

    Unlike B cells, CD8-positive and CD4-positive T cells of the adaptive immune system do not recognize intact foreign proteins but instead recognize polypeptide fragments of potential antigens. These antigenic peptides are expressed on the surface of antigen presenting cells bound to MHC class I and MHC class II proteins. Here, we review the basics of antigen acquisition by antigen presenting cells, antigen proteolysis into polypeptide fragments, antigenic peptide binding to MHC proteins, and surface display of both MHC class I-peptide and MHC class II-peptide complexes.

  17. Antigen Export Reduces Antigen Presentation and Limits T Cell Control of M. tuberculosis.

    PubMed

    Srivastava, Smita; Grace, Patricia S; Ernst, Joel D

    2016-01-13

    Persistence of Mycobacterium tuberculosis results from bacterial strategies that manipulate host adaptive immune responses. Infected dendritic cells (DCs) transport M. tuberculosis to local lymph nodes but activate CD4 T cells poorly, suggesting bacterial manipulation of antigen presentation. However, M. tuberculosis antigens are also exported from infected DCs and taken up and presented by uninfected DCs, possibly overcoming this blockade of antigen presentation by infected cells. Here we show that the first stage of this antigen transfer, antigen export, benefits M. tuberculosis by diverting bacterial proteins from the antigen presentation pathway. Kinesin-2 is required for antigen export and depletion of this microtubule-based motor increases activation of antigen-specific CD4 T cells by infected cells and improves control of intracellular infection. Thus, although antigen transfer enables presentation by bystander cells, it does not compensate for reduced antigen presentation by infected cells and represents a bacterial strategy for CD4 T cell evasion.

  18. Antigen Export Reduces Antigen Presentation and Limits T Cell Control of M. tuberculosis.

    PubMed

    Srivastava, Smita; Grace, Patricia S; Ernst, Joel D

    2016-01-13

    Persistence of Mycobacterium tuberculosis results from bacterial strategies that manipulate host adaptive immune responses. Infected dendritic cells (DCs) transport M. tuberculosis to local lymph nodes but activate CD4 T cells poorly, suggesting bacterial manipulation of antigen presentation. However, M. tuberculosis antigens are also exported from infected DCs and taken up and presented by uninfected DCs, possibly overcoming this blockade of antigen presentation by infected cells. Here we show that the first stage of this antigen transfer, antigen export, benefits M. tuberculosis by diverting bacterial proteins from the antigen presentation pathway. Kinesin-2 is required for antigen export and depletion of this microtubule-based motor increases activation of antigen-specific CD4 T cells by infected cells and improves control of intracellular infection. Thus, although antigen transfer enables presentation by bystander cells, it does not compensate for reduced antigen presentation by infected cells and represents a bacterial strategy for CD4 T cell evasion. PMID:26764596

  19. Minor histocompatibility antigens: past, present, and future.

    PubMed

    Spierings, Eric

    2014-10-01

    Minor histocompatibility (H) antigens are key molecules driving allo-immune responses in both graft-versus-host-disease (GvHD) and in graft-versus-leukemia (GvL) reactivity in human leukocyte antigen (HLA)-matched hematopoietic stem-cell transplantation (HSCT). Dissection of the dual function of minor H antigens became evident through their different modes of tissue and cell expression, i.e. hematopoietic system-restricted or broad. Broadly expressed minor H antigens can cause both GvHD and GvL effects, while hematopoietic system-restricted minor H antigens are more prone to induce GvL responses. This phenomenon renders the latter group of minor H antigens as curative tools for HSCT-based immunotherapy of hematological malignancies and disorders, in which minor H antigen-specific responses are enhanced in order to eradicate the malignant cells. This article describes the immunogenetics of minor H antigens and methods that have been developed to identify them. Moreover, it summarizes the clinical relevance of minor H antigens in transplantation, with special regards to allogeneic HSCT and solid-organ transplantation.

  20. Instrument Pointing Capabilities: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars; Murray, Emmanuell; Scharf, Daniel P.; Aung, Mimi; Bayard, David; Brugarolas, Paul; Hadaegh, Fred; Lee, Allan; Milman, Mark; Sirlin, Sam; Kang, Bryan

    2011-01-01

    This paper surveys the instrument pointing capabilities of past, present and future space telescopes and interferometers. As an important aspect of this survey, we present a taxonomy for "apples-to-apples" comparisons of pointing performances. First, pointing errors are defined relative to either an inertial frame or a celestial target. Pointing error can then be further sub-divided into DC, that is, steady state, and AC components. We refer to the magnitude of the DC error relative to the inertial frame as absolute pointing accuracy, and we refer to the magnitude of the DC error relative to a celestial target as relative pointing accuracy. The magnitude of the AC error is referred to as pointing stability. While an AC/DC partition is not new, we leverage previous work by some of the authors to quantitatively clarify and compare varying definitions of jitter and time window averages. With this taxonomy and for sixteen past, present, and future missions, pointing accuracies and stabilities, both required and achieved, are presented. In addition, we describe the attitude control technologies used to and, for future missions, planned to achieve these pointing performances.

  1. Development of an Antigen-driven Colitis Model to Study Presentation of Antigens by Antigen Presenting Cells to T Cells.

    PubMed

    Rossini, Valerio; Radulovic, Katarina; Riedel, Christian U; Niess, Jan Hendrik

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammation which affects the gastrointestinal tract (GIT). One of the best ways to study the immunological mechanisms involved during the disease is the T cell transfer model of colitis. In this model, immunodeficient mice (RAG(-/-) recipients) are reconstituted with naive CD4(+) T cells from healthy wild type hosts. This model allows examination of the earliest immunological events leading to disease and chronic inflammation, when the gut inflammation perpetuates but does not depend on a defined antigen. To study the potential role of antigen presenting cells (APCs) in the disease process, it is helpful to have an antigen-driven disease model, in which a defined commensal-derived antigen leads to colitis. An antigen driven-colitis model has hence been developed. In this model OT-II CD4(+) T cells, that can recognize only specific epitopes in the OVA protein, are transferred into RAG(-/-) hosts challenged with CFP-OVA-expressing E. coli. This model allows the examination of interactions between APCs and T cells in the lamina propria. PMID:27684040

  2. The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1.

    PubMed

    McWilliam, Hamish E G; Eckle, Sidonia B G; Theodossis, Alex; Liu, Ligong; Chen, Zhenjun; Wubben, Jacinta M; Fairlie, David P; Strugnell, Richard A; Mintern, Justine D; McCluskey, James; Rossjohn, Jamie; Villadangos, Jose A

    2016-05-01

    The antigen-presenting molecule MR1 presents vitamin B-related antigens (VitB antigens) to mucosal-associated invariant T (MAIT) cells through an uncharacterized pathway. We show that MR1, unlike other antigen-presenting molecules, does not constitutively present self-ligands. In the steady state it accumulates in a ligand-receptive conformation within the endoplasmic reticulum. VitB antigens reach this location and form a Schiff base with MR1, triggering a 'molecular switch' that allows MR1-VitB antigen complexes to traffic to the plasma membrane. These complexes are endocytosed with kinetics independent of the affinity of the MR1-ligand interaction and are degraded intracellularly, although some MR1 molecules acquire new ligands during passage through endosomes and recycle back to the surface. MR1 antigen presentation is characterized by a rapid 'off-on-off' mechanism that is strictly dependent on antigen availability. PMID:27043408

  3. Analysis of antigen presentation by metabolically inactive accessory cells and their isolated membranes.

    PubMed Central

    Falo, L D; Sullivan, K; Benacerraf, B; Mescher, M F; Rock, K L

    1985-01-01

    Several amino acid copolymers are potent immunogens under the control of major histocompatibility complex (MHC)-encoded Ir genes. We have further characterized their accessory-cell-dependent, MHC-restricted presentation to T lymphocytes. We initially characterized their processing requirements by investigating the ability of paraformaldehyde-fixed antigen-presenting cells (APC) to present these copolymers. Fixed APC can present poly(Glu56Lys35Phe9) and poly(Glu60Ala30Tyr10) provided that they have been incubated with antigen prior to fixation. The inability of these same fixed preparations to present soluble antigen indicates a fixation-sensitive antigen-processing step. In contrast, the antigens poly(Glu55Lys35Leu10) and poly(Glu55Lys35Tyr10) can be presented by APC fixed before antigen exposure. This differential requirement for antigen processing was exploited to analyze the events of antigen presentation in two related systems. First, the ability of isolated APC membranes to process and present antigen was assessed. APC membranes can present the antigens poly(GluLysLeu) and poly(GluLysTyr) in a specific and MHC-restricted manner. However, the isolated membranes fail to present either poly(GluLysPhe) or poly(GluAlaTyr), suggesting that such preparations can present but not process antigen. Second, the distinct properties of the various copolymers were used with fixed APC to test the effects of antigen processing on the phenomenon of antigen competition. APC that had processed poly(GluLysPhe) or poly(GluAlaTyr) were subsequently fixed and used to present antigen in the presence or absence of various antagonists. Under these conditions, poly(GluLysLeu) and poly(Glu50Tyr50) could effect specific inhibition, clearly indicating that antigen competition occurs distal to and does not require antigen processing. In contrast, native antigen with an absolute processing requirement is not capable of competing with preprocessed antigen on fixed APC. Taken together, these

  4. The known unknowns of antigen processing and presentation

    PubMed Central

    Vyas, Jatin M.; Van der Veen, Annemarthe G.; Ploegh, Hidde L.

    2009-01-01

    The principal components of both MHC class I and class II antigen processing and presentation pathways are well known. Within dendritic cells, these pathways are tightly regulated by Toll-like receptor signalling and include features, such as cross-presentation, that are not seen in other cell types. The exact mechanisms involved in the subcellular trafficking of antigens remain poorly understood and in some cases are controversial. Recent data suggest that diverse cellular machineries including autophagy participate in antigen processing and presentation, though their relative contributions remain to be fully elucidated. Here, we highlight some emerging themes of antigen processing and presentation that we believe merit further attention. PMID:18641646

  5. Antigenically Modified Human Pluripotent Stem Cells Generate Antigen-Presenting Dendritic Cells

    PubMed Central

    Zeng, Jieming; Wu, Chunxiao; Wang, Shu

    2015-01-01

    Human pluripotent stem cells (hPSCs) provide a promising platform to produce dendritic cell (DC) vaccine. To streamline the production process, we investigated a unique antigen-loading strategy that suits this novel platform. Specifically, we stably modified hPSCs using tumour antigen genes in the form of a full-length tumour antigen gene or an artificial tumour antigen epitope-coding minigene. Such antigenically modified hPSCs were able to differentiate into tumour antigen-presenting DCs. Without conventional antigen-loading, DCs derived from the minigene-modified hPSCs were ready to prime a tumour antigen-specific T cell response and further expand these specific T cells in restimulation processes. These expanded tumour antigen-specific T cells were potent effectors with central memory or effector memory phenotype. Thus, we demonstrated that immunocompetent tumour antigen-loaded DCs can be directly generated from antigenically modified hPSCs. Using such strategy, we can completely eliminate the conventional antigen-loading step and significantly simplify the production of DC vaccine from hPSCs. PMID:26471005

  6. Antigen-presenting cells in the female reproductive tract: influence of sex hormones on antigen presentation in the vagina.

    PubMed Central

    Wira, C R; Rossoll, R M

    1995-01-01

    We report here that the stage of the reproductive cycle and the administration of physiological amounts of oestradiol to ovariectomized rats influences antigen presentation by macrophage/dendritic cells in the vagina. Antigen presentation is elevated when oestradiol levels in blood are low, and reduced just prior to ovulation. Of those hormones tested, only oestradiol lowered vaginal antigen presentation. When progesterone was given along with oestradiol, the inhibitory effect of oestradiol on vaginal antigen presentation was reversed. These studies demonstrate that the vagina is an inductive site and that antigen presentation is under hormonal control. Our results suggest that immunization studies designed to enhance mucosal immunity in the female reproductive tract should take into account the stage of the reproductive cycle when antigen is deposited. PMID:7790022

  7. MHC structure and function – antigen presentation. Part 1

    PubMed Central

    Goldberg, Anna Carla; Rizzo, Luiz Vicente

    2015-01-01

    The setting for the occurrence of an immune response is that of the need to cope with a vast array of different antigens from both pathogenic and non-pathogenic sources. When the first barriers against infection and innate defense fail, adaptive immune response enters the stage for recognition of the antigens by means of extremely variable molecules, namely immunoglobulins and T-cell receptors. The latter recognize the antigen exposed on cell surfaces, in the form of peptides presented by the HLA molecule. The first part of this review details the central role played by these molecules, establishing the close connection existing between their structure and their antigen presenting function. PMID:25807245

  8. A Role For Mitochondria In Antigen Processing And Presentation.

    PubMed

    Bonifaz, Lc; Cervantes-Silva, Mp; Ontiveros-Dotor, E; López-Villegas, Eo; Sánchez-García, Fj

    2014-09-23

    Immune synapse formation is critical for T lymphocyte activation, and mitochondria have a role in this process, by localizing close to the immune synapse, regulating intracellular calcium concentration, and providing locally required ATP. The interaction between antigen presenting cells (APCs) and T lymphocytes is a two-way signaling process. However, the role of mitochondria in antigen presenting cells during this process remains unknown. For APCs to be able to activate T lymphocytes, they must first engage in an antigen-uptake, -processing, and -presentation process. Here we show that HEL-loaded B lymphocytes, as a type of APCs, undergo a small but significant mitochondrial depolarization by 1-2 h following antigen exposure thus suggesting an increase in their metabolic demands. Inhibition of ATP synthase (oligomycin) or mitochondrial Ca(2+) uniporter (MCU) (Ruthenium red) had no effect on antigen uptake. Therefore, antigen processing and antigen presentation were further analyzed. Oligomycin treatment reduced the amount of specific MHC-peptide complexes but not total MHC II on the cell membrane of B lymphocytes which correlated with a decrease in antigen presentation. However, oligomycin also reduced antigen presentation by B lymphocytes that endogenously express HEL and by B lymphocytes loaded with the HEL48-62 peptide, although to a lesser extent. ATP synthase inhibition and MCU inhibition had a clear inhibitory effect on antigen processing (DQ-OVA). Taking together these results suggest that ATP synthase and MCU are relevant for antigen processing and presentation. Finally, APCs mitochondria were found to re-organize towards the APC-T immune synapse. This article is protected by copyright. All rights reserved.

  9. The Role of Heat Shock Proteins in Antigen Cross Presentation

    PubMed Central

    Murshid, Ayesha; Gong, Jianlin; Calderwood, Stuart K.

    2012-01-01

    Heat shock proteins (HSPs) are molecular chaperones that bind tumor antigens and mediate their uptake into antigen presenting cells. HSP–antigen complexes are then directed toward either the MHC class I pathway through antigen cross presentation or the conventional class II pathway, leading to activation of T cell subsets. Uptake of HSP-chaperoned polypeptides can involve both receptor-mediated and receptor-independent routes, and mechanisms of antigen sorting between the Class I and II pathways after uptake are currently under investigation. The processes involved in internalization of HSP–antigen complexes differ somewhat from the mechanisms previously determined for (unchaperoned) particulate and free soluble antigens. A number of studies show that HSP-facilitated antigen cross presentation requires uptake of the complexes by scavenger receptors (SR) followed by processing in the proteasome, and loading onto MHC class I molecules. In this review we have examined the roles of HSPs and SR in antigen uptake, sorting, processing, cell signaling, and activation of innate and adaptive immunity. PMID:22566944

  10. Artificial antigen presenting cells for use in adoptive immunotherapy

    PubMed Central

    Turtle, Cameron J.; Riddell, Stanley R.

    2010-01-01

    The observation that T cells can recognize and specifically eliminate cancer cells has spurred interest in the development of efficient methods to generate large numbers of T cells with specificity for tumor antigens that can be harnessed for use in cancer therapy. Recent studies have demonstrated that during encounter with tumor antigen, the signals delivered to T cells by professional antigen presenting cells can affect T cell programming and their subsequent therapeutic efficacy. This has stimulated efforts to develop artificial antigen presenting cells that allow optimal control over the signals provided to T cells. In this review, we will discuss the advantages and disadvantages of cellular and acellular artificial antigen presenting cell systems and their use in T cell adoptive immunotherapy for cancer. PMID:20693850

  11. Artificial antigen-presenting cells for use in adoptive immunotherapy.

    PubMed

    Turtle, Cameron J; Riddell, Stanley R

    2010-01-01

    The observation that T cells can recognize and specifically eliminate cancer cells has spurred interest in the development of efficient methods to generate large numbers of T cells with specificity for tumor antigens that can be harnessed for use in cancer therapy. Recent studies have demonstrated that during encounter with tumor antigen, the signals delivered to T cells by professional antigen-presenting cells can affect T-cell programming and their subsequent therapeutic efficacy. This has stimulated efforts to develop artificial antigen-presenting cells that allow optimal control over the signals provided to T cells. In this review, we will discuss the advantages and disadvantages of cellular and acellular artificial antigen-presenting cell systems and their use in T-cell adoptive immunotherapy for cancer. PMID:20693850

  12. A role for mitochondria in antigen processing and presentation

    PubMed Central

    Bonifaz, Laura C; Cervantes-Silva, Mariana P; Ontiveros-Dotor, Elizabeth; López-Villegas, Edgar O; Sánchez-García, F Javier

    2015-01-01

    Immune synapse formation is critical for T-lymphocyte activation, and mitochondria have a role in this process, by localizing close to the immune synapse, regulating intracellular calcium concentration, and providing locally required ATP. The interaction between antigen-presenting cells (APCs) and T lymphocytes is a two-way signalling process. However, the role of mitochondria in APCs during this process remains unknown. For APCs to be able to activate T lymphocytes, they must first engage in an antigen-uptake, -processing and -presentation process. Here we show that hen egg white lysozyme (HEL) -loaded B lymphocytes, as a type of APC, undergo a small but significant mitochondrial depolarization by 1–2 hr following antigen exposure, suggesting an increase in their metabolic demands. Inhibition of ATP synthase (oligomycin) or mitochondrial Ca2+ uniporter (MCU) (Ruthenium red) had no effect on antigen uptake. Therefore, antigen processing and antigen presentation were further analysed. Oligomycin treatment reduced the amount of specific MHC–peptide complexes but not total MHC II on the cell membrane of B lymphocytes, which correlated with a decrease in antigen presentation. However, oligomycin also reduced antigen presentation by B lymphocytes, which endogenously express HEL and by B lymphocytes loaded with the HEL48–62 peptide, although to a lesser extent. ATP synthase inhibition and MCU inhibition had a clear inhibitory effect on antigen processing (DQ-OVA). Taken together these results suggest that ATP synthase and MCU are relevant for antigen processing and presentation. Finally, APC mitochondria were found to re-organize towards the APC–T immune synapse. PMID:25251370

  13. Modes of Antigen Presentation by Lymph Node Stromal Cells and Their Immunological Implications

    PubMed Central

    Hirosue, Sachiko; Dubrot, Juan

    2015-01-01

    Antigen presentation is no longer the exclusive domain of cells of hematopoietic origin. Recent works have demonstrated that lymph node stromal cell (LNSC) populations, such as fibroblastic reticular cells, lymphatic and blood endothelial cells, not only provide a scaffold for lymphocyte interactions but also exhibit active immunomodulatory roles that are critical to mounting and resolving effective immune responses. Importantly, LNSCs possess the ability to present antigens and establish antigen-specific interactions with T cells. One example is the expression of peripheral tissue antigens, which are presented on major histocompatibility complex (MHC)-I molecules with tolerogenic consequences on T cells. Additionally, exogenous antigens, including self and tumor antigens, can be processed and presented on MHC-I complexes, which result in dysfunctional activation of antigen-specific CD8+ T cells. While MHC-I is widely expressed on cells of both hematopoietic and non-hematopoietic origins, antigen presentation via MHC-II is more precisely regulated. Nevertheless, LNSCs are capable of endogenously expressing, or alternatively, acquiring MHC-II molecules. Transfer of antigen between LNSC and dendritic cells in both directions has been recently suggested to promote tolerogenic roles of LNSCs on the CD4+ T cell compartment. Thus, antigen presentation by LNSCs is thought to be a mechanism that promotes the maintenance of peripheral tolerance as well as generates a pool of diverse antigen-experienced T cells for protective immunity. This review aims to integrate the current and emerging literature to highlight the importance of LNSCs in immune responses, and emphasize their role in antigen trafficking, retention, and presentation. PMID:26441957

  14. B cells do not present antigen covalently linked to microspheres.

    PubMed Central

    Galelli, A; Charlot, B; Dériaud, E; Leclerc, C

    1993-01-01

    B cells have been shown to present antigen to T cells very efficiently through their capacity to capture antigens by their membrane immunoglobulin. This direct cognate interaction of T and B cells results in the proliferation and differentiation of B cells. This concept has been established using soluble proteins. However, most of the antigens to which the immune system is exposed are included in complex particulate structures such as bacteria or parasites. The capacity of B cells to present these large and complex antigens is still unclear. To address this question we have studied the presentation by trinitrophenyl (TNP)-specific B cells of the same antigen TNP-KLH (keyhole limpet haemocyanin), either in a soluble form or covalently linked to poly(acrolein) microspheres, from 0.25 to 1.5 microns in diameter. In the presence of irradiated splenocytes or purified macrophages as a source of antigen-presenting cells (APC), KLH-specific T cells proliferated in response to soluble TNP-KLH or to TNP-KLH coupled to beads. In contrast, TNP-specific memory B cells were totally ineffective in presenting the TNP-KLH beads to KLH-specific T cells whereas they presented very efficiently soluble TNP-KLH. Similar results were obtained with the A20 B lymphoma or with lipopolysaccharide (LPS)-activated TNP-specific B cells. These results therefore indicate that B cells are unable to present large size particulate antigens such as bacteria or parasites. PMID:8509143

  15. Heat shock protein derivatives for delivery of antigens to antigen presenting cells.

    PubMed

    Nishikawa, Makiya; Takemoto, Seiji; Takakura, Yoshinobu

    2008-04-16

    Delivery of antigens to antigen presenting cells (APCs) is a key issue for developing effective cancer vaccines. Controlling the tissue distribution of antigens can increase antigen-specific immune responses, including the induction of cytotoxic T lymphocytes (CTL). Heat shock protein 70 (Hsp70) forms complexes with a variety of tumor-related antigens via its polypeptide-binding domain. Because Hsp70 is taken up by APCs through recognition by Hsp receptors, such as CD91 and LOX-1, its application to antigen delivery systems has been examined both in experimental and clinical settings. A tissue distribution study revealed that Hsp70 is mainly taken up by the liver, especially by hepatocytes, after intravenous injection in mice. A significant amount of Hsp70 was also delivered to regional lymph nodes when it was injected subcutaneously, supporting the hypothesis that Hsp70 is a natural targeting system for APCs. Model antigens were complexed with or conjugated to Hsp70, resulting in greater antigen-specific immune responses. Cytoplasmic delivery of Hsp70-antigen further increased the efficacy of the Hsp70-based vaccines. These findings indicate that effective cancer therapy can be achieved by developing Hsp70-based anticancer vaccines when their tissue and intracellular distribution is properly controlled. PMID:17980980

  16. The Cellular Redox Environment Alters Antigen Presentation*

    PubMed Central

    Trujillo, Jonathan A.; Croft, Nathan P.; Dudek, Nadine L.; Channappanavar, Rudragouda; Theodossis, Alex; Webb, Andrew I.; Dunstone, Michelle A.; Illing, Patricia T.; Butler, Noah S.; Fett, Craig; Tscharke, David C.; Rossjohn, Jamie; Perlman, Stanley; Purcell, Anthony W.

    2014-01-01

    Cysteine-containing peptides represent an important class of T cell epitopes, yet their prevalence remains underestimated. We have established and interrogated a database of around 70,000 naturally processed MHC-bound peptides and demonstrate that cysteine-containing peptides are presented on the surface of cells in an MHC allomorph-dependent manner and comprise on average 5–10% of the immunopeptidome. A significant proportion of these peptides are oxidatively modified, most commonly through covalent linkage with the antioxidant glutathione. Unlike some of the previously reported cysteine-based modifications, this represents a true physiological alteration of cysteine residues. Furthermore, our results suggest that alterations in the cellular redox state induced by viral infection are communicated to the immune system through the presentation of S-glutathionylated viral peptides, resulting in altered T cell recognition. Our data provide a structural basis for how the glutathione modification alters recognition by virus-specific T cells. Collectively, these results suggest that oxidative stress represents a mechanism for modulating the virus-specific T cell response. PMID:25135637

  17. Lipid peroxidation causes endosomal antigen release for cross-presentation

    PubMed Central

    Dingjan, Ilse; Verboogen, Daniëlle RJ; Paardekooper, Laurent M; Revelo, Natalia H; Sittig, Simone P; Visser, Linda J; Mollard, Gabriele Fischer von; Henriet, Stefanie SV; Figdor, Carl G; ter Beest, Martin; van den Bogaart, Geert

    2016-01-01

    Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer. PMID:26907999

  18. Saposins utilize two strategies for lipid transfer and CD1 antigen presentation.

    PubMed

    León, Luis; Tatituri, Raju V V; Grenha, Rosa; Sun, Ying; Barral, Duarte C; Minnaard, Adriaan J; Bhowruth, Veemal; Veerapen, Natacha; Besra, Gurdyal S; Kasmar, Anne; Peng, Wei; Moody, D Branch; Grabowski, Gregory A; Brenner, Michael B

    2012-03-20

    Transferring lipid antigens from membranes into CD1 antigen-presenting proteins represents a major molecular hurdle necessary for T-cell recognition. Saposins facilitate this process, but the mechanisms used are not well understood. We found that saposin B forms soluble saposin protein-lipid complexes detected by native gel electrophoresis that can directly load CD1 proteins. Because saposin B must bind lipids directly to function, we found it could not accommodate long acyl chain containing lipids. In contrast, saposin C facilitates CD1 lipid loading in a different way. It uses a stable, membrane-associated topology and was capable of loading lipid antigens without forming soluble saposin-lipid antigen complexes. These findings reveal how saposins use different strategies to facilitate transfer of structurally diverse lipid antigens.

  19. Viral immune evasion: Lessons in MHC class I antigen presentation.

    PubMed

    van de Weijer, Michael L; Luteijn, Rutger D; Wiertz, Emmanuel J H J

    2015-03-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.

  20. Internalization and presentation of myelin antigens by the brain endothelium guides antigen-specific T cell migration

    PubMed Central

    Lopes Pinheiro, Melissa A; Kamermans, Alwin; Garcia-Vallejo, Juan J; van het Hof, Bert; Wierts, Laura; O'Toole, Tom; Boeve, Daniël; Verstege, Marleen; van der Pol, Susanne MA; van Kooyk, Yvette; de Vries, Helga E; Unger, Wendy WJ

    2016-01-01

    Trafficking of myelin-reactive CD4+ T-cells across the brain endothelium, an essential step in the pathogenesis of multiple sclerosis (MS), is suggested to be an antigen-specific process, yet which cells provide this signal is unknown. Here we provide direct evidence that under inflammatory conditions, brain endothelial cells (BECs) stimulate the migration of myelin-reactive CD4+ T-cells by acting as non-professional antigen presenting cells through the processing and presentation of myelin-derived antigens in MHC-II. Inflamed BECs internalized myelin, which was routed to endo-lysosomal compartment for processing in a time-dependent manner. Moreover, myelin/MHC-II complexes on inflamed BECs stimulated the trans-endothelial migration of myelin-reactive Th1 and Th17 2D2 cells, while control antigen loaded BECs did not stimulate T-cell migration. Furthermore, blocking the interaction between myelin/MHC-II complexes and myelin-reactive T-cells prevented T-cell transmigration. These results demonstrate that endothelial cells derived from the brain are capable of enhancing antigen-specific T cell recruitment. DOI: http://dx.doi.org/10.7554/eLife.13149.001 PMID:27336724

  1. Two genetically identical antigen-presenting cell clones display heterogeneity in antigen processing.

    PubMed Central

    Michalek, M T; Benacerraf, B; Rock, K L

    1989-01-01

    Evidence from various antigen systems suggests that antigen processing can be one factor that determines the repertoire of immunogenic peptides. Thus, processing events may account for some of the disparity between the available and expressed helper T-cell repertoires. In this report, we demonstrate that the immunodominant T-cell determinant in ovalbumin [p323-339; ovalbumin-(323-339) heptadecapeptide] is processed differently by two genetically identical antigen-presenting cell lines, M12 and A20. The ovalbumin-specific T-cell-T-cell hybridomas, DO-11.10 and 3DO-54.8, were used to detect processed antigen. These T-T hybridomas have different fine specificities for the p323-339 determinant. A20 cells presented native ovalbumin well to both T-T hybridomas, whereas M12 cells presented native ovalbumin well to 3DO-54.8 but very inefficiently to DO-11.10. M12 and A20 cells effectively stimulated both T-T hybridomas with the same concentrations of the immunogenic synthetic peptide p323-339. Therefore, M12 cells and DO-11.10 can interact with each other, and both T-T hybridomas have similar sensitivities for the same immunogenic peptide. We conclude that genetically identical antigen-presenting cells can display heterogeneity in the fine processing of an immunodominant T-cell determinant, and synthetic model peptides that represent the minimal stimulatory sequence of a T-cell determinant are not necessarily identical to the structure of in vivo processed antigen. Heterogeneity in antigen processing by individual antigen-presenting cells would serve to increase the repertoire of immunogenic peptides that are presented to T cells. PMID:2470101

  2. Identification and manipulation of antigen specific T-cells with artificial antigen presenting cells.

    PubMed

    Koffeman, Eva; Keogh, Elissa; Klein, Mark; Prakken, Berent; Albani, Salvatore

    2007-01-01

    T-cells specific for a particular antigen represent a small percentage of the overall T-cell population. Detecting the presence of antigen specific T-cells in patients, animal models or populations of cultured cells has presented a challenge to researchers. The T-cell capture method described here utilizes a truly artificial method of antigen presentation and requires only 50,000 cells for the detection of the major histomcompatibility complex (MHC) class II and antigen restricted T-cells. With this method, liposomes, prepared with readily available materials, are loaded with neutravidin "rafts" comprised of MHC/peptide complexes, anti-CD28, a costimulatory molecule, and anti-LFA-1, an adhesion molecule. These artificial APCs are easily manipulated to include any MHC, antibodies to cell surface markers and/or costimulatory signals of interest thereby enabling not only T-cell identification but also the manipulation of mechanisms of T-cell activation. PMID:17983141

  3. Podocytes Are Nonhematopoietic Professional Antigen-Presenting Cells

    PubMed Central

    Burkard, Miriam; Ölke, Martha; Daniel, Christoph; Amann, Kerstin; Hugo, Christian; Kurts, Christian; Steinkasserer, Alexander; Gessner, André

    2013-01-01

    Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC–antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection. PMID:23539760

  4. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation.

    PubMed

    Meyer, Randall A; Sunshine, Joel C; Perica, Karlo; Kosmides, Alyssa K; Aje, Kent; Schneck, Jonathan P; Green, Jordan J

    2015-04-01

    Non-spherical nanodimensional artificial antigen presenting cells (naAPCs) offer the potential to systemically induce an effective antigen-specific immune response. In this report it is shown biodegradable ellipsoidal naAPCs mimic the T-Cell/APC interaction better than equivalent spherical naAPCs. In addition, it is demonstrated ellipsoidal naAPCs offer reduced non-specific cellular uptake and a superior pharmacokinetic profile compared to spherical naAPCs. PMID:25641795

  5. MHC structure and function − antigen presentation. Part 2

    PubMed Central

    Goldberg, Anna Carla; Rizzo, Luiz Vicente

    2015-01-01

    The second part of this review deals with the molecules and processes involved in the processing and presentation of the antigenic fragments to the T-cell receptor. Though the nature of the antigens presented varies, the most significant class of antigens is proteins, processed within the cell to be then recognized in the form of peptides, a mechanism that confers an extraordinary degree of precision to this mode of immune response. The efficiency and accuracy of this system is also the result of the myriad of mechanisms involved in the processing of proteins and production of peptides, in addition to the capture and recycling of alternative sources aiming to generate further diversity in the presentation to T-cells. PMID:25807243

  6. Autophagy proteins in antigen processing for presentation on MHC molecules.

    PubMed

    Münz, Christian

    2016-07-01

    Autophagy describes catabolic pathways that deliver cytoplasmic constituents for lysosomal degradation. Since major histocompatibility complex (MHC) molecules sample protein degradation products and present them to T cells for adaptive immunity, it is maybe not too surprising that autophagy contributes to this protein antigen processing for MHC presentation. However, the recently recognized breath of pathways, by which autophagy contributes to MHC antigen processing, is exciting. Macroautophagy does not only seem to deliver intracellular but facilitates also extracellular antigen processing by lysosomal hydrolysis for MHC class II presentation. Moreover, even MHC class I molecules that usually display proteasomal products are regulated by macroautophagy, probably using a pool of these molecules outside the endoplasmic reticulum, where MHC class I molecules are loaded with peptide during canonical MHC class I antigen processing. This review aims to summarize these recent developments and point out gaps of knowledge, which should be filled by further investigation, in order to harness the different antigen-processing pathways via autophagy for vaccine improvement. PMID:27319339

  7. Comparative Analysis of Gingival Tissue Antigen Presentation Pathways in Aging and Periodontitis

    PubMed Central

    Gonzalez, O.A.; Novak, M.J.; Kirakodu, S.; Orraca, L.; Chen, K.C.; Strom-berg, A.; Gonzalez-Martinez, J.; Ebersole, J. L.

    2014-01-01

    Aim Gingival tissues of periodontitis lesions contribute to local elevations in mediators, including both specific T cell and antibody immune responses to oral bacterial antigens. Thus, antigen processing and presentation activities must exist in these tissues to link antigen-presenting cells with adaptive immunity. We hypothesized that alterations in the transcriptome of antigen processing and presentation genes occur in aging gingival tissues and that periodontitis enhances these differences reflecting tissues less capable of immune resistance to oral pathogens. Materials and Methods Rhesus monkeys (n=34) from 3–23 years of age were examined. A buccal gingival sample from healthy or periodontitis sites were obtained, total RNA isolated, and microarray analysis was used to describe the transcriptome. Results The results demonstrated increased transcription of genes related to the MHC class II and negative regulation of NK cells with aging in healthy gingival tissues. In contrast, both adult and aging periodontitis tissues showed decreased transcription of genes for MHC class II antigens, coincident with up-regulation of MHC class I-associated genes. Conclusion These transcriptional changes suggest a response of healthy aging tissues through the class II pathway (i.e., endocytosed antigens) and altered responses in periodontitis that could reflect host-associated self-antigens or targeting cytosolic intra-cellular microbial pathogens. PMID:24304139

  8. Activated Brain Endothelial Cells Cross-Present Malaria Antigen

    PubMed Central

    Howland, Shanshan W.; Poh, Chek Meng; Rénia, Laurent

    2015-01-01

    In the murine model of cerebral malaria caused by P. berghei ANKA (PbA), parasite-specific CD8+ T cells directly induce pathology and have long been hypothesized to kill brain endothelial cells that have internalized PbA antigen. We previously reported that brain microvessel fragments from infected mice cross-present PbA epitopes, using reporter cells transduced with epitope-specific T cell receptors. Here, we confirm that endothelial cells are the population responsible for cross-presentation in vivo, not pericytes or microglia. PbA antigen cross-presentation by primary brain endothelial cells in vitro confers susceptibility to killing by CD8+ T cells from infected mice. IFNγ stimulation is required for brain endothelial cross-presentation in vivo and in vitro, which occurs by a proteasome- and TAP-dependent mechanism. Parasite strains that do not induce cerebral malaria were phagocytosed and cross-presented less efficiently than PbA in vitro. The main source of antigen appears to be free merozoites, which were avidly phagocytosed. A human brain endothelial cell line also phagocytosed P. falciparum merozoites. Besides being the first demonstration of cross-presentation by brain endothelial cells, our results suggest that interfering with merozoite phagocytosis or antigen processing may be effective strategies for cerebral malaria intervention. PMID:26046849

  9. Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells.

    PubMed

    Chawla, Akhil; Alatrash, Gheath; Philips, Anne V; Qiao, Na; Sukhumalchandra, Pariya; Kerros, Celine; Diaconu, Iulia; Gall, Victor; Neal, Samantha; Peters, Haley L; Clise-Dwyer, Karen; Molldrem, Jeffrey J; Mittendorf, Elizabeth A

    2016-06-01

    Neutrophil elastase (NE) is an innate immune cell-derived inflammatory mediator that we have shown increases the presentation of tumor-associated peptide antigens in breast cancer. In this study, we extend these observations to show that NE uptake has a broad effect on enhancing antigen presentation by breast cancer cells. We show that NE increases human leukocyte antigen (HLA) class I expression on the surface of breast cancer cells in a concentration and time-dependent manner. HLA class I upregulation requires internalization of enzymatically active NE. Western blots of NE-treated breast cancer cells confirm that the expression of total HLA class I as well as the antigen-processing machinery proteins TAP1, LMP2, and calnexin does not change following NE treatment. This suggests that NE does not increase the efficiency of antigen processing; rather, it mediates the upregulation of HLA class I by stabilizing and reducing membrane recycling of HLA class I molecules. Furthermore, the effects of NE extend beyond breast cancer since the uptake of NE by EBV-LCL increases the presentation of HLA class I-restricted viral peptides, as shown by their increased sensitivity to lysis by EBV-specific CD8+ T cells. Together, our results show that NE uptake increases the responsiveness of breast cancer cells to adaptive immunity by broad upregulation of membrane HLA class I and support the conclusion that the innate inflammatory mediator NE enhances tumor cell recognition and increases tumor sensitivity to the host adaptive immune response.

  10. Processing and presentation of antigens derived from intracellular protozoan parasites

    PubMed Central

    Goldszmid, Romina S.; Sher, Alan

    2010-01-01

    Summary Control of parasitic protozoan infections requires the generation of efficient innate and adaptive immune responses, and in most cases both CD8 and CD4 T cells are necessary for host survival. Since intracellular protozoa remodel the vacuolar compartments in which they reside, it is not obvious how their antigens enter the MHC class I and class II pathways. Studies using genetically engineered parasites have shown that host cell targeting, intracellular compartmentalization, subcellular localization of antigen within the parasite and mechanism of invasion are important factors determining the presentation pathway utilized. The recent identification of endogenous parasite-derived CD8 T cell epitopes have helped confirm these concepts as well as provided new information on the processing pathways and the impact of parasite-stage specific antigen expression on the repertoire of responding T cells stimulated by infection. Elucidating the mechanisms governing antigen processing and presentation of intracellular protozoa may provide important insights needed for the rational design of effective vaccines. PMID:20153156

  11. Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy.

    PubMed

    Escors, David

    2014-01-01

    Since the beginning of the 20(th) century, scientists have tried to stimulate the anti-tumour activities of the immune system to fight against cancer. However, the scientific effort devoted on the development of cancer immunotherapy has not been translated into the expected clinical success. On the contrary, classical anti-neoplastic treatments such as surgery, radiotherapy and chemotherapy are the first line of treatment. Nevertheless, there is compelling evidence on the immunogenicity of cancer cells, and the capacity of the immune system to expand cancer-specific effector cytotoxic T cells. However, the effective activation of anti-cancer T cell responses strongly depends on efficient tumour antigen presentation from professional antigen presenting cells such as dendritic cells (DCs). Several strategies have been used to boost DC antigen presenting functions, but at the end cancer immunotherapy is not as effective as would be expected according to preclinical models. In this review we comment on these discrepancies, focusing our attention on the contribution of regulatory T cells and myeloid-derived suppressor cells to the lack of therapeutic success of DC-based cancer immunotherapy. PMID:24634791

  12. Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy

    PubMed Central

    Escors, David

    2014-01-01

    Since the beginning of the 20th century, scientists have tried to stimulate the anti-tumour activities of the immune system to fight against cancer. However, the scientific effort devoted on the development of cancer immunotherapy has not been translated into the expected clinical success. On the contrary, classical anti-neoplastic treatments such as surgery, radiotherapy and chemotherapy are the first line of treatment. Nevertheless, there is compelling evidence on the immunogenicity of cancer cells, and the capacity of the immune system to expand cancer-specific effector cytotoxic T cells. However, the effective activation of anti-cancer T cell responses strongly depends on efficient tumour antigen presentation from professional antigen presenting cells such as dendritic cells (DCs). Several strategies have been used to boost DC antigen presenting functions, but at the end cancer immunotherapy is not as effective as would be expected according to preclinical models. In this review we comment on these discrepancies, focusing our attention on the contribution of regulatory T cells and myeloid-derived suppressor cells to the lack of therapeutic success of DC-based cancer immunotherapy. PMID:24634791

  13. Antigen processing and presentation: Evolution from a bird's eye view☆

    PubMed Central

    Kaufman, Jim

    2013-01-01

    Most detailed knowledge of the MHC outside of mammals has come from studies of chickens, originally due to the economic importance of the poultry industry. We have used our discoveries about the chicken MHC to develop a framework for understanding the evolution of the MHC, based on the importance of genomic organisation for gene co-evolution. In humans, MHC class I molecules are polymorphic and determine the specificity of peptide presentation, while the molecules involved in antigen processing are functionally monomorphic. The genes for tapasin, transporters associated with antigen presentation (TAPs) and inducible proteasome components (LMPs) are located in and beyond the class II region, far away from the class I genes in the class I region. In contrast, chickens express only one class I locus at high levels, which can result in strong MHC associations with resistance to particular infectious pathogens. The chicken TAP and tapasin genes are located very close to the class I genes, and have high levels of allelic polymorphism and moderate sequence diversity, co-evolving their specificities to work optimally with the dominantly expressed class I molecule. The salient features of the chicken MHC are found in many if not most non-mammalian species examined, and are likely to represent the ancestral organisation of the MHC. Comparison with the MHC organisation of humans and typical mammals suggests that a large inversion brought the class III region into the middle of the MHC, separating the antigen processing genes from the class I gene, breaking the co-evolutionary relationships and allowing a multigene family of well-expressed class I genes. Such co-evolution in the primordial MHC was likely responsible for the appearance of the antigen presentation pathways and receptor–ligand interactions at the birth of the adaptive immune system. Of course, much further work is required to understand this evolutionary framework in more detail. PMID:23182425

  14. Nanoscale Artificial Antigen Presenting Cells for T Cell Immunotherapy

    PubMed Central

    Perica, Karlo; De León Medero, Andrés; Durai, Malarvizhi; Chiu, Yen Ling; Bieler, Joan Glick; Sibener, Leah; Niemöller, Michaela; Assenmacher, Mario; Richter, Anne; Edidin, Michael; Oelke, Mathias; Schneck, Jonathan

    2014-01-01

    Artificial antigen presenting cells (aAPC), which deliver stimulatory signals to cytotoxic lymphocytes, are a powerful tool for both adoptive and active immunotherapy. Thus far, aAPC have been synthesized by coupling T cell activating proteins such as CD3 or MHC-peptide to micron-sized beads. Nanoscale platforms have different trafficking and biophysical interaction properties and may allow development of new immunotherapeutic strategies. We therefore manufactured aAPC based on two types of nanoscale particle platforms: biocompatible iron-dextran paramagnetic particles (50–100 nm in diameter) and avidin-coated quantum dot nanocrystals, (~30 nm). Nanoscale aAPC induced antigen-specific T cell proliferation from mouse splenocytes and human peripheral blood T cells. When injected in vivo, both iron-dextran particles and quantum dot nanocrystals enhanced tumor rejection in a subcutaneous mouse melanoma model. This is the first description of nanoscale aAPC that induce antigen-specific T cell proliferation in vitro and lead to effective T cell stimulation and inhibition of tumor growth in vivo. PMID:23891987

  15. Impairments of Antigen-Presenting Cells in Pulmonary Tuberculosis.

    PubMed

    Sakhno, Ludmila V; Shevela, Ekaterina Ya; Tikhonova, Marina A; Nikonov, Sergey D; Ostanin, Alexandr A; Chernykh, Elena R

    2015-01-01

    The phenotype and functional properties of antigen-presenting cells (APC), that is, circulating monocytes and generated in vitro macrophages and dendritic cells, were investigated in the patients with pulmonary tuberculosis (TB) differing in lymphocyte reactivity to M. tuberculosis antigens (PPD-reactive versus PPD-anergic patients). We revealed the distinct impairments in patient APC functions. For example, the monocyte dysfunctions were displayed by low CD86 and HLA-DR expression, 2-fold increase in CD14(+)CD16(+) expression, the high numbers of IL-10-producing cells, and enhanced IL-10 and IL-6 production upon LPS-stimulation. The macrophages which were in vitro generated from peripheral blood monocytes under GM-CSF were characterized by Th1/Th2-balance shifting (downproduction of IFN-γ coupled with upproduction of IL-10) and by reducing of allostimulatory activity in mixed lymphocyte culture. The dendritic cells (generated in vitro from peripheral blood monocytes upon GM-CSF + IFN-α) were characterized by impaired maturation/activation, a lower level of IFN-γ production in conjunction with an enhanced capacity to produce IL-10 and IL-6, and a profound reduction of allostimulatory activity. The APC dysfunctions were found to be most prominent in PPD-anergic patients. The possible role of APC impairments in reducing the antigen-specific T-cell response to M. tuberculosis was discussed. PMID:26339660

  16. Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.

  17. MHC class I antigen presentation: learning from viral evasion strategies.

    PubMed

    Hansen, Ted H; Bouvier, Marlene

    2009-07-01

    The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.

  18. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Zouhair Atassi, M. Z.

    1989-01-01

    Non-immune SJL (H-2s) spleen cells were fused with non-secreting, non-antigen presenting (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B-cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones presented both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  19. Presentation Capability of Compound Displays for Pressure and Force

    NASA Astrophysics Data System (ADS)

    Ohka, Masahiro; Kato, Keitaro; Fujiwara, Takehiro; Mitsuya, Yasunaga; Miyaoka, Tetsu

    The authors developed advanced haptic displays capable of stimulating the muscles and tendons of the forearms and tactile receptors in fingers to investigate tactile and force effects on simultaneous presentation. Display A is comprised of a master hand with two sets of tactile display with a 4-by-6 array of stimulus pins driven by micro-actuators and an articulated manipulator. Display B is comprised of an articulated manipulator and an 8-by-8 array type tactile display developed in a previous paper. A series of experiments was performed using the above A and B displays to verify the presentation capability of this display type. In Experiment I, subjects grasped virtual pegs and judged their diameters. In Experiment II, subjects tried to insert the pegs into holes. In Experiment III, the crossed-angle of a comparison texture was adjusted to bring it as close as possible to the standard texture fixed during experiments. Since diameter discrimination and insertion precision of the virtual peg were increased by tactile information, tactile-force presentation was effective for peg-in-hole for relatively large clearance. On the other hand, recognition capability for virtual texture was not enhanced compared to a mouse-mounted tactile display previously developed. While the pressure display is effective for instant of touch and peg rotation representations, rotation tactile imaging is not always effective for texture recognitions.

  20. Mesoscale resolution capability of altimetry: Present and future

    NASA Astrophysics Data System (ADS)

    Dufau, Claire; Orsztynowicz, Marion; Dibarboure, Gérald; Morrow, Rosemary; Le Traon, Pierre-Yves

    2016-07-01

    Wavenumber spectra of along-track Sea Surface Height from the most recent satellite radar altimetry missions [Jason-2, Cryosat-2, and SARAL/Altika) are used to determine the size of ocean dynamical features observable with the present altimetry constellation. A global analysis of the along-track 1-D mesoscale resolution capability of the present-day altimeter missions is proposed, based on a joint analysis of the spectral slopes in the mesoscale band and the error levels observed for horizontal wavelengths lower than 20km. The global sea level spectral slope distribution provided by Xu and Fu with Jason-1 data is revisited with more recent altimeter missions, and maps of altimeter error levels are provided and discussed for each mission. Seasonal variations of both spectral slopes and altimeter error levels are also analyzed for Jason-2. SARAL/Altika, with its lower error levels, is shown to detect smaller structures everywhere. All missions show substantial geographical and temporal variations in their mesoscale resolution capabilities, with variations depending mostly on the error level change but also on slight regional changes in the spectral slopes. In western boundary currents where the signal to noise ratio is favorable, the along-track mesoscale resolution is approximately 40 km for SARAL/AltiKa, 45 km for Cryosat-2, and 50 km for Jason-2. Finally, a prediction of the future 2-D mesoscale sea level resolution capability of the Surface Water and Ocean Topography (SWOT) mission is given using a simulated error level.

  1. Cross-dressing: an alternative mechanism for antigen presentation.

    PubMed

    Campana, Stefania; De Pasquale, Claudia; Carrega, Paolo; Ferlazzo, Guido; Bonaccorsi, Irene

    2015-12-01

    Cross-dressing involves the transfer of preformed functional peptide-MHC complexes from the surface of donor cells to recipient cells, such as dendritic cells (DCs). These cross-dressed cells might eventually present the intact, unprocessed peptide-MHC complexes to T lymphocytes. In this review we will discuss some recent findings concerning the intercellular transfer of preformed MHC complexes and the possible mechanisms by which the transfer may occur. We will report evidences showing that both MHC class I and MHC class II functional complexes might be transferred, highlighting the physiological relevance of these cross-dressed cells for the presentation of exogenous antigens to both cytotoxic and helper T lymphocytes.

  2. Past and Present Large Solid Rocket Motor Test Capabilities

    NASA Technical Reports Server (NTRS)

    Kowalski, Robert R.; Owen, David B., II

    2011-01-01

    A study was performed to identify the current and historical trends in the capability of solid rocket motor testing in the United States. The study focused on test positions capable of testing solid rocket motors of at least 10,000 lbf thrust. Top-level information was collected for two distinct data points plus/minus a few years: 2000 (Y2K) and 2010 (Present). Data was combined from many sources, but primarily focused on data from the Chemical Propulsion Information Analysis Center s Rocket Propulsion Test Facilities Database, and heritage Chemical Propulsion Information Agency/M8 Solid Rocket Motor Static Test Facilities Manual. Data for the Rocket Propulsion Test Facilities Database and heritage M8 Solid Rocket Motor Static Test Facilities Manual is provided to the Chemical Propulsion Information Analysis Center directly from the test facilities. Information for each test cell for each time period was compiled and plotted to produce a graphical display of the changes for the nation, NASA, Department of Defense, and commercial organizations during the past ten years. Major groups of plots include test facility by geographic location, test cells by status/utilization, and test cells by maximum thrust capability. The results are discussed.

  3. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway.

    PubMed

    Apostolopoulos, V; Pietersz, G A; Gordon, S; Martinez-Pomares, L; McKenzie, I F

    2000-06-01

    Antigens such as MUC1 coupled to oxidized mannan lead to rapid and efficient MHC class I presentation to CD8+ cells and a preferential T1 response; after reduction there is class II presentation and a T2 immune response. We now show that the selective advantage of the oxidized mannan-MUC1 is due to the presence of aldehydes and not Schiff bases, and that oxidized mannan-MUC1 binds to the mannose and not scavenger receptors and is internalized and presented by MHC class I molecules 1,000 times more efficiently than when reduced. After internalization there is rapid access to the class I pathway via endosomes but not lysosomes, proteasomal processing and transport to the endoplasmic reticulum, Golgi apparatus and cell surface. Aldehydes cause rapid entry into the class I pathway, and can therefore direct the subsequent immune response.

  4. Carbohydrate-Mediated Targeting of Antigen to Dendritic Cells Leads to Enhanced Presentation of Antigen to T Cells

    PubMed Central

    Adams, Eddie W.; Ratner, Daniel M.; Seeberger, Peter H.; Hacohen, Nir

    2009-01-01

    The unique therapeutic value of dendritic cells (DCs) for the treatment of allergy, autoimmunity and transplant rejection is predicated upon our ability to selectively deliver antigens, drugs or nucleic acids to DCs in vivo. Here we describe a method for delivering whole protein antigens to DCs based on carbohydrate-mediated targeting of DC-expressed lectins. A series of synthetic carbohydrates was chemically-coupled to a model antigen, ovalbumin (OVA), and each conjugate was evaluated for its ability to increase the efficiency of antigen presentation by murine DCs to OVA-specific T cells (CD4+ and CD8+). In vitro data are presented that demonstrate that carbohydrate modification of OVA leads to a 50-fold enhancement of presentation of antigenic peptide to CD4+ T cells. A tenfold enhancement is observed for CD8+ T cells; this indicates that the targeted lectin(s) can mediate cross-presentation of antigens on MHC class I. Our data indicate that the observed enhancements in antigen presentation are unique to OVA that is conjugated to complex oligosaccharides, such as a high-mannose nonasaccharide, but not to monosaccharides. Taken together, our data suggest that a DC targeting strategy that is based upon carbohydrate-lectin interactions is a promising approach for enhancing antigen presentation via class I and class II molecules. PMID:18186095

  5. Glycolipid antigen processing for presentation by CD1d molecules.

    PubMed

    Prigozy, T I; Naidenko, O; Qasba, P; Elewaut, D; Brossay, L; Khurana, A; Natori, T; Koezuka, Y; Kulkarni, A; Kronenberg, M

    2001-01-26

    The requirement for processing glycolipid antigens in T cell recognition was examined with mouse CD1d-mediated responses to glycosphingolipids (GSLs). Although some disaccharide GSL antigens can be recognized without processing, the responses to three other antigens, including the disaccharide GSL Gal(alpha1-->2)GalCer (Gal, galactose; GalCer, galactosylceramide), required removal of the terminal sugars to permit interaction with the T cell receptor. A lysosomal enzyme, alpha-galactosidase A, was responsible for the processing of Gal(alpha1-->2)GalCer to generate the antigenic monosaccharide epitope. These data demonstrate a carbohydrate antigen processing system analogous to that used for peptides and an ability of T cells to recognize processed fragments of complex glycolipids.

  6. Differential presentation of tumor antigen-derived epitopes by MHC-class I and antigen-positive tumor cells.

    PubMed

    Held, Gerhard; Neumann, Frank; Sturm, Christine; Kaestner, Lars; Dauth, Nina; de Bruijn, Diederik R; Renner, Christoph; Lipp, Peter; Pfreundschuh, Michael

    2008-10-15

    SSX2 is a member of the family of cancer/testis antigens. The SSX2 derived peptide SSX2(103-111) has been shown to be presented to cytotoxic T-lymphocytes (CTL) by Major-Histocompatibility (MHC) Class-I complexes after endogenous processing, more precisely by the allele HLA-A*0201. The HLA-A*0201- and SSX2-positive melanoma cell line SK-Mel-37 but not Me275 had been shown to elicit reactivity in SSX2(103-111) specific cytotoxic T-lymphocytes. To analyze the correlation between SSX2(103-111) presentation and T-cell stimulation, we intended to visualize presentation of SSX2(103-111) in these melanoma cell lines. Fab-antibodies were established from a human phage library with specificity for SSX2(103-111)/HLA-A*0201 complexes (but non-reactive with HLA-A*0201 or SSX2(103-111) alone) and used to visualize the presentation of SSX2(103-111) in the context of HLA-A*0201 by fluorescence microscopy. Presentation of SSX2(103-111) the context of HLA-A*0201 was demonstrated for the majority of SK-Mel-37, but for only a small fraction (<1%) of Me275 as indicated by a clear membrane-staining pattern in fluorescence microscopy. The presentation of SSX2(103-111) on SK-Mel37 and Me275, but not the expression of the SSX2 protein correlated with the capability of these cells to stimulate cells of an SSX2(103-111)-specific T-cell clone. MHC-peptide specific antibodies are a valuable tool for the analysis of antigenic peptides in the context of MHC-I molecules and for the structural definition of immunodominant epitopes. PMID:18688854

  7. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1988-01-01

    Non-immune SJL (H-2s) spleen cells were fused with (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B- cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones were able to present both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  8. A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells.

    PubMed

    Steenblock, Erin R; Fahmy, Tarek M

    2008-04-01

    Efficient T-cell stimulation and proliferation in response to specific antigens is a goal of immunotherapy against infectious disease and cancer. Manipulation of this response can be accomplished by adoptive immunotherapy involving the infusion of antigen-specific T-cell populations expanded ex vivo with antigen presenting cells. We mimicked physiological antigen presentation on a biodegradable microparticle constructed from poly(lactide-co-glycolide) (PLGA), a polymer system whose safety has been established for use in humans. These particles present a high density of adaptor elements for attaching both recognition ligands and co-stimulatory ligands to a biodegradable core encapsulating the cytokine interleukin-2 (IL-2). We demonstrate the utility of this system in efficient polyclonal and antigen-specific T-cell stimulation and expansion, showing that sustained release of IL-2 in the vicinity of T-cell contacts dramatically improves the stimulatory capacity of these acellular systems, as compared to the effect of exogenous addition of cytokine. This results in a 45-fold enhancement in T-cell expansion. In addition, this mode of antigen presentation skews the expansion toward the CD8(+) T-cell phenotype. This comprehensive acellular platform, capable of delivering recognition, co-stimulatory, and cytokine signals, represents a promising new technology for artificial antigen presentation. PMID:18334990

  9. Isolation of a peptide binding protein and its role in antigen presentation

    SciTech Connect

    Lakey, E.; Pierce, S.K.; Margoliash, E.

    1986-03-05

    A mouse T cell hybrid, TPc9.1, recognizes pigeon cytochrome c (Pc) as processed and presented by histocompatible antigen presenting cells (APC). When paraformaldehyde fixed APC are employed, only a peptide fragment of Pc, Pc 81-104, and not the native Pc, is capable of stimulating TPc9.1 cells. Pc 81-104 appears to associate tightly with the APC surface since paraformaldehyde fixed APC which have been incubated with Pc 81-104 remain stimulatory following extensive washing. When APC are surface labeled with /sup 125/I, solubilized and affinity purified on Pc 81-104-Sepharose 4B columns, two predominant polypeptides of approximately 72 and 74 kd are isolated. Little or no immunoglobulin, Class I or Class II proteins are obtained under these conditions. Antisera from rabbits immunized with the affinity purified material, but not preimmune sera, block the activation of TPc 9.1 cells by Pc as well as Pc 81-104 when presented by live APC. Furthermore, these antisera are even more effective in blocking the activation of TPc9.1 cells by either APC which had been pulsed with Pc and then paraformaldehyde fixed, or by Pc 81-104 when added to paraformaldehyde fixed APC, suggesting that these antisera were not affecting antigen processing. Thus, these peptide binding proteins may play a role in antigen presentation, and they are being further characterized.

  10. Cholera Toxin B Subunit as a Carrier Molecule Promotes Antigen Presentation and Increases CD40 and CD86 Expression on Antigen-Presenting Cells

    PubMed Central

    George-Chandy, Annie; Eriksson, Kristina; Lebens, Michael; Nordström, Inger; Schön, Emma; Holmgren, Jan

    2001-01-01

    Cholera toxin B subunit (CTB) is an efficient mucosal carrier molecule for the generation of mucosal antibody responses and/or induction of systemic T-cell tolerance to linked antigens. CTB binds with high affinity to GM1 ganglioside cell surface receptors. In this study, we evaluated how conjugation of a peptide or protein antigen to CTB by chemical coupling or genetic fusion influences the T-cell-activating capacity of different antigen-presenting cell (APC) subsets. Using an in vitro system in which antigen-pulsed APCs were incubated with antigen-specific, T-cell receptor-transgenic T cells, we found that the dose of antigen required for T-cell activation could be decreased >10,000-fold using CTB-conjugated compared to free antigen. In contrast, no beneficial effects were observed when CTB was simply admixed with antigen. CTB conjugation enhanced the antigen-presenting capacity not only of dendritic cells and B cells but also of macrophages, which expressed low levels of cell surface major histocompatibility complex (MHC) class II and were normally poor activators of naive T cells. Enhanced antigen-presenting activity by CTB-linked antigen resulted in both increased T-cell proliferation and increased interleukin-12 and gamma interferon secretion and was associated with up-regulation of CD40 and CD86 on the APC surface. These results imply that conjugation to CTB dramatically lowers the threshold concentration of antigen required for immune cell activation and also permits low-MHC II-expressing APCs to prime for a specific immune response. PMID:11500448

  11. Antigen presentation by chemically modified splenocytes induces antigen- specific T cell unresponsiveness in vitro and in vivo

    PubMed Central

    1987-01-01

    We investigated the antigen specificity and presentation requirements for inactivation of T lymphocytes in vitro and in vivo. In vitro studies revealed that splenocytes treated with the crosslinker 1-ethyl- 3-(3-dimethylaminopropyl)-carbodiimide (ECDI) and soluble antigen fragments failed to stimulate significant proliferation by normal pigeon cytochrome c-specific T cell clones, suggesting that the chemical treatment inactivated full antigen presentation function. However, T cell clones exposed to ECDI-treated splenocytes and antigen in vitro were rendered unresponsive for at least 8 d to subsequent antigen stimulation with normal presenting cells. As predicted by the in vitro results, specific T cell unresponsiveness was also induced in vivo in B10.A mice injected intravenously with B10.A, but not B10.A(4R), splenocytes coupled with pigeon cytochrome c via ECDI. The antigen and MHC specificity of the induction of this T cell unresponsiveness in vitro and in vivo was identical to that required for T cell activation. These results suggest that nonmitogenic T cell recognition of antigen/MHC on ECDI-modified APCs results in the functional inactivation of T cell clones. PMID:3029267

  12. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  13. Antigen presentation by hapten-specific B lymphocytes. II. Specificity and properties of antigen-presenting B lymphocytes, and function of immunoglobulin receptors

    SciTech Connect

    Abbas, A.K.; Haber, S.; Rock, K.L.

    1985-09-01

    Studies were designed to examine the ability of hapten-binding murine B lymphocytes to present hapten-protein conjugates to protein antigen-specific, Ia-restricted T cell hybridomas. BALB/c B cells specific for TNP or FITC presented hapten-modified proteins (TNP-G1 phi, TNP-OVA, or FITC-OVA) to the relevant T cell hybridomas at concentrations below 0.1 microgram/ml. Effective presentation of the same antigens by B lymphocyte-depleted splenocytes, and of unmodified proteins by either hapten-binding B cells or Ig spleen cells, required about 10(3)-to 10(4)-fold higher concentrations of antigen. The use of two different haptens and two carrier proteins showed that this extremely efficient presentation of antigen was highly specific, with hapten specificity being a property of the B cells and carrier specificity of the responding T cells. The presentation of hapten-proteins by hapten-binding B lymphocytes was radiosensitive and was not affected by the depletion of plastic-adherent cells, suggesting that conventional APCs (macrophages or dendritic cells) are not required in this phenomenon. Antigen-pulsing and antibody-blocking experiments showed that this hapten-specific antigen presentation required initial binding of antigen to surface Ig receptors. Moreover, linked recognition of hapten and carrier determinants was required, but these recognition events could be temporally separated. Finally, an antigen-processing step was found to be necessary, and this step was disrupted by ionizing radiation. These data suggest a role for B cell surface Ig in providing a specific high-affinity receptor to allow efficient uptake or focusing of antigen for its subsequent processing and presentation to T lymphocytes.

  14. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen

    PubMed Central

    Hey, Ying-ying; O’Neill, Helen C.

    2016-01-01

    This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named “L-DC” since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties. PMID:27654936

  15. Modulation of antigen presentation by autoreactive B cell clones specific for GAD65 from a type I diabetic patient

    PubMed Central

    BANGA, J P; MOORE, J K; DUHINDAN, N; MADEC, A M; VAN ENDERT, P M; ORGIAZZI, J; ENDL, J

    2004-01-01

    We used a GAD65-specific human B–T cell line cognate system in vitro to investigate the modulation of GAD65 presentation by autoantibody, assessed in a proliferation assay. Generally, if the T cell determinant overlaps or resides within the antibody epitope, effects of presentation are blunted while if they are distant can lead to potent presentation. For three different autoreactive B–T cell line cognate pairs, the modulation of GAD65 presentation followed the mode of overlapping or distant epitopes with resultant potent or undetectable presentation. However, other cognate pairs elicited variability in this pattern of presentation. Notably, one B cell line, DPC, whose antibody epitope did not overlap with the T cell determinants, was consistently poor in presenting GAD65. Using the fluorescent dye Alexa Fluor 647 conjugated to GAD65 to study receptor-mediated antigen endocytosis showed that all the antigen-specific B cell clones were efficient in intracellular accumulation of the antigen. Additionally, multicolour immunofluorescence microscopy showed that the internalized GAD65/surface IgG complexes were rapidly targeted to a perinuclear compartment in all GAD-specific B cell clones. This analysis also demonstrated that HLA-DM expression was reduced strongly in DPC compared to the stimulatory B cell clones. Thus the capability of antigen-specific B cells to capture and present antigen to human T cell lines is dependent on the spatial relationship of B and T cell epitopes as well other factors which contribute to the efficiency of presentation. PMID:14678267

  16. Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells

    PubMed Central

    Roy, Sobhan; Ly, Dalam; Li, Nan-Sheng; Altman, John D.; Piccirilli, Joseph A.; Moody, D. Branch; Adams, Erin J.

    2014-01-01

    CD1c is a member of the group 1 CD1 family of proteins that are specialized for lipid antigen presentation. Despite high cell surface expression of CD1c on key antigen-presenting cells and the discovery of its mycobacterial lipid antigen presentation capability, the molecular basis of CD1c recognition by T cells is unknown. Here we present a comprehensive functional and molecular analysis of αβ T-cell receptor (TCR) recognition of CD1c presenting mycobacterial phosphomycoketide antigens. Our structure of CD1c with the mycobacterial phosphomycoketide (PM) shows similarities to that of CD1c-mannosyl-β1-phosphomycoketide in that the A' pocket accommodates the mycoketide alkyl chain; however, the phosphate head-group of PM is shifted ∼6 Å in relation to that of mannosyl-β1-PM. We also demonstrate a bona fide interaction between six human TCRs and CD1c-mycoketide complexes, measuring high to moderate affinities. The crystal structure of the DN6 TCR and mutagenic studies reveal a requirement of five complementarity determining region (CDR) loops for CD1c recognition. Furthermore, mutagenesis of CD1c reveals residues in both the α1 and α2 helices involved in TCR recognition, yet not entirely overlapping among the examined TCRs. Unlike patterns for MHC I, no archetypical binding footprint is predicted to be shared by CD1c-reactive TCRs, even when recognizing the same or similar antigens. PMID:25298532

  17. Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses.

    PubMed

    Zervoudi, Efthalia; Saridakis, Emmanuel; Birtley, James R; Seregin, Sergey S; Reeves, Emma; Kokkala, Paraskevi; Aldhamen, Yasser A; Amalfitano, Andrea; Mavridis, Irene M; James, Edward; Georgiadis, Dimitris; Stratikos, Efstratios

    2013-12-01

    Intracellular aminopeptidases endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2), and as well as insulin-regulated aminopeptidase (IRAP) process antigenic epitope precursors for loading onto MHC class I molecules and regulate the adaptive immune response. Their activity greatly affects the antigenic peptide repertoire presented to cytotoxic T lymphocytes and as a result can regulate cytotoxic cellular responses contributing to autoimmunity or immune evasion by viruses and cancer cells. Therefore, pharmacological regulation of their activity is a promising avenue for modulating the adaptive immune response with possible applications in controlling autoimmunity, in boosting immune responses to pathogens, and in cancer immunotherapy. In this study we exploited recent structural and biochemical analysis of ERAP1 and ERAP2 to design and develop phosphinic pseudopeptide transition state analogs that can inhibit this family of enzymes with nM affinity. X-ray crystallographic analysis of one such inhibitor in complex with ERAP2 validated our design, revealing a canonical mode of binding in the active site of the enzyme, and highlighted the importance of the S2' pocket for achieving inhibitor potency. Antigen processing and presentation assays in HeLa and murine colon carcinoma (CT26) cells showed that these inhibitors induce increased cell-surface antigen presentation of transfected and endogenous antigens and enhance cytotoxic T-cell responses, indicating that these enzymes primarily destroy epitopes in those systems. This class of inhibitors constitutes a promising tool for controlling the cellular adaptive immune response in humans by modulating the antigen processing and presentation pathway.

  18. Cross-Presentation of Cell-Associated Antigens by MHC Class I in Dendritic Cell Subsets

    PubMed Central

    Gutiérrez-Martínez, Enric; Planès, Remi; Anselmi, Giorgio; Reynolds, Matthew; Menezes, Shinelle; Adiko, Aimé Cézaire; Saveanu, Loredana; Guermonprez, Pierre

    2015-01-01

    Dendritic cells (DCs) have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ DCs subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen-presenting cells. Here, we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by DCs subsets. PMID:26236315

  19. Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy.

    PubMed

    Perica, Karlo; Bieler, Joan Glick; Schütz, Christian; Varela, Juan Carlos; Douglass, Jacqueline; Skora, Andrew; Chiu, Yen Ling; Oelke, Mathias; Kinzler, Kenneth; Zhou, Shibin; Vogelstein, Bert; Schneck, Jonathan P

    2015-07-28

    Adoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation. Enrichment + Expansion resulted in greater than 1000-fold expansion of both mouse and human tumor-specific T cells in 1 week, with nano-aAPC based enrichment conferring a proliferation advantage during both in vitro culture and after adoptive transfer in vivo. Robust T cell responses were seen not only for shared tumor antigens, but also for computationally predicted neo-epitopes. Streamlining the rapid generation of large numbers of tumor-specific T cells in a cost-effective fashion through Enrichment + Expansion can be a powerful tool for immunotherapy. PMID:26171764

  20. Earth Observing System: Present Capabilities and Promises for the Future

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year 5 EOS science missions are scheduled for launch, representing observations of (i) total solar irradiance, (ii) Earth radiation budget, (iii) land cover & land use change, (iv) ocean processes (vector wind, sea surface temperature, and ocean color), (v) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (vi) atmospheric chemistry (both tropospheric and stratospheric). In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists intend to use MODIS, an earth-viewing cross-track scanning spectroradiometer to be launched on the Terra satellite in summer 1999, for the remote sensing of cloud and aerosol properties. MODIS will scan a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. In addition, I will describe key elements of other instruments recently launched or planned for flight in the coming months. Finally, I will lay out a plan for the future space-based observing system being planned by NASA and its partners.

  1. Regulation of protein synthesis and autophagy in activated dendritic cells: implications for antigen processing and presentation.

    PubMed

    Argüello, Rafael J; Reverendo, Marisa; Gatti, Evelina; Pierre, Philippe

    2016-07-01

    Antigenic peptides presented in the context of major histocompatibility complex (MHC) molecules originate from the degradation of both self and non-self proteins. T cells can therefore recognize at the surface of surveyed cells, the self-peptidome produced by the cell itself (mostly inducing tolerance) or immunogenic peptides derived from exogenous origins. The initiation of adaptive immune responses by dendritic cells (DCs), through the antigenic priming of naïve T cells, is associated to microbial pattern recognition receptors engagement. Activation of DCs by microbial product or inflammatory cytokines initiates multiple processes that maximize DC capacity to present exogenous antigens and stimulate T cells by affecting major metabolic and membrane traffic pathways. These include the modulation of protein synthesis, the regulation of MHC and co-stimulatory molecules transport, as well as the regulation of autophagy, that, all together promote exogenous antigen presentation while limiting the display of self-antigens by MHC molecules.

  2. The role of a human antigen specific T8+ cell subset in antigen presentation, helper function and contrasuppression.

    PubMed Central

    Lehner, T; Avery, J; Jones, T

    1985-01-01

    Regulation of the human immune response was studied by sequential separation of subsets of T cells, followed by assessment of their helper and suppressor functions in a series of reconstitution experiments. T8+ lymphocytes were separated by panning on streptococcal antigen (SA) coated plates into T8+ SA-adherent cells (T8+SA+) and T8+ SA-non-adherent cells (T8+SA-). The helper and suppressor functions of the T8+SA+ and T8+SA- cells, reconstituted with T4+ helper cells were then studied by a direct antibody forming cell assay. T4+ cells will not induce helper activity by 1000 ng SA alone but require the accessory function of monocytes (Mo). However, replacing Mo by T8+SA+ cells will elicit a similar helper activity by T4+ cells and SA as that induced by Mo. In addition to the antigen-specific presentation and induction of helper activity, the T8+SA+ subset displays the properties of antigen-specific contrasuppressor cells. Thus, reconstitution of T4+ cells and T8+SA- (suppressor cells) with T8+SA+ and 1000 ng SA induces helper and no suppressor activity. Substitution of Mo for the T8+SA+ cells converts the helper to a predominantly suppressor-cell function. T8+SA- cells elicit suppression with 1 ng SA in the absence of accessory cells and reconstitution with Mo, T8+SA+ or T4+ cells failed to affect the suppressor activity. Total reconstitution of the four principle subsets of T4+, T8+SA+, T8+SA- cells and Mo elicited similar antigen dose-dependent responses as those of the unseparated mononuclear cells. It seems that all four cell subsets are required for optimal immunoregulation. We suggest that the T8+SA+ can present antigen to T4+ helper cells and induce helper activity, but in addition these cells can prevent the suppressor subset of T8+ cells from inhibiting T4+ helper cells and function as contrasuppressor cells. The mechanism of these functions is not known but HLA class II antigens might play an essential role in antigen binding, presentation and

  3. Leishmania-infected macrophages sequester endogenously synthesized parasite antigens from presentation to CD4+ T cells.

    PubMed

    Kima, P E; Soong, L; Chicharro, C; Ruddle, N H; McMahon-Pratt, D

    1996-12-01

    CD4+ T cell lines raised against the protective leishmanial antigens GP46 and P8 were used to study the presentation of endogenously synthesized Leishmania antigens by infected cells. Using two different sources of macrophages, the I4.07 macrophage cell line (H-2k) which constitutively expresses major histocompatibility complex (MHC) class II molecules, and elicited peritoneal exudate cells, we found that cells infected with Leishmania amastigotes presented little, if any endogenously synthesized parasite antigens to CD4+ T cells. In contrast, promastigote-infected macrophages did present endogenous parasite molecules to CD4+ T cells, although only for a limited time, with maximal presentation occurring within 24 h of infection and decreasing to minimal antigen presentation at 72 h post-infection. These observations suggest that once within the macrophage, Leishmania amastigote antigens are sequestered from the MHC class II pathway of antigen presentation. This allows live parasites to persist in infected hosts by evading the activation of CD4+ T cells, a major and critical anti-leishmanial component of the host immune system. Studies with drugs that modify fusion patterns of phagosomes suggest that the mechanism of this antigen sequestration includes targeted fusion of the parasitophorous vacuole with certain endocytic compartments.

  4. A fully synthetic glycopeptide antitumor vaccine based on multiple antigen presentation on a hyperbranched polymer.

    PubMed

    Glaffig, Markus; Palitzsch, Björn; Hartmann, Sebastian; Schüll, Christoph; Nuhn, Lutz; Gerlitzki, Bastian; Schmitt, Edgar; Frey, Holger; Kunz, Horst

    2014-04-01

    For antitumor vaccines both the selected tumor-associated antigen, as well as the mode of its presentation, affect the immune response. According to the principle of multiple antigen presentation, a tumor-associated MUC1 glycopeptide combined with the immunostimulating T-cell epitope P2 from tetanus toxoid was coupled to a multi-functionalized hyperbranched polyglycerol by "click chemistry". This globular polymeric carrier has a flexible dendrimer-like structure, which allows optimal antigen presentation to the immune system. The resulting fully synthetic vaccine induced strong immune responses in mice and IgG antibodies recognizing human breast-cancer cells.

  5. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection

    PubMed Central

    Cram, Erik D.; Simmons, Ryan S.; Palmer, Amy L.; Hildebrand, William H.; Rockey, Daniel D.

    2015-01-01

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8+ cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8+ T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8+ killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. PMID:26597986

  6. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules.

    PubMed

    Morita, Daisuke; Sugita, Masahiko

    2016-10-01

    Post-translationally modified peptides, such as those containing either phosphorylated or O-glycosylated serine/threonine residues, may be presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules. Most of these modified peptides are captured in the MHC class I groove in a similar manner to that for unmodified peptides. N-Myristoylated 5-mer lipopeptides have recently been identified as a novel chemical class of MHC class I-presented antigens. The rhesus classical MHC class I allele, Mamu-B*098, was found to be capable of binding N-myristoylated lipopeptides and presenting them to CTLs. A high-resolution X-ray crystallographic analysis of the Mamu-B*098:lipopeptide complex revealed that the myristic group as well as conserved C-terminal serine residue of the lipopeptide ligand functioned as anchors, whereas the short stretch of three amino acid residues located in the middle of the lipopeptides was only exposed externally with the potential to interact directly with specific T-cell receptors. Therefore, the modes of lipopeptide-ligand interactions with MHC class I and with T-cell receptors are novel and fundamentally distinct from that for MHC class I-presented peptides. Another lipopeptide-presenting MHC class I allele has now been identified, leading us to the prediction that MHC class I molecules may be separated on a functional basis into two groups: one presenting long peptides and the other presenting short lipopeptides. Since the N-myristoylation of viral proteins is often linked to pathogenesis, CTLs capable of sensing N-myristoylation may serve to control pathogenic viruses, raising the possibility for the development of a new type of lipopeptide vaccine. PMID:27402593

  7. Targeting to porcine sialoadhesin receptor improves antigen presentation to T cells

    PubMed Central

    Revilla, Concepción; Poderoso, Teresa; Martínez, Paloma; Álvarez, Belén; López-Fuertes, Laura; Alonso, Fernando; Ezquerra, Angel; Domínguez, Javier

    2009-01-01

    Antibody-mediated targeting of antigen to specific antigen presenting cells (APC) receptors is an attractive strategy to enhance T cell immune responses to weak immunogenic antigens. Here, we describe the characterization of two monoclonal antibodies (mAb) against different epitopes of porcine sialoadhesin (Sn) and evaluate in vitro the potential of targeting this receptor for delivery of antigens to APC for T cell stimulation. The specificity of these mAb was determined by amino acid sequence analysis of peptides derived from the affinity purified antigen. Porcine Sn is expressed by macrophages present in the border between white and red pulp of the spleen and in the subcapsular sinus of lymph nodes, an appropriate location for trapping blood and lymph-borne antigens. It is also expressed by alveolar macrophages and monocyte-derived dendritic cells (MoDC). Blood monocytes are negative for this molecule, but its expression can be induced by treatment with IFN-a. MAb bound to Sn is rapidly endocytosed. MAb to sialoadhesin induced in vitro T cell proliferation at concentrations 100-fold lower than the non-targeting control mAb when using T lymphocytes from pigs immunized with mouse immunoglobulins as responder cells and IFN-a treated monocytes or MoDC as APC, suggesting a role of sialoadhesin in antigen uptake and/or delivery into the presentation pathway in APC. PMID:19081005

  8. Targeting to porcine sialoadhesin receptor improves antigen presentation to T cells.

    PubMed

    Revilla, Concepción; Poderoso, Teresa; Martínez, Paloma; Alvarez, Belén; López-Fuertes, Laura; Alonso, Fernando; Ezquerra, Angel; Domínguez, Javier

    2009-01-01

    Antibody-mediated targeting of antigen to specific antigen presenting cells (APC) receptors is an attractive strategy to enhance T cell immune responses to weak immunogenic antigens. Here, we describe the characterization of two monoclonal antibodies (mAb) against different epitopes of porcine sialoadhesin (Sn) and evaluate in vitro the potential of targeting this receptor for delivery of antigens to APC for T cell stimulation. The specificity of these mAb was determined by amino acid sequence analysis of peptides derived from the affinity purified antigen. Porcine Sn is expressed by macrophages present in the border between white and red pulp of the spleen and in the subcapsular sinus of lymph nodes, an appropriate location for trapping blood and lymph-borne antigens. It is also expressed by alveolar macrophages and monocyte-derived dendritic cells (MoDC). Blood monocytes are negative for this molecule, but its expression can be induced by treatment with IFN-alpha. MAb bound to Sn is rapidly endocytosed. MAb to sialoadhesin induced in vitro T cell proliferation at concentrations 100-fold lower than the non-targeting control mAb when using T lymphocytes from pigs immunized with mouse immunoglobulins as responder cells and IFN-alpha treated monocytes or MoDC as APC, suggesting a role of sialoadhesin in antigen uptake and/or delivery into the presentation pathway in APC.

  9. Killer Artificial Antigen Presenting Cells (KaAPC) for Efficient In Vitro Depletion of Human Antigen-specific T Cells

    PubMed Central

    Schütz, Christian; Fleck, Martin; Schneck, Jonathan P.; Oelke, Mathias

    2014-01-01

    Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion. PMID:25145915

  10. Killer artificial antigen presenting cells (KaAPC) for efficient in vitro depletion of human antigen-specific T cells.

    PubMed

    Schütz, Christian; Fleck, Martin; Schneck, Jonathan P; Oelke, Mathias

    2014-01-01

    Current treatment of T cell mediated autoimmune diseases relies mostly on strategies of global immunosuppression, which, in the long term, is accompanied by adverse side effects such as a reduced ability to control infections or malignancies. Therefore, new approaches need to be developed that target only the disease mediating cells and leave the remaining immune system intact. Over the past decade a variety of cell based immunotherapy strategies to modulate T cell mediated immune responses have been developed. Most of these approaches rely on tolerance-inducing antigen presenting cells (APC). However, in addition to being technically difficult and cumbersome, such cell-based approaches are highly sensitive to cytotoxic T cell responses, which limits their therapeutic capacity. Here we present a protocol for the generation of non-cellular killer artificial antigen presenting cells (KaAPC), which allows for the depletion of pathologic T cells while leaving the remaining immune system untouched and functional. KaAPC is an alternative solution to cellular immunotherapy which has potential for treating autoimmune diseases and allograft rejections by regulating undesirable T cell responses in an antigen specific fashion. PMID:25145915

  11. Identification of a peptide binding protein that plays a role in antigen presentation

    SciTech Connect

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-03-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from (/sup 35/S)methionine-labeled cells, appears as two discrete bands of approx. =72 and 74 kDa after NaDodSO/sub 4//PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation.

  12. Norovirus Antagonism of B cell Antigen Presentation Results in Impaired Control of Acute Infection

    PubMed Central

    Zhu, Shu; Jones, Melissa K.; Hickman, Danielle; Han, Shuhong; Reeves, Westley; Karst, Stephanie M.

    2016-01-01

    Human noroviruses are a leading cause of gastroenteritis so vaccine development is desperately needed. Elucidating viral mechanisms of immune antagonism can provide key insight into designing effective immunization platforms. We recently revealed that B cells are targets of norovirus infection. Because noroviruses can regulate antigen presentation by infected macrophages and B cells can function as antigen presenting cells, we tested whether noroviruses regulate B cell-mediated antigen presentation and the biological consequence of such regulation. Indeed, murine noroviruses could prevent B cell expression of antigen presentation molecules and this directly correlated with impaired control of acute infection. In addition to B cells, acute control required MHC class I molecules, CD8+ T cells, and granzymes, supporting a model whereby B cells act as antigen presenting cells to activate cytotoxic CD8+ T cells. This immune pathway was active prior to the induction of antiviral antibody responses. As in macrophages, the minor structural protein VP2 regulated B cell antigen presentation in a virus-specific manner. Commensal bacteria were not required for activation of this pathway and ultimately only B cells were required for clearance of viral infection. These findings provide new insight into the role of B cells in stimulating antiviral CD8+ T cell responses. PMID:27007673

  13. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    PubMed Central

    2011-01-01

    Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens), carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1) the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2) synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems. PMID:21861904

  14. NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability.

    PubMed

    Sommermeyer, Daniel; Conrad, Heinke; Krönig, Holger; Gelfort, Haike; Bernhard, Helga; Uckert, Wolfgang

    2013-03-15

    The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy.

  15. Skin-Resident Antigen-Presenting Cells: Instruction Manual for Vaccine Development

    PubMed Central

    Fehres, Cynthia M.; Garcia-Vallejo, Juan J.; Unger, Wendy W. J.; van Kooyk, Yvette

    2013-01-01

    The induction of antigen-specific effector T cells is driven by proper antigen presentation and co-stimulation by dendritic cells (DCs). For this reason strategies have been developed to instruct DCs for the induction of CD4+ and CD8+ T cell responses. Since DCs are localized, amongst other locations, in peripheral tissues such as the skin, new vaccines are aiming at targeting antigens to DCs in situ. Optimal skin-DC targeting in combination with adequate adjuvant delivery facilitates DC maturation and migration to draining lymph nodes and enhances antigen cross-presentation and T cell priming. In this review we describe what DC subsets populate the human skin, as well as current vaccination strategies based on targeting strategies and alternative administration for the induction of robust long-lived anti-cancer effector T cells. PMID:23801994

  16. SAMHD1 Limits HIV-1 Antigen Presentation by Monocyte-Derived Dendritic Cells

    PubMed Central

    Bruel, Timothée; Cardinaud, Sylvain; Porrot, Françoise; Prado, Julia G.; Moris, Arnaud

    2015-01-01

    ABSTRACT Monocyte-derived dendritic cells (MDDC) stimulate CD8+ cytotoxic T lymphocytes (CTL) by presenting endogenous and exogenous viral peptides via major histocompatibility complex class I (MHC-I) molecules. MDDC are poorly susceptible to HIV-1, in part due to the presence of SAMHD1, a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and degrades viral RNA. Vpx, an HIV-2/SIVsm protein absent from HIV-1, antagonizes SAMHD1 by inducing its degradation. The impact of SAMHD1 on the adaptive cellular immune response remains poorly characterized. Here, we asked whether SAMHD1 modulates MHC-I-restricted HIV-1 antigen presentation. Untreated MDDC or MDDC pretreated with Vpx were exposed to HIV-1, and antigen presentation was examined by monitoring the activation of an HIV-1 Gag-specific CTL clone. SAMHD1 depletion strongly enhanced productive infection of MDDC as well as endogenous HIV-1 antigen presentation. Time-lapse microscopy analysis demonstrated that in the absence of SAMHD1, the CTL rapidly killed infected MDDC. We also report that various transmitted/founder (T/F) HIV-1 strains poorly infected MDDC and, as a consequence, did not stimulate CTL. Vesicular stomatitis virus glycoprotein (VSV-G) pseudotyping of T/F alleviated a block in viral entry and induced antigen presentation only in the absence of SAMHD1. Furthermore, by using another CTL clone that mostly recognizes incoming HIV-1 antigens, we demonstrate that SAMHD1 does not influence exogenous viral antigen presentation. Altogether, our results demonstrate that the antiviral activity of SAMHD1 impacts antigen presentation by DC, highlighting the link that exists between restriction factors and adaptive immune responses. IMPORTANCE Upon viral infection, DC may present antigens derived from incoming viral material in the absence of productive infection of DC or from newly synthesized viral proteins. In the case of HIV, productive infection of DC is blocked at an early

  17. Universal artificial antigen presenting cells to selectively propagate T cells expressing chimeric antigen receptor independent of specificity.

    PubMed

    Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J N

    2014-05-01

    T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to nonviral gene transfer in T cells uses ex vivo numeric expansion of CAR T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through coculture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed 1 ligand that could activate CAR T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated that CARL aAPC propagate CAR T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Using CARL enables 1 aAPC to numerically expand all CAR T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR T cells of any specificity. PMID:24714354

  18. Universal Artificial Antigen Presenting Cells to Selectively Propagate T Cells Expressing Chimeric Antigen Receptor Independent of Specificity

    PubMed Central

    Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.

    2014-01-01

    T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354

  19. Antigen presentation by liposomes bearing class II MHC and membrane IL-1.

    PubMed Central

    Bakouche, O.; Lachman, L. B.

    1990-01-01

    Liposomes containing membrane IL-1, Iak, and the antigen conalbumin were evaluated as "synthetic antigen presenting cells." The role of these three molecules in macrophage-T cell interaction was studied by testing their ability to induce the proliferation of a T-cell clone specific to conalbumin (the D10 cell line) or immune spleen cells sensitized three times in vivo with conalbumin. In the latter case, splenic macrophages were eliminated by adherence and a lysomotropic agent. The antigen conalbumin was presented on the surface of the liposomes as native undigested protein. When the liposomes presented native conalbumin, Iak, and membrane IL-1, significant proliferation occurred, but if the liposomes lacked membrane IL-1, the proliferation of the T-cell clone and the spleen cells reached only about 60 percent of the previous signal. Native conalbumin and class II antigen alone were required for T-cell activation, while membrane IL-1 only amplified the response. When the liposomes were made with only Iak and membrane IL-1, lacking conalbumin, there was no proliferation of antigen-specific target cells. These results indicated that in this synthetic system, membrane IL-1 increases the magnitude of the response but is not essential for the proliferative response of antigen-specific T cells. PMID:2399741

  20. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis.

    PubMed

    Hari, Aswin; Ganguly, Anutosh; Mu, Libing; Davis, Shevaun P; Stenner, Melanie D; Lam, Raymond; Munro, Fay; Namet, Inana; Alghamdi, Enaam; Fürstenhaupt, Tobias; Dong, Wei; Detampel, Pascal; Shen, Lian Jun; Amrein, Matthias W; Yates, Robin M; Shi, Yan

    2015-02-01

    Peptides presented by MHC class I molecules are mostly derived from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. Here, we report that mouse dendritic cell (DC) engagement to a phagocytic target alters endocytic processing and inhibits the proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression toward the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Taken together, our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway.

  1. Mannan-decorated thiolated Eudragit microspheres for targeting antigen presenting cells via nasal vaccination.

    PubMed

    Li, Hui-Shan; Singh, Bijay; Park, Tae-Eun; Hong, Zhong-Shan; Kang, Sang-Kee; Cho, Chong-Su; Choi, Yun-Jaie

    2015-12-01

    Mucosal vaccination of protein as an antigen requires appropriate delivery or adjuvant systems to deliver antigen to mucosal immune cells efficiently and generate valid immune responses. For successful nasal immunization, the obstacles imposed by the normal process of mucociliary clearance which limits residence time of applied antigens and low antigen delivery to antigen presenting cells (APCs) in nasal associated lymphoid tissue (NALT) need to be overcome for the efficient vaccination. Here, we prepared mucoadhesive and mannan-decorated thiolated Eudragit microspheres (Man-TEM) as a nasal vaccine carrier to overcome the limitations. Mucoadhesive thiolated Eudragit (TE) were decorated with mannan for targeting mannose receptors (MR) in antigen presenting cells (APCs) to obtain efficient immune responses. The potential adjuvant ability of Man-TEM for intranasal immunization was confirmed by in vitro and in vivo experiments. In mechanistic study using APCs in vitro, we obtained that Man-TEM enhanced the receptor-mediated endocytosis by stimulating the MR receptors of APCs. The nasal vaccination of OVA-loaded Man-TEM in mice showed higher levels of serum IgG and mucosal sIgA than the soluble OVA group due to the specific recognition of MR of APCs by the mannan in the Man-TEM. These results suggest that mucoadhesive and Man-TEM may be a promising candidate for nasal vaccine delivery system to elicit systemic and mucosal immunity. PMID:26415829

  2. Mannan-decorated thiolated Eudragit microspheres for targeting antigen presenting cells via nasal vaccination.

    PubMed

    Li, Hui-Shan; Singh, Bijay; Park, Tae-Eun; Hong, Zhong-Shan; Kang, Sang-Kee; Cho, Chong-Su; Choi, Yun-Jaie

    2015-12-01

    Mucosal vaccination of protein as an antigen requires appropriate delivery or adjuvant systems to deliver antigen to mucosal immune cells efficiently and generate valid immune responses. For successful nasal immunization, the obstacles imposed by the normal process of mucociliary clearance which limits residence time of applied antigens and low antigen delivery to antigen presenting cells (APCs) in nasal associated lymphoid tissue (NALT) need to be overcome for the efficient vaccination. Here, we prepared mucoadhesive and mannan-decorated thiolated Eudragit microspheres (Man-TEM) as a nasal vaccine carrier to overcome the limitations. Mucoadhesive thiolated Eudragit (TE) were decorated with mannan for targeting mannose receptors (MR) in antigen presenting cells (APCs) to obtain efficient immune responses. The potential adjuvant ability of Man-TEM for intranasal immunization was confirmed by in vitro and in vivo experiments. In mechanistic study using APCs in vitro, we obtained that Man-TEM enhanced the receptor-mediated endocytosis by stimulating the MR receptors of APCs. The nasal vaccination of OVA-loaded Man-TEM in mice showed higher levels of serum IgG and mucosal sIgA than the soluble OVA group due to the specific recognition of MR of APCs by the mannan in the Man-TEM. These results suggest that mucoadhesive and Man-TEM may be a promising candidate for nasal vaccine delivery system to elicit systemic and mucosal immunity.

  3. Human cell-based artificial antigen-presenting cells for cancer immunotherapy

    PubMed Central

    Butler, Marcus O.; Hirano, Naoto

    2013-01-01

    Summary Adoptive T-cell therapy, where antitumor T cells are first prepared in vitro, is attractive since it facilitates the delivery of essential signals to selected subsets of antitumor T cells without unfavorable immunoregulatory issues that exist in tumor-bearing hosts. Recent clinical trials have demonstrated that antitumor adoptive T-cell therapy, i.e. infusion of tumor-specific T cells, can induce clinically relevant and sustained responses in patients with advanced cancer. The goal of adoptive cell therapy is to establish antitumor immunological memory, which can result in life-long rejection of tumor cells in patients. To achieve this goal, during the process of in vitro expansion, T-cell grafts used in adoptive T-cell therapy must to be appropriately educated and equipped with the capacity to accomplish multiple, essential tasks. Adoptively transferred T cells must be endowed, prior to infusion, with the ability to efficiently engraft, expand, persist, and traffic to tumor in vivo. As a strategy to consistently generate T-cell grafts with these capabilities, artificial antigen-presenting cells have been developed to deliver the proper signals necessary to T cells to enable optimal adoptive cell therapy. PMID:24329798

  4. Human cell-based artificial antigen-presenting cells for cancer immunotherapy.

    PubMed

    Butler, Marcus O; Hirano, Naoto

    2014-01-01

    Adoptive T-cell therapy, where anti-tumor T cells are first prepared in vitro, is attractive since it facilitates the delivery of essential signals to selected subsets of anti-tumor T cells without unfavorable immunoregulatory issues that exist in tumor-bearing hosts. Recent clinical trials have demonstrated that anti-tumor adoptive T-cell therapy, i.e. infusion of tumor-specific T cells, can induce clinically relevant and sustained responses in patients with advanced cancer. The goal of adoptive cell therapy is to establish anti-tumor immunologic memory, which can result in life-long rejection of tumor cells in patients. To achieve this goal, during the process of in vitro expansion, T-cell grafts used in adoptive T-cell therapy must be appropriately educated and equipped with the capacity to accomplish multiple, essential tasks. Adoptively transferred T cells must be endowed, prior to infusion, with the ability to efficiently engraft, expand, persist, and traffic to tumor in vivo. As a strategy to consistently generate T-cell grafts with these capabilities, artificial antigen-presenting cells have been developed to deliver the proper signals necessary to T cells to enable optimal adoptive cell therapy. PMID:24329798

  5. Chronic HIV Infection Enhances the Responsiveness of Antigen Presenting Cells to Commensal Lactobacillus

    PubMed Central

    Nagy, Lauren H.; Grishina, Irina; Macal, Monica; Hirao, Lauren A.; Hu, William K.; Sankaran-Walters, Sumathi; Gaulke, Christopher A.; Pollard, Richard; Brown, Jennifer; Suni, Maria; Baumler, Andreas J.; Ghanekar, Smita; Marco, Maria L.; Dandekar, Satya

    2013-01-01

    Chronic immune activation despite long-term therapy poses an obstacle to immune recovery in HIV infection. The role of antigen presenting cells (APCs) in chronic immune activation during HIV infection remains to be fully determined. APCs, the frontline of immune defense against pathogens, are capable of distinguishing between pathogens and non-pathogenic, commensal bacteria. We hypothesized that HIV infection induces dysfunction in APC immune recognition and response to some commensal bacteria and that this may promote chronic immune activation. Therefore we examined APC inflammatory cytokine responses to commensal lactobacilli. We found that APCs from HIV-infected patients produced an enhanced inflammatory response to Lactobacillus plantarum WCFS1 as compared to APCs from healthy, HIV-negative controls. Increased APC expression of TLR2 and CD36, signaling through p38-MAPK, and decreased expression of MAP kinase phosphatase-1 (MKP-1) in HIV infection was associated with this heightened immune response. Our findings suggest that chronic HIV infection enhances the responsiveness of APCs to commensal lactobacilli, a mechanism that may partly contribute to chronic immune activation. PMID:24023646

  6. The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways.

    PubMed

    Samie, Mohammad; Cresswell, Peter

    2015-07-01

    Dendritic cells (DCs) can initiate immune responses by presenting exogenous antigens to T cells via both major histocompatibility complex (MHC) class I pathways and MHC class II pathways. Lysosomal activity has an important role in modulating the balance between these two pathways. The transcription factor TFEB regulates lysosomal function by inducing lysosomal activation. Here we report that TFEB expression inhibited the presentation of exogenous antigen by MHC class I while enhancing presentation via MHC class II. TFEB promoted phagosomal acidification and protein degradation. Furthermore, we found that the activation of TFEB was regulated during DC maturation and that phagosomal acidification was impaired in DCs in which the gene encoding TFEB was silenced. Our data indicate that TFEB is a key participant in the differential regulation of the presentation of exogenous antigens by DCs.

  7. Characterization of antigen-presenting properties of tumour cells using virus-specific cytotoxic T lymphocytes.

    PubMed

    Spierings, D C; Agsteribbe, E; Wilschut, J; Huckriede, A

    2000-04-01

    Immunotherapy of tumours by induction of tumour-specific cytotoxic T-lymphocytes (CTLs) will only be effective for tumours with a functional antigen processing and presentation machinery. However, many tumours are known to down-regulate expression of major histocompatibility complex (MHC) class I molecules and/or to impair antigen processing. It is therefore desirable to evaluate the ability of a given tumour to present antigenic epitopes before developing an immunotherapy protocol. In this study we have used influenza virus as a tool to determine the antigen-presenting capacities of the murine neuroblastoma C1300 cell line NB41A3, a frequently used model for human neuroblastoma. Immunofluorescence analyses revealed low and moderate expression of MHC class I molecules Dd and Kk respectively. Nevertheless, infected NB41 A3 cells were lysed efficiently by influenza-specific CTLs. These results demonstrate that all steps of the antigen-processing pathway function properly in the NB tumour cells, and that the limited MHC class I expression suffices for efficient recognition by CTLs. In addition, lysis of the NB tumour cells shows that the cells are susceptible to CTL-induced apoptosis, a pathway that is often impaired in tumour cells. These characteristics make neuroblastoma a suitable target for immunotherapy. The presented assay allows evaluation of various immunological properties of tumour cells and, thus, represents a valuable tool to assess whether a given tumour will be susceptible to immunotherapy or not.

  8. Killer artificial antigen-presenting cells: the synthetic embodiment of a 'guided missile'.

    PubMed

    Schütz, Christian; Oelke, Mathias; Schneck, Jonathan P; Mackensen, Andreas; Fleck, Martin

    2010-07-01

    At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells ('guided missiles'). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based 'killer artificial antigen-presenting cell' strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity. PMID:20636007

  9. CD1 antigen presentation and autoreactivity in the pregnant human uterus

    PubMed Central

    Guerin, Leigh; Wu, Vernon; Houser, Brandy; Tilburgs, Tamara; de Jong, Annemieke; Moody, D. Branch; Strominger, Jack L.

    2015-01-01

    Problem CD11cHI human decidual macrophages express several isoforms of CD1 molecules. Their expression pattern and function required investigation. Method of Study CD11cHI macrophages were isolated from decidua. Expression of CD1 isoforms and their ability to present lipid antigens to T cells was studied. Results CD1a, CD1c, and CD1d were all expressed on CD11cHI dMϕ, a pattern differing from those previously observed. Exposure of peripheral monocytes and dendritic cells to lipid isolates from decidua led to increased surface CD1a levels only. The CD1a and CD1c on dMϕ were able to present the appropriate lipid antigens to lipid antigen-specific T cells. Finally, autoreactivity of decidual T cells to CD1a was observed. Conclusion The unique pattern of expression of CD1 isoforms on CD11cHI dMϕ is consistent with organ-specific roles of CD1 in human T cell responses. dMϕ are able to present lipid antigens to both peripheral and decidual T cells and are major antigen presenting cells in human de-cidua. PMID:25739697

  10. Antigen presentation by non-immune B-cell hybridoma clones: presentation of synthetic antigenic sites reveals clones that exhibit no specificity and clones that present only one epitope

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1989-01-01

    Recently, we reported the preparation and antigen-presenting properties of hybridoma B-cell clones obtained after fusing non-secreting, non-antigen presenting Balb/c 653-myeloma cells with non-immune SJL spleen cells. It was found that antigen presentation at the clonal level can be specific or non-specific, depending on the particular B-cell clone. In the present work, one specific and one general presenter B-cell clones were tested for their epitope presentation ability to SJL T-cells that were specific to lysozyme or myoglobin. B-cell clone A1G12, a general presenter which presented both lysozyme and myoglobin to their respective T-cell lines, was found to present all five myoglobin epitopes while clone A1L16, a lysozyme specific presenter presented only one of the three epitopes of lysozyme. The latter reveals a hitherto unknown submolecular specificity (to a given epitope within a protein) for antigen presenting cells at the clonal level. Therefore, the specificity of T-cell recognition does not only derive from the T-cell but may also be dependent on the epitope specificity of the antigen-presenting B-cell.

  11. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation

    PubMed Central

    Adiko, Aimé Cézaire; Babdor, Joel; Gutiérrez-Martínez, Enric; Guermonprez, Pierre; Saveanu, Loredana

    2015-01-01

    Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization. PMID:26191062

  12. Parkinson's Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation.

    PubMed

    Matheoud, Diana; Sugiura, Ayumu; Bellemare-Pelletier, Angélique; Laplante, Annie; Rondeau, Christiane; Chemali, Magali; Fazel, Ali; Bergeron, John J; Trudeau, Louis-Eric; Burelle, Yan; Gagnon, Etienne; McBride, Heidi M; Desjardins, Michel

    2016-07-14

    Antigen presentation is essential for establishing immune tolerance and for immune responses against infectious disease and cancer. Although antigen presentation can be mediated by autophagy, here we demonstrate a pathway for mitochondrial antigen presentation (MitAP) that relies on the generation and trafficking of mitochondrial-derived vesicles (MDVs) rather than on autophagy/mitophagy. We find that PINK1 and Parkin, two mitochondrial proteins linked to Parkinson's disease (PD), actively inhibit MDV formation and MitAP. In absence of PINK1 or Parkin, inflammatory conditions trigger MitAP in immune cells, both in vitro and in vivo. MitAP and the formation of MDVs require Rab9 and Sorting nexin 9, whose recruitment to mitochondria is inhibited by Parkin. The identification of PINK1 and Parkin as suppressors of an immune-response-eliciting pathway provoked by inflammation suggests new insights into PD pathology. PMID:27345367

  13. Macroautophagy in Endogenous Processing of Self- and Pathogen-Derived Antigens for MHC Class II Presentation

    PubMed Central

    Duraes, Fernanda V.; Niven, Jennifer; Dubrot, Juan; Hugues, Stéphanie; Gannagé, Monique

    2015-01-01

    Although autophagy is a process that has been studied for several years its link with antigen presentation and T cell immunity has only recently emerged. Autophagy, which means “self-eating,” is important to maintain cell homeostasis and refers to a collection of mechanisms that delivers intracellular material for degradation into lysosomes. Among them, macroautophagy pathway has many implications in different biological processes, including innate and adaptive immunity. In particular, macroautophagy can provide a substantial source of intracellular antigens for loading onto MHC class II molecules using the alternative MHC class II pathway. Through autophagosomes, endogenous self-antigens as well as antigens derived from intracellular pathogens can be delivered to MHC class II compartment and presented to CD4+ T cells. The pathway will, therefore, impact both peripheral T cell tolerance and the pathogen specific immune response. This review will describe the contribution of autophagy to intracellular presentation of endogenous self- or pathogen-derived antigens via MHC class II and its consequences on CD4+ T cell responses. PMID:26441964

  14. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    PubMed Central

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines. PMID:26583156

  15. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages.

    PubMed Central

    Kovacsovics-Bankowski, M; Clark, K; Benacerraf, B; Rock, K L

    1993-01-01

    Antigens in extracellular fluids can be processed and presented with major histocompatibility complex (MHC) class I molecules by a subset of antigen presenting cells (APCs). Chicken egg ovalbumin (Ova) linked to beads was presented with MHC class I molecules by these cells up to 10(4)-fold more efficiently than soluble Ova. This enhanced presentation was observed with covalently or noncovalently linked Ova and with beads of different compositions. A key parameter in the activity of these conjugates was the size of the beads. The APC that is responsible for this form of presentation is a macrophage. These cells internalize the antigen constructs through phagocytosis, since cytochalasin B inhibited presentation. Processing of the antigen and association with MHC class I molecules appears to occur intracellularly as presentation was observed under conditions where there was no detectable release of peptides into the extracellular fluids. When injected in vivo in C57BL/6 mice, Ova-beads, but not soluble Ova, primed CD4- CD8+ cytotoxic T lymphocytes (CTLs). Similar results were obtained in BALB/c mice immunized with beta-galactosidase-beads. The implications of these findings for development of nonliving vaccines that stimulate CTL immunity are discussed. PMID:8506338

  16. Serum proteases alter the antigenicity of peptides presented by class I major histocompatibility complex molecules.

    PubMed Central

    Falo, L D; Colarusso, L J; Benacerraf, B; Rock, K L

    1992-01-01

    Any effect of serum on the antigenicity of peptides is potentially relevant to their use as immunogens in vivo. Here we demonstrate that serum contains distinct proteases that can increase or decrease the antigenicity of peptides. By using a functional assay, we show that a serum component other than beta 2-microglobulin enhances the presentation of ovalbumin peptides produced by cyanogen bromide cleavage. Three features of this serum activity implicate proteolysis: it is temperature dependent, it results in increased antigenicity in a low molecular weight peptide fraction, and it is inhibited by the protease inhibitor leupeptin. Conversely, presentation of the synthetic peptide OVA-(257-264) is inhibited by serum. This inhibition is unaffected by leupeptin but is blocked by bestatin, a protease inhibitor with distinct substrate specificities. Implications for peptide-based vaccine design and immunotherapy are discussed. PMID:1518868

  17. Vaccinia Virus A35R Inhibits MHC Class II Antigen Presentation

    PubMed Central

    Rehm, Kristina E.; Connor, Ramsey F.; Jones, Gwendolyn J.B.; Yimbu, Kenneth; Roper, Rachel L.

    2009-01-01

    The Vaccinia virus gene A35R (Copenhagen designation) is highly conserved in mammalian-tropic poxviruses and is an important virulence factor, but its function was unknown. We show herein that A35 does not affect viral infectivity, apoptosis induction, or replication; however, we found that A35 significantly inhibited MHC class II-restricted antigen presentation, immune priming of T lymphocytes, and subsequent chemokine and cytokine synthesis. A35 localized to endosomes and reduced the amount of a model antigenic peptide displayed in the cleft of class II MHC. In addition, A35 decreased VV specific T cell responses in vivo. Thus, this is the first report identifying a function for the A35 protein in virulence as well as the first report identifying a VV gene that inhibits peptide antigen presentation. PMID:19954808

  18. No major role for insulin-degrading enzyme in antigen presentation by MHC molecules.

    PubMed

    Culina, Slobodan; Mauvais, François-Xavier; Hsu, Hsiang-Ting; Burgevin, Anne; Guénette, Suzanne; Moser, Anna; van Endert, Peter

    2014-01-01

    Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE) was shown to produce an antigenic peptide derived from the tumor antigen MAGE-A3 in an entirely proteasome-independent manner, raising the question of the global impact of IDE in MHC class I antigen processing. Here we report that IDE knockdown in human cell lines, or knockout in two different mouse strains, has no effect on cell surface expression of various MHC class I molecules, including allomorphs such as HLA-A3 and HLA-B27 suggested to be loaded in an at least a partly proteasome-independent manner. Moreover, reduced or absent IDE expression does not affect presentation of five epitopes including epitopes derived from beta amyloid and proinsulin, two preferred IDE substrates. Thus, IDE does not play a major role in MHC class I antigen processing, confirming the dominant and almost exclusive role of the proteasome in cytosolic production of MHC class I ligands.

  19. No Major Role for Insulin-Degrading Enzyme in Antigen Presentation by MHC Molecules

    PubMed Central

    Hsu, Hsiang-Ting; Burgevin, Anne; Guénette, Suzanne; Moser, Anna; van Endert, Peter

    2014-01-01

    Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE) was shown to produce an antigenic peptide derived from the tumor antigen MAGE-A3 in an entirely proteasome-independent manner, raising the question of the global impact of IDE in MHC class I antigen processing. Here we report that IDE knockdown in human cell lines, or knockout in two different mouse strains, has no effect on cell surface expression of various MHC class I molecules, including allomorphs such as HLA-A3 and HLA-B27 suggested to be loaded in an at least a partly proteasome-independent manner. Moreover, reduced or absent IDE expression does not affect presentation of five epitopes including epitopes derived from beta amyloid and proinsulin, two preferred IDE substrates. Thus, IDE does not play a major role in MHC class I antigen processing, confirming the dominant and almost exclusive role of the proteasome in cytosolic production of MHC class I ligands. PMID:24516642

  20. Susceptibility to Theiler's virus-induced demyelinating disease correlates with astrocyte class II induction and antigen presentation.

    PubMed Central

    Borrow, P; Nash, A A

    1992-01-01

    Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus which induces a chronic demyelinating disease of the central nervous system (CNS) in certain susceptible mouse strains. Demyelination has been shown to result from immunopathological responses mediated by CD4+, major histocompatibility complex (MHC) class II-restricted T cells. As little or no class II is expressed in the normal mouse CNS, the ability of astrocytes to express these proteins and present antigen to T cells from TMEV-infected mice was investigated here. It is shown that astrocytes are capable of presenting TMEV to virus-specific T cells in vitro, and that this ability is dependent on prior induction of MHC class II by interferon-gamma (IFN-gamma) treatment. Unlike other viruses such as murine hepatitis virus-JHM (a coronavirus) and measles, TMEV is not capable of inducing class II on astrocytes directly. There is a correlation between the ease of class II induction on astrocytes from different mouse strains by IFN-gamma and mouse strain susceptibility to TMEV-induced demyelinating disease. These results suggest that following viral infection and initial T-cell infiltration into the CNS, class II induction on astrocytes is a key step allowing local antigen presentation and amplification of immunopathological responses within the CNS and hence the development of demyelinating disease. PMID:1628891

  1. Susceptibility to Theiler's virus-induced demyelinating disease correlates with astrocyte class II induction and antigen presentation.

    PubMed

    Borrow, P; Nash, A A

    1992-05-01

    Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus which induces a chronic demyelinating disease of the central nervous system (CNS) in certain susceptible mouse strains. Demyelination has been shown to result from immunopathological responses mediated by CD4+, major histocompatibility complex (MHC) class II-restricted T cells. As little or no class II is expressed in the normal mouse CNS, the ability of astrocytes to express these proteins and present antigen to T cells from TMEV-infected mice was investigated here. It is shown that astrocytes are capable of presenting TMEV to virus-specific T cells in vitro, and that this ability is dependent on prior induction of MHC class II by interferon-gamma (IFN-gamma) treatment. Unlike other viruses such as murine hepatitis virus-JHM (a coronavirus) and measles, TMEV is not capable of inducing class II on astrocytes directly. There is a correlation between the ease of class II induction on astrocytes from different mouse strains by IFN-gamma and mouse strain susceptibility to TMEV-induced demyelinating disease. These results suggest that following viral infection and initial T-cell infiltration into the CNS, class II induction on astrocytes is a key step allowing local antigen presentation and amplification of immunopathological responses within the CNS and hence the development of demyelinating disease.

  2. Unique Transcompartmental Bridge: Antigen-Presenting Cells Sampling across Endothelial and Mucosal Barriers.

    PubMed

    Allen, Frederick; Tong, Alexander A; Huang, Alex Y

    2016-01-01

    Potentially harmful pathogens can gain access to tissues and organ systems through body sites that are in direct contact with the outside environment, such as the skin, the gut, and the airway mucosa. Antigen-presenting cells (APCs) represent a bridge between the innate and adaptive immunity, and their capacity for constant immune surveillance and rapid sampling of incoming pathogens and other potentially harmful antigens is central for mounting an effective and robust protective host response. The classical view is that APCs perform this task efficiently within the tissue to sense invading agents intra-compartmentally. However, recent data based on high resolution imaging support an additional transcompartmental surveillance behavior by APC by reaching across intact physical barriers. In this review, we summarize intravital microscopic evidences of APC to sample antigens transcompartmentally at the gut mucosa and other body sites. PMID:27375624

  3. Unique Transcompartmental Bridge: Antigen-Presenting Cells Sampling across Endothelial and Mucosal Barriers

    PubMed Central

    Allen, Frederick; Tong, Alexander A.; Huang, Alex Y.

    2016-01-01

    Potentially harmful pathogens can gain access to tissues and organ systems through body sites that are in direct contact with the outside environment, such as the skin, the gut, and the airway mucosa. Antigen-presenting cells (APCs) represent a bridge between the innate and adaptive immunity, and their capacity for constant immune surveillance and rapid sampling of incoming pathogens and other potentially harmful antigens is central for mounting an effective and robust protective host response. The classical view is that APCs perform this task efficiently within the tissue to sense invading agents intra-compartmentally. However, recent data based on high resolution imaging support an additional transcompartmental surveillance behavior by APC by reaching across intact physical barriers. In this review, we summarize intravital microscopic evidences of APC to sample antigens transcompartmentally at the gut mucosa and other body sites. PMID:27375624

  4. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47.

    PubMed

    Saini, Neeraj K; Baena, Andres; Ng, Tony W; Venkataswamy, Manjunatha M; Kennedy, Steven C; Kunnath-Velayudhan, Shajo; Carreño, Leandro J; Xu, Jiayong; Chan, John; Larsen, Michelle H; Jacobs, William R; Porcelli, Steven A

    2016-08-15

    Suppression of major histocompatibility complex (MHC) class II antigen presentation is believed to be among the major mechanisms used by Mycobacterium tuberculosis to escape protective host immune responses. Through a genome-wide screen for the genetic loci of M. tuberculosis that inhibit MHC class II-restricted antigen presentation by mycobacteria-infected dendritic cells, we identified the PE_PGRS47 protein as one of the responsible factors. Targeted disruption of the PE_PGRS47 (Rv2741) gene led to attenuated growth of M. tuberculosis in vitro and in vivo, and a PE_PGRS47 mutant showed enhanced MHC class II-restricted antigen presentation during in vivo infection of mice. Analysis of the effects of deletion or over-expression of PE_PGRS47 implicated this protein in the inhibition of autophagy in infected host phagocytes. Our findings identify PE_PGRS47 as a functionally relevant, non-redundant bacterial factor in the modulation of innate and adaptive immunity by M. tuberculosis, suggesting strategies for improving antigen presentation and the generation of protective immunity during vaccination or infection.

  5. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47.

    PubMed

    Saini, Neeraj K; Baena, Andres; Ng, Tony W; Venkataswamy, Manjunatha M; Kennedy, Steven C; Kunnath-Velayudhan, Shajo; Carreño, Leandro J; Xu, Jiayong; Chan, John; Larsen, Michelle H; Jacobs, William R; Porcelli, Steven A

    2016-01-01

    Suppression of major histocompatibility complex (MHC) class II antigen presentation is believed to be among the major mechanisms used by Mycobacterium tuberculosis to escape protective host immune responses. Through a genome-wide screen for the genetic loci of M. tuberculosis that inhibit MHC class II-restricted antigen presentation by mycobacteria-infected dendritic cells, we identified the PE_PGRS47 protein as one of the responsible factors. Targeted disruption of the PE_PGRS47 (Rv2741) gene led to attenuated growth of M. tuberculosis in vitro and in vivo, and a PE_PGRS47 mutant showed enhanced MHC class II-restricted antigen presentation during in vivo infection of mice. Analysis of the effects of deletion or over-expression of PE_PGRS47 implicated this protein in the inhibition of autophagy in infected host phagocytes. Our findings identify PE_PGRS47 as a functionally relevant, non-redundant bacterial factor in the modulation of innate and adaptive immunity by M. tuberculosis, suggesting strategies for improving antigen presentation and the generation of protective immunity during vaccination or infection. PMID:27562263

  6. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis

    PubMed Central

    Salao, Kanin; Jiang, Lele; Li, Hui; Tsai, Vicky W.-W.; Husaini, Yasmin; Curmi, Paul M. G.; Brown, Louise J.; Brown, David A.

    2016-01-01

    ABSTRACT Intracellular chloride channel protein 1 (CLIC1) participates in inflammatory processes by regulating macrophage phagosomal functions such as pH and proteolysis. Here, we sought to determine if CLIC1 can regulate adaptive immunity by actions on dendritic cells (DCs), the key professional antigen presenting cells. To do this, we first generated bone marrow-derived DCs (BMDCs) from germline CLIC1 gene-deleted (CLIC1−/−) and wild-type (CLIC1+/+) mice, then studied them in vitro and in vivo. We found phagocytosis triggered cytoplasmic CLIC1 translocation to the phagosomal membrane where it regulated phagosomal pH and proteolysis. Phagosomes from CLIC1−/− BMDCs displayed impaired acidification and proteolysis, which could be reproduced if CLIC1+/+, but not CLIC1−/− cells, were treated with IAA94, a CLIC family ion channel blocker. CLIC1−/− BMDC displayed reduced in vitro antigen processing and presentation of full-length myelin oligodendrocyte glycoprotein (MOG) and reduced MOG-induced experimental autoimmune encephalomyelitis. These data suggest that CLIC1 regulates DC phagosomal pH to ensure optimal processing of antigen for presentation to antigen-specific T-cells. Further, they indicate that CLIC1 is a novel therapeutic target to help reduce the adaptive immune response in autoimmune diseases. PMID:27113959

  7. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens.

    PubMed Central

    Wu, T C; Guarnieri, F G; Staveley-O'Carroll, K F; Viscidi, R P; Levitsky, H I; Hedrick, L; Cho, K R; August, J T; Pardoll, D M

    1995-01-01

    The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency. Images Fig. 2 Fig. 3 PMID:8524826

  8. Aspirations and Capabilities of Rural Youth in Relation to Present and Projected Labor Market Requirements.

    ERIC Educational Resources Information Center

    Jordan, Max F.; And Others

    A study was conducted to: determine the aspirations and capabilities of rural youth in selected low-income counties in Arkansas; relate aspirations, capabilities, and the discrepancy between the two to the experience background of the youths studied; and relate the youths' occupational plans to present and projected labor market requirements. The…

  9. Phylogeny of immune recognition: antigen processing/presentation in channel catfish immune responses to hemocyanins.

    PubMed

    Vallejo, A N; Miller, N W; Jørgensen, T; Clem, L W

    1990-10-15

    Studies were conducted to address the role(s) of antigen (Ag) processing/presentation in channel catfish immune responses. Vigorous and specific secondary in vitro proliferative and antibody (Ab) responses were obtained to keyhole limpet and Limulus polyphemus hemocyanins with peripheral blood leukocytes (PBL) from catfish previously primed in vivo with Ag. In addition, such antigen-specific in vitro proliferative and Ab responses were efficiently elicited by antigen-pulsed and subsequently paraformaldehyde-fixed autologous PBL used as putative antigen-presenting cells (APC) but not by APC fixed prior to Ag pulsing. Treatment of these putative APC with lysosomotropic agents, protease inhibitors, or the ionophore monensin prior to or during pulsing with Ag significantly inhibited both in vitro responses. Furthermore, the use of radiolabeled protein indicated that both untreated and inhibitor-treated PBL but not erythrocytes take up Ag; however, only untreated PBL were able to degrade Ag. Immune restriction was indicated by the use of allogeneic PBL as APC in that only strong MLRs were generated with no detectable antibodies produced in vitro. Finally, the employment of isolated leukocyte subpopulations demonstrated that both catfish B (sIg+) lymphocytes and monocytes were efficient Ag presentors. PMID:2208303

  10. Mannosylation of Virus-Like Particles Enhances Internalization by Antigen Presenting Cells

    PubMed Central

    Al-Barwani, Farah; Young, Sarah L.; Baird, Margaret A.; Larsen, David S.; Ward, Vernon K.

    2014-01-01

    Internalization of peptides by antigen presenting cells is crucial for the initiation of the adaptive immune response. Mannosylation has been demonstrated to enhance antigen uptake through mannose receptors, leading to improved immune responses. In this study we test the effect of surface mannosylation of protein-based virus-like particles (VLP) derived from Rabbit hemorrhagic disease virus (RHDV) on uptake by murine and human antigen presenting cells. A monomannoside and a novel dimannoside were synthesized and successfully conjugated to RHDV VLP capsid protein, providing approximately 270 mannose groups on the surface of each virus particle. VLP conjugated to the mannoside or dimannoside exhibited significantly enhanced binding and internalization by murine dendritic cells, macrophages and B cells as well as human dendritic cells and macrophages. This uptake was inhibited by the inclusion of mannan as a specific inhibitor of mannose specific uptake, demonstrating that mannosylation of VLP targets mannose receptor-based uptake. Consistent with mannose receptor-based uptake, partial retargeting of the intracellular processing of RHDV VLP was observed, confirming that mannosylation of VLP provides both enhanced uptake and modified processing of associated antigens. PMID:25122183

  11. A catalytically inactive mutant of the deubiquitylase YOD-1 enhances antigen cross-presentation.

    PubMed

    Sehrawat, Sharvan; Koenig, Paul-Albert; Kirak, Oktay; Schlieker, Christian; Fankhauser, Manuel; Ploegh, Hidde L

    2013-02-14

    Antigen presenting cells (APCs) that express a catalytically inactive version of the deubiquitylase YOD1 (YOD1-C160S) present exogenous antigens more efficiently to CD8(+) T cells, both in vitro and in vivo. Compared with controls, immunization of YOD1-C160S mice led to greater expansion of specific CD8(+) T cells and showed improved control of infection with a recombinant -herpes virus, MHV-68, engineered to express SIINFEKL peptide, the ligand for the ovalbumin-specific TCR transgenic OT-I cells. Enhanced expansion of specific CD8(+) T cells was likewise observed on infection of YOD1-C160S mice with a recombinant influenza A virus expressing SIINFEKL. YOD1-C160S APCs retained antigen longer than did control APCs. Enhanced crosspresentation by YOD1-C160S APCs was transporter associated with antigen processing (TAP1)-independent but sensitive to inclusion of inhibitors of acidification and of the proteasome. The activity of deubiquitylating enzymes may thus help control antigenspecific CD8(+) T-cell responses during immunization.

  12. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  13. Salt bridge residues between I-Ak dimer of dimers alpha-chains modulate antigen presentation.

    PubMed

    Yadati, S; Nydam, T; Demian, D; Wade, T K; Gabriel, J L; Barisas, B G; Wade, W F

    1999-03-15

    Class II dimers of dimers are predicted to have functional significance in antigen presentation. The putative contact amino acids of the I-Ak class II dimer of dimers have been identified by molecular modeling based on the DR1 crystal structure (Nydam et al., Int. Immunol. 10, 1237,1998). We have previously reported the role in antigen presentation of dimer of dimers contact amino acids located in the C-terminal domains of the alpha- and beta-chains of class II. Our calculations show that residues Ealpha89 and Ralpha145 in the alpha2-domain form an inter alpha-chain salt bridge between pairs of alphabeta-heterodimers. Other residues, Qalpha92 and Nalpha115, may be involved in close association in that part of the alpha-chain. We investigated the role of these amino acids on class II expression and antigen presentation. Class II composed of an Ealpha89K substituted alpha-chain paired with a wt beta-chain exhibited inhibited antigen presentation and expression of alpha-chain serologic epitopes. In contrast, mutation of Ralpha145E had less affect on antigen presentation and did not affect I-Ak serologic epitopes. Interchanging charges of the salt bridge residues by expressing both Ralpha145E and Ealpha89K on the same chain obviated the large negative effect of the Ealpha89K mutation on antigen presentation but not on the serologic epitopes. Our results are similar for those reported for mutation of DR3's inter-chain salt bridge with the exception that double mutants did not moderate the DR3 defect. Interestingly, the amino acids differences between I-A and DR change the location of the inter-chain salt bridges. In DR1 these residues are located at positions Ealpha88 and Kalpha111; in I-Ak these residues are located at position Ealpha89 and Ralpha145. Inter alpha-chain salt bridges are thus maintained in various class II molecules by amino acids located in different parts of the alpha2-domain. This conservation of structure suggests that considerable functional

  14. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells.

    PubMed

    Eggermont, Loek J; Paulis, Leonie E; Tel, Jurjen; Figdor, Carl G

    2014-09-01

    Active anti-cancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells (APCs). Therapy with autologous natural APCs is costly and time-consuming and results in variable outcomes in clinical trials. Therefore, development of artificial APCs (aAPCs) has attracted significant interest as an alternative. We discuss the characteristics of various types of acellular aAPCs, and their clinical potential in cancer immunotherapy. The size, shape, and ligand mobility of aAPCs and their presentation of different immunological signals can all have significant effects on cytotoxic T cell activation. Novel optimized aAPCs, combining carefully tuned properties, may lead to efficient immunomodulation and improved clinical responses in cancer immunotherapy. PMID:24998519

  15. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells

    PubMed Central

    Eggermont, Loek J.; Paulis, Leonie E.; Tel, Jurjen; Figdor, Carl G.

    2014-01-01

    Active anti-cancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells (APCs). Therapy with autologous natural APCs is costly and time-consuming and results in variable outcomes in clinical trials. Therefore, development of artificial APCs (aAPCs) has attracted significant interest as an alternative. We discuss the characteristics of various types of acellular aAPCs, and their clinical potential in cancer immunotherapy. The size, shape, and ligand mobility of aAPCs and their presentation of different immunological signals can all have significant effects on cytotoxic T cell activation. Novel optimized aAPCs, combining carefully tuned properties, may lead to efficient immunomodulation and improved clinical responses in cancer immunotherapy. PMID:24998519

  16. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression

    PubMed Central

    Furusawa, Chikara; Yamaguchi, Tomoyuki

    2016-01-01

    The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification. PMID:27668873

  17. Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Anti-Tumor Immune Responses via Cross-Presentation of Tumor Antigen

    PubMed Central

    Sharabi, Andrew B.; Nirschl, Christopher J.; Kochel, Christina M.; Nirschl, Thomas R.; Francisca, Brian J.; Velarde, Esteban; Deweese, Theodore L.; Drake, Charles G.

    2014-01-01

    The immune-modulating effects of radiation therapy have gained considerable interest recently and there have been multiple reports of synergy between radiation and immunotherapy. However, additional pre-clinical studies are needed to demonstrate the antigen-specific nature of radiation-induced immune responses and elucidate potential mechanisms of synergy with immunotherapy. Here we demonstrate the ability of stereotactic radiotherapy to induce endogenous antigen-specific immune responses when combined with anti-PD-1 checkpoint blockade immunotherapy. Using the small animal radiation research platform (SARRP), image-guided stereotactic radiotherapy delivered to B16-OVA melanoma or 4T1-HA breast carcinoma tumors resulted in the development of antigen-specific T and B cell-mediated immune responses. These immune-stimulating effects of radiotherapy were significantly increased when combined with either anti-PD-1 therapy or regulatory T cell (Treg) depletion, resulting in improved local tumor control. Phenotypic analyses of antigen-specific CD8 T cells revealed that radiotherapy increased the percentage of antigen-experienced T cells and effector memory T cells. Mechanistically we found that radiotherapy up-regulates tumor-associated antigen-MHC complexes, enhances antigen cross-presentation in the draining lymph node, and increased T-cell infiltration into tumors. These findings demonstrate the ability of radiotherapy to prime an endogenous antigen-specific immune response and provide additional mechanistic rationale for combining radiation with PD-1 blockade in the clinic. PMID:25527358

  18. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation.

    PubMed

    Huang, Man; Zhang, Wei; Guo, Jie; Wei, Xundong; Phiwpan, Krung; Zhang, Jianhua; Zhou, Xuyu

    2016-01-01

    HLA class I (HLA-I) transgenic mice have proven to be useful models for studying human MHC-related immune responses over the last two decades. However, differences in the processing and presentation machinery between humans and mice may have profound effects on HLA-I restricted antigen presentation. In this study, we generated a novel human TAP-LMP (hTAP-LMP) gene cluster transgenic mouse model carrying an intact human TAP complex and two human immunoproteasome LMP subunits, PSMB8/PSMB9. By crossing the hTAP-LMP strain with different HLA-I transgenic mice, we found that the expression levels of human HLA-I molecules, especially the A3 supertype members (e.g., A11 and A33), were remarkably enhanced in corresponding HLA-I/hTAP-LMP transgenic mice. Moreover, we found that humanized processing and presentation machinery increased antigen presentation of HLA-A11-restricted epitopes and promoted the rapid reduction of hepatitis B virus (HBV) infection in HLA-A11/hTAP-LMP mice. Together, our study highlights that HLA-I/hTAP-LMP mice are an improved model for studying antigen presentation of HLA-I molecules and their related CTL responses. PMID:27634283

  19. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation

    PubMed Central

    Huang, Man; Zhang, Wei; Guo, Jie; Wei, Xundong; Phiwpan, Krung; Zhang, Jianhua; Zhou, Xuyu

    2016-01-01

    HLA class I (HLA-I) transgenic mice have proven to be useful models for studying human MHC-related immune responses over the last two decades. However, differences in the processing and presentation machinery between humans and mice may have profound effects on HLA-I restricted antigen presentation. In this study, we generated a novel human TAP-LMP (hTAP-LMP) gene cluster transgenic mouse model carrying an intact human TAP complex and two human immunoproteasome LMP subunits, PSMB8/PSMB9. By crossing the hTAP-LMP strain with different HLA-I transgenic mice, we found that the expression levels of human HLA-I molecules, especially the A3 supertype members (e.g., A11 and A33), were remarkably enhanced in corresponding HLA-I/hTAP-LMP transgenic mice. Moreover, we found that humanized processing and presentation machinery increased antigen presentation of HLA-A11-restricted epitopes and promoted the rapid reduction of hepatitis B virus (HBV) infection in HLA-A11/hTAP-LMP mice. Together, our study highlights that HLA-I/hTAP-LMP mice are an improved model for studying antigen presentation of HLA-I molecules and their related CTL responses. PMID:27634283

  20. MHC class I antigen presentation of DRiP-derived peptides from a model antigen is not dependent on the AAA ATPase p97.

    PubMed

    Palmer, Amy L; Dolan, Brian P

    2013-01-01

    CD8(+) T cells are responsible for killing cells of the body that have become infected or oncogenically transformed. In order to do so, effector CD8(+) T cells must recognize their cognate antigenic peptide bound to a MHC class I molecule that has been directly presented by the target cell. Due to the rapid nature of antigen presentation, it is believed that antigenic peptides are derived from a subset of newly synthesized proteins which are degraded almost immediately following synthesis and termed Defective Ribosomal Products or DRiPs. We have recently reported on a bioassay which can distinguish antigen presentation of DRiP substrates from other forms of rapidly degraded proteins and found that poly-ubiquitin chain disassembly may be necessary for efficient DRiP presentation. The AAA ATPase p97 protein is necessary for efficient cross-presentation of antigens on MHC class I molecules and plays an important role in extracting mis-folded proteins from the endoplasmic reticulum. Here, we find that genetic ablation or chemical inhibition of p97 does not diminish DRiP antigen presentation to any great extent nor does it alter the levels of MHC class I molecules on the cell surface, despite our observations that p97 inhibition increased the levels of poly-ubiquitinated proteins in the cell. These data demonstrate that inhibiting poly-ubiquitin chain disassembly alone is insufficient to abolish DRiP presentation.

  1. Autologous Dendritic Cells Prolong Allograft Survival Through Tmem176b-Dependent Antigen Cross-Presentation

    PubMed Central

    Charnet, P.; Savina, A.; Tilly, G.; Gautreau, L.; Carretero-Iglesia, L.; Beriou, G.; Cebrian, I.; Cens, T.; Hepburn, L.; Chiffoleau, E.; Floto, R. A.; Anegon, I.; Amigorena, S.; Hill, M.; Cuturi, M. C.

    2015-01-01

    The administration of autologous (recipient-derived) tolerogenic dendritic cells (ATDCs) is under clinical evaluation. However, the molecular mechanisms by which these cells prolong graft survival in a donor-specific manner is unknown. Here, we tested mouse ATDCs for their therapeutic potential in a skin transplantation model. ATDC injection in combination with anti-CD3 treatment induced the accumulation of CD8+CD11c+ T cells and significantly prolonged allograft survival. TMEM176B is an intracellular protein expressed in ATDCs and initially identified in allograft tolerance. We show that Tmem176b−/− ATDCs completely failed to trigger both phenomena but recovered their effect when loaded with donor peptides before injection. These results strongly suggested that ATDCs require TMEM176B to cross-present antigens in a tolerogenic fashion. In agreement with this, Tmem176b−/− ATDCs specifically failed to cross-present male antigens or ovalbumin to CD8+ T cells. Finally, we observed that a Tmem176b-dependent cation current controls phagosomal pH, a critical parameter in cross-presentation. Thus, ATDCs require TMEM176B to cross-present donor antigens to induce donor-specific CD8+CD11c+ T cells with regulatory properties and prolong graft survival. PMID:24731243

  2. Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles

    PubMed Central

    He, Linling; de Val, Natalia; Morris, Charles D.; Vora, Nemil; Thinnes, Therese C.; Kong, Leopold; Azadnia, Parisa; Sok, Devin; Zhou, Bin; Burton, Dennis R.; Wilson, Ian A; Nemazee, David; Ward, Andrew B.; Zhu, Jiang

    2016-01-01

    Structures of BG505 SOSIP.664 trimer in complex with broadly neutralizing antibodies (bNAbs) have revealed the critical role of trimeric context for immune recognition of HIV-1. Presentation of trimeric HIV-1 antigens on nanoparticles may thus provide promising vaccine candidates. Here we report the rational design, structural analysis and antigenic evaluation of HIV-1 trimer-presenting nanoparticles. We first demonstrate that both V1V2 and gp120 can be presented in native-like trimeric conformations on nanoparticles. We then design nanoparticles presenting various forms of stabilized gp140 trimer based on ferritin and a large, 60-meric E2p that displays 20 spikes mimicking virus-like particles (VLPs). Particle assembly is confirmed by electron microscopy (EM), while antigenic profiles are generated using representative bNAbs and non-NAbs. Lastly, we demonstrate high-yield gp140 nanoparticle production and robust stimulation of B cells carrying cognate VRC01 receptors by gp120 and gp140 nanoparticles. Together, our study provides an arsenal of multivalent immunogens for HIV-1 vaccine development. PMID:27349934

  3. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major.

    PubMed Central

    ElHassan, A M; Gaafar, A; Theander, T G

    1995-01-01

    In this study biopsies from skin lesions and draining lymph nodes of patients suffering from cutaneous leishmaniasis caused by Leishmania major were examined by immunohistochemistry, and by light and electron microscopy to identify the types of antigen-presenting cells (APC) and their location. APC, identified morphologically and by their expression of specific cell markers, included Langerhans cells, macrophages, follicular dendritic cells, and interdigitating reticulum cells of the paracortex of lymph nodes. These cells expressed MHC class II antigens and contained Leishmania antigen. Since some keratinocytes and endothelial cells also showed these characteristics, they may also act as APC. By examining tissue samples from skin lesions and draining lymph nodes it was possible to follow the probable route of trafficking of various inflammatory cells between the skin lesion and lymph nodes. Leishmania antigen containing Langerhans cells were found in the epidermis, dermis and the regional lymph nodes. We believe these cells translocate from the epidermis to the dermis, where they take up antigen and migrate to the paracortex of the regional lymph nodes. There they are intimately associated with cells of the paracortex, and could be involved in the generation of Leishmania-specific T memory cells. LFA-1-positive T cells of the CD45RO phenotype were found in the skin lesion. Venular endothelium in the skin lesions expressed intercellular adhesion molecule-1 (ICAM-1), which is the ligand for LFA-1. The migration of lymphocytes from the vascular lumen to the site of inflammation is possibly a result of the interaction of these two adhesion molecules. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7882568

  4. Antigen Presentation, Autoantigens, and Immune Regulation in Multiple Sclerosis and Other Autoimmune Diseases

    PubMed Central

    Riedhammer, Christine; Weissert, Robert

    2015-01-01

    Antigen presentation is in the center of the immune system, both in host defense against pathogens, but also when the system is unbalanced and autoimmune diseases like multiple sclerosis (MS) develop. It is not just by chance that a major histocompatibility complex gene is the major genetic susceptibility locus in MS; a feature that MS shares with other autoimmune diseases. The exact etiology of the disease, however, has not been fully understood yet. T cells are regarded as the major players in the disease, but most probably a complex interplay of altered central and peripheral tolerance mechanisms, T-cell and B-cell functions, characteristics of putative autoantigens, and a possible interference of environmental factors like microorganisms are at work. In this review, new data on all these different aspects of antigen presentation and their role in MS will be discussed, probable autoantigens will be summarized, and comparisons to other autoimmune diseases will be drawn. PMID:26136751

  5. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    PubMed Central

    Shenoda, Botros B.; Ajit, Seena K.

    2016-01-01

    Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages.

  6. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    PubMed Central

    Shenoda, Botros B.; Ajit, Seena K.

    2016-01-01

    Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages. PMID:27660518

  7. Janus particles as artificial antigen-presenting cells for T cell activation.

    PubMed

    Chen, Bo; Jia, Yilong; Gao, Yuan; Sanchez, Lucero; Anthony, Stephen M; Yu, Yan

    2014-01-01

    Here we show that the multifunctionality of Janus particles can be exploited for in vitro T cell activation. We engineer bifunctional Janus particles on which the spatial distribution of two ligands, anti-CD3 and fibronectin, mimics the "bull's eye" protein pattern formed in the membrane junction between a T cell and an antigen-presenting cell. Different levels of T cell activation can be achieved by simply switching the spatial distribution of the two ligands on the surfaces of the "bull's eye" particles. We find that the ligand pattern also affects clustering of intracellular proteins. This study demonstrates that anisotropic particles, such as Janus particles, can be developed as artificial antigen-presenting cells for modulating T cell activation. PMID:25343426

  8. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells.

    PubMed

    Shenoda, Botros B; Ajit, Seena K

    2016-01-01

    Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages. PMID:27660518

  9. Ethanol Metabolism Alters Major Histocompatibility Complex Class I-Restricted Antigen Presentation In Liver Cells

    PubMed Central

    Osna, Natalia A.; White, Ronda L.; Thiele, Geoffrey M.; Donohue, Terrence M.

    2009-01-01

    The proteasome is a major enzyme that cleaves proteins for antigen presentation. Cleaved peptides traffic to the cell surface, where they are presented in the context of MHC class I. Recognition of these complexes by cytotoxic T lymphocytes is crucial for elimination of cells bearing “non-self” proteins. Our previous studies revealed that ethanol suppresses proteasome function in ethanol-metabolizing liver cells. We hypothesized that proteasome suppression reduces the hydrolysis of antigenic peptides, thereby decreasing the presentation of the peptide-MHC class I-complexes on the cell surface. To test this, we used the mouse hepatocyte cell line (CYP2E1/ADH-transfected HepB5 cells) or primary mouse hepatocytes, both derived from livers of C57Bl/6 mice, which present the ovalbumin peptide, SIINFEKL, complexed with H2Kb. To induce H2Kb expression, HepB5 cells were treated with interferon gamma (IFNγ) and then exposed to ethanol. In these cells, ethanol metabolism decreased not only proteasome activity, but also hydrolysis of the C-extended peptide, SIINFEKL-TE and the presentation of SIINFEKL-H2Kb complexes measured after the delivery of SIINFEKL-TE to cytoplasm. The suppressive effects of ethanol were, in part, attributed to ethanol-elicited impairment of IFNγ signaling. However, in primary hepatocytes, even in the absence of IFNγ, we observed a similar decline in proteasome activity and antigen presentation after ethanol exposure. We conclude that proteasome function is directly suppressed by ethanol metabolism and indirectly, by preventing the activating effects of IFNγ. Ethanol-elicited reduction in proteasome activity contributes to the suppression of SIINFEKL-H2Kb presentation on the surface of liver cells. Immune response to viral antigens plays a crucial role in the pathogenesis of hepatitis C or B viral infections (HCV and HBV, respectively). Professional antigen-presenting cells (dendritic cells and macrophages) are responsible for priming the

  10. Measuring antigen presentation in mouse brain endothelial cells ex vivo and in vitro.

    PubMed

    Howland, Shanshan W; Gun, Sin Yee; Claser, Carla; Poh, Chek Meng; Rénia, Laurent

    2015-12-01

    We have recently demonstrated that brain endothelial cells cross-present parasite antigen during mouse experimental cerebral malaria (ECM). Here we describe a 2-d protocol to detect cross-presentation by isolating the brain microvessels and incubating them with a reporter cell line that expresses lacZ upon detection of the relevant peptide-major histocompatibility complex. After X-gal staining, a typical positive result consists of hundreds of blue spots, compared with fewer than 20 spots from a naive brain. The assay is generalizable to other disease contexts by using reporter cells that express appropriate specific T cell receptors. Also described is the protocol for culturing endothelial cells from brain microvessels isolated from naive mice. After 7-10 d, an in vitro cross-presentation assay can be performed by adding interferon-γ, antigen (e.g., Plasmodium berghei-infected red blood cells) and reporter cells in sequence over 3 d. This is useful for comparing different antigen forms or for probing the effects of various interventions.

  11. Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes

    PubMed Central

    Alfaro, Carlos; Suarez, Natalia; Oñate, Carmen; Perez-Gracia, Jose L.; Martinez-Forero, Ivan; Hervas-Stubbs, Sandra; Rodriguez, Inmaculada; Perez, Guiomar; Bolaños, Elixabet; Palazon, Asis; de Sanmamed, Miguel Fernandez; Morales-Kastresana, Aizea; Gonzalez, Alvaro; Melero, Ignacio

    2011-01-01

    Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2d) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2d) are coinjected in the footpad of mice with autologous DC (H-2b). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC. PMID:22206007

  12. Assessing Preservice Teachers' Presentation Capabilities: Contrasting the Modes of Communication with the Constructed Impression

    ERIC Educational Resources Information Center

    Bower, Matt G.; Moloney, Robyn A.; Cavanagh, Michael S.; Sweller, Naomi

    2013-01-01

    A research-based understanding of how to develop and assess classroom presentation skills is vital for the effective development of pre-service teacher communication capabilities. This paper identifies and compares two different models of assessing pre-service teachers' presentation performance--one based on the Modes of Communication (voice,…

  13. An Overview of B-1 Cells as Antigen-Presenting Cells

    PubMed Central

    Popi, Ana F.; Longo-Maugéri, Ieda M.; Mariano, Mario

    2016-01-01

    The role of B cells as antigen-presenting cells (APCs) has been extensively studied, mainly in relation to the activation of memory T cells. Considering the B cell subtypes, the role of B-1 cells as APCs is beginning to be explored. Initially, it was described that B-1 cells are activated preferentially by T-independent antigens. However, some reports demonstrated that these cells are also involved in a T-dependent response. The aim of this review is to summarize information about the ability of B-1 cells to play a role as APCs and to briefly discuss the role of the BCR and toll-like receptor signals in this process. Furthermore, some characteristics of B-1 cells, such as natural IgM production and phagocytic ability, could interfere in the participation of these cells in the onset of an adaptive response. PMID:27148259

  14. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future.

    PubMed

    Ilinskaya, Anna N; Dobrovolskaia, Marina A

    2016-05-15

    Nanoparticle immunogenicity and antigenicity have been under investigation for many years. During the past decade, significant progress has been made in understanding what makes a nanoparticle immunogenic, how immune cells respond to nanoparticles, what consequences of nanoparticle-specific antibody formation exist and how they challenge the application of nanoparticles for drug delivery. Moreover, it has been recognized that accidental contamination of therapeutic protein formulations with nanosized particulate materials may contribute to the immunogenicity of this type of biotechnology products. While the immunological properties of engineered nanomaterials and their application as vaccine carriers and adjuvants have been given substantial consideration in the current literature, little attention has been paid to nanoparticle immuno- and antigenicity. To fill in this gap, we herein provide an overview of this subject to highlight the current state of the field, review past and present research, and discuss future research directions.

  15. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment.

    PubMed

    Gao, Yingli; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-08-01

    Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P < 0.05), and the highest amount of antigen was detected in flounders immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P < 0.05) compared with the spleen, kidney and liver. Antigen uptake in the gill and skin both peaked at 30 min post immersion, which was significantly higher than the levels of uptake measured in the other tissues (P < 0.05), and then quickly declined. In contrast, antigen uptake in the spleen, kidney and liver gradually increased 3 h post immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P < 0.05). In the mucosal-associated tissues, the expression of MHC Iα and CD8α genes peaked at 24 hpi, while the expression of MHC IIα and CD4-1 genes showed up-regulation in the gill and skin

  16. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation

    PubMed Central

    Ryu, Jae Kyu; Petersen, Mark A.; Murray, Sara G.; Baeten, Kim M.; Meyer-Franke, Anke; Chan, Justin P.; Vagena, Eirini; Bedard, Catherine; Machado, Michael R.; Coronado, Pamela E. Rios; Prod'homme, Thomas; Charo, Israel F.; Lassmann, Hans; Degen, Jay L.; Zamvil, Scott S.; Akassoglou, Katerina

    2015-01-01

    Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood–brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b+ antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity. PMID:26353940

  17. A role for lipid bodies in the cross-presentation of phagocytozed antigens by MHC class I in dendritic cells

    PubMed Central

    Bougneres, Laurence; Helft, Julie; Tiwari, Sangeeta; Vargas, Pablo; Chang, Benny Hung-Junn; Chan, Lawrence; Campisi, Laura; Lauvau, Gregoire; Hugues, Stephanie; Kumar, Pradeep; Kamphorst, Alice O.; Dumenil, Ana-Maria Lennon; Nussenzweig, Michel; MacMicking, John D.; Amigorena, Sebastian; Guermonprez, Pierre

    2009-01-01

    Summary Dendritic cells (DCs) have the striking ability to cross-present exogenous antigens in association with MHC class I to CD8+ T cells. However, the intracellular pathways underlying cross-presentation remain ill-defined. Current models involve cytosolic proteolysis of antigens by the proteasome and TAP-dependent import into Endoplasmic Reticulum (ER) or phagosomal lumen. Here, we show that DCs express an ER-resident 47kDa immune-related GTPase, Irgm3. Irgm3 resides on ER and lipid body (LB) membranes where it binds the LB coat component ADRP. Genetic removal of either Irgm3 or ADRP leads to defects in LB formation in DCs and severely impairs cross-presentation of phagocytozed antigens to CD8+ but not antigen presentation to CD4+ T cells. We thus define a new role for LB organelles in regulating cross-presentation of exogenous antigens to CD8+ T lymphocytes in DCs. PMID:19699172

  18. The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture

    PubMed Central

    Schnorrer, Petra; Behrens, Georg M. N.; Wilson, Nicholas S.; Pooley, Joanne L.; Smith, Christopher M.; El-Sukkari, Dima; Davey, Gayle; Kupresanin, Fiona; Li, Ming; Maraskovsky, Eugene; Belz, Gabrielle T.; Carbone, Francis R.; Shortman, Ken; Heath, William R.; Villadangos, Jose A.

    2006-01-01

    Mouse spleens contain three populations of conventional (CD11chigh) dendritic cells (DCs) that play distinct functions. The CD8+ DC are unique in that they can present exogenous antigens on their MHC class I molecules, a process known as cross-presentation. It is unclear whether this special ability is because only the CD8+ DC can capture the antigens used in cross-presentation assays, or because this is the only DC population that possesses specialized machinery for cross-presentation. To solve this important question we examined the splenic DC subsets for their ability to both present via MHC class II molecules and cross-present via MHC class I using four different forms of the model antigen ovalbumin (OVA). These forms include a cell-associated form, a soluble form, OVA expressed in bacteria, or OVA bound to latex beads. With the exception of bacterial antigen, which was poorly cross-presented by all DC, all antigenic forms were cross-presented much more efficiently by the CD8+ DC. This pattern could not be attributed simply to a difference in antigen capture because all DC subsets presented the antigen via MHC class II. Indeed, direct assessments of endocytosis showed that CD8+ and CD8− DC captured comparable amounts of soluble and bead-associated antigen, yet only the CD8+ DC cross-presented these antigenic forms. Our results indicate that cross-presentation requires specialized machinery that is expressed by CD8+ DC but largely absent from CD8− DC. This conclusion has important implications for the design of vaccination strategies based on antigen targeting to DC. PMID:16807294

  19. The Level of Viral Antigen Presented by Hepatocytes Influences CD8 T-Cell Function▿

    PubMed Central

    Gehring, Adam J.; Sun, Dianxing; Kennedy, Patrick T. F.; Nolte-'t Hoen, Esther; Lim, Seng Gee; Wasser, Shanthi; Selden, Clare; Maini, Mala K.; Davis, Dan M.; Nassal, Michael; Bertoletti, Antonio

    2007-01-01

    CD8 T cells exert their antiviral function through cytokines and lysis of infected cells. Because hepatocytes are susceptible to noncytolytic mechanisms of viral clearance, CD8 T-cell antiviral efficiency against hepatotropic viruses has been linked to their capacity to produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). On the other hand, intrahepatic cytokine production triggers the recruitment of mononuclear cells, which sustain acute and chronic liver damage. Using virus-specific CD8 T cells and human hepatocytes, we analyzed the modulation of virus-specific CD8 T-cell function after recognition peptide-pulsed or virally infected hepatocytes. We observed that hepatocyte antigen presentation was generally inefficient, and the quantity of viral antigen strongly influenced CD8 T-cell antiviral function. High levels of hepatitis B virus production induced robust IFN-γ and TNF-α production in virus-specific CD8 T cells, while limiting amounts of viral antigen, both in hepatocyte-like cells and naturally infected human hepatocytes, preferentially stimulated CD8 T-cell degranulation. Our data document a mechanism where virus-specific CD8 T-cell function is influenced by the quantity of virus produced within hepatocytes. PMID:17202217

  20. Killer artificial antigen-presenting cells: a novel strategy to delete specific T cells.

    PubMed

    Schütz, Christian; Fleck, Martin; Mackensen, Andreas; Zoso, Alessia; Halbritter, Dagmar; Schneck, Jonathan P; Oelke, Mathias

    2008-04-01

    Several cell-based immunotherapy strategies have been developed to specifically modulate T cell-mediated immune responses. These methods frequently rely on the utilization of tolerogenic cell-based antigen-presenting cells (APCs). However, APCs are highly sensitive to cytotoxic T-cell responses, thus limiting their therapeutic capacity. Here, we describe a novel bead-based approach to modulate T-cell responses in an antigen-specific fashion. We have generated killer artificial APCs (kappaaAPCs) by coupling an apoptosis-inducing alpha-Fas (CD95) IgM mAb together with HLA-A2 Ig molecules onto beads. These kappaaAPCs deplete targeted antigen-specific T cells in a Fas/Fas ligand (FasL)-dependent fashion. T-cell depletion in cocultures is rapidly initiated (30 minutes), dependent on the amount of kappaaAPCs and independent of activation-induced cell death (AICD). kappaaAPCs represent a novel technology that can control T cell-mediated immune responses, and therefore has potential for use in treatment of autoimmune diseases and allograft rejection. PMID:18096763

  1. Nanoengineering approaches to the design of artificial antigen-presenting cells

    PubMed Central

    Sunshine, Joel C; Green, Jordan J

    2014-01-01

    Artificial antigen-presenting cells (aAPCs) have shown great initial promise for ex vivo activation of cytotoxic T cells. The development of aAPCs has focused mainly on the choice of proteins to use for surface presentation to T cells when conjugated to various spherical, microscale particles. We review here biomimetic nanoengineering approaches that have been applied to the development of aAPCs that move beyond initial concepts about aAPC development. This article also discusses key technologies that may be enabling for the development of nano- and micro-scale aAPCs with nanoscale features, and suggests several future directions for the field. PMID:23837856

  2. Artificial antigen presenting cell (aAPC) mediated activation and expansion of natural killer T cells.

    PubMed

    East, James E; Sun, Wenji; Webb, Tonya J

    2012-01-01

    Natural killer T (NKT) cells are a unique subset of T cells that display markers characteristic of both natural killer (NK) cells and T cells(1). Unlike classical T cells, NKT cells recognize lipid antigen in the context of CD1 molecules(2). NKT cells express an invariant TCRα chain rearrangement: Vα14Jα18 in mice and Vα24Jα18 in humans, which is associated with Vβ chains of limited diversity(3-6), and are referred to as canonical or invariant NKT (iNKT) cells. Similar to conventional T cells, NKT cells develop from CD4-CD8- thymic precursor T cells following the appropriate signaling by CD1d (7). The potential to utilize NKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human NKT cells with α-Galactosylceramide (α-GalCer) and a variety of cytokines(8). Importantly, these cells retained their original phenotype, secreted cytokines, and displayed cytotoxic function against tumor cell lines. Thus, ex vivo expanded NKT cells remain functional and can be used for adoptive immunotherapy. However, NKT cell based-immunotherapy has been limited by the use of autologous antigen presenting cells and the quantity and quality of these stimulator cells can vary substantially. Monocyte-derived DC from cancer patients have been reported to express reduced levels of costimulatory molecules and produce less inflammatory cytokines(9,10). In fact, murine DC rather than autologous APC have been used to test the function of NKT cells from CML patients(11). However, this system can only be used for in vitro testing since NKT cells cannot be expanded by murine DC and then used for adoptive immunotherapy. Thus, a standardized system that relies on artificial Antigen Presenting Cells (aAPC) could produce the stimulating effects of DC without the pitfalls of allo- or xenogeneic cells(12, 13). Herein, we describe a method for generating CD1d-based aAPC. Since the engagement of the T cell receptor (TCR) by CD1d-antigen complexes is

  3. Effect of multiple genetic polymorphisms on antigen presentation and susceptibility to Mycobacterium tuberculosis infection.

    PubMed

    Chang, Stewart T; Linderman, Jennifer J; Kirschner, Denise E

    2008-07-01

    Several molecules related to antigen presentation, including gamma interferon (IFN-gamma) and the major histocompatibility complex (MHC), are encoded by polymorphic genes. Some polymorphisms were found to affect susceptibility to tuberculosis (TB) when they were considered singly in epidemiological studies, but how multiple polymorphisms interact to determine susceptibility to TB in an individual remains an open question. We hypothesized that polymorphisms in some genes may counteract or intensify the effects of polymorphisms in other genes. For example, an increase in IFN-gamma expression may counteract the weak binding that a particular MHC variant displays for a peptide from Mycobacterium tuberculosis to establish the same T-cell response as another, more strongly binding MHC variant. To test this hypothesis, we developed a mathematical model of antigen presentation based on experimental data for the known effects of genetic polymorphisms and simulated time courses when multiple polymorphisms were present. We found that polymorphisms in different genes could affect antigen presentation to the same extent and therefore compensate for each other. Furthermore, we defined the conditions under which such relationships could exist. For example, increased IFN-gamma expression compensated for decreased peptide-MHC affinity in the model only above a certain threshold of expression. Below this threshold, changes in IFN-gamma expression were ineffectual compared to changes in peptide-MHC affinity. The finding that polymorphisms exhibit such relationships could explain discrepancies in the epidemiological literature, where some polymorphisms have been inconsistently associated with susceptibility to TB. Furthermore, the model allows polymorphisms to be ranked by effect, providing a new tool for designing association studies.

  4. COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS

    EPA Science Inventory

    Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends

    A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...

  5. Enhanced Delivery of Exogenous Peptides into the Class I Antigen Processing and Presentation Pathway

    PubMed Central

    de Haan, Lolke; Hearn, Arron R.; Rivett, A. Jennifer; Hirst, Timothy R.

    2002-01-01

    Current immunization strategies, using peptide or protein antigens, generally fail to elicit cytotoxic-T-lymphocyte responses, since these antigens are unable to access intracellular compartments where loading of major histocompatibility complex class I (MHC-I) molecules occurs. In an attempt to circumvent this, we investigated whether the GM1 receptor-binding B subunit of Escherichia coli heat-labile toxin (EtxB) could be used to deliver class I epitopes. When a class I epitope was conjugated to EtxB, it was delivered into the MHC-I presentation pathway in a GM1-binding-dependent fashion and resulted in the appearance of MHC-I-epitope complexes at the cell surface. Importantly, we show that the efficiency of EtxB-mediated epitope delivery could be strikingly enhanced by incorporating, adjacent to the class I epitope, a 10-amino-acid segment from the C terminus of the DNA polymerase (Pol) of herpes simplex virus. The replacement of this 10-amino-acid segment by a heterologous sequence or the introduction of specific amino acid substitutions within this segment either abolished or markedly reduced the efficiency of class I epitope delivery. If the epitope was extended at its C terminus, EtxB-mediated delivery into the class I presentation pathway was found to be completely dependent on proteasome activity. Thus, by combining the GM1-targeting function of EtxB with the 10-amino-acid Pol segment, highly efficient delivery of exogenous epitopes into the endogenous pathway of class I antigen processing and presentation can be achieved. PMID:12011020

  6. Antigen recognition and presentation in periapical tissues: a role for TLR expressing cells?

    PubMed

    Desai, S V; Love, R M; Rich, A M; Seymour, G J

    2011-02-01

    Bacteria are the prime cause of periapical diseases and root canal microbiology is a well-researched area of endodontics. Antigen-presenting cells (APCs) are present in periapical lesions of endodontic origin and play a substantial role in recognizing, processing and presenting pathogenic antigens to the adaptive immune system such as an effective and long-lasting immune response is generated against the specific pathogens. Toll-like receptors (TLRs) are germ-line encoded pathogen recognition receptors (PRR) expressed by various APCs which induce their maturation, lead to gene transcription in the nucleus and the production of several pro- and anti-inflammatory cytokines. Thirteen TLRs have been discovered, 10 of which have been identified in humans so far. Preliminary studies of dental pulp tissue have demonstrated various cell types expressing different TLRs in response to commonly encountered microorganisms. However, there is little information available regarding the expression and function of the various TLRs in human periapical lesions. This review discusses the interactions of various APCs in periapical lesions and the possible roles of different TLRs and APCs in pulp/periapical pathogen recognition and presentation to the adaptive immune system in the initiation and sustaining of periapical diseases. PMID:21083574

  7. MHC Class II Association with Lipid Rafts on the Antigen Presenting Cell Surface

    PubMed Central

    Anderson, Howard A.; Roche, Paul A.

    2014-01-01

    MHC class II (MHC-II) molecules function by binding peptides derived from either self-or foreign proteins and expressing these peptides on the surface of antigen presenting cells (APCs) for recognition by CD4 T cells. MHC-II is known to exist on clusters on the surface of APCs, and a variety of biochemical and functional studies have suggested that these clusters represent lipid raft microdomain-associated MHC-II. This review will summarize data exploring the biosynthesis of raft-associated MHC-II and the role that lipid raft association plays in regulating T cell activation by APCs. PMID:25261705

  8. Survival and signaling changes in antigen presenting cell subsets after radiation

    NASA Astrophysics Data System (ADS)

    Parker, Jennifer Janell

    Radiation therapy is a widely used cancer treatment that has the potential to influence anti-tumor immune responses. Both myeloablative and non-myeloablative radiation are often used as part of preparatory regimens for hematopoetic stem cell transplantation, in combination with other chemotherapy or immuno-modulatory (e.g. Anti-thymocyte globulin (ATG)) therapies for both cytotoxic and immune modulatory purposes. However, the mechanisms responsible for the effect of radiation on antigen presenting cell (APC) responsiveness and radioresistance are poorly understood. The first studies described in this thesis were designed to identify and characterize early radiation-induced signaling changes in antigen presenting cells and to determine the effects of these signaling changes on APC receptor expression and function. The NFkappaB pathway in antigen presenting cells was chosen for study because it is activated by radiation in a wide range of other cell types and plays a vital role in the maintenance and regulation of the immune system. The effects of therapeutically relevant doses radiation (2 and 20 Gy) were compared at various timepoints in the human monocytic cell line (U937) using phospho-flow cytometry staining methods and cytometric analysis. These studies demonstrated that radiation-induced changes in the phosphorylation state of NFkappaB family members that were p53 independent. However, these changes were dependent upon activation of ATM in response to single or double-stranded breaks in DNA, as shown in experiments using an inhibitor of ATM and ATM siRNA knockdown U937 cells. In addition, studies examining the effect of radiation on co-stimulatory receptors with and without inhibition of the NFkappaB pathway via phospho-flow cytometry revealed that radiation-induced phosphorylation of NEMO promoted the activation and functional maturation of U937 cells. Furthermore, functional studies using both phospho-flow cytometry and/or mixed lymphocyte reactions to

  9. Aptamers directly radiolabeled with technetium-99m as a potential agent capable of identifying carcinoembryonic antigen (CEA) in tumor cells T84.

    PubMed

    Correa, Cristiane Rodrigues; de Barros, André Luís Branco; Ferreira, Carolina de Aguiar; de Goes, Alfredo Miranda; Cardoso, Valbert Nascimento; de Andrade, Antero Silva Ribeiro

    2014-04-15

    Aptamers are small oligonucleotides that are selected to bind with high affinity and specificity to a target molecule. Aptamers are emerging as a new class of molecules for radiopharmaceutical development. In this study a new method to radiolabel aptamers with technetium-99m ((99m)Tc) was developed. Two aptamers (Apt3 and Apt3-amine) selected against the carcinoembryonic antigen (CEA) were used. Labeling was done by the direct method and the developed complex was subjected to quality control tests. Radiochemical purity and stability were monitored by Thin Layer Chromatography. Binding and specificity assays were carried out in the T84 cell line (CEA+) to evaluate tumor affinity and specificity after radiolabeling. Aptamers were successfully labeled with (99m)Tc in high radiochemical yields, showing in vitro stability in presence of plasma and cystein. In binding assays the radiolabeled aptamer Apt3-amine showed the highest affinity to T84 cells. When evaluated with HeLa cells (CEA-), lower uptake was observed, suggesting high specificity for this aptamer. These results suggest that the Apt3-amine aptamer directly labeled with (99m)Tc could be considered a promising agent capable of identifying the carcinoembryonic antigen (CEA) present in tumor cells.

  10. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    NASA Astrophysics Data System (ADS)

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md.; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  11. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8(+) T Cells.

    PubMed

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md; Bhattacharya, Pradyot; Ali, Nahid

    2016-01-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8(+) cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4(+) and CD8(+) T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4(+) and CD8(+) T cells. Furthermore, lymphoid CD8(+) T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8(+) T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8(+) T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine. PMID:27251373

  12. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    PubMed Central

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md.; Bhattacharya, Pradyot; Ali, Nahid

    2016-01-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine. PMID:27251373

  13. Network-based gene expression analysis of intracranial aneurysm tissue reveals role of antigen presenting cells.

    PubMed

    Krischek, B; Kasuya, H; Tajima, A; Akagawa, H; Sasaki, T; Yoneyama, T; Ujiie, H; Kubo, O; Bonin, M; Takakura, K; Hori, T; Inoue, I

    2008-07-17

    Little is known about the pathology and pathogenesis of the rupture of intracranial aneurysms. For a better understanding of the molecular processes involved in intracranial aneurysm (IA) formation we performed a gene expression analysis comparing ruptured and unruptured aneurysm tissue to a control artery. Tissue samples of six ruptured and four unruptured aneurysms, and four cerebral arteries serving as controls, were profiled using oligonucleotide microarrays. Gene ontology classification of the differentially expressed genes was analyzed and regulatory functional networks and canonical pathways were identified with a network-based computational pathway analysis tool. Real time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical staining were performed as confirmation. Analysis of aneurysmal and control tissue revealed 521 differentially expressed genes. The most significantly associated gene ontology term was antigen processing (P=1.64E-16). Further network-based analysis showed the top scoring regulatory functional network to be built around overexpressed major histocompatibility class (MHC) I and II complex related genes and confirmed the canonical pathway "Antigen Presentation" to have the highest upregulation in IA tissue (P=7.3E-10). Real time RT-PCR showed significant overexpression of MHC class II genes. Immunohistochemical staining showed strong positivity for MHC II molecule specific antibody (HLA II), for CD68 (macrophages, monocytes), for CD45RO (T-cells) and HLA I antibody. Our results offer strong evidence for MHC class II gene overexpression in human IA tissue and that antigen presenting cells (macrophages, monocytes) play a key role in IA formation. PMID:18538937

  14. Ly6C+ monocyte efferocytosis and cross-presentation of cell-associated antigens

    PubMed Central

    Larson, S R; Atif, S M; Gibbings, S L; Thomas, S M; Prabagar, M G; Danhorn, T; Leach, S M; Henson, P M; Jakubzick, C V

    2016-01-01

    Recently it was shown that circulating Ly6C+ monocytes traffic from tissue to the draining lymph nodes (LNs) with minimal alteration in their overall phenotype. Furthermore, in the steady state, Ly6C+ monocytes are as abundant as classical dendritic cells (DCs) within the draining LNs, and even more abundant during inflammation. However, little is known about the functional roles of constitutively trafficking Ly6C+ monocytes. In this study we investigated whether Ly6C+ monocytes can efferocytose (acquire dying cells) and cross-present cell-associated antigen, a functional property particularly attributed to Batf3+ DCs. We demonstrated that Ly6C+ monocytes intrinsically efferocytose and cross-present cell-associated antigen to CD8+ T cells. In addition, efferocytosis was enhanced upon direct activation of the Ly6C+ monocytes through its corresponding TLRs, TLR4 and TLR7. However, only ligation of TLR7, and not TLR4, enhanced cross-presentation by Ly6C+ monocytes. Overall, this study outlines two functional roles, among others, that Ly6C+ monocytes have during an adaptive immune response. PMID:26990659

  15. Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse.

    PubMed

    Ferris, Stephen T; Carrero, Javier A; Unanue, Emil R

    2016-07-01

    This is a brief summary of our studies of NOD autoimmune diabetes examining the events during the initial stage of the process. Our focus has been on antigen presentation events and the antigen presenting cells (APC) inside islets. Islets of non-diabetic mice contain resident macrophages that are developmentally distinct from those in the inter-acinar stroma. The autoimmune process starts with the entrance of CD4+ T cells together with a burst of a subset of dendritic cells (DC) bearing CD103. The CD103+ DC develop under the influence of the Batf3 transcription factor. Batf3 deficient mice do not develop diabetes and their islets are uninfiltrated throughout life. Thus, the CD103+ DC are necessary for the progression of autoimmune diabetes. The major CD4+ T cell response in NOD are the T cells directed to insulin. In particular, the non-conventional 12-20 segment of the insulin B chain is presented by the class II MHC molecule I-A(g7) and elicits pathogenic CD4+ T cells. We discuss that the diabetic process requires the CD103+ DC, the CD4+ T cells to insulin peptides, and NOD specific I-Ag(7) MHC-II allele. Finally, our initial studies indicate that beta cells transfer insulin containing vesicles to the local APC in a contact-dependent reaction. Live images of beta cells interactions with the APC and electron micrographs of islet APCs also show the transfer of granules. PMID:27021276

  16. Pseudomonas aeruginosa Cif protein enhances the ubiquitination and proteasomal degradation of the transporter associated with antigen processing (TAP) and reduces major histocompatibility complex (MHC) class I antigen presentation.

    PubMed

    Bomberger, Jennifer M; Ely, Kenneth H; Bangia, Naveen; Ye, Siying; Green, Kathy A; Green, William R; Enelow, Richard I; Stanton, Bruce A

    2014-01-01

    Cif (PA2934), a bacterial virulence factor secreted in outer membrane vesicles by Pseudomonas aeruginosa, increases the ubiquitination and lysosomal degradation of some, but not all, plasma membrane ATP-binding cassette transporters (ABC), including the cystic fibrosis transmembrane conductance regulator and P-glycoprotein. The goal of this study was to determine whether Cif enhances the ubiquitination and degradation of the transporter associated with antigen processing (TAP1 and TAP2), members of the ABC transporter family that play an essential role in antigen presentation and intracellular pathogen clearance. Cif selectively increased the amount of ubiquitinated TAP1 and increased its degradation in the proteasome of human airway epithelial cells. This effect of Cif was mediated by reducing USP10 deubiquitinating activity, resulting in increased polyubiquitination and proteasomal degradation of TAP1. The reduction in TAP1 abundance decreased peptide antigen translocation into the endoplasmic reticulum, an effect that resulted in reduced antigen available to MHC class I molecules for presentation at the plasma membrane of airway epithelial cells and recognition by CD8(+) T cells. Cif is the first bacterial factor identified that inhibits TAP function and MHC class I antigen presentation.

  17. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation.

    PubMed

    Wang, Ce; Li, Ping; Liu, Lanlan; Pan, Hong; Li, Hongchang; Cai, Lintao; Ma, Yifan

    2016-02-01

    MHC class I (MHC I) antigen presentation of exogenous antigens (so called "cross presentation") is a central mechanism of CD8(+) cytotoxic T lymphocyte (CTL) responses essential for successful vaccine-based cancer immunotherapy. The present study constructed amphiphilic pH-sensitive galactosyl dextran-retinal (GDR) nanogels for cancer vaccine delivery, in which dextran was conjugated with all-trans retinal (a metabolite of vitamin A) through a pH-sensitive hydrazone bond, followed by galactosylation to acquire dendritic cell (DC)-targeting ability. Our results showed that pH-sensitive GDR nanogel was a self-adjuvanted vaccine carrier that not only promoted DC maturation through activating retinoic acid receptor (RAR) signaling, but also facilitated antigen uptake and cytosolic antigen release in DCs. Furthermore, pH-sensitive GDR nanogel effectively augmented MHC I antigen presentation and evoked potent anti-cancer immune responses in vivo. More importantly, we first reported that nanoparticle-triggered lysosome rupture could directly induce ROS production in DCs, which was found to be essential for augmenting proteasome activity and downstream MHC I antigen presentation. Hence, DC-targeted pH-sensitive GDR nanogels could be a potent delivery system for cancer vaccine development. Triggering lyososomal rupture in DCs with pH-sensitive nanoparticles might be a plausible strategy to elevate intracellular ROS production for promoting antigen cross presentation, thereby improving cancer vaccine efficacy. PMID:26702587

  18. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation.

    PubMed

    Wang, Ce; Li, Ping; Liu, Lanlan; Pan, Hong; Li, Hongchang; Cai, Lintao; Ma, Yifan

    2016-02-01

    MHC class I (MHC I) antigen presentation of exogenous antigens (so called "cross presentation") is a central mechanism of CD8(+) cytotoxic T lymphocyte (CTL) responses essential for successful vaccine-based cancer immunotherapy. The present study constructed amphiphilic pH-sensitive galactosyl dextran-retinal (GDR) nanogels for cancer vaccine delivery, in which dextran was conjugated with all-trans retinal (a metabolite of vitamin A) through a pH-sensitive hydrazone bond, followed by galactosylation to acquire dendritic cell (DC)-targeting ability. Our results showed that pH-sensitive GDR nanogel was a self-adjuvanted vaccine carrier that not only promoted DC maturation through activating retinoic acid receptor (RAR) signaling, but also facilitated antigen uptake and cytosolic antigen release in DCs. Furthermore, pH-sensitive GDR nanogel effectively augmented MHC I antigen presentation and evoked potent anti-cancer immune responses in vivo. More importantly, we first reported that nanoparticle-triggered lysosome rupture could directly induce ROS production in DCs, which was found to be essential for augmenting proteasome activity and downstream MHC I antigen presentation. Hence, DC-targeted pH-sensitive GDR nanogels could be a potent delivery system for cancer vaccine development. Triggering lyososomal rupture in DCs with pH-sensitive nanoparticles might be a plausible strategy to elevate intracellular ROS production for promoting antigen cross presentation, thereby improving cancer vaccine efficacy.

  19. Antigen-presenting cells in parotid glands contain cystatin D originating from acinar cells.

    PubMed

    Nashida, Tomoko; Sato, Ritsuko; Haga-Tsujimura, Maiko; Yoshie, Sumio; Yoshimura, Ken; Imai, Akane; Shimomura, Hiromi

    2013-02-01

    Cystatin D encoded by Cst5 is a salivary classified type II cystatin. We investigated the dynamism of cystatin D by examining the distribution of cystatin D protein and mRNA in rats, to identify novel functions. The simultaneous expression of Cst5 and cystatin D was observed in parotid glands, however in situ hybridization showed that only acinar cells produced cystatin D. Synthesized cystatin D was localized in small vesicles and secreted from the apical side to the saliva, and from the basolateral side to the extracellular region, a second secretory pathway for cystatin D. We also identified antigen-presenting cells in the parotid glands that contained cystatin D without the expression of Cst5, indicating the uptake of cystatin D from the extracellular region. Cystatin D was detected in blood serum and renal tubular cells with megalin, indicating the circulation of cystatin D through the body and uptake by renal tubular cells. Thus, the novel dynamism of cystatin D was shown and a function for cystatin D in the regulation of antigen-presenting cell activity was proposed.

  20. CD47 enhances in vivo functionality of artificial antigen-presenting cells

    PubMed Central

    Bruns, Heiko; Bessell, Catherine; Varela, Juan Carlos; Haupt, Carl; Fang, Jerry; Pasemann, Shirin; Mackensen, Andreas; Oelke, Mathias; Schneck, Jonathan P.; Schütz, Christian

    2015-01-01

    Purpose Artificial Antigen-Presenting Cells, aAPC, have successfully been used to stimulate antigen-specific T cell responses in vitro as well as in vivo. While aAPC compare favorable to autologous dendritic cells in vitro, their effect in vivo might be diminished through rapid clearance by macrophages. Therefore, to prevent uptake and minimize clearance of aAPC by macrophages, and thereby increasing in vivo functionality, we investigated the efficiency of “don’t eat me” three-signal aAPC compared to classical two-signal aAPC. Experimental Design To generate “don’t eat me” aAPC, CD47 was additionally immobilized onto classical aAPC (aAPCCD47+). aAPC and aAPCCD47+ were analyzed in in vitro human primary T cell and macrophage co-cultures. In vivo efficiency was compared in a NOD/SCID T cell proliferation and a B16-SIY melanoma model. Results This study demonstrates that aAPCCD47+ in co-culture with human macrophages show a CD47 concentration dependent inhibition of phagocytosis, while their ability to generate and expand antigen-specific T cells was not affected. Furthermore, aAPCCD47+ generated T cells displayed equivalent killing abilities and polyfunctionality when compared to aAPC generated T cells. In addition, in vivo studies demonstrated an enhanced stimulatory capacity and tumor inhibition of aAPCCD47+ over normal aAPC in conjunction with diverging bio-distribution in different organs. Conclusion Our data for the first time show that aAPC functionalized with CD47 maintain their stimulatory capacity in vitro and demonstrate enhanced in vivo efficiency. Thus this next generation aAPCCD47+ have a unique potential to enhance the application of the aAPC technology for future immunotherapy approaches. PMID:25593301

  1. Enhanced antigen-presenting capacity of cultured Langerhans' cells is associated with markedly increased expression of Ia antigen

    SciTech Connect

    Shimada, S.; Caughman, S.W.; Sharrow, S.O.; Stephany, D.; Katz, S.I.

    1987-10-15

    Recent studies indicate that when epidermal Langerhans' cells (LC) are cultured for 2 to 3 days they, in comparison to freshly prepared LC, exhibit markedly enhanced ability to stimulate T cell proliferative responses in oxidative mitogenesis and in the mixed epidermal-leukocyte reaction. In this study, we determined whether cultured LC enhance antigen-specific T cell responses, and whether such enhanced stimulatory capacity correlates with the level of Ia antigen expressed on LC. We used C3H/He (Iak) epidermal cells as stimulators and, as responder cells, both the trinitrophenyl-specific clones D8 and SE4, which were assayed for (/sup 3/H)dThd incorporation, and the pigeon cytochrome c specific hybridoma 2C2, which was assayed for interleukin 2 production. Cultured LC induced 10 to 100 times greater proliferation or interleukin 2 production by responder cells than did freshly prepared LC. The intensity of I-Ak and I-Ek, expressed on cultured LC as assessed by immunofluorescence and flow cytometry, was found to be 10 to 36 times greater on a per cell basis than that on freshly prepared LC. Depletion of LC from fresh epidermal cell suspensions by anti-Iak and complement or treatment with 50 mJ/cm/sup 2/ medium range ultraviolet light or cycloheximide before culture abrogated both the increase in Ia expression and antigen-specific clonal proliferation. The results suggest that when LC are removed from their usual epidermal milieu, they express increased amounts of Ia and become more potent stimulators of T cell responses.

  2. P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells

    PubMed Central

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity. PMID:23940597

  3. P2X7 receptor activation impairs exogenous MHC class I oligopeptides presentation in antigen presenting cells.

    PubMed

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8(+) T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5'-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8(+) T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8(+) T cell immunity.

  4. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    NASA Astrophysics Data System (ADS)

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-06-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2-24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines.

  5. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells.

    PubMed

    Sunshine, Joel C; Perica, Karlo; Schneck, Jonathan P; Green, Jordan J

    2014-01-01

    Previous work developing particle-based acellular, artificial antigen presenting cells (aAPCs) has focused exclusively on spherical platforms. To explore the role of shape, we generated ellipsoidal PLGA microparticles with varying aspect ratios (ARs) and synthesized aAPCs from them. The ellipsoidal biomimetic aAPCs with high-AR showed significantly enhanced in vitro and in vivo activity above spherical aAPCs with particle volume and antigen content held constant. Confocal imaging indicates that CD8+ T cells preferentially migrate to and are activated by interaction with the long axis of the aAPC. Importantly, enhanced activity of high-AR aAPCs was seen in a mouse melanoma model, with high-AR aAPCs improving melanoma survival compared to non-cognate aAPCs (p = 0.004) and cognate spherical aAPCs (p = 0.05). These findings indicate that particle geometry is a critical design criterion in the generation of aAPCs, and may offer insight into the essential role of geometry in the interaction between CD8+ T cells and biological APCs. PMID:24099710

  6. Engineering tolerance using biomaterials to target and control antigen presenting cells.

    PubMed

    Tostanoski, Lisa H; Gosselin, Emily A; Jewell, Christopher M

    2016-05-01

    Autoimmune diseases occur when cells of the adaptive immune system incorrectly recognize and attack "self" tissues. Importantly, the proliferation and differentiation of these cells is triggered and controlled by interactions with antigen presenting cells (APCs), such as dendritic cells. Thus, modulating the signals transduced by APCs (e.g., cytokines, costimulatory surface proteins) has emerged as a promising strategy to promote tolerance for diseases such as multiple sclerosis, type 1 diabetes, and lupus. However, many approaches have been hindered by non-specific activity of immunosuppressive or immunoregulatory cues, following systemic administration of soluble factors via traditional injections routes (e.g., subcutaneous, intravenous). Biomaterials offer a unique opportunity to control the delivery of tolerogenic signals in vivo via properties such as controlled particle size, tunable release kinetics, and co-delivery of multiple classes of cargo. In this review, we highlight recent reports that exploit these properties of biomaterials to target APCs and promote tolerance via three strategies, i) passive or active targeting of particulate carriers to APCs, ii) biomaterial-mediated control over antigen localization and processing, and iii) targeted delivery of encapsulated or adsorbed immunomodulatory signals. These reports represent exciting advances toward the goal of more effective therapies for autoimmune diseases, without the broad suppressive effects associated with current clinically-approved therapies. PMID:27355336

  7. Uptake of HLA Alloantigens via CD89 and CD206 Does Not Enhance Antigen Presentation by Indirect Allorecognition

    PubMed Central

    Breman, Eytan; Ruben, Jurjen M.; Franken, Kees L.; Heemskerk, Mirjam H. M.; Roelen, Dave L.; Claas, Frans H.

    2016-01-01

    In organ transplantation, alloantigens are taken up by antigen presenting cells and presented via the indirect pathway to T-cells which in turn can induce allograft rejection. Monitoring of these T-cells is of major importance; however no reliable assay is available to routinely monitor indirect allorecognition. Recently we showed that HLA monomers can be successfully used to monitor indirect allorecognition. Targeting antigens to endocytic receptors on antigen presenting cells may further enhance the presentation of antigens via HLA class II and improve the efficiency of this assay. In the current study we explored targeting of HLA monomers to either CD89 expressing monocytes or mannose receptor expressing dendritic cells. Monomer-antibody complexes were generated using biotin-labeled monomers and avidin labeling of the antibodies. We demonstrate that targeting the complexes to these receptors resulted in a dose-dependent HLA class II mediated presentation to a T-cell clone. The immune-complexes were efficiently taken up and presented to T-cells. However, the level of T-cell reactivity was similar to that when only exogenous antigen was added. We conclude that HLA-A2 monomers targeted for presentation through CD89 on monocytes or mannose receptor on dendritic cells lead to proper antigen presentation but do not enhance indirect allorecognition via HLA-DR. PMID:27413760

  8. Targeting tumor-associated antigens to the MHC class I presentation pathway.

    PubMed

    Gross, G; Margalit, A

    2007-06-01

    There is little doubt that cytotoxic T lymphocytes (CTLs) can kill tumor cells in-vivo. However, most CTL-inducing immunization protocols examined so far in cancer patients have yielded only limited clinical benefits, underscoring the urge to improve current approaches for the effective induction of tumor-reactive CTLs. The tumor side of the immunological frontline is armed with large masses, high mutability and an arsenal of immune evasion and suppression mechanisms. Accordingly, the confronting CTLs should come in large numbers, recognize an assortment of MHC class I (MHC-I) bound tumor-associated peptides and be brought into action under effective immunostimulatory conditions. Naïve CTLs are activated to become effector cells in secondary lymphoid organs, following their productive encounter with MHC-I-bound peptides at the surface of dendritic cells (DCs). Therefore, many cancer vaccines under development focus on the optimization of peptide presentation by DCs at this critical stage. The elucidation of discrete steps and the subsequent identification of inherent bottlenecks in the MHC-I antigen presentation pathway have fueled elaborate efforts to enhance vaccine efficacy by the rational targeting of proteins or peptides, formulated into these vaccines, to this pathway. Protein- and gene-based strategies are accordingly devised to deliver tumor-associated peptides to selected cellular compartments, which are essential for the generation of functional CTL ligands. Many of these strategies target the conventional, endogenous route, while others harness the unique pathways that enable DCs to present exogenous antigens, known as cross-presentation. Here we dissect the intricate machinery that produces CTL ligands and examine how knowledge-based cancer vaccines can target the sequence of workstations, biochemical utensils and molecular intermediates comprising this production line.

  9. Effective Inhibition of Kb- and Db-Restricted Antigen Presentation in Primary Macrophages by Murine Cytomegalovirus

    PubMed Central

    LoPiccolo, Diane M.; Gold, Marielle C.; Kavanagh, Daniel G.; Wagner, Markus; Koszinowski, Ulrich H.; Hill, Ann B.

    2003-01-01

    Macrophages play an important role in murine cytomegalovirus (MCMV) infection in vivo, both in disseminating infection and in harboring latent virus. MCMV encodes three immune evasion genes (m4, m6, and m152) that interfere with the ability of cytotoxic T cells (CTL) to detect virus-infected fibroblasts, but the efficacy of immune evasion in macrophages has been controversial. Here we show that MCMV immune evasion genes function in H-2b primary bone marrow macrophages (BMMφ) in the same way that they do in fibroblasts. Metabolic labeling experiments showed that class I is retained in the endoplasmic reticulum by MCMV infection and associates with m4/gp34 to a similar extent in fibroblasts and BMMφ. We tested a series of Kb- and Db-restricted CTL clones specific for MCMV early genes against a panel of MCMV wild-type virus and mutants lacking m152, m4, or m6. MCMV immune evasion genes effectively inhibited antigen presentation. m152 appeared sufficient to abolish Db-restricted presentation in infected macrophages, as has been previously observed in infected fibroblasts. However, for inhibition of recognition of infected macrophages by Kb-restricted CTL, m4, m6, and m152 were all required. The contribution of m4 to inhibition of recognition appeared much more important in macrophages than in fibroblasts. Thus, MCMV immune evasion genes function effectively in primary macrophages to prevent CTL recognition of early antigens and show the same pattern of major histocompatibility complex class I allele discrimination as is seen in fibroblasts. Furthermore, for inhibition of Kb-restricted presentation, a strong synergistic effect was noted among m152, m4, and m6. PMID:12477835

  10. The effect of stable macromolecular complexes of ionic polyphosphazene on HIV Gag antigen and on activation of human dendritic cells and presentation to T-cells.

    PubMed

    Palmer, Christine D; Ninković, Jana; Prokopowicz, Zofia M; Mancuso, Christy J; Marin, Alexander; Andrianov, Alexander K; Dowling, David J; Levy, Ofer

    2014-10-01

    Neonates and infants are susceptible to infection due to distinct immune responses in early life. Therefore, development of vaccine formulation and delivery systems capable of activating human newborn leukocytes is of global health importance. Poly[di(carboxylatophenoxy)phosphazene] (PCPP) belongs to a family of ionic synthetic polyphosphazene polyelectrolyte compounds that can form non-covalent interactions with protein antigens and demonstrate adjuvant activity in animals and in human clinical trials. However, little is known about their ability to activate human immune cells. In this study, we characterized the effects of PCPP alone or in combination with a model antigen (recombinant HIV-Gag (Gag)), on the maturation, activation and antigen presentation by human adult and newborn dendritic cells (DCs) in vitro. PCPP treatment induced DC activation as assessed by upregulation of co-stimulatory molecules and cytokine production. Studies benchmarking PCPP to Alum, the most commonly used vaccine adjuvant, demonstrated that both triggered cell death and release of danger signals in adult and newborn DCs. When complexed with Gag antigen, PCPP maintained its immunostimulatory characteristics while permitting internalization and presentation of Gag by DCs to HIV-Gag-specific CD4(+) T cell clones. The PCPP vaccine formulation outlined here has intrinsic adjuvant activity, can facilitate effective delivery of antigen to DCs, and may be advantageous for induction of beneficial T cell-mediated immunity. Moreover, polyphosphazenes can further reduce cost of vaccine production and distribution through their dose-sparing and antigen-stabilizing properties, thus potentially eliminating the need for cold chain distribution. PMID:25023392

  11. One-step spray-dried polyelectrolyte microparticles enhance the antigen cross-presentation capacity of porcine dendritic cells.

    PubMed

    Devriendt, Bert; Baert, Kim; Dierendonck, Marijke; Favoreel, Herman; De Koker, Stefaan; Remon, Jean Paul; De Geest, Bruno G; Cox, Eric

    2013-06-01

    Vaccination is regarded as the most efficient and cost-effective way to prevent infectious diseases. Vaccine design nowadays focuses on the implementation of safer recombinant subunit vaccines. However, these recombinant subunit antigens are often poor immunogens and several strategies are currently under investigation to enhance their immunogenicity. The encapsulation of antigens in biodegradable microparticulate delivery systems seems a promising strategy to boost their immunogenicity. Here, we evaluate the capacity of polyelectrolyte complex microparticles (PECMs), fabricated by single step spray-drying, to deliver antigens to porcine dendritic cells and how these particles affect the functional maturation of dendritic cells (DCs). As clinically relevant model antigen F4 fimbriae, a bacterial adhesin purified from a porcine-specific enterotoxigenic Escherichia coli strain was chosen. The resulting antigen-loaded PECMs are efficiently internalised by porcine monocyte-derived DCs. F4 fimbriae-loaded PECMs (F4-PECMs) enhanced CD40 and CD25 surface expression by DCs and this phenotypical maturation correlated with an increased secretion of IL-6 and IL-1β. More importantly, F4-PECMs enhance both the T cell stimulatory and antigen presentation capacity of DCs. Moreover, PECMs efficiently promoted the CD8(+) T cell stimulatory capacity of dendritic cells, indicating an enhanced ability to cross-present the encapsulated antigens. These results could accelerate the development of veterinary and human subunit vaccines based on polyelectrolyte complex microparticles to induce protective immunity against a variety of extra- and intracellular pathogens. PMID:23207327

  12. Artificial antigen presenting cells that express prevalent HLA alleles: A step towards the broad application of antigen-specific adoptive cell therapies.

    PubMed

    Hasan, Aisha N; Selvakumar, Annamalai; Doubrovina, Ekaterina; Riviere, Isabelle; Sadelain, Michel W; O'Reilly, Richard J

    2009-12-01

    The artificial antigen-presenting cells (AAPCs) described in this review were generated to facilitate the production of virus-specific T-cells for the treatment of infections in patients after bone marrow transplant. These AAPCs consist of murine 3T3 cells genetically modified to express critical human molecules needed for T-cell stimulation, such as the co-stimulatory molecules B7.1, ICAM-1, and LFA-3 and one of a series of 6 common HLA class I alleles. When T-cells were sensitized against cytomegalovirus (CMV) using AAPCs that express a shared HLA allele or using autologous antigen-presenting cells (APCs) loaded with the CMVpp65 antigen, they were activated and expanded to become HLA-restricted CMVpp65-specific T-cells. These T-cells demonstrated functional activity in vitro against CMV by producing IFN-gamma and inducing CMVpp65-specific cytotoxicity. T-cells sensitized with AAPCs recognized antigenic epitopes presented by each HLA allele known to be immunogenic in Man. Sensitization with AAPCs also permitted expansion of IFN-gamma+ cytotoxic T-cells against subdominant epitopes that were not effectively recognized by T-cells sensitized with autologous APCs. This panel of AAPCs provides a source of immediately accessible, standardizable, and replenishable "off the shelf" cellular reagents with the potential to make adoptive immunotherapy widely available for the treatment of lethal infections, cancer, and autoimmune diseases. PMID:20040272

  13. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro.

    PubMed

    Sneh-Edri, Hadas; Likhtenshtein, Diana; Stepensky, David

    2011-08-01

    Intracellularly targeted delivery system based on PLGA nanoparticles decorated with endoplasmic reticulum (ER)-targeting or control peptides and encapsulating antigenic peptide and fluorescent marker, was developed and characterized. The cellular uptake by dendritic cells (murine DC2.4 cells), intracellular trafficking, and cross-presentation efficiency of this delivery system were studied in vitro. The prepared nanoparticles (an average diameter of ~350 nm) efficiently encapsulated antigenic peptide and fluorescent marker and gradually released them over several days. Yet, the nanoparticles' size was small enough to allow their efficient endocytosis by the antigen-presenting cells in vitro. Surface conjugation of the targeting or control peptides enhanced the endocytosis of the nanoparticles, affected their intracellular trafficking, and induced prolonged low-magnitude cross-presentation of the antigenic peptide. We demonstrated in vitro that the intracellular fate of nanoparticulate drug delivery systems can be altered by their surface decoration with peptidic targeting residues. More detailed investigation is required to determine the mechanisms and therapeutic potential of intracellular targeting of nanodelivery systems in vivo for the goal of an anticancer vaccine.

  14. Regulation of SIV Antigen-Specific CD4+ T Cellular Immunity via Autophagosome-Mediated MHC II Molecule-Targeting Antigen Presentation in Mice

    PubMed Central

    Feng, Liqiang; Li, Pingchao; Xiao, Lijun; Ren, Yizhong; Wang, Dimin; Li, Chufang; Chen, Ling

    2014-01-01

    CD4+ T cell-mediated immunity has increasingly received attention due to its contribution in the control of HIV viral replication; therefore, it is of great significance to improve CD4+ T cell responses to enhance the efficacy of HIV vaccines. Recent studies have suggested that macroautophagy plays a crucial role in modulating adaptive immune responses toward CD4+ T cells or CD8+ T cells. In the present study, a new strategy based on a macroautophagy degradation mechanism is investigated to enhance CD4+ T cell responses against the HIV/SIV gag antigen. Our results showed that when fused to the autophagosome-associated LC3b protein, SIVgag protein can be functionally targeted to autophagosomes, processed by autophagy-mediated degradation in autolysosomes/lysosomes, presented to MHC II compartments and elicit effective potential CD4 T cell responses in vitro. Importantly, compared with the SIVgag protein alone, SIVgag-LC3b fusion antigen can induce a stronger antigen-specific CD4+ T cell response in mice, which is characterized by an enhanced magnitude and polyfunctionality. This study provides insight for the immunological modulation between viral and mammalian cells via autophagy, and it also presents an alternative strategy for the design of new antigens in the development of effective HIV vaccines. PMID:24671203

  15. Tubulin and actin interplay at the T cell and antigen-presenting cell interface.

    PubMed

    Martín-Cófreces, Noa Beatriz; Alarcón, Balbino; Sánchez-Madrid, Francisco

    2011-01-01

    T cells reorganize their actin and tubulin-based cytoskeletons to provide a physical basis to the immune synapse. However, growing evidence shows that their roles on T cell activation are more dynamic than merely serving as tracks or scaffold for different molecules. The crosstalk between both skeletons may be important for the formation and movement of the lamella at the immunological synapse by increasing the adhesion of the T cell to the antigen-presenting cells (APC), thus favoring the transport of components toward the plasma membrane and in turn regulating the T-APC intercellular communication. Microtubules and F-actin appear to be essential for the transport of the different signaling microclusters along the membrane, therefore facilitating the propagation of the signal. Finally, they can also be important for regulating the endocytosis, recycling, and degradation of the T cell receptor signaling machinery, thus helping both to sustain the activated state and to switch it off.

  16. Tubulin and Actin Interplay at the T Cell and Antigen-Presenting Cell Interface

    PubMed Central

    Martín-Cófreces, Noa Beatriz; Alarcón, Balbino; Sánchez-Madrid, Francisco

    2011-01-01

    T cells reorganize their actin and tubulin-based cytoskeletons to provide a physical basis to the immune synapse. However, growing evidence shows that their roles on T cell activation are more dynamic than merely serving as tracks or scaffold for different molecules. The crosstalk between both skeletons may be important for the formation and movement of the lamella at the immunological synapse by increasing the adhesion of the T cell to the antigen-presenting cells (APC), thus favoring the transport of components toward the plasma membrane and in turn regulating the T-APC intercellular communication. Microtubules and F-actin appear to be essential for the transport of the different signaling microclusters along the membrane, therefore facilitating the propagation of the signal. Finally, they can also be important for regulating the endocytosis, recycling, and degradation of the T cell receptor signaling machinery, thus helping both to sustain the activated state and to switch it off. PMID:22566814

  17. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    PubMed

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  18. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway.

    PubMed

    Tooker, Brian C; Brindley, Stephen M; Chiarappa-Zucca, Marina L; Turteltaub, Kenneth W; Newman, Lee S

    2015-01-01

    Exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstrate that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, it was determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) than HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.

  19. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway

    SciTech Connect

    Tooker, Brian C.; Brindley, Stephen M.; Chiarappa-Zucca, Marina L.; Turteltaub, Kenneth W.; Newman, Lee S.

    2014-06-16

    We report that exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstrate that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, we determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) then HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.

  20. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway

    DOE PAGES

    Tooker, Brian C.; Brindley, Stephen M.; Chiarappa-Zucca, Marina L.; Turteltaub, Kenneth W.; Newman, Lee S.

    2014-06-16

    We report that exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstratemore » that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, we determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) then HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.« less

  1. MHC class II antigen presentation pathway in murine tumours: tumour evasion from immunosurveillance?

    PubMed Central

    Walter, W; Lingnau, K; Schmitt, E; Loos, M; Maeurer, M J

    2000-01-01

    Qualitative differences in the MHC class II antigen processing and presentation pathway may be instrumental in shaping the CD4+ T cell response directed against tumour cells. Efficient loading of many MHC class II alleles with peptides requires the assistance of H2-M, a heterodimeric MHC class II-like molecule. In contrast to the HLA-DM region in humans, the β-chain locus is duplicated in mouse, with the H2-Mb1 (Mb1β-chain distal to H2-Mb2 (Mb2) and the H2-Ma (Ma) α-chain gene). Here, we show that murine MHC class II and H2-M genes are coordinately regulated in murine tumour cell lines by T helper cell 1 (IFN-γ) and T helper cell 2 (IL-4 or IL-10) cytokines in the presence of the MHC class II-specific transactivator CIITA as determined by mRNA expression and Western blot analysis. Furthermore, Mαβ1 and Mαβ2 heterodimers are differentially expressed in murine tumour cell lines of different histology. Both H2-M isoforms promote equally processing and presentation of native protein antigens to H2-Ad- and H2-Ed-restricted CD4+ T cells. Murine tumour cell lines could be divided into three groups: constitutive MHC class II and CIITA expression; inducible MHC class II and CIITA expression upon IFN-γ-treatment; and lack of constitutive and IFN-γ-inducible MHC class II and CIITA expression. These differences may impact on CD4+ T cell recognition of cancer cells in murine tumour models. © 2000 Cancer Research Campaign PMID:11027433

  2. Membrane water permeability related to antigen-presenting function of dendritic cells

    PubMed Central

    Wang, G F; Dong, C L; Tang, G S; Shen, Q; Bai, C X

    2008-01-01

    Aquaporin 5 (AQP5) is one of the water channel proteins which participate in a wide array of physiological processes and are primary determinants of membrane osmotic water permeability. The AQP5 gene is located in human chromosome 12q, the same region as the location of the major asthma susceptibility loci. In this study we try to determine whether the AQP5 knock-out has some effect on allergen-induced asthma. With a mouse asthma model induced by ovalbumin (OVA), we found that deletion of AQP5 reduced some major characteristic features of asthma, such as less inflammation cell infiltration in lung tissues, lower cytokine expression and fewer inflammation cells in bronchoalveolar lavage fluids compared with those from wild-type (WT) mice. Because it was found that mice injected intratracheally with OVA-pulsed dendritic cells (DCs), the AQP5 gene knock-out (AQP5−/−) ones presented fewer inflammation cells. Because DCs are major antigen-presenting cells that play an important role in antigen-induced asthma, we also probed into the possible effect of gene knock-out on DCs. Surprisingly, reverse transcription–polymerase chain reaction and fluorescence activated cell sorter analysis showed high levels of AQP5 on the surface of DCs from in vivo or bone marrow monocyte-derived DCs (mDC) in vitro. Immature mDC from AQP5 knock-out mice (AQP5−/−) showed decreased expression of CD80 and CD86 and endocytosis ability compared with that from WT, but the difference disappeared after mDCs matured with lipopolysaccharide. AQP5-mediated water transmembrane may play some role in the function of DCs. However, the mechanism of the effect of AQP5 on the DCs' function needs to be investigated further. PMID:18647319

  3. Characterization of antigen-presenting cells from the porcine respiratory system.

    PubMed

    López-Robles, Guadalupe; Silva-Campa, Erika; Burgara-Estrella, Alexel; Hernández, Jesús

    2015-06-01

    Antigen-presenting cells (APCs) are strategically placed in all anatomic sites with high antigen exposure such as the respiratory system. The aim of this study was to evaluate phenotypic and functional properties of APCs from the lung (L-Cs), mediastinal lymph node (LN-Cs) and bronchoalveolar lavage cells (BAL-Cs). The APCs were first analyzed based on forward scatter and side scatter profiles and the selection of MHC-II(high)CD172a(+) cells (referred to as APCs); then the expression of CD1a, CD163, CD206, CD16 and CD11R3 was evaluated in the APCs. The results showed that CD1a, CD163 and CD206 were differentially expressed among L-Cs, LN-Cs and BAL-Cs, suggesting the phenotype MHC-II(high)CD172a(+)CD1a(low/-)CD163(low)CD206(-) for L-Cs and MHC-II(high)CD172a(+)CD1a(+)CD163(low/-)CD206(+) for LN-Cs. BAL-Cs were MHC-II(high)CD172a(+)CD1a(-)CD163(high)CD206(+/-). The functional characteristics of L-Cs and LN-Cs were different from those of BAL-Cs, confirming that L-Cs and LN-Cs resemble specialized APCs. In conclusion, we present the characterization of APCs from L-Cs, LN-Cs and BAL-Cs of the porcine respiratory system.

  4. Expression profile of novel cell surface molecules on different subsets of human peripheral blood antigen-presenting cells

    PubMed Central

    Damasceno, Daniela; Andrés, Martín Pérez; van den Bossche, Wouter BL; Flores-Montero, Juan; de Bruin, Sandra; Teodosio, Cristina; van Dongen, Jacques JM; Orfao, Alberto; Almeida, Julia

    2016-01-01

    Although major steps have been recently made in understanding the role of the distinct subsets of dendritic cells (DC)/antigen-presenting cells (APC), further studies are required to unravel their precise role, including in-depth immunophenotypic characterisation of these cells. Here, we used eight-colour flow cytometry to investigate the reactivity of a panel of 72 monoclonal antibodies (including those clustered in seven new Cluster of Differentiation, CD) on different subsets of APC in peripheral blood (PB) samples from five healthy adults. These experiments were performed in the context of the Tenth International Workshop on Human Leukocyte Differentiation Antigens (HLDA10). Plasmacytoid DC was the only cell population that expressed CD85g and CD195, whereas they lacked all of the other molecules investigated. In contrast, myeloid DC mostly expressed inhibitory C-type lectin receptors (CLRs) and other inhibitory-associated molecules, whereas monocytes expressed both inhibitory and activating CLRs, together with other phagocytosis-associated receptors. Within monocytes, progressively lower levels of expression were generally observed from classical monocytes (cMo) to SLAN− and SLAN+ non-classical monocytes (ncMo) for most of the molecules expressed, except for the CD368 endocytic receptor. This molecule was found to be positive only in cMo, and the CD369 and CD371 modulating/signalling receptors. In addition, the CD101 inhibitory molecule was found to be expressed at higher levels in SLAN+ vs SLAN− ncMo. In summary, the pattern of expression of the different signalling molecules and receptors analysed in this work varies among the distinct subsets of PB APCs, with similar profiles for molecules within each functional group. These findings suggest unique pattern-recognition and signalling capabilities for distinct subpopulations of APCs, and therefore, diverse functional roles. PMID:27766148

  5. Origin and Role of a Subset of Tumor-Associated Neutrophils with Antigen-Presenting Cell Features in Early-Stage Human Lung Cancer.

    PubMed

    Singhal, Sunil; Bhojnagarwala, Pratik S; O'Brien, Shaun; Moon, Edmund K; Garfall, Alfred L; Rao, Abhishek S; Quatromoni, Jon G; Stephen, Tom Li; Litzky, Leslie; Deshpande, Charuhas; Feldman, Michael D; Hancock, Wayne W; Conejo-Garcia, Jose R; Albelda, Steven M; Eruslanov, Evgeniy B

    2016-07-11

    Based on studies in mouse tumor models, granulocytes appear to play a tumor-promoting role. However, there are limited data about the phenotype and function of tumor-associated neutrophils (TANs) in humans. Here, we identify a subset of TANs that exhibited characteristics of both neutrophils and antigen-presenting cells (APCs) in early-stage human lung cancer. These APC-like "hybrid neutrophils," which originate from CD11b(+)CD15(hi)CD10(-)CD16(low) immature progenitors, are able to cross-present antigens, as well as trigger and augment anti-tumor T cell responses. Interferon-γ and granulocyte-macrophage colony-stimulating factor are requisite factors in the tumor that, working through the Ikaros transcription factor, synergistically exert their APC-promoting effects on the progenitors. Overall, these data demonstrate the existence of a specialized TAN subset with anti-tumor capabilities in human cancer.

  6. Artificial antigen-presenting cells engineered by recombinant vaccinia viruses expressing antigen, MHC class II, and costimulatory molecules elicit proliferation of CD4+ lymphocytes in vitro.

    PubMed

    Oertli, D; Marti, W R; Norton, J A; Tsung, K

    1997-10-01

    The current study was designed to test the ability of recombinant Vaccinia virus (rVV) encoding essential components of an artificial antigen-presenting cell to activate antigen-specific T cells in vitro. We have constructed a set of rVV encoding separately or in combination a CD4+ T cell-specific epitope (the 133-145 peptide of chicken conalbumin), the MHC class II molecule I-Ak, and costimulatory molecules (mB7-1 and mB7-2). Cultured cells infected with rVV encoding both the antigen and the presenting MHC, but not either one alone, could activate cloned CD4+ T cells specific for the virus-encoded epitope. Additional co-expression of mB7-1 and mB7-2 resulted in further enhancement of T cell response. Thus, our rVV vector expressing four different foreign gene products elicited the highest proliferation rates of antigen-specific cloned T cells. PMID:9353162

  7. Polymer nanoparticles for cross-presentation of exogenous antigens and enhanced cytotoxic T-lymphocyte immune response

    PubMed Central

    Song, Chanyoung; Noh, Young-Woock; Lim, Yong Taik

    2016-01-01

    Effective induction of an antigen-specific cytotoxic T lymphocyte (CTL) immune response is one of the key goals of cancer immunotherapy. We report the design and fabrication of polyethylenimine (PEI)-coated polymer nanoparticles (NPs) as efficient antigen-delivery carriers that can induce antigen cross-presentation and a strong CTL response. After synthesis of poly(d,l-lactide-co-glycolide) (PLGA) NPs containing ovalbumin (OVA) by the double-emulsion solvent-evaporation method, cationic-charged PLGA NPs were generated by coating them with PEI. In a methyl tetrazolium salt assay, no discernible cytotoxic effect of PEI-coated PLGA (OVA) NPs was observed. The capacity and mechanism of PEI-coated PLGA (OVA) NPs for antigen delivery and cross-presentation on dendritic cells (DCs) were determined by fluorescence microscopy and flow cytometry. PEI-coated PLGA (OVA) NPs were internalized efficiently via phagocytosis or macropinocytosis in DCs and induced efficient cross-presentation of the antigen on MHC class I molecules via both endosome escape and a lysosomal processing mechanism. The DCs treated with PEI-coated PLGA (OVA) NPs induced a release of IL-2 cytokine from OVA-specific CD8-OVA1.3 T cells more efficiently than DCs treated with PLGA (OVA) NPs. Therefore, the PEI-coated PLGA (OVA) NPs can induce antigen cross-presentation and are expected to be used for induction of a strong CTL immune response and for efficient anticancer immunotherapy. PMID:27540289

  8. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells

    PubMed Central

    Horst, Andrea Kristina; Neumann, Katrin; Diehl, Linda; Tiegs, Gisa

    2016-01-01

    The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the “liver tolerance effect”. Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process. PMID:27041638

  9. Cross-Presentation of Cell-Associated Antigens by Mouse Splenic Dendritic Cell Populations

    PubMed Central

    Thacker, Robert I.; Janssen, Edith M.

    2012-01-01

    Cross-presentation of cell-associated antigens (Ag) plays an important role in the induction of anti-tumor responses, autoimmune diseases, and transplant rejection. While several dendritic cell (DC) populations can induce pro-inflammatory CD8+ T cell responses to cell-associated Ag during infection, in the absence of infection, cross-priming of naïve CD8+ T cells is highly restricted. Comparison of the main splenic DC populations in mice – including the classic, cross-presenting CD8α DC and the recently described merocytic DC (mcDC) – reveals that cross-priming DCs display a distinct phenotype in cell-associated Ag uptake, endosomal/lysosomal trafficking, lysosomal acidification, and Ag persistence compared to non-cross-priming DC populations. Although the CD8α DC and mcDC subsets utilize similar processing pathways to cross-present cell-associated Ag, cross-priming by CD8α DCs is associated with IL-12 production, while the superior priming of the mcDC is critically dependent on type I IFN production. This discussion illustrates how subtle differences in internal processing pathways and their signaling sequelae significantly affect the duration of Ag cross-presentation and cytokine production by DCs, thereby shaping the ensuing CD8+ T cell response. PMID:22566924

  10. Differential expression of melanoma-associated antigens and molecules involved in antigen processing and presentation in three cell lines established from a single patient.

    PubMed

    Kovalcsik, Edit; John, Justin; Turner, Matthew; Birchall, Lindsay; Sage, Deborah; Whittle, Robert; Dalgleish, Angus; Pandha, Hardev

    2004-12-01

    Tumour cells are able to evade the immune system by using several 'escape mechanisms'. Downregulation of molecules involved in the processing and presentation of self-antigens has been reported. However, these adaptations have not been compared in metastases in different anatomical locations but derived from a single patient. We investigated three melanoma cell lines--MJT1 from the parietal lobe of the brain, MJT3 from the cerebellum and MJT5 from the left side of the neck--established from biopsies excised from a 45 year old female patient. Although human leukocyte antigen (HLA) class I was detected in all three cell lines by flow cytometry using an anti-HLA monomorphic antibody, further serological analysis demonstrated HLA B38 loss in all three cell lines, HLA B7 downregulation in MJT5 (skin metastases) and B7 loss in MJT3 and MJT1 (brain metastases) compared with the HLA type of the patient's normal autologous lymphocytes. Interferon-gamma (IFNgamma) treatment increased the expression of HLA class I and transporters associated with antigen processing 1 (TAP1) in all three cell lines. De novo HLA class II molecule expression was observed after IFNgamma treatment in MJT3 and MJT5. Western blot and reverse transcription-polymerase chain reaction results revealed heterogeneity of melanoma-associated antigen (MAA) expression in the cell lines: MJT3 cells expressed higher levels of MAAs than the other two cell lines. In conclusion, this study has demonstrated that three metastatic lesions from a single patient can have differential expression of molecules involved in antigen processing (TAP1) and presentation (HLA I and II), but that expression of these molecules is modulated by IFNgamma to a similar degree in all cell lines. In contrast, the downregulation of expression of specific MAAs between the three cell lines was unaffected by the addition of IFNgamma.

  11. Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones.

    PubMed

    Arvieux, J; Yssel, H; Colomb, M G

    1988-10-01

    The effect of complement fragments C3b and C4b, on the triggering of antigen-specific human T-cell clones by Epstein-Barr virus-transformed human lymphoblastoid B cells (LCL) when these fragments are covalently coupled to the antigen tetanus toxin (TT) is described. TT was chemically cross-linked to purified C3b [(TT-C3b)n], C4b [(TT-C4b)n] or bovine serum albumin [(TT-BSA)n] as a control. T-cell activation was quantified by tritiated thymidine incorporation and 51Cr release. (TT-C3b)n and (TT-C4b)n induced proliferative responses comparable to (TT-BSA)n but at 18-25 and 4-6 lower concentrations, respectively. This enhancing effect required the covalent cross-linking of the complement fragments to the antigen and involved intracellular processing of the latter by LCL. Antigen presentation was similarly enhanced when measuring the cytotoxic activity of a helper T-cell clone against LCL previously pulsed with (TT-C3b)n or (TT-C4b)n compared with (TT-BSA)n. Binding studies, carried out on LCL using TT radiolabelled with 125I before cross-linking, indicated that (TT-C3b)n and (TT-C4b)n gave three- to four-fold more binding than (TT-BSA)n. Addition of antibodies against CR1 and CR2 or proteolytic removal of these complement receptors with trypsin inhibited by about 60% the enhancing effect of TT-bound C3b and C4b in both binding and functional assays. These results indicate that binding of C3b or C4b to antigen enhances antigen-specific proliferative and cytotoxic responses of T cells by targeting opsonized antigen onto complement receptors CR1 and CR2 of LCL. The putative significance of these findings in terms of regulation of immune responses by complement is discussed.

  12. Artificial antigen-presenting cells expressing CD80, CD70, and 4-1BB ligand efficiently expand functional T cells specific to tumor-associated antigens.

    PubMed

    Zeng, Wanyong; Su, Mei; Anderson, Karen S; Sasada, Tetsuro

    2014-08-01

    Professional antigen-presenting cells (APCs), notably dendritic cells (DCs), are the most potent for expanding antigen-specific T cells ex vivo. However, the labor-intensive and expensive procedure for customized preparation of autologous APCs has hampered their broad clinical application. Artificial APC (aAPC) systems, which can be readily prepared from off-the-shelf components, have been proposed as a promising alternative to custom-made professional APCs. Here, in order to develop a novel aAPC system, we established K562 erythroleukemia cells expressing different combinations of co-stimulatory molecule ligands, CD80, CD70, and/or 4-1BB ligand (4-1BBL). When nucleofected with in vitro-generated mRNA encoding a tumor-associated antigen, MART-1, the K562 cells expressing all of CD80, CD70, and 4-1BBL were the most efficient for expansion of functional T cells specific to an HLA-A2-restricted immunodominant epitope, MART-126-35. In addition, only the K562 cells expressing all three of these co-stimulatory molecule ligands could clearly expand T cells specific to other less immunogenic antigen epitopes, gp100154-162 and Cyp1B1239-247, through transfection with in vitro generated gp100 and Cyp1B1 mRNA, respectively. These results indicated that non-redundant and synergistic effects of co-stimulation via CD28/CD80, CD27/CD70, and 4-1BB/4-1BBL might be critical for eliciting efficient expansion of T cells; co-stimulation via the 4-1BB/4-1BBL interaction might expand antigen-specific T cells by preventing apoptotic cell death triggered by specific antigens in the presence of the CD28/CD80 and CD27/CD70 signaling. Taken together, our findings suggested that this K562-based aAPC system expressing CD80, CD70, and 4-1BBL would be useful for efficiently stimulating functional antigen-specific T cells ex vivo, in particular when detailed information on the epitope specificities is unavailable. PMID:24713579

  13. Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones.

    PubMed

    Arvieux, J; Yssel, H; Colomb, M G

    1988-10-01

    The effect of complement fragments C3b and C4b, on the triggering of antigen-specific human T-cell clones by Epstein-Barr virus-transformed human lymphoblastoid B cells (LCL) when these fragments are covalently coupled to the antigen tetanus toxin (TT) is described. TT was chemically cross-linked to purified C3b [(TT-C3b)n], C4b [(TT-C4b)n] or bovine serum albumin [(TT-BSA)n] as a control. T-cell activation was quantified by tritiated thymidine incorporation and 51Cr release. (TT-C3b)n and (TT-C4b)n induced proliferative responses comparable to (TT-BSA)n but at 18-25 and 4-6 lower concentrations, respectively. This enhancing effect required the covalent cross-linking of the complement fragments to the antigen and involved intracellular processing of the latter by LCL. Antigen presentation was similarly enhanced when measuring the cytotoxic activity of a helper T-cell clone against LCL previously pulsed with (TT-C3b)n or (TT-C4b)n compared with (TT-BSA)n. Binding studies, carried out on LCL using TT radiolabelled with 125I before cross-linking, indicated that (TT-C3b)n and (TT-C4b)n gave three- to four-fold more binding than (TT-BSA)n. Addition of antibodies against CR1 and CR2 or proteolytic removal of these complement receptors with trypsin inhibited by about 60% the enhancing effect of TT-bound C3b and C4b in both binding and functional assays. These results indicate that binding of C3b or C4b to antigen enhances antigen-specific proliferative and cytotoxic responses of T cells by targeting opsonized antigen onto complement receptors CR1 and CR2 of LCL. The putative significance of these findings in terms of regulation of immune responses by complement is discussed. PMID:2973431

  14. Cytokines Regulate Proteolysis in Major Histocompatibility Complex Class II–Dependent Antigen Presentation by Dendritic Cells

    PubMed Central

    Fiebiger, Edda; Meraner, Paul; Weber, Ekkehard; Fang, I-Fei; Stingl, Georg; Ploegh, Hidde; Maurer, Dieter

    2001-01-01

    Endo/lysosomal proteases control two key events in antigen (Ag) presentation: the degradation of protein Ag and the generation of peptide-receptive major histocompatibility complex (MHC) class II molecules. Here we show that the proinflammatory cytokines tumor necrosis factor α and interleukin (IL)-1β rapidly increase the activity of cathepsin (cat) S and catB in human dendritic cells (DCs). As a consequence, a wave of MHC class II sodium dodecyl sulfate stable dimer formation ensues in a catS-dependent fashion. In contrast, the antiinflammatory cytokine IL-10 renders DCs incapable of upregulating catS and catB activity and in fact, attenuates the level of both enzymes. Suppressed catS and catB activity delays MHC class II sodium dodecyl sulfate stable dimer formation and impairs Ag degradation. In DCs exposed to tetanus toxoid, IL-10 accordingly reduces the number of MHC class II–peptide complexes accessible to tetanus toxoid–specific T cell receptors, as analyzed by measuring T cell receptor downregulation in Ag-specific T cell clones. Thus, the control of protease activity by pro- and antiinflammatory cytokines is an essential feature of the Ag presentation properties of DCs. PMID:11304549

  15. The first step of peptide selection in antigen presentation by MHC class I molecules

    PubMed Central

    Garstka, Malgorzata A.; Fish, Alexander; Celie, Patrick H. N.; Joosten, Robbie P.; Janssen, George M. C.; Berlin, Ilana; Hoppes, Rieuwert; Stadnik, Magda; Janssen, Lennert; Ovaa, Huib; van Veelen, Peter A.; Perrakis, Anastassis; Neefjes, Jacques

    2015-01-01

    MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2Kb considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2Kb in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2Kb–peptide complexes suggest that a conformational adaptation of H-2Kb drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire. PMID:25605945

  16. Antibody-Functionalized Peptidic Membranes for Neutralization of Allogeneic Skin Antigen-Presenting Cells

    PubMed Central

    Wen, Yi; Liu, Wen; Bagia, Christina; Zhang, Shaojuan; Bai, Mingfeng; Janjic, Jelena M.; Giannoukakis, Nick; Gawalt, Ellen S.; Meng, Wilson S.

    2014-01-01

    We report herein application of an in situ material strategy to attenuate allograft T cell responses in a skin transplant mouse model. Functionalized peptidic membranes were used to impede trafficking of donor antigen-presenting cells (dAPCs) from skin allografts in recipient mice. Membranes formed by self-assembling peptides (SAPs) presenting antibodies were found to remain underneath grafted skins for up to 6 days. At the host-graft interface, dAPCs were targeted by using a monoclonal antibody that binds to a class II MHC molecule (IAd) expressed exclusively by donor cells. Using a novel cell labeling near-infrared nanoemulsion, we found more dAPCs remained in allografts treated with membranes loaded with aI-Ad than without. In vitro, dAPCs released from skin explants were found adsorbed preferentially on aI-Ad membranes. Recipient T cells from these mice produced lower concentrations of interferon-gamma cultured ex vivo with donor cells. Taken together, the data indicate that the strategy has the potential to alter the natural course of rejection immune mechanisms in stringent allogeneic models. PMID:25117952

  17. Dietary fatty acids modulate antigen presentation to hepatic NKT cells in nonalcoholic fatty liver disease[S

    PubMed Central

    Hua, Jing; Ma, Xiong; Webb, Tonya; Potter, James J.; Oelke, Mathias; Li, Zhiping

    2010-01-01

    Dietary fatty acids are major contributors to the development and progression of insulin resistance and nonalcoholic fatty liver disease (NAFLD). Dietary fatty acids also alter hepatic NKT cells that are activated by antigens presented by CD1d. In the current study, we examine the mechanism of dietary fatty acid induced hepatic NKT cell deficiency and its causal relationship to insulin resistance and NAFLD. We discover that dietary saturated fatty acids (SFA) or monounsaturated fatty acids (MUFA), but not polyunsaturated fatty acids (PUFA), cause hepatic NKT cell depletion with increased apoptosis. Dietary SFA or MUFA also impair hepatocyte presentation of endogenous, but not exogenous, antigen to NKT cells, indicating alterations of the endogenous antigen processing or presenting pathway. In vitro treatment of normal hepatocytes with fatty acids also demonstrates impaired ability of CD1d to present endogenous antigen by dietary fatty acids. Furthermore, dietary SFA and MUFA activate the NFκB signaling pathway and lead to insulin resistance and hepatic steatosis. In conclusion, both dietary SFA and MUFA alter endogenous antigen presentation to hepatic NKT cells and contribute to NKT cell depletion, leading to further activation of inflammatory signaling, insulin resistance, and hepatic steatosis. PMID:20185414

  18. The receptor for interleukin-17E is induced by Th2 cytokines in antigen-presenting cells.

    PubMed

    Gratchev, A; Kzhyshkowska, J; Duperrier, K; Utikal, J; Velten, F W; Goerdt, S

    2004-09-01

    Interleukin-17E (IL-17E) (IL-25) is a recently identified cytokine capable to induce Th2-associated cytokine production (IL-5 and IL-13) and T helper 2 (Th2)-type pathologies in animal models. The IL-17E-responsive cell population in vivo was described to be a further uncharacterized non-T-, non-B-splenic accessory cell. Despite the identification of IL-17BR as the receptor for IL-17E, the cell population expressing IL-17BR has hitherto not been identified. Here, we show that human monocyte-derived Th2-skewed antigen-presenting cells (APC2) express membrane-bound and soluble forms of IL-17BR on the mRNA and protein level upon stimulation with IL-4, IL-10, IL-13 or transforming growth factor-betain vitro. These results indicate that IL-17BR-expressing APC2s may mediate the development of the IL-17E-mediated immunological reaction patterns observed in vivo. PMID:15320879

  19. Impact of surface chemistry and topography on the function of antigen presenting cells.

    PubMed

    Rostam, H M; Singh, S; Vrana, N E; Alexander, M R; Ghaemmaghami, A M

    2015-03-01

    Antigen presenting cells (APCs) such as macrophages and dendritic cells (DCs) play a crucial role in orchestrating immune responses against foreign materials. The activation status of APCs can determine the outcome of an immune response following implantation of synthetic materials, towards either healing or inflammation. A large range of biomaterials are used in the fabrication of implantable devices and drug delivery systems. These materials will be in close contact with APCs and characteristics such as surface chemistry and topography may have a critical role in initiating pro- or anti-inflammatory immune responses. Controlling biomaterial surface attributes provides a powerful tool for modulating the phenotype and function of immune cells with the aim of reducing detrimental pro-inflammatory responses and promoting beneficial healing responses. In this article, we review recent literature on how biomaterial surface topography and chemistry can modulate APC populations towards distinct pro- or anti-inflammatory phenotypes with specific examples of how these properties can be used to control host response in vivo. Topographical and/or chemical design of biomaterial surfaces with respect to the APC responses can pave the way for a new generation of 'cell instructive' materials with immunomodulatory properties with a wide range of clinical applications.

  20. Selective Susceptibility of Human Skin Antigen Presenting Cells to Productive Dengue Virus Infection

    PubMed Central

    Cerny, Daniela; Haniffa, Muzlifah; Shin, Amanda; Bigliardi, Paul; Tan, Bien Keem; Lee, Bernett; Poidinger, Michael; Tan, Ern Yu; Ginhoux, Florent; Fink, Katja

    2014-01-01

    Dengue is a growing global concern with 390 million people infected each year. Dengue virus (DENV) is transmitted by mosquitoes, thus host cells in the skin are the first point of contact with the virus. Human skin contains several populations of antigen-presenting cells which could drive the immune response to DENV in vivo: epidermal Langerhans cells (LCs), three populations of dermal dendritic cells (DCs), and macrophages. Using samples of normal human skin we detected productive infection of CD14+ and CD1c+ DCs, LCs and dermal macrophages, which was independent of DC-SIGN expression. LCs produced the highest viral titers and were less sensitive to IFN-β. Nanostring gene expression data showed significant up-regulation of IFN-β, STAT-1 and CCL5 upon viral exposure in susceptible DC populations. In mice infected intra-dermally with DENV we detected parallel populations of infected DCs originating from the dermis and migrating to the skin-draining lymph nodes. Therefore dermal DCs may simultaneously facilitate systemic spread of DENV and initiate the adaptive anti-viral immune response. PMID:25474532

  1. Linking form to function: Biophysical aspects of artificial antigen presenting cell design.

    PubMed

    Perica, Karlo; Kosmides, Alyssa K; Schneck, Jonathan P

    2015-04-01

    Artificial antigen presenting cells (aAPCs) are engineered platforms for T cell activation and expansion, synthesized by coupling T cell activating proteins to the surface of cell lines or biocompatible particles. They can serve both as model systems to study the basic aspects of T cell signaling and translationally as novel approaches for either active or adoptive immunotherapy. Historically, these reductionist systems have not been designed to mimic the temporally and spatially complex interactions observed during endogenous T cell-APC contact, which include receptor organization at both micro- and nanoscales and dynamic changes in cell and membrane morphologies. Here, we review how particle size and shape, as well as heterogenous distribution of T cell activating proteins on the particle surface, are critical aspects of aAPC design. In doing so, we demonstrate how insights derived from endogenous T cell activation can be applied to optimize aAPC, and in turn how aAPC platforms can be used to better understand endogenous T cell stimulation. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. PMID:25200637

  2. Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules.

    PubMed

    Suhoski, Megan M; Golovina, Tatiana N; Aqui, Nicole A; Tai, Victoria C; Varela-Rohena, Angel; Milone, Michael C; Carroll, Richard G; Riley, James L; June, Carl H

    2007-05-01

    To facilitate the therapeutic application of antigen-presenting cells (APCs), we have developed a cell-based artificial APC (aAPC) system by engineering K562 cells with lentiviruses to direct the stable expression and secretion of a variety of co-stimulatory molecules and cytokines. Here we report the use of a combinatorial lentiviral gene transfer approach to achieve long-term stable expression of at least seven genes in the K562 parental cell line. Expression of various combinations of genes on the aAPC enables the precise determination of human T-cell activation requirements, such that aAPCs can be tailored for the optimal propagation of T-cell subsets with specific growth requirements and distinct functions. The aAPCs support ex vivo growth and long-term expansion of functional human CD8 T cells without requiring the addition of exogenous cytokines, in contrast to the use of natural APCs. Distinct populations of T cells can be expanded with aAPCs expressing CD137L (4-1BBL) and/or CD80. Finally, the aAPCs provide an efficient platform to expand genetically modified T cells and to maintain CD28 expression on CD8 T cells. Therefore, K562-based aAPCs have therapeutic potential for adoptive immunotherapies and vaccinations. PMID:17375070

  3. A novel approach for reliable detection of cathepsin S activities in mouse antigen presenting cells.

    PubMed

    Steimle, Alex; Kalbacher, Hubert; Maurer, Andreas; Beifuss, Brigitte; Bender, Annika; Schäfer, Andrea; Müller, Ricarda; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2016-05-01

    Cathepsin S (CTSS) is a eukaryotic protease mostly expressed in professional antigen presenting cells (APCs). Since CTSS activity regulation plays a role in the pathogenesis of various autoimmune diseases like multiple sclerosis, atherosclerosis, Sjögren's syndrome and psoriasis as well as in cancer progression, there is an ongoing interest in the reliable detection of cathepsin S activity. Various applications have been invented for specific detection of this enzyme. However, most of them have only been shown to be suitable for human samples, do not deliver quantitative results or the experimental procedure requires technical equipment that is not commonly available in a standard laboratory. We have tested a fluorogen substrate, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2, that has been described to specifically detect CTSS activities in human APCs for its potential use for mouse samples. We have modified the protocol and thereby offer a cheap, easy, reproducible and quick activity assay to detect CTSS activities in mouse APCs. Since most of basic research on CTSS is performed in mice, this method closes a gap and offers a possibility for reliable and quantitative CTSS activity detection that can be performed in almost every laboratory. PMID:26899824

  4. Dendritic cells cross-present HIV antigens from live as well as apoptotic infected CD4+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Marañón, Concepción; Desoutter, Jean-François; Hoeffel, Guillaume; Cohen, William; Hanau, Daniel; Hosmalin, Anne

    2004-04-01

    A better understanding of the antigen presentation pathways that lead to CD8+ T cell recognition of HIV epitopes in vivo is needed to achieve better immune control of HIV replication. Here, we show that cross-presentation of very small amounts of HIV proteins from apoptotic infected CD4+ T lymphocytes by dendritic cells to CD8+ T cells is much more efficient than other known HIV presentation pathways, i.e., direct presentation of infectious virus or cross-presentation of defective virus. Unexpectedly, dendritic cells also take up actively antigens into endosomes from live infected CD4+ T lymphocytes and cross-present them as efficiently as antigens derived from apoptotic infected cells. Moreover, live infected CD4+ T cells costimulate cross-presenting dendritic cells in the process. Therefore, dendritic cells can present very small amounts of viral proteins from infected T cells either after apoptosis, which is frequent during HIV infection, or not. Thus, if HIV expression is transiently induced while costimulation is enhanced (for instance after IL-2 and IFN immune therapy), this HIV antigen presentation pathway could be exploited to eradicate latently infected reservoirs, which are poorly recognized by patients' immune systems.

  5. Effects of messenger RNA structure and other translational control mechanisms on major histocompatibility complex-I mediated antigen presentation

    PubMed Central

    Murat, Pierre; Tellam, Judy

    2015-01-01

    Effective T-cell surveillance of antigen-presenting cells is dependent on the expression of an array of antigenic peptides bound to major histocompatibility complex (MHC) class I (MHC-I) or class II (MHC-II) molecules. Pathogens co-evolving with their hosts exploit crucial translational regulatory mechanisms in order to evade host immune recognition and thereby sustain their infection. Evasion strategies that downregulate viral protein synthesis and thereby restrict antigen presentation to cytotoxic T-cells through the endogenous MHC-I pathway have been implicated in the pathogenesis of viral-associated malignancies. An understanding of the mechanisms by which messenger RNA (mRNA) structure modulates both viral mRNA translation and the antigen processing machinery to escape immune surveillance, will stimulate the development of alternative therapeutic strategies focused on RNA-directed drugs designed to enhance immune responses against infected cells. In this review, we discuss regulatory aspects of the MHC-I pathway and summarize current knowledge of the role attributed by mRNA structure and other translational regulatory mechanisms in immune evasion. In particular we highlight the impact of recently identified G-quadruplex structures within virally encoded transcripts as unique regulatory signals for translational control and antigen presentation. WIREs RNA 2015, 6:157–171. doi: 10.1002/wrna.1262 PMID:25264139

  6. A Toll-like receptor 2 agonist-fused antigen enhanced antitumor immunity by increasing antigen presentation and the CD8 memory T cells population

    PubMed Central

    Wu, Chiao-Chieh; Liu, Shih-Jen; Chen, Hsin-Wei; Shen, Kuan-Yin; Leng, Chih-Hsiang

    2016-01-01

    The induction of long-lived effector CD8+ T cells is key to the development of efficient cancer vaccines. In this study, we demonstrated that a Toll-like receptor 2 (TLR2) agonist-fused antigen increased antigen presentation via TLR2 signaling and induced effector memory-like CD8+ T cells against cancer after immunization. The N-terminus of ovalbumin (OVA) was biologically fused with a bacterial lipid moiety TLR2 agonist to produce a recombinant lipidated ovalbumin (rlipo-OVA). We demonstrated that rlipo-OVA activated bone marrow-derived dendritic cells (BM-DCs) maturation and increased antigen presentation by major histocompatibility complex (MHC) class I via TLR2. After immunization, rlipo-OVA skewed the immune response towards T helper (Th) 1 and induced OVA-specific cytotoxic T lymphocyte (CTL) responses. Moreover, immunization with rlipo-OVA induced higher numbers of effector memory (CD44+CD62L−) CD8+ T cells compared with recombinant ovalbumin (rOVA) alone or rOVA mixed with the TLR2 agonist Pam3CSK4. Accordingly, the CD27+CD43+ effector memory CD8+ T cells expressed high levels of the long-lived CD127 marker. The administration of rlipo-OVA could inhibit tumor growth, but the anti-tumor effects were lost after the depletion of CD8 or CD127 cells in vivo. These findings suggested that the TLR2 agonist-fused antigen induced long-lived memory CD8+ T cells for efficient cancer therapy. PMID:27127171

  7. Efficient presentation of naturally processed HLA class I peptides by artificial antigen-presenting cells for the generation of effective antitumor responses.

    PubMed

    Hirano, Naoto; Butler, Marcus O; Xia, Zhinan; Berezovskaya, Alla; Murray, Andrew P; Ansén, Sascha; Nadler, Lee M

    2006-05-15

    Appropriate presentation of tumor-associated antigens (TAA) by antigen-presenting cells (APC) is required for the development of clinically relevant antitumor T-cell responses. One common approach, which uses APC pulsed with synthetic peptides, can sometimes generate ineffective immune responses. This failure may, in part, be attributed to the formation of HLA/synthetic pulsed peptide complexes that possess different conformations compared with those of endogenously presented peptides. In addition, endogenous peptides may undergo post-translational modifications, which do not occur with synthetic peptides. Because our goal is to induce immunity that can recognize TAA that are endogenously presented by tumors, we designed an APC that would not only express the required immunoaccessory molecules but also naturally process and present target antigenic peptides. In this study, we generated an artificial APC (aAPC) that can endogenously present any chosen HLA-A*0201 (A2)-restricted peptide by processing a fusion protein that contains a unique "LTK" sequence linked to the antigenic peptide. Proteasome-dependent processing is so effective that the presented peptide can be directly eluted from the cell surface and identified by biochemical methods. Furthermore, we found that aAPC, engineered to endogenously present peptide derived from the melanoma antigen MART1, can be used to prime and expand antitumor CTL that target MART1-expressing tumor cells in a HLA-A2-restricted manner. Our engineered aAPC could serve as an "off-the-shelf" APC designed to constitutively express class I-restricted TAA peptides and could be used to generate effective T-cell responses to treat human disease. PMID:16707591

  8. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells.

    PubMed

    Riquelme, Sebastián A; Pogu, Julien; Anegon, Ignacio; Bueno, Susan M; Kalergis, Alexis M

    2015-12-01

    Heme-oxygenase 1 (HO-1) prevents T cell-mediated inflammatory disease by producing carbon monoxide (CO) and impairing DC immunogenicity. However, the cellular mechanisms causing this inhibition are unknown. Here, we show that CO impairs mitochondrial function in DCs by reducing both the mitochondrial membrane potential and ATP production, and resembling the effect of a nonlethal dose of a classical mitochondria uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Moreover, both CO and CCCP reduced cargo transport, endosome-to-lysosome fusion, and antigen processing, dampening the production of peptide-MHC complexes on the surface of DCs. As a result, the inhibition of naive CD4(+) T-cell priming was observed. Furthermore, mitochondrial dysfunction in DCs also significantly reduced CD8(+) T cell-dependent type 1 diabetes onset in vivo. These results showed for the first time that CO interferes with T-cell priming by blocking an unknown mitochondria-dependent antigen-processing pathway in mature DC. Interestingly, other immune functions in DCs such as antigen capture, cytokine secretion, costimulation, and cell survival relied on glycolysis, suggesting that oxidative phosphorylation might only play a key role for the maturation of antigen-containing endosomes. In conclusion, CO produced by HO-1 impairs antigen-dependent inflammation by regulating DC immunogenicity by a mitochondria-dependent mechanism. PMID:26461179

  9. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells.

    PubMed

    Riquelme, Sebastián A; Pogu, Julien; Anegon, Ignacio; Bueno, Susan M; Kalergis, Alexis M

    2015-12-01

    Heme-oxygenase 1 (HO-1) prevents T cell-mediated inflammatory disease by producing carbon monoxide (CO) and impairing DC immunogenicity. However, the cellular mechanisms causing this inhibition are unknown. Here, we show that CO impairs mitochondrial function in DCs by reducing both the mitochondrial membrane potential and ATP production, and resembling the effect of a nonlethal dose of a classical mitochondria uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Moreover, both CO and CCCP reduced cargo transport, endosome-to-lysosome fusion, and antigen processing, dampening the production of peptide-MHC complexes on the surface of DCs. As a result, the inhibition of naive CD4(+) T-cell priming was observed. Furthermore, mitochondrial dysfunction in DCs also significantly reduced CD8(+) T cell-dependent type 1 diabetes onset in vivo. These results showed for the first time that CO interferes with T-cell priming by blocking an unknown mitochondria-dependent antigen-processing pathway in mature DC. Interestingly, other immune functions in DCs such as antigen capture, cytokine secretion, costimulation, and cell survival relied on glycolysis, suggesting that oxidative phosphorylation might only play a key role for the maturation of antigen-containing endosomes. In conclusion, CO produced by HO-1 impairs antigen-dependent inflammation by regulating DC immunogenicity by a mitochondria-dependent mechanism.

  10. Activation requirements of circulating antigen-specific human CD8(+) memory T cells probed with insect cell-based artificial antigen-presenting cells.

    PubMed

    Guelly, Christian; Küpcü, Zaruhi; Zalusky, Doris; Karner, Margarete; Zehetner, Margit; Schweighoffer, Tamás

    2002-01-01

    We sought to define the molecular setup of an antigen-presenting cell that elicits antigen-specific T cell responses in vitro using insect cells that were infected with recombinant baculoviruses. Expression of single-chain HLA was complemented step-by-step with costimulatory molecules, including CD54 and CD80, by co-infection with the relevant viruses. Role of CD8 was assessed by introducing hybrid class I molecules where the alpha-3 domain of the HLA heavy chain molecule was replaced by its murine K(b) counterpart. Circulating T cells that respond to the EBV-derived HLA-A2-restricted peptide GLGCTLVAML were previously shown to bear hallmarks of memory cells. We found that the HLA+peptide complex alone displayed on the surface of insect cells was sufficient to elicit IFN-gamma secretion from these freshly isolated CD8(+) T cells in ELISpot assays. Binding of CD8 was absolutely required, but coexpression of costimulatory molecules resulted only in minimal increase in the number of spots. Tumor antigen-specific CTL clones also reacted in a strictly antigen-specific manner, but required CD54 for quantitative responses. The amount of IFN-gamma produced by the individual reactive T cells was evaluated as spot size, and was also influenced by the costimulatory molecules: CD54 increased also the response magnitude of cultured CTL lines, while CD80 enhanced cytokine release from freshly isolated CD8(+) T cells. Understanding the stimulatory requirements of functionally competent effector/memory T cells and their exact enumeration will be helpful for increasing the efficacy of vaccines.

  11. Activation requirements of circulating antigen-specific human CD8(+) memory T cells probed with insect cell-based artificial antigen-presenting cells.

    PubMed

    Guelly, Christian; Küpcü, Zaruhi; Zalusky, Doris; Karner, Margarete; Zehetner, Margit; Schweighoffer, Tamás

    2002-01-01

    We sought to define the molecular setup of an antigen-presenting cell that elicits antigen-specific T cell responses in vitro using insect cells that were infected with recombinant baculoviruses. Expression of single-chain HLA was complemented step-by-step with costimulatory molecules, including CD54 and CD80, by co-infection with the relevant viruses. Role of CD8 was assessed by introducing hybrid class I molecules where the alpha-3 domain of the HLA heavy chain molecule was replaced by its murine K(b) counterpart. Circulating T cells that respond to the EBV-derived HLA-A2-restricted peptide GLGCTLVAML were previously shown to bear hallmarks of memory cells. We found that the HLA+peptide complex alone displayed on the surface of insect cells was sufficient to elicit IFN-gamma secretion from these freshly isolated CD8(+) T cells in ELISpot assays. Binding of CD8 was absolutely required, but coexpression of costimulatory molecules resulted only in minimal increase in the number of spots. Tumor antigen-specific CTL clones also reacted in a strictly antigen-specific manner, but required CD54 for quantitative responses. The amount of IFN-gamma produced by the individual reactive T cells was evaluated as spot size, and was also influenced by the costimulatory molecules: CD54 increased also the response magnitude of cultured CTL lines, while CD80 enhanced cytokine release from freshly isolated CD8(+) T cells. Understanding the stimulatory requirements of functionally competent effector/memory T cells and their exact enumeration will be helpful for increasing the efficacy of vaccines. PMID:11754359

  12. Induction of the Epstein-Barr virus latent membrane protein 2 antigen-specific cytotoxic T lymphocytes using human leukocyte antigen tetramer-based artificial antigen-presenting cells.

    PubMed

    Lu, Xiao-Ling; Liang, Zhi-Hui; Zhang, Cai-E; Lu, Sheng-Jun; Weng, Xiu-Fang; Wu, Xiong-Wen

    2006-03-01

    Cytotoxic T lymphocytes (CTLs) specific for the Epstein-Barr virus (EBV) latent membrane protein 2 (LMP2) antigen are important reagents for the treatment of some EBV-associated malignancies, such as EBV-positive Hodgkin's disease and nasopharyngeal carcinoma. However, the therapeutic amount of CTLs is often hampered by the limited supply of antigen-presenting cells. To address this issue, an artificial antigen-presenting cell (aAPC) was made by coating a human leukocyte antigen (HLA)-pLMP2 tetrameric complex, anti-CD28 antibody and CD54 molecule to a cell-sized latex bead, which provided the dual signals required for T cell activation. By co-culture of the HLA-A2-LMP2 bearing aAPC and peripheral blood mononuclear cells from HLA-A2 positive healthy donors, LMP2 antigen-specific CTLs were induced and expanded in vitro. The specificity of the aAPC-induced CTLs was demonstrated by both HLA-A2-LMP2 tetramer staining and cytotoxicity against HLA-A2-LMP2 bearing T2 cell, the cytotoxicity was inhibited by the anti-HLA class I antibody (W6/32). These results showed that LMP2 antigen-specific CTLs could be induced and expanded in vitro by the HLA-A2-LMP2-bearing aAPC. Thus, aAPCs coated with an HLA-pLMP2 complex, anti-CD28 and CD54 might be promising tools for the enrichment of LMP2-specific CTLs for adoptive immunotherapy. PMID:16518539

  13. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  14. "Danger" conditions increase sulfamethoxazole-protein adduct formation in human antigen-presenting cells.

    PubMed

    Lavergne, S N; Wang, H; Callan, H E; Park, B K; Naisbitt, D J

    2009-11-01

    Antigen-presenting cells (APC) are thought to play an important role in the pathogenesis of drug-induced immune reactions. Various pathological factors can activate APC and therefore influence the immune equilibrium. It is interesting that several diseases have been associated with an increased rate of drug allergy. The aim of this project was to evaluate the impact of such "danger signals" on sulfamethoxazole (SMX) metabolism in human APC (peripheral blood mononuclear cells, Epstein-Barr virus-modified B lymphocytes, monocyte-derived dendritic cells, and two cell lines). APC were incubated with SMX (100 microM-2 mM; 5 min-24 h), in the presence of pathological factors: bacterial endotoxins (lipopolysaccharide and staphylococcal enterotoxin B), flu viral proteins, cytokines [interleukin (IL)-1beta, IL-6, IL-10; tumor necrosis factor-alpha; interferon-gamma; and transforming growth factor-beta], inflammatory molecules (prostaglandin E2, human serum complement, and activated protein C), oxidants (buthionine sulfoximine and H(2)O(2)), and hyperthermia (37.5-39.5 degrees C). Adduct formation was evaluated by enzyme-linked immunosorbent assay and confocal microscopy. SMX-protein adduct formation was time- and concentration-dependent for each cell type tested, in both physiological and danger conditions. A danger environment significantly increased the formation of SMX-protein adducts and significantly shortened the delay for their detection. An additive effect was observed with a combination of danger signals. Dimedone (chemical selectively binding cysteine sulfenic acid) and antioxidants decreased both baseline and danger-enhanced SMX-adduct formation. Various enzyme inhibitors were associated with a significant decrease in SMX-adduct levels, with a pattern varying depending on the cell type and the culture conditions. These results illustrate that danger signals enhance the formation of intracellular SMX-protein adducts in human APC. These findings might be relevant

  15. Candida albicans Is Phagocytosed, Killed, and Processed for Antigen Presentation by Human Dendritic Cells

    PubMed Central

    Newman, Simon L.; Holly, Angela

    2001-01-01

    Candida albicans is a component of the normal flora of the alimentary tract and also is found on the mucocutaneous membranes of the healthy host. Candida is the leading cause of invasive fungal disease in premature infants, diabetics, and surgical patients, and of oropharyngeal disease in AIDS patients. As the induction of cell-mediated immunity to Candida is of critical importance in host defense, we sought to determine whether human dendritic cells (DC) could phagocytose and degrade Candida and subsequently present Candida antigens to T cells. Immature DC obtained by culture of human monocytes in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 phagocytosed unopsonized Candida in a time-dependent manner, and phagocytosis was not enhanced by opsonization of Candida in serum. Like macrophages (Mφ), DC recognized Candida by the mannose-fucose receptor. Upon ingestion, DC killed Candida as efficiently as human Mφ, and fungicidal activity was not enhanced by the presence of fresh serum. Although phagocytosis of Candida by DC stimulated the production of superoxide anion, inhibitors of the respiratory burst (or NO production) did not inhibit killing of Candida, even when phagocytosis was blocked by preincubation of DC with cytochalasin D. Further, although apparently only modest phagolysosomal fusion occurred upon DC phagocytosis of Candida, killing of Candida under anaerobic conditions was almost equivalent to killing under aerobic conditions. Finally, DC stimulated Candida-specific lymphocyte proliferation in a concentration-dependent manner after phagocytosis of both viable and heat-killed Candida cells. These data suggest that, in vivo, such interactions between DC and C. albicans may facilitate the induction of cell-mediated immunity. PMID:11598054

  16. Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers.

    PubMed

    Frenz, Theresa; Grabski, Elena; Durán, Verónica; Hozsa, Constantin; Stępczyńska, Anna; Furch, Marcus; Gieseler, Robert K; Kalinke, Ulrich

    2015-09-01

    Targeted drug delivery systems hold promise for selective provision of active compounds to distinct tissues or cell subsets. Thus, locally enhanced drug concentrations are obtained that would confer improved efficacy. As a consequence adverse effects should be diminished, as innocent bystander cells are less affected. Currently, several controlled drug delivery systems based on diverse materials are being developed. Some systems exhibit material-associated toxic effects and/or show low drug loading capacity. In contrast, liposomal nanocarriers are particularly favorable because they are well tolerated, poorly immunogenic, can be produced in defined sizes, and offer a reasonable payload capacity. Compared with other immune cells, professional antigen-presenting cells (APCs) demonstrate enhanced liposome uptake mediated by macropinocytosis, phagocytosis and presumably also by clathrin- and caveolae-mediated endocytosis. In order to further enhance the targeting efficacy toward APCs, receptor-mediated uptake appears advisable. Since APC subsets generally do not express single linage-specific receptors, members of the C-type lectin receptor (CLR) family are compelling targets. Examples of CLR expressed by APCs include DEC-205 (CD205) expressed by myeloid dendritic cells (DC) and monocytes, the mannose receptor C type 1 (MR, CD206) expressed by DC, monocytes and macrophages, DC-SIGN (CD209) expressed by DC, and several others. These receptors bind glycans, which are typically displayed by pathogens and thus support pathogen uptake and endocytosis. Further research will elucidate whether glycan-decorated liposomes will not only enhance APCs targeting but also enable preferential delivery of their payload to discrete subcellular compartments. PMID:25701806

  17. Association of Polymorphisms in HLA Antigen Presentation-Related Genes with the Outcomes of HCV Infection

    PubMed Central

    Lu, Xiaomei; Xu, Yin; Wang, Jie; Zhang, Yun; Yu, Rongbin; Su, Jing

    2015-01-01

    Antigen-presentation genes play a vital role in the pathogenesis of HCV infection. However, the relationship of variants of these genes with spontaneous outcomes of HCV infection has not been fully investigated. To explore novel loci in the Chinese population, 34 tagging-SNPs in 9 candidate genes were genotyped for their associations with the outcomes of HCV infection. The distributions of different genotypes and haplotypes were compared among 773 HCV-negative controls, 246 subjects with HCV natural clearance, and 218 HCV persistent carriers recruited from hemodialysis patients and intravenous drug users. Our study implicated that TAP2, HLA-DOA, HLA-DOB, and tapasin loci were novel candidate regions for susceptibility to HCV infection and viral clearance in the Chinese population. Logistic regression analyses showed that TAP2 rs1800454 A (OR = 1.48, P = 0.002) and HLA-DOB rs2071469 G (OR = 1.23, P = 0.048) were significantly associated with increased susceptibility to establishment of HCV infection. However, high-risk behavior exposure and age were stronger predictors of HCV infection. Mutation of tapasin rs9277972 T (OR = 1.57, P =0.043) increased the risk of HCV chronicity, and HLA-DOA rs3128935 C (OR = 0.62, P = 0.019) increased the chance of viral resolution. With regards to the effect of rs3128925, interactions were found with high-risk behavior (P = 0.013) and age (P = 0.035). The risk effect of rs3128925 T for persistent HCV infection was higher in injecting drug users (vs. dialysis patients) and in subjects ≥ 40 years old (vs. < 40 years old). PMID:25874709

  18. The handling of Listeria monocytogenes by macrophages: the search for an immunogenic molecule in antigen presentation.

    PubMed

    Allen, P M; Beller, D I; Braun, J; Unanue, E R

    1984-01-01

    The activation of T lymphocytes for immunity to the intracellular pathogen Listeria monocytogenes requires that Ia-positive macrophages ingest the bacteria. The subsequent handling of Listeria by macrophages was examined in this report and related to antigen presentation to T cells. Macrophages pulsed with radiolabeled Listeria, besides releasing acid-soluble radioactivity--an indication of extensive catabolism of the Listeria-derived proteins--were also found to release acid-insoluble peptides. The rate of release of the peptides was not markedly affected by treatment with chloroquine, ammonia, or monensin and was independent of the state of activation and the level of Ia expression of the macrophage. The peptides were not associated with fragments of membranes and were represented by several molecular species. Listeria-derived peptides were also found associated with the macrophage plasma membrane. The membrane-associated peptides behaved like integral membrane proteins and could be released by proteases or detergents. Their expression was independent of the dose of Listeria and the level of Ia expression of the macrophage, and their presence could not be inhibited by protease inhibitors or chloroquine. The Listeria peptides released by the macrophages were very weakly immunogenic in a T cell proliferation assay. Purified plasma membranes from Listeria-pulsed macrophages, which contained membrane-associated Listeria peptides, were not immunogenic by themselves but could be reprocessed by additional macrophages to subsequently stimulate T cells. Trypsin treatment of Listeria-pulsed macrophages did not cause a significant reduction in their ability to stimulate T cells. No association was found between Ia molecules and either the membrane-associated or the released peptides with the use of several technical approaches. Hence, after internalization of Listeria, potentially immunogenic material can be found at the cell surface as well as in the culture fluid. The

  19. The tumor antigen N-glycolyl-GM3 is a human CD1d ligand capable of mediating B cell and natural killer T cell interaction.

    PubMed

    Gentilini, M Virginia; Pérez, M Eugenia; Fernández, Pablo Mariano; Fainboim, Leonardo; Arana, Eloísa

    2016-05-01

    The expression of N-glycolyl-monosialodihexosyl-ganglioside (NGcGM3) in humans is restricted to cancer cells; therefore, it is a tumor antigen. There are measurable quantities of circulating anti-NGcGM3 antibodies (aNGcGM3 Abs) in human serum. Interestingly, some people have circulating Ag-specific immunoglobulins G (IgGs) that are capable of complement mediated cytotoxicity against NGcGM3 positive cells, which is relevant for tumor surveillance. In light of the chemical nature of Ag, we postulated it as a candidate ligand for CD1d. Furthermore, we hypothesize that the immune mechanism involved in the generation of these Abs entails cross talk between B lymphocytes (Bc) and invariant natural killer T cells (iNKT). Combining cellular techniques, such as flow cytometry and biochemical assays, we demonstrated that CD1d binds to NGcGM3 and that human Bc present NGcGM3 in a CD1d context according to two alternative strategies. We also showed that paraformaldehyde treatment of cells expressing CD1d affects the presentation. Finally, by co-culturing primary human Bc with iNKT and measuring Ki-67 expression, we detected a reproducible increment in the proliferation of the iNKT population when Ag was on the medium. Our findings identify a novel, endogenous, human CD1d ligand, which is sufficiently competent to stimulate iNKT. We postulate that CD1d-restricted Bc presentation of NGcGM3 drives effective iNKT activation, an immunological mechanism that has not been previously described for humans, which may contribute to understanding aNGcGM3 occurrence.

  20. The tumor antigen N-glycolyl-GM3 is a human CD1d ligand capable of mediating B cell and natural killer T cell interaction.

    PubMed

    Gentilini, M Virginia; Pérez, M Eugenia; Fernández, Pablo Mariano; Fainboim, Leonardo; Arana, Eloísa

    2016-05-01

    The expression of N-glycolyl-monosialodihexosyl-ganglioside (NGcGM3) in humans is restricted to cancer cells; therefore, it is a tumor antigen. There are measurable quantities of circulating anti-NGcGM3 antibodies (aNGcGM3 Abs) in human serum. Interestingly, some people have circulating Ag-specific immunoglobulins G (IgGs) that are capable of complement mediated cytotoxicity against NGcGM3 positive cells, which is relevant for tumor surveillance. In light of the chemical nature of Ag, we postulated it as a candidate ligand for CD1d. Furthermore, we hypothesize that the immune mechanism involved in the generation of these Abs entails cross talk between B lymphocytes (Bc) and invariant natural killer T cells (iNKT). Combining cellular techniques, such as flow cytometry and biochemical assays, we demonstrated that CD1d binds to NGcGM3 and that human Bc present NGcGM3 in a CD1d context according to two alternative strategies. We also showed that paraformaldehyde treatment of cells expressing CD1d affects the presentation. Finally, by co-culturing primary human Bc with iNKT and measuring Ki-67 expression, we detected a reproducible increment in the proliferation of the iNKT population when Ag was on the medium. Our findings identify a novel, endogenous, human CD1d ligand, which is sufficiently competent to stimulate iNKT. We postulate that CD1d-restricted Bc presentation of NGcGM3 drives effective iNKT activation, an immunological mechanism that has not been previously described for humans, which may contribute to understanding aNGcGM3 occurrence. PMID:26969612

  1. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    SciTech Connect

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  2. Schizosaccharomyces pombe: a novel transport vehicle of functional DNA and mRNA into mammalian antigen-presenting cells.

    PubMed

    Walch-Rückheim, Barbara; Schmitt, Manfred J; Breinig, Frank

    2014-10-21

    Vaccine vehicles based on recombinant yeasts have become promising candidates for the induction of cellular immune responses. In this study, we investigated the capacity of the fission yeast Sz. pombe for the delivery of functional nucleic acids into murine and human antigen-presenting cells. We demonstrate that Sz. pombe cells effectively induce maturation of human dendritic cells (DC), an important prerequisite for T-cell activation. Further, recombinant fission yeast efficiently delivers functional DNA and mRNA into murine macrophages and human DC resulting in the expression of the model antigen eGFP in these cells. Thus, Sz. pombe suggests itself as a promising candidate for a novel live vaccine.

  3. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis.

    PubMed

    Rosenthal, Kenneth S; Mikecz, Katalin; Steiner, Harold L; Glant, Tibor T; Finnegan, Alison; Carambula, Roy E; Zimmerman, Daniel H

    2015-06-01

    The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions.

  4. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis

    PubMed Central

    Rosenthal, Kenneth S.; Mikecz, Katalin; Steiner, Harold L.; Glant, Tibor T.; Finnegan, Alison; Carambula, Roy E.; Zimmerman, Daniel H.

    2016-01-01

    The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions. PMID:25787143

  5. Osteosarcoma is characterised by reduced expression of markers of osteoclastogenesis and antigen presentation compared with normal bone

    PubMed Central

    Endo-Munoz, L; Cumming, A; Sommerville, S; Dickinson, I; Saunders, N A

    2010-01-01

    Background: Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents. Patients who respond poorly to chemotherapy have a higher risk of metastatic disease and 5-year survival rates of only 10–20%. Therefore, identifying molecular targets that are specific for OS, or more specifically, metastatic OS, will be critical to the development of new treatment strategies to improve patient outcomes. Methods: We performed a transcriptomic analysis of chemo-naive OS biopsies and non-malignant bone biopsies to identify differentially expressed genes specific to OS, which could provide insight into OS biology and chemoresistance. Results: Statistical analysis of the OS transcriptomes found differential expression of several metallothionein family members, as well as deregulation of genes involved in antigen presentation. Tumours also exhibited significantly increased expression of ID1 and profound down-regulation of S100A8, highlighting their potential as therapeutic targets for OS. Finally, we found a significant correlation between OS and impaired osteoclastogenesis and antigen-presenting activity. The reduced osteoclastogenesis and antigen-presenting activity were more profound in the chemoresistant OS samples. Conclusion: Our results indicate that OS displays gene signatures consistent with decreased antigen-presenting activity, enhanced chemoresistance, and impaired osteoclastogenesis. Moreover, these alterations are more pronounced in chemoresistant OS tumour samples. PMID:20551950

  6. The effect of CpG-ODN on antigen presenting cells of the foal

    PubMed Central

    Flaminio, M Julia BF; Borges, Alexandre S; Nydam, Daryl V; Horohov, David W; Hecker, Rolf; Matychak, Mary Beth

    2007-01-01

    Background Cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN) has been used successfully to induce immune responses against viral and intracellular organisms in mammals. The main objective of this study was to test the effect of CpG-ODN on antigen presenting cells of young foals. Methods Peripheral blood monocytes of foals (n = 7) were isolated in the first day of life and monthly thereafter up to 3 months of life. Adult horse (n = 7) monocytes were isolated and tested once for comparison. Isolated monocytes were stimulated with IL-4 and GM-CSF (to obtain dendritic cells, DC) or not stimulated (to obtain macrophages). Macrophages and DCs were stimulated for 14–16 hours with either CpG-ODN, LPS or not stimulated. The stimulated and non-stimulated cells were tested for cell surface markers (CD86 and MHC class II) using flow cytometry, mRNA expression of cytokines (IL-12, IFNα, IL-10) and TLR-9 using real time quantitative RT-PCR, and for the activation of the transcription factor NF-κB p65 using a chemiluminescence assay. Results The median fluorescence of the MHC class II molecule in non-stimulated foal macrophages and DCs at birth were 12.5 times and 11.2 times inferior, respectively, than adult horse cells (p = 0.009). That difference subsided at 3 months of life (p = 0.3). The expression of the CD86 co-stimulatory molecule was comparable in adult horse and foal macrophages and DCs, independent of treatment. CpG-ODN stimulation induced IL-12p40 (53 times) and IFNα (23 times) mRNA expression in CpG-ODN-treated adult horse DCs (p = 0.078), but not macrophages, in comparison to non-stimulated cells. In contrast, foal APCs did not respond to CpG-ODN stimulation with increased cytokine mRNA expression up to 3 months of age. TLR-9 mRNA expression and NF-kB activation (NF-kB p65) in foal DCs and macrophages were comparable (p > 0.05) to adult horse cells. Conclusion CpG-ODN treatment did not induce specific maturation and cytokine expression in foal

  7. Murine aortic smooth muscle cells acquire, though fail to present exogenous protein antigens on major histocompatibility complex class II molecules.

    PubMed

    Maddaluno, Marcella; MacRitchie, Neil; Grassia, Gianluca; Ialenti, Armando; Butcher, John P; Garside, Paul; Brewer, James M; Maffia, Pasquale

    2014-01-01

    In the present study aortic murine smooth muscle cell (SMC) antigen presentation capacity was evaluated using the Eα-GFP/Y-Ae system to visualize antigen uptake through a GFP tag and tracking of Eα peptide/MHCII presentation using the Y-Ae Ab. Stimulation with IFN-γ (100 ng/mL) for 72 h caused a significant (P < 0.01) increase in the percentage of MHC class II positive SMCs, compared with unstimulated cells. Treatment with Eα-GFP (100 μg/mL) for 48 h induced a significant (P < 0.05) increase in the percentage of GFP positive SMCs while it did not affect the percentage of Y-Ae positive cells, being indicative of antigen uptake without its presentation in the context of MHC class II. After IFN-γ-stimulation, ovalbumin- (OVA, 1 mg/mL) or OVA323-339 peptide-(0.5 μg/mL) treated SMCs failed to induce OT-II CD4(+) T cell activation/proliferation; this was also accompanied by a lack of expression of key costimulatory molecules (OX40L, CD40, CD70, and CD86) on SMCs. Finally, OVA-treated SMCs failed to induce DO11.10-GFP hybridoma activation, a process independent of costimulation. Our results demonstrate that while murine primary aortic SMCs express MHC class II and can acquire exogenous antigens, they fail to activate T cells through a failure in antigen presentation and a lack of costimulatory molecule expression.

  8. Artificial antigen-presenting cells transduced with telomerase efficiently expand epitope-specific, human leukocyte antigen-restricted cytotoxic T cells.

    PubMed

    Dupont, Jakob; Latouche, Jean-Baptiste; Ma, Chia; Sadelain, Michel

    2005-06-15

    Human telomerase reverse transcriptase (hTERT) is overexpressed in most human tumors, making it a potential target for cancer immunotherapy. hTERT-derived CTL epitopes have been identified previously, including p865 (RLVDDFLLV) and p540 (ILAKFLHWL), which are restricted by the human leukocyte antigen (HLA) class I A*0201 allele. However, it remains a major challenge to efficiently and consistently expand hTERT-specific CTLs from donor peripheral blood T lymphocytes. To bypass the need for generating conventional antigen-presenting cells (APC) on an autologous basis, we investigated the potential ability of fibroblast-derived artificial APCs (AAPC) to activate and expand HLA-A*0201-restricted CTLs. We show here that AAPCs stably expressing HLA-A*0201, human beta(2)-microglobulin, B7.1, intercellular adhesion molecule-1, and LFA-3, together with either p540 and p865 minigenes or the full-length hTERT, effectively stimulate tumoricidal, hTERT-specific CTLs. hTERT-expressing AAPCs stimulated both p540 and p865 CTLs as shown by peptide-specific cytolysis and tetramer staining, indicating that hTERT is processed by the AAPCs and that the two peptides are presented as codominant epitopes. The level of cytotoxic activity against a panel of tumors comprising hematologic and epithelial malignancies varied, correlating overall with the level of HLA-A2 and hTERT expression by the target cell. Starting from 100 mL blood, approximately 100 million hTERT-specific CTLs could be generated over the course of five sequential stimulations, representing an expansion of approximately 1 x 10(5). Our data show that AAPCs process hTERT antigen and efficiently stimulate hTERT-specific CTLs from human peripheral blood T lymphocytes and suggest that sufficient expansion could be achieved to be clinically useful for adoptive cell therapy.

  9. TLR and nucleotide-binding oligomerization domain-like receptor signals differentially regulate exogenous antigen-presentation

    PubMed Central

    Wagner, Claudia S.; Cresswell, Peter

    2011-01-01

    The effect of dendritic cell (DC) maturation on MHC class II-restricted antigen presentation is well studied, but less is known about the effects of DC maturation on MHC class I-restricted cross-presentation. We investigated the ability of mature DCs to present antigens from cells infected with Herpes simplex virus-1. Pre-treatment with pure LPS increased cross-presentation, in a manner dependent on both MyD88 and TRIF, while a similar dose of a less pure LPS preparation inhibited cross-presentation. The difference could not be attributed to differences in uptake or phenotypic maturation. The likely contaminant responsible for shutting down cross-presentation is peptidoglycan. Addition of peptidoglycan to pure LPS abrogated its ability to enhance cross-presentation. Direct activation of DCs with peptidoglycan inhibited cross-presentation through nucleotide-binding oligomerization domain (Nod)-like receptor signaling. These results demonstrate that different maturation stimuli can have opposite impacts on the ability of DCs to cross-present viral antigens. PMID:22156493

  10. Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Garcia, Jerry L.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.

  11. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells.

    PubMed

    Moffat, Jessica M; Cheong, Wan-Shoo; Villadangos, José A; Mintern, Justine D; Netter, Hans J

    2013-04-26

    Virus-like particles (VLPs) represent high density displays of viral proteins that efficiently trigger immunity. VLPs composed of the small hepatitis B virus envelope protein (HBsAgS) are useful vaccine platforms that induce humoral and cellular immune responses. Notably, however, some studies suggest HBsAgS VLPs impair dendritic cell (DC) function. Here we investigated HBsAgS VLP interaction with DC subsets and antigen access to major histocompatibility complex (MHC) class I and II antigen presentation pathways in primary DCs. HBsAgS VLPs impaired plasmacytoid DC (pDC) interferon alpha (IFNα) production in response to CpG in vitro, but did not alter conventional DC (cDC) or pDC phenotype when administered in vivo. To assess cellular immune responses, HBsAgS VLPs were generated containing the ovalbumin (OVA) model epitopes OVA(257-264) and OVA(323-339) to access MHCI and MHCII antigen presentation pathways, respectively; both in vitro and following immunisation in vivo. HBsAgS VLP-OVA(257-264) elicited CTL responses in vivo that were not enhanced by inclusion of an additional MHCII helper epitope. HBsAgS VLP-OVA(257-264) administered in vivo was cross-presented by CD8(+) DCs, but not CD8(-) DCs. Therefore, HBsAgS VLPs can deliver antigen to both MHCI and MHCII antigen presentation pathways in primary DCs and promote cytotoxic and helper T cell priming despite their suppressive effect on pDCs.

  12. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity.

    PubMed

    Omokoko, Tana A; Luxemburger, Uli; Bardissi, Shaheer; Simon, Petra; Utsch, Magdalena; Breitkreuz, Andrea; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard (51)Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT) RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the (51)Cr release and further confirmed the assay's ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay's combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies. PMID:27057556

  13. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity

    PubMed Central

    Omokoko, Tana A.; Luxemburger, Uli; Bardissi, Shaheer; Simon, Petra; Utsch, Magdalena; Breitkreuz, Andrea; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard 51Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT) RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the 51Cr release and further confirmed the assay's ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay's combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies. PMID:27057556

  14. Endoplasmic Reticulum Glycoprotein Quality Control Regulates CD1d Assembly and CD1d-mediated Antigen Presentation*

    PubMed Central

    Kunte, Amit; Zhang, Wei; Paduraru, Crina; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Cresswell, Peter

    2013-01-01

    The non-classical major histocompatibility complex (MHC) homologue CD1d presents lipid antigens to innate-like lymphocytes called natural-killer T (NKT) cells. These cells, by virtue of their broad cytokine repertoire, shape innate and adaptive immune responses. Here, we have assessed the role of endoplasmic reticulum glycoprotein quality control in CD1d assembly and function, specifically the role of a key component of the quality control machinery, the enzyme UDP glucose glycoprotein glucosyltransferase (UGT1). We observe that in UGT1-deficient cells, CD1d associates prematurely with β2-microglobulin (β2m) and is able to rapidly exit the endoplasmic reticulum. At least some of these CD1d-β2m heterodimers are shorter-lived and can be rescued by provision of a defined exogenous antigen, α-galactosylceramide. Importantly, we show that in UGT1-deficient cells the CD1d-β2m heterodimers have altered antigenicity despite the fact that their cell surface levels are unchanged. We propose that UGT1 serves as a quality control checkpoint during CD1d assembly and further suggest that UGT1-mediated quality control can shape the lipid repertoire of newly synthesized CD1d. The quality control process may play a role in ensuring stability of exported CD1d-β2m complexes, in facilitating presentation of low abundance high affinity antigens, or in preventing deleterious responses to self lipids. PMID:23615906

  15. B cell antigen presentation is sufficient to drive neuro-inflammation in an animal model of multiple sclerosis1

    PubMed Central

    Parker Harp, Chelsea R.; Archambault, Angela S.; Sim, Julia; Ferris, Stephen T.; Mikesell, Robert J.; Koni, Pandelakis A.; Shimoda, Michiko; Linington, Christopher; Russell, John H.; Wu, Gregory F.

    2015-01-01

    B cells are increasingly regarded as integral to the pathogenesis of multiple sclerosis (MS) in part due to the success of B cell depletion therapy. Multiple B cell-dependent mechanisms contributing to inflammatory demyelination of the central nervous system (CNS) have been explored using experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-dependent animal model for multiple sclerosis (MS). While B cell antigen presentation has been suggested to regulate CNS inflammation during EAE, direct evidence that B cells can independently support antigen-specific autoimmune responses by CD4 T cells in EAE is lacking. Using a newly developed murine model of in vivo conditional expression of MHCII, we previously reported that encephalitogenic CD4 T cells are incapable of inducing EAE when B cells are the sole antigen presenting cell. Herein we find that B cells cooperate with dendritic cells to enhance EAE severity resulting from myelin oligodendrocyte glycoprotein (MOG) immunization. Further, increasing the precursor frequency of MOG-specific B cells, but not addition of soluble MOG-specific antibody, is sufficient to drive EAE in mice expressing MHCII by B cells alone. These data support a model in which expansion of antigen-specific B cells during CNS autoimmunity amplifies cognate interactions between B and CD4 T cells and have the capacity to independently drive neuro-inflammation at later stages of disease. PMID:25895531

  16. Perceptions of Present and Future Capability among a Sample of Rural British Columbia Youth Perceptions

    ERIC Educational Resources Information Center

    Kapil, Meg E.; Shepard, Blythe C.

    2011-01-01

    A cross-sectional survey explored 96 rural adolescents' perceptions of their rural context and how their self-concept is related to perceptions of capability regarding hopes and fears for the future. The youth surveyed, from the Kootenay Boundary region of British Columbia, indicated ambivalence about staying in their communities after leaving…

  17. Evaluation of RNA Amplification Methods to Improve DC Immunotherapy Antigen Presentation and Immune Response

    PubMed Central

    Slagter-Jäger, Jacoba G; Raney, Alexa; Lewis, Whitney E; DeBenedette, Mark A; Nicolette, Charles A; Tcherepanova, Irina Y

    2013-01-01

    Dendritic cells (DCs) transfected with total amplified tumor cell RNA have the potential to induce broad antitumor immune responses. However, analytical methods required for quantitatively assessing the integrity, fidelity, and functionality of the amplified RNA are lacking. We have developed a series of assays including gel electrophoresis, northern blot, capping efficiency, and microarray analysis to determine integrity and fidelity and a model system to assess functionality after transfection into human DCs. We employed these tools to demonstrate that modifications to our previously reported total cellular RNA amplification process including the use of the Fast Start High Fidelity (FSHF) PCR enzyme, T7 Powerswitch primer, post-transcriptional capping and incorporation of a type 1 cap result in amplification of longer transcripts, greater translational competence, and a higher fidelity representation of the starting total RNA population. To study the properties of amplified RNA after transfection into human DCs, we measured protein expression levels of defined antigens coamplified with the starting total RNA populations and measured antigen-specific T cell expansion in autologous DC-T cell co-cultured in vitro. We conclude from these analyses that the improved RNA amplification process results in superior protein expression levels and a greater capacity of the transfected DCs to induce multifunctional antigen-specific memory T cells. PMID:23653155

  18. In vivo maintenance of T-lymphocyte unresponsiveness induced by thymic medullary epithelium requires antigen presentation by radioresistant cells

    PubMed Central

    Hudrisier, Denis; Feau, Sonia; Bonnet, Véronique; Romagnoli, Paola; Van Meerwijk, Joost P M

    2003-01-01

    The T-cell repertoire developing in the thymus is rid of autospecific cells by the process of thymic negative selection. Recognition of major histocompatibility complex (MHC)/self-peptide complexes expressed by thymic antigen-presenting cells (APC) of bone marrow origin leads to induction of apoptotic death of autospecific thymocytes. Induction of tolerance to self-antigens not presented by thymic APC is mediated by medullary thymic epithelial cells (mTEC) which express a very wide range of proteins, e.g. inducible and tissue-specific proteins. The main type of tolerance induced by mTEC is non-deletional and the issue of how it is maintained outside the thymus is therefore of crucial interest. We have previously shown that the non-T-cell receptor (TCR) -transgenic T-cell repertoire developing in conditions in which tolerance to self-MHC/peptide ligands is exclusively induced by mTEC is tolerant to syngeneic targets in vivo but lyses such targets in vitro. Here we report that this non-deletional in vivo self-tolerance is not due to active tolerance assured by known naturally occurring regulatory or immune-modulating T lymphocytes. Importantly, we show that in vivo maintenance of this therefore probably anergic state requires continued interaction of autospecific T cells with self-MHC/peptide ligands expressed by radioresistant cells while APC are incapable of maintaining the tolerant state. Therefore, maintenance of non-deletional T-lymphocyte tolerance to the wide range of self-antigens expressed by mTEC depends on continued interaction with radioresistant cells that very probably express a much more limited repertoire of antigens. Our data may therefore have important consequences for tolerance to tissue-specific and inducible self-antigens. PMID:12519299

  19. Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial Antigen Presenting Cells

    PubMed Central

    Singh, Harjeet; Figliola, Matthew J.; Dawson, Margaret J.; Olivares, Simon; Zhang, Ling; Yang, Ge; Maiti, Sourindra; Manuri, Pallavi; Senyukov, Vladimir; Jena, Bipulendu; Kebriaei, Partow; Champlin, Richard E.; Huls, Helen; Cooper, Laurence J. N.

    2013-01-01

    Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼1010 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion. PMID:23741305

  20. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells.

    PubMed

    Singh, Harjeet; Figliola, Matthew J; Dawson, Margaret J; Olivares, Simon; Zhang, Ling; Yang, Ge; Maiti, Sourindra; Manuri, Pallavi; Senyukov, Vladimir; Jena, Bipulendu; Kebriaei, Partow; Champlin, Richard E; Huls, Helen; Cooper, Laurence J N

    2013-01-01

    Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼10(10) T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion. PMID:23741305

  1. Artificial antigen-presenting cells as a tool to exploit the immune 'synapse'.

    PubMed

    Prakken, B; Wauben, M; Genini, D; Samodal, R; Barnett, J; Mendivil, A; Leoni, L; Albani, S

    2000-12-01

    Recent progress in molecular medicine has provided important tools to identify antigen-specific T cells. In most cases, the approach is based on oligomeric combinations of recombinant major histocompatibility complex-peptide complexes fixed to various rigid supports available for binding by the T-cell receptor. These tools have greatly increased our insight into mechanisms of immune responses mediated by CD8+ T cells. Examples of the diverse fields of application for this technology include immunization, viral infections and oral tolerance induction. PMID:11100129

  2. Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network.

    PubMed

    Bodey, B; Bodey, B; Kaiser, H E

    1997-01-01

    During mammalian ontogenesis, the thymic "pure" endodermal epithelial anlage develops and differentiates into a complex cellular microenvironment. Beginning the 7-8th week of intrauterine development, thymic epithelial cells chemotactically regulate (induce) numerous waves of migration of stem cells into the thymus, including the CD34+, yolk sac-derived, committed hematopoietic stem cells. In vitro experiments have established that CD34+ CD38dim human thymocytes differentiate into T lymphocytes when co-cultured with mouse fetal thymic organs. Hematopoietic stem cells for myeloid and thymic stromal dendritic cells (DCs) are present within the minute population of CD34+ progenitors within the mammalian thymus. The common myeloid, DC, natural killer (NK) and T lymphocyte progenitors have also been identified within the CD34+ stem cell population in the human thymus. Interactions between the endocrine and immune systems have been reported in various regions of the mammalian body including the anterior pituitary (AP), the skin, and the central (thymus) and peripheral lymphatic system. The network of bone marrow derived DCs is a part of the reticuloendothelial system (RES) and DCs represent the cellular mediators of these regulatory endocrine-immune interactions. Folliculo-stellate cells (FSC) in the AP, Langerhans cells (LCs) in the skin and lymphatic system, "veiled" cells, lympho-dendritic and interdigitating cells (IDCs) in a number of tissues comprising the lymphatic system are the cell types of the DC meshwork of "professional" antigen presenting cells (APCs). Most of these cells express the immunocytochemical markers S-100, CD1. CD45, CD54, F418, MHC class I and II antigens, Fc and complement receptors. FSCs are non-hormone secreting cells which communicate directly with hormone producing cells, a form of neuro-endocrine-immune regulation. As a result, an attenuation of secretory responses follows stimulation of these cells. FSCs are also the cells in the AP

  3. Self-Antigen Presentation by Keratinocytes in the Inflamed Adult Skin Modulates T-Cell Auto-Reactivity.

    PubMed

    Meister, Michael; Tounsi, Amel; Gaffal, Evelyn; Bald, Tobias; Papatriantafyllou, Maria; Ludwig, Julia; Pougialis, Georg; Bestvater, Felix; Klotz, Luisa; Moldenhauer, Gerhard; Tüting, Thomas; Hämmerling, Günter J; Arnold, Bernd; Oelert, Thilo

    2015-08-01

    Keratinocytes have a pivotal role in the regulation of immune responses, but the impact of antigen presentation by these cells is still poorly understood, particularly in a situation where the antigen will be presented only in adult life. Here, we generated a transgenic mouse model in which keratinocytes exclusively present a myelin basic protein (MBP) peptide covalently linked to the major histocompatibility complex class II β-chain, solely under inflammatory conditions. In these mice, inflammation caused by epicutaneous contact sensitizer treatment resulted in keratinocyte-mediated expansion of MBP-specific CD4(+) T cells in the skin. Moreover, repeated contact sensitizer application preceding a systemic MBP immunization reduced the reactivity of the respective CD4(+) T cells and lowered the symptoms of the resulting experimental autoimmune encephalomyelitis. This downregulation was CD4(+) T-cell-mediated and dependent on the presence of the immune modulator Dickkopf-3. Thus, presentation of a neo self-antigen by keratinocytes in the inflamed, adult skin can modulate CD4(+) T-cell auto-aggression at a distal organ. PMID:25835957

  4. Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy.

    PubMed

    Hassan, Hatem A F M; Smyth, Lesley; Wang, Julie T-W; Costa, Pedro M; Ratnasothy, Kulachelvy; Diebold, Sandra S; Lombardi, Giovanna; Al-Jamal, Khuloud T

    2016-10-01

    Although anti-cancer immuno-based combinatorial therapeutic approaches have shown promising results, efficient tumour eradication demands further intensification of anti-tumour immune response. With the emerging field of nanovaccinology, multi-walled carbon nanotubes (MWNTs) have manifested prominent potentials as tumour antigen nanocarriers. Nevertheless, the utilization of MWNTs in co-delivering antigen along with different types of immunoadjuvants to antigen presenting cells (APCs) has not been investigated yet. We hypothesized that harnessing MWNT for concurrent delivery of cytosine-phosphate-guanine oligodeoxynucleotide (CpG) and anti-CD40 Ig (αCD40), as immunoadjuvants, along with the model antigen ovalbumin (OVA) could potentiate immune response induced against OVA-expressing tumour cells. We initially investigated the effective method to co-deliver OVA and CpG using MWNT to the APC. Covalent conjugation of OVA and CpG prior to loading onto MWNTs markedly augmented the CpG-mediated adjuvanticity, as demonstrated by the significantly increased OVA-specific T cell responses in vitro and in C57BL/6 mice. αCD40 was then included as a second immunoadjuvant to further intensify the immune response. Immune response elicited in vitro and in vivo by OVA, CpG and αCD40 was significantly potentiated by their co-incorporation onto the MWNTs. Furthermore, MWNT remarkably improved the ability of co-loaded OVA, CpG and αCD40 in inhibiting the growth of OVA-expressing B16F10 melanoma cells in subcutaneous or lung pseudo-metastatic tumour models. Therefore, this study suggests that the utilization of MWNTs for the co-delivery of tumour-derived antigen, CpG and αCD40 could be a competent approach for efficient tumours eradication.

  5. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    SciTech Connect

    Han, Hui; Peng, Ji-Run; Chen, Peng-Cheng; Gong, Lei; Qiao, Shi-Shi; Wang, Wen-Zhen; Cui, Zhu-Qingqing; Yu, Xin; Wei, Yu-Hua; Leng, Xi-Sheng

    2011-08-05

    Highlights: {yields} Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. {yields} An ideal artificial APCs system was successfully prepared in vivo. {yields} Controlled release of IL-2 leads to much more T-cell expansion. {yields} This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  6. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation.

    PubMed

    Brooks, Craig R; Yeung, Melissa Y; Brooks, Yang S; Chen, Hui; Ichimura, Takaharu; Henderson, Joel M; Bonventre, Joseph V

    2015-10-01

    Phagocytosis of apoptotic cells by both professional and semi-professional phagocytes is required for resolution of organ damage and maintenance of immune tolerance. KIM-1/TIM-1 is a phosphatidylserine receptor that is expressed on epithelial cells and can transform the cells into phagocytes. Here, we demonstrate that KIM-1 phosphorylation and association with p85 results in encapsulation of phagosomes by lipidated LC3 in multi-membrane organelles. KIM-1-mediated phagocytosis is not associated with increased ROS production, and NOX inhibition does not block LC3 lipidation. Autophagy gene expression is required for efficient clearance of apoptotic cells and phagosome maturation. KIM-1-mediated phagocytosis leads to pro-tolerogenic antigen presentation, which suppresses CD4 T-cell proliferation and increases the percentage of regulatory T cells in an autophagy gene-dependent manner. Taken together, these data reveal a novel mechanism of epithelial biology linking phagocytosis, autophagy and antigen presentation to regulation of the inflammatory response.

  7. Phagocytosis, germination and killing of Bacillus subtilis spores presenting heterologous antigens in human macrophages.

    PubMed

    Ceragioli, Mara; Cangiano, Giuseppina; Esin, Semih; Ghelardi, Emilia; Ricca, Ezio; Senesi, Sonia

    2009-02-01

    Bacillus subtilis is a Gram-positive spore-bearing bacterium long used as a probiotic product and more recently regarded as an attractive vehicle for delivering heterologous antigens to be used for mucosal vaccination. This report describes the in vitro interaction between human macrophages and B. subtilis spores displaying the tetanus toxin fragment C or the B subunit of the heat-labile toxin of Escherichia coli on their surface in comparison to spores of the parental strain. Recombinant and parental B. subtilis spores were similarly internalized by human macrophages, at a frequency lower than 2.5%. Inside macrophages, nearly all spores germinated and were killed within 6 h. Using germination-defective spores and inhibiting spore germination inside macrophages, evidence was produced that only germinated spores were killed by human macrophages and that intracellular spore germination was mediated by an alanine-dependent pathway. The germinated spores were killed by macrophages before any round of cell duplication, as estimated by fluorescence microscopy analysis of macrophages infected with spores carrying the gfp gene fused to abrB, a B. subtilis gene shown here to be expressed at the transition between outgrowth and vegetative growth. Monitoring of macrophage infection never revealed cytotoxic effects being exerted by B. subtilis spores. These in vitro data support the hypothesis that B. subtilis spores may potentially be used as a suitable and safe vehicle for administering heterologous antigens to humans.

  8. Loss of proliferation and antigen presentation activity following internalization of polydispersed carbon nanotubes by primary lung epithelial cells.

    PubMed

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells.

  9. Malassezia yeasts activate the NLRP3 inflammasome in antigen-presenting cells via Syk-kinase signalling.

    PubMed

    Kistowska, Magdalena; Fenini, Gabriele; Jankovic, Dragana; Feldmeyer, Laurence; Kerl, Katrin; Bosshard, Philipp; Contassot, Emmanuel; French, Lars E

    2014-12-01

    Although being a normal part of the skin flora, yeasts of the genus Malassezia are associated with several common dermatologic conditions including pityriasis versicolour, seborrhoeic dermatitis (SD), folliculitis, atopic eczema/dermatitis (AE/AD) and dandruff. While Malassezia spp. are aetiological agents of pityriasis versicolour, a causal role of Malassezia spp. in AE/AD and SD remains to be established. Previous reports have shown that fungi such as Candida albicans and Aspergillus fumigatus are able to efficiently activate the NLRP3 inflammasome leading to robust secretion of the pro-inflammatory cytokine IL-1β. To date, innate immune responses to Malassezia spp. are not well characterized. Here, we show that different Malassezia species could induce NLRP3 inflammasome activation and subsequent IL-1β secretion in human antigen-presenting cells. In contrast, keratinocytes were not able to secrete IL-1β when exposed to Malassezia spp. Moreover, we demonstrate that IL-1β secretion in antigen-presenting cells was dependent on Syk-kinase signalling. Our results identify Malassezia spp. as potential strong inducers of pro-inflammatory responses when taken up by antigen-presenting cells and identify C-type lectin receptors and the NLRP3 inflammasome as crucial actors in this process. PMID:25267545

  10. Vascular endothelial cells have impaired capacity to present immunodominant, antigenic peptides: a mechanism of cell type-specific immune escape.

    PubMed

    Kummer, Marco; Lev, Avital; Reiter, Yoram; Biedermann, Barbara C

    2005-02-15

    Vascular endothelial cells (EC) are an exposed target tissue in the course of CTL-mediated alloimmune diseases such as graft-vs-host disease (GVHD) or solid organ transplant rejection. The outcome of an interaction between CTL and target cells is determined by the amount of Ag presented and the costimulatory signals delivered by the target cells. We compared human EC with leukocytes and epithelial cells as targets for peptide-specific, MHC class I-restricted CTL clones. EC were poor targets for immunodominant CTL. Both endogenously processed antigenic proteins and exogenously added antigenic peptides are presented at 50- to 5000-fold lower levels on EC compared with any other target cell analyzed. This quantitative difference fully explained the poor CTL-mediated killing of EC. There was no evidence that lack of costimulation would contribute significantly to this cell type-specific difference in CTL activation. An HLA-A2-specific CTL clone that killed a broad selection of HLA A2-positive target cells equally well, killed EC less efficiently. Our data suggest that EC present a different Ag repertoire compared with other cell types. By this mechanism, these cells may escape an attack by effector CTL, which have been educated by professional APCs and are specific for immunodominant antigenic peptides. PMID:15699122

  11. Present capabilities and new developments in antenna modeling with the numerical electromagnetics code NEC

    SciTech Connect

    Burke, G.J.

    1988-04-08

    Computer modeling of antennas, since its start in the late 1960's, has become a powerful and widely used tool for antenna design. Computer codes have been developed based on the Method-of-Moments, Geometrical Theory of Diffraction, or integration of Maxwell's equations. Of such tools, the Numerical Electromagnetics Code-Method of Moments (NEC) has become one of the most widely used codes for modeling resonant sized antennas. There are several reasons for this including the systematic updating and extension of its capabilities, extensive user-oriented documentation and accessibility of its developers for user assistance. The result is that there are estimated to be several hundred users of various versions of NEC world wide. 23 refs., 10 figs.

  12. Emerging roles for antigen presentation in establishing host-microbiome symbiosis.

    PubMed

    Bessman, Nicholas J; Sonnenberg, Gregory F

    2016-07-01

    Trillions of beneficial bacteria inhabit the intestinal tract of healthy mammals from birth. Accordingly, mammalian hosts have evolved a series of complementary and redundant pathways to limit pathologic immune responses against these bacteria, while simultaneously protecting against enteric pathogen invasion. These pathways can be generically responsive to the presence of any commensal bacteria and innate in nature, as for IL-22-related pathways. Alternatively, specific bacterial antigens can drive a distinct set of adaptive immune cell responses, including IgA affinity maturation and secretion, and a recently described pathway of intestinal selection whereby MHCII(+) ILC3 deletes commensal bacteria-reactive CD4 T cells. These pathways can either promote or inhibit colonization by specific subsets of commensal bacteria, and cooperatively maintain intestinal homeostasis. In this review, we will highlight recent developments in understanding how these diverse pathways complement each other to cooperatively shape the symbiotic relationship between commensal bacteria and mammalian hosts. PMID:27319348

  13. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8(+) T lymphocytes.

    PubMed

    Rodriguez, Galaxia M; Bobbala, Diwakar; Serrano, Daniel; Mayhue, Marian; Champagne, Audrey; Saucier, Caroline; Steimle, Viktor; Kufer, Thomas A; Menendez, Alfredo; Ramanathan, Sheela; Ilangumaran, Subburaj

    2016-06-01

    Cancers can escape immunesurveillance by diminishing the expression of MHC class-I molecules (MHC-I) and components of the antigen-processing machinery (APM). Developing new approaches to reverse these defects could boost the efforts to restore antitumor immunity. Recent studies have shown that the expression of MHC-I and antigen-processing molecules is transcriptionally regulated by NOD-like receptor CARD domain containing 5 (NLRC5). To investigate whether NLRC5 could be used to improve tumor immunogenicity, we established stable lines of B16-F10 melanoma cells expressing NLRC5 (B16-5), the T cell co-stimulatory molecule CD80 (B16-CD80) or both (B16-5/80). Cells harboring NLRC5 constitutively expressed MHC-I and LMP2, LMP7 and TAP1 genes of the APM. The B16-5 cells efficiently presented the melanoma antigenic peptide gp10025-33 to Pmel-1 TCR transgenic CD8(+) T cells and induced their proliferation. In the presence of CD80, B16-5 cells stimulated Pmel-1 cells even without the addition of gp100 peptide, indicating that NLRC5 facilitated the processing and presentation of endogenous tumor antigen. Upon subcutaneous implantation, B16-5 cells showed markedly reduced tumor growth in C57BL/6 hosts but not in immunodeficient hosts, indicating that the NLRC5-expressing tumor cells elicited antitumor immunity. Following intravenous injection, B16-5 and B16-5/80 cells formed fewer lung tumor foci compared to control cells. In mice depleted of CD8(+) T cells, B16-5 cells formed large subcutaneous and lung tumors. Finally, immunization with irradiated B16-5 cells conferred protection against challenge by parental B16 cells. Collectively, our findings indicate that NLRC5 could be exploited to restore tumor immunogenicity and to stimulate protective antitumor immunity. PMID:27471621

  14. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8+ T lymphocytes

    PubMed Central

    Rodriguez, Galaxia M.; Bobbala, Diwakar; Serrano, Daniel; Mayhue, Marian; Champagne, Audrey; Saucier, Caroline; Steimle, Viktor; Kufer, Thomas A.; Menendez, Alfredo; Ramanathan, Sheela; Ilangumaran, Subburaj

    2016-01-01

    ABSTRACT Cancers can escape immunesurveillance by diminishing the expression of MHC class-I molecules (MHC-I) and components of the antigen-processing machinery (APM). Developing new approaches to reverse these defects could boost the efforts to restore antitumor immunity. Recent studies have shown that the expression of MHC-I and antigen-processing molecules is transcriptionally regulated by NOD-like receptor CARD domain containing 5 (NLRC5). To investigate whether NLRC5 could be used to improve tumor immunogenicity, we established stable lines of B16-F10 melanoma cells expressing NLRC5 (B16-5), the T cell co-stimulatory molecule CD80 (B16-CD80) or both (B16-5/80). Cells harboring NLRC5 constitutively expressed MHC-I and LMP2, LMP7 and TAP1 genes of the APM. The B16-5 cells efficiently presented the melanoma antigenic peptide gp10025–33 to Pmel-1 TCR transgenic CD8+ T cells and induced their proliferation. In the presence of CD80, B16-5 cells stimulated Pmel-1 cells even without the addition of gp100 peptide, indicating that NLRC5 facilitated the processing and presentation of endogenous tumor antigen. Upon subcutaneous implantation, B16-5 cells showed markedly reduced tumor growth in C57BL/6 hosts but not in immunodeficient hosts, indicating that the NLRC5-expressing tumor cells elicited antitumor immunity. Following intravenous injection, B16-5 and B16-5/80 cells formed fewer lung tumor foci compared to control cells. In mice depleted of CD8+ T cells, B16-5 cells formed large subcutaneous and lung tumors. Finally, immunization with irradiated B16-5 cells conferred protection against challenge by parental B16 cells. Collectively, our findings indicate that NLRC5 could be exploited to restore tumor immunogenicity and to stimulate protective antitumor immunity. PMID:27471621

  15. Algal Toxin Removal Capabilities of Common Drinking Water Treatment Processes- presentation

    EPA Science Inventory

    This presentation delivers information on the control of cyanobacteria and toxins through potassium permanganate oxidation, powdered activated carbon application, coagulation/flocculation/sedimentation, filtration and chlorination.

  16. Peptide-β2-microglobulin-major histocompatibility complex expressing cells are potent antigen-presenting cells that can generate specific T cells

    PubMed Central

    Obermann, Sonja; Petrykowska, Susanne; Manns, Michael P; Korangy, Firouzeh; Greten, Tim F

    2007-01-01

    Adoptive T-cell therapy represents a promising therapeutic approach for the treatment of cancer. Successful adoptive immunotherapy depends on the ex vivo priming and expansion of antigen-specific T cells. However, the in vitro generation of adequate numbers of functional antigen-specific T cell remains a major obstacle. It is important to develop efficient and reproducible methods to generate high numbers of antigen-specific T cells for adoptive T-cell transfer. We have developed a new artificial antigen-presenting cell (aAPC) by transfection of major histocompatibility (MHC) class I negative Daudi cells with a peptide-β2-microglobulin–MHC fusion construct (single-chain aAPC) ensuring presentation of the peptide–MHC complex of interest. Using this artificial antigen-presenting cell, we could generate up to 9·2 × 108 antigen-specific cytotoxic CD8+ T cells from 10 ml blood. In vitro generated T cells lysed endogenously presented antigens. Direct comparison of the single-chain aAPC with autologous monocyte-derived dendritic cells demonstrated that these cells were equally efficient in stimulation of T cells. Finally, we were able to generate antigen-specific T cell lines from perpheral blood mononuclear cells of patients receiving cytotoxic chemotherapy. The use of single-chain aAPC represent a promising option for the generation of antigen-specific CD8+ T cells, which could be used for adoptive T-cell therapy. PMID:17472719

  17. Peptide-beta2-microglobulin-major histocompatibility complex expressing cells are potent antigen-presenting cells that can generate specific T cells.

    PubMed

    Obermann, Sonja; Petrykowska, Susanne; Manns, Michael P; Korangy, Firouzeh; Greten, Tim F

    2007-09-01

    Adoptive T-cell therapy represents a promising therapeutic approach for the treatment of cancer. Successful adoptive immunotherapy depends on the ex vivo priming and expansion of antigen-specific T cells. However, the in vitro generation of adequate numbers of functional antigen-specific T cell remains a major obstacle. It is important to develop efficient and reproducible methods to generate high numbers of antigen-specific T cells for adoptive T-cell transfer. We have developed a new artificial antigen-presenting cell (aAPC) by transfection of major histocompatibility (MHC) class I negative Daudi cells with a peptide-beta2-microglobulin-MHC fusion construct (single-chain aAPC) ensuring presentation of the peptide-MHC complex of interest. Using this artificial antigen-presenting cell, we could generate up to 9.2 x 10(8) antigen-specific cytotoxic CD8(+) T cells from 10 ml blood. In vitro generated T cells lysed endogenously presented antigens. Direct comparison of the single-chain aAPC with autologous monocyte-derived dendritic cells demonstrated that these cells were equally efficient in stimulation of T cells. Finally, we were able to generate antigen-specific T cell lines from perpheral blood mononuclear cells of patients receiving cytotoxic chemotherapy. The use of single-chain aAPC represent a promising option for the generation of antigen-specific CD8(+) T cells, which could be used for adoptive T-cell therapy.

  18. Second-Generation Fuel Cell Stack Durability and Freeze Capability from National FCV Learning Demonstration (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-11-18

    This presentation provides information about the objectives and partners of the National Fuel Cell Vehicle Learning Demonstration, the status of vehicle and station deployment, and results of vehicle and infrastructure analysis.

  19. Protein antigens of Chlamydia psittaci present in infected cells but not detected in the infectious elementary body.

    PubMed

    Rockey, D D; Rosquist, J L

    1994-01-01

    Ocular infection of guinea pigs with the guinea pig inclusion conjunctivitis (GPIC) strain of Chlamydia psittaci produces a clinical condition representative of acute chlamydial conjunctivitis in humans. Guinea pigs which had recovered from two challenges with GPIC were used as a source of sera for the identification of antigens present in GPIC-infected tissue culture cells but absent in the infectious elementary body (EB). Immunoblots of lysates of infected HeLa cells probed with the convalescent-phase sera identified protein antigens of 22, 34, and 52 kDa (p22, p34, and p52, respectively) that were not detected in lysates of purified EB or in uninfected HeLa cells. Protein p22 was also not detected in lysates of purified reticulate bodies. Immunoblotting of lysates of HeLa cells infected with other chlamydiae demonstrated that the antigenicity of p22 and p34 was subspecies specific. Immunoblotting was also used to detect p22 and p34 in lysates of the conjunctivae of infected guinea pigs. Adsorption of convalescent-phase sera with GPIC EB produced a reagent with dominant reactivity toward p22, p34, and a 28-kDa EB protein. Immunofluorescent staining of GPIC-infected HeLa cells demonstrated that these adsorbed sera labeled the inclusion and inclusion membrane, with no apparent reactivity toward EB or reticulate bodies. Collectively, these data identify non-EB chlamydial components which may be released into the inclusion during intracellular growth.

  20. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity

    PubMed Central

    Tassi, Ilaria; Claudio, Estefania; Wang, Hongshan; Tang, Wanhu; Ha, Hye-lin; Saret, Sun; Ramaswamy, Madhu; Siegel, Richard; Siebenlist, Ulrich

    2014-01-01

    Bcl-3 is an atypical member of the IκB family and modulates gene expression via interaction with p50/NF-κB1 or p52/NF-κB2 homodimers. We report here that Bcl-3 is required in dendritic cells (DCs) to assure effective priming of CD4 and CD8 T cells. Lack of Bcl-3 in bone marrow-derived DCs (BMDCs) blunted their ability to expand and promote effector functions of T cells upon antigen/adjuvant challenge in vitro and after adoptive transfers in vivo. Importantly, the critical role of Bcl-3 for priming of T cells was exposed upon antigen/adjuvant challenge of mice specifically ablated of Bcl-3 in DCs. Furthermore, Bcl-3 in endogenous DCs was necessary for contact hypersensitivity responses. Bcl-3 modestly aided maturation of DCs, but most consequentially, Bcl-3 promoted their survival, partially inhibiting expression of several anti-apoptotic genes. Loss of Bcl-3 accelerated apoptosis of BMDCs during antigen presentation to T cells and DC survival was markedly impaired in the context of inflammatory conditions in mice specifically lacking Bcl-3 in these cells. Conversely, selective over-expression of Bcl-3 in DCs extended their lifespan in vitro and in vivo, correlating with increased capacity to prime T cells. These results expose a previously unidentified function for Bcl-3 in DCs survival and the generation of adaptive immunity. PMID:25246497

  1. p62 Plays a Specific Role in Interferon-γ-Induced Presentation of a Toxoplasma Vacuolar Antigen.

    PubMed

    Lee, Youngae; Sasai, Miwa; Ma, Ji Su; Sakaguchi, Naoya; Ohshima, Jun; Bando, Hironori; Saitoh, Tatsuya; Akira, Shizuo; Yamamoto, Masahiro

    2015-10-13

    Also known as Sqstm1, p62 is a selective autophagy adaptor with a ubiquitin-binding domain. However, the role of p62 in the host defense against Toxoplasma gondii infection is unclear. Here, we show that interferon γ (IFN-γ) stimulates ubiquitin and p62 recruitment to T. gondii parasitophorous vacuoles (PVs). Some essential autophagy-related proteins, but not all, are required for this recruitment. Regardless of normal IFN-γ-induced T. gondii clearance activity and ubiquitination, p62 deficiency in antigen-presenting cells (APCs) and mice diminishes the robust IFN-γ-primed activation of CD8(+) T cells that recognize the T. gondii-derived antigen secreted into PVs. Because the expression of Atg3 and Irgm1/m3 in APCs is essential for PV disruption, ubiquitin and p62 recruitment, and vacuolar-antigen-specific CD8(+) T cell activation, IFN-γ-mediated ubiquitination and the subsequent recruitment of p62 to T. gondii are specifically required for the acquired immune response after PV disruption by IFN-γ-inducible GTPases.

  2. Presenting a foreign antigen on live attenuated Edwardsiella tarda using twin-arginine translocation signal peptide as a multivalent vaccine.

    PubMed

    Wang, Yamin; Yang, Weizheng; Wang, Qiyao; Qu, Jiangbo; Zhang, Yuanxing

    2013-12-01

    The twin-arginine translocation (Tat) system is a major pathway for transmembrane translocation of fully folded proteins. In this study, a multivalent vaccine to present foreign antigens on live attenuated vaccine Edwardsiella tarda WED using screened Tat signal peptide was constructed. Because the Tat system increases the yields of folded antigens in periplasmic space or extracellular milieu, it is expected to contribute to the production of conformational epitope-derived specific antibodies. E. tarda Tat signal peptides fused with the green fluorescent protein (GFP) was constructed under the control of an in vivo inducible dps promoter. The resulting plasmids were electroporated into WED and the subcellular localizations of GFP were analyzed with Western blotting. Eight signal peptides with optimized GFP translocation efficiency were further fused to a protective antigen glyceraldehyde-3-phosphate dehydrogenase (GapA) from a fish pathogen Aeromonas hydrophila. Signal peptides of DmsA, NapA, and SufI displayed high efficiency for GapA translocation. The relative percent survival (RPS) of turbot was measured with a co-infection of E. tarda and A. hydrophila, and the strain with DmsA signal peptide showed the maximal protection. This study demonstrated a new platform to construct multivalent vaccines using optimized Tat signal peptide in E. tarda. PMID:23994481

  3. ICSBP/IRF-8 differentially regulates antigen uptake during dendritic-cell development and affects antigen presentation to CD4+ T cells.

    PubMed

    Mattei, Fabrizio; Schiavoni, Giovanna; Borghi, Paola; Venditti, Massimo; Canini, Irene; Sestili, Paola; Pietraforte, Immacolata; Morse, Herbert C; Ramoni, Carlo; Belardelli, Filippo; Gabriele, Lucia

    2006-07-15

    Interferon consensus sequence-binding protein (ICSBP)/interferon regulatory factor 8 (IRF-8) is a transcription factor that plays critical roles in the differentiation of defined dendritic-cell (DC) populations and in the immune response to many pathogens. In this study, we show that splenic DCs (s-DCs) from ICSBP(-/-) mice are markedly defective in their ability to capture and to present exogenous antigens (Ags) to naive CD4(+) T lymphocytes. We found that CD8alpha(+) DCs and, to a lesser extent, CD8alpha(-) DCs from ICSBP(-/-) mice are impaired at internalizing Ags, either through a receptor-mediated pathway or by macropinocytosis, in spite of having a more immature phenotype than their wild-type (WT) counterparts. These features reflected a greatly impaired ability of ICSBP(-/-) s-DCs to present injected soluble ovalbumin (OVA) to OVA-specific CD4(+) T cells in vivo. Conversely, bone marrow (BM)-derived DCs from ICSBP(-/-) mice, in keeping with their immature phenotype, exhibited higher endocytic activity than WT cells. However, Ag-loaded ICSBP(-/-) BM-DCs were defective in priming Ag-specific CD4(+) T lymphocytes and failed to induce a contact hypersensitivity (CHS) response when injected into competent WT hosts. Together, these results indicate that, throughout the developmental program of DCs, ICSBP differentially controls Ag uptake and MHC class II (MHC-II) presentation affecting both functions only in differentiated peripheral DCs. PMID:16569763

  4. Robert Feulgen Prize Lecture 1995. Electronic light microscopy: present capabilities and future prospects.

    PubMed

    Shotton, D M

    1995-08-01

    Electronic light microscopy involves the combination of microscopic techniques with electronic imaging and digital image processing, resulting in dramatic improvements in image quality and ease of quantitative analysis. In this review, after a brief definition of digital images and a discussion of the sampling requirements for the accurate digital recording of optical images, I discuss the three most important imaging modalities in electronic light microscopy--video-enhanced contrast microscopy, digital fluorescence microscopy and confocal scanning microscopy--considering their capabilities, their applications, and recent developments that will increase their potential. Video-enhanced contrast microscopy permits the clear visualisation and real-time dynamic recording of minute objects such as microtubules, vesicles and colloidal gold particles, an order of magnitude smaller than the resolution limit of the light microscope. It has revolutionised the study of cellular motility, and permits the quantitative tracking of organelles and gold-labelled membrane bound proteins. In combination with the technique of optical trapping (optical tweezers), it permits exquisitely sensitive force and distance measurements to be made on motor proteins. Digital fluorescence microscopy enables low-light-level imaging of fluorescently labelled specimens. Recent progress has involved improvements in cameras, fluorescent probes and fluorescent filter sets, particularly multiple bandpass dichroic mirrors, and developments in multiparameter imaging, which is becoming particularly important for in situ hybridisation studies and automated image cytometry, fluorescence ratio imaging, and time-resolved fluorescence. As software improves and small computers become more powerful, computational techniques for out-of-focus blur deconvolution and image restoration are becoming increasingly important. Confocal microscopy permits convenient, high-resolution, non-invasive, blur-free optical

  5. Robert Feulgen Prize Lecture 1995. Electronic light microscopy: present capabilities and future prospects.

    PubMed

    Shotton, D M

    1995-08-01

    Electronic light microscopy involves the combination of microscopic techniques with electronic imaging and digital image processing, resulting in dramatic improvements in image quality and ease of quantitative analysis. In this review, after a brief definition of digital images and a discussion of the sampling requirements for the accurate digital recording of optical images, I discuss the three most important imaging modalities in electronic light microscopy--video-enhanced contrast microscopy, digital fluorescence microscopy and confocal scanning microscopy--considering their capabilities, their applications, and recent developments that will increase their potential. Video-enhanced contrast microscopy permits the clear visualisation and real-time dynamic recording of minute objects such as microtubules, vesicles and colloidal gold particles, an order of magnitude smaller than the resolution limit of the light microscope. It has revolutionised the study of cellular motility, and permits the quantitative tracking of organelles and gold-labelled membrane bound proteins. In combination with the technique of optical trapping (optical tweezers), it permits exquisitely sensitive force and distance measurements to be made on motor proteins. Digital fluorescence microscopy enables low-light-level imaging of fluorescently labelled specimens. Recent progress has involved improvements in cameras, fluorescent probes and fluorescent filter sets, particularly multiple bandpass dichroic mirrors, and developments in multiparameter imaging, which is becoming particularly important for in situ hybridisation studies and automated image cytometry, fluorescence ratio imaging, and time-resolved fluorescence. As software improves and small computers become more powerful, computational techniques for out-of-focus blur deconvolution and image restoration are becoming increasingly important. Confocal microscopy permits convenient, high-resolution, non-invasive, blur-free optical

  6. Inflammatory environment and oxidized LDL convert circulating human proangiogenic cells into functional antigen-presenting cells.

    PubMed

    Vinci, Maria Cristina; Piacentini, Luca; Chiesa, Mattia; Saporiti, Federica; Colombo, Gualtiero I; Pesce, Maurizio

    2015-09-01

    The function of human circulating PACs has been described extensively. However, little focus has been placed on understanding how these cells differ in their functions in the presence of microenvironments mimicking vascular inflammation. We hypothesized that exposure to proinflammatory cytokines or the oxLDL, an autoantigen abundant in advanced atherosclerotic plaques, converts PACs into immune-modulating/proinflammatory cells. Hence, we examined the effect of oxLDL and inflammatory stimuli on their phenotype by use of a functional genomics model based on secretome and whole genome transcriptome profiling. PACs obtained from culturing a PBMC fraction in angiogenic medium were primed with DC differentiation cytokines and then exposed to proinflammatory cytokines or oxLDL. Under these conditions, PACs converted into APCs, expressed maturation markers CD80 and CD83, and showed an increased up-regulation of CD86. APCcy and APCox induced a robust T cell BrdU incorporation. Despite a similar ability to induce lymphocyte proliferation, APCcy and APCox differed for the secretory pathway and mRNA expression. Analysis of the differentially expressed genes identified 4 gene "clusters," showing reciprocal modulation in APCcy vs. APCox, justifying, according to functional genomics analyses, a different putative function of the cells in antigen processing. Together, these data show that treatment with inflammatory cytokines or oxLDL converts human PAC phenotypes and functions into that of APCs with similar lymphocyte-activating ability but distinct maturation degree and paracrine functions.

  7. Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus.

    PubMed

    Lin, Jiqiang; Yang, Lu; Silva, Hernandez Moura; Trzeciak, Alissa; Choi, Yongwon; Schwab, Susan R; Dustin, Michael L; Lafaille, Juan J

    2016-01-01

    Regulatory T-cell (Treg) selection in the thymus is essential to prevent autoimmune diseases. Although important rules for Treg selection have been established, there is controversy regarding the degree of self-reactivity displayed by T-cell receptors expressed by Treg cells. In this study we have developed a model of autoimmune skin inflammation, to determine key parameters in the generation of skin-reactive Treg cells in the thymus (tTreg). tTreg development is predominantly AIRE dependent, with an AIRE-independent component. Without the knowledge of antigen recognized by skin-reactive Treg cells, we are able to enhance skin-specific tTreg cell generation using three approaches. First, we increase medullary thymic epithelial cells by using mice lacking osteoprotegerin or by adding TRANCE (RANKL, Tnfsf11). Second, we inject intrathymically peripheral dendritic cells from skin-draining sites. Finally, we inject skin tissue lysates intrathymically. These findings have implications for enhancing the generation of organ-specific Treg cells in autoimmune diseases. PMID:26923114

  8. Assessment of Land Capability Past and Present: The Example of McNab Township.

    ERIC Educational Resources Information Center

    Parson, Helen E.

    1984-01-01

    To give students an understanding of how resource management techniques and society's perception of resources have changed, a project which compared a present-day classification of the agricultural land quality of McNab Township in Eastern Ontario (Canada) with nineteenth-century ideas about the land quality of the same area is described. (RM)

  9. Crystal structure of c5321: a protective antigen present in uropathogenic Escherichia coli strains displaying an SLR fold

    PubMed Central

    2013-01-01

    Background Increasing rates of antimicrobial resistance among uropathogens led, among other efforts, to the application of subtractive reverse vaccinology for the identification of antigens present in extraintestinal pathogenic E. coli (ExPEC) strains but absent or variable in non-pathogenic strains, in a quest for a broadly protective Escherichia coli vaccine. The protein coded by locus c5321 from CFT073 E. coli was identified as one of nine potential vaccine candidates against ExPEC and was able to confer protection with an efficacy of 33% in a mouse model of sepsis. c5321 (known also as EsiB) lacks functional annotation and structurally belongs to the Sel1-like repeat (SLR) family. Herein, as part of the general characterization of this potential antigen, we have focused on its structural properties. Results We report the 1.74 Å-resolution crystal structure of c5321 from CFT073 E. coli determined by Se-Met SAD phasing. The structure is composed of 11 SLR units in a topological organisation that highly resembles that found in HcpC from Helicobacter pylori, with the main difference residing in how the super-helical fold is stabilised. The stabilising effect of disulfide bridges in HcpC is replaced in c5321 by a strengthening of the inter-repeat hydrophobic core. A metal-ion binding site, uncharacteristic of SLR proteins, is detected between SLR units 3 and 4 in the region of the inter-repeat hydrophobic core. Crystal contacts are observed between the C-terminal tail of one molecule and the C-terminal amphipathic groove of a neighbouring one, resembling interactions between ligand and proteins containing tetratricopeptide-like repeats. Conclusions The structure of antigen c5321 presents a mode of stabilization of the SLR fold different from that observed in close homologs of known structure. The location of the metal-ion binding site and the observed crystal contacts suggest a potential role in regulation of conformational flexibility and interaction with yet

  10. The Exonuclease Domain of Lassa Virus Nucleoprotein Is Involved in Antigen-Presenting-Cell-Mediated NK Cell Responses

    PubMed Central

    Russier, Marion; Reynard, Stéphanie; Carnec, Xavier

    2014-01-01

    ABSTRACT Lassa virus is an Old World Arenavirus which causes Lassa hemorrhagic fever in humans, mostly in West Africa. Lassa fever is an important public health problem, and a safe and effective vaccine is urgently needed. The infection causes immunosuppression, probably due to the absence of activation of antigen-presenting cells (dendritic cells and macrophages), low type I interferon (IFN) production, and deficient NK cell function. However, a recombinant Lassa virus carrying D389A and G392A substitutions in the nucleoprotein that abolish the exonuclease activity and IFN activation loses its inhibitory activity and induces strong type I IFN production by dendritic cells and macrophages. We show here that during infection by this mutant Lassa virus, antigen-presenting cells trigger efficient human NK cell responses in vitro, including production of IFN-γ and cytotoxicity. NK cell activation involves close contact with both antigen-presenting cells and soluble factors. We report that infected dendritic cells and macrophages express the NKG2D ligands major histocompatibility complex (MHC) class I-related chains A and B and that they may produce interleukin-12 (IL-12), IL-15, and IL-18, all involved in NK cell functions. NK cell degranulation is significantly increased in cocultures, suggesting that NK cells seem to kill infected dendritic cells and macrophages. This work confirms the inhibitory function of Lassa virus nucleoprotein. Importantly, we demonstrate for the first time that Lassa virus nucleoprotein is involved in the inhibition of antigen-presenting cell-mediated NK cell responses. IMPORTANCE The pathogenesis and immune responses induced by Lassa virus are poorly known. Recently, an exonuclease domain contained in the viral nucleoprotein has been shown to be able to inhibit the type I IFN response by avoiding the recognition of viral RNA by cell sensors. Here, we studied the responses of NK cells to dendritic cells and macrophages infected with a

  11. Localization of DNA damage and its role in altered antigen-presenting cell function in ultraviolet-irradiated mice

    PubMed Central

    1996-01-01

    Prior ultraviolet (UV) irradiation of the site of application of hapten on murine skin reduces contact sensitization, impairs the ability of dendritic cells in the draining lymph nodes (DLN) to present antigen, and leads to development of hapten-specific suppressor T lymphocytes. We tested the hypothesis that UV-induced DNA damage plays a role in the impaired antigen-presenting activity of DLN cells. First, we assessed the location and persistence of cells containing DNA damage. A monoclonal antibody specific for cyclobutyl pyrimidine dimers (CPD) was used to identify UV-damaged cells in the skin and DLN of C3H mice exposed to UV radiation. Cells containing CPD were present in the epidermis, dermis, and DLN and persisted, particularly in the dermis, for at least 4 d after UV irradiation. When fluorescein isothiocyanate (FITC) was applied to UV-exposed skin, the DLN contained cells that were Ia+, FITC+, and CPD+; such cells from mice sensitized 3 d after UV irradiation exhibited reduced antigen-presenting function in vivo. We then assessed the role of DNA damage in UV-induced modulation of antigen-presenting cell (APC) function by using a novel method of increasing DNA repair in mouse skin in vivo. Liposomes containing T4 endonuclease V (T4N5) were applied to the site of UV exposure immediately after irradiation. This treatment prevented the impairment in APC function and reduced the number of CPD+ cells in the DLN of UV- irradiated mice. Treatment of unirradiated skin with T4N5 in liposomes or treatment of UV-irradiated skin with liposomes containing heat- inactivated T4N5 did not restore immune function. These studies demonstrate that cutaneous immune cells sustain DNA damage in vivo that persists for several days, and that FITC sensitization causes the migration of these to the DLN, which exhibits impaired APC function. Further, they support the hypothesis that DNA damage is an essential initiator of one or more of the steps involved in impaired APC function

  12. High Bandwidth Analog Applications Of Photonics: Present Capabilities And Future Possibilities

    NASA Astrophysics Data System (ADS)

    Roeske, F.

    1987-03-01

    Experimenters involved in measuring single-shot, fast-transient phenomena are fast turning toward photonics to meet their experimental needs. Photonics is the technology of generating and using light in detection, diagnostics, communications, and information processing systems. This technology includes light generation, transmission, deflection, amplification, detection, and recording and includes areas of lasers and other light sources, fiber optics, electro-optical instrumentation, and optical components and instrumentation. Photonics systems offer immense advantages and possibilities over ,Systems that use electrical signals. The advantages realized by photonics systems include increased data quality (in terms of bandwidth, resolution, reliability, and often accuracy and precision), increased data quantity, and economic and operational benefits. Single-shot, fast--transient analog measurement techniques introduce some special considerations and challenges for the experimenter that are not encountered in telecommunication applications of photonics. This overview explores some of these issues with emphasis placed on photonic sensors and data recorders. A sampling of photonics diagnostic systems is presented along with a discussion of future possibilities and challenges facing the experimenter. This exciting new field is in its infancy, and many of the diagnostic techniques presented are still evolving into yet more powerful tools for the experimenter. Single-shot, fast-transient analog photonics diagnostic techniques have experienced an almost exponential growth over the past few years and are expected to have a major impact on governmental, industrial, and academic communities involved with such measurements.

  13. Pheophorbide a-Mediated Photodynamic Therapy Triggers HLA Class I-Restricted Antigen Presentation in Human Hepatocellular Carcinoma1

    PubMed Central

    Tang, Patrick Ming-Kuen; Bui-Xuan, Ngoc-Ha; Wong, Chun-Kwok; Fong, Wing-Ping; Fung, Kwok-Pui

    2010-01-01

    The immunomodulatory effects of photodynamic therapy (PDT) have been reported in several photosensitizers. Pheophorbide a (Pa), a chlorophyll derivative, shows antitumor effects on a number of human cancers in a PDT approach (Pa-PDT); however, the potential effect of Pa-PDT on the anticancer immunity has never been studied. In the present work, the underlying action mechanism of Pa-PDT was systemically investigated with a human hepatoma cell line HepG2. We found that Pa-PDT significantly inhibited the growth of HepG2 cells with a half maximal inhibitory concentration/endoplasmic reticulum of 0.35 µM at 24 hours by the induction of apoptosis, as shown by externalization of phosphatidylserine, release of mitochondrial cytochrome c, and activation of the caspases cascade in the treated cells. Interestingly, using two-dimensional polyacrylamide gel electrophoresis analysis, a 57-kDa disulfide-isomerase-like ER resident protein (ERp57) that belongs to the HLA class I-restricted antigen-processing machinery was found to be mediated during the Pa-PDT treatment. This activation of antigen presentation was confirmed by Western blot analysis and immunostaining. Furthermore, a cross-presentation of antigen with HLA class I proteins and 70-kDa heat shock protein was found in Pa-PDT-treated cells, as shown by the confocal microscopic observation and immunoprecipitation assay. Nevertheless, the immunogenicity of HepG2 cells was increased by Pa-PDT treatment that triggered phagocytic capture by human macrophages. Our findings provide the first evidence that Pa-PDT can trigger both apoptosis and cancer immunity in the tumor host. PMID:20360936

  14. Synthetic surfaces as artificial antigen presenting cells in the study of T cell receptor triggering and immunological synapse formation.

    PubMed

    Irvine, Darrell J; Doh, Junsang

    2007-08-01

    T cell activation occurs when T cell receptors engage peptide-major histocompatibility complex (pMHC) molecules displayed on the surface of antigen presenting cells (APCs). Clustering of TCRs and other receptors in physical patterns at the T-APC interface forms a structure known as an immunological synapse (IS). Studies of the IS are challenging due to the cell-cell contact context of the governing interactions. Model surfaces as synthetic APCs have thus been developed, where the type, quantity, and physical arrangement of ligands displayed to T cells are precisely controlled. These model systems have provided important insights into the structure and function of the IS. PMID:17398113

  15. Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability.

    PubMed

    Wang, X; Eaton, M; Mayer, M; Li, H; He, D; Nelson, E; Christopher-Hennings, J

    2007-02-01

    Dendritic cells (DC) are potent antigen-presenting cells that play an important role in inducing primary antigen-specific immune responses. However, some viruses have evolved to specifically target DC to circumvent the host's immune responses for their persistence in the host. Porcine reproductive and respiratory syndrome virus (PRRSV) causes a persistent infection in susceptible animals. Although it is generally believed that the existence of PRRSV quasispecies is partly responsible for the virus persistence, other mechanisms of immune evasion or immune suppression may also exist. Here, we studied the role of DC in PRRSV persistence and immune suppression. Our results showed that PRRSV underwent a productive replication in pig monocyte-derived DC (Mo-DC) as measured by both immunofluorescence staining of viral nucleocapsid protein and virus titration assays, leading to cell death via both apoptosis and necrosis mechanisms. Additionally, PRRSV infection of Mo-DC resulted in reduced expression of MHC class I, MHC class II, CD14 and CD11b/c. This was in agreement with the impaired mixed lymphocyte reaction of PRRSV-infected Mo-DC compared to that of mock-infected Mo-DC. We also examined the cytokine profiles of PRRSV-infected Mo-DC using a quantitative ELISA method. Results indicated that no apparent change in the levels of IL-10, IL-12 and IFN-gamma was detected. Taken together, our data demonstrate that PRRSV productively infects Mo-DC and impairs the normal antigen presentation ability of Mo-DC by inducing cell death, down-regulating the expression of MHC class I, MHC class II, CD11b/c and CD14 and by inducing minimal Th1 cytokines.

  16. Identification of putative cathepsin S in mangrove red snapper Lutjanus argentimaculatus and its role in antigen presentation.

    PubMed

    Zhou, Jin; Li, Lei; Cai, Zhong-Hua

    2012-05-01

    Cathepsin S (CTSS) is a key enzyme employed in the histocompatibility complex (MHC) class II-restricted antigens, which are presented by processing class II-associated invariant chains and loaded antigen peptides into class II molecules. To date, little is known about the character and function of CTSS in fish. In the present study, we screened and identified a CTSS cDNA sequence from the mangrove red snapper head kidney cDNA library. The full-length CTSS cDNA contained 1339-bp nucleotide acids encoding 337 amino acids. The sequence shared high identity and similarity with other known cathepsins, especially CTSS (about 56-78% and 79-89%, respectively). Like other cathepsins, the deduced peptide consisted of regions with N-terminal signal peptides, propeptides, and mature peptides. A typical ERWNIN motif in L-like cathepsins and three conservative catalytic activity sites forming a catalytic triad active center were respectively identified in the pro-peptide and mature peptide regions of CTSS. Phylogenetic analysis revealed that mangrove red snapper CTSS was located in the CTSS clade belonging to the L-like cathepsin group, and evolved from the same ancestry. To further characterize the biological activity of the putative CTSS of mangrove snapper, CTSS was expressed in Escherichia coli M15 strains. Like other mammalian CTSS, the recombinant CTSS (rCTSS) had autocatalytic activation properties, can remove pro-peptides, and can release active mature peptides. Active CTSS had the ability to catalyze Z-Phe-Arg-AMC substrates in acidic conditions (pH 5.0) and weak alkaline environments (pH 7.5); this activity could be blocked by the cysteine protease inhibitor E-64. Active CTSS can process recombinant Ii chains (invariant chains) in a stepwise manner in vitro. The results indicate that mangrove red snapper CTSS is a lysosomal cysteine protease family member with a key role in antigen processing in fish.

  17. Microbe-specific unconventional T-cells induce human neutrophil differentiation into antigen cross-presenting cells

    PubMed Central

    Liuzzi, Anna Rita; Tyler, Christopher J.; Khan, Mohd Wajid A.; Szakmany, Tamas; Hall, Judith E.; Moser, Bernhard; Eberl, Matthias

    2014-01-01

    The early immune response to microbes is dominated by the recruitment of neutrophils whose primary function is to clear invading pathogens. However, there is emerging evidence that neutrophils play additional effector and regulatory roles. The present study demonstrates that human neutrophils assume antigen cross-presenting functions, and suggests a plausible scenario for the local generation of APC-like neutrophils through the mobilization of unconventional T-cells in response to microbial metabolites. Vγ9/Vδ2 T-cells and MAIT cells are abundant in blood, inflamed tissues and mucosal barriers. Here, both human cell types responded rapidly to neutrophils after phagocytosis of Gram-positive and Gram-negative bacteria producing the corresponding ligands, and in turn mediated the differentiation of neutrophils into APCs for both CD4+ and CD8+ T-cells through secretion of GM-CSF, IFN-γ and TNF-α. In patients with acute sepsis, circulating neutrophils displayed a similar APC-like phenotype and readily processed soluble proteins for cross-presentation of antigenic peptides to CD8+ T-cells, at a time when peripheral Vγ9/Vδ2 T-cells were highly activated. Our findings indicate that unconventional T-cells represent key controllers of neutrophil-driven innate and adaptive responses to a broad range of pathogens. PMID:25165152

  18. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system.

    PubMed

    Romao, Susana; Gannage, Monique; Münz, Christian

    2013-10-01

    Macroautophagy was originally discovered as a nutrient salvage pathway during starvation. By now it has not only become clear that degradation of cytoplasmic constituents via transport by autophagosomes to lysosomes can be used for innate and adaptive immunity, but that the core machinery assists antigen presentation to the immune system by a variety of vesicular transport pathways. All of these rely on the presentation of small protein waste fragments, which are generated by a variety of catabolic pathways, including macroautophagy, on major histocompatibility complex (MHC) molecules. In this review, we will point out how classical macroautophagy, as well as phagocytosis and exocytosis, which both benefit from the core autophagic machinery, assist in antigen presentation on MHC class I and II molecules to CD8+ and CD4+ T cells, respectively. Finally to high-light that macroautophagy is always intimately interconnected with cell death in addition to the various supported vesicular transport function, its role in lymphocyte, especially T cell, development and function will be discussed. From this body of work a picture is emerging that the core machinery of macroautophagy can be used for a variety of vesicular transport pathways and to modulate cell survival, besides its classical role in delivering intracellular material for lysosomal degradation.

  19. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system.

    PubMed

    Romao, Susana; Gannage, Monique; Münz, Christian

    2013-10-01

    Macroautophagy was originally discovered as a nutrient salvage pathway during starvation. By now it has not only become clear that degradation of cytoplasmic constituents via transport by autophagosomes to lysosomes can be used for innate and adaptive immunity, but that the core machinery assists antigen presentation to the immune system by a variety of vesicular transport pathways. All of these rely on the presentation of small protein waste fragments, which are generated by a variety of catabolic pathways, including macroautophagy, on major histocompatibility complex (MHC) molecules. In this review, we will point out how classical macroautophagy, as well as phagocytosis and exocytosis, which both benefit from the core autophagic machinery, assist in antigen presentation on MHC class I and II molecules to CD8+ and CD4+ T cells, respectively. Finally to high-light that macroautophagy is always intimately interconnected with cell death in addition to the various supported vesicular transport function, its role in lymphocyte, especially T cell, development and function will be discussed. From this body of work a picture is emerging that the core machinery of macroautophagy can be used for a variety of vesicular transport pathways and to modulate cell survival, besides its classical role in delivering intracellular material for lysosomal degradation. PMID:23541679

  20. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection

    PubMed Central

    English, Luc; Chemali, Magali; Duron, Johanne; Rondeau, Christiane; Laplante, Annie; Gingras, Diane; Alexander, Diane; Leib, David; Norbury, Christopher; Lippé, Roger; Desjardins, Michel

    2013-01-01

    Viral proteins are usually processed by the ‘classical’ major histocompatibility complex (MHC) class I presentation pathway. Here we showed that although macrophages infected with herpes simplex virus type 1 (HSV-1) initially stimulated CD8+ T cells by this pathway, a second pathway involving a vacuolar compartment was triggered later during infection. Morphological and functional analyses indicated that distinct forms of autophagy facilitated the presentation of HSV-1 antigens on MHC class I molecules. One form of autophagy involved a previously unknown type of autophagosome that originated from the nuclear envelope. Whereas interferon-γ stimulated classical MHC class I presentation, fever-like hyperthermia and the pyrogenic cytokine interleukin 1β activated autophagy and the vacuolar processing of viral peptides. Viral peptides in autophagosomes were further processed by the proteasome, which suggests a complex interaction between the vacuolar and MHC class I presentation pathways. PMID:19305394

  1. Corruption of dendritic cell antigen presentation during acute GVHD leads to regulatory T-cell failure and chronic GVHD.

    PubMed

    Leveque-El Mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A; Cheong, Melody; Kuns, Rachel D; Lineburg, Katie E; Teal, Bianca E; Alexander, Kylie A; Clouston, Andrew D; Blazar, Bruce R; Hill, Geoffrey R; MacDonald, Kelli P A

    2016-08-11

    Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD. PMID:27338097

  2. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    PubMed

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system. PMID:26481477

  3. Corruption of dendritic cell antigen presentation during acute GVHD leads to regulatory T-cell failure and chronic GVHD.

    PubMed

    Leveque-El Mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A; Cheong, Melody; Kuns, Rachel D; Lineburg, Katie E; Teal, Bianca E; Alexander, Kylie A; Clouston, Andrew D; Blazar, Bruce R; Hill, Geoffrey R; MacDonald, Kelli P A

    2016-08-11

    Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD.

  4. The immunodominant Eimeria acervulina sporozoite antigen previously described as p160/p240 is a 19-kilodalton antigen present in several Eimeria species.

    PubMed

    Laurent, F; Bourdieu, C; Kazanji, M; Yvoré, P; Péry, P

    1994-01-01

    A lambda Zap II cDNA expression library, constructed from Eimeria acervulina (PAPa46 strain) sporulated oocyst stage, was screened with sera raised to E. acervulina or Eimeria tenella oocysts in order to isolate clones coding for antigens common to the two species. Most of the clones isolated were derived from the same gene. Antisera raised to a recombinant glutathione-S-transferase fusion protein 1P reacted with an antigen of 19 kDa in immunoblot of E. acervulina sporulated and unsporulated oocysts. Immunofluorescence of E. acervulina sporozoites indicated that the antigen is located in the cytoplasm. The anti-1P antisera reacted on immunoblots of E. tenella with a 19-kDa antigen and by immunofluorescence on E. tenella, Eimeria maxima and Eimeria falciformis sporozoites, indicating that the antigen is conserved in Eimeria species. DNA sequencing indicated that the sequence was almost identical to that of clone cSZ1 previously described by Jenkins et al. using E. acervulina strain #12. The 1P insert hybridized to a 1150-nt mRNA from E. acervulina PAPa46 strain and strain #12, a size consistent with the observed molecular weight of the protein.

  5. Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation

    PubMed Central

    Salio, Mariolina; Ghadbane, Hemza; Dushek, Omer; Shepherd, Dawn; Cypen, Jeremy; Gileadi, Uzi; Aichinger, Michael C.; Napolitani, Giorgio; Qi, Xiaoyang; van der Merwe, P. Anton; Wojno, Justyna; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Yuan, Weiming; Cresswell, Peter; Cerundolo, Vincenzo

    2013-01-01

    Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid β-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a “lipid editor,” capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity. PMID:24248359

  6. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine.

    PubMed

    McComb, Ryan C; Ho, Chi-Lee; Bradley, Kenneth A; Grill, Laurence K; Martchenko, Mikhail

    2015-11-27

    The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines.

  7. Seoul virus suppresses NF-kappaB-mediated inflammatory responses of antigen presenting cells from Norway rats.

    PubMed

    Au, Rebecca Y; Jedlicka, Anne E; Li, Wei; Pekosz, Andrew; Klein, Sabra L

    2010-04-25

    Hantavirus infection reduces antiviral defenses, increases regulatory responses, and causes persistent infection in rodent hosts. To address whether hantaviruses alter the maturation and functional activity of antigen presenting cells (APCs), rat bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs) were generated and infected with Seoul virus (SEOV) or stimulated with TLR ligands. SEOV infected both DCs and macrophages, but copies of viral RNA, viral antigen, and infectious virus titers were higher in macrophages. The expression of MHCII and CD80, production of IL-6, IL-10, and TNF-alpha, and expression of Ifnbeta were attenuated in SEOV-infected APCs. Stimulation of APCs with poly I:C prior to SEOV infection increased the expression of activation markers and production of inflammatory cytokines and suppressed SEOV replication. Infection of APCs with SEOV suppressed LPS-induced activation and innate immune responses. Hantaviruses reduce the innate immune response potential of APCs derived from a natural host, which may influence persistence of these zoonotic viruses in the environment.

  8. The Role of XCR1 and its Ligand XCL1 in Antigen Cross-Presentation by Murine and Human Dendritic Cells

    PubMed Central

    Kroczek, Richard A.; Henn, Volker

    2012-01-01

    Recently, the chemokine receptor XCR1 has been found to be exclusively expressed on a subset of dendritic cell (DC) known to be involved in antigen cross-presentation. This review aims to summarize the known biology of the XCR1 receptor and its chemokine ligand XCL1, both in the mouse and the human. Further, any involvement of this receptor–ligand pair in antigen uptake, cross-presentation, and induction of innate and adaptive cytotoxic immunity is explored. The concept of antigen delivery to DC via the XCR1 receptor is discussed as a vaccination strategy for selective induction of cytotoxic immunity against certain pathogens or tumors. PMID:22566900

  9. Role of receptor-binding activity of the viral hemagglutinin molecule in the presentation of influenza virus antigens to helper T cells.

    PubMed Central

    Eisenlohr, L C; Gerhard, W; Hackett, C J

    1987-01-01

    The concentration of antigen required to stimulate influenza virus-specific helper T cells was observed to be dependent upon the antigenic form bearing the relevant determinant: intact, nonreplicative virus was needed only in picomolar amounts, while denatured proteins, protein fragments, or synthetic peptides were required in micromolar concentrations for a threshold level of stimulation. Antigenic efficiency of intact virus was found to result from the attachment of virus to sialic acid residues on the surface of the antigen-presenting cell since spikeless viral particles lacking the hemagglutinin molecule were much less efficient antigens for helper T cells and continuous presence of hemagglutination-inhibiting antihemagglutinin antibodies reduced efficiency of stimulation by intact virus approximately 100-fold for both hemagglutinin and internal virion proteins. Influenza virus associated rapidly with antigen-presenting cells; less than 10 min at 20 degrees C was sufficient to introduce virus for a maximal level of T-cell stimulation. This rapid attachment was blocked by antibodies to the hemagglutinin or by pretreatment of the antigen-presenting cells with neuraminidase to remove the cellular virus receptor. Following viral adsorption by antigen-presenting cells, a lag period of 30 min at 37 degrees C was required for the expression of helper T-cell determinants. One early event identified was the movement of the virus to a neuraminidase-insensitive compartment, which can occur at 10 degrees C, but which was not equivalent to expression of helper T-cell determinants. Preincubation of cells with virus at 10 degrees C for 4 h reduced the lag period of helper T-cell determinant expression to 15 min when these cells were shifted to 37 degrees C, suggesting that transition of the virus to a neuraminidase-resistant state is a required step in presentation of T-cell antigenic determinants. PMID:2952806

  10. Liver dendritic cells present bacterial antigens and produce cytokines upon Salmonella encounter.

    PubMed

    Johansson, Cecilia; Wick, Mary Jo

    2004-02-15

    The capacity of murine liver dendritic cells (DC) to present bacterial Ags and produce cytokines after encounter with Salmonella was studied. Freshly isolated, nonparenchymal liver CD11c(+) cells had heterogeneous expression of MHC class II and CD11b and a low level of CD40 and CD86 expression. Characterization of liver DC subsets revealed that CD8alpha(-)CD4(-) double negative cells constituted the majority of liver CD11c(+) ( approximately 85%) with few cells expressing CD8alpha or CD4. Flow cytometry analysis of freshly isolated CD11c(+) cells enriched from the liver and cocultured with Salmonella expressing green fluorescent protein (GFP) showed that CD11c(+) MHC class II(high) cells had a greater capacity to internalize Salmonella relative to CD11c(+) MHC class II(low) cells. Moreover, both CD8alpha(-) and CD8alpha(+) liver DC internalized bacteria with similar efficiency after both in vitro and in vivo infection. CD11c(+) cells enriched from the liver could also process Salmonella for peptide presentation on MHC class I and class II to primary, Ag-specific T cells after internalization requiring actin cytoskeletal rearrangements. Flow cytometry analysis of liver CD11c(+) cells infected with Salmonella expressing GFP showed that both CD8alpha(-) and CD8alpha(+) DC produced IL-12p40 and TNF-alpha. The majority of cytokine-positive cells did not contain bacteria (GFP(-)) whereas only a minor fraction of cytokine-positive cells were GFP(+). Furthermore, only approximately 30-50% of liver DC containing bacteria (GFP(+)) produced cytokines. Thus, liver DC can internalize and process Salmonella for peptide presentation to CD4(+) and CD8(+) T cells and elicit proinflammatory cytokine production upon Salmonella encounter, suggesting that DC in the liver may contribute to immunity against hepatotropic bacteria.

  11. Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8(+) and CD4(+) T Cells.

    PubMed

    Yin, Wenjie; Gorvel, Laurent; Zurawski, Sandra; Li, Dapeng; Ni, Ling; Duluc, Dorothée; Upchurch, Katherine; Kim, JongRok; Gu, Chao; Ouedraogo, Richard; Wang, Zhiqing; Xue, Yaming; Joo, HyeMee; Gorvel, Jean-Pierre; Zurawski, Gerard; Oh, SangKon

    2016-03-01

    Dendritic cells (DCs) are major antigen-presenting cells that can efficiently prime and cross-prime antigen-specific T cells. Delivering antigen to DCs via surface receptors is thus an appealing strategy to evoke cellular immunity. Nonetheless, which DC surface receptor to target to yield the optimal CD8(+) and CD4(+) T cell responses remains elusive. Herein, we report the superiority of CD40 over 9 different lectins and scavenger receptors at evoking antigen-specific CD8(+) T cell responses. However, lectins (e.g., LOX-1 and Dectin-1) were more efficient than CD40 at eliciting CD4(+) T cell responses. Common and distinct patterns of subcellular and intracellular localization of receptor-bound αCD40, αLOX-1 and αDectin-1 further support their functional specialization at enhancing antigen presentation to either CD8(+) or CD4(+) T cells. Lastly, we demonstrate that antigen targeting to CD40 can evoke potent antigen-specific CD8(+) T cell responses in human CD40 transgenic mice. This study provides fundamental information for the rational design of vaccines against cancers and viral infections. PMID:27077111

  12. Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8+ and CD4+ T Cells

    PubMed Central

    Yin, Wenjie; Gorvel, Laurent; Zurawski, Sandra; Li, Dapeng; Ni, Ling; Duluc, Dorothée; Upchurch, Katherine; Kim, JongRok; Gu, Chao; Ouedraogo, Richard; Wang, Zhiqing; Xue, Yaming; Joo, HyeMee; Gorvel, Jean-Pierre; Zurawski, Gerard; Oh, SangKon

    2016-01-01

    Dendritic cells (DCs) are major antigen-presenting cells that can efficiently prime and cross-prime antigen-specific T cells. Delivering antigen to DCs via surface receptors is thus an appealing strategy to evoke cellular immunity. Nonetheless, which DC surface receptor to target to yield the optimal CD8+ and CD4+ T cell responses remains elusive. Herein, we report the superiority of CD40 over 9 different lectins and scavenger receptors at evoking antigen-specific CD8+ T cell responses. However, lectins (e.g., LOX-1 and Dectin-1) were more efficient than CD40 at eliciting CD4+ T cell responses. Common and distinct patterns of subcellular and intracellular localization of receptor-bound αCD40, αLOX-1 and αDectin-1 further support their functional specialization at enhancing antigen presentation to either CD8+ or CD4+ T cells. Lastly, we demonstrate that antigen targeting to CD40 can evoke potent antigen-specific CD8+ T cell responses in human CD40 transgenic mice. This study provides fundamental information for the rational design of vaccines against cancers and viral infections. PMID:27077111

  13. B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis.

    PubMed

    Parker Harp, Chelsea R; Archambault, Angela S; Sim, Julia; Ferris, Stephen T; Mikesell, Robert J; Koni, Pandelakis A; Shimoda, Michiko; Linington, Christopher; Russell, John H; Wu, Gregory F

    2015-06-01

    B cells are increasingly regarded as integral to the pathogenesis of multiple sclerosis, in part as a result of the success of B cell-depletion therapy. Multiple B cell-dependent mechanisms contributing to inflammatory demyelination of the CNS have been explored using experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-dependent animal model for multiple sclerosis. Although B cell Ag presentation was suggested to regulate CNS inflammation during EAE, direct evidence that B cells can independently support Ag-specific autoimmune responses by CD4 T cells in EAE is lacking. Using a newly developed murine model of in vivo conditional expression of MHC class II, we reported previously that encephalitogenic CD4 T cells are incapable of inducing EAE when B cells are the sole APC. In this study, we find that B cells cooperate with dendritic cells to enhance EAE severity resulting from myelin oligodendrocyte glycoprotein (MOG) immunization. Further, increasing the precursor frequency of MOG-specific B cells, but not the addition of soluble MOG-specific Ab, is sufficient to drive EAE in mice expressing MHCII by B cells alone. These data support a model in which expansion of Ag-specific B cells during CNS autoimmunity amplifies cognate interactions between B and CD4 T cells and have the capacity to independently drive neuroinflammation at later stages of disease.

  14. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies

    PubMed Central

    Spiering, Rachel; Aguillon, Juan C.; Anderson, Amy E.; Appel, Silke; Benitez-Ribas, Daniel; ten Brinke, Anja; Broere, Femke; Cools, Nathalie; Cuturi, Maria Cristina; Diboll, Julie; Geissler, Edward K.; Giannoukakis, Nick; Gregori, Silvia; van Ham, S. Marieke; Lattimer, Staci; Marshall, Lindsay; Harry, Rachel A.; Hutchinson, James A.; Isaacs, John D.; Joosten, Irma; van Kooten, Cees; Lopez Diaz de Cerio, Ascension; Nikolic, Tatjana; Oral, Haluk Barbaros; Sofronic-Milosavljevic, Ljiljana; Ritter, Thomas; Riquelme, Paloma; Thomson, Angus W.; Trucco, Massimo; Vives-Pi, Marta; Martinez-Caceres, Eva M.

    2016-01-01

    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application. PMID:27635311

  15. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies

    PubMed Central

    Spiering, Rachel; Aguillon, Juan C.; Anderson, Amy E.; Appel, Silke; Benitez-Ribas, Daniel; ten Brinke, Anja; Broere, Femke; Cools, Nathalie; Cuturi, Maria Cristina; Diboll, Julie; Geissler, Edward K.; Giannoukakis, Nick; Gregori, Silvia; van Ham, S. Marieke; Lattimer, Staci; Marshall, Lindsay; Harry, Rachel A.; Hutchinson, James A.; Isaacs, John D.; Joosten, Irma; van Kooten, Cees; Lopez Diaz de Cerio, Ascension; Nikolic, Tatjana; Oral, Haluk Barbaros; Sofronic-Milosavljevic, Ljiljana; Ritter, Thomas; Riquelme, Paloma; Thomson, Angus W.; Trucco, Massimo; Vives-Pi, Marta; Martinez-Caceres, Eva M.

    2016-01-01

    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application.

  16. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies.

    PubMed

    Lord, Phillip; Spiering, Rachel; Aguillon, Juan C; Anderson, Amy E; Appel, Silke; Benitez-Ribas, Daniel; Ten Brinke, Anja; Broere, Femke; Cools, Nathalie; Cuturi, Maria Cristina; Diboll, Julie; Geissler, Edward K; Giannoukakis, Nick; Gregori, Silvia; van Ham, S Marieke; Lattimer, Staci; Marshall, Lindsay; Harry, Rachel A; Hutchinson, James A; Isaacs, John D; Joosten, Irma; van Kooten, Cees; Lopez Diaz de Cerio, Ascension; Nikolic, Tatjana; Oral, Haluk Barbaros; Sofronic-Milosavljevic, Ljiljana; Ritter, Thomas; Riquelme, Paloma; Thomson, Angus W; Trucco, Massimo; Vives-Pi, Marta; Martinez-Caceres, Eva M; Hilkens, Catharien M U

    2016-01-01

    Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application. PMID:27635311

  17. Presentation of high antigen-dose by splenic B220(lo) B cells fosters a feedback loop between T helper type 2 memory and antibody isotype switching.

    PubMed

    Ellis, Jason S; Guloglu, F Betul; Zaghouani, Habib

    2016-04-01

    Effective humoral immunity ensues when antigen presentation by B cells culminates in productive cooperation with T lymphocytes. This collaboration, however, remains ill-defined because naive antigen-specific B cells are rare and difficult to track in vivo. Herein, we used a defined transfer model to examine how B lymphocytes, as antigen-presenting cells, shape the development of T-cell memory suitable for generation of relevant antibody responses. Specifically, we examined how B cells presenting different doses of antigen during the initial priming phase shape the development of CD4 T-cell memory and its influence on humoral immunity. The findings indicate that B cells presenting low dose of antigen favour the development of T helper type 1 (Th1) type memory, while those presenting a high antigen dose yielded better Th2 memory cells. The memory Th2 cells supported the production of antibodies by effector B cells and promoted isotype switching to IgG1. Moreover, among the B-cell subsets tested for induction of Th2 memory, the splenic but not peritoneal B220(lo) cells were most effective in sustaining Th2 memory development as well as immunoglobulin isotype switching, and this function involved a tight control by programmed death 1-programmed death ligand 2 interactions.

  18. Interleukin-10 Modulates Antigen Presentation by Dendritic Cells through Regulation of NLRP3 Inflammasome Assembly during Chlamydia Infection

    PubMed Central

    Omosun, Yusuf; McKeithen, Danielle; Ryans, Khamia; Kibakaya, Caroline; Blas-Machado, Uriel; Li, Duo; Singh, Rajesh; Inoue, Koichi; Xiong, Zhi-Gang; Eko, Francis; Black, Carolyn; Igietseme, Joseph

    2015-01-01

    Interleukin-10 (IL-10) has been implicated in susceptibility to genital chlamydial infection and the development of tubal pathologies. IL-10 limitation also resulted in the rapid elicitation of immune responses against Chlamydia, and decreased levels of IL-10 correlated with protective anti-Chlamydia immunity. To investigate the molecular basis for these effects, we compared the reproductive pathologies and fertility rates in Chlamydia-infected wild-type (WT) and IL-10-knockout (IL-10−/−) mice; we also analyzed the expression of the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily, IL-1β production, NLRP3 inflammasome assembly and activation, and the immunostimulatory capacity and apoptotic predilection of Chlamydia-exposed dendritic cells (DCs) from WT and IL-10−/− mice. Our results revealed that, in addition to the rapid clearance of infection, genitally infected IL-10−/− mice were protected from tubal pathologies and infertility, whereas WT (IL-10+/+) mice were not. Chlamydia-pulsed IL-10−/− DCs expressed larger numbers of TLR4/IL-1R molecules and had enhanced IL-1β production. In addition, NLRP3 inflammasome assembly was suppressed in IL-10−/− DCs through the inhibition of the P2X purinoceptor 7 (P2X7) receptor (P2X7R), an ATP-gated ion channel, and a decrease in intracellular Ca2+ levels, which inhibited DC apoptosis. Thus, the potent immunostimulatory capacity of IL-10-deficient DCs is due, at least in part, to the suppression of the intracellular inflammasome assembly, which prevents DC apoptosis, allowing efficient antigen presentation. The results indicate that IL-10 deficiency enables efficient antigen presentation by DCs for rapid and enhanced immune activation against Chlamydia, which results in rapid microbial clearance, which prevents tubal pathologies during infection. Our finding has important implications for the induction of protective immunity against Chlamydia and other infectious and noninfectious

  19. Interleukin-10 modulates antigen presentation by dendritic cells through regulation of NLRP3 inflammasome assembly during Chlamydia infection.

    PubMed

    Omosun, Yusuf; McKeithen, Danielle; Ryans, Khamia; Kibakaya, Caroline; Blas-Machado, Uriel; Li, Duo; Singh, Rajesh; Inoue, Koichi; Xiong, Zhi-Gang; Eko, Francis; Black, Carolyn; Igietseme, Joseph; He, Qing

    2015-12-01

    Interleukin-10 (IL-10) has been implicated in susceptibility to genital chlamydial infection and the development of tubal pathologies. IL-10 limitation also resulted in the rapid elicitation of immune responses against Chlamydia, and decreased levels of IL-10 correlated with protective anti-Chlamydia immunity. To investigate the molecular basis for these effects, we compared the reproductive pathologies and fertility rates in Chlamydia-infected wild-type (WT) and IL-10-knockout (IL-10(-/-)) mice; we also analyzed the expression of the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily, IL-1β production, NLRP3 inflammasome assembly and activation, and the immunostimulatory capacity and apoptotic predilection of Chlamydia-exposed dendritic cells (DCs) from WT and IL-10(-/-) mice. Our results revealed that, in addition to the rapid clearance of infection, genitally infected IL-10(-/-) mice were protected from tubal pathologies and infertility, whereas WT (IL-10(+/+)) mice were not. Chlamydia-pulsed IL-10(-/-) DCs expressed larger numbers of TLR4/IL-1R molecules and had enhanced IL-1β production. In addition, NLRP3 inflammasome assembly was suppressed in IL-10(-/-) DCs through the inhibition of the P2X purinoceptor 7 (P2X7) receptor (P2X7R), an ATP-gated ion channel, and a decrease in intracellular Ca(2+) levels, which inhibited DC apoptosis. Thus, the potent immunostimulatory capacity of IL-10-deficient DCs is due, at least in part, to the suppression of the intracellular inflammasome assembly, which prevents DC apoptosis, allowing efficient antigen presentation. The results indicate that IL-10 deficiency enables efficient antigen presentation by DCs for rapid and enhanced immune activation against Chlamydia, which results in rapid microbial clearance, which prevents tubal pathologies during infection. Our finding has important implications for the induction of protective immunity against Chlamydia and other infectious and noninfectious diseases by

  20. Thrombospondin-1-dependent immune regulation by transforming growth factor-β2-exposed antigen-presenting cells.

    PubMed

    Mir, Fayaz Ahmad; Contreras-Ruiz, Laura; Masli, Sharmila

    2015-12-01

    An important role of transforming growth factor-β (TGF-β) in the development of regulatory T cells is well established. Although integrin-mediated activation of latent TGF-β1 is considered essential for the induction of regulatory T (Treg) cells by antigen-presenting cells (APCs), such an activation mechanism is not applicable to the TGF-β2 isoform, which lacks an integrin-binding RGD sequence in its latency-associated peptide. Mucosal and ocular tissues harbour TGF-β2-expressing APCs involved in Treg induction. The mechanisms that regulate TGF-β activation in such APCs remain unclear. In this study, we demonstrate that murine APCs exposed to TGF-β2 in the environment predominantly increase expression of TGF-β2. Such predominantly TGF-β2-expressing APCs use thrombospondin-1 (TSP-1) as an integrin-independent mechanism to activate their newly synthesized latent TGF-β2 to induce Foxp3(+) Treg cells both in vitro and in vivo. Expression of Treg induction by TGF-β2-expressing APCs is supported by a TSP-1 receptor, CD36, which facilitates activation of latent TGF-β during antigen presentation. Our results suggest that APC-derived TSP-1 is essential for the development of an adaptive regulatory immune response induced by TGF-β2-expressing APCs similar to those located at mucosal and ocular sites. These findings introduce the integrin-independent mechanism of TGF-β activation as an integral part of peripheral immune tolerance associated with TGF-β2-expressing tissues.

  1. Programmed Death-Ligand 1 on Antigen-presenting Cells Facilitates the Induction of Antigen-specific Cytotoxic T Lymphocytes: Application to Adoptive T-Cell Immunotherapy.

    PubMed

    Goto, Tatsunori; Nishida, Tetsuya; Takagi, Erina; Miyao, Kotaro; Koyama, Daisuke; Sakemura, Reona; Hanajiri, Ryo; Watanabe, Keisuke; Imahashi, Nobuhiko; Terakura, Seitaro; Murata, Makoto; Kiyoi, Hitoshi

    2016-10-01

    Programmed death-ligand 1 (PD-L1) binds to programmed death-1 (PD-1) on activated T cells and contributes to T-cell exhaustion. PD-L1 expressed on antigen-presenting cells (APCs) could be thought to inhibit the induction of Ag-specific cytotoxic T lymphocytes (CTLs) by transducing negative signal into T cells; however, the roles of PD-L1 on APCs have not yet been well examined. Therefore, we evaluated the roles of PD-L1 on APCs in the induction of Ag-specific CTLs. CD3 T cells isolated from cytomegalovirus (CMV)-seropositive healthy donors were stimulated with mature dendritic cells pulsed with CMV pp65-derived HLA-restricted peptides in the presence of anti-PD-L1 blocking antibody. Unexpectedly, PD-L1 blockade resulted in a less efficient induction of CMV-specific CTLs, suggesting that PD-L1 play a positive role in the induction of Ag-specific CTLs. For further evaluations and application to adoptive immunotherapy, we generated K562-based artificial APCs, which were retrovirally transduced with HLA class I molecules and various combinations of CD80/86 and PD-L1. K562/HLA+CD80/86+PD-L1 cells produced significantly higher induction of CMV-specific CTLs than K562/HLA or K562/HLA+CD80/86 cells without causing excessive differentiation or functional exhaustion of the induced CTLs, whereas PD-L1 itself did not have a stimulatory effect. Furthermore, only K562/HLA+CD80/86+PD-L1 cells pulsed with HLA-A*24:02-restricted Wilms tumor 1 (WT1) peptide clearly expanded WT1-specific CTLs from healthy donors. Our findings presumed that PD-L1 expressed on APCs along with CD80/86 enhanced the induction of Ag-specific CTLs probably depending on fine-tuning excessive stimulation of CD80/86, and that K562/HLA+CD80/86+PD-L1 cells has therapeutic potential as a novel type of artificial APCs for adoptive immunotherapy. PMID:27548033

  2. Cultured human Langerhans' cells are superior to fresh cells at presenting native HIV-1 protein antigens to specific CD4+ T-cell lines.

    PubMed Central

    Girolomoni, G; Valle, M T; Zacchi, V; Costa, M G; Giannetti, A; Manca, F

    1996-01-01

    Cultured Langerhans' cells (CLC) exhibit enhanced antigen-presenting function compared to freshly isolated LC (FLC), but they are commonly believed to be inefficient at processing intact proteins. In this study, FLC and CLC from normal, human immunodeficiency virus (HIV) seronegative volunteers were compared for their ability to present the HIV-1 envelope glycoprotein gp120 or reverse transcriptase (p66) antigens to autologous, specific CD4+ T cell lines. Epidermal cell suspensions enriched for LC were prepared from suction blister roofs. FLC stimulated T cells at lower antigen concentrations compared to unfractionated peripheral blood mononuclear cells (PBMC). CLC were more potent on a per cell basis than FLC, PBMC or adherent monocytes at presenting native gp120, native p66 or immunogenic peptides. CLC were also more efficient than FLC or PBMC in terms of the amount of antigen required for T-cell activation. Chloroquine and leupeptin inhibited presentation of intact p66, but not of an immunodominant peptide, by FLC or CLC, thus indicating that both cells utilize antigen-processing mechanisms that are based on intracellular acidification and protease activity. Incubation of CLC with monoclonal antibodies against HLA-DR, CD11b, CD18, CD50, CD54, CD58 or CD80, but not anti-major histocompatibility complex class I (MHC-I), inhibited antigen-specific T-cell proliferation to varying degrees. We conclude that human CLC retain the ability to process and present protein antigens potently to CD4+ T cells. Thus, CLC have the capacity to participate actively in the generation and maintenance of T-helper cell immunity to viral antigens during HIV-1 infection. PMID:8698396

  3. αvβ3-dependent cross-presentation of matrix metalloproteinase–2 by melanoma cells gives rise to a new tumor antigen

    PubMed Central

    Godefroy, Emmanuelle; Moreau-Aubry, Agnes; Diez, Elisabeth; Dreno, Brigitte; Jotereau, Francine; Guilloux, Yannick

    2005-01-01

    A large array of antigens that are recognized by tumor-specific T cells has been identified and shown to be generated through various processes. We describe a new mechanism underlying T cell recognition of melanoma cells, which involves the generation of a major histocompatibility complex class I–restricted epitope after tumor-mediated uptake and processing of an extracellular protein—a process referred to as cross-presentation—which is believed to be restricted to immune cells. We show that melanoma cells cross-present, in an αvβ3-dependent manner, an antigen derived from secreted matrix metalloproteinase–2 (MMP-2) to human leukocyte antigen A*0201-restricted T cells. Because MMP-2 activity is critical for melanoma progression, the MMP-2 peptide should be cross-presented by most progressing melanomas and represents a unique antigen for vaccine therapy of these tumors. PMID:15998788

  4. Assessment of the present NASA optical metrology capabilities and recommendations for establishing an in-house NASA Optical Metrology Group

    NASA Technical Reports Server (NTRS)

    Parks, Robert E.

    1991-01-01

    An investigation into when it was first recognized that there was a deficiency in NASA optical metrology oversight capability, why this deficiency existed unnoticed for so long, and a proposal for correcting the problem is presented. It is explained why this optical metrology oversight is so critical to program success and at the same time, why it is difficult to establish due to the nature of the technology. The solution proposed is the establishment of an Optics Metrology Group within the NASA/MSFC Optics Branch with a line of authority from NASA S & MA.

  5. Immune Tolerance Maintained by Cooperative Interactions between T Cells and Antigen Presenting Cells Shapes a Diverse TCR Repertoire.

    PubMed

    Best, Katharine; Chain, Benny; Watkins, Chris

    2015-01-01

    The T cell population in an individual needs to avoid harmful activation by self peptides while maintaining the ability to respond to an unknown set of foreign peptides. This property is acquired by a combination of thymic and extra-thymic mechanisms. We extend current models for the development of self/non-self discrimination to consider the acquisition of self-tolerance as an emergent system level property of the overall T cell receptor repertoire. We propose that tolerance is established at the level of the antigen presenting cell/T cell cluster, which facilitates and integrates cooperative interactions between T cells of different specificities. The threshold for self-reactivity is therefore imposed at a population level, and not at the level of the individual T cell/antigen encounter. Mathematically, the model can be formulated as a linear programing optimization problem that can be implemented as a multiplicative update algorithm, which shows a rapid convergence to a stable state. The model constrains self-reactivity within a predefined threshold, but maintains repertoire diversity and cross reactivity which are key characteristics of human T cell immunity. We show further that the size of individual clones in the model repertoire becomes heterogeneous, and that new clones can establish themselves even when the repertoire has stabilized. Our study combines the salient features of the "danger" model of self/non-self discrimination with the concepts of quorum sensing, and extends repertoire generation models to encompass the establishment of tolerance. Furthermore, the dynamic and continuous repertoire reshaping, which underlies tolerance in this model, suggests opportunities for therapeutic intervention to achieve long-term tolerance following transplantation. PMID:26300880

  6. Antigen-Specific B Cells Reactivate an Effective Cytotoxic T Cell Response against Phagocytosed Salmonella through Cross-Presentation

    PubMed Central

    de Wit, Jelle; Souwer, Yuri; Jorritsma, Tineke; Klaasse Bos, Hanny; ten Brinke, Anja; Neefjes, Jacques; van Ham, S. Marieke

    2010-01-01

    Background The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8+ T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8+ T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons. Methodology/Principal Findings Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8+ T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8+ T cells is dependent on CD4+ T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis. Conclusions/Significance B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection. PMID:20885961

  7. HLA-restricted presentation of WT1 tumor antigen in B-lymphoblastoid cell lines established using a maxi-EBV system.

    PubMed

    Kanda, T; Ochi, T; Fujiwara, H; Yasukawa, M; Okamoto, S; Mineno, J; Kuzushima, K; Tsurumi, T

    2012-08-01

    Lymphoblastoid cell lines (LCLs), which are established by in vitro infection of peripheral B-lymphocytes with Epstein-Barr virus (EBV), are effective antigen-presenting cells. However, the ability of LCLs to present transduced tumor antigens has not yet been evaluated in detail. We report a single-step strategy utilizing a recombinant EBV (maxi-EBV) to convert B-lymphocytes from any individuals into indefinitely growing LCLs expressing a transgene of interest. The strategy was successfully used to establish LCLs expressing Wilms' tumor gene 1 (WT1) tumor antigen (WT1-LCLs), which is an attractive target for cancer immunotherapy. The established WT1-LCLs expressed more abundant WT1 protein than K562 leukemic cells, which are known to overexpress WT1. A WT1-specific cytotoxic T lymphocyte line efficiently lysed the WT1-LCL in a human leukocyte antigen-restricted manner, but poorly lysed control LCL not expressing WT1. These results indicate that the transduced WT1 antigen is processed and presented on the WT1-LCL. This experimental strategy can be applied to establish LCLs expressing other tumor antigens and will find a broad range of applications in the field of cancer immunotherapy.

  8. Configuration-dependent Presentation of Multivalent IL-15:IL-15Rα Enhances the Antigen-specific T Cell Response and Anti-tumor Immunity.

    PubMed

    Hong, Enping; Usiskin, Ilana M; Bergamaschi, Cristina; Hanlon, Douglas J; Edelson, Richard L; Justesen, Sune; Pavlakis, George N; Flavell, Richard A; Fahmy, Tarek M

    2016-04-22

    Here we report a "configuration-dependent" mechanism of action for IL-15:IL-15Rα (heterodimeric IL-15 or hetIL-15) where the manner by which IL-15:IL-15Rα molecules are presented to target cells significantly affects its function as a vaccine adjuvant. Although the cellular mechanism of IL-15 trans-presentation via IL-15Rα and its importance for IL-15 function have been described, the full effect of the IL-15:IL-15Rα configuration on responding cells is not yet known. We found that trans-presenting IL-15:IL-15Rα in a multivalent fashion on the surface of antigen-encapsulating nanoparticles enhanced the ability of nanoparticle-treated dendritic cells (DCs) to stimulate antigen-specific CD8(+) T cell responses. Localization of multivalent IL-15:IL-15Rα and encapsulated antigen to the same DC led to maximal T cell responses. Strikingly, DCs incubated with IL-15:IL-15Rα-coated nanoparticles displayed higher levels of functional IL-15 on the cell surface, implicating a mechanism for nanoparticle-mediated transfer of IL-15 to the DC surface. Using artificial antigen-presenting cells to highlight the effect of IL-15 configuration on DCs, we showed that artificial antigen-presenting cells presenting IL-15:IL-15Rα increased the sensitivity and magnitude of the T cell response, whereas IL-2 enhanced the T cell response only when delivered in a paracrine fashion. Therefore, the mode of cytokine presentation (configuration) is important for optimal immune responses. We tested the effect of configuration dependence in an aggressive model of murine melanoma and demonstrated significantly delayed tumor progression induced by IL-15:IL-15Rα-coated nanoparticles in comparison with monovalent IL-15:IL-15Rα. The novel mechanism of IL-15 transfer to the surface of antigen-processing DCs may explain the enhanced potency of IL-15:IL-15Rα-coated nanoparticles for antigen delivery. PMID:26719339

  9. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity

    PubMed Central

    Slawin, Kevin M.; Levitt, Jonathan M.; Spencer, David M.

    2016-01-01

    Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in “atypical” antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways. PMID:27741278

  10. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells.

    PubMed

    Zigmond, Ehud; Varol, Chen; Farache, Julia; Elmaliah, Elinor; Satpathy, Ansuman T; Friedlander, Gilgi; Mack, Matthias; Shpigel, Nahum; Boneca, Ivo G; Murphy, Kenneth M; Shakhar, Guy; Halpern, Zamir; Jung, Steffen

    2012-12-14

    Ly6C(hi) monocytes seed the healthy intestinal lamina propria to give rise to resident CX(3)CR1(+) macrophages that contribute to the maintenance of gut homeostasis. Here we report on two alternative monocyte fates in the inflamed colon. We showed that CCR2 expression is essential to the recruitment of Ly6C(hi) monocytes to the inflamed gut to become the dominant mononuclear cell type in the lamina propria during settings of acute colitis. In the inflammatory microenvironment, monocytes upregulated TLR2 and NOD2, rendering them responsive to bacterial products to become proinflammatory effector cells. Ablation of Ly6C(hi) monocytes ameliorated acute gut inflammation. With time, monocytes differentiated into migratory antigen-presenting cells capable of priming naive T cells, thus acquiring hallmarks reminiscent of dendritic cells. Collectively, our results highlight cellular dynamics in the inflamed colon and the plasticity of Ly6C(hi) monocytes, marking them as potential targets for inflammatory bowel disease (IBD) therapy.

  11. Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation

    PubMed Central

    Yang, Weiping; Vethanayagam, R. Robert; Dong, Youyi; Cai, Qunfeng; Hu, Bo Hua

    2015-01-01

    The immune response is an important component of the cochlear response to stress. As an important player in the cochlear immune system, the basilar membrane immune cells reside on the surface of the scala tympani side of the basilar membrane. At present, the immune cell properties in this region and their responses to stress are not well understood. Here, we investigated the functional role of these immune cells in the immune response to acoustic overstimulation. This study reveals that tissue macrophages are present in the entire length of the basilar membrane under steady-state conditions. Notably, these cells in the apical and the basal sections of the basilar membrane display distinct morphologies and immune protein expression patterns. Following acoustic trauma, monocytes infiltrate into the region of the basilar membrane, and the infiltrated cells transform into macrophages. While monocyte infiltration and transformation occur in both the apical and the basal sections of the basilar membrane, only the basal monocytes and macrophages display a marked increase in the expression of MHC II and CIITA, a MHC II production cofactor, suggesting the site-dependent activation of antigen-presenting function. Consistent with the increased expression of the antigen-presenting proteins, CD4+ T cells, the antigen-presenting partner, infiltrate into the region of the basilar membrane where antigen-presenting proteins are upregulated. Further pathological analyses revealed that the basal section of the cochlea displays a greater level of sensory cell damage, which is spatially correlated with the region of antigen-presenting activity. Together, these results suggest that the antigen-presenting function of the mononuclear phagocyte population is activated in response to acoustic trauma, which could bridge the innate immune response to adaptive immunity. PMID:26102003

  12. Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization.

    PubMed

    Dillard, Pierre; Pi, Fuwei; Lellouch, Annemarie C; Limozin, Laurent; Sengupta, Kheya

    2016-03-14

    We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation.

  13. IL-4 abrogates TH17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells

    PubMed Central

    Guenova, Emmanuella; Skabytska, Yuliya; Hoetzenecker, Wolfram; Weindl, Günther; Sauer, Karin; Tham, Manuela; Kim, Kyu-Won; Park, Ji-Hyeon; Seo, Ji Hae; Ignatova, Desislava; Cozzio, Antonio; Levesque, Mitchell P.; Volz, Thomas; Köberle, Martin; Kaesler, Susanne; Thomas, Peter; Mailhammer, Reinhard; Ghoreschi, Kamran; Schäkel, Knut; Amarov, Boyko; Eichner, Martin; Schaller, Martin; Clark, Rachael A.; Röcken, Martin; Biedermann, Tilo

    2015-01-01

    Interleukin 4 (IL-4) can suppress delayed-type hypersensitivity reactions (DTHRs), including organ-specific autoimmune diseases in mice and humans. Despite the broadly documented antiinflammatory effect of IL-4, the underlying mode of action remains incompletely understood, as IL-4 also promotes IL-12 production by dendritic cells (DCs) and IFN-γ–producing TH1 cells in vivo. Studying the impact of IL-4 on the polarization of human and mouse DCs, we found that IL-4 exerts opposing effects on the production of either IL-12 or IL-23. While promoting IL-12–producing capacity of DCs, IL-4 completely abrogates IL-23. Bone marrow chimeras proved that IL-4–mediated suppression of DTHRs relies on the signal transducer and activator of transcription 6 (STAT6)-dependent abrogation of IL-23 in antigen-presenting cells. Moreover, IL-4 therapy attenuated DTHRs by STAT6- and activating transcription factor 3 (ATF3)-dependent suppression of the IL-23/TH17 responses despite simultaneous enhancement of IL-12/TH1 responses. As IL-4 therapy also improves psoriasis in humans and suppresses IL-23/TH17 responses without blocking IL-12/TH1, selective IL-4–mediated IL-23/TH17 silencing is promising as treatment against harmful inflammation, while sparing the IL-12–dependent TH1 responses. PMID:25646481

  14. Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors

    PubMed Central

    Fong, Fiona Long Yan; Kirjavainen, Pirkka V.; El-Nezami, Hani

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) cells have been shown to promote type-1 immune responsiveness; however knowledge of immunomodulation of soluble factors secreted by LGG is limited. This is the first study to investigate whether LGG soluble factors promote a comparable immune responsiveness as the bacterial cells. Both treatments − LGG conditioned medium with (CM + LGG) or without (CM) LGG cells, in this study increased expression of several toll-like receptors (TLRs) in all studied cell types and antigen presentation-associated receptor HLA-DR in macrophages and “intermediate” monocytes; but decreased that of activation markers on monocytes and macrophages and production of IL-10, IL-12 and TNFα in macrophages. In co-culture with mononuclear cells, CM increased Th1-type cytokine profile but not as pronounced as CM + LGG. This study suggests that LGG soluble factors exert similar immunomodulatory effects as the intact cells, but cells may be required for optimal type-1 immune responsiveness polarizing capacity of this probiotic strain. PMID:26961406

  15. The Effect of the Nonionic Block Copolymer Pluronic P85 on Gene Expression in Mouse Muscle and Antigen Presenting Cells

    PubMed Central

    Gaymalov, Zagit Z.; Yang, Zhihui; Pisarev, Vladimir M.; Alakhov, Valery Yu.; Kabanov, Alexander V.

    2008-01-01

    DNA vaccines can be greatly improved by polymer agents that simultaneously increase transgene expression and activate immunity. We describe here Pluronic P85 (P85), a triblock copolymer of ethylene oxide (EO) and propylene oxide (PO) EO26-PO40-EO26,. Using a mouse model we demonstrate that co-administration of a bacterial plasmid DNA with P85 in a skeletal muscle greatly increases gene expression in the injection site and distant organs, especially the draining lymph nodes and spleen. The reporter expression colocalizes with the specific markers of myocytes and keratinocytes in the muscle, as well as dendritic cells (DC) and macrophages in the muscle, lymph nodes and spleen. Furthermore, DNA/P85 and P85 alone increase the systemic expansion of CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural killer) cell populations. DNA/P85 (but not P85) also increases maturation of local DC (CD11c+CD86+, CD11c+CD80+, and CD11c+CD40+). We suggest that DNA/P85 promotes the activation and recruitment of the antigen-presenting cells, which further incorporate, express and carry the transgene to the immune system organs. PMID:19064283

  16. The immunophenotype of antigen presenting cells of the mononuclear phagocyte system in normal human liver--a systematic review.

    PubMed

    Strauss, Otto; Dunbar, P Rod; Bartlett, Adam; Phillips, Anthony

    2015-02-01

    The mononuclear phagocytic system (MPS), comprised of monocytes, macrophages, and dendritic cells, is essential in tissue homeostasis and in determining the balance of the immune response through its role in antigen presentation. It has been identified as a therapeutic target in infectious disease, cancer, autoimmune disease and transplant rejection. Here, we review the current understanding of the immunophenotype and function of the MPS in normal human liver. Using well-defined selection criteria, a search of MEDLINE and EMBASE databases identified 76 appropriate studies. The majority (n=67) described Kupffer cells (KCs), although the definition of KC differs between sources, and little data were available regarding their function. Only 10 papers looked at liver dendritic cells (DCs), and largely confirmed the presence of the major dendritic cell subsets identified in human blood. Monocytes were thoroughly characterized in four studies that utilized flow cytometry and fluorescent microscopy and highlighted their prominent role in liver homeostasis and displayed subtle differences from circulating monocytes. There was some limited evidence that liver DCs are tolerogenic but neither liver dendritic cell subsets nor macrophages have been thoroughly characterized, using either multi-colour flow cytometry or multi-parameter fluorescence microscopy. The lobular distribution of different subsets of liver MPS cells was also poorly described, and the ability to distinguish between passenger leukocytes and tissue resident cells remains limited. It was apparent that further research, using modern immunological techniques, is now required to accurately characterize the cells of the MPS in human liver.

  17. The 2.5 Å Structure of CD1c in Complex with a Mycobacterial Lipid Reveals an Open Groove Ideally Suited for Diverse Antigen Presentation

    SciTech Connect

    Scharf, Louise; Li, Nan-Sheng; Hawk, Andrew J.; Garzón, Diana; Zhang, Tejia; Fox, Lisa M.; Kazen, Allison R.; Shah, Sneha; Haddadian, Esmael J.; Gumperz, Jenny E.; Saghatelian, Alan; Faraldo-Gómez, José D.; Meredith, Stephen C.; Piccirilli, Joseph A.; Adams, Erin J.

    2011-08-24

    CD1 molecules function to present lipid-based antigens to T cells. Here we present the crystal structure of CD1c at 2.5 {angstrom} resolution, in complex with the pathogenic Mycobacterium tuberculosis antigen mannosyl-{beta}1-phosphomycoketide (MPM). CD1c accommodated MPM's methylated alkyl chain exclusively in the A pocket, aided by a unique exit portal underneath the {alpha}1 helix. Most striking was an open F pocket architecture lacking the closed cavity structure of other CD1 molecules, reminiscent of peptide binding grooves of classical major histocompatibility complex molecules. This feature, combined with tryptophan-fluorescence quenching during loading of a dodecameric lipopeptide antigen, provides a compelling model by which both the lipid and peptide moieties of the lipopeptide are involved in CD1c presentation of lipopeptides.

  18. Inhibition of antigen-induced proliferation of T cells from radiation-induced bone marrow chimeras by a monoclonal antibody directed against an Ia determinant on the antigen-presenting cell.

    PubMed Central

    Longo, D L; Schwartz, R H

    1981-01-01

    Chimeric B10.A T cells that had matured in a (B10.A X B10.Q)F1 environment acquired the ability to respond to poly(Glu56Lys35Phe9) (GL pi), an antigen to which the B10.A mouse is a nonresponder. The response of the chimeric B10.A T cells was initiated by GL phi on responder B10.Q antigen-presenting cells (APC) but not by GL phi on nonresponder B10.A APC. Similarly, chimeric B10.Q T cells that had matured in a (B10.A X B10.Q)F1 environment acquired the ability to respond to poly(Glu60Ala30Tyr10) (GAT) when the antigen was presented on responder B10.A APC, but not when GAT was presented on nonresponder B10.Q APC. No syngeneic haplotype preference was observed for either antigen. These interactions between H-2 nonidentical T cells and APC were inhibited by anti-H-2 antisera and a monoclonal anti-Ia antibody directed against the APC but not by such antibodies when they were directed against the T cell. These data suggest that, when they develop in a responder chimeric environment, genotypic nonresponder T cells become responders by acquiring receptors that allow them to recognize responder I region products on the surface of APC. Furthermore, the data demonstrate that the site of action of the blocking effects of the anti-Ia antibodies is the APC, thus providing strong evidence in support of the idea that Ia antigens on APC are the Ir gene products. PMID:6165995

  19. Disruption of HLA class II antigen presentation in Burkitt lymphoma: implication of a 47,000 MW acid labile protein in CD4+ T-cell recognition.

    PubMed

    God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul

    2014-07-01

    While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4(+) T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4(+) T cells via the HLA class II pathway. This defect in CD4(+) T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4(+) T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II-peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4(+) T-cell recognition. Biochemical analysis showed that these molecules were greater than 30,000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47,000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies.

  20. PD-1 on Immature and PD-1 Ligands on Migratory Human Langerhans Cells Regulate Antigen-Presenting Cell Activity

    PubMed Central

    Peña-Cruz, Victor; McDonough, Sean M.; Diaz-Griffero, Felipe; Crum, Christopher P.; Carrasco, Ruben D.; Freeman, Gordon J.

    2010-01-01

    Langerhans cells (LCs) are known as “sentinels” of the immune system that function as professional antigen-presenting cells (APCs) after migration to draining lymph node. LCs are proposed to have a role in tolerance and the resolution of cutaneous immune responses. The Programmed Death-1 (PD-1) receptor and its ligands, PD-L1 and PD-L2, are a co-inhibitory pathway that contributes to the negative regulation of T-lymphocyte activation and peripheral tolerance. Surprisingly, we found PD-1 to be expressed on immature LCs (iLCs) in situ. PD-1 engagement on iLCs reduced IL-6 and macrophage inflammatory protein (MIP)-1α cytokine production in response to TLR2 signals but had no effect on LC maturation. PD-L1 and PD-L2 were expressed at very low levels on iLCs. Maturation of LCs upon migration from epidermis led to loss of PD-l expression and gain of high expression of PD-L1 and PD-L2 as well as co-stimulatory molecules. Blockade of PD-L1 and/or PD-L2 on migratory LCs (mLCs) and DDCs enhanced T-cell activation, as has been reported for other APCs. Thus the PD-1 pathway is active in iLCs and inhibits iLC activities, but expression of receptor and ligands reverses upon maturation and PD-L1 and PD-L2 on mLC function to inhibit T-cell responses. PMID:20445553

  1. Interethnic Differences in Antigen-Presenting Cell Activation and TLR Responses in Malian Children during Plasmodium falciparum Malaria

    PubMed Central

    Boström, Stéphanie; Dara, Victor; Traore, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Varani, Stefania; Troye-Blomberg, Marita

    2011-01-01

    The Fulani ethnic group from West Africa is relatively better protected against Plasmodium falciparum malaria as compared to other sympatric ethnic groups, such as the Dogon. However, the mechanisms behind this lower susceptibility to malaria are largely unknown, particularly those concerning innate immunity. Antigen-presenting cells (APCs), and in particular dendritic cells (DCs) are important components of the innate and adaptive immune systems. Therefore, in this study we investigated whether APCs obtained from Fulani and Dogon children exhibited differences in terms of activation status and toll-like receptor (TLR) responses during malaria infection. Lower frequency and increased activation was observed in circulating plasmacytoid DCs and BDCA-3+ myeloid DCs of infected Fulani as compared to their uninfected counterparts. Conversely, a higher frequency and reduced activation was observed in the same DC subsets obtained from peripheral blood of P. falciparum-infected Dogon children as compared to their uninfected peers. Moreover, infected individuals of both ethnic groups exhibited higher percentages of both classical and inflammatory monocytes that were less activated as compared to their non-infected counterparts. In line with APC impairment during malaria infection, TLR4, TLR7 and TLR9 responses were strongly inhibited by P. falciparum infection in Dogon children, while no such TLR inhibition was observed in the Fulani children. Strikingly, the TLR-induced IFN-γ release was completely abolished in the Dogon undergoing infection while no difference was seen within infected and non-infected Fulani. Thus, P. falciparum infection is associated with altered activation status of important APC subsets and strongly inhibited TLR responses in peripheral blood of Dogon children. In contrast, P. falciparum induces DC activation and does not affect the innate response to specific TLR ligands in Fulani children. These findings suggest that DCs and TLR signalling may be

  2. Interethnic differences in antigen-presenting cell activation and TLR responses in Malian children during Plasmodium falciparum malaria.

    PubMed

    Arama, Charles; Giusti, Pablo; Boström, Stéphanie; Dara, Victor; Traore, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Varani, Stefania; Troye-Blomberg, Marita

    2011-03-31

    The Fulani ethnic group from West Africa is relatively better protected against Plasmodium falciparum malaria as compared to other sympatric ethnic groups, such as the Dogon. However, the mechanisms behind this lower susceptibility to malaria are largely unknown, particularly those concerning innate immunity. Antigen-presenting cells (APCs), and in particular dendritic cells (DCs) are important components of the innate and adaptive immune systems. Therefore, in this study we investigated whether APCs obtained from Fulani and Dogon children exhibited differences in terms of activation status and toll-like receptor (TLR) responses during malaria infection. Lower frequency and increased activation was observed in circulating plasmacytoid DCs and BDCA-3+ myeloid DCs of infected Fulani as compared to their uninfected counterparts. Conversely, a higher frequency and reduced activation was observed in the same DC subsets obtained from peripheral blood of P. falciparum-infected Dogon children as compared to their uninfected peers. Moreover, infected individuals of both ethnic groups exhibited higher percentages of both classical and inflammatory monocytes that were less activated as compared to their non-infected counterparts. In line with APC impairment during malaria infection, TLR4, TLR7 and TLR9 responses were strongly inhibited by P. falciparum infection in Dogon children, while no such TLR inhibition was observed in the Fulani children. Strikingly, the TLR-induced IFN-γ release was completely abolished in the Dogon undergoing infection while no difference was seen within infected and non-infected Fulani. Thus, P. falciparum infection is associated with altered activation status of important APC subsets and strongly inhibited TLR responses in peripheral blood of Dogon children. In contrast, P. falciparum induces DC activation and does not affect the innate response to specific TLR ligands in Fulani children. These findings suggest that DCs and TLR signalling may be

  3. Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule.

    PubMed

    Wynne, James W; Woon, Amanda P; Dudek, Nadine L; Croft, Nathan P; Ng, Justin H J; Baker, Michelle L; Wang, Lin-Fa; Purcell, Anthony W

    2016-06-01

    Bats are a major reservoir of emerging and re-emerging infectious diseases, including severe acute respiratory syndrome-like coronaviruses, henipaviruses, and Ebola virus. Although highly pathogenic to their spillover hosts, bats harbor these viruses, and a large number of other viruses, with little or no clinical signs of disease. How bats asymptomatically coexist with these viruses is unknown. In particular, little is known about bat adaptive immunity, and the presence of functional MHC molecules is mostly inferred from recently described genomes. In this study, we used an affinity purification/mass spectrometry approach to demonstrate that a bat MHC class I molecule, Ptal-N*01:01, binds antigenic peptides and associates with peptide-loading complex components. We identified several bat MHC class I-binding partners, including calnexin, calreticulin, protein disulfide isomerase A3, tapasin, TAP1, and TAP2. Additionally, endogenous peptide ligands isolated from Ptal-N*01:01 displayed a relatively broad length distribution and an unusual preference for a C-terminal proline residue. Finally, we demonstrate that this preference for C-terminal proline residues was observed in Hendra virus-derived peptides presented by Ptal-N*01:01 on the surface of infected cells. To our knowledge, this is the first study to identify endogenous and viral MHC class I ligands for any bat species and, as such, provides an important avenue for monitoring and development of vaccines against major bat-borne viruses both in the reservoir and spillover hosts. Additionally, it will provide a foundation to understand the role of adaptive immunity in bat antiviral responses. PMID:27183594

  4. Mannose-based molecular patterns on stealth microspheres for receptor-specific targeting of human antigen-presenting cells.

    PubMed

    Wattendorf, Uta; Coullerez, Géraldine; Vörös, Janos; Textor, Marcus; Merkle, Hans P

    2008-10-21

    The targeting of antigen-presenting cells has recently gained strong attention for both targeted vaccine delivery and immunomodulation. We prepared surface-modified stealth microspheres that display various mannose-based ligands at graded ligand densities to target phagocytic C-type lectin receptors (CLRs) on human dendritic cells (DCs) and macrophages. Decoration of microspheres with carbohydrate ligands was achieved (i) by electrostatic surface assembly of mannan onto previously formed adlayers of poly( l-lysine) (PLL) or a mix of PLL and poly( l-lysine)- graft-poly(ethylene glycol) (PLL-PEG), or (ii) through assembly of PLL-PEG equipped with small substructure mannoside ligands, such as mono- and trimannose, as terminal substitution of the PEG chains. Microspheres carrying mannoside ligands were also studied in combination with an integrin-targeting RGD peptide ligand. Because of the presence of a mannan or PEG corona, such microspheres were protected against protein adsorption and opsonization, thus allowing the formation of specific ligand-receptor interactions. Mannoside density was the major factor for the phagocytosis of mannoside-decorated microspheres, although with limited efficiency. This strengthens the recent hypothesis by other authors that the mannose receptor (MR) only acts as a phagocytic receptor when in conjunction with yet unidentified partner receptor(s). Analysis of DC surface markers for maturation revealed that neither surface-assembled mannan nor mannoside-modified surfaces on the microspheres could stimulate DC maturation. Thus, phagocytosis upon recognition by CLRs alone cannot trigger DC activation toward a T helper response. The microparticulate platform established in this work represents a promising tool for systematic investigations of specific ligand-receptor interactions upon phagocytosis, including the screening for potential ligands and ligand combinations in the context of vaccine delivery and immunomodulation.

  5. Structural Characteristics and Antioxidative Capability of the Soluble Polysaccharides Present in Dictyophora indusiata (Vent. Ex Pers.) Fish Phallaceae

    PubMed Central

    Ker, Yaw-Bee; Chen, Kuan-Chou; Peng, Chiung-Chi; Hsieh, Chiu-Lan; Peng, Robert Y.

    2011-01-01

    Dictyophora indusiata (Vent. ex Pers.) Fish Phallaceae (Chinese name Zhu-Sūn, the bamboo fungi) has been used as a medicinal mushroom to treat many inflammatory, gastric and neural diseases since 618 AD in China. We hypothesize that the soluble polysaccharides (SP) present in D. indusiata and their monosaccharide profiles can act as an important role affecting the antioxidative capability, which in turn would influence the biological activity involving anti-inflammatory, immune enhancing and anticancer. We obtained six SP fractions and designated them as D1, a galactoglucan; D2, a galactan; D3, the isoelectrically precipitated riboglucan from 2% NaOH; D4, a myoinositol; D5 and D6, the mannogalactans. The total SP accounted for 37.44% w/w, their molecular weight (MW) ranged within 801–4656 kDa. D3, having the smallest MW 801 kDa, exhibited the most potent scavenging effect against the α,α-diphenyl-β-picrylhydrazyl, •OH−, and •O2− radicals, yielding IC50 values 0.11, 1.02 and 0.64 mg mL−1, respectively. Thus we have confirmed our hypothesis that the bioactivity of D. indusiata is related in majority, if not entirely, to its soluble polysaccharide type regarding the MW and monosaccharide profiles. PMID:21799678

  6. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells.

    PubMed

    Rancan, Fiorenza; Amselgruber, Sarah; Hadam, Sabrina; Munier, Sevérine; Pavot, Vincent; Verrier, Bernard; Hackbarth, Steffen; Combadiere, Behazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2014-02-28

    Transcutaneous immunization is a promising vaccination strategy for the treatment of infectious diseases and cancer. In this study, we investigate the combination of cyanoacrylate skin surface stripping (CSSS) and particle-based antigen delivery to target the HIV-1 p24 protein to skin antigen presenting cells (APC). The CSSS treatment pre-activates skin APC and opens hair follicles, where protein-loaded particles accumulate and allow for sustained delivery of the loaded antigen to perifollicular APC. We found that poly-lactic acid (PLA) and polystyrene (PS) particles targeted the adsorbed HIV-1 p24 protein to the hair follicles. Small amounts of PS and PLA particles were found to translocate to the epidermis and be internalized by skin cells, whereas most of the particles aggregated in the hair follicle canal, where they released the loaded antigen. The p24 protein diffused to the epidermis and dermis and was detected in skin cells, especially in Langerhans cells and dermal dendritic cells. Furthermore, the combination of CSSS and particle-based delivery resulted in activation and maturation of Langerhans cells (HLA-DR, CD80 and CD83). We conclude that particle-based antigen delivery across partially disrupted skin barrier is a feasible and effective approach to needle-free transcutaneous vaccination. PMID:24384300

  7. T lymphocyte responses to anti-neutrophil cytoplasmic autoantibody (ANCA) antigens are present in patients with ANCA-associated systemic vasculitis and persist during disease remission

    PubMed Central

    King, W J; Brooks, C J; Holder, R; Hughes, P; Adu, D; Savage, C O S

    1998-01-01

    ANCA with specificity for myeloperoxidase (MPO) and proteinase 3 (PR3) are present in patients with systemic vasculitis. The aim of this work was to determine whether such patients have T cell responses to these antigens and whether these responses are related to disease activity. Peripheral blood lymphocytes from 45 patients and 19 controls were cultured with ANCA antigens and proliferation measured. The antigens used were heat-inactivated (HI) MPO, HI PR3, native (non-HI) PR3, HI whole α-granules, and 25 overlapping peptides covering the entire PR3 sequence. Significant responses to both whole PR3 preparations were seen from patient and control groups, and to the α-granules from the patient group. Patients responded at all stages of disease: active, remitting, treated or untreated. Only two patients responded significantly to MPO. Responses were significantly higher with the patient group than the control group to all four whole ANCA antigens. Responses to those PR3 peptides containing epitopes known to be recognized by ANCA were detected from one patient. Thus, these studies demonstrate that T cells from vasculitis patients can proliferate to PR3 and occasionally to associated ANCA antigens. Further, responses may persist even after disease remission has been achieved. PMID:9649227

  8. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells.

    PubMed

    Rancan, Fiorenza; Amselgruber, Sarah; Hadam, Sabrina; Munier, Sevérine; Pavot, Vincent; Verrier, Bernard; Hackbarth, Steffen; Combadiere, Behazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2014-02-28

    Transcutaneous immunization is a promising vaccination strategy for the treatment of infectious diseases and cancer. In this study, we investigate the combination of cyanoacrylate skin surface stripping (CSSS) and particle-based antigen delivery to target the HIV-1 p24 protein to skin antigen presenting cells (APC). The CSSS treatment pre-activates skin APC and opens hair follicles, where protein-loaded particles accumulate and allow for sustained delivery of the loaded antigen to perifollicular APC. We found that poly-lactic acid (PLA) and polystyrene (PS) particles targeted the adsorbed HIV-1 p24 protein to the hair follicles. Small amounts of PS and PLA particles were found to translocate to the epidermis and be internalized by skin cells, whereas most of the particles aggregated in the hair follicle canal, where they released the loaded antigen. The p24 protein diffused to the epidermis and dermis and was detected in skin cells, especially in Langerhans cells and dermal dendritic cells. Furthermore, the combination of CSSS and particle-based delivery resulted in activation and maturation of Langerhans cells (HLA-DR, CD80 and CD83). We conclude that particle-based antigen delivery across partially disrupted skin barrier is a feasible and effective approach to needle-free transcutaneous vaccination.

  9. Latex bead-based artificial antigen-presenting cells induce tumor-specific CTL responses in the native T-cell repertoires and inhibit tumor growth.

    PubMed

    Shen, Chuanlai; Cheng, Kai; Miao, Shenwei; Wang, Wei; He, Yong; Meng, Fanyan; Zhang, Jianqiong

    2013-02-01

    Cell-free artificial antigen-presenting cells (aAPCs) were generated by coupling H-2K(b)/TRP2 tetramers together with anti-CD28 and anti-4-1BB antibodies onto cell-sized latex beads and injected intravenously and subcutaneously into naïve mice and antigen-primed mice (B6, H-2K(b)). Vigorous tumor antigen-specific CTL responses in the native T-cell repertoire in each mouse model were elicited as evaluated by measuring surface CD69 and CD25, intracellular IFN-γ, tetramer staining and cytolysis of melanoma cells. Furthermore, the aAPCs efficiently inhibited subcutaneous tumor growth and markedly delayed tumor progression in tumor-bearing mice. These data suggest that bead-based aAPCs represent a potential strategy for the active immunotherapy of cancers or persistent infections. PMID:23328744

  10. Modular Three-component Delivery System Facilitates HLA Class I Antigen Presentation and CD8(+) T-cell Activation Against Tumors.

    PubMed

    Umlauf, Benjamin J; Chung, Chin-Ying; Brown, Kathlynn C

    2015-06-01

    Cell-mediated immunotherapies have potential as stand-alone and adjuvant therapies for cancer. However, most current protocols suffer from one or more of three major issues: cost, safety, or efficacy. Here we present a nanoparticle delivery system that facilitates presentation of an immunogenic measles antigen specifically in cancer cells. The delivery system does not contain viral particles, toxins, or biologically derived material. Treatment with this system facilitates activation of a secondary immune response against cancer cells, bypassing the need to identify tumor-associated antigens or educate the immune system through a primary immune response. The delivery system consists of a stealth liposome displaying a cancer-specific targeting peptide, named H1299.3, on its exterior surface and encapsulating H250, an immunogenic human leukocyte antigen class 1 restricted peptide. This targeted-nanoparticle facilitates presentation of the H250 peptide in major histocompatibility complex class I molecules. Activation is dependent on the targeting peptide, previous antigen exposure, and utilizes a novel autophagy-mediated mechanism to facilitate presentation. Treatment with this liposome results in a significant reduction of tumor growth using an aggressive LLC1 model in vaccinated C57BL/6 mice. These data provide proof-of-principle for a novel cell-mediated immunotherapy that is scalable, contains no biologically derived material, and is an efficacious cancer therapy.

  11. Vesicular Stomatitis Virus Matrix Protein Impairs CD1d-Mediated Antigen Presentation through Activation of the p38 MAPK Pathway▿

    PubMed Central

    Renukaradhya, Gourapura J.; Khan, Masood A.; Shaji, Daniel; Brutkiewicz, Randy R.

    2008-01-01

    Natural killer T (NKT) cells are unique T lymphocytes that recognize CD1d-bound lipid antigens and play an important role in both innate and acquired immune responses against infectious diseases and tumors. We have already shown that a vesicular stomatitis virus (VSV) infection results in the rapid inhibition of murine CD1d-mediated antigen presentation to NKT cells. In the present study, it was found that the VSV matrix (VSV-M) protein is an important element in this decrease in antigen presentation postinfection. The VSV-M protein altered the intracellular distribution of murine CD1d molecules, resulting in qualitative (but not quantitative) changes in cell surface CD1d expression. The M protein was distributed throughout the infected cell, and it was found to activate the mitogen-activated protein kinase (MAPK) p38 very early postinfection. Infection of CD1d+ cells with a temperature-sensitive VSV-M mutant at the nonpermissive temperature both substantially reversed the inhibition of antigen presentation by CD1d and delayed the activation of p38. Thus, the VSV-M protein plays an important role in permitting the virus to evade important components of the innate immune response by regulating specific MAPK pathways. PMID:18815300

  12. Regulation of Lipid Specific and Vitamin Specific Non-MHC Restricted T Cells by Antigen Presenting Cells and Their Therapeutic Potentials

    PubMed Central

    Salio, Mariolina; Cerundolo, Vincenzo

    2015-01-01

    Since initial reports, more than 25 years ago, that T cells recognize lipids in the context on non-polymorphic CD1 molecules, our understanding of antigen presentation to non-peptide-specific T cell populations has deepened. It is now clear that αβ T cells bearing semi-invariant T cell receptor, as well as subsets of γδ T cells, recognize a variety of self and non-self lipids and contribute to shaping immune responses via cross talk with dendritic cells and B cells. Furthermore, it has been demonstrated that small molecules derived from the microbial riboflavin biosynthetic pathway (vitamin B2) bind monomorphic MR1 molecules and activate mucosal-associated invariant T cells, another population of semi-invariant T cells. Novel insights in the biological relevance of non-peptide-specific T cells have emerged with the development of tetrameric CD1 and MR1 molecules, which has allowed accurate enumeration and functional analysis of CD1- and MR1-restricted T cells in humans and discovery of novel populations of semi-invariant T cells. The phenotype and function of non-peptide-specific T cells will be discussed in the context of the known distribution of CD1 and MR1 molecules by different subsets of antigen-presenting cells at steady state and following infection. Concurrent modulation of CD1 transcription and lipid biosynthetic pathways upon TLR stimulation, coupled with efficient lipid antigen processing, result in the increased cell surface expression of antigenic CD1–lipid complexes. Similarly, MR1 expression is almost undetectable in resting APC and it is upregulated following bacterial infection, likely due to stabilization of MR1 molecules by microbial antigens. The tight regulation of CD1 and MR1 expression at steady state and during infection may represent an important mechanism to limit autoreactivity, while promoting T cell responses to foreign antigens. PMID:26284072

  13. Pivotal Advance: Peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells

    PubMed Central

    Parra, David; Rieger, Aja M.; Li, Jun; Zhang, Yong-An; Randall, Louise M.; Hunter, Christopher A.; Barreda, Daniel R.; Sunyer, J. Oriol

    2012-01-01

    Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4+ T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4+ T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages. PMID:22058420

  14. Parasite Manipulation of the Invariant Chain and the Peptide Editor H2-DM Affects Major Histocompatibility Complex Class II Antigen Presentation during Toxoplasma gondii Infection.

    PubMed

    Leroux, Louis-Philippe; Nishi, Manami; El-Hage, Sandy; Fox, Barbara A; Bzik, David J; Dzierszinski, Florence S

    2015-10-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4(+) T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4(+) T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549

  15. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells.

    PubMed

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A

    2015-08-18

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.

  16. Gene complementation in the T-lymphocyte proliferative response to poly (Glu55Lys36Phe9)n. A demonstration that both immune response gene products must be expressed in the same antigen-presenting cell

    PubMed Central

    1979-01-01

    The immune response (Ir) to the random copolymer GLphi depends upon the function of two Ir genes, Ir-GLphi-beta[beta] and Ir-GLphi- alpha[alpha], mapped to the I-A and I-E/C subregions of the major histocompatibility complex, respectively. In this paper, the site(s) of expression of the products of these two Ir genes was examined by evaluating T-lymphocyte proliferative responses of bone marrow radiation chimeras. Chimeras were created in [alpha+beta- X alpha- beta+]F1 responder mice by lethal irradiation and reconstitution with a mixture of bone marrow cells from both parental strains. These chimeras failed to respond to GLphi, although they were capable or responding to the much weaker antigens, (T,G)-A--L, TEPC-15, pigeon cytochrome c, and (H,G)-A--L. This failure to respond to GLphi was shown not to be the result of a cryptic mixed lymphocyte reaction, as similar chimeras created in (alpha+beta+ X alpha-beta+)F1 mice responded well to GLphi, although they possessed almost the same potential histoincompatibility. Furthermore, the lack of response to GLphi could not be attributed to a general failure of the two parental cell types in the chimeras to collaboratc with each other, as each chimeric parental cell type could respond to dinitrophenyl conjugated ovalbumin presented on nonimmune spleen cells from the other parent. Thus, the failure of low responder parental into F1 high responder chimeras to generate an immune response to GLphi suggests that immune competence for this antigen requires at least one cell type in the immune system to express gene products of both the Ir-glphi-alpha and -beta genes, i.e. one cell must be of high responder genotype. The the antigen-presenting cell is one such cell type was shown by experiments in which GLphi-primed T lymphocytes from responder F1 mice were stimulated with antigen bound to nonimmune spleen cells. Only spleen cells from responder F1 and recombinant mice could present GLphi. Neither of the two complementing

  17. Monocyte-derived dendritic cells from cirrhotic patients retain similar capacity for maturation/activation and antigen presentation as those from healthy subjects☆

    PubMed Central

    Tanoue, Shiroh; Chang, Li-Yuan; Li, Yonghai; Kaplan, David E.

    2015-01-01

    Few studies have investigated the impact of liver cirrhosis on dendritic cell function. The purpose of this study was to compare the activation and antigen-presentation capacity of monocyte-derived dendritic cells (MoDC) from cirrhotic patients (CIR) relative to healthy donors (HD). MoDC from CIR and HD were matured, phenotyped, irradiated and pulsed with 15mer peptides for two hepatocellular carcinoma-related antigens, alphafetoprotein and glypican-3, then co-cultured with autologous T-cells. Expanded T-cells were evaluated by interferon-gamma ELISPOT and intracellular staining. 15 CIR and 7 HD were studied. While CD14+ monocytes from CIR displayed enhanced M2 polarization, under MoDC-polarizing conditions, we identified no significant difference between HD and CIR in maturation-induced upregulation of co-stimulation markers. Furthermore, no significant differences were observed between CIR and HD in subsequent expansion of tumor antigen-specific IFNγ+ T-cells. Conclusion MoDCs isolated from cirrhotic individuals retain similar capacity for in vitro activation, maturation and antigen-presentation as those from healthy donors. PMID:25734547

  18. Evaluation of a new syringe presentation of reduced-antigen content diphtheria, tetanus, and acellular pertussis vaccine in healthy adolescents - A single blind randomized trial

    PubMed Central

    Pavia-Ruz, Noris; Abarca, Katia; Lepetic, Alejandro; Cervantes-Apolinar, Maria Yolanda; Hardt, Karin; Jayadeva, Girish; Kuriyakose, Sherine; Han, Htay Htay; de la O, Manuel

    2015-01-01

    Reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) vaccine, Boostrix™, is indicated for booster vaccination of children, adolescents and adults. The original prefilled disposable dTpa syringe presentation was recently replaced by another prefilled-syringe presentation with latex-free tip-caps and plunger-stoppers. 671 healthy adolescents aged 10–15 years who had previously received 5 or 6 previous DT(P)/dT(pa) vaccine doses, were randomized (1:1) to receive dTpa booster, injected using the new (dTpa-new) or previous syringe (dTpa-previous) presentations. Immunogenicity was assessed before and 1-month post-booster vaccination; safety/reactogenicity were assessed during 31-days post-vaccination. Non-inferiority of dTpa-new versus dTpa-previous was demonstrated for all antigens (ULs 95% CIs for GMC ratios ranged between 1.03-1.13). 1-month post-booster, immune responses were in similar ranges for all antigens with both syringe presentations. dTpa delivered using either syringe presentation was well-tolerated. These clinical results complement the technical data and support the use of the new syringe presentation to deliver the dTpa vaccine. PMID:26075317

  19. Evaluation of a new syringe presentation of reduced-antigen content diphtheria, tetanus, and acellular pertussis vaccine in healthy adolescents--A single blind randomized trial.

    PubMed

    Pavia-Ruz, Noris; Abarca, Katia; Lepetic, Alejandro; Cervantes-Apolinar, Maria Yolanda; Hardt, Karin; Jayadeva, Girish; Kuriyakose, Sherine; Han, Htay Htay; de la O, Manuel

    2015-01-01

    Reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) vaccine, Boostrix™, is indicated for booster vaccination of children, adolescents and adults. The original prefilled disposable dTpa syringe presentation was recently replaced by another prefilled-syringe presentation with latex-free tip-caps and plunger-stoppers. 671 healthy adolescents aged 10-15 years who had previously received 5 or 6 previous DT(P)/dT(pa) vaccine doses, were randomized (1:1) to receive dTpa booster, injected using the new (dTpa-new) or previous syringe (dTpa-previous) presentations. Immunogenicity was assessed before and 1-month post-booster vaccination; safety/reactogenicity were assessed during 31-days post-vaccination. Non-inferiority of dTpa-new versus dTpa-previous was demonstrated for all antigens (ULs 95% CIs for GMC ratios ranged between 1.03-1.13). 1-month post-booster, immune responses were in similar ranges for all antigens with both syringe presentations. dTpa delivered using either syringe presentation was well-tolerated. These clinical results complement the technical data and support the use of the new syringe presentation to deliver the dTpa vaccine. PMID:26075317

  20. Mitochondrial H2O2 in Lung Antigen-Presenting Cells Blocks NF-κB Activation to Prevent Unwarranted Immune Activation.

    PubMed

    Khare, Anupriya; Raundhal, Mahesh; Chakraborty, Krishnendu; Das, Sudipta; Corey, Catherine; Kamga, Christelle K; Quesnelle, Kelly; St Croix, Claudette; Watkins, Simon C; Morse, Christina; Oriss, Timothy B; Huff, Rachael; Hannum, Rachel; Ray, Prabir; Shiva, Sruti; Ray, Anuradha

    2016-05-24

    Inhalation of environmental antigens such as allergens does not always induce inflammation in the respiratory tract. While antigen-presenting cells (APCs), including dendritic cells and macrophages, take up inhaled antigens, the cell-intrinsic molecular mechanisms that prevent an inflammatory response during this process, such as activation of the transcription factor NF-κB, are not well understood. Here, we show that the nuclear receptor PPARγ plays a critical role in blocking NF-κB activation in response to inhaled antigens to preserve immune tolerance. Tolerance induction promoted mitochondrial respiration, generation of H2O2, and suppression of NF-κB activation in WT, but not PPARγ-deficient, APCs. Forced restoration of H2O2 in PPARγ-deficient cells suppressed IκBα degradation and NF-κB activation. Conversely, scavenging reactive oxygen species from mitochondria promoted IκBα degradation with loss of regulatory and promotion of inflammatory T cell responses in vivo. Thus, communication between PPARγ and the mitochondria maintains immune quiescence in the airways.

  1. In vivo functional efficacy of tumor-specific T cells expanded using HLA-Ig based artificial antigen presenting cells (aAPC).

    PubMed

    Durai, Malarvizhi; Krueger, Christine; Ye, Zhaohui; Cheng, Linzhao; Mackensen, Andreas; Oelke, Mathias; Schneck, Jonathan P

    2009-02-01

    Adoptive immunotherapy for treatment of cancers and infectious diseases is often hampered by a high degree of variability in the final T cell product and in the limited in vivo function and survival of ex vivo expanded antigen-specific cytotoxic T cells (CTL). This has stimulated interest in development of standardized artificial antigen presenting cells (aAPC) to reliably expand antigen specific CTL. However, for successful immunotherapy the aAPC ex vivo generated CTL must have anti-tumor activity in vivo. Here, we demonstrate that HLA-Ig based aAPC stimulated tumor-specific CTL from human peripheral blood T lymphocytes showed robust expansion and functional activity in a human/SCID mouse melanoma model. HLA-Ig based aAPC expanded CTL were detected in the peripheral blood up to 15 days after transfer. Non-invasive bioluminescence imaging of tumor bearing mice demonstrated antigen dependent localization of transferred CTL to the tumor site. Moreover, adoptive transfer of HLA-Ig based aAPC generated CTL inhibited the tumor growth both in prevention and treatment modes of therapy and was comparable to that achieved by dendritic cell expanded CTL. Thus, our data demonstrate potential therapeutic in vivo activity of HLA-Ig based aAPC expanded CTL to control tumor growth. PMID:18563409

  2. Lipid antigen presentation through CD1d pathway in mouse lung epithelial cells, macrophages and dendritic cells and its suppression by poly-dispersed single-walled carbon nanotubes.

    PubMed

    Rizvi, Zaigham Abbas; Puri, Niti; Saxena, Rajiv K

    2015-09-01

    Effect of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNTs) was examined on lipid antigen presentation through CD1d pathway on three cell lines, LA4, MHS, and JAWSII used as prototype antigen presenting cells (APCs). CD1d molecule was expressed on 80-90% MHS (prototype macrophages) and JAWSII (prototype dendritic cells) cells whereas <5% LA4 cells (lung epithelial cells, non-classical APCs) expressed CD1d. Treatment with AF-SWCNTs but not with pristine SWCNTs resulted in a significant decline in the level of CD1d mRNA as well as mRNA levels of some other intracellular proteins involved in lipid antigen presentation pathway (MTP, ApoE, prosaposin, SR-BI and LDLr). Lipid antigen presentation was assessed by first incubating the cells with a prototype lipid antigen (α-Glactosylceramide or αGC) and then staining with L363 monoclonal antibody that detects αGC bound to CD1d molecule. While 100% MHS and JAWSII cells presented αGC, only 20% LA4 cells presented the CD1d antigen. Treatment with AF-SWCNTs resulted in a 30-40% decrease in αGC antigen presentation in all three cell lines. These results show that AF-SWCNT treatment down regulated the lipid antigen presentation pathway in all three cell lines and significantly lowered the ability of these cell lines to present αGC antigen.

  3. Presentation of human minor histocompatibility antigens by HLA-B35 and HLA-B38 molecules.

    PubMed Central

    Yamamoto, J; Kariyone, A; Akiyama, N; Kano, K; Takiguchi, M

    1990-01-01

    Cytotoxic T lymphocyte (CTL) clones specific for human minor histocompatibility antigens (hmHAs) were produced from a patient who had been grafted with the kidneys from his mother and two HLA-identical sisters. Of eight CTL clones generated, four recognized an hmHA (hmHA-1) expressed on cells from the mother and sister 3 (second donor); two recognized another antigen (hmHA-2) on cells from the father, sister 2 (third donor), and sister 3; and the remaining two clones recognized still another antigen (hmHA-3) on cells from the father and sister 3. Panel studies revealed that CTL recognition of hmHA-1 was restricted by HLA-B35 and that of hmHA-2 and hmHA-3 was restricted by HLA-B38. The HLA-B35 restriction of the hmHA-1-specific CTL clones was substantiated by the fact that they killed HLA-A null/HLA-B null Hmy2CIR targets transfected with HLA-B35 but not HLA-B51, -Bw52, or -Bw53 transfected Hmy2CIR targets. These data demonstrated that the five amino acids substitutions on the alpha 1 domain between HLA-B35 and -Bw53, which are associated with Bw4/Bw6 epitopes, play a critical role in the relationship of hmHA-1 to HLA-B35 molecules. The fact that the hmHA-1-specific CTLs failed to kill Hmy2CIR cells expressing HLA-B35/51 chimeric molecules composed of the alpha 1 domain of HLA-B35 and other domains of HLA-B51 indicated that eight residues on the alpha 2 domain also affect the interaction of hmHA-1 and the HLA-B35 molecules. PMID:2157206

  4. Selection of restriction specificities of virus-specific cytotoxic T cells in the thymus: no evidence for a crucial role of antigen-presenting cells

    SciTech Connect

    Zinkernagel, R.M.

    1982-12-01

    The proposal was tested that (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras expressed predominantly P1-restricted T cells because donor derived stem cells were exposed to recipient derived antigen-presenting cells in the thymus. Because P1 recipient-derived antigen-presenting cells are replaced only slowly after 6-8 wk by (P1 X P2) donor-derived antigen-presenting cells in the thymus and because replenished pools of mature T cells may by then prevent substantial numbers of P2-restricted T cells to be generated, a large portion of thymus cells and mature T cells were eliminated using the following treatments of 12-20-wk-old (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras: (a) cortisone plus antilymphocyte serum, (b) Cytoxan, (c) three doses of sublethal irradiation (300 rad) 2d apart, and (d) lethal irradiation (850 rad) and reconstitution with T cell-depleted (P1 X P2) F1 stem cells. 12-20 wk after this second treatment, (P1 X P2) leads to P1 chimeras were infected with vaccinia-virus. Virus-specific cytotoxic T cell reactivity was expressed by chimeric T cells of (P1 X P(2) F1 origin and was restricted predominantly to P1. Virus-specific cytotoxic T cells, therefore, do not seem to be selected to measurable extent by the immigrating donor-derived antigen-presenting cells in the thymus; their selection depends apparently from the recipient-derived radioresistant thymus cells.

  5. Bovine Viral Diarrhea Virus Infects Monocyte-Derived Bovine Dendritic Cells by an E2-Glycoprotein-Mediated Mechanism and Transiently Impairs Antigen Presentation.

    PubMed

    Cardoso, Nancy; Franco-Mahecha, Olga Lucía; Czepluch, Wenzel; Quintana, María Eugenia; Malacari, Darío Amílcar; Trotta, Myrian Vanesa; Mansilla, Florencia Celeste; Capozzo, Alejandra Victoria

    2016-09-01

    Infection of professional antigen presenting cells by viruses can have a marked effect on these cells and important consequences for the generation of subsequent immune responses. In this study, we demonstrate that different strains of bovine viral diarrhea virus (BVDV) infect bovine dendritic cells differentiated from nonadherent peripheral monocytes (moDCs). BVDV did not cause apoptosis in these cells. Infection of moDC was prevented by incubating the virus with anti-E2 antibodies or by pretreating the cells with recombinant E2 protein before BVDV contact, suggesting that BVDV infects moDC through an E2-mediated mechanism. Virus entry was not reduced by incubating moDC with Mannan or ethylenediaminetetraacetic acid (EDTA) before infection, suggesting that Ca(2+) and mannose receptor-dependent pathways are not mediating BVDV entry to moDC. Infected moDC did not completely upregulate maturation surface markers. Infection, but not treatment with inactivated virus, prevented moDC to present a third-party antigen to primed CD4(+) T cells within the first 24 hours postinfection (hpi). Antigen-presenting capacity was recovered when viral replication diminished at 48 hpi, suggesting that active infection may interfere with moDC maturation. Altogether, our results suggest an important role of infected DCs in BVDV-induced immunopathogenesis.

  6. Multiple Viral Ligands Naturally Presented by Different Class I Molecules in Transporter Antigen Processing-Deficient Vaccinia Virus-Infected Cells

    PubMed Central

    Lorente, Elena; Infantes, Susana; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Vilches, Carlos; Lemonnier, François A.; Admon, Arie

    2012-01-01

    The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease. PMID:22031944

  7. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response.

    PubMed

    Steenblock, Erin R; Fadel, Tarek; Labowsky, Michael; Pober, Jordan S; Fahmy, Tarek M

    2011-10-01

    Artificial antigen-presenting cells (aAPCs) are an emerging technology to induce therapeutic cellular immunity without the need for autologous antigen-presenting cells (APCs). To fully replace natural APCs, an optimized aAPC must present antigen (signal 1), provide costimulation (signal 2), and release cytokine (signal 3). Here we demonstrate that the spatial and temporal characteristics of paracrine release of IL-2 from biodegradable polymer aAPCs (now termed paAPCs) can significantly alter the balance in the activation and proliferation of CD8+ and CD4+ T cells. Paracrine delivery of IL-2 upon T cell contact with paAPCs induces significant IL-2 accumulation in the synaptic contact region. This accumulation increases CD25 (the inducible IL-2 Rα chain) on responding T cells and increases proliferation of CD8+ T cells in vitro to levels 10 times that observed with equivalent amounts of bulk IL-2. These CD8+ T cell responses critically depend upon close contact of T cells and the paAPCs and require sustained release of low levels of IL-2. The same conditions promote activation-induced cell death in CD4+ T cells. These findings provide insight into the response of T cell subsets to paracrine IL-2. PMID:21849500

  8. Multiple viral ligands naturally presented by different class I molecules in transporter antigen processing-deficient vaccinia virus-infected cells.

    PubMed

    Lorente, Elena; Infantes, Susana; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Vilches, Carlos; Lemonnier, François A; Admon, Arie; López, Daniel

    2012-01-01

    The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease.

  9. Bovine Viral Diarrhea Virus Infects Monocyte-Derived Bovine Dendritic Cells by an E2-Glycoprotein-Mediated Mechanism and Transiently Impairs Antigen Presentation.

    PubMed

    Cardoso, Nancy; Franco-Mahecha, Olga Lucía; Czepluch, Wenzel; Quintana, María Eugenia; Malacari, Darío Amílcar; Trotta, Myrian Vanesa; Mansilla, Florencia Celeste; Capozzo, Alejandra Victoria

    2016-09-01

    Infection of professional antigen presenting cells by viruses can have a marked effect on these cells and important consequences for the generation of subsequent immune responses. In this study, we demonstrate that different strains of bovine viral diarrhea virus (BVDV) infect bovine dendritic cells differentiated from nonadherent peripheral monocytes (moDCs). BVDV did not cause apoptosis in these cells. Infection of moDC was prevented by incubating the virus with anti-E2 antibodies or by pretreating the cells with recombinant E2 protein before BVDV contact, suggesting that BVDV infects moDC through an E2-mediated mechanism. Virus entry was not reduced by incubating moDC with Mannan or ethylenediaminetetraacetic acid (EDTA) before infection, suggesting that Ca(2+) and mannose receptor-dependent pathways are not mediating BVDV entry to moDC. Infected moDC did not completely upregulate maturation surface markers. Infection, but not treatment with inactivated virus, prevented moDC to present a third-party antigen to primed CD4(+) T cells within the first 24 hours postinfection (hpi). Antigen-presenting capacity was recovered when viral replication diminished at 48 hpi, suggesting that active infection may interfere with moDC maturation. Altogether, our results suggest an important role of infected DCs in BVDV-induced immunopathogenesis. PMID:27529119

  10. Organic extract of diesel exhaust particles stimulates expression of Ia and costimulatory molecules associated with antigen presentation in rat peripheral blood monocytes but not in alveolar macrophages

    SciTech Connect

    Koike, Eiko . E-mail: ekoike@nies.go.jp; Kobayashi, Takahiro

    2005-12-15

    We hypothesized that diesel exhaust particles (DEP) induce the activation of antigen-presenting cells (APC) in lung. The present study was designed to clarify the following about DEP: (1) whether it affects the expression of Ia and B7 molecules in alveolar macrophages (AM) as a mature cell or in peripheral blood monocytes (PBM) as an immature cell (2) if it affects the antigen-presenting (AP) activity of PBM (3) what component of DEP is responsible for the effects, and (4) whether the effect of DEP is related to oxidative stress. DEP was extracted with methylene chloride. Cells were exposed to whole DEP, organic extract, or residual particles for 24 h. Cell-surface molecules were measured by flow cytometry. AP activity was assessed by antigen-specific T cell proliferation. Whole DEP or organic extract significantly increased the expression of Ia and B7 molecules on PBM but not on AM. No significant effect of residual particles was observed. A low concentration of organic extract also increased the AP activity of PBM. When the induction of an antioxidative enzyme was assessed, heme oxygenase-1 protein was found to be significantly increased by exposure to whole DEP, and the organic extract was more effective than the residual particles. Furthermore, the organic extract-induced expression of Ia antigen on PBM was reduced by the addition of an antioxidative agent. These results suggest that DEP may act on immature APC and enhance their AP activity and that the action contributing to oxidative stress may be mediated by organic compounds of DEP.

  11. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    SciTech Connect

    Blokhina, Elena A.; Kuprianov, Victor V.; Stepanova, Ludmila A.; Tsybalova, Ludmila M.; Kiselev, Oleg I.; Ravin, Nikolai V.; Skryabin, Konstantin G.

    2013-01-20

    Hepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a 'binding tag' allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge.

  12. Identification of the major T-cell antigens present in the Brucella melitensis B115 protein preparation, Brucellergene OCB.

    PubMed

    Denoel, P A; Vo, T K; Weynants, V E; Tibor, A; Gilson, D; Zygmunt, M S; Limet, J N; Letesson, J J

    1997-09-01

    Brucellergene is a commercial allergen prepared from Brucella melitensis strain B115 and containing at least 20 cytoplasmic proteins. These proteins were separated by SDS-PAGE. The unstained gel was divided into 18 fractions and proteins were eluted from the gel fractions. The capacity of the separated proteins to elicit delayed-type hypersensitivity (DTH) in infected guinea-pigs or to induce the production of interferon-gamma (IFN-gamma) by blood cells from infected cattle was evaluated. The biological activity of the corresponding protein fractions blotted on to nitrocellulose was measured in a lymphocyte blastogenesis assay. Among the 18 fractions tested, two-spanning the mol. wt ranges 17-22 (fraction 8) and 35-42-kDa (fraction 17)-showed the maximum biological activity in the three tests. These fractions contain two antigens, the Brucella bacterioferritin (BFR) and P39 proteins. Both proteins are good candidates for the detection of cellular immunity to Brucella. PMID:9291893

  13. Establishment and characterization of a cell based artificial antigen-presenting cell for expansion and activation of CD8+ T cells ex vivo.

    PubMed

    Gong, Weijuan; Ji, Mingchun; Cao, Zhengfeng; Wang, Liheng; Qian, Yayun; Hu, Maozhi; Qian, Li; Pan, Xingyuan

    2008-02-01

    Artificial antigen-presenting cells are expected to stimulate the expansion and acquisition of optimal therapeutic features of T cells before infusion. Here CD32 that binds to a crystallizable fragment of IgG monoclonal antibody was genetically expressed on human K562 leukemia cells to provide a ligand for T-cell receptor. CD86 and 4-1BBL, which are ligands of co-stimulating receptors of CD28 and 4-1BB, respectively, were also expressed on K562 cells. Then we accomplished the artificial antigen-presenting cells by coupling K32/CD86/4-1BBL cell with OKT3 monoclonal antibody against CD3, named K32/CD86/4-1BBL/OKT3 cells. These artificial modified cells had the abilities of inducing CD8+ T cell activation, promoting CD8+ T cell proliferation, division, and long-term growth, inhibiting CD8+ T cell apoptosis, and enhancing CD8+ T cell secretion of IFN-gamma and perforin. Furthermore, antigen-specific cytotoxic T lymphocytes could be retained in the culture stimulated with K32/CD86/4-1BBL/OKT3 cells at least within 28 days. This approach was robust, simple, reproducible and economical for expansion and activation of CD8+ T cells and may have important therapeutic implications for adoptive immunotherapy. PMID:18318994

  14. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells

    PubMed Central

    Cong, Yu; McArthur, Monica A.; Cohen, Melanie; Jahrling, Peter B.; Janosko, Krisztina B.; Josleyn, Nicole; Kang, Kai; Zhang, Tengfei; Holbrook, Michael R.

    2016-01-01

    Humans infected with yellow fever virus (YFV), a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM) and dendritic cells (MoDC) from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease. PMID:27191161

  15. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    PubMed

    Cong, Yu; McArthur, Monica A; Cohen, Melanie; Jahrling, Peter B; Janosko, Krisztina B; Josleyn, Nicole; Kang, Kai; Zhang, Tengfei; Holbrook, Michael R

    2016-05-01

    Humans infected with yellow fever virus (YFV), a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM) and dendritic cells (MoDC) from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease. PMID:27191161

  16. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    PubMed Central

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  17. Immunomodulatory Glycan Lacto-N-Fucopentaose III Requires Clathrin-Mediated Endocytosis To Induce Alternative Activation of Antigen-Presenting Cells

    PubMed Central

    Srivastava, Leena; Tundup, Smanla; Choi, Beak-San; Norberg, Thomas

    2014-01-01

    The mechanism of alternative activation of antigen-presenting cells (APCs) is largely unknown. Lacto-N-fucopentaose III (LNFPIII) is a biologically conserved pentasaccharide that contains the Lewisx trisaccharide. LNFPIII conjugates and schistosome egg antigens, which contain the Lewisx trisaccharide, drive alternative activation of APCs and induce anti-inflammatory responses in vivo, preventing inflammation-based diseases, including psoriasis, transplant organ rejection, and metabolic disease. In this study, we show that LNFPIII conjugates and schistosome egg antigens interact with APCs via a receptor-mediated process, requiring internalization of these molecules through a clathrin/dynamin-dependent but caveolus-independent endocytic pathway. Using inhibitors/small interfering RNA (siRNA) against dynamin and clathrin, we show for the first time that endocytosis of Lewisx-containing glycans is required to drive alternative maturation of antigen-presenting cells and Th2 immune responses. We identified mouse SIGNR-1 as a cell surface receptor for LNFPIII conjugates. Elimination of SIGNR-1 showed no effect on uptake of LNFPIII conjugates, suggesting that other receptors bind to and facilitate uptake of LNFPIII conjugates. We demonstrate that disruption of actin filaments partially prevented the entry of LNFPIII conjugates into APCs and that LNFPIII colocalizes with both early and late endosomal markers and follows the classical endosomal pathway leading to lysosome maturation. The results of this study show that the ability of LNFPIII to induce alternative activation utilizes a receptor-mediated process that requires a dynamin-dependent endocytosis. Thus, key steps have been defined in the previously unknown mechanism of alternative activation that ultimately leads to induction of anti-inflammatory responses. PMID:24566617

  18. Recruitment of Antigen-Presenting Cells to the Site of Inoculation and Augmentation of Human Immunodeficiency Virus Type 1 DNA Vaccine Immunogenicity by In Vivo Electroporation▿

    PubMed Central

    Liu, Jinyan; Kjeken, Rune; Mathiesen, Iacob; Barouch, Dan H.

    2008-01-01

    In vivo electroporation (EP) has been shown to augment the immunogenicity of plasmid DNA vaccines, but its mechanism of action has not been fully characterized. In this study, we show that in vivo EP augmented cellular and humoral immune responses to a human immunodeficiency virus type 1 Env DNA vaccine in mice and allowed a 10-fold reduction in vaccine dose. This enhancement was durable for over 6 months, and re-exposure to antigen resulted in anamnestic effector and central memory CD8+ T-lymphocyte responses. Interestingly, in vivo EP also recruited large mixed cellular inflammatory infiltrates to the site of inoculation. These infiltrates contained 45-fold-increased numbers of macrophages and 77-fold-increased numbers of dendritic cells as well as 2- to 6-fold-increased numbers of B and T lymphocytes compared to infiltrates following DNA vaccination alone. These data suggest that recruiting inflammatory cells, including antigen-presenting cells (APCs), to the site of antigen production substantially improves the immunogenicity of DNA vaccines. Combining in vivo EP with plasmid chemokine adjuvants that similarly recruited APCs to the injection site, however, did not result in synergy. PMID:18353952

  19. Efficient Targeting of Protein Antigen to the Dendritic Cell Receptor DEC-205 in the Steady State Leads to Antigen Presentation on Major Histocompatibility Complex Class I Products and Peripheral CD8+ T Cell Tolerance

    PubMed Central

    Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Rivera, Miguel; Nussenzweig, Michel C.; Steinman, Ralph M.

    2002-01-01

    To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation. PMID:12486105

  20. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance.

    PubMed

    Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Rivera, Miguel; Nussenzweig, Michel C; Steinman, Ralph M

    2002-12-16

    To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal alphaDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c- cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When alphaDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4-48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of alphaDEC-205:OVA to DCs in the steady state initially induced 4-7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with alphaDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic alphaCD40 antibody produced large amounts of interleukin 2 and interferon gamma, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.

  1. Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    PubMed Central

    Barrio, María Marcela; Abes, Riad; Colombo, Marina; Pizzurro, Gabriela; Boix, Charlotte; Roberti, María Paula; Gélizé, Emmanuelle; Rodriguez-Zubieta, Mariana

    2012-01-01

    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter. PMID:22768350

  2. Cathepsin B in Antigen-Presenting Cells Controls Mediators of the Th1 Immune Response during Leishmania major Infection

    PubMed Central

    Gonzalez-Leal, Iris J.; Röger, Bianca; Schwarz, Angela; Schirmeister, Tanja; Reinheckel, Thomas; Lutz, Manfred B.; Moll, Heidrun

    2014-01-01

    Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb) and L (Ctsl) play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC) and macrophages (BMM) from Ctsb−/− and Ctsl−/− mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb−/− BMDC express higher levels of MHC class II molecules than wild-type (WT) and Ctsl−/− BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb−/− mice significantly up-regulated the levels of interleukin 12 (IL-12) expression, a key Th1-inducing cytokine. These findings indicate that Ctsb−/− BMDC display more pro-Th1 properties than their WT and Ctsl−/− counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression. PMID:25255101

  3. A solid phase enzyme-linked immunosorbent assay for the antigenic detection of Legionella pneumophila (serogroup 1): A compliment for the space station diagnostic capability

    NASA Technical Reports Server (NTRS)

    Hejtmancik, Kelly E.

    1987-01-01

    It is necessary that an adequate microbiology capability be provided as part of the Health Maintenance Facility (HMF) to support expected microbial disease events and environmental monitoring during long periods of space flight. The application of morphological and biochemical studies to confirm the presence of certain bacterial and fungal disease agents are currently available and under consideration. This confirmation would be facilitated through employment of serological methods to aid in the identification of bacterial, fungal, and viral agents. A number of serological approaches are currently being considered, including the use of Enzyme Linked Immunosorbent Assay (ELISA) technology, which could be utilized during microgravity conditions. A solid phase, membrane supported ELISA for the detection of Legionella pneumophila, an expected disease agent, was developed to show a potential model system that would meet the HMF requirements and specifications for the future space station. These studies demonstrate the capability of membrane supported ELISA systems for identification of expected microbial disease agents as part of the HMF.

  4. Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

    SciTech Connect

    Churchfield, M. J.

    2013-06-01

    This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.

  5. Phenotypic and Functional Properties of Human Steady State CD14+ and CD1a+ Antigen Presenting Cells and Epidermal Langerhans Cells

    PubMed Central

    Fehres, Cynthia. M.; Bruijns, Sven C. M.; Sotthewes, Brigit N.; Kalay, Hakan; Schaffer, Lana; Head, Steven R.; de Gruijl, Tanja D.; Garcia-Vallejo, Juan J.; van Kooyk, Yvette

    2015-01-01

    Cutaneous antigen presenting cells (APCs) are critical for the induction and regulation of skin immune responses. The human skin contains phenotypically and functionally distinct APCs subsets that are present at two separated locations. While CD1ahigh LCs form a dense network in the epidermis, the CD14+ and CD1a+ APCs reside in the dermal compartment. A better understanding of the biology of human skin APC subsets is necessary for the improvement of vaccine strategies that use the skin as administration route. In particular, progress in the characterization of uptake and activatory receptors will certainly improve APC-targeting strategies in vaccination. Here we performed a detailed analysis of the expression and function of glycan-binding and pattern-recognition receptors in skin APC subsets. The results demonstrate that under steady state conditions human CD1a+ dermal dendritic cells (DCs) were phenotypically most mature as measured by the expression of CD83 and CD86, whereas the CD14+ cells showed a higher expression of the CLRs DC-SIGN, mannose receptor and DCIR and had potent antigen uptake capacity. Furthermore, steady state LCs showed superior antigen cross-presentation as compared to the dermal APC subsets. Our results also demonstrate that the TLR3 ligand polyribosinic-polyribocytidylic acid (pI:C) was the most potent stimulator of cytokine production by both LCs and dDCs. These studies warrant further exploration of human CD1a+ dDCs and LCs as target cells for cancer vaccination to induce anti-tumor immune responses. PMID:26605924

  6. The inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers.

    PubMed

    Vink, A A; Moodycliffe, A M; Shreedhar, V; Ullrich, S E; Roza, L; Yarosh, D B; Kripke, M L

    1997-05-13

    Exposing skin to UVB (280-320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase (Photosomes; Applied Genetics, Freeport, NY), which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosome treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320-400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function. PMID:9144224

  7. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen-presenting cells, and oxidative stress.

    PubMed

    Katiyar, S K; Mukhtar, H

    2001-05-01

    Ultraviolet (UV) radiation-induced infiltrating leukocytes, depletion of antigen-presenting cells, and oxidative stress in the skin play an important role in the induction of immune suppression and photocarcinogenesis. Earlier we have shown that topical application of polyphenols from green tea or its major chemopreventive constituent (-)-epigallocatechin-3-gallate (EGCG) prevents UV-B-induced immunosuppression in mice. To define the mechanism of prevention, we found that topical application of EGCG (3 mg/mouse/3 cm(2) of skin area) to C3H/HeN mice before a single dose of UV-B (90 mJ/cm(2)) exposure inhibited UV-B-induced infiltration of leukocytes, specifically the CD11b+ cell type, and myeloperoxidase activity, a marker of tissue infiltration of leukocytes. EGCG treatment was also found to prevent UV-B-induced depletion in the number of antigen-presenting cells when immunohistochemically detected as class II MHC+ Ia+ cells. UV-B-induced infiltrating cell production of H2O2 and nitric oxide (NO) was determined as a marker of oxidative stress. We found that pretreatment of EGCG decreased the number of UV-B-induced increases in H2O2-producing cells and inducible nitric oxide synthase-expressing cells and the production of H2O2 and NO in both epidermis and dermis at a UV-B-irradiated site. Together, these data suggest that prevention of UV-B-induced infiltrating leukocytes, antigen-presenting cells, and oxidative stress by EGCG treatment of mouse skin may be associated with the prevention of UV-B-induced immunosuppression and photocarcinogenesis.

  8. Herpes Simplex Virus 1 Glycoprotein B and US3 Collaborate To Inhibit CD1d Antigen Presentation and NKT Cell Function ▿

    PubMed Central

    Rao, Ping; Pham, Hong Thanh; Kulkarni, Arpita; Yang, Yang; Liu, Xueqiao; Knipe, David M.; Cresswell, Peter; Yuan, Weiming

    2011-01-01

    Herpes simplex viruses (HSVs) are prevalent human pathogens that establish latency in human neuronal cells and efficiently evade the immune system. It has been a major medical challenge to eradicate them and, despite intensive efforts, an effective vaccine is not available. We previously showed that upon infection of antigen-presenting cells, HSV type 1 (HSV-1) rapidly and efficiently downregulates the major histocompatibility complex class I-like antigen-presenting molecule, CD1d, and potently inhibits its recognition by CD1d-restricted natural killer T (NKT) cells. It suppresses CD1d expression primarily by inhibiting its recycling to the cell surface after endocytosis. We identify here the viral glycoprotein B (gB) as the predominant CD1d-interacting protein. gB initiates the interaction with CD1d in the endoplasmic reticulum and stably associates with it throughout CD1d trafficking. However, an additional HSV-1 component, the serine-threonine kinase US3, is required for optimal CD1d downregulation. US3 expression in infected cells leads to gB enrichment in the trans-Golgi network (TGN) and enhances the relocalization of both gB and CD1d to this compartment, suggesting that following internalization CD1d is translocated from the endocytic pathway to the TGN by its association with gB. Importantly, both US3 and gB are required for efficient inhibition of CD1d antigen presentation and NKT cell activation. In summary, our results suggest that HSV-1 uses gB and US3 to rapidly inhibit NKT cell function in the initial antiviral response. PMID:21653669

  9. Artificial antigen-presenting cells expressing HLA class II molecules as an effective tool for amplifying human specific memory CD4(+) T cells.

    PubMed

    Garnier, Anthony; Hamieh, Mohamad; Drouet, Aurélie; Leprince, Jérôme; Vivien, Denis; Frébourg, Thierry; Le Mauff, Brigitte; Latouche, Jean-Baptiste; Toutirais, Olivier

    2016-08-01

    Owing to their multiple immune functions, CD4(+) T cells are of major interest for immunotherapy in chronic viral infections and cancer, as well as for severe autoimmune diseases and transplantation. Therefore, standardized methods allowing rapid generation of a large number of CD4(+) T cells for adoptive immunotherapy are still awaited. We constructed stable artificial antigen-presenting cells (AAPCs) derived from mouse fibroblasts. They were genetically modified to express human leukocyte antigen (HLA)-DR molecules and the human accessory molecules B7.1, Intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-3 (LFA-3). AAPCs expressing HLA-DR1, HLA-DR15 or HLA-DR51 molecules and loaded with peptides derived from influenza hemagglutinin (HA), myelin basic protein (MBP) or factor VIII, respectively, activated specific CD4(+) T-cell clones more effectively than Epstein-Barr virus (EBV)-transformed B cells. We also showed that AAPCs were able to take up and process whole Ag proteins, and present epitopes to specific T cells. In primary cultures, AAPCs loaded with HA peptide allowed generation of specific Th1 lymphocytes from healthy donors as demonstrated by tetramer and intracellular cytokine staining. Although AAPCs were less effective than autologous peripheral blood mononuclear cells (PBMCs) to stimulate CD4(+) T cells in primary culture, AAPCs were more potent to reactivate and expand memory Th1 cells in a strictly Ag-dependent manner. As the availability of autologous APCs is limited, the AAPC system represents a stable and reliable tool to achieve clinically relevant numbers of CD4(+) T cells for adoptive immunotherapy. For fundamental research in immunology, AAPCs are also useful to decipher mechanisms involved in the development of human CD4 T-cell responses. PMID:26924643

  10. Potent costimulation of human CD8 T cells by anti-4-1BB and anti-CD28 on synthetic artificial antigen presenting cells.

    PubMed

    Rudolf, Despina; Silberzahn, Tobias; Walter, Steffen; Maurer, Dominik; Engelhard, Johanna; Wernet, Dorothee; Bühring, Hans-Jörg; Jung, Gundram; Kwon, Byoung S; Rammensee, Hans-Georg; Stevanović, Stefan

    2008-02-01

    The in vitro generation of cytotoxic T lymphocytes (CTLs) for anticancer immunotherapy is a promising approach to take patient-specific therapy from the bench to the bedside. Two criteria must be met by protocols for the expansion of CTLs: high yield of functional cells and suitability for good manufacturing practice (GMP). The antigen presenting cells (APCs) used to expand the CTLs are the key to achieving both targets but they pose a challenge: Unspecific stimulation is not feasible because only memory T cells are expanded and not rare naïve CTL precursors; in addition, antigen-specific stimulation by cell-based APCs is cumbersome and problematic in a clinical setting. However, synthetic artificial APCs which can be loaded reproducibly with MHC-peptide monomers and antibodies specific for costimulatory molecules could resolve these problems. The purpose of this study was to investigate the potential of complex synthetic artificial APCs in triggering the costimulatory molecules CD28 and 4-1BB on the T cell. Anti-4-1BB antibodies were added to an established system of microbeads coated with MHC-peptide monomers and anti-CD28. Triggering via CD28 and 4-1BB resulted in strong costimulatory synergy. The quantitative ratio between these signals determined the outcome of the stimulation with optimal results when anti-4-1BB and anti-CD28 were applied in a 3:1 ratio. Functional CTLs of an effector memory subtype (CD45RA(-) CCR7(-)) were generated in high numbers. We present a highly defined APC platform using off-the-shelf reagents for the convenient generation of large numbers of antigen-specific CTLs. PMID:17657490

  11. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    PubMed Central

    Holubova, Jana; Jelinek, Jiri; Tomala, Jakub; Masin, Jiri; Kosova, Martina; Stanek, Ondrej; Bumba, Ladislav; Michalek, Jaroslav; Kovar, Marek; Sebo, Peter

    2012-01-01

    The Bordetella adenylate cyclase toxin-hemolysin (CyaA; also called ACT or AC-Hly) targets CD11b-expressing phagocytes and translocates into their cytosol an adenylyl cyclase (AC) that hijacks cellular signaling by conversion of ATP to cyclic AMP (cAMP). Intriguingly, insertion of large passenger peptides removes the enzymatic activity but not the cell-invasive capacity of the AC domain. This has repeatedly been exploited for delivery of heterologous antigens into the cytosolic pathway of CD11b-expressing dendritic cells by CyaA/AC− toxoids, thus enabling their processing and presentation on major histocompatibility complex (MHC) class I molecules to cytotoxic CD8+ T lymphocytes (CTLs). We produced a set of toxoids with overlapping deletions within the first 371 residues of CyaA and showed that the structure of the AC enzyme does not contain any sequences indispensable for its translocation across target cell membrane. Moreover, replacement of the AC domain (residues 1 to 371) with heterologous polypeptides of 40, 146, or 203 residues yielded CyaAΔAC constructs that delivered passenger CTL epitopes into antigen-presenting cells (APCs) and induced strong antigen-specific CD8+ CTL responses in vivo in mice and ex vivo in human peripheral blood mononuclear cell cultures. This shows that the RTX (repeats in toxin) hemolysin moiety, consisting of residues 374 to 1706 of CyaA, harbors all structural information involved in translocation of the N-terminal AC domain across target cell membranes. These results decipher the extraordinary capacity of the AC domain of CyaA to transport large heterologous cargo polypeptides into the cytosol of CD11b+ target cells and pave the way for the construction of CyaAΔAC-based polyvalent immunotherapeutic T cell vaccines. PMID:22215742

  12. Murine Melanoma-Infiltrating Dendritic Cells Are Defective in Antigen Presenting Function Regardless of the Presence of CD4+CD25+ Regulatory T Cells

    PubMed Central

    Ataera, Haley; Hyde, Evelyn; Price, Kylie M.; Stoitzner, Patrizia; Ronchese, Franca

    2011-01-01

    Tumor-infiltrating dendritic cells are often ineffective at presenting tumor-derived antigen in vivo, a defect usually ascribed to the suppressive tumor environment. We investigated the effects of depleting CD4+CD25+ “natural” regulatory T cells (Treg) on the frequency, phenotype and function of total dendritic cell populations in B16.OVA tumors and in tumor-draining lymph nodes. Intraperitoneal injection of the anti-CD25 monoclonal antibody PC61 reduced Treg frequency in blood and tumors, but did not affect the frequency of tumor-infiltrating dendritic cells, or their expression of CD40, CD86 and MHCII. Tumor-infiltrating dendritic cells from PC61-treated or untreated mice induced the proliferation of allogeneic T cells in vitro, but could not induce proliferation of OVA-specific OTI and OTII T cells unless specific peptide antigen was added in culture. Some proliferation of naïve, OVA-specific OTI T cells, but not OTII T cells, was observed in the tumor-draining LN of mice carrying B16.OVA tumors, however, this was not improved by PC61 treatment. Experiments using RAG1−/− hosts adoptively transferred with OTI and CD25-depleted OTII cells also failed to show improved OTI and OTII T cell proliferation in vivo compared to C57BL/6 hosts. We conclude that the defective presentation of B16.OVA tumor antigen by tumor-infiltrating dendritic cells and in the tumor-draining lymph node is not due to the presence of “natural” CD4+CD25+ Treg. PMID:21390236

  13. Mature dendritic cells generated from patient-derived peripheral blood monocytes in one-step culture using streptococcal preparation OK-432 exert an enhanced antigen-presenting capacity.

    PubMed

    Naito, Kei; Ueda, Yuji; Itoh, Tsuyoshi; Fuji, Nobuaki; Shimizu, Keiji; Yano, Yutaro; Yamamoto, Yoshiki; Imura, Kenichiro; Kohara, Junji; Iwamoto, Arihiro; Shiozaki, Atsushi; Tamai, Hidemasa; Shimizu, Takeshi; Mazda, Osam; Yamagishi, Hisakazu

    2006-06-01

    Dendritic cells (DCs) have been shown to be potent in inducing cytotoxic T cell (CTL) response leading to the efficient anti-tumor effect in active immunotherapy. Myeloid DCs are conventionally generated from human peripheral blood monocytes in the presence of interleukin (IL)-4 and granulocyte/macrophage colony-stimulating factor (GM-CSF). Streptococcal preparation OK-432, which is known to be a multiple cytokine inducer, has been extensively studied as to its maturation effects on immature DCs using an in vitro culture system. The purpose of this study was to examine whether it could be possible to generate mature DCs directly from peripheral monocytes using OK-432. We specifically focused on the possibility that recombinant cytokines, which are considered to be essential for in vitro DC generation, could be substituted by OK-432. Human peripheral monocytes, which were obtained from patients with advanced cancer, were cultured with IL-4 and OK-432 for 7 days. Cultured cells were compared with DCs generated in the presence of IL-4 and GM-CSF with or without OK-432 with regard to the surface phenotype as well as the antigen-presenting capacity. As a result, the culture of monocytes in the presence of IL-4 followed by the addition of OK-432 on day 4 (IL-4/OK-DC) induced cells with a fully mature DC phenotype. Functional assays also demonstrated that IL-4/OK-DCs had a strong antigen-presenting capacity determined by their enhanced antigen-specific CTL response and exerted a Th1-type T cell response which is critical for the induction of anti-tumor response. In conclusion, human peripheral blood monocytes cultured in the presence of IL-4 and OK-432 without exogenous GM-CSF demonstrated a fully mature DC phenotype and strong antigen-presenting capacity. This one-step culture protocol allows us to generate fully mature DCs directly from monocytes in 7 days and thus, this protocol can be applicable for DC-based anti-tumor immunotherapy.

  14. PROCEEDINGS OF THE 1983 DPF WORKSHOP ON COLLIDER DETECTORS: PRESENT CAPABILITIES AND FUTURE POSSIBILITIES, FEB. 28 - MARCH 4, 1983.

    SciTech Connect

    Loken Ed, S.C.; Nemethy Ed, P.

    1983-04-01

    It is useful before beginning our work here to restate briefly the purpose of this workshop in the light of the present circumstances of elementary particle physics in the U.S. The goal of our field is easily stated in a general way: it is to reach higher center of mass energies and higher luminosities while employing more sensitive and more versatile event detectors, all in order to probe more deeply into the physics of elementary particles. The obstacles to achieving this goal are equally apparent. Escalating costs of construction and operation of our facilities limit alternatives and force us to make hard choices among those alternatives. The necessity to be highly selective in the choice of facilities, in conjunction with the need for increased manpower concentrations to build accelerators and mount experiments, leads to complex social problems within the science. As the frontier is removed ever further, serious technical difficulties and limitations arise. Finally, competition, much of which is usually healthy, now manifests itself with greater intensity on a regional basis within our country and also on an international scale. In the far ({ge}20 yr) future, collaboration on physics facilities by two or more of the major economic entities of the world will possibly be forthcoming. In the near future, we are left to bypass or overcome these obstacles on a regional scale as best we can. The choices we face are in part indicated in the list of planned and contemplated accelerators shown in Table I. The facilities indicated with an asterisk pose immediate questions: (1) Do we need them all and what should be their precise properties? (2) How are the ones we choose to be realized? (3) What is the nature of the detectors to exploit those facilities? (4) How do we respond to the challenge of higher luminosity as well as higher energy in those colliders? The decision-making process in this country and elsewhere depends on the answers to these technical questions

  15. Deletion of 43 amino acids in the NH2-terminal half of the large tumor antigen of simian virus 40 results in a non-karyophilic protein capable of transforming established cells.

    PubMed Central

    Fischer-Fantuzzi, L; Vesco, C

    1985-01-01

    We have characterized a simian virus 40 (SV40) mutant, derived from the viral DNA insertion present in simian cell transformants, which carries a deletion affecting the NH2-terminal region of the SV40 large tumor antigen. This mutant protein is 6% smaller than normal, has lost the typical nuclear localization of the SV40 large tumor antigen, and accumulates in the cytoplasm. The deletion begins at nucleotide position 4490 of the SV40 DNA and ends in-frame at nucleotide position 4362. The missing 43 amino acids begin with proline-110 and end with serine-152 of the predicted sequence; they include a cluster of basic residues, presumably important for the viral origin-DNA binding, and most of the phosphorylation sites present in the NH2-terminal half of the molecule. The protein can still be phosphorylated considerably in vivo. This mutant viral genome is replication-defective but has conserved the competence to transform established cells, such as NIH/3T3 cells. Transfection of cloned mutant DNA into such cells resulted in the production of full transformants. Full transformants were not produced in similar transfections carried out in primary rat embryo fibroblasts, although some primary transfectants expressing the non-karyophilic large tumor antigen might be considered minimally transformed. Images PMID:2984671

  16. Tumor-associated antigens in gynecologic cancer.

    PubMed

    DiSaia, P J

    1975-12-01

    If the study of tumor immunology is to have a profound impact on clinical medicine, certain hypotheses must be proven to be valid. First and foremost, it must be demonstrated that malignant tissue possesses antigenic substances (probably protein moieties) that are unique to that particular malignant process. In addition, these antigenic substances must be very similar in histologically similar tumors. Second, the host defense mechanisms must be capable of reacting to these tumor-associated antigens. The reaction is, of course, necessary in order to develop both diagnostic and therapeutic routes of application. The reaction of the immunologic system to these tumor-associated antigens could be monitored as an early serodiagnostic tool for subclinical cancer, and the cytotoxic reaction holds great promise as an immunotherapeutic tool. The essence of tumor immunologic research can thus be stated in the form of the following questions: 1. Do histologically similar cancers from identical primary sites share common tumor-associated antigens? 2. Does the immunologic system react to these antigens? 3. Can this reaction be assayed on one hand for serodiagnosis and augmented on the other for immunotherapy? Specific antigens have been found in animal tumors and have been divided into two classes: the viral induced tumors, which share common antigens when caused by the same viral agent, and carcinogen-induced tumors, which appear to have unique antigenic determinants for each tumor. In recent years a great many human tumors have been found to have tumor-associated antigens; these include colonic carcinoma, neuroblastoma, melanoma, soft tissue and osteogenic sarcoma, bladder carcinoma and Burkitt's lymphoma. This report includes evidence for the existence of such antigens in adenocarcinoma of the ovary and squamous cell carcinoma of the cervix. The laboratory evidence that has been presented would suggest that there are both a cell-mediated response and humoral response to the

  17. Immune pressure selects for Plasmodium falciparum parasites presenting distinct red blood cell surface antigens and inducing strain-specific protection in Saimiri sciureus monkeys

    PubMed Central

    1995-01-01

    The passive transfer of specific antibodies to a naive splenectomized Saimiri sciureus monkey infected with the Palo Alto FUP/SP strain of Plasmodium falciparum resulted in the emergence of parasites resistant to the transferred antibodies. Molecular typing indicated that the original and resistant parasites were isogenic. Saimiri monkeys primed with original parasites were fully susceptible to a challenge by the resistant ones, and vice versa. This absence of crossprotection indicates that strain-specific determinants would be the major targets of protective immunity developed in these monkeys. Phenotypic analysis showed that the surface of the infected red blood cells differed in both lines. Original parasites formed rosettes, autoagglutinated, presented characteristic knobs at the surface of the infected red blood cell, and did not agglutinate in the presence of a pool of human immune sera. In contrast, the resistant parasites did not form rosettes, did not spontaneously autoagglutinate, presented abnormal flattened knobs, and formed large aggregates in the presence of a pool of human immune sera. The presence of strain-specific determinants at the surface of the resistant parasites was confirmed by surface immunofluorescence and agglutination using homologous Saimiri serum. Neither the original nor the resistant parasites cytoadhered to an amelanotic melanoma cell line, suggesting that cytoadherence and agglutination can be dissociated. These results indicate that parasites that differ by the antigens exposed at the surface of the red blood cell induce strain- specific immunity. Furthermore they show that rosetting and nonrosetting parasites differ in their antigenic properties and do not crossprotect. PMID:7807008

  18. Antigen Presenting Cells and Stromal Cells Trigger Human Natural Killer Lymphocytes to Autoreactivity: Evidence for the Involvement of Natural Cytotoxicity Receptors (NCR) and NKG2D

    PubMed Central

    Poggi, Alessandro; Zocchi, Maria Raffaella

    2006-01-01

    Human natural killer (NK) lymphocytes should not damage autologous cells due to the engagement of inhibitory receptor superfamily (IRS) members by HLA-I. Nevertheless, NK cells kill self cells expressing low levels or lacking HLA-I, as it may occur during viral infections (missing-self hypothesis). Herein, we show that human NK cells can be activated upon binding with self antigen presenting cells or stromal cells despite the expression of HLA-I. Indeed, NK cells can kill and produce pro-inflammatory and regulating cytokines as IFN-γ, TNF-α and IL10 during interaction with autologous dendritic cells or bone marrow stromal cells or skin fibroblasts. The killing of antigen presenting and stromal cells is dependent on LFA1/ICAM1 interaction. Further, the natural cytotoxicity receptors (NCR) NKp30 and NKp46 are responsible for the delivery of lethal hit to DC, whereas NKG2D activating receptor, the ligand of the MHC-related molecule MIC-A and the UL16 binding protein, is involved in stromal cell killing. These findings indicate that different activating receptors are involved in cell to self cell interaction. Finally, NK cells can revert the veto effect of stromal cells on mixed lymphocyte reaction further supporting the idea that NK cells may alter the interaction between T lymphocytes and microenvironment leading to autoreactivity. PMID:17162374

  19. IgE-mediated enhancement of CD4+ T cell responses requires antigen presentation by CD8α− conventional dendritic cells

    PubMed Central

    Ding, Zhoujie; Dahlin, Joakim S.; Xu, Hui; Heyman, Birgitta

    2016-01-01

    IgE, forming an immune complex with small proteins, can enhance the specific antibody and CD4+ T cell responses in vivo. The effects require the presence of CD23 (Fcε-receptor II)+ B cells, which capture IgE-complexed antigens (Ag) in the circulation and transport them to splenic B cell follicles. In addition, also CD11c+ cells, which do not express CD23, are required for IgE-mediated enhancement of T cell responses. This suggests that some type of dendritic cell obtains IgE-Ag complexes from B cells and presents antigenic peptides to T cells. To elucidate the nature of this dendritic cell, mice were immunized with ovalbumin (OVA)-specific IgE and OVA, and different populations of CD11c+ cells, obtained from the spleens four hours after immunization, were tested for their ability to present OVA. CD8α− conventional dendritic cells (cDCs) were much more efficient in inducing specific CD4+ T cell proliferation ex vivo than were CD8α+ cDCs or plasmacytoid dendritic cells. Thus, IgE-Ag complexes administered intravenously are rapidly transported to the spleen by recirculating B cells where they are delivered to CD8α− cDCs which induce proliferation of CD4+ T cells. PMID:27306570

  20. Cholera Toxin Promotes Th17 Cell Differentiation by Modulating Expression of Polarizing Cytokines and the Antigen-Presenting Potential of Dendritic Cells

    PubMed Central

    Kang, Jung-Ok; Lee, Jee-Boong

    2016-01-01

    Cholera toxin (CT), an exotoxin produced by Vibrio cholera, acts as a mucosal adjuvant. In a previous study, we showed that CT skews differentiation of CD4 T cells to IL-17-producing Th17 cells. Here, we found that intranasal administration of CT induced migration of migratory dendritic cell (DC) populations, CD103+ DCs and CD11bhi DCs, to the lung draining mediastinal lymph nodes (medLN). Among those DC subsets, CD11bhi DCs that were relatively immature had a major role in Th17 cell differentiation after administration of CT. CT-treated BMDCs showed reduced expression of MHC class II and CD86, similar to CD11bhi DCs in medLN, and these BMDCs promoted Th17 cell differentiation more potently than other BMDCs expressing higher levels of MHC class II and CD86. By analyzing the expression of activation markers such as CD25 and CD69, proliferation and IL-2 production, we determined that CT-treated BMDCs showed diminished antigen-presenting potential to CD4+ T cells compared with normal BMDCs. We also found that CT-stimulated BMDCs promote activin A expression as well as IL-6 and IL-1β, and activin A had a synergic role with TGF-β1 in CT-mediated Th17 cell differentiation. Taken together, our results suggest that CT-stimulated DCs promote Th17 cell differentiation by not only modulating antigen-presenting potential but also inducing Th polarizing cytokines. PMID:27271559

  1. The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells

    PubMed Central

    Wang, Bei; Kuroiwa, Janelle M.Y.; He, Li-Zhen; Charalambous, Anna; Keler, Tibor; Steinman, Ralph M.

    2010-01-01

    To develop a tumor vaccine directly targeting tumor antigen to dendritic cells in situ, we engineered human mesothelin (MSLN) into an antibody specific for mouse DEC-205, a receptor for antigen presentation. We then characterized both T cell and humoral responses to human MSLN and compared immunizing efficacy of DEC-205-targeted MSLN to nontargeted protein after a single dose immunization. Targeting human MSLN to DEC-205 receptor induced stronger CD4+ T cell responses compared to high doses of mesothelin protein. ∼0.5% CD4+ T cells were primed to produce IFN-γ, TNF-α and IL-2 via intracellular cytokine staining, and the T cells also could proliferate rapidly. The immune response exhibited breadth because the primed CD4+ T cells responded to at least three epitopes in the H-2b background. Targeting MSLN protein to DEC-205 receptor also resulted in cross-presentation to CD8+ T cells. Antibody responses against human MSLN were also detected in serum from primed mice by ELISA assays. In summary, targeting of MSLN to DEC-205 improves the induction of CD4+ and CD8+ T cell immunity accompanied by an antibody response. DEC-205-targeting could be valuable to enhance immunity to MSLN in the setting of cancers where this nonmutated protein is expressed. PMID:19769731

  2. A minor subset of Batf3-dependent antigen presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes

    PubMed Central

    Ferris, Stephen T.; Carrero, Javier A.; Mohan, James F.; Calderon, Boris; Murphy, Kenneth M.; Unanue, Emil R.

    2014-01-01

    Summary Autoimmune diabetes is characterized by inflammatory infiltration; however the initiating events are poorly understood. We found that the islets of Langerhans in young non-obese diabetic (NOD) mice contained two antigen presenting cell (APC) populations: a major macrophage and a minor CD103+ dendritic cell (DC) population. By four weeks of age, CD4+ T cells entered islets coincident with an increase of CD103+ DCs. In order to examine the role of the CD103+ DCs in diabetes, we examined Batf3-deficient NOD mice that lacked the CD103+ DCs in islets and pancreatic lymph nodes. This led to a lack of autoreactive T cells in islets and, importantly, no incidence of diabetes. Additional examination revealed that presentation of major histocompatibility complex (MHC) class I epitopes in the pancreatic lymph nodes was absent with a partial impairment of MHC class II presentation. Altogether, this study reveals that CD103+ DCs were essential for autoimmune diabetes development. PMID:25367577

  3. Polymorphism in the beta chain of IAq versus IAp influences presentation of protein but not peptide antigens.

    PubMed

    Lambert, L E; Berling, J S; Thompson, S D; Harton, J A; Bishop, G A; Choi, E

    1995-10-15

    T cells play a critical role in the development of collagen-induced arthritis (CIA). Immunization with heterologous (chick) type II collagen (cII) results in chronic inflammation with progressive damage to the joints. The expression of specific MHC Class II alpha beta dimers, including IAq, is critical to induction of disease. The alpha chains of IAq and IAp are identical in sequence. The IAq and IAp beta chains differ by only four amino acid residues: 85, 86, 88, and 89. However, mice of the H-2p haplotype are not susceptible to CIA. To examine the impact of these structural differences in IA molecules on T cell Ag recognition, we studied presentation of cII peptides and denatured cII by APCs obtained from H-2q and H-2p mice. We also assessed presentation of ovalbumin, myelin basic protein (MBP), and MBP peptides by these APC populations. H-2q APCs presented both peptides and proteins to our T cell hybrids. In contrast, APCs obtained from H-2p mice presented peptides, but were defective in the processing and/or presentation of protein Ags. We then altered pairs of the residues in IAq to those found in IAp using site-directed mutagenesis and transfected these constructs into M 12.C3 B cells. All transfectants were able to present peptides, but those expressing IAp were unable to present protein Ags. The use of transfectants expressing hybrid molecules (residues 85 and 86 from IAp, 88 and 89 from IAq, or vice versa) allowed us to localize the region responsible for this defect to residues 85 and 86 of the beta chain. The presence of IAp residues (glu and thr versus gly and val in IAq) at these sites severely compromised the capacity for protein presentation. Resistance to CIA in H-2p haplotype mice may be a reflection of the limited repertoire of epitopes to which these mice can respond relative to susceptible H-2q mice.

  4. The Critical Role of Antigen-Presentation-Induced Cytokine Crosstalk in the Central Nervous System in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Sosa, Rebecca A.

    2011-01-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4+ T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process. PMID:21919736

  5. Exogenous Control of the Expression of Group I CD1 Molecules Competent for Presentation of Microbial Nonpeptide Antigens to Human T Lymphocytes

    PubMed Central

    Aquino, Angelo; Graziani, Grazia; Franzese, Ornella; Prete, Salvatore P.; Bonmassar, Enzo; Bonmassar, Laura; D'Atri, Stefania

    2011-01-01

    Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis. PMID:21603161

  6. Artificial antigen-presenting cells expressing AFP158-166 peptide and interleukin-15 activate AFP-specific cytotoxic T lymphocytes

    PubMed Central

    Sun, Longhao; Guo, Hao; Jiang, Ruoyu; Lu, Li; Liu, Tong; Zhang, Zhixiang; He, Xianghui

    2016-01-01

    Professional antigen-presenting cells (APCs) are potent generators of tumor antigen-specific cytotoxic T lymphocytes (CTLs) for adoptive immunotherapy; however, generation of APCs is cumbersome, expensive, and subject to the tumor microenvironment. Artificial APCs (aAPCs) have been developed as a cost-effective alternative to APCs. We developed a cellular aAPC that efficiently generated alpha-fetoprotein (AFP)-specific CTLs. We genetically modified the human B cell lymphoma cell line BJAB with a lentiviral vector to establish an aAPC called BA15. The expression of AFP158-166-HLA-A*02:01 complex, CD80, CD86, and interleukin (IL)-15 in BA15 cells was assessed. The efficiency of BA15 at generating AFP-specific CTLs and the specific cytotoxicity of CTLs against AFP+ cells were also determined. BA15 cells expressed high levels of AFP158-166 peptide, HLA-A2, CD80, CD86, and IL-15. BA15 cells also exhibited higher efficiency in generating AFP-specific CTLs than did dendritic cells. These CTLs had greater cytotoxicity against AFP+ hepatocellular carcinoma cells than did CTLs obtained from dendritic cells in vitro and in vivo. Our novel aAPC system could provide a robust platform for the generation of functional AFP-specific CTLs for adoptive immunotherapy of hepatocellular carcinoma. PMID:27007051

  7. Rainbow trout CK9, a CCL25-like ancient chemokine that attracts and regulates B cells and macrophages, the main antigen presenting cells in fish.

    PubMed

    Aquilino, Carolina; Granja, Aitor G; Castro, Rosario; Wang, Tiehui; Abos, Beatriz; Parra, David; Secombes, Christopher J; Tafalla, Carolina

    2016-04-01

    CK9 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to mammalian CCL25. Although CK9 is known to be transcriptionally regulated in response to inflammation particularly in mucosal tissues, its functionality has never been revealed. In the current work, we have demonstrated that CK9 is chemoattractant for antigen presenting cells (APCs) expressing major histocompatibility complex class II (MHC II) on the cell surface. Among these APCs, CK9 has a strong chemotactic capacity for both B cells (IgM+ and IgT+) and macrophages. Along with its chemotactic capacities, CK9 modulated the MHC II turnover of B lymphocytes and up-regulated the phagocytic capacity of both IgM+ cells and macrophages. Although CK9 had no lymphoproliferative effects, it increased the survival of IgT+ lymphocytes. Furthermore, we have established that the chemoattractant capacity of CK9 is strongly increased after pre-incubation of leukocytes with a T-independent antigen, whereas B cell receptor (BCR) cross-linking strongly abrogated their capacity to migrate to CK9, indicating that CK9 preferentially attracts B cells at the steady state or under BCR-independent stimulation. These results point to CK9 being a key regulator of B lymphocyte trafficking in rainbow trout, able to modulate innate functions of teleost B lymphocytes and macrophages.

  8. A mouse aminopeptidase N is a marker for antigen-presenting cells and appears to be co-expressed with major histocompatibility complex class II molecules.

    PubMed

    Hansen, A S; Norén, O; Sjöström, H; Werdelin, O

    1993-09-01

    To analyze the expression of mouse aminopeptidase N (APN) on the cells of the immune system a panel of rat monoclonal antibodies against mouse intestinal APN was generated. These antibodies were used to affinity purify functional mouse APN from both intestine and kidney, and by flow cytometry to examine the APN expression of the cells of the mouse immune system. An APN closely related, perhaps identical, to the intestinal APN was expressed on a subpopulation of spleen cells and stimulated peritoneal exudate cells, primarily representing antigen-presenting cells, such as B cells, macrophages, dendritic cells, and veiled cells. In contrast this APN expression could not be detected on thymocytes or spleen T cells. As a corollary, APN was expressed on monocyte, macrophage, and B lymphoma cell lines, but not on T hybridoma or thymoma cell lines. The expression of APN showed a striking correlation with the MHC class II expression in all the cell populations studied. This apparent co-expression suggests a role for APN in antigen processing.

  9. PI3Kδ promotes CD4+ T-cell interactions with antigen-presenting cells by increasing LFA-1 binding to ICAM-1

    PubMed Central

    Garçon, Fabien; Okkenhaug, Klaus

    2016-01-01

    Activation of T lymphocytes by peptide/major histocompatibility complex on antigen-presenting cells (APCs) involves dynamic contacts between the two cells, during which T cells undergo marked morphological changes. These interactions are facilitated by integrins. Activation of the T cells increases the binding of the integrin lymphocyte function-associated antigen 1 (LFA-1) expressed by T cells to intercellular adhesion molecule (ICAM)-1 and ICAM-2 expressed by APCs. The signalling pathways that control integrin affinities are incompletely defined. The phosphoinositide 3-kinases (PI3Ks) generate second-messenger signalling molecules that control cell growth, proliferation, differentiation and trafficking. Here we show that in T cells, PI3Kδ attenuates the activation of Rac1, but sustains the activation of Rap1. Consequently, PI3Kδ increases LFA-1-dependent adhesion to form stable conjugates with APCs. Increased Rap1 activity and LFA-1 adhesion were only in part mediated by the downstream kinase Akt, suggesting the involvement of additional phosphatidylinositol(3,4,5)P3-binding proteins. These results establish a link between PI3K activity, cytoskeletal changes and integrin binding and help explain the impaired T-cell-dependent immune responses in PI3Kδ-deficient mice. PMID:26740009

  10. Rainbow trout CK9, a CCL25-like ancient chemokine that attracts and regulates B cells and macrophages, the main antigen presenting cells in fish

    PubMed Central

    Aquilino, Carolina; Granja, Aitor G.; Castro, Rosario; Wang, Tiehui; Abos, Beatriz; Parra, David; Secombes, Christopher J.; Tafalla, Carolina

    2016-01-01

    CK9 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to mammalian CCL25. Although CK9 is known to be transcriptionally regulated in response to inflammation particularly in mucosal tissues, its functionality has never been revealed. In the current work, we have demonstrated that CK9 is chemoattractant for antigen presenting cells (APCs) expressing major histocompatibility complex class II (MHC II) on the cell surface. Among these APCs, CK9 has a strong chemotactic capacity for both B cells (IgM+ and IgT+) and macrophages. Along with its chemotactic capacities, CK9 modulated the MHC II turnover of B lymphocytes and up-regulated the phagocytic capacity of both IgM+ cells and macrophages. Although CK9 had no lymphoproliferative effects, it increased the survival of IgT+ lymphocytes. Furthermore, we have established that the chemoattractant capacity of CK9 is strongly increased after pre-incubation of leukocytes with a T-independent antigen, whereas B cell receptor (BCR) cross-linking strongly abrogated their capacity to migrate to CK9, indicating that CK9 preferentially attracts B cells at the steady state or under BCR-independent stimulation. These results point to CK9 being a key regulator of B lymphocyte trafficking in rainbow trout, able to modulate innate functions of teleost B lymphocytes and macrophages. PMID:27003360

  11. Targeting of Nasal Mucosa-Associated Antigen-Presenting Cells In Vivo with an Outer Membrane Protein A Derived from Klebsiella pneumoniae

    PubMed Central

    Goetsch, Liliane; Gonzalez, Alexandra; Plotnicky-Gilquin, Hélène; Haeuw, Jean François; Aubry, Jean Pierre; Beck, Alain; Bonnefoy, Jean Yves; Corvaïa, Nathalie

    2001-01-01

    Administration of vaccines by the nasal route has recently proven to be one of the most efficient ways for inducing both mucosal and systemic antibody responses in experimental animals. Our results demonstrate that P40, a well-defined outer membrane protein A from Klebsiella pneumoniae, is indeed a carrier molecule suitable for nasal immunization. Using fragments from the respiratory syncytial virus subgroup A (RSV-A) G protein as antigen models, it has been shown that P40 is able to induce both systemic and mucosal immunity when fused or coupled to a protein or a peptide and administered intranasally (i.n.) to naive or K. pneumoniae-primed mice. Confocal analyses of nasal mucosa-associated lymphoid tissue after i.n. instillation of P40 showed that this molecule is able to cross the nasal epithelium and target CD11c-positive cells likely to be murine dendritic cells or macrophages. More importantly, this targeting of antigen-presenting cells following i.n. immunization with a subunit of the RSV-A molecule in the absence of any mucosal adjuvant results in both upper and lower respiratory tract protection against RSV-A infection. PMID:11553588

  12. Privileged Antigen Presentation in Splenic B Cell Follicles Maximizes T Cell Responses in Prime-Boost Vaccination.

    PubMed

    Bridle, Byram W; Nguyen, Andrew; Salem, Omar; Zhang, Liang; Koshy, Sandeep; Clouthier, Derek; Chen, Lan; Pol, Jonathan; Swift, Stephanie L; Bowdish, Dawn M E; Lichty, Brian D; Bramson, Jonathan L; Wan, Yonghong

    2016-06-01

    Effector T cells (TEFF) are a barrier to booster vaccination because they can rapidly kill Ag-bearing APCs before memory T cells are engaged. We report in this study that i.v. delivery of rhabdoviral vectors leads to direct infection of follicular B cells in the spleen, where the earliest evidence of secondary T cell responses was observed. This allows booster immunizations to rapidly expand CD8(+) central memory T cells (TCM) during the acute phase of the primary response that is dominated by TEFF Interestingly, although the ablation of B cells before boosting with rhabdoviral vectors diminishes the expansion of memory T cells, B cells do not present Ags directly. Instead, depletion of CD11c(+) dendritic cells abrogates secondary T cell expansion, suggesting that virus-infected follicular B cells may function as an Ag source for local DCs to subsequently capture and present the Ag. Because TCM are located within B cell follicles in the spleen whereas TEFF cannot traffic through follicular regions, Ag production and presentation by follicular APCs represent a unique mechanism to secure engagement of TCM during an ongoing effector response. Our data offer insights into novel strategies for rapid expansion of CD8(+) T cells using prime-boost vaccines by targeting privileged sites for Ag presentation. PMID:27183620

  13. Effect of gamma radiation on resting B lymphocytes. II. Functional characterization of the antigen-presentation defect

    SciTech Connect

    Ashwell, J.D.; Jenkins, M.K.; Schwartz, R.H.

    1988-10-15

    The effect of radiation on three discrete Ag-presentation functions in resting B cells was examined: 1) Ag uptake and processing, 2) expression of processed Ag in the context of functional class II molecules, and 3) provision of necessary co-stimulatory, or second, signals. Analysis of radiation's effect on B cell presentation of intact vs fragmented Ag or its effect on presentation by Ag-pulsed B cells indicated that damage to Ag uptake and processing could not account for the bulk of the radiation-induced Ag-presentation defect. Experiments with phosphatidylinositol hydrolysis as an indirect measure of TCR occupancy suggested that irradiation caused a fairly rapid (within 1 to 2 h) decrease in the ability of the B cell APC to display a stimulatory combination of Ag and class II molecule. Ag dose-response analyses demonstrated that when presenting a fragment of the Ag pigeon cytochrome c to a T cell clone, 3000 rad-treated B cell APC were able to stimulate approximately 50% as much phosphatidylinositol turnover as unirradiated B cells. It was also found that, in contrast to their inability to initiate T cell proliferation, and similarly to chemically cross-linked splenocytes, heavily irradiated resting B cells plus Ag induced a state of Ag hyporesponsiveness in T cell clones. This effect on T cells had the same Ag- and MHC-specificity as did receptor occupancy required for proliferation, indicating that heavily irradiated resting B cells bear functional class II molecules. Co-culture of T cells with allogeneic B cells and syngeneic heavily irradiated B cells or chemically cross-linked splenic APC plus Ag resulted in T cell proliferation and interfered with the induction of the hyporesponsive state. This co-stimulatory function was radiosensitive in resting allogeneic B cells.

  14. LAMP-2C Inhibits MHC Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated Autophagy.

    PubMed

    Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J; Deffit, Sarah N; Zhou, Delu; Blum, Janice S

    2016-03-15

    Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags. PMID:26856698

  15. Identification of an H2-M3-Restricted Listeria Epitope: Implications for Antigen Presentation by M3

    PubMed Central

    Lenz, Laurel L.; Dere, Beverley; Bevan, Michael J.

    2009-01-01

    Summary Using expression cloning, we have identified an H2-M3-restricted epitope of the intracellular bacterial pathogen Listeria monocytogenes. Picomolar concentrations of an amino-terminal N-formylated hexapeptide, fMIGWII, targeted cells for lysis by CD8+ cytotoxic T cells, while the nonformylated peptide was approximately 100-fold less active. The sequence of the 185 aa protein source of this epitope predicts a transmembrane protein that retains its N terminus and assumes an Nout–Cin topology. This membrane orientation offers an explanation for the protection of the epitope from deformylases present in the bacterial cell and suggests an explanation for the ability of phagocytes to present H2-M3-restricted bacterial epitopes via a vacuolar TAP-independent mechanism. PMID:8758895

  16. Novel CD47: SIRPα Dependent Mechanism for the Activation of STAT3 in Antigen-Presenting Cell

    PubMed Central

    Toledano, Natan; Gur-Wahnon, Devorah; Ben-Yehuda, Adi; Rachmilewitz, Jacob

    2013-01-01

    Cell surface CD47 interacts with its receptor, signal-regulatory-protein α (SIRPα) that is expressed predominantly on macrophages, to inhibit phagocytosis of normal, healthy cells. This “don’t eat me” signal is mediated through tyrosine phosphorylation of SIRPα at the cytoplasmic ITIM motifs and the recruitment of the phosphatase, SHP-1. We previously revealed a novel mechanism for the activation of the STAT3 pathway and the regulation of human APC maturation and function that is based on cell:cell interaction. In this study, we present evidence supporting the notion that CD47:SIRPα serves as a cell surface receptor: ligand pair involved in this contact-dependent STAT3 activation and regulation of APC maturation. We show that upon co-culturing APC with various primary and tumor cell lines STAT3 phosphorylation and IL-10 expression are induced, and such regulation could be suppressed by specific CD47 siRNAs and shRNAs. Significantly, >50% reduction in CD47 expression abolished the contact-dependent inhibition of T cell activation. Furthermore, co-immunoprecipitation experiments revealed a physical association between SIRPα and STAT3. Thus, we suggest that in addition to signaling through the ITIM-SHP-1 complex that transmit an anti-phagocytotic, CD47:SIRPα also triggers STAT3 signaling that is linked to an immature APC phenotype and peripheral tolerance under steady state and pathological conditions. PMID:24073274

  17. Availability of 25-hydroxyvitamin D3 to antigen presenting cells controls the balance between regulatory and inflammatory T cell responses

    PubMed Central

    Jeffery, Louisa E.; Wood, Alice M.; Qureshi, Omar S; Hou, Tie Zheng; Gardner, David; Briggs, Zoe; Kaur, Satdip; Raza, Karim; Sansom, David M.

    2012-01-01

    1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, exerts potent effects on several tissues including cells of the immune system, where it affects T cell activation, differentiation and migration. The circulating, inactive form of vitamin D, 25(OH)D3, is generally used as an indication of “vitamin D status”. However, utilization of this precursor depends on its uptake by cells and subsequent conversion by the enzyme 25(OH)D3-1α-hydroxylase (CYP27B1) into active 1,25(OH)2D3. Using human T cells, we now show that addition of inactive 25(OH)D3 is sufficient to alter T cell responses only when dendritic cells (DCs) are present. Mechanistically, CYP27B1 is induced in DCs upon maturation with LPS or upon T cell contact resulting in the generation and release of 1,25(OH)2D3 which subsequently affects T cell responses. In most tissues, vitamin D binding protein (DBP) acts as a carrier to enhance the utilization of vitamin D. However, we show that DBP modulates T cell responses by restricting the availability of inactive 25(OH)D3 to DC. These data indicate that the level of “free” 25(OH)D3 available to DCs determines the inflammatory/regulatory balance of ensuing T cell responses. PMID:23087405

  18. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure.

    PubMed Central

    Odermatt, B; Eppler, M; Leist, T P; Hengartner, H; Zinkernagel, R M

    1991-01-01

    Virus-induced acquired immune suppression in mice infected with lymphocytic choriomeningitis virus is shown here to be caused by the CD8+-T-cell-dependent elimination of macrophages/antigen-presenting cells. Surprisingly, this is associated with severe destruction of the follicular organization of lymphoid organs, indicating a crucial role for dendritic cells and marginal zone macrophages in maintaining follicular structure. Once established, this immunopathology cannot be readily reversed by the elimination of CD8+ effector cells. Such a T-cell-mediated pathogenesis may play a pivotal role in acquired virus-induced immunosuppression and may represent one strategy by which virus escapes immune surveillance and establishes persistent infections in initially immunocompetent hosts. Images PMID:1910175

  19. Lack of B7-1/BB1 and B7-2/B70 expression on thyrocytes of patients with Graves' disease. Delivery of costimulatory signals from bystander professional antigen-presenting cells.

    PubMed

    Matsuoka, N; Eguchi, K; Kawakami, A; Tsuboi, M; Nakamura, H; Kimura, H; Ishikawa, N; Ito, K; Nagataki, S

    1996-11-01

    We have previously demonstrated that thyrocytes from patients with Graves' disease induce autologous peripheral blood T cell proliferation in response to soluble antigens, and a synergistic augmentation of T cell response by adding suboptimal numbers of monocytes. In the present study, we examined the role of costimulatory molecules, expressed on the surface of thyrocytes and intrathyroidal mononuclear cells, in antigen-specific T cell proliferation. Intercellular associated molecule (ICAM)-1 and lymphocyte function associated antigen-3 were constitutively expressed on the surface of both normal and Graves' thyrocytes. However, ICAM-2, vascular cell adhesion molecule-1, B7-1, and B7-2 were not detected and induced by cytokines. B7-1, was expressed on intrathyroidal monocytes only, while B7-2 was present on intrathyroidal lymphocytes, peripheral blood monocytes, and intrathyroidal monocytes. Furthermore, the density of B7-2 was higher on intrathyroidal monocytes than on peripheral blood monocytes. The intensity of CD28 expression on intrathyroidal CD8bright+ cells was less than that on peripheral blood CD8bright+ cells. The antigen-specific T cell response induced by thyrocytes was blocked completely by anti-human leukocyte antigen-DR monoclonal antibody (mAb) and partially by anti-ICAM-1 mAb and anti-lymphocyte function associated antigen-3 mAb. Furthermore, the synergistic augmentation of T cell response, induced by the addition of suboptimal number of monocytes, was suppressed completely by combining anti-B7-1 mAb and anti-B7-2 mAb, to a level equivalent to that observed when thyrocytes were used alone as antigen-presenting cells. Our results suggest that T cell proliferation was induced by cooperation of thyrocytes and infiltrating professional antigen-presenting cells.

  20. Induction of antigen-presenting capacity in tumor cells upon infection with non-replicating recombinant vaccinia virus encoding murine MHC class II and costimulatory molecules.

    PubMed

    Marti, W R; Oertli, D; Meko, J B; Norton, J A; Tsung, K

    1997-01-15

    The possibility of inducing antigen-presenting capacity in cells normally lacking such capacity, currently represents a major goal in vaccine research. To address this issue we attempted to generate 'artificial' APC able to stimulate CD4+ T cell responses when tumor cells were infected with a single, recombinant, vaccinia virus (rVV) containing the two genes encoding murine MHC class II I-Ak and a third gene encoding the murine B7-1 (mB7-1) costimulatory molecule. To minimize the cytopathic effect and to improve safety, in view of possible in vivo applications, we made this rVV replication incompetent by Psoralen and long wave UV treatment. Tumor cells infected with rVV encoding I-Ak alone, pulsed with hen egg white lysozyme peptide (HEL46-61), induced IL-2 secretion by an antigen-specific T hybridoma. Tumor cells infected with the rVV encoding mB7-1 provided costimulation for activating resting CD4+ T cells in the presence of ConA. Tumor cells infected with the rVV encoding I-Ak and mB7-1, and pulsed with chicken ovotransferrin peptide (conalbumin133-145), induced a significantly higher response in a specific Th2 cell clone (D10.G4.1) as compared to cells infected with rVV encoding I-Ak molecules only. Thus, this replication incompetent rVV represents a safe, multiple gene, vector system able to confer in one single infection step effective APC capacity to non-professional APCs.

  1. IRF1 and NF-kB restore MHC class I-restricted tumor antigen processing and presentation to cytotoxic T cells in aggressive neuroblastoma.

    PubMed

    Lorenzi, Silvia; Forloni, Matteo; Cifaldi, Loredana; Antonucci, Chiara; Citti, Arianna; Boldrini, Renata; Pezzullo, Marco; Castellano, Aurora; Russo, Vincenzo; van der Bruggen, Pierre; Giacomini, Patrizio; Locatelli, Franco; Fruci, Doriana

    2012-01-01

    Neuroblastoma (NB), the most common solid extracranial cancer of childhood, displays a remarkable low expression of Major Histocompatibility Complex class I (MHC-I) and Antigen Processing Machinery (APM) molecules, including Endoplasmic Reticulum (ER) Aminopeptidases, and poorly presents tumor antigens to Cytotoxic T Lymphocytes (CTL). We have previously shown that this is due to low expression of the transcription factor NF-kB p65. Herein, we show that not only NF-kB p65, but also the Interferon Regulatory Factor 1 (IRF1) and certain APM components are low in a subset of NB cell lines with aggressive features. Whereas single transfection with either IRF1, or NF-kB p65 is ineffective, co-transfection results in strong synergy and substantial reversion of the MHC-I/APM-low phenotype in all NB cell lines tested. Accordingly, linked immunohistochemistry expression patterns between nuclear IRF1 and p65 on the one hand, and MHC-I on the other hand, were observed in vivo. Absence and presence of the three molecules neatly segregated between high-grade and low-grade NB, respectively. Finally, APM reconstitution by double IRF1/p65 transfection rendered a NB cell line susceptible to killing by anti MAGE-A3 CTLs, lytic efficiency comparable to those seen upon IFN-γ treatment. This is the first demonstration that a complex immune escape phenotype can be rescued by reconstitution of a limited number of master regulatory genes. These findings provide molecular insight into defective MHC-I expression in NB cells and provide the rational for T cell-based immunotherapy in NB variants refractory to conventional therapy.

  2. CD80 and CD86 Differentially Regulate Mechanical Interactions of T-Cells with Antigen-Presenting Dendritic Cells and B-Cells

    PubMed Central

    Lim, Tong Seng; Goh, James Kang Hao; Mortellaro, Alessandra; Lim, Chwee Teck; Hämmerling, Günter J.; Ricciardi-Castagnoli, Paola

    2012-01-01

    Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs), including dendritic cells (DCs) and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force spectroscopy to characterize and compare the mechanical forces of interactions between DC:T-cells and B:T-cells. Following antigen stimulation, intercellular interactions of DC:T-cell conjugates were stronger than B:T-cell interactions. DCs induced higher levels of T-cell calcium mobilization and production of IL-2 and IFNγ than were elicited by B-cells, thus suggesting that tight intercellular contacts are important in providing mechanically stable environment to initiate T-cell activation. Blocking antibodies targeting surface co-stimulatory molecules CD80 or CD86 weakened intercellular interactions and dampen T-cell activation, highlighting the amplificatory roles of CD80/86 in regulating APC:T-cell interactions and T-cell functional activation. The variable strength of mechanical forces between DC:T-cells and B:T-cell interactions were not solely dependent on differential APC expression of CD80/86, since DCs were superior to B-cells in promoting strong interactions with T-cells even when CD80 and CD86 were inhibited. These data provide mechanical insights into the effects of co-stimulatory molecules in regulating APC:T-cell interactions. PMID:23024807

  3. CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells.

    PubMed

    Lim, Tong Seng; Goh, James Kang Hao; Mortellaro, Alessandra; Lim, Chwee Teck; Hämmerling, Günter J; Ricciardi-Castagnoli, Paola

    2012-01-01

    Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs), including dendritic cells (DCs) and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force spectroscopy to characterize and compare the mechanical forces of interactions between DC:T-cells and B:T-cells. Following antigen stimulation, intercellular interactions of DC:T-cell conjugates were stronger than B:T-cell interactions. DCs induced higher levels of T-cell calcium mobilization and production of IL-2 and IFNγ than were elicited by B-cells, thus suggesting that tight intercellular contacts are important in providing mechanically stable environment to initiate T-cell activation. Blocking antibodies targeting surface co-stimulatory molecules CD80 or CD86 weakened intercellular interactions and dampen T-cell activation, highlighting the amplificatory roles of CD80/86 in regulating APC:T-cell interactions and T-cell functional activation. The variable strength of mechanical forces between DC:T-cells and B:T-cell interactions were not solely dependent on differential APC expression of CD80/86, since DCs were superior to B-cells in promoting strong interactions with T-cells even when CD80 and CD86 were inhibited. These data provide mechanical insights into the effects of co-stimulatory molecules in regulating APC:T-cell interactions.

  4. miR-24, miR-30b and miR-142-3p interfere with antigen processing and presentation by primary macrophages and dendritic cells

    PubMed Central

    Naqvi, Afsar Raza; Fordham, Jezrom B.; Ganesh, Balaji; Nares, Salvador

    2016-01-01

    Antigen uptake, processing and presentation by antigen presenting cells (APCs) are tightly coupled processes which consequently lead to the activation of innate and adaptive immune responses. However, the regulatory role of microRNA (miRNAs) in these critical pathways is poorly understood. In this study, we show that overexpression of miR-24, miR-30b and miR-142-3p attenuates uptake and processing of soluble antigen ovalbumin (Ova) in primary human macrophages and dendritic cells. MiRNA mimic transfected APCs exhibit defects in antigen presentation (Ova and CMV antigen) to CD4+ T-cells leading to reduced cell proliferation. Using transgenic OT-II mice we demonstrated that this impairment in T-cell proliferation is specific to antigen provided i.e., Ova. Further, human T-cells co-cultured with miRNA transfected dendritic cells secrete low levels of T helper (Th)-1 polarization associated cytokines. Analysis of molecules regulating APC and T-cell receptor interaction shows miRNA-mediated induced expression of Programmed Death-Ligand 1 (PD-L1) which inhibits T-cell proliferation. Blocking PD-L1 with antibodies rescues miRNA-mediated inhibition of T cell priming by DCs. These results uncover regulatory functions of miR-24, miR-30b and miR-142-3p in pairing innate and adaptive components of immunity. PMID:27611009

  5. miR-24, miR-30b and miR-142-3p interfere with antigen processing and presentation by primary macrophages and dendritic cells.

    PubMed

    Naqvi, Afsar Raza; Fordham, Jezrom B; Ganesh, Balaji; Nares, Salvador

    2016-01-01

    Antigen uptake, processing and presentation by antigen presenting cells (APCs) are tightly coupled processes which consequently lead to the activation of innate and adaptive immune responses. However, the regulatory role of microRNA (miRNAs) in these critical pathways is poorly understood. In this study, we show that overexpression of miR-24, miR-30b and miR-142-3p attenuates uptake and processing of soluble antigen ovalbumin (Ova) in primary human macrophages and dendritic cells. MiRNA mimic transfected APCs exhibit defects in antigen presentation (Ova and CMV antigen) to CD4+ T-cells leading to reduced cell proliferation. Using transgenic OT-II mice we demonstrated that this impairment in T-cell proliferation is specific to antigen provided i.e., Ova. Further, human T-cells co-cultured with miRNA transfected dendritic cells secrete low levels of T helper (Th)-1 polarization associated cytokines. Analysis of molecules regulating APC and T-cell receptor interaction shows miRNA-mediated induced expression of Programmed Death-Ligand 1 (PD-L1) which inhibits T-cell proliferation. Blocking PD-L1 with antibodies rescues miRNA-mediated inhibition of T cell priming by DCs. These results uncover regulatory functions of miR-24, miR-30b and miR-142-3p in pairing innate and adaptive components of immunity. PMID:27611009

  6. Vanilloid Receptor 1 Agonists, Capsaicin and Resiniferatoxin, Enhance MHC Class I-restricted Viral Antigen Presentation in Virus-infected Dendritic Cells.

    PubMed

    Lee, Young-Hee; Im, Sun-A; Kim, Ji-Wan; Lee, Chong-Kil

    2016-08-01

    DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-K(b) complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses. PMID:27574502

  7. Vanilloid Receptor 1 Agonists, Capsaicin and Resiniferatoxin, Enhance MHC Class I-restricted Viral Antigen Presentation in Virus-infected Dendritic Cells

    PubMed Central

    Lee, Young-Hee; Im, Sun-A; Kim, Ji-Wan

    2016-01-01

    DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-Kb complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses. PMID:27574502

  8. Suppressive effects of Bifidobacterium longum on the production of Th2-attracting chemokines induced with T cell-antigen-presenting cell interactions.

    PubMed

    Iwabuchi, Noriyuki; Takahashi, Noritoshi; Xiao, Jin-Zhong; Yonezawa, Sumiko; Yaeshima, Tomoko; Iwatsuki, Keiji; Hachimura, Satoshi

    2009-04-01

    In human trials, Bifidobacterium longum BB536 alleviates subjective symptoms of Japanese cedar pollinosis, an IgE-mediated type I allergy caused by exposure to Japanese cedar, and significantly suppresses the increase of plasma thymus- and activation-regulated chemokine (TARC) associated with pollen dispersion. In the present study, we investigated the suppressive effects of BB536 on the production of T helper type 2 (Th2)-attracting chemokines, such as TARC and macrophage-derived chemokine (MDC), together with the mechanisms of their production. Murine splenocytes were cultured with heat-killed BB536, and the levels of Th2-attracting chemokines in the supernatants were measured. TARC and MDC were produced in cultures without stimulation, and the production was significantly suppressed by BB536. These chemokines were produced by antigen-presenting cells (APCs) of splenocytes stimulated with an anti-CD40 antibody. Furthermore, TARC production was induced with granulocyte macrophage colony-stimulating factor that was produced by T cells and dendritic cells. BB536 suppressed MDC production induced with the anti-CD40 antibody by APCs from the spleen, mesenteric lymph nodes (MLNs) and Peyer's patches, and it suppressed TARC production by APCs from the spleen and MLNs. These results indicate that BB536 suppresses the production of Th2-attracting chemokines induced by the T cell-APC interaction, suggesting a novel mechanism for alleviating symptoms of allergic disorders by probiotics.

  9. Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens.

    PubMed

    Wang, Ruibo; Kovalchin, Joseph T; Muhlenkamp, Peggy; Chandawarkar, Rajiv Y

    2006-02-15

    The extracellular presence of endotoxin-free heat shock protein 70 (HSP70) enhances the rate and capacity of macrophage-mediated phagocytosis at 6 times the basal rate. It is protein-specific, dose- and time-dependent and involves the internalization of inert microspheres, Gram-positive and -negative bacteria and fungi. Structurally, exogenous HSP70 binds the macrophage plasma membrane, specifically on its lipid raft-microdomain. Disruption of lipid rafts, HSP70-LR interaction, or denaturing HSP70 abrogates the HSP-mediated increase in phagocytosis. Further, HSP70-mediated phagocytosis directly enhances the processing and presentation of internalized antigens via the endocytic MHC class-II pathway to CD4+ T lymphocytes. Modulating the HSP70-LR interaction presents an opportunity to intervene at the level of host-pathogen interface: a therapeutic tool for emerging infections, especially when conventional treatment with antibiotics is ineffective (antibiotic resistance) or unavailable (rapidly spreading, endemic). These results identify a new role for HSP70, a highly conserved molecule in stimulating phagocytosis: a primordial macrophage function, thereby influencing both innate and adaptive immune responses.

  10. Mouse bone marrow-derived dendritic cells can phagocytize the Sporothrix schenckii, and mature and activate the immune response by secreting interleukin-12 and presenting antigens to T lymphocytes.

    PubMed

    Kusuhara, Masahiro; Qian, Hua; Li, Xiaoguang; Tsuruta, Daisuke; Tsuchisaka, Atsunari; Ishii, Norito; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-05-01

    In sporotrichosis, dermal dendritic cells were considered to participate in induction of the immune responses against Sporothrix schenckii infection. However, it is still unclear whether and how dermal dendritic cells were involved in the progress. To clarify the pathogenic role of dermal dendritic cells (DC) in sporotrichosis, we examined the phagocytosis, maturation stages, cytokine production and antigen-presenting ability of mouse bone marrow-derived DC after stimulation with S. schenckii. By analysis of flow cytometry, electron microscope and confocal microscope, mouse bone marrow-derived DC were proved to be able to phagocytize the S. schenckii. The increased expression of CD40, CD80 and CD86 on the surface of S. schenckii-pulsed mouse bone marrow-derived DC was detected by flow cytometer, indicating that the S. schenckii-pulsed mouse bone marrow-derived DC underwent the maturation program. The secretory enhancement of interleukin (IL)-12, but not IL-4, was found in S. schenckii-pulsed mouse bone marrow-derived DC, suggesting the possible activation of T-helper 1 prone immune responses. Furthermore, S. schenckii-pulsed mouse bone marrow-derived DC were demonstrated to be capable of inducing the proliferation of T lymphocytes from BALB/c mice that were pre-sensitized with S. schenckii. Together, all the results implied that dermal DC may participate in the induction of immune responses against S. schenckii infection in sporotrichosis.

  11. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    SciTech Connect

    Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi; Bhatnagar, Rakesh . E-mail: rakbhat01@yahoo.com; Banerjee-Bhatnagar, Nirupama . E-mail: nirupama@icgeb.res.in

    2006-12-22

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine.

  12. Processing and cross-presentation of individual HLA-A, -B, or -C epitopes from NY-ESO-1 or an HLA-A epitope for Melan-A differ according to the mode of antigen delivery.

    PubMed

    Robson, Neil C; McAlpine, Tristan; Knights, Ashley J; Schnurr, Max; Shin, Amanda; Chen, Weisan; Maraskovsky, Eugene; Cebon, Jonathan

    2010-07-15

    The ability of dendritic cells (DCs) to cross-present protein tumor antigens to cytotoxic T lymphocytes (CTLs) underpins the success of therapeutic cancer vaccines. We studied cross-presentation of the cancer/testis antigen, NY-ESO-1, and the melanoma differentiation antigen, Melan-A by human DC subsets. Monocyte-derived DCs (MoDCs) efficiently cross-presented human leukocyte associated (HLA)-A2-restricted epitopes from either a formulated NY-ESO-1/ISCOMATRIX vaccine or when either antigen was mixed with ISCOMATRIX adjuvant. HLA-A2 epitope generation required endosomal acidification and was proteasome-independent for NY-ESO-1 and proteasome-dependent for Melan-A. Both MoDCs and CD1c(+) blood DCs cross-presented NY-ESO-1-specific HLA-A2(157-165)-, HLA-B7(60-72)-, and HLA-Cw3(92-100)-restricted epitopes when formulated as an NY-ESO-1/ISCOMATRIX vaccine, but this was limited when NY-ESO-1 and ISCOMATRIX adjuvant were added separately to the DC cultures. Finally, cross-presentation of NY-ESO-1(157-165)/HLA-A2, NY-ESO-1(60-72)/HLA-B7, and NY-ESO-1(92-100)/HLA-Cw3 epitopes was proteasome-dependent when formulated as immune complexes (ICs) but only proteasome-dependent for NY-ESO-1(60-72)/HLA-B7-restricted cross-presentation facilitated by ISCOMATRIX adjuvant. We demonstrate, for the first time, proteasome-dependent and independent cross-presentation of HLA-A-, B-, and C-restricted epitopes within the same full-length tumor antigen by human DCs. Our findings identify important differences in the capacities of human DC subsets to cross-present clinically relevant, full-length tumor antigens and how vaccine formulation impacts CTL responses in vivo.

  13. Granulocyte-Macrophage Colony-Stimulating Factor Expressed by Recombinant Respiratory Syncytial Virus Attenuates Viral Replication and Increases the Level of Pulmonary Antigen-Presenting Cells

    PubMed Central

    Bukreyev, Alexander; Belyakov, Igor M.; Berzofsky, Jay A.; Murphy, Brian R.; Collins, Peter L.

    2001-01-01

    An obstacle to developing a vaccine against human respiratory syncytial virus (RSV) is that natural infection typically does not confer solid immunity to reinfection. To investigate methods to augment the immune response, recombinant RSV (rRSV) was constructed that expresses murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) from a transcription cassette inserted into the G-F intergenic region. Replication of rRSV/mGM-CSF in the upper and lower respiratory tracts of BALB/c mice was reduced 23- to 74- and 5- to 588-fold, respectively, compared to that of the parental rRSV. Despite this strong attenuation of replication, the level of RSV-specific serum antibodies induced by rRSV/mGM-CSF was comparable to, or marginally higher than, that of the parental rRSV. The induction of RSV-specific CD8+ cytotoxic T cells was moderately reduced during the initial infection, which might be a consequence of reduced antigen expression. Mice infected with rRSV/mGM-CSF had elevated levels of pulmonary mRNA for gamma interferon (IFN-γ) and interleukin 12 (IL-12) p40 compared to animals infected by wild-type rRSV. Elevated synthesis of IFN-γ could account for the restriction of RSV replication, as was observed previously with an IFN-γ-expressing rRSV. The accumulation of total pulmonary mononuclear cells and total CD4+ T lymphocytes was accelerated in animals infected with rRSV/mGM-CSF compared to that in animals infected with the control virus, and the level of IFN-γ-positive or IL-4-positive pulmonary CD4+ cells was elevated approximately twofold. The number of pulmonary lymphoid and myeloid dendritic cells and macrophages was increased up to fourfold in mice infected with rRSV/mGM-CSF compared to those infected with the parental rRSV, and the mean expression of major histocompatibility complex class II molecules, a marker of activation, was significantly increased in the two subsets of dendritic cells. Enhanced antigen presentation likely accounts for the

  14. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    PubMed

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors. PMID:19052565

  15. Effector and regulatory T-cell function is differentially regulated by RelB within antigen-presenting cells during GVHD.

    PubMed

    MacDonald, Kelli P A; Kuns, Rachel D; Rowe, Vanessa; Morris, Edward S; Banovic, Tatjana; Bofinger, Helen; O'Sullivan, Brendan; Markey, Kate A; Don, Alistair L; Thomas, Ranjeny; Hill, Geoffrey R

    2007-06-01

    Antigen-presenting cells (APCs) are critical for the initiation of graft-versus-host disease (GVHD), although the responsible APC subset and molecular mechanisms remain unclear. Because dendritic cells (DCs) are the most potent APCs and the NF-kB/Rel family member RelB is associated with DC maturation and potent APC function, we examined their role in GVHD. Within 4 hours of total body irradiation, RelB nuclear translocation was increased and restricted to CD11c(hi) DCs within the host APC compartment. Furthermore, the transient depletion of CD11c(hi) donor DCs that reconstitute in the second week after transplantation resulted in a transient decrease in GVHD severity. By using RelB(-/-) bone marrow chimeras as transplant recipients or RelB(-/-) donor bone marrow, we demonstrate that the induction and maintenance of GVHD is critically dependent on this transcription factor within both host and donor APCs. Critically, RelB within APCs was required for the expansion of donor helper T cell type 1 (Th1) effectors and subsequent alloreactivity, but not the peripheral expansion or function of donor FoxP3(+) regulatory T cells. These data suggest that the targeted inhibition of nuclear RelB translocation within APCs represents an attractive therapeutic strategy to dissociate effector and regulatory T-cell function in settings of Th1-mediated tissue injury.

  16. Understanding the Impact of ErbB Activating Events and Signal Transduction on Antigen Processing and Presentation: MHC Expression as a Model

    PubMed Central

    Kersh, Anna E.; Sasaki, Maiko; Cooper, Lee A.; Kissick, Haydn T.; Pollack, Brian P.

    2016-01-01

    Advances in molecular pathology have changed the landscape of oncology. The ability to interrogate tissue samples for oncogene amplification, driver mutations, and other molecular alterations provides clinicians with an enormous level of detail about their patient’s cancer. In some cases, this information informs treatment decisions, especially those related to targeted anti-cancer therapies. However, in terms of immune-based therapies, it is less clear how to use such information. Likewise, despite studies demonstrating the pivotal role of neoantigens in predicting responsiveness to immune checkpoint blockade, it is not known if the expression of neoantigens impacts the response to targeted therapies despite a growing recognition of their diverse effects on immunity. To realize the promise of ‘personalized medicine’, it will be important to develop a more integrated understanding of the relationships between oncogenic events and processes governing anti-tumor immunity. One area of investigation to explore such relationships centers on defining how ErbB/HER activation and signal transduction influences antigen processing and presentation. PMID:27729860

  17. Meningitis Caused by Toscana Virus Is Associated with Strong Antiviral Response in the CNS and Altered Frequency of Blood Antigen-Presenting Cells.

    PubMed

    Varani, Stefania; Gelsomino, Francesco; Bartoletti, Michele; Viale, Pierluigi; Mastroianni, Antonio; Briganti, Elisabetta; Ortolani, Patrizia; Albertini, Francesco; Calzetti, Carlo; Prati, Francesca; Cenni, Patrizia; Castellani, Gastone; Morini, Silvia; Rossini, Giada; Landini, Maria Paola; Sambri, Vittorio

    2015-11-11

    Toscana virus (TOSV) is a Phlebotomus-transmitted RNA virus and a frequent cause of human meningitis and meningoencephalitis in Southern Europe during the summer season. While evidence for TOSV-related central nervous system (CNS) cases is increasing, little is known about the host defenses against TOSV. We evaluated innate immune response to TOSV by analyzing frequency and activation of blood antigen-presenting cells (APCs) and cytokine levels in plasma and cerebrospinal fluid (CSF) from patients with TOSV neuroinvasive infection and controls. An altered frequency of different blood APC subsets was observed in TOSV-infected patients, with signs of monocytic deactivation. Nevertheless, a proper or even increased responsiveness of toll-like receptor 3 and 7/8 was observed in blood APCs of these patients as compared to healthy controls. Systemic levels of cytokines remained low in TOSV-infected patients, while levels of anti-inflammatory and antiviral mediators were significantly higher in CSF from TOSV-infected patients as compared to patients with other infectious and noninfectious neurological diseases. Thus, the early host response to TOSV appears effective for viral clearance, by proper response to TLR3 and TLR7/8 agonists in peripheral blood and by a strong and selective antiviral and anti-inflammatory response in the CNS.

  18. Stat6-Dependent Inhibition of Mincle Expression in Mouse and Human Antigen-Presenting Cells by the Th2 Cytokine IL-4

    PubMed Central

    Hupfer, Thomas; Schick, Judith; Jozefowski, Katrin; Voehringer, David; Ostrop, Jenny; Lang, Roland

    2016-01-01

    The C-type lectin receptors (CLRs) Mincle, Mcl, and Dectin-2 bind mycobacterial and fungal cell wall glycolipids and carbohydrates. Recently, we described that expression of these CLR is downregulated during differentiation of human monocytes to dendritic cells (DC) in the presence of GM-CSF and IL-4. Here, we demonstrate that the Th2 cytokine IL-4 specifically inhibits expression of Mincle, Mcl, and Dectin-2 in human antigen-presenting cells (APC). This inhibitory effect of IL-4 was observed across species, as murine macrophages and DC treated with IL-4 also downregulated these receptors. IL-4 blocked upregulation of Mincle and Mcl mRNA expression and cell surface protein by murine macrophages in response to the Mincle ligand Trehalose-6,6-dibehenate (TDB), whereas the TLR4 ligand LPS overcame inhibition by IL-4. Functionally, downregulation of Mincle expression by IL-4 was accompanied by reduced cytokine production upon stimulation with TDB. These inhibitory effects of IL-4 were dependent on the transcription factor Stat6. Together, our results show that the key Th2 cytokine IL-4 exerts a negative effect on the expression of Mincle and other Dectin-2 cluster CLR in mouse and human macrophages and DC, which may render these sentinel cells less vigilant for sensing mycobacterial and fungal ligands. PMID:27790218

  19. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    PubMed

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. PMID:25697468

  20. Pharmacologic IKK/NF-κB inhibition causes antigen presenting cells to undergo TNFα dependent ROS-mediated programmed cell death

    NASA Astrophysics Data System (ADS)

    Tilstra, Jeremy S.; Gaddy, Daniel F.; Zhao, Jing; Davé, Shaival H.; Niedernhofer, Laura J.; Plevy, Scott E.; Robbins, Paul D.

    2014-01-01

    Monocyte-derived antigen presenting cells (APC) are central mediators of the innate and adaptive immune response in inflammatory diseases. As such, APC are appropriate targets for therapeutic intervention to ameliorate certain diseases. APC differentiation, activation and functions are regulated by the NF-κB family of transcription factors. Herein, we examined the effect of NF-κB inhibition, via suppression of the IκB Kinase (IKK) complex, on APC function. Murine bone marrow-derived macrophages and dendritic cells (DC), as well as macrophage and DC lines, underwent rapid programmed cell death (PCD) after treatment with several IKK/NF-κB inhibitors through a TNFα-dependent mechanism. PCD was induced proximally by reactive oxygen species (ROS) formation, which causes a loss of mitochondrial membrane potential and activation of a caspase signaling cascade. NF-κB-inhibition-induced PCD of APC may be a key mechanism through which therapeutic targeting of NF-κB reduces inflammatory pathologies.

  1. Antigen Presenting Cell-Mediated Expansion of Human Umbilical Cord Blood Yields Log-Scale Expansion of Natural Killer Cells with Anti-Myeloma Activity

    PubMed Central

    Shah, Nina; Martin-Antonio, Beatriz; Yang, Hong; Ku, Stephanie; Lee, Dean A.; Cooper, Laurence J. N.; Decker, William K.; Li, Sufang; Robinson, Simon N.; Sekine, Takuya; Parmar, Simrit; Gribben, John; Wang, Michael; Rezvani, Katy; Yvon, Eric; Najjar, Amer; Burks, Jared; Kaur, Indreshpal; Champlin, Richard E.; Bollard, Catherine M.; Shpall, Elizabeth J.

    2013-01-01

    Natural killer (NK) cells are important mediators of anti-tumor immunity and are active against several hematologic malignancies, including multiple myeloma (MM). Umbilical cord blood (CB) is a promising source of allogeneic NK cells but large scale ex vivo expansion is required for generation of clinically relevant CB-derived NK (CB-NK) cell doses. Here we describe a novel strategy for expanding NK cells from cryopreserved CB units using artificial antigen presenting feeder cells (aAPC) in a gas permeable culture system. After 14 days, mean fold expansion of CB-NK cells was 1848-fold from fresh and 2389-fold from cryopreserved CB with >95% purity for NK cells (CD56+/CD3−) and less than 1% CD3+ cells. Though surface expression of some cytotoxicity receptors was decreased, aAPC-expanded CB-NK cells exhibited a phenotype similar to CB-NK cells expanded with IL-2 alone with respect to various inhibitory receptors, NKG2C and CD94 and maintained strong expression of transcription factors Eomesodermin and T-bet. Furthermore, CB-NK cells formed functional immune synapses with and demonstrated cytotoxicity against various MM targets. Finally, aAPC-expanded CB-NK cells showed significant in vivo activity against MM in a xenogenic mouse model. Our findings introduce a clinically applicable strategy for the generation of highly functional CB-NK cells which can be used to eradicate MM. PMID:24204673

  2. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    PubMed

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors.

  3. Modulation of T cell responses to recall antigens presented by Langerhans cells in HIV-discordant identical twins by anti-interleukin (IL)-10 antibodies and IL-12.

    PubMed Central

    Blauvelt, A; Chougnet, C; Shearer, G M; Katz, S I

    1996-01-01

    Decreased antigen (Ag)-specific T cell (TC) proliferation and IL-2 production are detected in all stages of HIV disease. To determine whether dendritic cell dysfunction and/or abnormal cytokine production contribute to HIV-induced immune dysregulation, we studies TC responses to recall Ags (influenza virus and tetanus toxoid) presented by Langerhans cells (LC) in six pairs of HIV-discordant identical twins, and the modulation of these responses by anti-IL-10 (alphaIL-10) mAbs and IL-12. LC from HIV+ twins induced IL-2 comparable to normal LC in cultures containing TC from uninfected twins. In contrast, IL-2 production was markedly decreased in cultures containing TC from HIV+ twins. IL-12 enhanced Ag-specific IL-2 production by TC from two patients with CD4+ counts > 600. In contrast, alphaIL-10 mAbs enhanced IL-2 production in influenza virus-stimulated cultures containing TC from two patients with CD4+ counts < 20. Thus, these findings suggest that immunologic dysfunction of dendritic cells does not contribute to impaired secondary immune responses in HIV+ individuals. Although few patients were studied, partial immune reconstitution in vitro, as demonstrated here, may help to predict those individuals who might benefit from cytokines or antibodies against cytokines as immunotherapy for HIV disease. PMID:8617889

  4. Dectin-1-triggered Recruitment of Light Chain 3 Protein to Phagosomes Facilitates Major Histocompatibility Complex Class II Presentation of Fungal-derived Antigens*

    PubMed Central

    Ma, Jun; Becker, Courtney; Lowell, Clifford A.; Underhill, David M.

    2012-01-01

    Dectin-1 is a pattern recognition receptor that is important for innate immune responses against fungi in humans and mice. Dectin-1 binds to β-glucans in fungal cell walls and triggers phagocytosis, production of reactive oxygen by the NADPH oxidase, and inflammatory cytokine production which all contribute to host immune responses against fungi. Although the autophagy pathway was originally characterized for its role in the formation of double-membrane compartments engulfing cytosolic organelles and debris, recent studies have suggested that components of the autophagy pathway may also participate in traditional phagocytosis. In this study, we show that Dectin-1 signaling in macrophages and bone marrow-derived dendritic cells triggers formation of LC3II, a major component of the autophagy machinery. Further, Dectin-1 directs the recruitment of LC3II to phagosomes, and this requires Syk, activation of reactive oxygen production by the NADPH oxidase, and ATG5. Using LC3-deficient dendritic cells we show that whereas LC3 recruitment to phagosomes is not important for triggering phagocytosis, killing or Dectin-1-mediated inflammatory cytokine production, it facilitates recruitment of MHC class II molecules to phagosomes and promotes presentation of fungal-derived antigens to CD4 T cells. PMID:22902620

  5. The NS1 protein of influenza A virus suppresses interferon-regulated activation of antigen-presentation and immune-proteasome pathways.

    PubMed

    Tisoncik, Jennifer R; Billharz, Rosalind; Burmakina, Svetlana; Belisle, Sarah E; Proll, Sean C; Korth, Marcus J; García-Sastre, Adolfo; Garcíia-Sastre, Adolfo; Katze, Michael G

    2011-09-01

    The NS1 protein of influenza virus counters host antiviral defences primarily by antagonizing the type I interferon (IFN) response. Both the N-terminal dsRNA-binding domain and the C-terminal effector domain are required for optimal suppression of host responses during infection. To better understand the regulatory role of the NS1 effector domain, we used an NS1-truncated mutant virus derived from human H1N1 influenza isolate A/Texas/36/91 (Tx/91) and assessed global transcriptional profiles from two independent human lung cell-culture models. Relative to the wild-type Tx/91-induced gene expression, the NS1 mutant virus induced enhanced expression of innate immune genes, specifically NF-κB signalling-pathway genes and IFN-α and -β target genes. We queried an experimentally derived IFN gene set to gauge the proportion of IFN-responsive genes that are suppressed specifically by NS1. We show that the C-terminally truncated NS1 mutant virus is less efficient at suppressing IFN-regulated gene expression associated with activation of antigen-presentation and immune-proteasome pathways. This is the first report integrating genomic analysis from two independent human culture systems, including primary lung cells, using genetically similar H1N1 influenza viruses that differ only in the length of the NS1 protein.

  6. The NS1 protein of influenza A virus suppresses interferon-regulated activation of antigen-presentation and immune-proteasome pathways

    PubMed Central

    Tisoncik, Jennifer R.; Billharz, Rosalind; Burmakina, Svetlana; Belisle, Sarah E.; Proll, Sean C.; Korth, Marcus J.; García-Sastre, Adolfo

    2011-01-01

    The NS1 protein of influenza virus counters host antiviral defences primarily by antagonizing the type I interferon (IFN) response. Both the N-terminal dsRNA-binding domain and the C-terminal effector domain are required for optimal suppression of host responses during infection. To better understand the regulatory role of the NS1 effector domain, we used an NS1-truncated mutant virus derived from human H1N1 influenza isolate A/Texas/36/91 (Tx/91) and assessed global transcriptional profiles from two independent human lung cell-culture models. Relative to the wild-type Tx/91-induced gene expression, the NS1 mutant virus induced enhanced expression of innate immune genes, specifically NF-κB signalling-pathway genes and IFN-α and -β target genes. We queried an experimentally derived IFN gene set to gauge the proportion of IFN-responsive genes that are suppressed specifically by NS1. We show that the C-terminally truncated NS1 mutant virus is less efficient at suppressing IFN-regulated gene expression associated with activation of antigen-presentation and immune-proteasome pathways. This is the first report integrating genomic analysis from two independent human culture systems, including primary lung cells, using genetically similar H1N1 influenza viruses that differ only in the length of the NS1 protein. PMID:21593271

  7. Interleukin-10 receptor-1 expression in monocyte-derived antigen-presenting cell populations: dendritic cells partially escape from IL-10's inhibitory mechanisms.

    PubMed

    von Haehling, S; von Lanzenauer, S H; Wolk, K; Höflich, C; Kunz, S; Grünberg, B H; Döcke, W-D; Reineke, U; Asadullah, K; Sterry, W; Volk, H-D; Sabat, R

    2015-01-01

    Interleukin (IL)-10 is an important immunoregulatory cytokine that mediates its effects via a transmembrane receptor complex consisting of two different chains, IL-10R1 and IL-10R2. While IL-10R2 is ubiquitously expressed and does not bind IL-10 primarily, the expression of IL-10R1 determines cellular responsiveness. However, the current knowledge about the expression and regulation of IL-10R1 is still limited. Here we analyzed the expression of IL-10R1 on monocytic cells and demonstrated that human blood monocytes carried about 720 IL-10-binding sites on their surface. Compared with lymphocytes and various tissue cells and tissues, blood monocytes expressed the highest IL-10R1 levels. The in vitro differentiation of these cells into macrophages provoked a further increase of IL-10R1 surface expression. In contrast, their differentiation into myeloid dendritic cells (mDCs) resulted in reduced surface IL-10R1 levels. The different IL-10R1 levels expressed by monocyte-derived antigen-presenting cell populations were reflected in their different responsiveness toward IL-10. Importantly, also in vivo developed immature macrophages and mDCs showed different IL-10 sensitivity. These data suggest that, compared with monocytes and macrophages, mDCs partially escape from IL-10's inhibitory mechanisms by downregulating IL-10R1. PMID:25472783

  8. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    PubMed

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  9. Meningitis Caused by Toscana Virus Is Associated with Strong Antiviral Response in the CNS and Altered Frequency of Blood Antigen-Presenting Cells

    PubMed Central

    Varani, Stefania; Gelsomino, Francesco; Bartoletti, Michele; Viale, Pierluigi; Mastroianni, Antonio; Briganti, Elisabetta; Ortolani, Patrizia; Albertini, Francesco; Calzetti, Carlo; Prati, Francesca; Cenni, Patrizia; Castellani, Gastone; Morini, Silvia; Rossini, Giada; Landini, Maria Paola; Sambri, Vittorio

    2015-01-01

    Toscana virus (TOSV) is a Phlebotomus-transmitted RNA virus and a frequent cause of human meningitis and meningoencephalitis in Southern Europe during the summer season. While evidence for TOSV-related central nervous system (CNS) cases is increasing, little is known about the host defenses against TOSV. We evaluated innate immune response to TOSV by analyzing frequency and activation of blood antigen-presenting cells (APCs) and cytokine levels in plasma and cerebrospinal fluid (CSF) from patients with TOSV neuroinvasive infection and controls. An altered frequency of different blood APC subsets was observed in TOSV-infected patients, with signs of monocytic deactivation. Nevertheless, a proper or even increased responsiveness of toll-like receptor 3 and 7/8 was observed in blood APCs of these patients as compared to healthy controls. Systemic levels of cytokines remained low in TOSV-infected patients, while levels of anti-inflammatory and antiviral mediators were significantly higher in CSF from TOSV-infected patients as compared to patients with other infectious and noninfectious neurological diseases. Thus, the early host response to TOSV appears effective for viral clearance, by proper response to TLR3 and TLR7/8 agonists in peripheral blood and by a strong and selective antiviral and anti-inflammatory response in the CNS. PMID:26569288

  10. Influence of antigen conformation and mode of presentation on the antibody and protective responses against human respiratory syncytial virus: relevance for vaccine development.

    PubMed

    Melero, José A

    2016-10-01

    Human respiratory syncytial virus (hRSV) remains one of the most prevalent human pathogens for which a vaccine is still missing. After several decades of hesitant efforts, particularly after the harmful effects of a formalin-inactivated hRSV vaccine trial in the 1960s, hRSV vaccine development has received new impetus from structure-based studies of its main protective antigen: the fusion (F) glycoprotein. This article reviews studies done with hRSV F, either in pieces (e.g. epitopes) or as soluble or membrane-anchored molecules folded in different conformations or presented under different forms. Knowledge gained from these studies has provided the basis for novel vaccines that are now in different phases of development and has generated tools and reagents for developing other control measures such as prophylactic or therapeutic antibodies against this virus, which remains the most important cause of hospitalization in infants and one of the leading global causes of infant mortality.

  11. A BTP1 prophage gene present in invasive non-typhoidal Salmonella determines composition and length of the O-antigen of the lipopolysaccharide.

    PubMed

    Kintz, Erica; Davies, Mark R; Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D; van der Woude, Marjan W

    2015-04-01

    Salmonella Typhimurium isolate D23580 represents a recently identified ST313 lineage of invasive non-typhoidal Salmonellae (iNTS). One of the differences between this lineage and other non-iNTS S. Typhimurium isolates is the presence of prophage BTP1. This prophage encodes a gtrC gene, implicated in O-antigen modification. GtrC(BTP) (1) is essential for maintaining O-antigen length in isolate D23580, since a gtr(BTP) (1) mutant yields a short O-antigen. This phenotype can be complemented by gtrC(BTP) (1) or very closely related gtrC genes. The short O-antigen of the gtr(BTP) (1) mutant was also compensated by deletion of the BTP1 phage tailspike gene in the D23580 chromosome. This tailspike protein has a putative endorhamnosidase domain and thus may mediate O-antigen cleavage. Expression of the gtrC(BTP) (1) gene is, in contrast to expression of many other gtr operons, not subject to phase variation and transcriptional analysis suggests that gtrC is produced under a variety of conditions. Additionally, GtrC(BTP) (1) expression is necessary and sufficient to provide protection against BTP1 phage infection of an otherwise susceptible strain. These data are consistent with a model in which GtrC(BTP) (1) mediates modification of the BTP1 phage O-antigen receptor in lysogenic D23580, and thereby prevents superinfection by itself and other phage that uses the same O-antigen co-receptor. PMID:25586744

  12. Defective antigen presentation by monocytes in ESRD patients not responding to hepatitis B vaccination: impaired HBsAg internalization and expression of ICAM-1 and HLA-DR/Ia molecules

    PubMed Central

    Barth, C.; Pollok, M.; Michałkiewicz, J.; Madaliński, K.; Maciejewski, J.; Baldamis, C. A.

    1995-01-01

    This study was undertaken to evaluate the monocyte function of uraemic non-responders to hepatitis B vaccination. Therefore, some parameters concerning antigen processing by monocytes (Mo) as antigen presenting cells (APC) were analysed. It was found that in uraemic non-responders, (1) the internalization of HBsAg by monocytes was significantly decreasjed—HBsAg complexed with specific IgG or as immune complex isolated from patients is better internalized compared with free HBsAg; (2) during antigen presentation the expression of adhesion (ICAM-1) and accessory (HLA-DR/Ia) molecules was significantly decreased in uraemic patients, especially in non-responders; and (3) impaired internalization of HBsAg as well as a decrease in ICAM-1 and HLA-DR/Ia expression, correlated well with the blunted proliferation of CD4+ T cells stimulated by autologous monocytes induced by HBsAg. PMID:18475616

  13. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure

    SciTech Connect

    Migliaccio, Christopher T. . E-mail: christopher.migliaccio@umontana.edu; Hamilton, Raymond F.; Holian, Andrij

    2005-06-01

    Silica inhalation results in chronic lung inflammation and fibrosis. While the role of the alveolar macrophage (AM) is considered key to the effects of silica on lung pathology, the etiology is not completely understood. Evidence suggests an increase in antigen presenting cell (APC) activity as a contributing factor to this process, as well as potential roles for both AM and interstitial macrophages (IM) in silicosis. In order to study the effects of crystalline silica on the APC activity of pulmonary macrophages, mice were exposed intranasally and changes in pulmonary macrophage populations were assessed using flow cytometry. Following intranasal instillation of silica, a significant increase in the APC activity of AM was observed, as well as a significant increase in a subset of IM expressing classic APC markers (MHC class II, CD11c). In addition, an in vitro system using bone marrow-derived macrophages (BMDM) was generated to assess the effects of silica on the APC activity of macrophages in vitro. Data using BMDM in the in vitro APC assay demonstrated a significant increase in APC activity following silica exposure, but not following exposure to saline or a control particle (TiO{sub 2}). Using a combination of in vivo and in vitro experiments, the current study describes a significant increase in an interstitial macrophage subset with an APC phenotype, as well as an increase in the APC activity of both AM and BMDM, as a direct result of exposure to crystalline silica. These studies suggest a specific mechanism, macrophage subset activation, by which crystalline silica exposure results in chronic pulmonary inflammation and, eventually, fibrosis.

  14. In vivo anti-melanoma efficacy of allo-restricted CTLs specific for melanoma expanded by artificial antigen-presenting cells.

    PubMed

    Lu, Xiao-ling; Jiang, Xiao-bing; Liu, Ru-en; Zhang, Sheng-min; Liang, Z-h

    2009-04-01

    Cytotoxic CD8(+) T cells are key effectors in the immunotherapy of malignant and viral diseases. However, autologous T cell responses to tumor antigens presented by self-MHC are usually weak and ineffective. Allo-restricted T cells represent a potent source of tumor-specific T cells for adoptive immunotherapy. This study reports in vivo anti-melanoma efficacy of the pTRP2-specific allo-restricted CTLs expanded from the BALB/c splenocytes by multiple stimulations with aAPCs made by coating H-2K(b)-Ig/pTRP2 dimeric complexes, anti-CD28 antibody, 4-1BBL molecules and CD83 molecules to cell-sized latex beads. The induced allo-restricted CTLs exhibited specific lysis against RMA-S cells pulsed with the peptide pTRP2 and H-2K(b+) melanoma cells expressing TRP2, while a murine Lewis lung carcinoma cell line 3LL could not be recognized by the CTLs. The peptide-specific activity was inhibited by anti-H-2K(b) monoclonal antibody Y3. Adoptive transfer of the allo-restricted CTLs specific for malignant melanoma expanded by the aAPCs can mediate effective anti-melanoma response in vivo. These results suggested that the specific allo-restricted CTLs expanded by aAPCs coated with an MHC-Ig/peptide complex, anti-CD28 antibody, 4-1BBL and CD83 could be a potential option of specific immunotherapy for patients with malignant melanoma. PMID:18682943

  15. Enhancement of antigen-presenting ability of B lymphoma cells by partial inhibition of protein synthesis through inducing B7-1 expression.

    PubMed Central

    Aoi, T; Nakano, H; Tanaka, Y; Kakiuchi, T

    1997-01-01

    During the investigation of the role of protein synthesis in antigen-presenting cell (APC) function of A20-HL B lymphoma cells, we found that partial inhibition of protein synthesis enhanced their APC function. The treatment of A20-HL cells with 0.313-2.5 microM emetine, an irreversible inhibitor of protein synthesis, decreased protein synthesis by 60-70%, and enhanced their APC function to stimulate I-Ad/OVA323-339-specific T cells to produce interleukin-2 in response to ovalbumin (OVA). The emetine-treated and paraformaldehyde-fixed A20-HL cells required only 20 nM OVA323-339 peptide to stimulate the T cells, whereas those untreated and fixed required 200 nM peptide. This enhancement of APC function was mostly because of the induction of B7-1 expression on A20-HL cells by the emetine treatment, since B7-1 molecules were detected on the emetine-treated A20-HL cells, but only negligibly, if at all, on the untreated cells, and an anti-B7-1 monoclonal antibody, 1G10, inhibited the enhanced APC function of the emetine-treated A20-HL cells. The emetine-treatment also increased B7-1 mRNA expression in A20-HL cells, suggesting that the induction of B7-1 expression was due to the increase in the accumulation of mRNA and the translation with residual ability to synthesize protein. Thus, partial inhibition of protein synthesis in A20-HL cells increases B7-1 mRNA accumulation and its expression on the cell surface, which results in the enhancement of their APC function. Images Figure 5 PMID:9227319

  16. The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (β2M) affecting antigen presentation function of macrophage.

    PubMed

    Sreejit, Gopalkrishna; Ahmed, Asma; Parveen, Nazia; Jha, Vishwanath; Valluri, Vijaya Lakshmi; Ghosh, Sudip; Mukhopadhyay, Sangita

    2014-10-01

    ESAT-6, an abundantly secreted protein of Mycobacterium tuberculosis (M. tuberculosis) is an important virulence factor, inactivation of which leads to reduced virulence of M. tuberculosis. ESAT-6 alone, or in complex with its chaperone CFP-10 (ESAT-6:CFP-10), is known to modulate host immune responses; however, the detailed mechanisms are not well understood. The structure of ESAT-6 or ESAT-6:CFP-10 complex does not suggest presence of enzymatic or DNA-binding activities. Therefore, we hypothesized that the crucial role played by ESAT-6 in the virulence of mycobacteria could be due to its interaction with some host cellular factors. Using a yeast two-hybrid screening, we identified that ESAT-6 interacts with the host protein beta-2-microglobulin (β2M), which was further confirmed by other assays, like GST pull down, co-immunoprecipitation and surface plasmon resonance. The C-terminal six amino acid residues (90-95) of ESAT-6 were found to be essential for this interaction. ESAT-6, in complex with CFP-10, also interacts with β2M. We found that ESAT-6/ESAT-6:CFP-10 can enter into the endoplasmic reticulum where it sequesters β2M to inhibit cell surface expression of MHC-I-β2M complexes, resulting in downregulation of class I-mediated antigen presentation. Interestingly, the ESAT-6:β2M complex could be detected in pleural biopsies of individuals suffering from pleural tuberculosis. Our data highlight a novel mechanism by which M. tuberculosis may undermine the host adaptive immune responses to establish a successful infection. Identification of such novel interactions may help us in designing small molecule inhibitors as well as effective vaccine design against tuberculosis. PMID:25356553

  17. The ESAT-6 Protein of Mycobacterium tuberculosis Interacts with Beta-2-Microglobulin (β2M) Affecting Antigen Presentation Function of Macrophage

    PubMed Central

    Parveen, Nazia; Jha, Vishwanath; Valluri, Vijaya Lakshmi; Ghosh, Sudip; Mukhopadhyay, Sangita

    2014-01-01

    ESAT-6, an abundantly secreted protein of Mycobacterium tuberculosis (M. tuberculosis) is an important virulence factor, inactivation of which leads to reduced virulence of M. tuberculosis. ESAT-6 alone, or in complex with its chaperone CFP-10 (ESAT-6:CFP-10), is known to modulate host immune responses; however, the detailed mechanisms are not well understood. The structure of ESAT-6 or ESAT-6:CFP-10 complex does not suggest presence of enzymatic or DNA-binding activities. Therefore, we hypothesized that the crucial role played by ESAT-6 in the virulence of mycobacteria could be due to its interaction with some host cellular factors. Using a yeast two-hybrid screening, we identified that ESAT-6 interacts with the host protein beta-2-microglobulin (β2M), which was further confirmed by other assays, like GST pull down, co-immunoprecipitation and surface plasmon resonance. The C-terminal six amino acid residues (90–95) of ESAT-6 were found to be essential for this interaction. ESAT-6, in complex with CFP-10, also interacts with β2M. We found that ESAT-6/ESAT-6:CFP-10 can enter into the endoplasmic reticulum where it sequesters β2M to inhibit cell surface expression of MHC-I-β2M complexes, resulting in downregulation of class I-mediated antigen presentation. Interestingly, the ESAT-6:β2M complex could be detected in pleural biopsies of individuals suffering from pleural tuberculosis. Our data highlight a novel mechanism by which M. tuberculosis may undermine the host adaptive immune responses to establish a successful infection. Identification of such novel interactions may help us in designing small molecule inhibitors as well as effective vaccine design against tuberculosis. PMID:25356553

  18. Activation and propagation of tumor infiltrating lymphocytes on