Delayed Activation Kinetics of Th2- and Th17 Cells Compared to Th1 Cells.
Duechting, Andrea; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V
2017-09-12
During immune responses, different classes of T cells arise: Th1, Th2, and Th17. Mobilizing the right class plays a critical role in successful host defense and therefore defining the ratios of Th1/Th2/Th17 cells within the antigen-specific T cell repertoire is critical for immune monitoring purposes. Antigen-specific Th1, Th2, and Th17 cells can be detected by challenging peripheral blood mononuclear cells (PBMC) with antigen, and establishing the numbers of T cells producing the respective lead cytokine, IFN-γ and IL-2 for Th1 cells, IL-4 and IL-5 for Th2, and IL-17 for Th-17 cells, respectively. Traditionally, these cytokines are measured within 6 h in flow cytometry. We show here that 6 h of stimulation is sufficient to detect peptide-induced production of IFN-γ, but 24 h are required to reveal the full frequency of protein antigen-specific Th1 cells. Also the detection of IL-2 producing Th1 cells requires 24 h stimulation cultures. Measurements of IL-4 producing Th2 cells requires 48-h cultures and 96 h are required for frequency measurements of IL-5 and IL-17 secreting T cells. Therefore, accounting for the differential secretion kinetics of these cytokines is critical for the accurate determination of the frequencies and ratios of antigen-specific Th1, Th2, and Th17 cells.
Bizzell, Erica; Madan-Lala, Ranjna
2017-01-01
Mycobacterium tuberculosis (Mtb) impairs dendritic cell (DC) functions and induces suboptimal antigen-specific CD4 T cell immune responses that are poorly protective. Mucosal T-helper cells producing IFN-γ (Th1) and IL-17 (Th17) are important for protecting against tuberculosis (TB), but the mechanisms by which DCs generate antigen-specific T-helper responses during Mtb infection are not well defined. We previously reported that Mtb impairs CD40 expression on DCs and restricts Th1 and Th17 responses. We now demonstrate that CD40-dependent costimulation is required to generate IL-17 responses to Mtb. CD40-deficient DCs were unable to induce antigen-specific IL-17 responses after Mtb infection despite the production of Th17-polarizing innate cytokines. Disrupting the interaction between CD40 on DCs and its ligand CD40L on antigen-specific CD4 T cells, genetically or via antibody blockade, significantly reduced antigen-specific IL-17 responses. Importantly, engaging CD40 on DCs with a multimeric CD40 agonist (CD40LT) enhanced antigen-specific IL-17 generation in ex vivo DC-T cell co-culture assays. Further, intratracheal instillation of Mtb-infected DCs treated with CD40LT significantly augmented antigen-specific Th17 responses in vivo in the lungs and lung-draining lymph nodes of mice. Finally, we show that boosting CD40-CD40L interactions promoted balanced Th1/Th17 responses in a setting of mucosal DC transfer, and conferred enhanced control of lung bacterial burdens following aerosol challenge with Mtb. Our results demonstrate that CD40 costimulation by DCs plays an important role in generating antigen-specific Th17 cells and targeting the CD40-CD40L pathway represents a novel strategy to improve adaptive immunity to TB. PMID:28767735
Li, Pan; Asokanathan, Catpagavalli; Liu, Fang; Khaing, Kyi Kyi; Kmiec, Dorota; Wei, Xiaoqing; Song, Bing; Xing, Dorothy; Kong, Deling
2016-11-20
Poly(lactic-co-glycolic acid) (PLGA) based nano/micro particles were investigated as a potential vaccine platform for pertussis antigen. Presentation of pertussis toxoid as nano/micro particles (NP/MP) gave similar antigen-specific IgG responses in mice compared to soluble antigen. Notably, in cell line based assays, it was found that PLGA based nano/micro particles enhanced the phagocytosis of fluorescent antigen-nano/micro particles by J774.2 murine monocyte/macrophage cells compared to soluble antigen. More importantly, when mice were immunised with the antigen-nano/micro particles they significantly increased antigen-specific Th1 cytokines INF-γ and IL-17 secretion in splenocytes after in vitro re-stimulation with heat killed Bordetalla pertussis, indicating the induction of a Th1/Th17 response. Also, presentation of pertussis antigen in a NP/MP formulation is able to provide protection against respiratory infection in a murine model. Thus, the NP/MP formulation may provide an alternative to conventional acellular vaccines to achieve a more balanced Th1/Th2 immune response. Copyright © 2016 Elsevier B.V. All rights reserved.
Ma, Qin-Yun; Huang, Da-Yu; Zhang, Hui-Jun; Wang, Shaohua; Chen, Xiao-Feng
2017-11-01
The microbial community in the mucosal surfaces is involved in the development of human cancers, including gastric cancer and colorectal cancer. The respiratory tract in the lung also hosts a distinctive microbial community, but the correlation between this community and lung cancer is largely unknown. Here, we examined the Th1 and Th17 responses toward several bacterial antigens, in CD4 + T cells sourced from the peripheral blood (PB), the lung cancer (LC) tissue, and the gastrointestinal (GI) tract of non-small cell lung cancer (NSCLC) patients. Compared to healthy controls, the NSCLC patients presented significantly higher frequencies of Th1 and Th17 cells reacting to Streptococcus salivarius and S. agalactiae, in the PB, LC, and GI tract. Further investigation showed that the upregulation in anti-bacteria response was likely antigen-specific for two reasons. Firstly, the frequencies of Th1 and Th17 cells reacting to Escherichia coli, a typical GI bacterium, were not upregulated in the PB and the LC of NSCLC patients. Secondly, the S. salivarius and S. agalactiae responses could be partially blocked by Tü39, a MHC class II blocking antibody, suggesting that antigen-specific interaction between CD4 + T cells and antigen-presenting cells was required. We also found that S. salivarius and S. agalactiae could potently activate the monocytes to secrete higher levels of interleukin (IL)-6, IL-12, and tumor necrosis factor, which were Th1- and Th17-skewing cytokines. Interestingly, whereas CXCR5 + CD4 + T cells represented <20% of total CD4 + T cells, they represented 17%-82% of bacteria-specific Th1 or Th17 cells. Together, these data demonstrated that NSCLC patients presented a significant upregulation of bacterial-specific Th1 and Th17 responses that were enriched in CXCR5 + CD4 + T cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Andrews, Chasity D.; Huh, Myung-Sook; Patton, Kathryn; Higgins, Debbie; Van Nest, Gary; Ott, Gary; Lee, Kyung-Dall
2013-01-01
Immunostimulatory sequences (ISS) are short DNA sequences containing unmethylated CpG dimers that have multiple effects on the host immune system, including the ability to stimulate antigen-specific cytotoxic T lymphocytes (CTLs) and drive Th1-type immune responses. Listeriolysin O (LLO)-containing pH-sensitive liposomes have been shown to efficiently deliver macromolecules to the cytosol of APCs and efficiently stimulate CTLs. We hypothesized that encapsulating ISS-oligodeoxyribonucleotides (ODNs) in this delivery system would enhance the cell-mediated immune response and skew Th1-type responses in protein antigen-based vaccination utilizing LLO-liposomes. In vitro studies indicated that co-encapsulation of ISS in LLO-liposomes engendered activation of the NF-κB pathway while maintaining the efficient cytosolic delivery of antigen mediated by the co-encapsulated LLO. Antigen-specific CTL responses monitored by using the model antigen ovalbumin (OVA) in mice were enhanced when mice were immunized with OVA and ISS-ODN-containing LLO-liposomes compared with those immunized with either OVA-containing LLO-liposomes or OVA-ISS conjugates. The enhanced immune responses were of the Th1-type as monitored by the robust OVA-specific IgG2a induction and the OVA CD8 peptide-stimulated IFN-γ secretion. Our study suggests that including ISS-ODN in LLO-containing pH-sensitive liposomes yields a vaccine delivery system that enhances the cell-mediated immune response and skews this response toward the Th1-type. PMID:22376145
HIV infection impairs Th1 and Th17 Mycobacterium tuberculosis-specific T cell responses
Murray, Lyle W; Satti, Iman; Meyerowitz, Jodi; Jones, Matthew; Willberg, Christian B; Ussher, James E; Goedhals, Dominique; Hurst, Jacob; Phillips, Rodney E; McShane, Helen
2018-01-01
Background HIV-infected individuals have a higher risk of developing active tuberculosis than HIV-uninfected individuals, but the mechanisms underpinning this are unclear. We hypothesized that depletion of specific components of Mycobacterium tuberculosis (M.tb)-specific CD4+ and CD8+ T cell responses contributed to this increased risk. Methods M.tb-specific T cell responses in 147 HIV-infected and 44 HIV-uninfected control subjects in a TB-endemic setting in Bloemfontein, South Africa were evaluated. Using a whole-blood flow cytometry assay, we measured expression of IFNγ, TNFα, IL-2 and IL-17 in CD4+ and CD8+ T cells in response to M.tb antigens (PPD, ESAT-6/CFP-10 (EC) and DosR regulon-encoded α-crystallin (Rv2031c)). Results Fewer HIV-infected individuals had detectable CD4+ and CD8+ T cell responses to PPD and Rv2031c than HIV-uninfected subjects. M.tb-specific T cells showed distinct patterns of cytokine expression comprising both Th1 (CD4 and CD8) and Th17 (CD4) cytokines, the latter at highest frequency for Rv2031c. Th17 antigen-specific responses to all antigens tested were specifically impaired in HIV-infected individuals. Conclusions HIV-associated impairment of CD4+ and CD8+ M.tb-specific T cell responses is antigen-specific, particularly impacting responses to PPD and Rv2031c. Preferential depletion of Th17 cytokine-expressing CD4+ T cells suggests this T cell subset may be key to TB susceptibility in HIV-infected individuals. PMID:29546381
Batoulis, H; Recks, M S; Holland, F O; Thomalla, F; Williams, R O; Kuerten, S
2014-01-01
In various autoimmune diseases, anti-tumour necrosis factor (TNF)-α treatment has been shown to reduce both clinical disease severity and T helper type 1 (Th1)1/Th17 responses. In experimental autoimmune encephalomyelitis (EAE), however, the role of TNF-α has remained unclear. Here, C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 and treated with anti-TNF-α, control antibody or vehicle. The clinical disease course, incidence and severity were assessed. On day 20 after immunization the antigen-specific Th1/Th17 response was evaluated by enzyme-linked immunospot (ELISPOT) in spleen and central nervous system (CNS). Also, the extent of spinal cord histopathology was analysed on semi- and ultrathin sections. Our results demonstrate that anti-TNF-α treatment reduced the incidence and delayed the onset of EAE, but had no effect on disease severity once EAE had been established. Whereas anti-TNF-α treatment induced an increase in splenic Th1/Th17 responses, there was no effect on the number of antigen-specific Th1/Th17 cells in the spinal cord. Accordingly, the degree of CNS histopathology was comparable in control and anti-TNF-α-treated mice. In conclusion, while the anti-TNF-α treatment had neither immunosuppressive effects on the Th1/Th17 response in the CNS nor histoprotective properties in EAE, it enhanced the myelin-specific T cell response in the immune periphery. © 2013 British Society for Immunology.
George, Parakkal Jovvian; Anuradha, Rajamanickam; Kumar, Nathella Pavan; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Nutman, Thomas B.; Babu, Subash
2014-01-01
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB. PMID:25211342
Wang, Guiqin; Yin, Renfu; Zhou, Paul; Ding, Zhuang
2017-01-01
Hemagglutinin (HA) head has long been considered to be able to elicit only a narrow, strain-specific antibody response as it undergoes rapid antigenic drift. However, we previously showed that a heterologous prime-boost strategy, in which mice were primed twice with DNA encoding HA and boosted once with virus-like particles (VLP) from an H5N1 strain A/Thailand/1(KAN)-1/2004 (noted as TH DDV), induced anti-head broad cross-H5 neutralizing antibody response. To explain why TH DDV immunization could generate such breadth, we systemically compared the neutralization breadth and potency between TH DDV sera and immune sera elicited by TH DDD (three times of DNA immunizations), TH VVV (three times of VLP immunizations), TH DV (one DNA prime plus one VLP boost) and TK DDV (plasmid DNA and VLP derived from another H5N1 strain, A/Turkey/65596/2006). Then we determined the antigenic sites (AS) on TH HA head and the key residues of the main antigenic site. Through the comparison of different regiments, we found that the combination of the immunization with the sequence close to the consensus sequence and two DNA prime plus one VLP boost caused that TH DDV immunization generate broad neutralizing antibodies. Antigenic analysis showed that TH DDV, TH DV, TH DDD and TH VVV sera recognize the common antigenic site AS1. Antibodies directed to AS1 contribute to the largest proportion of the neutralizing activity of these immune sera. Residues 188 and 193 in AS1 are the key residues which are responsible for neutralization breadth of the immune sera. Interestingly, residues 188 and 193 locate in classical antigen sites but are relatively conserved among the 16 tested strains and 1,663 HA sequences from NCBI database. Thus, our results strongly indicate that it is feasible to develop broad cross-H5 influenza vaccines against HA head. PMID:28542275
Sarcoidosis Th17 Cells are ESAT-6 Antigen Specific but Demonstrate Reduced IFN-γ Expression
Richmond, Bradley W.; Ploetze, Kristen; Isom, Joan; Chambers-Harris, Isfahan; Braun, Nicole A.; Taylor, Thyneice; Abraham, Susamma; Mageto, Yolanda; Culver, Dan A.; Oswald-Richter, Kyra A.; Drake, Wonder P.
2013-01-01
Rationale Sarcoidosis is a granulomatous disease of unknown etiology. Many patients with sarcoidosis demonstrate antigen-specific immunity to mycobacterial virulence factors. Th-17 cells are crucial to the immune response in granulomatous inflammation, and have recently been shown to be present in greater numbers in the peripheral blood and bronchoalveolar lavage (BAL) fluid (BALF) of sarcoidosis patients than healthy controls. It is unclear whether Th-17 cells in sarcoidosis are specific for mycobacterial antigens, or whether they have similar functionality to control Th-17 cells. Methods Flow cytometry was used to determine the numbers of Th-17 cells present in the peripheral blood and BALF of patients with sarcoidosis, the percentage of Th-17 cells that were specific to the mycobacterial virulence factor ESAT-6, and as well as to assess IFN-γ expression in Th-17 cells following polyclonal stimulation. Results Patients with sarcoidosis had greater numbers of Th-17 cells in the peripheral blood and BALF than controls and produced significantly more extracellular IL-17A (p=0.03 and p=0.02, respectively). ESAT-6 specific Th-17 cells were present in both peripheral blood and BALF of sarcoidosis patients (p<0.001 and p=0.03, respectively). After polyclonal stimulation, Th-17 cells from sarcoidosis patients produced less IFN-γ than healthy controls. Conclusions Patients with sarcoidosis have mycobacterial antigen-specific Th-17 cells peripherally and in sites of active sarcoidosis involvement. Despite the Th1 immunophenotype of sarcoidosis immunology, the Th-17 cells have reduced IFN-γ expression, compared to healthy controls. This reduction in immunity may contribute to sarcoidosis pathogenesis. PMID:23073617
Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection
Lalor, Stephen J.; Leech, John M.; O’Keeffe, Kate M.; Mac Aogáin, Micheál; O’Halloran, Dara P.; Lacey, Keenan A.; Tavakol, Mehri; Hearnden, Claire H.; Fitzgerald-Hughes, Deirdre; Humphreys, Hilary; Fennell, Jérôme P.; van Wamel, Willem J.; Foster, Timothy J.; Geoghegan, Joan A.; Lavelle, Ed C.; Rogers, Thomas R.; McLoughlin, Rachel M.
2015-01-01
Mechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we demonstrated that prior exposure to S. aureus enhanced IFNγ responses upon subsequent infection, while adoptive transfer of S. aureus antigen-specific Th1 cells was protective in naïve mice. Translating these findings, we found that S. aureus antigen-specific Th1 cells were also significantly expanded during human S. aureus bloodstream infection (BSI). These Th1 cells were CD45RO+, indicative of a memory phenotype. Thus, exposure to S. aureus induces memory Th1 cells in mice and humans, identifying Th1 cells as potential S. aureus vaccine targets. Consequently, we developed a model vaccine comprising staphylococcal clumping factor A, which we demonstrate to be an effective human T cell antigen, combined with the Th1-driving adjuvant CpG. This novel Th1-inducing vaccine conferred significant protection during S. aureus infection in mice. This study notably advances our understanding of S. aureus cellular immunity, and demonstrates for the first time that a correlate of S. aureus protective immunity identified in mice may be relevant in humans. PMID:26539822
Bagley, Kenneth; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael; Schwartz, Jennifer; Fouts, Timothy
2015-01-01
DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action. PMID:26042527
Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei
2012-09-21
MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Antigen-Specific Tolerance in Immunotherapy of Th2-Associated Allergic Diseases
Smarr, Charles B.; Bryce, Paul J.; Miller, Stephen D.
2013-01-01
Allergic diseases are an increasing health concern, particularly in the developed world. The standard clinical approach to treatment of allergic disease focuses on allergen avoidance and symptom control but does little to address the underlying Th2 bias of disease. Specific immunotherapy (SIT) consisting of controlled administration of allergen, however, has been demonstrated to successfully induce desensitization and tolerance in an antigen-specific manner for a variety of Th2-mediated diseases. This review focuses on the mechanisms by which current SIT approaches induce tolerance as well as discussing attempts to modify the safety and efficacy of SIT. These refinements focus on three major aspects of SIT: the route of antigen administration, modification of the antigen to remove allergenic epitopes and reduce adverse events and choice of adjuvant used to induce tolerance and/or immune deviation from Th2 to Th1 and regulatory T cell (Treg) phenotypes. Synthesis of these recent developments in SIT provides considerable promise for more robust therapies with improved safety profiles to improve resolution of allergic disease and its associated costs. PMID:24099300
Activation of mixed glia by Abeta-specific Th1 and Th17 cells and its regulation by Th2 cells.
McQuillan, K; Lynch, Marina A; Mills, Kingston H G
2010-05-01
Microglia are innate immune cells of the CNS, that act as antigen-presenting cells (APC) for antigen-specific T cells and respond to inflammatory stimuli, such as amyloid-beta (Abeta), resulting in the release of neurotoxic factors and pro-inflammatory cytokines. Astrocytes can also act as APC and modulate the function of microglia. However, the role of distinct T cell subtypes, in particular Th17 cells, in glial activation and subsequent modulatory effects of Th2 cells are poorly understood. Here, we generated Abeta-specific Th1, Th2, and Th17 cells and examined their role in modulating Abeta-induced activation of microglia in a mixed glial culture, a preparation which mimics the complex APC types in the brain. We demonstrated that mixed glia acted as an effective APC for Abeta-specific Th1 and Th17 cells. Addition of Abeta-specific Th2 cells suppressed the Abeta-induced IFN-gamma production by Th1 cells and IL-17 production by Th17 cells with glia as the APC. Co-culture of Abeta-specific Th1 or Th17 cells with glia markedly enhanced Abeta-induced pro-inflammatory cytokine production and expression of MHC class II and co-stimulatory molecules on the microglia. Addition of Abeta-specific Th2 cells inhibited Th17 cell-induced IL-1beta and IL-6 production by mixed glia and attenuated Th1 cell-induced CD86 and CD40 expression on microglia. The modest enhancement of MHC class II and CD86 expression on astrocytes by Abeta-specific Th1 and Th17 was not attenuated by Th2 cells. These data indicate that Abeta-specific Th1 and Th17 cells induce inflammatory activation of glia, and that this is in part regulated by Th2 cells. Copyright 2010 Elsevier Inc. All rights reserved.
Antigen challenge leads to in vivo activation and elimination of highly polarized TH1 memory T cells
Hayashi, Nobuki; Liu, Dacai; Min, Booki; Ben-Sasson, Shlomo Z.; Paul, William E.
2002-01-01
TH1 memory T cells derived from T cell receptor transgenic mice, in which the T cell antigen receptor is specific for a cytochrome C peptide in association with I-Ek, were transferred into normal B10.A mice and allowed to adopt a resting phenotype. When challenged, 30–60 days after transfer, with i.v. cytochrome C, the transgenic cells rapidly became activated, expressed mRNA for IFNγ, and began to divide. However, after 48 h, the frequency of the cells fell progressively, reaching levels only slightly above the limit of detection by day 8 and thereafter remain depressed for up to 90 days. The remaining cells were anergic as shown by limitation in proliferation and IFNγ production in response to in vitro antigen stimulation. Even if challenged with antigen emulsified in complete Freund's adjuvant, the overall pattern was similar, except that in the draining lymph nodes, the surviving antigen-specific cells were not anergic, although spleen cells were still strikingly anergic. Thus, antigenic challenge of mice possessing resting memory TH1 CD4 T cells leads to the unanticipated loss of most of the specific cells and an apparent depletion rather than enhancement of immunologic memory. PMID:11959916
Th-1 polarization is regulated by dendritic-cell comparison of MHC class I and class II antigens
Xing, Dongxia; Li, Sufang; Robinson, Simon N.; Yang, Hong; Steiner, David; Komanduri, Krishna V.; Shpall, Elizabeth J.
2009-01-01
In the control of T-helper type I (Th-1) polarization, dendritic cells (DCs) must interpret a complex array of stimuli, many of which are poorly understood. Here we demonstrate that Th-1 polarization is heavily influenced by DC-autonomous phenomena triggered by the loading of DCs with antigenically matched major histocompatibility complex (MHC) class I and class II determinants, that is, class I and II peptide epitopes exhibiting significant amino acid sequence overlap (such as would be physiologically present during infectious processes requiring Th-1 immunity for clearance). Data were derived from 13 independent antigenic models including whole-cell systems, single-protein systems, and 3 different pairs of overlapping class I and II binding epitopes. Once loaded with matched class I and II antigens, these “Th-1 DCs” exhibited differential cytokine secretion and surface marker expression, a distinct transcriptional signature, and acquired the ability to enhance generation of CD8+ T lymphocytes. Mechanistically, tRNA-synthetases were implicated as components of a putative sensor complex involved in the comparison of class I and II epitopes. These data provide rigorous conceptual explanations for the process of Th-1 polarization and the antigenic specificity of cognate T-cell help, enhance the understanding of Th-1 responses, and should contribute to the formulation of more effective vaccination strategies. PMID:19171878
Kathamuthu, Gokul Raj; Moideen, Kadar; Baskaran, Dhanaraj; Banurekha, Vaithilingam V; Nair, Dina; Sekar, Gomathi; Sridhar, Rathinam; Vidyajayanthi, Bharathi; Gajendraraj, Ganeshan; Parandhaman, Dinesh Kumar; Srinivasan, Alena; Babu, Subash
2017-05-01
Tuberculous lymphadenitis (TBL) is characterized by an expansion of Th1 and Th17 cells with altered serum levels of proinflammatory cytokines. However, the cytokine profile at the site of infection, i.e., the affected lymph nodes, has not been examined in detail. To estimate the baseline and mycobacterial antigen-stimulated concentrations of type 1, type 17, and other proinflammatory cytokines in patients with TBL ( n = 14), we examined both the baseline and the antigen-specific concentrations of these cytokines before and after chemotherapy and compared them with those in individuals with pulmonary tuberculosis (PTB) ( n = 14). In addition, we also compared the cytokine responses in whole blood and those in the lymph nodes of TBL individuals. We observed significantly enhanced baseline and antigen-specific levels of type 1 cytokines (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]) and a type 17 cytokine (interleukin-17 [IL-17]) and significantly diminished baseline and antigen-specific levels of proinflammatory cytokines (IL-1β and IL-18) in the whole blood of TBL individuals compared to those in the whole blood of PTB individuals. Moreover, we also observed a pattern of baseline and antigen-specific cytokine production at the site of infection (lymph node) similar to that in the whole blood of TBL individuals. Following standard antituberculosis (anti-TB) treatment, we observed alterations in the baseline and/or antigen-specific levels of IFN-γ, TNF-α, IL-1β, and IL-18. TBL is therefore characterized by enhanced baseline and antigen-specific production of type 1 and type 17 cytokines and reduced baseline and antigen-specific production of IL-1β and IL-18 at the site of infection. Copyright © 2017 American Society for Microbiology.
GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie
2008-09-26
Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil andmore » lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.« less
QUANTITATIVE STUDIES OF THE PHOTOCHEMICAL DESPECIATION OF HORSE SERUM
Henry, J. P.
1942-01-01
1. Normal horse serum was irradiated for periods of 3 to 4 days, with visible light or with ultraviolet light of known intensity and wave length. The photosensitizer hematoporphyrin was employed in some instances. The serum was exposed to the air in thin layers, and thoroughly agitated throughout irradiation. 2. The irradiated sera were unchanged in color, and over 90 per cent of the original protein content remained precipitable by phosphotungstic acid. 3. Studies of the antigenicity of the sera were carried out on guinea pigs and rabbits. Fresh antigenicities of deviated specificity and of an activity of the order of 1/50th, 1/1,000th, and less than 1/20,000th that of normal horse serum were obtained. The residual content of material having the same antigenic specificity as normal horse serum was estimated as approximately equivalent in activity to dilutions of normal horse serum of 1 cc., 1/10 cc., and less than 1/100 cc. per litre respectively. PMID:19871250
USDA-ARS?s Scientific Manuscript database
Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10+ cells. Eight healthy subjects were given a TT booster vacci...
Lee, Suk Jun; Bae, Joonbeom; Kim, Sunhee; Jeong, Seonah; Choi, Chang-Yong; Choi, Sang-Pil; Kim, Hyun-Sook; Jung, Woon-Won; Imm, Jee-Young; Kim, Sae Hun; Chun, Taehoon
2013-02-01
Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (A(b)) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G(1) to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27(KIP1). Saponins also increased stability of p27(KIP1) in Th cells after antigenic stimulation.
Kozutsumi, Daisuke; Tsunematsu, Masako; Yamaji, Taketo; Murakami, Rika; Yokoyama, Minehiko; Kino, Kohsuke
2006-07-01
Polysorbate 80 (PS80 or Tween-80) is often used as an additive to promote the rapid solubilization of pharmaceuticals in aqueous solutions. We investigated whether coinjection of a minimal amount of PS80 had a modulatory effect on the immunotherapeutic effects of Cry (Cryptomeria)-consensus peptide, a novel peptide developed for the therapeutic management of Japanese cedar pollinosis, using a Cry j 1-sensitized mouse model with experimental allergic rhinitis. Subcutaneous challenge with Cry-consensus peptide plus 50 microg/ml of PS80 did not affect the antigen-specific proliferation of splenocytes, but decreased the potency of Cry-consensus peptide to inhibit antigen-specific interleukin (IL)-5 production by the cells significantly in comparison with challenge with Cry-consensus peptide alone. However, there was no significant difference between the effect of Cry-consensus peptide administration on interferon (IFN)-gamma production in the presence and absence of PS80, indicating that PS80 interfered with the T helper 1 (Th1)-dominant T helper balance induced by Cry-consensus peptide challenge. Moreover, the increase in the level of antigen-specific immunoglobulin G2a (IgG2a) induced by Cry-consensus peptide challenge was inhibited slightly but unambiguously by PS80 coinjection. These in vitro experiments indicated that PS80 induces Th2-type differentiation of T helper cells through preferential inhibition of IFN-gamma expression relative to IL-5 expression in splenocytes in a concentration-dependent manner. In naïve mice, sensitization by Cry-consensus peptide with PS80 induced antigen-specific IL-5 production more potently than sensitization by Cry-consensus peptide alone, and when PS80 was added to bone marrow-derived dendritic cells, the endocytosis of fluorescence-labelled Cry-consensus peptide was dramatically inhibited in a concentration-dependent manner. Therefore, we conclude that PS80 has an immunomodulatory effect on the antigen-specific response resulting in a shift towards Th2 predominance with respect to the antigen recognition stage. Taken together, our findings suggest that PS80 might decrease the efficacy of Cry-consensus peptide through modulation of the efficiency of antigen endocytosis and/or of the direction of successive T helper cell differentiation.
Patel, Jaina M; Vartabedian, Vincent F; Bozeman, Erica N; Caoyonan, Brianne E; Srivatsan, Sanjay; Pack, Christopher D; Dey, Paulami; D'Souza, Martin J; Yang, Lily; Selvaraj, Periasamy
2016-01-01
Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vermeulen, Françoise; Dirix, Violette; Verscheure, Virginie; Damis, Eliane; Vermeylen, Danièle; Locht, Camille; Mascart, Françoise
2013-04-08
Due to their high risk of developing severe Bordetella pertussis (Bp) infections, it is recommended to immunize preterm infants at their chronological age. However, little is known about the persistence of their specific immune responses, especially of the cellular responses recognized to play a role in protection. We compared here the cellular immune responses to two major antigens of Bp between three groups of one year-old children born prematurely, who received for their primary vaccination respectively the whole cell vaccine Tetracoq(®) (TC), the acellular vaccine Tetravac(®) (TV), or the acellular vaccine Infanrix-hexa(®) (IR). Whereas most children had still detectable IFN-γ responses at one year of age, they were lower in the IR-vaccinated children compared to the two other groups. In contrast, both the TV- and the IR-vaccinated children displayed higher Th2-type immune responses, resulting in higher antigen-specific IFN-γ/IL-5 ratios in TC- than in TV- or IR-vaccinated children. The IFN-γ/IL-5 ratio of mitogen-induced cytokines was also lower in IR- compared to TC- or TV-vaccinated children. No major differences in the immune responses were noted after the booster compared to the pre-booster responses for each vaccine. The IR-vaccinated children had a persistently low specific Th1-type immune response associated with high specific Th2-type immune responses, resulting in lower antigen-specific IFN-γ/IL-5 ratios compared to the two other groups. We conclude that antigen-specific cellular immune responses persisted in one year-old children born prematurely and vaccinated during infancy at their chronological age, that a booster dose did not significantly boost the cellular immune responses, and that the Th1/Th2 balance of the immune responses is modulated by the different vaccines. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bowman, L. M.; Holt, P. G.
2001-01-01
Infant rats primed during the first week of life with soluble antigen displayed adult-equivalent levels of T-helper 2 (Th2)-dependent immunological memory development as revealed by production of secondary immunoglobulin G1 (IgG1) antibody responses to subsequent challenge, but in contrast to adults failed to prime for Th1-dependent IgG2b responses. We demonstrate that this Th2 bias in immune function can be redressed by oral administration to neonates of a bacterial extract (Broncho-Vaxom OM-85) comprising lyophilized fractions of several common respiratory tract bacterial pathogens. Animals given OM-85 displayed a selective upregulation in primary and secondary IgG2b responses, accompanied by increased gamma interferon and decreased interleukin-4 production (both antigen specific and polyclonal), and increased capacity for development of Th1-dependent delayed hypersensitivity to the challenge antigen. We hypothesize that the bacterial extract functions via enhancement of the process of postnatal maturation of Th1 function, which is normally driven by stimuli from the gastrointestinal commensal microflora. PMID:11349036
Detection of low-level environmental chemical allergy by a long-term sensitization method.
Fukuyama, Tomoki; Ueda, Hideo; Hayashi, Koichi; Tajima, Yukari; Shuto, Yasufumi; Saito, Toru R; Harada, Takanori; Kosaka, Tadashi
2008-07-30
Multiple chemical sensitivity (MCS) is characterized by various signs, including neurological disorders and allergy. Exposure may occur through a major event, such as a chemical spill, or from long-term contact with chemicals at low levels. We are interested in the allergenicity of MCS and the detection of low-level chemical-related hypersensitivity. We used long-term sensitization followed by low-dose challenge to evaluate sensitization by well-known Th2 type sensitizers (trimellitic anhydride (TMA) and toluene diisocyanate (TDI)) and a Th1 type sensitizer (2,4-dinitrochlorobenzene (DNCB)). After topically sensitizing BALB/c mice (9 times in 3 weeks) and challenging them with TMA, TDI or DNCB, we assayed their auricular lymph nodes (LNs) for number of lymphocytes, surface antigen expression of B cells, and local cytokine production, and measured antigen-specific serum IgE levels. TMA and TDI induced marked increases in levels of antigen-specific serum IgE and of Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) produced by ex vivo restimulated lymph node cells. DNCB induced a marked increase in Th1 cytokine (IL-2, IFN-gamma, and TNF-alpha) levels, but antigen-specific serum IgE levels were not elevated. All chemicals induced significant increases in number of lymphocytes and surface antigen expression of B cells. Our mouse model enabled the identification and characterization of chemical-related allergic reactions at low levels. This long-term sensitization method would be useful for detecting environmental chemical-related hypersensitivity.
Mitchell, Elizabeth O; Stewart, Greg; Bajzik, Olivier; Ferret, Mathieu; Bentsen, Christopher; Shriver, M Kathleen
2013-12-01
A multisite study was conducted to evaluate the performance of the Bio-Rad 4th generation GS HIV Combo Ag/Ab EIA versus Abbott 4th generation ARCHITECT HIV Ag/Ab Combo. The performance of two 3rd generation EIAs, Ortho Diagnostics Anti-HIV 1+2 EIA and Siemens HIV 1/O/2 was also evaluated. Study objective was comparison of analytical HIV-1 p24 antigen detection, sensitivity in HIV-1 seroconversion panels, specificity in blood donors and two HIV false reactive panels. Analytical sensitivity was evaluated with International HIV-1 p24 antigen standards, the AFFSAPS (pg/mL) and WHO 90/636 (IU/mL) standards; sensitivity in acute infection was compared on 55 seroconversion samples, and specificity was evaluated on 1000 negative blood donors and two false reactive panels. GS HIV Combo Ag/Ab demonstrated better analytical HIV antigen sensitivity compared to ARCHITECT HIV Ag/Ab Combo: 0.41 IU/mL versus 1.2 IU/mL (WHO) and 12.7 pg/mL versus 20.1 pg/mL (AFSSAPS); GS HIV Combo Ag/Ab EIA also demonstrated slightly better specificity compared to ARCHITECT HIV Ag/Ab Combo (100% versus 99.7%). The 4th generation HIV Combo tests detected seroconversion 7-11 days earlier than the 3rd generation HIV antibody only EIAs. Both 4th generation immunoassays demonstrated excellent performance in sensitivity, with the reduction of the serological window period (7-11 days earlier detection than the 3rd generation HIV tests). However, GS HIV Combo Ag/Ab demonstrated improved HIV antigen analytical sensitivity and slightly better specificity when compared to ARCHITECT HIV Ag/Ab Combo assay, with higher positive predictive values (PPV) for low prevalence populations. Copyright © 2013 Elsevier B.V. All rights reserved.
Kumar, Nathella Pavan; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Jawahar, Mohideen S.; Nutman, Thomas B.; Babu, Subash
2013-01-01
Background. Type 2 diabetes mellitus (DM) is a major risk factor for the development of active pulmonary tuberculosis, although the immunological mechanisms underlying this interaction remain unexplored. The influence of poorly controlled diabetes on pathogen-specific T-helper 1 (Th1) and T-helper 17 (Th17) responses have not been examined. Methods. To identify the role of Th1 and Th17 cells in tuberculosis with coincident DM, we examined mycobacteria-specific immune responses in the whole blood of individuals who had tuberculosis with DM and compared them to those in individuals who had tuberculosis without DM. Results. Tuberculosis coincident with DM is characterized by elevated frequencies of monofunctional and dual-functional CD4+ Th1 cells following Mycobacterium tuberculosis antigen stimulation and elevated frequencies of Th17 subsets at both baseline and following antigen stimulation. This was associated with increased systemic (plasma) levels of both Th1 and Th17 cytokines and decreased baseline frequencies of natural regulatory T cells but not interleukin 10 or transforming growth factor β. Conclusions. Therefore, our data reveal that tuberculosis in persons with DM is characterized by elevated frequencies of Th1 and Th17 cells, indicating that DM is associated with an alteration in the immune response to tuberculosis, leading to a biased induction of Th1- and Th17-mediated cellular responses and likely contributing to increased immune pathology in M. tuberculosis infection. PMID:23715661
Anuradha, Rajamanickam; Munisankar, Saravanan; Bhootra, Yukthi; Dolla, Chandrakumar; Kumaran, Paul; Nutman, Thomas B; Babu, Subash
2017-11-01
Strongyloides stercoralis infection is associated with diminished antigen-specific Th1- and Th17-associated responses and enhanced Th2-associated responses. Interleukin-27 (IL-27) and IL-37 are two known anti-inflammatory cytokines that are highly expressed in S. stercoralis infection. We therefore wanted to examine the role of IL-27 and IL-37 in regulating CD4 + and CD8 + T cell responses in S. stercoralis infection. To this end, we examined the frequency of Th1/Tc1, Th2/Tc2, Th9/Tc9, Th17/Tc17, and Th22/Tc22 cells in 15 S. stercoralis -infected individuals and 10 uninfected individuals stimulated with parasite antigen following IL-27 or IL-37 neutralization. We also examined the production of prototypical type 1, type 2, type 9, type 17, and type 22 cytokines in the whole-blood supernatants. Our data reveal that IL-27 or IL-37 neutralization resulted in significantly enhanced frequencies of Th1/Tc1, Th2/Tc2, Th17/Tc17, Th9, and Th22 cells with parasite antigen stimulation. There was no induction of any T cell response in uninfected individuals following parasite antigen stimulation and IL-27 or IL-37 neutralization. Moreover, we also observed increased production of gamma interferon (IFN-γ), IL-5, IL-9, IL-17, and IL-22 and decreased production of IL-10 following IL-27 and IL-37 neutralization and parasite antigen stimulation in whole-blood cultures. Thus, we demonstrate that IL-27 and IL-37 limit the induction of particular T cell subsets along with cytokine responses in S. stercoralis infections, which suggest the importance of IL-27 and IL-37 in immune modulation in a chronic helminth infection. Copyright © 2017 American Society for Microbiology.
Yan, Weiwei; Saleem, Muhammad Hassan; McDonough, Patrick; McDonough, Sean P.; Divers, Thomas J.
2013-01-01
Leptospira immunoglobulin (Ig)-like (Lig) proteins are a novel family of surface-associated proteins in which the N-terminal 630 amino acids are conserved. In this study, we truncated the LigA conserved region into 7 fragments comprising the 1st to 3rd (LigACon1-3), 4th to 7.5th (LigACon4-7.5), 4th (LigACon4), 4.5th to 5.5th (LigACon4.5–5.5), 5.5th to 6.5th (LigACon5.5–6.5), 4th to 5th (LigACon4-5), and 6th to 7.5th (LigACon6-7.5) repeat domains. All 7 recombinant Lig proteins were screened using a slot-shaped dot blot assay for the diagnosis of equine leptospirosis. Our results showed that LigACon4-7.5 is the best candidate diagnostic antigen in a slot-shaped dot blot assay. LigACon4-7.5 was further evaluated as an indirect enzyme-linked immunosorbent assay (ELISA) antigen for the detection of Leptospira antibodies in equine sera. This assay was evaluated with equine sera (n = 60) that were microscopic agglutination test (MAT) negative and sera (n = 220) that were MAT positive to the 5 serovars that most commonly cause equine leptospirosis. The indirect ELISA results showed that at a single serum dilution of 1:250, the sensitivity and specificity of ELISA were 80.0% and 87.2%, respectively, compared to those of MAT. In conclusion, an indirect ELISA was developed utilizing a recombinant LigA fragment comprising the 4th to 7.5th repeat domain (LigACon4-7.5) as a diagnostic antigen for equine leptospirosis. This ELISA was found to be sensitive and specific, and it yielded results that concurred with those of the standard MAT. PMID:23720368
Delano, Matthew J.; Scumpia, Philip O.; Weinstein, Jason S.; Coco, Dominique; Nagaraj, Srinivas; Kelly-Scumpia, Kindra M.; O'Malley, Kerri A.; Wynn, James L.; Antonenko, Svetlana; Al-Quran, Samer Z.; Swan, Ryan; Chung, Chun-Shiang; Atkinson, Mark A.; Ramphal, Reuben; Gabrilovich, Dmitry I.; Reeves, Wesley H.; Ayala, Alfred; Phillips, Joseph; LaFace, Drake; Heyworth, Paul G.; Clare-Salzler, Michael; Moldawer, Lyle L.
2007-01-01
Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization. PMID:17548519
Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas
2017-11-01
In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Schaut, Robert G; Grinnage-Pulley, Tara L; Esch, Kevin J; Toepp, Angela J; Duthie, Malcolm S; Howard, Randall F; Reed, Steven G; Petersen, Christine A
2016-10-17
Visceral leishmaniasis (VL), caused by infection with the obligate intracellular protozoan parasite Leishmania infantum, is a fatal disease of dogs and humans. Protection against VL requires a T helper 1 (Th1) skewed CD4 + T response, but despite this knowledge, there are currently no approved-to-market vaccines for humans and only three veterinary-use vaccines globally. As VL progresses from asymptomatic to symptomatic, L. infantum-specific interferon gamma (IFNγ) driven-Th1 responses become dampened and a state of immune exhaustion established. T cell exhaustion and other immunoregulatory processes, starting during asymptomatic disease, are likely to hinder vaccine-induced responses if vaccine is administered to infected, but asymptomatic and seronegative, individuals. In this study we evaluated how immune exhaustion, shown previously by our group to worsen in concert with VL progression, effected the capacity of vaccine candidate antigen/toll-like receptor (TLR) agonist combinations to promote protective CD4 + T cell responses during progressive VL. In conjunction with Th1 responses, we also evaluated concomitant stimulation of immune-balanced IL-10 regulatory cytokine production by these vaccine products in progressive VL canine T cells. Vaccine antigen L111f in combination with TLR agonists significantly recovered CD4 + T cell IFNγ intracellular production in T cells from asymptomatic VL dogs. Vaccine antigen NS with TLR agonists significantly recovered CD4 + T cell production in both endemic control and VL dogs. Combinations of TLR agonists and vaccine antigens overcame L. infantum induced cellular exhaustion, allowing robust Th1 CD4 + T cell responses from symptomatic dogs that previously had dampened responses to antigen alone. Antigen-agonist adjuvants can be utilized to promote more robust vaccine responses from infected hosts in endemic areas where vaccination of asymptomatic, L. infantum-infected animals is likely. Copyright © 2016. Published by Elsevier Ltd.
Mycobacterium tuberculosis impairs dendritic cell functions through the serine hydrolase Hip1
Madan-Lala, Ranjna; Sia, Jonathan Kevin; King, Rebecca; Adekambi, Toidi; Monin, Leticia; Khader, Shabaana A; Pulendran, Bali; Rengarajan, Jyothi
2014-01-01
Mycobacterium tuberculosis (Mtb) is a highly successful human pathogen that primarily resides in host phagocytes, such as macrophages and dendritic cells (DCs), and interferes with their functions. While multiple strategies used by Mtb to modulate macrophage responses have been discovered, interactions between Mtb and DCs are less well understood. DCs are the primary antigen presenting acells (APCs) of the immune system and play a central role in linking innate and adaptive immune responses to microbial pathogens. In this study we show that Mtb impairs DC cytokine secretion, maturation and antigen presentation through the cell envelope-associated serine hydrolase Hip1. Compared to wild type, a hip1 mutant strain of Mtb induced enhanced levels of the key T helper 1 (Th1)-inducing cytokine IL-12, as well as other proinflammatory cytokines (IL-23, IL-6, TNF-α, IL-1β, IL-18) in DCs via MyD88- and TLR2/9-dependent pathways, indicating that Hip1 restricts optimal DC inflammatory responses. Infection with the hip1 mutant also induced higher levels of MHC class II and co-stimulatory molecules, CD40 and CD86, indicating that Mtb impairs DC maturation through Hip1. Further, we show that Mtb promotes sub-optimal antigen presentation, as DCs infected with the hip1 mutant showed increased capacity to present antigen to OT-II- and early secreted antigenic target 6 (ESAT-6)-specific transgenic CD4 T cells and enhanced Th1 and Th17 polarization. Overall, these data show that Mtb impairs DC functions and modulates the nature of antigen-specific T cell responses, with important implications for vaccination strategies. PMID:24659689
Antigen-specific, CD4+CD25+ regulatory T cell clones induced in Peyer's patches.
Tsuji, Noriko M; Mizumachi, Koko; Kurisaki, Jun-Ichi
2003-04-01
Since intestine is exposed to numerous exogenous antigens such as food and commensal bacteria, the organ bears efficient mechanisms for establishment of tolerance and induction of regulatory T cells (T(reg)). Intestinal and inducible T(reg) include T(r)1-like and T(h)3 cells whose major effector molecules are IL-10 and transforming growth factor (TGF)-beta. These antigen-specific T(reg) are expected to become clinical targets to modify the inflammatory immune response associated with allergy, autoimmune diseases and transplantation. In the present study, we characterized the antigen-specific T(reg) induced in the intestine by orally administering high-dose beta-lactoglobulin (BLG) to BALB/c mice. Seven days after feeding, only Peyer's patch (PP) cells among different organs exerted significant suppressive effect on antibody production upon in vitro BLG stimulation. This suppressive effect was also prominent in six BLG-specific CD4(+) T cell clones (OPP1-6) established from PP from mice orally administered with high doses of BLG and was partially reversed by antibodies to TGF-beta. Intravenous transfer of OPP2 efficiently suppressed BLG-specific IgG1 production in serum following immunization, indicating the role of such T(reg) in the systemic tolerance after oral administration of antigen (oral tolerance). OPP clones secrete TGF-beta, IFN-gamma and low levels of IL-10, a cytokine pattern similar to that secreted by anergic T cells. OPP clones bear a CD4(+)CD25(+) phenotype and show significantly lower proliferative response compared to T(h)0 clones. This lower response is recovered by the addition of IL-2. Thus, antigen-specific CD4(+)CD25(+) T(reg), which have characteristics of anergic cells and actively suppress antibody production are induced in PP upon oral administration of protein antigen.
Brown, W C; Zhao, S; Logan, K S; Grab, D J; Rice-Ficht, A C
1995-03-01
Current vaccines for bovine hemoparasites utilize live attenuated organisms or virulent organisms administered concurrently with antiparasitic drugs. Although such vaccines can be effective, for most hemoparasites the mechanisms of acquired resistance to challenge infection with heterologous parasite isolates have not been clearly defined. Selection of potentially protective antigens has traditionally made use of antibodies to identify immunodominant proteins. However, numerous studies have indicated that induction of high antibody titers neither predicts the ability of an antigen to confer protective immunity nor correlates with protection. Because successful parasites have evolved antibody evasion tactics, alternative strategies to identify protective immunogens should be used. Through the elaboration of cytokines, T helper 1-(Th1)-like T cells and macrophages mediate protective immunity against many intracellular parasites, and therefore most likely play an important role in protective immunity against bovine hemoparasites. CD4+ T cell clones specific for soluble or membrane antigens of either Theileria parva schizonts or Babesia bovis merozoites were therefore employed to identify parasite antigens that elicit strong Th cell responses in vitro. Soluble cytosolic parasite antigen was fractionated by gel filtration, anion exchange chromatography or hydroxylapatite chromatography, or a combination thereof, and fractions were tested for the ability to induce proliferation of Th cell clones. This procedure enabled the identification of stimulatory fractions containing T. parva proteins of approximately 10 and 24 kDa. Antisera raised against the purified 24 kDa band reacted with a native schizont protein of approximately 30 kDa. Babesia bovis-specific Th cell clones tested against fractionated soluble Babesia bovis merozoite antigen revealed the presence of at least five distinct antigenic epitopes. Proteins separated by gel filtration revealed four patterns of reactivity, and proteins separated by anion exchange revealed two patterns of reactivity when selected T cell clones were assayed for stimulation by antigenic fractions. Studies using a continuous-flow electrophoresis apparatus have indicated the feasibility of identifying T cell-stimulatory proteins from parasite membranes as well as from the cytosolic fraction of B. bovis merozoites. The Th cell clones reactive with these different hemoparasites expressed either unrestricted or Th1 cytokine profiles, and were generally characterized by the production of high levels of IFN-gamma. A comprehensive study of T cell and macrophage responses to defined parasite antigens will help elucidate the reasons for vaccine failure or success, and provide clues to the mechanisms of acquired immunity that are needed for vaccine development.
Guzmán, Mauricio; Keitelman, Irene; Sabbione, Florencia; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G
2016-10-01
Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diederich, Jan-Markus; Staudt, Maximilian; Meisel, Christian; Hahn, Katrin; Meinl, Edgar; Meisel, Andreas; Klehmet, Juliane
2018-01-01
The objective of this study is to investigate whether chronic inflammatory demyelinating polyneuropathy (CIDP) and its subtypes differ in their type 1 T-helper (TH1) cell response against nodal/paranodal neurofascin (NF186, NF155) as well as myelin protein zero (P0 180-199) and myelin basic protein (MBP 82-100). Interferon-gamma (IFN-γ) enzyme-linked immunospot assay was used to detect antigen-specific T cell responses in 48 patients suffering typical CIDP ( n = 18), distal acquired demyelinating polyneuropathy ( n = 8), multifocal acquired demyelinating sensory and motor polyneuropathy (MADSAM; n = 9), and sensory CIDP ( n = 13) compared to other non-immune polyneuropathy (ON; n = 19) and healthy controls ( n = 9). Compared to controls, MADSAM and sensory CIDP patients showed broadest IFN-γ T cell responses to all four antigens. Positive IFN-γ responses against two or more antigens were highly predictive for CIDP (positive predictive value = 0.95) and were found in 77% of CIDP patients. Patients with limited antigen-specific response were females, more severely affected with neuropathic pain and proximal paresis. The area under the receiver operating characteristics curve (AUC) of NF186 in MADSAM was 0.94 [95% confidential interval (CI) 0.82-1.00] compared to ON. For sensory CIDP, AUC of P0 180-199 was 0.94 (95% CI 0.86-1.00) and for MBP 82-100 0.95 (95% CI 0.88-1.00) compared to ON. Cell-mediated immune responses to (para)nodal and myelin-derived antigens are common in CIDP. TH1 response against NF186 may be used as a biomarker for MADSAM and TH1 responses against P0 180-199 and MBP 82-100 as biomarkers for sensory CIDP. Larger multicenter studies study are warranted in order to establish these immunological markers as a diagnostic tools.
Commins, Scott P
2015-01-01
Complex carbohydrates are effective inducers of Th2 responses, and carbohydrate antigens can stimulate the production of glycan-specific antibodies. In instances where the antigen exposure occurs through the skin, the resulting antibody production can contain IgE class antibody. The glycan-stimulated IgE may be non-specific but may also be antigen specific. This review focuses on the production of cross-reactive carbohydrate determinants, the recently identified IgE antibody response to a mammalian oligosaccharide epitope, galactose-alpha-1,3-galactose (alpha-gal), as well as discusses practical implications of carbohydrates in allergy. In addition, the biological effects of carbohydrate antigens are reviewed in setting of receptors and host recognition.
Abo-Aziza, Faten A M; Hendawy, Seham H M; Namaky, Amira H El; Ashry, Heba M
2017-06-01
The aim of this study was to investigate the early diagnosis of strongyle infection based on early changes in Th1 and Th2 cytokines beside the diagnostic accuracy values and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting profiles using prepared strongyles antigens. A total of 73 donkeys had a mean age of 4-32 years old were parasitologically examined for strongyle infection. The early changes in Th1 and Th2 cytokines were determined, and the diagnostic accuracy values and SDS-PAGE and western blotting profiles were performed using prepared strongyles antigens; crude somatic Strongylus vulgaris (CSS), excretory-secretory S. vulgaris (ESS), crude somatic Cyathostomins (CSC), and excretory-secretory Cyathostomins (ESC). The results revealed highest 437.04% and lowest 37.81% immunoglobulin G (IgG) in high and low egg shedder groups when using ESC and CSS antigens, respectively. Antibodies index for ESS and CSC were significantly higher in moderate egg shedder group while that for ESS and CSC, ESC was significantly higher in high egg shedder group. Tumor necrosis factor alpha (TNF-α)/interleukin-4 (IL-4) balance in S. vulgaris infected donkeys was approximately equal in apparently healthy, low and high egg shedder groups while TNF-α < IL-4 in moderate egg shedder. In Cyathostomins infected animals, TNF-α/IL-4 balance was approximately equal in apparently healthy group while it was low in moderate and high egg shedder groups. The diagnostic accuracy showed that the higher specificity (46.6%) and prevalence (95.40%) were recorded by CSS and ESC antigens, respectively. However, SDS-PAGE and western blotting profiling proved that the band at molecular weight 25 kDa is exhibited by CSS antigen. Combination of detecting level of TNF-α/IL-4 balance, CSS antigen and IgG concentration is good tool for appropriate diagnosis of such infection. More advancement research must be done concerning Th1/Th2 balance and cross-reactivity of S. vulgaris and Cyathostomins spp. at the base of serological and molecular investigation.
Abo-Aziza, Faten A. M.; Hendawy, Seham H. M.; Namaky, Amira H. El; Ashry, Heba M.
2017-01-01
Aim:: The aim of this study was to investigate the early diagnosis of strongyle infection based on early changes in Th1 and Th2 cytokines beside the diagnostic accuracy values and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting profiles using prepared strongyles antigens. Materials and Methods:: A total of 73 donkeys had a mean age of 4-32 years old were parasitologically examined for strongyle infection. The early changes in Th1 and Th2 cytokines were determined, and the diagnostic accuracy values and SDS-PAGE and western blotting profiles were performed using prepared strongyles antigens; crude somatic Strongylus vulgaris (CSS), excretory-secretory S. vulgaris (ESS), crude somatic Cyathostomins (CSC), and excretory-secretory Cyathostomins (ESC). Results:: The results revealed highest 437.04% and lowest 37.81% immunoglobulin G (IgG) in high and low egg shedder groups when using ESC and CSS antigens, respectively. Antibodies index for ESS and CSC were significantly higher in moderate egg shedder group while that for ESS and CSC, ESC was significantly higher in high egg shedder group. Tumor necrosis factor alpha (TNF-α)/interleukin-4 (IL-4) balance in S. vulgaris infected donkeys was approximately equal in apparently healthy, low and high egg shedder groups while TNF-α < IL-4 in moderate egg shedder. In Cyathostomins infected animals, TNF-α/IL-4 balance was approximately equal in apparently healthy group while it was low in moderate and high egg shedder groups. The diagnostic accuracy showed that the higher specificity (46.6%) and prevalence (95.40%) were recorded by CSS and ESC antigens, respectively. However, SDS-PAGE and western blotting profiling proved that the band at molecular weight 25 kDa is exhibited by CSS antigen. Conclusion:: Combination of detecting level of TNF-α/IL-4 balance, CSS antigen and IgG concentration is good tool for appropriate diagnosis of such infection. More advancement research must be done concerning Th1/Th2 balance and cross-reactivity of S. vulgaris and Cyathostomins spp. at the base of serological and molecular investigation. PMID:28717322
Jackson-Sillah, Dolly; Cliff, Jacqueline M; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A; Addo, Kwasi K; Ottenhoff, Tom H M; Bothamley, Graham; Dockrell, Hazel M
2013-01-01
Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+)FoxP3(+)CD25(hi) cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.
A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses
Grenga, Italia; Donahue, Renee N; Lepone, Lauren M; Richards, Jacob; Schlom, Jeffrey
2016-01-01
Monoclonal antibodies (MAbs) that interfere with checkpoint molecules are being investigated for the treatment of infectious diseases and cancer, with the aim of enhancing the function of an impaired immune system. Avelumab (MSB0010718C) is a fully human IgG1 MAb targeting programmed death-ligand 1 (PD-L1), which differs from other checkpoint-blocking antibodies in its ability to mediate antibody-dependent cell-mediated cytotoxicity. These studies were conducted to define whether avelumab could enhance the detection of antigen-specific immune response in in vitro assays. Peripheral blood mononuclear cells from 17 healthy donors were stimulated in vitro, with and without avelumab, with peptide pools encoding for cytomegalovirus, Epstein–Barr virus, influenza and tetanus toxin or the negative peptide control encoding for human leukocyte antigen. These studies show for the first time that the addition of avelumab to an antigen-specific IVS assay (a) increased the frequency of activated antigen-specific CD8+ T lymphocytes, and did so to a greater extent than that seen with commercially available PD-L1-blocking antibodies, (b) reduced CD4+ T-cell proliferation and (c) induced a switch in the production of Th2 to Th1 cytokines. Moreover, there was an inverse correlation between the enhancement of CD8+ T-cell activation and reduction in CD4+ T-cell proliferation induced by avelumab. These findings provide the rationale for the use of avelumab anti-PD-L1 in in vitro assays to monitor patient immune responses to immunotherapies. PMID:27350882
A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses.
Grenga, Italia; Donahue, Renee N; Lepone, Lauren M; Richards, Jacob; Schlom, Jeffrey
2016-05-01
Monoclonal antibodies (MAbs) that interfere with checkpoint molecules are being investigated for the treatment of infectious diseases and cancer, with the aim of enhancing the function of an impaired immune system. Avelumab (MSB0010718C) is a fully human IgG1 MAb targeting programmed death-ligand 1 (PD-L1), which differs from other checkpoint-blocking antibodies in its ability to mediate antibody-dependent cell-mediated cytotoxicity. These studies were conducted to define whether avelumab could enhance the detection of antigen-specific immune response in in vitro assays. Peripheral blood mononuclear cells from 17 healthy donors were stimulated in vitro, with and without avelumab, with peptide pools encoding for cytomegalovirus, Epstein-Barr virus, influenza and tetanus toxin or the negative peptide control encoding for human leukocyte antigen. These studies show for the first time that the addition of avelumab to an antigen-specific IVS assay (a) increased the frequency of activated antigen-specific CD8(+) T lymphocytes, and did so to a greater extent than that seen with commercially available PD-L1-blocking antibodies, (b) reduced CD4(+) T-cell proliferation and (c) induced a switch in the production of Th2 to Th1 cytokines. Moreover, there was an inverse correlation between the enhancement of CD8(+) T-cell activation and reduction in CD4(+) T-cell proliferation induced by avelumab. These findings provide the rationale for the use of avelumab anti-PD-L1 in in vitro assays to monitor patient immune responses to immunotherapies.
Oral Gene Application Using Chitosan-DNA Nanoparticles Induces Transferable Tolerance
Ensminger, Stephan M.; Spriewald, Bernd M.
2012-01-01
Oral tolerance is a promising approach to induce unresponsiveness to various antigens. The development of tolerogenic vaccines could be exploited in modulating the immune response in autoimmune disease and allograft rejection. In this study, we investigated a nonviral gene transfer strategy for inducing oral tolerance via antigen-encoding chitosan-DNA nanoparticles (NP). Oral application of ovalbumin (OVA)-encoding chitosan-DNA NP (OVA-NP) suppressed the OVA-specific delayed-type hypersensitivity (DTH) response and anti-OVA antibody formation, as well as spleen cell proliferation following OVA stimulation. Cytokine expression patterns following OVA stimulation in vitro showed a shift from a Th1 toward a Th2/Th3 response. The OVA-NP-induced tolerance was transferable from donor to naïve recipient mice via adoptive spleen cell transfer and was mediated by CD4+CD25+ T cells. These findings indicate that nonviral oral gene transfer can induce regulatory T cells for antigen-specific immune modulation. PMID:22933401
Brown, W C; Davis, W C; Dobbelaere, D A; Rice-Ficht, A C
1994-01-01
The well-established importance of helper T (Th)-cell subsets in immunity and immunoregulation of many experimental helminth infections prompted a detailed study of the cellular immune response against Fasciola hepatica in the natural bovine host. T-cell lines established from two cattle infected with F. hepatica were characterized for the expression of T-cell surface markers and proliferative responses against F. hepatica adult worm antigen. Parasite-specific T-cell lines contained a mixture of CD4+, CD8+, and gamma/delta T-cell-receptor-bearing T cells. However, cell lines containing either fewer than 10% CD8+ T cells or depleted of gamma/delta T cells proliferated vigorously against F. hepatica antigen, indicating that these T-cell subsets are not required for proliferative responses in vitro. Seventeen F. hepatica-specific CD4+ Th-cell clones were examined for cytokine expression following concanavalin A stimulation. Biological assays to measure interleukin-2 (IL-2) or IL-4, gamma interferon (IFN-gamma), and tumor necrosis factor and Northern (RNA) blot analysis to verify the expression of IL-2, IL-4, and IFN-gamma revealed that the Th-cell clones expressed a spectrum of cytokine profiles. Several Th-cell clones were identified as Th2 cells by the strong expression of IL-4 but little or no IL-2 or IFN-gamma mRNA. The majority of Th-cell clones were classified as Th0 cells by the expression of either all three cytokines or combinations of IL-2 and IL-4 or IL-4 and IFN-gamma. No Th1-cell clones were obtained. All of the Th-cell clones expressed a typical memory cell surface phenotype, characterized as CD45Rlow, and all expressed the lymph node homing receptor (L selectin). These results are the first to describe cytokine responses of F. hepatica-specific T cells obtained from infected cattle and extend our previous analysis of Th0 and Th1 cells from cattle immune to Babesia bovis (W. C. Brown, V. M. Woods, D. A. E. Dobbelaere, and K. S. Logan, Infect. Immun. 61:3273-3281, 1993) to include F. hepatica-specific Th2 cells. Images PMID:7509319
Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila
2013-02-01
Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.
Use of the Abbott Architect HIV antigen/antibody assay in a low incidence population.
Dubravac, Terry; Gahan, Thomas F; Pentella, Michael A
2013-12-01
With the availability of 4th generation HIV diagnostic tests which are capable of detecting acute infection, Iowa evaluated the 3rd and 4th generation HIV test and compared the performance of these products in a low incidence population. This study was conducted to evaluate the performance of an HIV antigen/antibody combination (4th generation) assay compared to an EIA 3rd generation assay. Over a 4 month period, 2037 specimens submitted for HIV screening were tested by Bio-Rad GS HIV-1/HIV-2 Plus O EIA and the Abbott Architect i1000SR HIV Ag/Ab Combo. The performance characteristics of sensitivity, specificity, positive predictive value and negative predictive value were determined. Of the 2037 specimens tested, there were 13 (0.64%) true positives detected. None of the positive specimens were from patients in the acute phase of infection. The Abbott antigen/antibody combo assay had a sensitivity, specificity, positive-predictive value and negative predictive value of 100%, 99.85%, 81.25%, and 100% respectively. The Bio-Rad EIA assay had a sensitivity, specificity, positive-predictive value and negative predictive value of 100%, 99.80%, 76.47% and 100%, respectively. The EIA had four false positive results which tested negative by the antigen/antibody assay and western blot. In a low-incidence state where early infections are less commonly encountered, the EIA assay and the antigen/antibody assay performed with near equivalency. The antigen/antibody assay had one less false positive result. While no patients were detected in the acute stage of infection, the use of the antigen/antibody assay presents the opportunity to detect an infected patient sooner and prevent transmission to others. Copyright © 2013 Elsevier B.V. All rights reserved.
Picchio, Mariano S; Sánchez, Vanesa R; Arcon, Nadia; Soto, Ariadna S; Perrone Sibilia, Matías; Aldirico, María de Los Angeles; Urrutia, Mariela; Moretta, Rosalía; Fenoy, Ignacio M; Goldman, Alejandra; Martin, Valentina
2018-02-01
The development of an effective and safe vaccine to prevent Toxoplasma gondii infection is an important aim due to the great clinical and economic impact of this parasitosis. We have previously demonstrated that immunization with the serine protease inhibitor-1 (TgPI-1) confers partial protection to C3H/HeN and C57BL/6 mice. In order to improve the level of protection, in this work, we combined this novel antigen with ROP2 and/or GRA4 recombinant proteins (rTgPI-1+rROP2, rTgPI-1+rGRA4, rTgPI-1+rROP2+rGRA4) to explore the best combination against chronic toxoplasmosis in C3H/HeN mice. All tested vaccine formulations, administered following a homologous prime-boost protocol that combines intradermal and intranasal routes, conferred partial protection as measured by the reduction of brain cyst burden following oral challenge with tissue cysts of Me49 T. gondii strain. The highest level of protection was achieved by the mixture of rTgPI-1 and rROP2 proteins with an average parasite burden reduction of 50% compared to the unvaccinated control group. The vaccine-induced protective effect was related to the elicitation of systemic cellular and humoral immune responses that included antigen-specific spleen cell proliferation, the release of Th1/Th2 cytokines, and the generation of antigen-specific antibodies in serum. Additionally, mucosal immune responses were also induced, characterized by secretion of antigen-specific IgA antibodies in intestinal lavages and specific mesenteric lymph node cell proliferation. Our results demonstrate that rTgPI-1+rROP2 antigens seem a promising mixture to be combined with other immunogenic proteins in a multiantigenic vaccine formulation against toxoplasmosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Th17 Immune Cells in vivo: Friend or Foe? | Center for Cancer Research
Upon encountering an antigen, T cells bearing CD4+ (a helper marker) proliferate and become polarized. During this process, the cells produce specific signaling molecules called cytokines. This signaling stimulates the T cells to become more specialized. What results is the production of T cell subsets such as Th1, Th17, or others.
Im, Sin-Hyeog; Barchan, Dora; Fuchs, Sara; Souroujon, Miriam C.
1999-01-01
Myasthenia gravis (MG) is an autoimmune disorder in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. In an attempt to develop an antigen-specific therapy for MG, we administered a nonmyasthenogenic recombinant fragment of AChR orally to rats. This fragment, corresponding to the extracellular domain of the human AChR α-subunit (Hα1-205), protected rats from subsequently induced experimental autoimmune myasthenia gravis (EAMG) and suppressed ongoing EAMG when treatment was initiated during either the acute or chronic phases of disease. Prevention and suppression of EAMG were accompanied by a significant decrease in AChR-specific humoral and cellular responses. The underlying mechanism for the Hα1-205–induced oral tolerance seems to be active suppression, mediated by a shift from a T-helper 1 (Th1) to a Th2/Th3 response. This shift was assessed by changes in the cytokine profile, a deviation of anti-AChR IgG isotypes from IgG2 to IgG1, and a suppressed AChR-specific delayed-type hypersensitivity response. Our results in experimental myasthenia suggest that oral administration of AChR-specific recombinant fragments may be considered for antigen-specific immunotherapy of myasthenia gravis. J. Clin. Invest. 104:1723–1730 (1999). PMID:10606626
Kristensen, B; Hegedüs, L; Madsen, H O; Smith, T J; Nielsen, C H
2015-04-01
T helper type 17 (Th17) cells play a pathogenic role in autoimmune disease, while interleukin (IL)-10-producing Th10 cells serve a protective role. The balance between the two subsets is regulated by the local cytokine milieu and by the relative expression of intact forkhead box protein 3 (FoxP3) compared to FoxP3Δ2, missing exon 2. Th17 and Th10 cell differentiation has usually been studied using polyclonal stimuli, and little is known about the ability of physiologically relevant self-antigens to induce Th17 or Th10 cell differentiation in autoimmune thyroid disease. We subjected mononuclear cells from healthy donors and patients with Hashimoto's thyroiditis (HT) or Graves' disease (GD) to polyclonal stimulation, or stimulation with human thyroglobulin (TG), human thyroid peroxidase (TPO), or Esherichia coli lipopolysaccharide (LPS). TPO and LPS induced increased differentiation of naive CD4(+) CD45RA(+) CD45R0(-) T cells from HT patients into Th17 cells. Th10 cell proportions were decreased in HT after polyclonal stimulation, but were comparable to those of healthy donors after antigen-specific stimulation. Taken together, our data show that an increased Th17 : Th10 ratio was found in HT patients after stimulation with thyroid-specific self-antigens. We also observed an elevated baseline production of IL-6 and transforming growth factor (TGF)-β1 and of mRNA encoding FoxP3Δ2 rather than intact FoxP3. This may contribute to the skewing towards Th17 cell responses in HT. © 2014 British Society for Immunology.
Ramirez, Karina; Ditamo, Yanina; Rodriguez, Liliana; Picking, Wendy L.; van Roosmalen, Maarten L.; Leenhouts, Kees; Pasetti, Marcela F.
2010-01-01
Safe and effective immunization of newborns and infants can significantly reduce childhood mortality, yet conventional vaccines have been largely unsuccessful in stimulating the neonatal immune system. We explored the capacity of a novel mucosal antigen delivery system consisting of non-living, non-genetically modified Lactococcus lactis particles, designated Gram-positive Enhancer Matrix (GEM), to induce immune responses in the neonatal setting. Yersinia pestis LcrV, used as model protective antigen, was displayed on the GEM particles. Newborn mice immunized intranasally with GEM-LcrV developed LcrV-specific antibodies, Th1-type cell-mediated immunity, and were protected against lethal Y. pestis (plague) infection. The GEM particles activated and enhanced the maturation of neonatal dendritic cells both in vivo and in vitro. These dendritic cells showed increased capacities for secretion of pro-inflammatory and Th1-cell polarizing cytokines, antigen presentation and stimulation of CD4+ and CD8+ T cells. These data show that mucosal immunization with L. lactis GEM particles carrying vaccine antigens represents a promising approach to prevent infectious diseases early in life. PMID:19924118
Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis
Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc
2001-01-01
Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281
Jackson-Sillah, Dolly; Cliff, Jacqueline M.; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A.; Addo, Kwasi K.; Ottenhoff, Tom H. M.; Bothamley, Graham; Dockrell, Hazel M.
2013-01-01
Background Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)–specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Methods Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. Results The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4+FoxP3+CD25hi cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. Conclusions These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes. PMID:23826366
Hansen, G; Berry, G; DeKruyff, R H; Umetsu, D T
1999-01-01
Allergic asthma, which is present in as many as 10% of individuals in industrialized nations, is characterized by chronic airway inflammation and hyperreactivity induced by allergen-specific Th2 cells secreting interleukin-4 (IL-4) and IL-5. Because Th1 cells antagonize Th2 cell functions, it has been proposed that immune deviation toward Th1 can protect against asthma and allergies. Using an adoptive transfer system, we assessed the roles of Th1, Th2, and Th0 cells in a mouse model of asthma and examined the capacity of Th1 cells to counterbalance the proasthmatic effects of Th2 cells. Th1, Th2, and Th0 lines were generated from ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic mice and transferred into lymphocyte-deficient, OVA-treated severe combined immunodeficiency (SCID) mice. OVA-specific Th2 and Th0 cells induced significant airway hyperreactivity and inflammation. Surprisingly, Th1 cells did not attenuate Th2 cell-induced airway hyperreactivity and inflammation in either SCID mice or in OVA-immunized immunocompetent BALB/c mice, but rather caused severe airway inflammation. These results indicate that antigen-specific Th1 cells may not protect or prevent Th2-mediated allergic disease, but rather may cause acute lung pathology. These findings have significant implications with regard to current therapeutic goals in asthma and allergy and suggest that conversion of Th2-dominated allergic inflammatory responses into Th1-dominated responses may lead to further problems.
Feng, Bai-Sui; Chen, Xiao; He, Shao-Heng; Zheng, Peng-Yuan; Foster, Jane; Xing, Zhou; Bienenstock, John; Yang, Ping-Chang
2008-07-01
Recent reports indicate that dendritic cell (DC)-derived T-cell immunoglobulin and mucin domain molecule (TIM)-4 plays an important role in the initiation of T(H)2 polarization. This study aims to elucidate the mechanisms of peanut allergy mediated by microbial products and DCs and the relationship between peanut allergy and TIM4. Mouse bone marrow-derived DCs (BMDCs) were generated and exposed to cholera toxin (CT) or/and peanut extract (PE) for 24 hours and then adoptively transferred to naive mice. After re-exposure to specific antigen PE, the mice were killed; intestinal allergic status was determined. Increased expression of TIM4 and costimulatory molecules was detected in BMDCs after concurrent exposure to CT and PE. Adoptively transferred CT/PE-conditioned BMDCs resulted in the increases in serum PE-specific IgE and skewed T(H)2 polarization in the intestine. Oral challenge with specific antigen PE induced mast cell activation in the intestine. Treating with Toll-like receptor 4 small interfering RNA abolished increased expression of TIM4 and costimulatory molecules by BMDCs. Pretreatment with anti-TIM1 or anti-TIM4 antibody abolished PE-specific T(H)2 polarization and allergy in the intestine. Concurrent exposure to microbial product CT and food antigen PE increases TIM4 expression in DCs and promotes DC maturation, which plays an important role in the initiation of PE-specific T(H)2 polarization and allergy in the intestine. Modulation of TIM4 production in DCs represents a novel therapeutic approach for the treatment of peanut allergy.
Lee, Won-Jung; Cha, Seungbin; Shin, Minkyoung; Jung, Myunghwan; Islam, Mohammad Ariful; Cho, Chong-su; Yoo, Han Sang
2012-05-01
A vaccine delivery system based on thiolated eudragit microsphere (TEMS) was studied in vivo for its ability to elicit mucosal immunity against enterotoxigenic Escherichia coli (ETEC). Groups of mice were orally immunized with F4 or F18 fimbriae of ETEC and F4 or F18 loaded in TEMS. Mice that were orally administered with F4 or F18 loaded TEMS showed higher antigen-specific IgG antibody responses in serum and antigen-specific IgA in saliva and feces than mice that were immunized with antigens only. In addition, oral vaccination of F4 or F18 loaded TEMS resulted in higher numbers of IgG and IgA antigen-specific antibody secreting cells in the spleen, lamina propria, and Peyer's patches of immunized mice than other groups. Moreover, TEMS administration loaded with F4 or F18 induced mixed Th1 and Th2 type responses based on similarly increased levels of IgG1 and IgG2a. These results suggest that F4 or F18 loaded TEMS may be a promising candidate for an oral vaccine delivery system to elicit systemic and mucosal immunity against ETEC. Copyright © 2012 Elsevier B.V. All rights reserved.
B cells and TCR avidity determine distinct functions of CD4+ T cells in retroviral infection1
Ploquin, Mickaël J-Y; Eksmond, Urszula; Kassiotis, George
2011-01-01
The T-cell-dependent B-cell response relies on cognate interaction between B cells and CD4+ Th cells. However, the consequences of this interaction for CD4+ T cells are not entirely known. B cells generally promote CD4+ T-cell responses to pathogens, albeit to a variable degree. In contrast, CD4+ T-cell responses to self or tumor antigens are often suppressed by B cells. Here we demonstrated that interaction with B cells dramatically inhibited the function of virus-specific CD4+ T cells in retroviral infection. We have used Friend virus (FV) infection of mice as a model for retroviral infection, in which the behavior of virus-specific CD4+ T cells was monitored according to their TCR avidity. We report that avidity for antigen and interaction with B cells determine distinct aspects of the primary CD4+ T-cell response to FV infection. Virus-specific CD4+ T cells followed exclusive Th1 and T follicular helper (Tfh) differentiation. High avidity for antigen facilitated expansion during priming and enhanced the capacity for IFN-γ and IL-21 production. In contrast, Tfh differentiation was not affected by avidity for antigen. By reducing or preventing B-cell interaction we found that B cells promoted Tfh differentiation, induced programmed death 1 (PD-1) expression and inhibited IFN-γ production by virus-specific CD4+ T cells. Ultimately, B cells protected hosts from CD4+ T-cell-mediated immune pathology, at the detriment of CD4+ T-cell-mediated protective immunity. Our results suggest that B-cell presentation of vaccine antigens could be manipulated to direct the appropriate CD4+ T-cell response. PMID:21841129
Wagner, Angelika; Schabussova, Irma; Ruttkowski, Bärbel; Peschke, Roman; Kur, Józef; Kundi, Michael; Joachim, Anja; Wiedermann, Ursula
2015-01-01
Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking. Here we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice. Systemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii. In conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further vaccine development against T. gondii infection.
Habjanec, Lidija; Frkanec, Ruza; Halassy, Beata; Tomasić, Jelka
2006-01-01
The adjuvant activity of liposomes and immunostimulating peptidoglycan monomer (PGM) in different formulations has been studied in mice model using ovalbumin (OVA) as an antigen. PGM is a natural compound of bacterial origin with well-defined chemical structure: GlcNAc-MurNAc-L-Ala-D-isoGln-mesoDpm(epsilonNH2)-D-Ala-D-Ala. It is a non-toxic, non-pyrogenic, and water-soluble immunostimulator. The aim of this study was to investigate the influence of different liposomal formulations of OVA, with or without PGM, on the production of total IgG, as well as of IgG1 and IgG2a subclasses of OVA-specific antibodies (as indicators of Th2 and Th1 type of immune response, respectively). CBA mice were immunized s.c. with OVA mixed with liposomes, OVA with PGM mixed with liposomes, OVA encapsulated into liposomes and OVA with PGM encapsulated into liposomes. Control groups were OVA in saline, OVA with PGM in saline, and OVA in CFA/IFA adjuvant formulation. The entrapment efficacy of OVA was monitored by HPLC method. The adjuvant activity of the mixture of OVA and empty liposomes, the mixture of OVA, PGM, and liposomes and PGM encapsulated with OVA into liposomes on production of total anti-OVA IgG was demonstrated. The mixture of PGM and liposomes exhibited additive immunostimulating effect on the production of antigen-specific IgGs. The analysis of IgG subclasses revealed that encapsulation of OVA into liposomes favors the stimulation of IgG2a antibodies, indicating the switch toward the Th1 type of immune response. When encapsulated into liposomes or mixed with liposomes, PGM induced a switch from Th1 to Th2 type of immune response. It could be concluded that appropriate formulations of antigen, PGM, and liposomes differently affect the humoral immune response and direct the switch in the type of immune response (Th1/Th2).
Vanherberghen, M; Bureau, F; Peters, I R; Day, M J; Lynch, A; Fievez, L; Billen, F; Clercx, C; Peeters, D
2013-08-15
The causal agent of sino-nasal aspergillosis is usually Aspergillus fumigatus, which is a saprophytic and ubiquitous fungus that causes a severe rhinosinusitis in apparent healthy dogs. Affected dogs do not have systemic immuno-suppression. It has been shown previously that dogs affected by this disease have local over-expression of interleukin (IL)-10 and Th1 cytokines in nasal mucosal tissue. The aim of the present study was to assess the response of peripheral blood mononuclear cells (PBMC) from affected and unaffected dogs to antigen-specific stimulation with heat-inactivated Aspergillus spp. conidia, by quantifying gene expression for specific Th1, Th2, Th17 and Treg cytokines and their related transcription factors. Quantification of IL-4 and IFN-γ protein in culture supernatant was performed by enzyme-linked immunosorbent assay (ELISA). PBMC from dogs with SNA produced adequate mRNA encoding IFN-γ and IFN-γ protein. The expression of IL-17A mRNA was significantly greater in PBMC of affected compared with unaffected dogs. The amount of IL-10 mRNA in PBMC from affected dogs decreased after antigen-specific challenge. These results suggest that the incapacity of affected dogs to clear these fungal infections is not related to a defect in Th1 immunity or to an overwhelming regulatory reaction, but rather to an uncontrolled pro-inflammatory reaction driven by Th17 cells. Copyright © 2013 Elsevier B.V. All rights reserved.
Kopitar, A N; Ihan Hren, N; Ihan, A
2006-02-01
In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.
Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P
1985-01-01
Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.
Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma.
Iwagami, Yoshifumi; Casulli, Sarah; Nagaoka, Katsuya; Kim, Miran; Carlson, Rolf I; Ogawa, Kosuke; Lebowitz, Michael S; Fuller, Steve; Biswas, Biswajit; Stewart, Solomon; Dong, Xiaoqun; Ghanbari, Hossein; Wands, Jack R
2017-09-01
Hepatocellular carcinoma (HCC) is a difficult to treat tumor with a poor prognosis. Aspartate β-hydroxylase (ASPH) is a highly conserved enzyme overexpressed on the cell surface of both murine and human HCC cells. We evaluated therapeutic effects of nanoparticle lambda (λ) phage vaccine constructs against ASPH expressing murine liver tumors. Mice were immunized before and after subcutaneous implantation of a syngeneic BNL HCC cell line. Antitumor actively was assessed by generation of antigen specific cellular immune responses and the identification of tumor infiltrating lymphocytes. Prophylactic and therapeutic immunization significantly delayed HCC growth and progression. ASPH-antigen specific CD4+ and CD8+ lymphocytes were identified in the spleen of tumor bearing mice and cytotoxicity was directed against ASPH expressing BNL HCC cells. Furthermore, vaccination generated antigen specific Th1 and Th2 cytokine secretion by immune cells. There was widespread necrosis with infiltration of CD3+ and CD8+ T cells in HCC tumors of λ phage vaccinated mice compared to controls. Moreover, further confirmation of anti-tumor effects on ASPH expressing tumor cell growth were obtained in another murine syngeneic vaccine model with pulmonary metastases. These observations suggest that ASPH may serve as a highly antigenic target for immunotherapy.
Kirchner, Florian R.; Becattini, Simone; Rülicke, Thomas; Sallusto, Federica; LeibundGut-Landmann, Salomé
2015-01-01
Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC) we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs) present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity. PMID:26431538
2014-12-11
modulation in several innate immunity markers particularly associated with NK cells and Th1/Th2 specific cytokines and chemokines in immunized guinea pigs...reduced antigen-specific activation (IL-12 and IFN-c production) of CD4+ T cells isolated from lymphoid tissues and genital tract, and an associated...CD4+ T cells [12, 13]. However, due to differences in immunological responses [23, 24, 25, 26], and chlamydial strain susceptibilities between mice
da Silva, Marcos V; Massaro Junior, Vladimir J; Machado, Juliana R; Silva, Djalma A A; Castellano, Lúcio R; Alexandre, Patricia B D; Rodrigues, Denise B R; Rodrigues, Virmondes
2015-01-01
Tuberculosis (TB) remains a major global health problem and is the second biggest cause of death by infectious disease worldwide. Here, we investigate in vitro the Th1, Th2, Th17, and Treg cytokines and transcriptional factors produced after Mycobacterium-specific antigen stimulation in patients with active pulmonary tuberculosis, clinically cured pulmonary tuberculosis, and healthy donors with a positive tuberculin skin test (TST+). Together, our data indicate that clinical cure after treatment increases the percentages of Mycobacterium-specific Th1, Th2, and Th17 cells compared with those found in active-TB and TST+ healthy donors. These results show that the host-parasite equilibrium in latent TB breaks in favor of the microorganism and that the subsequent clinical recovery posttreatment does not return the percentage levels of such cells to those observed in latent tuberculosis. Additionally, our results indicate that rather than showing an increase in the percentage of Mycobacterium-specific Tregs, active-TB patients display lower Th1 : Treg and Th17 : Treg ratios. These data, together with lower Th1 : Th2 and Th17 : Th2 ratios, may indicate a mechanism by which the breakdown of the host-parasite equilibrium leads to active-TB and changes in the repertoire of Mycobacterium-specific Th cells that are associated with clinical cure after treatment of pulmonary tuberculosis.
Nguyen-Pham, Thanh-Nhan; Jung, Sung-Hoon; Vo, Manh-Cuong; Thanh-Tran, Huong-Thi; Lee, Youn-Kyung; Lee, Hyun-Ju; Choi, Nu-Ri; Hoang, My-Dung; Kim, Hyeoung-Joon; Lee, Je-Jung
2015-10-01
We investigated the efficacy of lenalidomide (LEN) in combination with dendritic cell (DC) vaccination in the MOPC-315 murine myeloma model. After tumor growth, LEN was injected intraperitoneally for 4 consecutive days in combination with DC vaccination. The combination of LEN and vaccination efficiently inhibited tumor growth compared with the single agents alone. A cytotoxic assay revealed that the anticancer effects of DC vaccination plus LEN involved not only generation of antigen-specific cytotoxic T lymphocytes but also NK cells. Vaccinated mice had reduced numbers of suppressor cells, including both myeloid-derived suppressor cells and regulatory T cells, in the spleen. The proportions of CD4+ and CD8+ T cells increased in the spleen, and a Th1 cytokine (interferon-γ) rather than a Th2 cytokine (interleukin-10) was synthesized in response to tumor antigens. LEN enhanced the innate immune response by modulating NK cell numbers and function. In addition, LEN reduced the production levels of angiogenesis-inducing factors in tumor-bearing mice. Together, these results suggest that a combination of LEN and DC vaccination may synergistically enhance anticancer immunity in the murine myeloma model, by inhibiting immunosuppressor cells and stimulating effector cells, as well as effectively polarizing the Th1/Th2 balance in favor of a Th1-specific immune response.
Harada, Kumiko; Michibata, Yayoi; Tsukamoto, Hirotake; Senju, Satoru; Tomita, Yusuke; Yuno, Akira; Hirayama, Masatoshi; Abu Sayem, Mohammad; Takeda, Naoki; Shibuya, Isao; Sogo, Shinji; Fujiki, Fumihiro; Sugiyama, Haruo; Eto, Masatoshi; Nishimura, Yasuharu
2013-01-01
Reports have shown that activation of tumor-specific CD4+ helper T (Th) cells is crucial for effective anti-tumor immunity and identification of Th-cell epitopes is critical for peptide vaccine-based cancer immunotherapy. Although computer algorithms are available to predict peptides with high binding affinity to a specific HLA class II molecule, the ability of those peptides to induce Th-cell responses must be evaluated. We have established HLA-DR4 (HLA-DRA*01:01/HLA-DRB1*04:05) transgenic mice (Tgm), since this HLA-DR allele is most frequent (13.6%) in Japanese population, to evaluate HLA-DR4-restricted Th-cell responses to tumor-associated antigen (TAA)-derived peptides predicted to bind to HLA-DR4. To avoid weak binding between mouse CD4 and HLA-DR4, Tgm were designed to express chimeric HLA-DR4/I-Ed, where I-Ed α1 and β1 domains were replaced with those from HLA-DR4. Th cells isolated from Tgm immunized with adjuvant and HLA-DR4-binding cytomegalovirus-derived peptide proliferated when stimulated with peptide-pulsed HLA-DR4-transduced mouse L cells, indicating chimeric HLA-DR4/I-Ed has equivalent antigen presenting capacity to HLA-DR4. Immunization with CDCA155-78 peptide, a computer algorithm-predicted HLA-DR4-binding peptide derived from TAA CDCA1, successfully induced Th-cell responses in Tgm, while immunization of HLA-DR4-binding Wilms' tumor 1 antigen-derived peptide with identical amino acid sequence to mouse ortholog failed. This was overcome by using peptide-pulsed syngeneic bone marrow-derived dendritic cells (BM-DC) followed by immunization with peptide/CFA booster. BM-DC-based immunization of KIF20A494-517 peptide from another TAA KIF20A, with an almost identical HLA-binding core amino acid sequence to mouse ortholog, successfully induced Th-cell responses in Tgm. Notably, both CDCA155-78 and KIF20A494-517 peptides induced human Th-cell responses in PBMCs from HLA-DR4-positive donors. Finally, an HLA-DR4 binding DEPDC1191-213 peptide from a new TAA DEPDC1 overexpressed in bladder cancer induced strong Th-cell responses both in Tgm and in PBMCs from an HLA-DR4-positive donor. Thus, the HLA-DR4 Tgm combined with computer algorithm was useful for preliminary screening of candidate peptides for vaccination. PMID:24386437
Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen.
Jesus, Sandra; Soares, Edna; Borchard, Gerrit; Borges, Olga
2017-10-01
This work aims to investigate the adjuvant effect of poly-ϵ-caprolactone/chitosan nanoparticles (NPs) for hepatitis B surface antigen (HBsAg) and the plasmid DNA encoding HBsAg (pRC/CMV-HBs). Both antigens were adsorbed onto preformed NPs. Vaccination studies were performed in C57BL/6 mice. Transfection efficiency was investigated in A549 cell line. HBsAg-adsorbed NPs generated strong anti-HBsAg IgG titers, mainly of IgG1 isotype, and induced antigen-specific IFN-γ and IL-17 secretion by spleen cells. The addition of pRC/CMV-HBs to the HBsAg-adsorbed NPs inhibited IL-17 secretion but had minor effect on IFN-γ levels. Lastly, pRC/CMV-HBs-loaded NPs generated a weak serum antibody response. Poly-ϵ-caprolactone/chitosan NPs provide a strong humoral adjuvant effect for HBsAg and induce a Th1/Th17-mediated cellular immune responses worth explore for hepatitis B virus vaccination.
Bretscher, P A
2014-01-01
It is well recognized that the physiological/pathological consequences of an immune response, against a foreign or a self-antigen, are often critically dependent on the class of immunity generated. Here we focus on how antigen interacts with the cells of the immune system to determine whether antigen predominantly generates Th1 or Th2 cells. We refer to this mechanism as the ‘decision criterion’ controlling the Th1/Th2 phenotype of the immune response. A plausible decision criterion should account for the variables of immunization known to affect the Th1/Th2 phenotype of the ensuing immune response. Documented variables include the nature of the antigen, in terms of its degree of foreignness, the dose of antigen and the time after immunization at which the Th1/Th2 phenotype of the immune response is assessed. These are quantitative variables made at the level of the system. In addition, the route of immunization is also critical. I describe a quantitative hypothesis as to the nature of the decision criterion, referred to as the Threshold Hypothesis. This hypothesis accounts for the quantitative variables of immunization known to affect the Th1/Th2 phenotype of the immune response generated. I suggest and illustrate how this is not true of competing, contemporary hypotheses. I outline studies testing predictions of the hypothesis and illustrate its potential utility in designing strategies to prevent or treat medical situations where a predominant Th1 response is required to contain an infection, such as those caused by HIV-1 and by Mycobacterium tuberculosis, or to contain cancers. PMID:24684592
Triterpene esters from Uncaria rhynchophylla drive potent IL-12-dependent Th1 polarization.
Umeyama, Akemi; Yahisa, Yoshinori; Okada, Minori; Okayama, Eriko; Uda, Ayaka; Shoji, Noboru; Lee, Je-Jung; Takei, Masao; Hashimoto, Toshihiro
2010-10-01
Dendritic cells (DC) are key antigen-presenting cells that link innate and adaptive immunity and ultimately activate antigen-specific T cells. In the current study, we demonstrated that two triterpene esters, uncarinic acid C (1) and uncarinic acid D (2), which are isolated from the hooks of Uncaria rhynchophylla, activate phenotypic and cytokine production alterations in DC. We also show that 1 and 2 modulate human DC function in a fashion that favors Th1 cell polarization. The effect of 1 (E configuration at the 2' position) was approximately 20 times more potent than that of 2 (Z configuration at 2'). These results indicated that the configuration of the 2' double bond greatly effects activity. Thus, 1 and 2 may prove useful as DC-based vaccines for cancer immunotherapy.
Gupta, G; Khan, A A; Rao, D N
2010-03-01
Yersinia pestis, a Gram-negative bacterium, is the etiological agent of pneumonic and bubonic plague and still active in various regions of the world. Because plague is highly infectious and can readily spread by aerosolization, it poses a bioterrorism threat. The effective induction of mucosal as well as systemic immunity is an important attribute of an improved vaccine for plague. An alternative approach described here is the use of protective epitopes derived from immunodominant antigens (F1 and V) of Yersinia pestis. As T-cell immunity is also a major contributor of protection, microencapsulated B-T constructs of F1 and V antigen were used to immunize outbred and inbred mice through intranasal route, and lympho-proliferative response and cytokine profile of both Th(1) and Th(2) arms were measured in spleen, lamina propria and Peyer's patches. Three B-T constructs of F1 antigen and seven of V antigen showed significantly high T-cell response in terms of inducing systemic as well as mucosal response when compared to constituent peptides. These ten conjugates showed Th(1) cytokine profile whereas rest of the conjugates showed mixed Th(1)/Th(2) response. Four conjugates of V antigen showed high level of IL-10 production. In present study, microencapsulated B-T constructs after intranasal immunization generated systemic as well as mucosal immune response in all three sites, which offers an alternative approach for plague vaccine.
Krishnaswamy, Jayendra Kumar; Jirmo, Adan Chari; Baru, Abdul Mannan; Ebensen, Thomas; Guzmán, Carlos A; Sparwasser, Tim; Behrens, Georg M N
2012-12-01
Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.
Johansson, Tomas; Nilsson, Anki; Chatzissavidou, Nathalie; Sjöblom, Magnus; Rova, Ulrika; Holgersson, Jan
2012-01-01
Targeting antigens to antigen-presenting cells (APC) improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL). We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG2b), which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR) and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA) responses in C57BL/6 mice are presented. OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in 51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays. Immunizations with the OVA − mannosylated PSGL-1/mIgG2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass) OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG2b with mono- and disialyl core 1 structures did not have this effect. Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses. PMID:23071675
Abhyankar, Mayuresh M; Orr, Mark T; Lin, Susan; Suraju, Mohammed O; Simpson, Adrian; Blust, Molly; Pham, Tiep; Guderian, Jeffrey A; Tomai, Mark A; Elvecrog, James; Pedersen, Karl; Petri, William A; Fox, Christopher B
2018-01-01
Amebiasis caused by Entamoeba histolytic a is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1β, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.
van der Lee, Saskia; van Rooijen, Debbie M; de Zeeuw-Brouwer, Mary-Lène; Bogaard, Marjan J M; van Gageldonk, Pieter G M; Marinovic, Axel Bonacic; Sanders, Elisabeth A M; Berbers, Guy A M; Buisman, Anne-Marie
2018-01-01
To reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age. In 2014, healthy adults aged 25-29 years ( n = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model. Upon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years. The Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy.
Fan, Xionglin; Yu, Qi; Jing, Yukai; Wang, Weihua; Li, Li; Zhou, Zijie
2016-01-01
There is an urgent need for a vaccine against tuberculosis (TB) that is more effective than the current sole licensed option. However, target antigens of Mycobacterium tuberculosis with the vaccine potential remain elusive. Five immunodominant antigens with characteristic expressions at the stages of primary infection (Ag85A), the regulation of nutrition and metabolism when transferring from rapid growth to latency (PhoY2 and Rv3407), latency (Rv2626c), and reactivation (RpfB) were selected to construct the fusion polyprotein WH121, which has better immunogenicity and protection than each multistage antigen. DMT adjuvanted WH121 vaccinated C57BL/6 mice could confer persistent and significant protection against the respiratory challenge with 80 CFU of virulent M. tuberculosis H37Rv at 9 and 18 weeks after immunization, as the BCG vaccine did. Moreover, WH121/DMT could boost the BCG primed mice against post-exposure infection, and more significantly inhibit the growth of M. tuberculosis in the spleen than BCG repeat vaccination. The protection elicited by WH121/DMT is attributed to the WH121-specific Th1-type biased immune responses, characterized by increased antigen-specific IgG2a/IgG1 ratio and high levels of IFN-γ secreted by the splenocytes of vaccinated mice. In particular, high levels of IFN-γ+ TEM cells in the spleen are an effective biomarker for the vaccine-induced early protection, and the persistent protection mainly depends on the increasing IL-2+IFN-γ+CD4+ and CD8+ T cells, especially IL-2+ TCM cells. These findings demonstrate that multistage-specific antigens might be promising targets for the next generation TB vaccine, and a combination of these antigens such as WH121/DMT is required for further preclinical evaluation. PMID:27566581
Wardzala, A M; Bowen, M B; Jendrisak, G S; Bellone, C J
1986-01-01
The participation of postulated subsets of T helper cells in antigen-specific antibody responses has generated both interest and controversy among immunologists. Specifically the import as well as the very existence of multiple populations of T helper cells has led to an intense search in recent years for cloned lines of such subsets that permit unambiguous classification and study. Furthermore, the means by which some of these T cells induce antibody responses may be via the elaboration of soluble factors mandating their characterization both biochemically and mechanistically. We have recently reported the existence of a T helper factor present in a 24-h Con A supernatant that specifically enhances an idiotype-bearing (Id+) response to trinitrophenol (TNP). The unique biochemical properties of this substance, namely, its capacity to bind both antigen and cross-reactive idiotype (CRI), has led to the generation of a cloned T cell hybridoma that constitutively "secretes" a factor which appears identical to the helper activity in Con A Sn. The cloned T cell hybridoma, herein designated LOP 1.4, elaborates a factor which selectively enhances the CRI+ anti-TNP antibody response in vitro. The specificity of the assay employed as well as its sensitivity for detecting significant enhancement of the percent CRI+ anti-TNP PFC response lent itself well as a useful vehicle for subsequent characterization of the factor. The LOP 1.4 factor, which can act at the later stages of the B cell response in a dose-dependent fashion, was characterized by affinity chromatography in order to probe the mechanism of its selective Id enhancement. The factor binds both the idiotype and the ligand for which one of the idiotype-bearing monoclonal antibodies is specific. That the factor binds idiotype and can be eluted selectively with ligand but not with noncross-reacting ligand suggests that the factor possesses separate but not independent binding sites, or alternatively, a single binding site that preferentially binds to a unique composite of antigen-idiotype. In addition, the factor bears I-J determinants, consistent with what we have previously detected on the surface of TH2-like cells. These results, collectively, suggest that the T cell hybridoma LOP 1.4 is a TH2-like cell (supporting the concept of multiple TH subsets) in light of its ability to enhance an idiotypic response to specific antigen through the production of a soluble factor that demonstrates affinity for both antigen and idiotype. In addition, like the I-J+ TH2 cell, the LOP 1.4 factor also bears I-J region determinants.(ABSTRACT TRUNCATED AT 400 WORDS)
Invariant NKT cells inhibit development of the Th17 lineage
Mars, Lennart T.; Araujo, Luiza; Kerschen, Philippe; Diem, Séverine; Bourgeois, Elvire; Van, Linh Pham; Carrié, Nadège; Dy, Michel; Liblau, Roland S.; Herbelin, André
2009-01-01
T cells differentiate into functionally distinct effector subsets in response to pathogen encounter. Cells of the innate immune system direct this process; CD1d-restricted invariant natural killer T (iNKT) cells, for example, can either promote or inhibit Th1 and Th2 responses. Recently, a new subset of CD4+ T helper cells, called Th17, was identified that is implicated in mucosal immunity and autoimmune disorders. To investigate the influence of iNKT cells on the differentiation of naïve T cells we used an adoptive transfer model of traceable antigen-specific CD4+ T cells. Transferred naïve CD25−CD62L+ CD4+ T cells were primed by antigen immunization of the recipient mice, permitting their expansion and Th17 differentiation. This study establishes that in vivo activation of iNKT cells during T-cell priming impedes the commitment of naïve T cells to the Th17 lineage. In vivo cytokine neutralization experiments revealed a role for IL-4, IL-10, and IFN-γ in the iNKT-cell-mediated regulation of T-cell lineage development. Moreover, by comparing IL-17 production by antigen-experienced T cells from unmanipulated wild-type mice and iNKT-cell-deficient mice, we demonstrate an enhanced Th17 response in mice lacking iNKT cells. This invigorated Th17 response reverts to physiological levels when iNKT cells are introduced into Jα18−/− mice by adoptive transfer, indicating that iNKT cells control the Th17 compartment at steady state. We conclude that iNKT cells play an important role in limiting development of the Th17 lineage and suggest that iNKT cells provide a natural barrier against Th17 responses. PMID:19325124
Luo, Shasha; Zou, Qiang
2016-01-01
It is well known that dendritic cells (DCs) play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs), a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG-) specific experimental autoimmune encephalomyelitis (EAE) model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS). Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT) disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs). Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS. PMID:28070525
Pido-Lopez, Jeffrey; Kwok, William W.; Mitchell, Timothy J.; Heyderman, Robert S.; Williams, Neil A.
2011-01-01
The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4+ T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4+ T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25hi T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4+ T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines. PMID:22144893
Dimier-Poisson, Isabelle; Carpentier, Rodolphe; N'Guyen, Thi Thanh Loi; Dahmani, Fatima; Ducournau, Céline; Betbeder, Didier
2015-05-01
Development of sub-unit mucosal vaccines requires the use of specific delivery systems or immune-modulators such as adjuvants to improve antigen immunogenicity. Nasal route for vaccine delivery by nanoparticles has attracted much interest but mechanisms triggering effective mucosal and systemic immune response are still poorly understood. Here we study the loading of porous nanoparticles (DGNP) with a total extract of Toxoplasma gondii antigens (TE), the delivery of TE by DGNP into airway epithelial, macrophage and dendritic cells, and the subsequent cellular activation. In vitro, DGNP are able to load complex antigens in a stable and quantitative manner. The outstanding amount of antigen association by DGNP is used to deliver TE in airway mucosa cells to induce a cellular maturation with an increased secretion of pro-inflammatory cytokines. Evaluation of nasal vaccine efficiency is performed in vivo on acute and chronic toxoplasmosis mouse models. A specific Th1/Th17 response is observed in vivo after vaccination with DGNP/TE. This is associated with high protection against toxoplasmosis regarding survival and parasite burden, correlated with an increased delivery of antigens by DGNP in airway mucosa cells. This study provides evidence of the potential of DGNP for the development of new vaccines against a range of pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.
Livingston, Kimberly A; Jiang, Xiaowen; Stephensen, Charles B
2013-04-30
Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10(+) cells. Eight healthy subjects were given a TT booster vaccination. Blood was drawn before, 3, 7, 14, and 28days after vaccination and peripheral blood mononuclear cells (PBMC) were cultured for 7days with TT, negative control (diluent), and a positive control (Staphylococcus enterotoxin B [SEB]). Activation markers (CD25 and CD69) were measured after 44h (n=8), cytokines in supernatant after 3 and 7days, and intracellular cytokine staining (ICS) of proliferated cells (identified by dye dilution) after 7days (n=6). Vaccination increased TT-specific expression of CD25 and CD69 on CD3(+)CD4(+) lymphocytes, and TT-specific proliferation at 7, 14 and 28days post vaccination. Vaccination induced TT-specific Th1 (IFN-γ, TNF-α, and IL-2) Th2 (IL-13, IL-5, and IL-4), Th17 (IL-17A) and IL-10(+) cells as measured by ICS. TT-specific Th1 cells were the most abundant (12-15% of all TT-specific CD4(+) T-cells) while IL10(+) (1.8%) Th17 (1.1%) and Th2 cells (0.2-0.6%) were less abundant. TT-specific cytokine concentrations in PBMC supernatants followed the same pattern where a TT-specific IL-9 response was also seen. In conclusion, TT booster vaccination induced a broad T-helper cell response. This method of evaluating cytokine phenotypes may be useful in examining the impact of nutrition and environmental conditions on the plasticity of T-helper cell memory responses. Published by Elsevier B.V.
Bratland, Eirik; Magitta, Ng'weina Francis; Bøe Wolff, Anette Susanne; Ekern, Trude; Knappskog, Per Morten; Kämpe, Olle; Haavik, Jan; Husebye, Eystein Sverre
2013-06-01
Patients with autoimmune polyendocrine syndrome type 1 (APS-1) frequently have autoantibodies directed against the aromatic amino acid hydroxylases tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH). We aimed to characterize these autoantibodies with regard to their antigenic determinants, their influence on enzymatic activity and their clinical associations. In particular, we wanted to compare autoantibodies against the two different isoforms of TPH, which display different tissue distribution. Using sera from 48 Scandinavian APS-1 patients we identified 36 patients (75%) with antibodies against one or more of these three enzymes. Antibodies against TPH1, but not TPH2, were associated with malabsorption in the whole Scandinavian cohort, while TH antibodies were associated with dental enamel hypoplasia in Norwegian patients. Subsequent experiments with selected patient sera indicated that while the C-terminal domain was the immunodominant part of TPH1, the epitopes of TPH2 and TH were mainly located in the N-terminal regulatory domains. We also identified a TPH1 specific epitope involved in antibody mediated inhibition of enzyme activity, a finding that provides new insight into the enzymatic mechanisms of the aromatic amino acid hydroxylases and knowledge about structural determinants of enzyme autoantigens. In conclusion, TPH1, TPH2 and TH all have unique antigenic properties in spite of their structural similarity. Copyright © 2012 Elsevier GmbH. All rights reserved.
Majewska-Szczepanik, Monika; Askenase, Philip W.; Lobo, Francis M.; Marcińska, Katarzyna; Wen, Li; Szczepanik, Marian
2017-01-01
Background Subcutaneous allergen-specific immunotherapy is a standard route for the immunotherapy of allergic diseases. It modulates the course of allergy and can generate long-term remission. However, subcutaneous allergen-specific immunotherapy can also induce anaphylaxis in some patients, and therefore additional routes of administration should be investigated to improve the safety and tolerability of immunotherapy. Objective We sought to determine whether epicutaneous treatment with antigen in the presence of a Toll-like receptor 9 agonist can suppress TH2-mediated responses in an antigen-specific manner. Methods Epicutaneous immunization was performed by applying a skin patch soaked with ovalbumin (OVA) plus CpG, and its suppressor activity was determined by using the mouse model of atopic dermatitis. Finally, adoptive cell transfers were implemented to characterize the regulatory cells that are induced by epicutaneous immunization. Results Epicutaneous immunization with OVA and CpG reduces the production of OVA-specific IgE and increases the synthesis of OVA-specific IgG2a antibodies in an antigen-specific manner. Moreover, eosinophil peroxidase activity in the skin and production of IL-4, IL-5, IL-10, and IL-13 are suppressed. The observed reduction of IgE synthesis is transferable with T-cell receptor (TCR) αβ+CD4+CD25− cells, whereas IgG2a production is dependent on both TCRαβ+ and TCRγδ+ T cells. Further experiments show that the described phenomenon is myeloid differentiation primary response 88, IFN-γ, and IL-17A dependent. Finally, the results suggest that epicutaneous immunization with OVA and CpG decreases the synthesis of OVA-specific IgE and skin eosinophil peroxidase activity in mice with ongoing skin allergy. Conclusion Epicutaneous application of protein antigen in the presence of adjuvant could be an attractive needle-free and self-administered immunotherapy for allergic diseases. PMID:26810716
Hypoxia-Activated Alkylating Agents in BRCA1-Mutant Ovarian Serous Carcinoma.
Conroy, Michael; Borad, Mitesh J; Bryce, Alan H
2017-07-26
Breast cancer 1 antigen (BRCA 1) and breast cancer 2 antigen (BRCA2) genes play a significant role in deoxyribonucleic acid (DNA) repair by means of interstrand crosslink repair, and deleterious germline mutations of these are responsible for most hereditary breast and ovarian cancers. Therapeutic strategies which specifically target interstrand crosslink repair can therefore be helpful in patients with harmful mutations. We describe two patients with advanced ovarian cancer and deleterious BRCA1 mutations who were treated with TH-302, a hypoxia-activated alkylating agent.
Wagner, Angelika; Schabussova, Irma; Ruttkowski, Bärbel; Peschke, Roman; Kur, Józef; Kundi, Michael; Joachim, Anja; Wiedermann, Ursula
2015-01-01
Introduction Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompromised patients and pregnant women and effective immune-prophylaxis is still lacking. Methods Here we tested a mixture of recombinant T. gondii antigens expressed in different developmental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T. gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation. Both vaccine formulations were applied systemically followed by an oral TLA-booster in BALB/c mice. Results Systemic priming with SMG and oral TLA-booster did not show significant induction of protective immune responses. In contrast, systemic priming and oral booster with TLA induced higher levels of Toxoplasma-specific IgG, IgG1 and IgG2a in sera as well as high levels of Toxoplasma-specific IgG1 in small intestines. Furthermore, high levels of Toxoplasma-specific Th1-, Th17- and Th2-associated cytokines were only detected in restimulated splenocytes of TLA-vaccinated mice. Importantly, in mice orally infected with T. gondii oocysts, only TLA-vaccination and booster reduced brain cysts. Furthermore, sera from these mice reduced tachyzoites invasion of Vero cells in vitro, indicating that antibodies may play a critical role for protection against Toxoplasma infection. Additionally, supernatants from splenocyte cultures of TLA-vaccinated mice containing high levels of IFN-γ lead to substantial production of nitric oxide (NO) after incubation with macrophages in vitro. Since NO is involved in the control of parasite growth, the high levels of IFN-γ induced by vaccination with TLA may contribute to the protection against T. gondii. Conclusion In conclusion, our data indicate that prime-boost approach with TLA, but not with the mixture of recombinant antigens SMG, induces effective humoral and cellular Toxoplasma-specific responses and leads to significant reduction of cerebral cysts, thereby presenting a viable strategy for further vaccine development against T. gondii infection. PMID:26010355
Weinberger, Esther E; Isakovic, Almedina; Scheiblhofer, Sandra; Ramsauer, Christina; Reiter, Katrin; Hauser-Kronberger, Cornelia; Thalhamer, Josef; Weiss, Richard
2013-12-09
Gene vaccines offer attractive rationales for prophylactic as well as therapeutic treatments of type I allergies. DNA and mRNA vaccines have been shown to prevent from allergic sensitization and to counterbalance established allergic immune reactions. Recent advances in gene vaccine manipulation offer additional opportunities for modulation of T helper cell profiles by specific targeting of cellular compartments. DNA vaccines encoding the major birch pollen allergen Bet v 1.0101 were equipped with different leader sequences to shuttle the antigen to lysosomes (LIMP-II), to trigger cellular secretion (hTPA), or to induce proteasomal degradation via forced ubiquitination (ubi). Mice were pre-vaccinated with these constructs and the protective efficacy was tested by subcutaneous Th2-promoting challenges, followed by allergen inhalation. IgG antibody subclass distribution and allergen-specific IgE as well as cytokine profiles from re-stimulated splenocytes and from BALFs were assessed. The cellular composition of BALFs, and lung resistance and compliance were determined. Immunization with all targeting variants protected from allergic sensitization, i.e. IgE induction, airway hyperresponsiveness, lung inflammation, and systemic and local Th2 cytokine expression. Surprisingly, protection did not clearly correlate with the induction of a systemic Th1 cytokine profile, but rather with proliferating CD4+ CD25+ FoxP3+ T regulatory cells in splenocyte cultures. Targeting the allergen to proteasomal or lysosomal degradation severely down-regulated antibody induction after vaccination, while T cell responses remained unaffected. Although secretion of antigen promoted the highest numbers of Th1 cells, this vaccine type was the least efficient in suppressing the establishment of an allergic immune response. This comparative analysis highlights the modulatory effect of antigen targeting on the resulting immune response, with a special emphasis on prophylactic anti-allergy DNA vaccination. Targeting the antigen to proteasomal or lysosomal degradation reduces the availability of native allergen, thereby rendering the vaccine hypoallergenic without compromising efficacy, an important feature for a therapeutic setting. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Laurent, Xavier; Renault, Nicolas; Farce, Amaury; Chavatte, Philippe; Hénon, Eric
2014-01-01
A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000) interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th) 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total) involving eight different ligands (conducted in triplicate) in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1. PMID:25376021
Li, Wenpeng; Guo, Linjie; Rathi, Purva; Marinova, Ekaterina; Gao, Xiuhua; Wu, Meng-Feng; Liu, Hao; Dotti, Gianpietro; Gottschalk, Stephen; Metelitsa, Leonid S.; Heczey, Andras
2017-01-01
T cells engineered to express CD19-specific chimeric antigen receptors (CARs) have shown breakthrough clinical successes in patients with B-cell lymphoid malignancies. However, similar therapeutic efficacy of CAR T cells in solid tumors is yet to be achieved. In this study we systematically evaluated a series of CAR constructs targeting glypican-3 (GPC3), which is selectively expressed on several solid tumors. We compared GPC3-specific CARs that encoded CD3ζ (Gz) alone or with costimulatory domains derived from CD28 (G28z), 4-1BB (GBBz), or CD28 and 4-1BB (G28BBz). All GPC3-CARs rendered T cells highly cytotoxic to GPC3-positive hepatocellular carcinoma, hepatoblastoma, and malignant rhabdoid tumor cell lines in vitro. GBBz induced the preferential production of Th1 cytokines (interferon γ/granulocyte macrophage colony-stimulating factor) while G28z preferentially induced Th2 cytokines (interleukin-4/interleukin-10). Inclusion of 4-1BB in G28BBz could only partially ameliorate the Th2-polarizing effect of CD28. 4-1BB induced superior expansion of CAR T cells in vitro and in vivo. T cells expressing GPC3-CARs incorporating CD28, 4-1BB, or both induced sustained tumor regressions in two xenogeneic tumor models. Thus, GBBz CAR endows T cells with superior proliferative potential, potent antitumor activity, and a Th1-biased cytokine profile, justifying further clinical development of GBBz CAR for immunotherapy of GPC3-positive solid tumors. PMID:27530312
Immunostimulatory activities of dendritic cells loaded with adenovirus vector carrying HBcAg/HBsAg
Jia, Hongyu; Li, Chunling; Zhang, Yimin; Yu, Liang; Xiang, Dairong; Liu, Jun; Chen, Fengzhe; Han, Xiaochun
2015-01-01
Objective: This study is to investigate the immunostimulatory activities of dendritic cells (DCs) transfected with HBcAg and/or HBsAg recombinant adenovirus (rAd). Methods: DCs were transfected with rAd (DC/Ad-C+Ad-S, DC/Ad-C, and DC/Ad-S), or pulsed with HBcAg antigen (DC/HBcAg). Flow cytometry was used to detect the phenotype of DCs and the cytokine production of T lymphocytes. Mice were vaccinated with DCs transfected with rAd or pulsed with antigen, and DNA vaccine. Mixed lymphocyte reaction (MLR) was used to evaluate the T-cell stimulatory capacity, and HBcAg-specific cytotoxic T lymphocyte (CTL) activity was assessed. Results: Phenotypic analysis showed that DCs transfected with rAd or pulsed with HBcAg antigen exhibited mature phenotypes. MLR indicated no significant differences in stimulating T-cell proliferation between the DC/rAd and DC/HBcAg groups. When mixed with DCs, Th and Tc cells mainly secreted IFN-γ, indicating type I immune responses. In vaccinated mice, DCs transduced with rAd and pulsed with HBcAg induced significantly more IFN-γ secretion from Th cells, compared with DNA vaccine, indicating stronger Th1 response. Moreover, DCs transduced with rAd stimulated Tc cells to produce more IFN-γ, indicating stronger Tc1 response. In vaccinated mice, HBcAg-specific CTL activities were decreased in the following order: the DC/Ad-C+Ad-S, DC/Ad-C, DC/Ad-S, DC/HBcAg, and DNA vaccine groups. Conclusion: DCs transfected with rAd induce stronger Th1/Tc1 (type I) cell immune responses and specific CTL response than HBcAg-pulsed DCs or DNA vaccine. Our findings suggest that DCs transfected with rAd-C/rAd-S might provide an effective approach in the treatment of persistent hepatitis B virus infection. PMID:26064236
Kaur, H; Thakur, A; Kaur, S
2015-04-01
A substantial number of antigens of Leishmania donovani have been described in the past. However, identifying candidate antigens is not enough. Appropriate antigen delivery to induce the right type of immune response against leishmaniasis (i.e. induction of a strong antigen-specific Th1 type of immune response) is another crucial component of an effective vaccine. Therefore, 'cocktail' vaccines are proposed based on the assumption that such cocktails will show enhanced efficacy. Studies have been carried out on LD31 and LD51 polypeptides from L. donovani promastigotes, which have proven to be potential vaccine candidates. This study was designed to check the protective efficacy of various cocktails of low molecular weight antigens alone and along with saponin as adjuvant. Mice were sacrificed on different post-challenge days for evaluation of parasite load and other immunological parameters. Protective efficacy of different vaccine formulations was revealed by significant decline in parasite burden and increased DTH Delayed Type Hypersenstivity responses. The antibody response was of IgG type with elevated IgG2a and decreased production of IgG1, whereas cytokine levels pointed towards the generation of protective Th1 type of immune response. Among all vaccine formulations, cocktail of 31+51+saponin was found to be highly immunogenic and imparted maximum protection. © 2015 John Wiley & Sons Ltd.
Carroll, Elizabeth C; Jin, Lei; Mori, Andres; Muñoz-Wolf, Natalia; Oleszycka, Ewa; Moran, Hannah B T; Mansouri, Samira; McEntee, Craig P; Lambe, Eimear; Agger, Else Marie; Andersen, Peter; Cunningham, Colm; Hertzog, Paul; Fitzgerald, Katherine A; Bowie, Andrew G; Lavelle, Ed C
2016-03-15
The cationic polysaccharide chitosan is an attractive candidate adjuvant capable of driving potent cell-mediated immunity, but the mechanism by which it acts is not clear. We show that chitosan promotes dendritic cell maturation by inducing type I interferons (IFNs) and enhances antigen-specific T helper 1 (Th1) responses in a type I IFN receptor-dependent manner. The induction of type I IFNs, IFN-stimulated genes and dendritic cell maturation by chitosan required the cytoplasmic DNA sensor cGAS and STING, implicating this pathway in dendritic cell activation. Additionally, this process was dependent on mitochondrial reactive oxygen species and the presence of cytoplasmic DNA. Chitosan-mediated enhancement of antigen specific Th1 and immunoglobulin G2c responses following vaccination was dependent on both cGAS and STING. These findings demonstrate that a cationic polymer can engage the STING-cGAS pathway to trigger innate and adaptive immune responses. Copyright © 2016 Elsevier Inc. All rights reserved.
Rosenthal, Kenneth S.; Mikecz, Katalin; Steiner, Harold L.; Glant, Tibor T.; Finnegan, Alison; Carambula, Roy E.; Zimmerman, Daniel H.
2016-01-01
The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions. PMID:25787143
Singh, Susmita K.; McKay, Derek M.
2017-01-01
Background In countries with a high prevalence of tuberculosis there is high coincident of helminth infections that might worsen disease outcome. While Mycobacterium tuberculosis (Mtb) gives rise to a pro-inflammatory Th1 response, a Th2 response is typical of helminth infections. A strong Th2 response has been associated with decreased protection against tuberculosis. Principal findings We investigated the direct effect of helminth-derived antigens on human macrophages, hypothesizing that helminths would render macrophages less capable of controlling Mtb. Measuring cytokine output, macrophage surface markers with flow cytometry, and assessing bacterial replication and phagosomal maturation revealed that antigens from different species of helminth directly affect macrophage responses to Mtb. Antigens from the tapeworm Hymenolepis diminuta and the nematode Trichuris muris caused an anti-inflammatory response with M2-type polarization, reduced macrophage phagosome maturation and ability to activate T cells, along with increased Mtb burden, especially in T. muris exposed cells which also induced the highest IL-10 production upon co-infection. However, antigens from the trematode Schistosoma mansoni had the opposite effect causing a decrease in IL-10 production, M1-type polarization and increased control of Mtb. Conclusion We conclude that, independent of any adaptive immune response, infection with helminth parasites, in a species-specific manner can influence the outcome of tuberculosis by either enhancing or diminishing the bactericidal function of macrophages. PMID:28192437
NASA Astrophysics Data System (ADS)
Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae
2015-12-01
The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.
Aline, Fleur; Bout, Daniel; Amigorena, Sébastian; Roingeard, Philippe; Dimier-Poisson, Isabelle
2004-01-01
It was previously demonstrated that immunizing mice with spleen dendritic cells (DCs) that had been pulsed ex vivo with Toxoplasma gondii antigens triggers a systemic Th1-biased specific immune response and induces protection against infection. T. gondii can cause severe sequelae in the fetuses of mothers who acquire the infection during pregnancy, as well as life-threatening neuropathy in immunocompromised patients, in particular those with AIDS. Here, we investigate the efficacy of a novel cell-free vaccine composed of DC exosomes, which are secreted antigen-presenting vesicles that express functional major histocompatibility complex class I and II and T-cell-costimulatory molecules. They have already been shown to induce potent antitumor immune responses. We investigated the potential of DC2.4 cell line-derived exosomes to induce protective immunity against toxoplasmosis. Our data show that most adoptively transferred T. gondii-pulsed DC-derived exosomes were transferred to the spleen, elicited a strong systemic Th1-modulated Toxoplasma-specific immune response in vivo, and conferred good protection against infection. These findings support the possibility that DC-derived exosomes can be used for T. gondii immunoprophylaxis and for immunoprophylaxis against many other pathogens. PMID:15213158
Sayes, Fadel; Pawlik, Alexandre; Frigui, Wafa; Gröschel, Matthias I.; Crommelynck, Samuel; Fayolle, Catherine; Cia, Felipe; Bancroft, Gregory J.; Bottai, Daria; Leclerc, Claude; Brosch, Roland; Majlessi, Laleh
2016-01-01
Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens. PMID:27467705
Effectiveness of Brucella abortus lipopolysaccharide as an adjuvant for tuberculin PPD.
Jamalan, Mostafa; Ardestani, Susan Kaboudanian; Zeinali, Majid; Mosaveri, Nader; Mohammad Taheri, Mohammad
2011-01-01
Bacterial lipopolysaccharide (LPS) has T-helper 1 (Th1) immunostimulatory activities but because of toxicity and pyrogenicity cannot be used as an adjuvant. Brucella abortus LPS has less toxicity and no pyrogenic properties in comparison to other bacterial LPS. In the current study, the immunostimulatory properties of B. abortus LPS were evaluated for its adjuvant activity. Tuberculin purified protein derivative (PPD) from Mycobacterium tuberculosis was extracted and after anion-exchange chromatography on Q-sepharose column, two fractions (17 and 23), which dominantly contained 30- and 70-kDa antigens, were collected for immunological studies. BALB/c mice were immunized with four different antigen preparations (BCG, PPD, 17th and 23rd PPD fractions) along with complete Freund's adjuvant or B. abortus LPS. The T-cell immune response of mice was assessed by measurement of Th1-type cytokine (IFN-γ) and Th2-type cytokines (IL-5 and IL-10) levels. Also, the humoral immunity was evaluated by measuring the specific IgG levels. Our results showed that immunization of mice with 17th PPD fraction along with B. abortus LPS can induce a Th1-type cytokine response characterized with a high IFN-γ/IL-5 ratio, while immunization with PPD or 23rd PPD fraction along with the same adjuvant resulted to a mixed Th1/Th2-type cytokine response. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Mehrizi, A A; Ameri Torzani, M; Zakeri, S; Jafary Zadeh, A; Babaeekhou, L
2018-07-01
Sporozoite-based malaria vaccines have provided a gold standard for malaria vaccine development, and thrombospondin-related adhesive protein (TRAP) serves as the main vaccine candidate antigen on sporozoites. As recombinant malaria vaccine candidate antigens are poorly immunogenic, additional appropriate immunostimulants, such as an efficient adjuvant, are highly essential to modulate Th1-cell predominance and also to induce a protective and long-lived immune response. In this study, polyinosinic:polycytidylic acid [poly(I:C)], the ligand of TLR3, was considered as the potential adjuvant for vaccines targeting stronger Th1-based immune responses. For this purpose, BALB/c mice were immunized with rPfTRAP delivered in putative poly(I:C) adjuvant, and humoural and cellular immune responses were determined in different immunized mouse groups. Delivery of rPfTRAP with poly(I:C) induced high levels and titres of persisted and also high-avidity anti-rPfTRAP IgG antibodies comparable to complete Freund's adjuvant (CFA)/incomplete Freund's adjuvant (IFA) adjuvant after the second boost. In addition, rPfTRAP formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-5, IgG2a/IgG1, and IgG2b/IgG1 than with CFA/IFA, indicating that poly(I:C) supports the induction of a stronger Th1-based immune response. This is a first time study which reveals the potential of rPfTRAP delivery in poly(I:C) to increase the level, avidity and durability of both anti-PfTRAP cytophilic antibodies and Th1 cytokines. © 2018 John Wiley & Sons Ltd.
Protection against anthrax and plague by a combined vaccine in mice and rabbits.
Ren, Jun; Dong, Dayong; Zhang, Jinlong; Zhang, Jun; Liu, Shuling; Li, Bing; Fu, Ling; Xu, Junjie; Yu, Changming; Hou, Lihua; Li, Jianmin; Chen, Wei
2009-12-09
The protective antigen (PA) of Bacillus anthracis and the Fraction 1 Capsular Antigen (F1 antigen), V antigen of Yersinia pestis have been demonstrated to be potential immunogens and candidate vaccine sub-units against anthrax and plague respectively. In this study, the authors have investigated the antibody responses and the protective efficacy when the antigens were administered separately or in combination intramuscularly formulation adsorbed to an aluminum hydroxide adjuvant. Results show that immunized rF1 + rV and rPA antigen together was as effective as separately for induction of serological antibody response, and these titers were maintained for over 1 year in mice. An isotype analysis of the serum indicates that the co-administration of these antigens did not influence the antigen-specific IgG1/IgG2a ratio which was consistent with a Th2 bias. Furthermore, the combined vaccine comprising the protein antigens rF1 + rV + rPA has been demonstrated to protect mice from subcutaneous challenge with 10(7) colony-forming units (CFU) virulent Y. pestis strain, and to fully protect rabbit against subcutaneous challenge with 1.2x10(5) colony-forming units (CFU) virulent B. anthracis spores. These data show that the protective efficacy was unaffected when the antigens were administered in combination.
Production and function of cytokines in natural and acquired immunity to Candida albicans infection.
Ashman, R B; Papadimitriou, J M
1995-01-01
Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts. PMID:8531890
Healthy human T-Cell Responses to Aspergillus fumigatus antigens.
Chaudhary, Neelkamal; Staab, Janet F; Marr, Kieren A
2010-02-17
Aspergillus fumigatus is associated with both invasive and allergic pulmonary diseases, in different hosts. The organism is inhaled as a spore, which, if not cleared from the airway, germinates into hyphal morphotypes that are responsible for tissue invasion and resultant inflammation. Hyphae secrete multiple products that function as antigens, evoking both a protective (T(H)1-T(H)17) and destructive allergic (T(H)2) immunity. How Aspergillus allergens (Asp f proteins) participate in the development of allergic sensitization is unknown. To determine whether Asp f proteins are strictly associated with T(H)2 responses, or represent soluble hyphal products recognized by healthy hosts, human T cell responses to crude and recombinant products were characterized by ELISPOT. While responses (number of spots producing IFN-gamma, IL-4 or IL-17) to crude hyphal antigen preparations were weak, responses to recombinant Asp f proteins were higher. Recombinant allergens stimulated cells to produce IFN-gamma more so than IL-4 or IL-17. Volunteers exhibited a diverse CD4+ and CD8+ T cell antigen recognition profile, with prominent CD4 T(H)1-responses to Asp f3 (a putative peroxismal membrane protein), Asp f9/16 (cell wall glucanase), Asp f11 (cyclophilin type peptidyl-prolyl isomerase) and Asp f22 (enolase). Strong IFN-gamma responses were reproduced in most subjects tested over 6 month intervals. Products secreted after conidial germination into hyphae are differentially recognized by protective T cells in healthy, non-atopic individuals. Defining the specificity of the human T cell repertoire, and identifying factors that govern early responses may allow for development of novel diagnostics and therapeutics for both invasive and allergic Aspergillus diseases.
Jin, Li-Ping; Zhou, Yue-Hua; Zhu, Xiao-Yong; Wang, Ming-Yan; Li, Da-Jin
2006-10-01
To investigate the Th1/Th2 cytokine changes in abortion-prone recipient mice adoptively transferred by the paternal antigen-hyporesponsive T cells. The paternal antigen-hyporesponsive T cells were generated by the anti-B7 monoclonal antibody (mAb) treatment and adoptively transferred into pregnant CBA/J mice of abortion-prone matings on day 4 of gestation. The intracellular expressions of Th1 cell-derived cytokine, tumor necrosis factor-alpha, gamma-interferon and interleukin-2 (IL-2) and Th2 cell-derived cytokine, IL-4 and IL-10 in the maternal spleen were analyzed by flow cytometry, and secretions of the Th1 and Th2 cytokines in supernatant of the feto-placental unit culture were analyzed by an enzyme-linked immunosorbent assay. Our findings showed the increased secretion of Th1 cytokines and the decreased secretion of Th2 cytokines in abortion-prone matings. Treatment with anti-B7 mAbs on day 4 of gestation enhanced Th2 and reduced Th1 cytokine production in abortion-prone matings. Similarly, adoptive transfer of paternal antigen-hyporesponsive T cells induced maternal tolerance to the fetus and displayed a Th2 bias both in the peripheral lymphocytes and at the materno-fetal interface of the abortion-prone matings. These findings indicate that the Th2 cytokine bias and an increase in fetal viability induced by the anti-B7 mAb treatment can be transferred to other pregnant mice of the abortion-prone matings.
CUI, LIRAN; SUN, YONGXU; XU, HAO; XU, HUIYU; CONG, HUAN; LIU, JICHENG
2013-01-01
In the present study, a low molecular weight polysaccharide, ABP-AW1, isolated from Agaricus blazei Murill was assessed for its potential adjuvant activity. ABP-AW1 is considered to create a ‘depot’ of antigen at a subcutaneous injection site. ICR mice were immunized with 100 μg ovalbumin (OVA) alone or with 100 μg OVA formulated in 0.9% saline containing 200 μg aluminum (alum) or ABP-AW1 (50, 100 and 200 μg) on days 1 and 15. Two weeks after the secondary immunization, splenocyte proliferation, the expression of surface markers, cytokine production and the OVA-specific antibody levels in the serum were determined. The OVA/ABP-AW1 vaccine, in comparison with OVA alone, markedly increased the proliferation of splenic lymphocytes and elicited greater antigen-specific CD4+ T cell activation, as determined by splenic CD4+CD69+ T cells and Th1 cytokine interferon (IFN)-γ release. The combination of ABP-AW1 and OVA also enhanced IgG2b antibody responses to OVA. In conclusion, these data indicated that ABP-AW1 significantly enhanced the humoral and cellular immune responses against OVA in the mice, suggesting that ABP-AW1 stimulated Th1-type immunity. We suggest that ABP-AW1 may serve as a new adjuvant. PMID:24137460
Cui, Liran; Sun, Yongxu; Xu, Hao; Xu, Huiyu; Cong, Huan; Liu, Jicheng
2013-10-01
In the present study, a low molecular weight polysaccharide, ABP-AW1, isolated from Agaricus blazei Murill was assessed for its potential adjuvant activity. ABP-AW1 is considered to create a 'depot' of antigen at a subcutaneous injection site. ICR mice were immunized with 100 μg ovalbumin (OVA) alone or with 100 μg OVA formulated in 0.9% saline containing 200 μg aluminum (alum) or ABP-AW1 (50, 100 and 200 μg) on days 1 and 15. Two weeks after the secondary immunization, splenocyte proliferation, the expression of surface markers, cytokine production and the OVA-specific antibody levels in the serum were determined. The OVA/ABP-AW1 vaccine, in comparison with OVA alone, markedly increased the proliferation of splenic lymphocytes and elicited greater antigen-specific CD4 + T cell activation, as determined by splenic CD4 + CD69 + T cells and Th1 cytokine interferon (IFN)-γ release. The combination of ABP-AW1 and OVA also enhanced IgG2b antibody responses to OVA. In conclusion, these data indicated that ABP-AW1 significantly enhanced the humoral and cellular immune responses against OVA in the mice, suggesting that ABP-AW1 stimulated Th1-type immunity. We suggest that ABP-AW1 may serve as a new adjuvant.
Hoeman, Christine; Dhakal, Mermagya; Zaghouani, Habib
2010-06-01
Neonatal exposure to antigen gives rise to a primary response comprising both T helper 1 (Th1) and T helper 2 (Th2) lymphocytes. However, re-encounter with the same antigen yields an indubitably biased response with minimal Th1 but excessive Th2 cells. Since Th1 cells combat microbes while Th2 cells react to allergens, the neonate faces susceptibility to both microbial infections and allergic reactions. The Th1/Th2 imbalance of neonatal immunity stems from a delayed maturation of dendritic cells that yields limited IL-12 cytokine during the neonatal stage. Th1 cells developing under these circumstances up-regulate the IL-13Ralpha1 chain that physically associates with the IL-4Ralpha chain, forming a potentially hazardous heteroreceptor. During re-challenge with antigen, IL-4 from Th2 cells utilizes the heteroreceptor to signal the death of Th1 cells, leading to the Th2 bias of neonatal immunity. Our view to overcome Th1 deficiency is to supplement neonatal immunizations with toll-like receptor ligands that could stimulate maturation of dendritic cells and augment IL-12 production to counter IL-13Ralpha1 up-regulation. This regimen would yield Th1 cells devoid of the heteroreceptor and resistant to IL-4-induced apoptosis. Accordingly, the neonate would have balanced Th1/Th2 immunity and withstand both microbes and allergens. Such approaches could open new avenues for better pediatric vaccines and allergy therapies.
Leshem, Onir; Kashino, Suely S.; Gonçalves, Reginaldo B.; Suzuki, Noriyuki; Onodera, Masao; Fujimura, Akira; Sasaki, Hajime; Stashenko, Philip; Campos-Neto, Antonio
2013-01-01
In previous studies we showed that biasing the immune response to Porphyromonas gingivalis antigens to the Th1 phenotype increases inflammatory bone resorption caused by this organism. Using a T cell screening strategy we identified eight P. gingivalis genes coding for proteins that appear to be involved in T-helper cell responses. In the present study we characterized the protein, encoded by PG_1841 gene and evaluated its relevance in the in bone resorption caused by P. gingivalis because subcutaneous infection of mice with this organism resulted in the induction of Th1 biased response to the recombinant PG1841 antigen molecule. Using an immunization regime that strongly biases toward the Th1 phenotype followed by challenge with P. gingivalis in dental pulp tissue, we demonstrate that mice pre-immunized with rPG1841 developed severe bone loss compared with control immunized mice. Pre-immunization of mice with the antigen using a Th2 biasing regime resulted in no exacerbation of the disease. These results support the notion that selected antigens of P. gingivalis are involved in a biased Th1 host response that leads to the severe bone loss caused by this oral pathogen. PMID:18457976
B cell function in the immune response to helminths
Harris, Nicola
2010-01-01
Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556
Nath, Dilip S.; Tiriveedhi, Venkataswarup; Bash, Haseeb Ilias; Phelan, Donna; Moazami, Nader; Ewald, Gregory A.; Mohanakumar, T.
2013-01-01
Background We determined role of donor specific antibodies (DSA) and antibodies (Abs) to self-antigens, collagen-V (Col-V) and K-α1-Tubulin (KAT) in pathogenesis of acute antibody mediated rejection (AMR) and cardiac allograft vasculopathy (CAV) following human heart transplantation (HTx). Methods 137 HTx recipients - 60 early period (≤ 12months) and 77 late period (> 12months) patients were enrolled. Circulating DSA was determined using LUMINEX. Abs against Col-I, II, IV, V and KAT were measured using ELISA. Frequency of CD4+T helper cells (CD4+Th) secreting IFN-γ, IL-5, IL-10 or IL-17 specific to self-antigens were determined using ELISPOT. Results A significant association between AMR and DSA was demonstrated. Development of DSA in AMR patients correlated well with the development of auto-Abs to Col-V(AMR(+): 383±72μg/mL, AMR(−): 172±49μg/mL, p=0.033) and KAT (AMR(+): 252±49μg/mL, AMR(−): 61±21μg/mL, p=0.014). Patients who developed AMR demonstrated increased frequencies of CD4+Th secreting IFN-γ and IL-5 with reduction in IL-10 specific for Col-V/KAT. Patients diagnosed with CAV also developed DSA and auto-Abs to Col-V (CAV(+): 835±142μg/mL, CAV(−): 242±68μg/mL, p=0.025) and KAT (CAV(+): 768±206μg/mL, CAV(−): 196±72μg/mL, p=0.001) with increased frequencies of CD4+Th secreting IL-17 with reduction in IL-10 specific for Col-V/KAT. Conclusions Development of Abs to HLA and self-antigens are associated with increases in CD4+Th secreting IFN-γ and IL-5 in AMR and IL-17 in CAV, with reduction in CD4+Th secreting IL-10 in both AMR and CAV. PMID:21383658
T-lymphocyte cytokine mRNA expression in cystic echinococcosis.
Fauser, S; Kern, P
1997-04-01
In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.
Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario
2016-01-01
Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765
No prolongation of skin allograft survival by immunoproteasome inhibition in mice.
Mundt, Sarah; Basler, Michael; Sawitzki, Birgit; Groettrup, Marcus
2017-08-01
The immunoproteasome, a distinct class of proteasomes, which is inducible under inflammatory conditions and constitutively expressed in monocytes and lymphocytes, is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Moreover, inhibition of the immunoproteasome subunit LMP7 ameliorates clinical symptoms of autoimmune diseases in vivo and was shown to suppress the development of T helper cell (Th) 1 and Th17 cells and to promote regulatory T-cell (Treg) generation independently of its function in antigen processing. Since Th1 and Th17 cells are detrimental and Treg cells are critical for transplant acceptance, we investigated the influence of the LMP7-selective inhibitor ONX 0914 in a mixed lymphocyte reaction (MLR) in vitro as well as on allograft rejection in a MHC-disparate (C57BL/6 to BALB/c) and a multiple minor histocompatibility antigen (miHA)-disparate (B10.Br to C3H) model of skin transplantation in vivo. Although we observed reduced allo-specific IL-17 production of T cells in vitro, we found that selective inhibition of LMP7 had neither an influence on allograft survival in an MHC-mismatch model nor in a multiple minor mismatch skin transplantation model. We conclude that inhibition of the immunoproteasome is not effective in prolonging skin allograft survival in skin allotransplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dendritic cells: importance in allergy.
Aiba, Setsuya
2007-09-01
In this review we discuss the role of dendritic cells (DC) in the pathogenesis of allergic contact hypersensitivity (ACH) and atopic disorders, such as asthma and atopic eczema. In ACH patients, DC recognize the invasion of simple chemicals such as haptens, and trigger antigen-specific T cell responses leading to the characteristic histological and clinical changes such as spongiosis and papulovesicular eruptions. During atopic disorders, it is well known that the Th2-deviated immune response plays a crucial role in their pathogenesis. DC provide T cells with antigen and costimulatory signals (signals 1 and 2, respectively), as well as with a polarizing signal (signal 3). When studying ACH, it is important to understand how simple chemicals induce the activation of DC and their migration to the draining lymph nodes where they supply signals 1 and 2 to naive T cells. The mechanisms by which DC induce the Th2-deviated immune response, namely via the Th2-deviated signal 3, are central topics in the pathogenesis of atopic disorders.
Mikecz, Katalin; Glant, Tibor T.; Markovics, Adrienn; Rosenthal, Kenneth S.; Kurko, Julia; Carambula, Roy E.; Cress, Steve; Steiner, Harold L.; Zimmerman, Daniel H.
2017-01-01
Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA. PMID:28583308
Lavelle, E C; Grant, G; Pusztai, A; Pfüller, U; Leavy, O; McNeela, E; Mills, K H G; O'Hagan, D T
2002-01-01
The mucosal adjuvant properties of the three type 2 ribosome-inactivating proteins (RIPs) from the European mistletoe, Viscum album L., were investigated. Mistletoe lectins were compared with cholera toxin (CT) as adjuvants when delivered nasotracheally together with herpes simplex virus glycoprotein D2 (gD2). All three mistletoe lectins (MLI, MLII, MLIII) were potent mucosal adjuvants. Co-administration of MLI, MLII or MLIII with gD2 led to significantly higher levels of gD2-specific mucosal immunoglobulin A (IgA) and systemic immunoglobulin G (IgG) antibody than when the antigen was delivered alone. The levels of antibodies induced were similar to those generated in mice immunized with gD2 and the potent mucosal adjuvant CT. Administration of ML1 with gD2 enhanced the antigen-specific splenic T-cell proliferative response. Interleukin-5 (IL-5), but not interferon-γ (IFN-γ), was detected in supernatants from splenocytes stimulated in vitro with gD2. This indicates that MLI enhanced type 2 T-helper cell (Th2) responses to the bystander antigen, gD2. Analysis of the gD2- and lectin-specific IgG subclass titres in mice immunized with gD2 and MLI, MLII or MLIII revealed a high ratio of IgG1 : IgG2a, which is compatible with the selective induction of Th2-type immune responses. PMID:12383207
Mascarell, Laurent; Lombardi, Vincent; Louise, Anne; Saint-Lu, Nathalie; Chabre, Henri; Moussu, Hélène; Betbeder, Didier; Balazuc, Anne-Marie; Van Overtvelt, Laurence; Moingeon, Philippe
2008-09-01
A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.
Chronic inflammatory disorders of the gastrointestinal tract of companion animals.
Cave, N J
2003-12-01
In the inflammatory bowel diseases (IBD) that affect dogs and cats there appears to be dysregulation of normal mucosal immunity, characterised by polyclonal lymphocytic infiltrates which are presumably specific for luminal antigens. There is an absence of a classical polarisation of either T-helper (Th) 1 or Th2 cytokine responses, although increased expression of mRNA for interleukin (IL) 2 and IL-12p40 and a shift towards mucosal immunoglobulin (Ig) G production are consistent findings, whilst variable responses are seen in tumour necrosis factor-alpha (TNF-alpha), IL-1, IL-4, IL-6, and interferon-gamma (IFN-gamma). Increased mucosal permeability and deranged intestinal motility are common sequelae. Despite obvious similarities with Crohn's disease and ulcerative colitis in humans, important differences exist. Of these, the diffuse superficial nature but with no Th1 or Th2 bias, and the prevalence of proximal small intestinal disease are notable. Potential hypotheses for these disparities include specific differences in the types or locations of agonistic gut flora, diffuse abnormalities in microbial-host interactions, a greater importance of diet, or anatomical or cellular differences in mucosal immune responses. Although specific pathogens and genetic susceptibilities may be involved, quantitative or qualitative changes in the normal flora or abnormal responses to a normal flora are more likely to be involved in the immunopathogenesis. Dietary influences include a large source of antigen, promotion of abnormal microbial growth through Maillard compounds within canned diets, and specific macro- and micronutrient deficiencies. Although dependent on a histopathological diagnosis, limitations of biopsies procured endoscopically, lack of histopathological standardisation and difficulty distinguishing inflammation from neoplasia remain significant problems. Clinician-pathologist dialogue, immunohistochemistry, cytokine profiling and lymphocyte clonality assessment may lead to more accurate diagnoses, a deeper understanding of the immunopathogenesis, and ultimately to new therapies or prevention of disease induction.
IgG4 subclass antibodies impair antitumor immunity in melanoma
Karagiannis, Panagiotis; Gilbert, Amy E.; Josephs, Debra H.; Ali, Niwa; Dodev, Tihomir; Saul, Louise; Correa, Isabel; Roberts, Luke; Beddowes, Emma; Koers, Alexander; Hobbs, Carl; Ferreira, Silvia; Geh, Jenny L.C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Blower, Philip J.; Mitchell, Tracey; Fear, David J.; Spicer, James F.; Lacy, Katie E.; Nestle, Frank O.; Karagiannis, Sophia N.
2013-01-01
Host-induced antibodies and their contributions to cancer inflammation are largely unexplored. IgG4 subclass antibodies are present in IL-10–driven Th2 immune responses in some inflammatory conditions. Since Th2-biased inflammation is a hallmark of tumor microenvironments, we investigated the presence and functional implications of IgG4 in malignant melanoma. Consistent with Th2 inflammation, CD22+ B cells and IgG4+-infiltrating cells accumulated in tumors, and IL-10, IL-4, and tumor-reactive IgG4 were expressed in situ. When compared with B cells from patient lymph nodes and blood, tumor-associated B cells were polarized to produce IgG4. Secreted B cells increased VEGF and IgG4, and tumor cells enhanced IL-10 secretion in cocultures. Unlike IgG1, an engineered tumor antigen-specific IgG4 was ineffective in triggering effector cell–mediated tumor killing in vitro. Antigen-specific and nonspecific IgG4 inhibited IgG1-mediated tumoricidal functions. IgG4 blockade was mediated through reduction of FcγRI activation. Additionally, IgG4 significantly impaired the potency of tumoricidal IgG1 in a human melanoma xenograft mouse model. Furthermore, serum IgG4 was inversely correlated with patient survival. These findings suggest that IgG4 promoted by tumor-induced Th2-biased inflammation may restrict effector cell functions against tumors, providing a previously unexplored aspect of tumor-induced immune escape and a basis for biomarker development and patient-specific therapeutic approaches. PMID:23454746
Thakur, Aneesh; Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Rose, Fabrice; Andersen, Peter; Christensen, Dennis; Foged, Camilla
2018-05-31
Liquid vaccine dosage forms have limited stability and require refrigeration during their manufacture, distribution and storage. In contrast, solid vaccine dosage forms, produced by for example spray drying, offer improved storage stability and reduced dependence on cold-chain facilities. This is advantageous for mass immunization campaigns for global public health threats, e.g., tuberculosis (TB), and offers cheaper vaccine distribution. The multistage subunit vaccine antigen H56, which is a fusion protein of the Mycobacterium tuberculosis (Mtb) antigens Ag85B, ESAT-6, and Rv2660, has been shown to confer protective efficacy against active TB before and after Mtb exposure in preclinical models, and it is currently undergoing clinical phase 2a testing. In several studies, including a recent study comparing multiple clinically relevant vaccine adjuvants, the T helper type 1 (Th1)/Th17-inducing adjuvant CAF01 was the most efficacious adjuvant for H56 to stimulate protective immunity against Mtb. With the long-term goal of designing a thermostable and self-administrable dry powder vaccine based on H56 and CAF01 for inhalation, we compared H56 spray-dried with CAF01 with the non-spray-dried H56/CAF01 vaccine with respect to their ability to induce systemic Th1, Th17 and humoral responses after subcutaneous immunization. Here we show that spray drying of the H56/CAF01 vaccine results in preserved antigenic epitope recognition and adjuvant activity of CAF01, and the spray-dried, reconstituted vaccine induces antigen-specific Th1, Th17 and humoral immune responses, which are comparable to those stimulated by the non-spray-dried H56/CAF01 vaccine. In addition, the spray-dried and reconstituted H56/CAF01 vaccine promotes similar polyfunctional CD4 + T-cell responses as the non-spray-dried vaccine. Thus, our study provides proof-of-concept that spray drying of the subunit vaccine H56/CAF01 preserves vaccine-induced humoral and cell-mediated immune responses. These results support our ongoing efforts to develop a thermostable, dry powder-based TB vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nguyen-Pham, Thanh-Nhan; Yang, Deok-Hwan; Nguyen, Truc-Anh Thi; Lim, Mi-Seon; Hong, Cheol Yi; Kim, Mi-Hyun; Lee, Hyun Ju; Lee, Youn-Kyung; Cho, Duck; Bae, Soo-Young; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Chung, Ik-Joo; Kim, Hyeoung-Joon; Lee, Je-Jung
2012-01-01
Dendritic cell (DC)-based vaccines continue to be considered an attractive tool for cancer immunotherapy. DCs require an additional signal from the environment or other immune cells to polarize the development of immune responses toward T helper 1 (Th1) or Th2 responses. DCs play a role in natural killer (NK) cell activation, and NK cells are also able to activate and induce the maturation of DCs. We investigated the types of NK cells that can induce the maturation and enhanced function of DCs and the conditions under which these interactions occur. DCs that were activated by resting NK cells in the presence of inflammatory cytokines exhibited increased expression of several costimulatory molecules and an enhanced ability to produce IL-12p70. NK cell-stimulated DCs potently induced Th1 polarization and exhibited the ability to generate tumor antigen-specific cytotoxic T lymphocyte responses. Our data demonstrate that functional DCs can be generated by coculturing immature DCs with freshly isolated resting NK cells in the presence of Toll-like receptor agonists and proinflammatory cytokines and that the resulting DCs effectively present antigens to induce tumor-specific T-cell responses, which suggests that these cells may be useful for cancer immunotherapy.
Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms.
Ramos-Leví, Ana Maria; Marazuela, Mónica
2016-10-01
Hashimoto's thyroiditis (HT) and Graves' disease (GD) are two very common organ-specific autoimmune diseases which are characterized by circulating antibodies and lymphocyte infiltration. Although humoral and cellular mechanisms have been classically considered separately in the pathogenesis of autoimmune thyroid diseases (AITD), recent research suggests a close reciprocal relationship between these two immune pathways. Several B- and T-cell activation pathways through antigen-presenting cells (APCs) and cytokine production lead to specific differentiation of T helper (Th) and T regulatory (Treg) cells. This review will focus on the cellular mechanisms involved in the pathogenesis of AITD. Specifically, it will provide reasons for discarding the traditional simplistic dichotomous view of the T helper type 1 and 2 pathways (Th1/Th2) and will focus on the role of the recently characterized T cells, Treg and Th17 lymphocytes, as well as B lymphocytes and APCs, especially dendritic cells (DCs). Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.
Liu, Wen-Tssann; Hsu, Hui-Ling; Liang, Chung-Chih; Chuang, Chuan-Chang; Lin, Huang-Chi; Liu, Yu-Tien
2007-01-01
We investigated the relative immunogenicity and protective efficacy of recombinant X85MF1 and X85V strains of ΔcyaΔcrpΔasd-attenuated Salmonella Typhimurium expressing, respectively, secreted Yersinia pestis F1 and V antigens, following intranasal (i.n.) or i.n. combined with oral immunization for a mouse model. A single i.n. dose of 108 CFU of X85MF1 or X85V induced appreciable serum F1- or V-specific IgG titres, although oral immunization did not. Mice i.n. immunized three times (i.n. × 3) with Salmonella achieved the most substantial F1/V-specific IgG titres, as compared with corresponding titres for an oral-primed, i.n.-boosted (twice; oral-i.n. × 2) immunization regimen. The level of V-specific IgG was significantly greater than that of F1-specific IgG (P<0.001). Analysis of the IgG antibodies subclasses revealed comparable levels of V-specific Th-2-type IgG1 and Th-1-type IgG2a, and a predominance of F1-specific Th-1-type IgG2a antibodies. In mice immunized intranasally, X85V stimulated a greater IL-10-secreting-cell response in the lungs than did X85MF1, but impaired the induction of gamma-interferon-secreting cells. A program of i.n. × 3 and/or oral-i.n. × 2 immunization with X85V provided levels of protection against a subsequent lethal challenge with Y. pestis, of, respectively, 60% and 20%, whereas 80% protection was provided following the same immunization but with X85MF1. PMID:17640293
Reduced IFN-γ and IL-10 responses to paternal antigens during and after pregnancy in allergic women.
Persson, Marie; Ekerfelt, Christina; Ernerudh, Jan; Matthiesen, Leif; Abelius, Martina Sandberg; Jonsson, Yvonne; Berg, Göran; Jenmalm, Maria C
2012-09-01
Normal pregnancy and allergy are both characterized by a T helper (Th) 2 deviation. In the current study, we hypothesized that paternal antigen-induced cytokine responses during pregnancy would be deviated toward Th2 and an anti-inflammatory profile, and that the Th2 deviation would be more pronounced in allergic pregnant women. Blood samples were collected longitudinally on three occasions during pregnancy and two occasions post partum (pp). Of the 86 women initially included, 54 women had a normal pregnancy and completed the sampling procedures. Twelve women fulfilled the criteria for allergy (allergic symptoms and circulating immunoglobulin [Ig] E antibodies to inhalant allergens) and 20 were non-allergic (nonsensitized without symptoms). The levels of Th1- and Th2-associated cytokines and chemokines, the Th17 cytokine IL-17 and the anti-inflammatory cytokine IL-10 of the groups were compared. Paternal antigen-induced IL-4 and IL-10 responses increased between the first and the third trimester. Allergy was associated with decreased paternal antigen-induced IFN-γ and CXCL10 secretion in the nonpregnant state (one year pp) and also decreased IFN-γ/IL-4 and IFN-γ/IL-13 ratios during pregnancy. We also observed a decreased paternal antigen-induced IL-10 response in allergic compared with non-allergic women during pregnancy, along with a decreased IL-10/IL-13 ratio. In conclusion, our findings support the hypothesis of lower Th1 responses toward paternal antigens in allergic than in non-allergic women, but also indicate that allergy is associated with a lower capacity to induce anti-inflammatory IL-10 responses after paternal antigen stimulation during pregnancy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Grassberger, M; Baumruker, T; Enz, A; Hiestand, P; Hultsch, T; Kalthoff, F; Schuler, W; Schulz, M; Werner, F J; Winiski, A; Wolff, B; Zenke, G
1999-08-01
SDZ ASM 981, a novel ascomycin macrolactam derivative, has high anti-inflammatory activity in animal models of allergic contact dermatitis and shows clinical efficacy in atopic dermatitis, allergic contact dermatitis and psoriasis, after topical application. Here we report on the in vitro activities of this promising new drug. SDZ ASM 981 inhibits the proliferation of human T cells after antigen-specific or non-specific stimulation. It downregulates the production of Th1 [interleukin (IL)-2, interferon-gamma] and Th2 (IL-4, IL-10) type cytokines after antigen-specific stimulation of a human T-helper cell clone isolated from the skin of an atopic dermatitis patient. SDZ ASM 981 inhibits the phorbol myristate acetate/phytohaemagglutinin-stimulated transcription of a reporter gene coupled to the human IL-2 promoter in the human T-cell line Jurkat and the IgE/antigen-mediated transcription of a reporter gene coupled to the human tumour necrosis factor (TNF)-alpha promoter in the murine mast-cell line CPII. It does not, however, affect the human TNF-alpha promoter controlled transcription of a reporter gene in a murine dendritic cell line (DC18 RGA) after stimulation via the FcgammaRIII receptor. SDZ ASM 981 also prevents the release of preformed pro-inflammatory mediators from mast cells, as shown in the murine cell line CPII after stimulation with IgE/antigen. In summary, these results demonstrate that SDZ ASM 981 is a specific inhibitor of the production of pro-inflammatory cytokines from T cells and mast cells in vitro.
Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L.; Orduña, Antonio; Boyce, Joshua A.; Anderson, Paul J.
2012-01-01
T-cell Intracellular Antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1−/−) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1−/− mice also had higher levels of Df-specific IgE and IgG1 in serum and ex vivo restimulated Tia-1−/− lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. PMID:22525013
Simarro, Maria; Giannattasio, Giorgio; Xing, Wei; Lundequist, Emma-Maria; Stewart, Samantha; Stevens, Richard L; Orduña, Antonio; Boyce, Joshua A; Anderson, Paul J
2012-08-30
T-cell intracellular antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1(-/-)) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1(-/-) mice also had higher levels of Df-specific IgE and IgG(1) in serum and ex vivo restimulated Tia-1(-/-) lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma. Copyright © 2012 Elsevier B.V. All rights reserved.
Lorvik, Kristina Berg; Hammarström, Clara; Fauskanger, Marte; Haabeth, Ole Audun Werner; Zangani, Michael; Haraldsen, Guttorm; Bogen, Bjarne; Corthay, Alexandre
2016-12-01
Adoptive cell therapy (ACT) trials to date have focused on transfer of autologous tumor-specific cytotoxic CD8 + T cells; however, the potential of CD4 + T helper (Th) cells for ACT is gaining interest. While encouraging results have been reported with IFNγ-producing Th1 cells, tumor-specific Th2 cells have been largely neglected for ACT due to their reported tumor-promoting properties. In this study, we tested the efficacy of idiotype-specific Th2 cells for the treatment of mice with MHC class II-negative myeloma. Th2 ACT efficiently eradicated subcutaneous myeloma in an antigen-specific fashion. Transferred Th2 cells persisted in vivo and conferred long-lasting immunity. Cancer eradication mediated by tumor-specific Th2 cells did not require B cells, natural killer T cells, CD8 + T cells, or IFNγ. Th2 ACT was also curative against B-cell lymphoma. Upon transfer, Th2 cells induced a type II inflammation at the tumor site with massive infiltration of M2-type macrophages producing arginase. In vivo blockade of arginase strongly inhibited Th2 ACT, consistent with a key role of arginase and M2 macrophages in myeloma elimination by Th2 cells. These results illustrate that cancer eradication may be achieved by induction of a tumor-specific Th2 inflammatory immune response at the tumor site. Thus, ACT with tumor-specific Th2 cells may represent a highly efficient immunotherapy protocol against cancer. Cancer Res; 76(23); 6864-76. ©2016 AACR. ©2016 American Association for Cancer Research.
Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants*
Marty-Roix, Robyn; Vladimer, Gregory I.; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D.; Chee, Jonathan D.; Wang, Shixia; Lu, Shan; Lien, Egil
2016-01-01
Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. PMID:26555265
Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants.
Marty-Roix, Robyn; Vladimer, Gregory I; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D; Chee, Jonathan D; Wang, Shixia; Lu, Shan; Lien, Egil
2016-01-15
Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Koth, Laura L; Rodriguez, Madeleine W; Bernstein, Xin Liu; Chan, Salina; Huang, Xiaozhu; Charo, Israel F; Rollins, Barrett J; Erle, David J
2004-09-15
Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.
Koth, Laura L; Rodriguez, Madeleine W; Bernstein, Xin Liu; Chan, Salina; Huang, Xiaozhu; Charo, Israel F; Rollins, Barrett J; Erle, David J
2004-01-01
Background Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. Methods To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. Results We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. Conclusion We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2. PMID:15377395
An, Fengqi; Li, Qing; Tu, Zhidan; Bu, Hong; Chan, Chi-Chao; Caspi, Rachel R; Lin, Feng
2009-08-01
To investigate the role of decay-accelerating factor (DAF), a cell surface complement regulator that recently has been linked to T-cell responses and autoimmunity in the pathogenesis of experimental autoimmune uveitis (EAU). EAU was induced in wild-type (WT) and Daf1(-/-) mice, and their disease severities, IRBP specific Th1/Th17 responses, and cytokine expression profiles were compared. In a test of the efficacy of treatment with soluble mouse DAF protein, EAU was induced in disease-susceptible B10.RIII mice, and they were treated with 0.5 mg soluble DAF protein or equal volume of PBS IP every other day. Retinal histology and IRBP-specific T-cell responses were compared after 14 days. Both EAU incidence and histopathology scores were significantly greater in Daf1(-/-) mice. There was a >10-fold greater mononuclear cell influx into the retina together with severe vasculitic lesions, retinal folding, and photoreceptor cell layer destruction. There were 5- to 7-fold greater Th1 and 3- to 4-fold greater Th17 responses against IRBP in Daf1(-/-) mice with EAU, and they expressed significantly elevated levels of GM-CSF, IL-2, IL-3, and IFN-gamma. WT B10.RIII mice that received soluble DAF protein treatments exhibited decreased IRBP-specific Th1/Th17 responses and were protected from retinal injury compared with the mice that received PBS treatments. DAF significantly influences IRBP-specific Th1 and Th17 responses and disease severity in EAU. Systemic upregulation of DAF levels could be used to suppress retinal antigen(s)-specific autoimmunity to treat autoimmune posterior uveitis.
Efficiency of pH-Sensitive Fusogenic Polymer-Modified Liposomes as a Vaccine Carrier
Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji
2013-01-01
The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses. PMID:23431260
Efficiency of pH-sensitive fusogenic polymer-modified liposomes as a vaccine carrier.
Watarai, Shinobu; Iwase, Tana; Tajima, Tomoko; Yuba, Eiji; Kono, Kenji
2013-01-01
The usefulness of pH-sensitive fusogenic polymer-(succinylated poly(glycidol)-(SucPG-) modified liposomes as a vaccine carrier in the induction of immune responses was evaluated. Mice were intraperitoneally immunized with ovalbumin- (OVA-) containing SucPG-modified liposomes. After immunization, significant OVA-specific antibodies were detected in the serum. When sera were analyzed for isotype distribution, OVA-specific IgG1 antibody responses were noted in mice immunized with OVA-containing polymer-unmodified liposomes, whereas immunization with OVA-containing SucPG-modified liposomes resulted in the induction of OVA-specific IgG1, IgG2a, and IgG3 Ab responses. In spleen lymphocytes from mice immunized with OVA-containing SucPG-modified liposomes, both IFN-γ-(Th1-type-) and IL-4-(Th2 type-) specific mRNA were detected. Moreover, substantial production of IFN-γ and IL-4 was demonstrated in spleen cells from OVA-containing SucPG-modified liposomes in vitro. These results suggest that the pH-sensitive fusogenic polymer-(SucPG-) modified liposomes would serve effectively as an antigen delivery vehicle for inducing Th1 and Th2 immune responses.
Parumasivam, Thaigarajan; Chan, John Gar Yan; Lin, Leon C. W.; Flórido, Manuela; West, Nicholas P.; Chan, Hak-Kim; Britton, Warwick J.
2018-01-01
Tuberculosis places a staggering burden on human health globally. The new World Health Organisation End-TB Strategy has highlighted the urgent need for more effective TB vaccines to improve control of the disease. Protein-based subunit vaccines offer potential as safe and effective generators of protective immunity, and the use of particulate vaccine formulation and delivery by the pulmonary route may enhance local immunogenicity. In this study, novel particulate subunit vaccines were developed utilising biodegradable poly(lactic-co-glycolic acid) (PLGA) slow-release particles as carriers for the Mycobacterium tuberculosis lipoprotein MPT83, together with the adjuvants trehalose-dibehenate (TDB) or Monophosphoryl lipid A (MPL). Following delivery by the pulmonary or subcutaneous routes, the immunogenicity and protective efficacy of these vaccines were assessed in a murine model of M. tuberculosis infection. When delivered peripherally, these vaccines induced modest, antigen-specific Th1 and Th17 responses, but strong anti-MPT83 antibody responses. Mucosal delivery of the PLGA(MPT83) vaccine, with or without TDB, increased antigen-specific Th17 responses in the lungs, however, PLGA-encapsulated vaccines did not provide protection against M. tuberculosis challenge. By contrast, peripheral delivery of DDA liposomes containing MPT83 and TDB or MPL, stimulated both Th1 and Th17 responses and generated protection against M. tuberculosis challenge. Therefore, PLGA-formulated vaccines primarily stimulate strong humoral immunity, or Th17 responses if used mucosally, and may be a suitable carrier for vaccines against extracellular pathogens. This study emphasises the critical nature of the vaccine carrier, adjuvant and route of delivery for optimising vaccine efficacy against TB. PMID:29554138
Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
Background In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. Results The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conclusion Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively. PMID:23637758
Barisani-Asenbauer, Talin; Inic-Kanada, Aleksandra; Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively.
Specific T cell induction using iron oxide based nanoparticles as subunit vaccine adjuvant.
Neto, Lázaro Moreira Marques; Zufelato, Nicholas; de Sousa-Júnior, Ailton Antônio; Trentini, Monalisa Martins; da Costa, Adeliane Castro; Bakuzis, Andris Figueiroa; Kipnis, André; JunqueiraKipnis, Ana Paula
2018-06-18
Metal-based nanoparticles (NPs) stimulate innate immunity; however, they have never been demonstrated to be capable of aiding the generation of specific cellular immune responses. Therefore, our objective was to evaluate whether iron oxide-based NPs have adjuvant properties in generating cellular Th1, Th17 and TCD8 (Tc1) immune responses. For this purpose, a fusion protein (CMX) composed of Mycobacterium tuberculosis antigens was used as a subunit vaccine. Citrate-coated MnFe 2 O 4 NPs were synthesized by co-precipitation and evaluated by transmission electron microscopy. The vaccine was formulated by homogenizing NPs with the recombinant protein, and protein corona formation was determined by dynamic light scattering and field-emission scanning electron microscopy. The vaccine was evaluated for the best immunization route and strategy using subcutaneous and intranasal routes with 21-day intervals between immunizations. When administered subcutaneously, the vaccine generated specific CD4 + IFN-γ + (Th1) and CD8 + IFN-γ + responses. Intranasal vaccination induced specific Th1, Th17 (CD4 + IL-17 + ) and Tc1 responses, mainly in the lungs. Finally, a mixed vaccination strategy (2 subcutaneous injections followed by one intranasal vaccination) induced a Th1 (in the spleen and lungs) and splenic Tc1 response but was not capable of inducing a Th17 response in the lungs. This study shows for the first time a subunit vaccine with iron oxide based NPs as an adjuvant that generated cellular immune responses (Th1, Th17 and TCD8), thereby exhibiting good adjuvant qualities. Additionally, the immune response generated by the subcutaneous administration of the vaccine diminished the bacterial load of Mtb challenged animals, showing the potential for further improvement as a vaccine against tuberculosis.
Chopra, Amla; Cevc, Gregor
2014-06-02
A non-invasive, intra/transcutaneous immunisation of mice with a suitable combination of tetanus toxoid, ultradeformable vesicle (Transfersome®) carrier, and monophosphoryl lipid A adjuvant targets immuno-competent cells in a body and can protect 100% of the tested mice against an otherwise lethal (50×LD50) parenteral tetanus toxin challenge. The late immune response to the epicutaneously applied tetanus toxoid in such vesicles consists chiefly of circulating IgG1 and IgG2b antibody isotypes, indicative of a specific Th2 cellular response bias. Immunisations by subcutaneous injections moreover protect 100% of mice against a similar, otherwise lethal, dose of tetanus toxin. However, the immune response to transcutaneous and invasive immunisation differs. The latter elicits mainly IgG1 and IgG2b as well as IgG2a antibody isotypes, indicative of a mixed Th1/Th2 response. The cytokine response of the intra/transcutaneously and subcutaneously immunised mice reflects the difference in the organ-specific manner. IFN-γ concentration is appreciably increased in the draining lymph nodes and IL-10 in spleen. Since tetanus is a neutral antigen, both the Th1-specific IFN-γ and the Th-2 specific-IL-10 are observable. Copyright © 2014 Elsevier B.V. All rights reserved.
Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.
Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G
2016-05-27
Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Jin, Wei-Na; Gonzales, Rayna; Feng, Yan; Wood, Kristofer; Chai, Zhi; Dong, Jing-Fei; La Cava, Antonio; Shi, Fu-Dong; Liu, Qiang
2018-06-01
Autoimmune responses can occur when antigens from the central nervous system are presented to lymphocytes in the periphery or central nervous system in several neurological diseases. However, whether autoimmune responses emerge after brain ischemia and their impact on clinical outcomes remains controversial. We hypothesized that brain ischemia facilitates the genesis of autoimmunity and aggravates ischemic brain injury. Using a mouse strain that harbors a transgenic T-cell receptor to a central nervous system antigen, MOG 35-55 (myelin oligodendrocyte glycoprotein) epitope (2D2), we determined the anatomic location and involvement of antigen-presenting cells in the development of T-cell reactivity after brain ischemia and how T-cell reactivity impacts stroke outcome. Transient middle cerebral artery occlusion and photothrombotic stroke models were used in this study. We also quantified the presence and status of T cells from brain slices of ischemic patients. By coupling transfer of labeled MOG 35-55 -specific (2D2) T cells with tetramer tracking, we show an expansion in reactivity of 2D2 T cells to MOG 91-108 and MOG 103-125 in transient middle cerebral artery occlusion and photothrombotic stroke models. This reactivity and T-cell activation first occur locally in the brain after ischemia. Also, microglia act as antigen-presenting cells that effectively present MOG antigens, and depletion of microglia ablates expansion of 2D2 reactive T cells. Notably, the adoptive transfer of neuroantigen-experienced 2D2 T cells exacerbates Th1/Th17 responses and brain injury. Finally, T-cell activation and MOG-specific T cells are present in the brain of patients with ischemic stroke. Our findings suggest that brain ischemia activates and diversifies T-cell responses locally, which exacerbates ischemic brain injury. © 2018 The Authors.
Immunomodulatory Effects of dsRNA and Its Potential as Vaccine Adjuvant
Jin, Bo; Sun, Tao; Yu, Xiao-Hong; Liu, Chao-Qun; Yang, Ying-Xiang; Lu, Ping; Fu, Shan-Feng; Qiu, Hui-Bin; Yeo, Anthony E. T.
2010-01-01
dsRNA can be detected by pattern recognition receptors, for example, TLR3, MDA-5, NLRP3 to induce proinflammatory cytokines responsible for innate/adaptive immunity. Recognized by endosomal TLR3 in myeloid DCs (mDCs), dsRNA can activate mDCs into mature antigen presenting cells (mAPCs) which in turn present antigen epitopes with MHC-I molecules to naïve T cells. Coadministration of protein and synthetic dsRNA analogues can elicit an antigen-specific Th1-polarized immune response which stimulates the CD8+ CTL response and possibly dampen Th17 response. Synthetic dsRNA analogues have been tested as vaccine adjuvant against viral infections in animal models. However, a dsRNA receptor, TLR3 can be expressed in tumor cells while other members of TLR family, for example, TLR4 and TLR2 have been shown to promote tumor progression, metastasis, and chemoresistance. Thus, the promising potential of dsRNA analogues as a tumor therapeutic vaccine adjuvant should be evaluated cautiously. PMID:20671921
George, Parakkal Jovvian; Anuradha, Rajamanickam; Kumaran, Paramasivam Paul; Chandrasekaran, Vedachalam; Nutman, Thomas B.; Babu, Subash
2013-01-01
Hookworm infections and tuberculosis are co-endemic in many parts of the world. It has been suggested that infection with helminth parasites could suppress the predominant Th1 (IFN-γ-mediated) response needed to control Mycobacterium tuberculosis (Mtb) infection and enhance susceptibility to infection and/or disease. To determine the role of coincident hookworm infection on responses at steady state and on Mtb – specific immune responses in latent tuberculosis (TB), we examined the cellular responses in individuals with latent TB with or without concomitant hookworm infection. By analyzing the expression of Th1, Th2 and Th17 subsets of CD4+ T cells, we were able to demonstrate that the presence of coincident hookworm infection significantly diminished both spontaneously expressed and Mtb – specific mono – and dual – functional Th1 and Th17 cells. Hookworm infection, in contrast, was associated with expanded frequencies of mono – and dual – functional Th2 cells at both steady state and upon antigen – stimulation. This differential induction of CD4+ T cell subsets was abrogated upon mitogen stimulation. In addition, coincident hookworm infection was associated with increased adaptive T regulatory (aTreg) cells but not natural regulatory T cells (nTregs) in latent TB. Finally, the CD4+ T cell cytokine expression pattern was also associated with alterations in the systemic levels of Th1 and Th2 cytokines. Thus, coincident hookworm infection exerts a profound inhibitory effect on protective Th1 and Th17 responses in latent tuberculosis and may predispose toward the development of active tuberculosis in humans. PMID:23576678
Garcia-Knight, Miguel A; Nduati, Eunice; Hassan, Amin S; Gambo, Faith; Odera, Dennis; Etyang, Timothy J; Hajj, Nassim J; Berkley, James Alexander; Urban, Britta C; Rowland-Jones, Sarah L
2015-01-01
Implementation of successful prevention of mother-to-child transmission of HIV strategies has resulted in an increased population of HIV-exposed uninfected (HEU) infants. HEU infants have higher rates of morbidity and mortality than HIV-unexposed (HU) infants. Numerous factors may contribute to poor health in HEU infants including immunological alterations. The present study assessed T-cell phenotype and function in HEU infants with a focus on memory Th1 responses to vaccination. We compared cross-sectionally selected parameters at 3 and 12 months of age in HIV-exposed (n = 42) and HU (n = 28) Kenyan infants. We measured ex vivo activated and bulk memory CD4 and CD8 T-cells and regulatory T-cells by flow cytometry. In addition, we measured the magnitude, quality and memory phenotype of antigen-specific T-cell responses to Bacillus Calmette-Guerin and Tetanus Toxoid vaccine antigens, and the magnitude and quality of the T cell response following polyclonal stimulation with staphylococcal enterotoxin B. Finally, the influence of maternal disease markers on the immunological parameters measured was assessed in HEU infants. Few perturbations were detected in ex vivo T-cell subsets, though amongst HEU infants maternal HIV viral load positively correlated with CD8 T cell immune activation at 12 months. Conversely, we observed age-dependent differences in the magnitude and polyfunctionality of IL-2 and TNF-α responses to vaccine antigens particularly in Th1 cells. These changes mirrored those seen following polyclonal stimulation, where at 3 months, cytokine responses were higher in HEU infants compared to HU infants, and at 12 months, HEU infant cytokine responses were consistently lower than those seen in HU infants. Finally, reduced effector memory Th1 responses to vaccine antigens were observed in HEU infants at 3 and 12 months and higher central memory Th1 responses to M. tuberculosis antigens were observed at 3 months only. Long-term monitoring of vaccine efficacy and T-cell immunity in this vulnerable population is warranted.
Streng-Ouwehand, Ingeborg; Ho, Nataschja I; Litjens, Manja; Kalay, Hakan; Boks, Martine Annemarie; Cornelissen, Lenneke AM; Kaur Singh, Satwinder; Saeland, Eirikur; Garcia-Vallejo, Juan J; Ossendorp, Ferry A; Unger, Wendy WJ; van Kooyk, Yvette
2016-01-01
Antigen uptake by dendritic cells and intracellular routing of antigens to specific compartments is regulated by C-type lectin receptors that recognize glycan structures. We show that the modification of Ovalbumin (OVA) with the glycan-structure LewisX (LeX) re-directs OVA to the C-type lectin receptor MGL1. LeX-modification of OVA favored Th1 skewing of CD4+ T cells and enhanced cross-priming of CD8+ T cells. While cross-presentation of native OVA requires high antigen dose and TLR stimuli, LeX modification reduces the required amount 100-fold and obviates its dependence on TLR signaling. The OVA-LeX-induced enhancement of T cell cross-priming is MGL1-dependent as shown by reduced CD8+ effector T cell frequencies in MGL1-deficient mice. Moreover, MGL1-mediated cross-presentation of OVA-LeX neither required TAP-transporters nor Cathepsin-S and was still observed after prolonged intracellular storage of antigen in Rab11+LAMP1+ compartments. We conclude that controlled neo-glycosylation of antigens can crucially influence intracellular routing of antigens, the nature and strength of immune responses and should be considered for optimizing current vaccination strategies. DOI: http://dx.doi.org/10.7554/eLife.11765.001 PMID:26999763
Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine
Chung, Yeonseok
2015-01-01
Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366
Ahmad, Sarfraz; Casey, Garrett; Sweeney, Paul; Tangney, Mark; O'Sullivan, Gerald C
2009-01-01
Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal human prostate and over expressed in prostate cancer. Elevated levels of PSCA protein in prostate cancer correlate with increased tumor stage/grade, with androgen independence and have higher expression in bone metastases. In this study, the PSCA gene was isolated from the transgenic adenocarcinoma mouse prostate cell line (TRAMPC1), and a vaccine plasmid construct was generated. This plasmid PSCA (pmPSCA) was delivered by intramuscular electroporation (EP) and induced effective antitumor immune responses against subcutaneous TRAMPC1 tumors in male C57 BL/6 mice. The pmPSCA vaccination inhibited tumor growth, resulting in cure or prolongation in survival. Similarly, the vaccine inhibited metastases in PSCA expressing B16 F10 tumors. There was activation of Th-1 type immunity against PSCA, indicating the breaking of tolerance to a self-antigen. This immunity was tumor specific and was transferable by adoptive transfer of splenocytes. The mice remained healthy and there was no evidence of collateral autoimmune responses in normal tissues. EP-assisted delivery of the pmPSCA evoked strong specific responses and could, in neoadjuvant or adjuvant settings, provide a safe and effective immune control of prostate cancer, given that there is significant homology between human and mouse PSCA. PMID:19337234
Baeza, M L; Conejero, L; Higaki, Y; Martín, E; Pérez, C; Infante, S; Rubio, M; Zubeldia, J M
2005-01-01
The study of the singular hypersensitivity reactions to Anisakis simplex (A.s) proteins, may help us to undestand many of the unknown immune interactions between helmiths infections and allergy. We have developed a murine model of allergy to A. simplex, that mimics human A. simplex allergy to study the specific aspects of anaphylaxis induced by parasites. Male C3H/HeJ mice were intraperitoneally sensitized to A. simplex. Mice were then intravenous or orally challenged with A. simplex. Antigen-specific immunoglobulins, polyclonal IgE, anaphylactic symptoms, plasma histamine levels and cytokine profiles were determined. Comparative IgE immunoblot analyses were also performed. Specific IgE, IgG1 and IgG2a were detected in sensitized mice since week 3. Polyclonal IgE raised and peaked with different kinetics. Intravenous A. simplex challenge produced anaphylaxis in mice, accompanied by plasma histamine release. Oral A. simplex challenge in similarly sensitized mice did not caused symptoms nor histamine release. Numerous A. simplex allergens were recognized by sensitized mouse sera, some of them similar to human serum. The A. simplex stimulated splenocytes released IL-10, IFN-γ, IL-4, IL-13 and IL-5. We describe a new animal model of anaphylaxis. It exhibits characteristics of type I hypersensitivity reactions to Anisakis simplex similar to those observed in allergic humans. Different responses to i.v. or oral A. simplex challenges emerged, which did not reflect a window tolerization period. The cytokine profile developed (mixed Th1/Th2 pattern) differed from the observed in classical models of anaphylaxis or allergy to food antigens. This model may permit to investigate the peculiar allergic reactions to parasitic proteins. PMID:16297154
Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun
2015-10-01
Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wassenaar, A; Reinhardus, C; Abraham-Inpijn, L; Snijders, A; Kievits, F
1998-01-01
Periodontitis is a chronic destructive inflammatory disease associated with periodontopathic bacteria. In addition, autoantigens such as collagen and heat shock proteins (hsp) have been suggested to play a role. Established periodontal lesions are characterized by dense infiltrations of immune cells such as cytokine-producing CD4+ and CD8+ T cells. CD4+ T cells specific for Prevotella intermedia can be isolated from lesional gingiva, suggesting an active role for CD4+ T cells in the response to this bacterium. We therefore investigated the characteristics of a panel of 13 P. intermedia-specific CD4+ T cells generated from the peripheral blood of a patient with chronic adult periodontitis. All 13 P. intermedia-specific CD4+ T cells recognized the antigens in the context of HLA-DR. The T cell clones were mainly classified as Th0, producing comparable amounts of interferon-gamma (IFN-γ) and IL-4, and Th2, producing high amounts of IL-4 and almost no IFN-γ. None of the P. intermedia-specific T cell clones recognized antigens of the periodontopathic bacteria Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis and of the autoantigens collagen and hsp. The reactivity profile of the T cell clones to size-fractionated cell envelope antigens of P. intermedia indicated that P. intermedia-specific CD4+ T cell clones recognize probably five different antigen specificities in the context of the MHC class II molecules, DR7 or DR15. These results suggest that a broad panel of cell-associated protein antigens play a role in the induction of P. intermedia-specific CD4+ T cell response. PMID:9697992
Vertebral Hemangioma Mimicking Bone Metastasis in 68Ga-PSMA Ligand PET/CT.
Artigas, Carlos; Otte, François-Xavier; Lemort, Marc; van Velthoven, Roland; Flamen, Patrick
2017-05-01
Ga-PSMA PET/CT was performed in a 68-year-old man to evaluate recurrent prostate cancer due to elevated serum prostate-specific antigen level. Images showed a focal uptake in the prostatic gland, suggesting local relapse, and an intense uptake in the 12th thoracic vertebra, with no morphological abnormalities in CT slices. In order to confirm extraprostatic disease and before radiotherapy planning, a full-spine MRI was performed, resulting with the morphological pattern of a vertebral hemangioma. Hystological analysis confirmed the local relapse in the prostate. No radiotherapy treatment was given to the vertebra, and after 1 year of follow-up without systemic treatment, prostate-specific antigen is still undetectable.
Al-Attiyah, R; Mustafa, A S
2004-01-01
The secreted 24 kDa lipoprotein (LppX) is an antigen that is specific for Mycobacterium tuberculosis complex and M. leprae. The present study was carried out to identify the promiscuous T helper 1 (Th1)-cell epitopes of the M. tuberculosis LppX (MT24, Rv2945c) antigen by using 15 overlapping synthetic peptides (25 mers overlapping by 10 residues) covering the sequence of the complete protein. The analysis of Rv2945c sequence for binding to 51 alleles of nine serologically defined HLA-DR molecules, by using a virtual matrix-based prediction program (propred), showed that eight of the 15 peptides of Rv2945c were predicted to bind promiscuously to >/=10 alleles from more than or equal to three serologically defined HLA-DR molecules. The Th1-cell reactivity of all the peptides was assessed in antigen-induced proliferation and interferon-gamma (IFN-gamma)-secretion assays with peripheral blood mononuclear cells (PBMCs) from 37 bacille Calmette-Guérin (BCG)-vaccinated healthy subjects. The results showed that 17 of the 37 donors, which represented an HLA-DR-heterogeneous group, responded to one or more peptides of Rv2945c in the Th1-cell assays. Although each peptide stimulated PBMCs from one or more donors in the above assays, the best positive responses (12/17 (71%) responders) were observed with the peptide p14 (aa 196-220). This suggested a highly promiscuous presentation of p14 to Th1 cells. In addition, the sequence of p14 is completely identical among the LppX of M. tuberculosis, M. bovis and M. leprae, which further supports the usefulness of Rv2945c and p14 in the subunit vaccine design against both tuberculosis and leprosy.
Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion1
Turner, Michael S.; Kane, Lawrence P.; Morel, Penelope A.
2009-01-01
The definitions of tolerogenic vs. immunogenic dendritic cells (DC) remain controversial. Immature DC have been shown to induce T regulatory cells (Treg) specific for foreign and allo-antigens. However, we have previously reported that mature DC (G4DC) prevented the onset of autoimmune diabetes whereas immature DC (GMDC) were therapeutically ineffective. In this study, islet-specific CD4+ T cells from BDC2.5 TCR Tg mice were stimulated, in the absence of exogenous cytokine, with GMDC or G4DC pulsed with high- or low-affinity antigenic peptides and examined for Treg induction. Both GMDC and G4DC presenting low peptide doses induced weak TCR signaling via the Akt/mTOR pathway, resulting in significant expansion of Foxp3+ Treg. Furthermore, unpulsed G4DC, but not GMDC, also induced Treg. High peptide doses induced strong Akt/mTOR signaling and favored the expansion of Foxp3neg Th cells. The inverse correlation of Foxp3 and Akt/mTOR signaling was also observed in DO11.10 and OT-II TCR-Tg T cells and was recapitulated with anti-CD3/CD28 stimulation in the absence of DC. IL-6 production in these cultures correlated positively with antigen dose and inversely with Treg expansion. Studies with T cells or DC from IL-6−/− mice revealed that IL-6 production by T cells was more important in the inhibition of Treg induction at low antigen doses. These studies indicate that strength of Akt/mTOR signaling, a critical T cell intrinsic determinant for Treg vs Th induction, can be controlled by adjusting the dose of antigenic peptide. Furthermore, this operates in a dominant fashion over DC phenotype and cytokine production. PMID:19801514
1985-01-01
The cellular mechanism and genetic restriction of neonatally induced HA- specific suppressor T (Ts) cells have been examined. The in vivo effect of these Ts cells on antibody production, primary B cell proliferation, B cell surface marker changes, and helper T (Th) cell priming during primary responses to HA have been determined. The results indicate that, although antigen-induced B cell proliferative responses and surface marker changes occur in the presence of Ts cells, differentiation to Ig secretion, and long-lived memory B cell production are prevented. Further, antigen-specific Th cell priming is completely ablated by Ts cells, suggesting that Ts act by preventing the delivery of Th signals required for both the later stages of primary B cell maturation, and the formation of memory B cell populations. Finally, in vivo cell mixing experiments using congenic mice indicate that this Ts-Th interaction is restricted by loci on mouse chromosome 12. PMID:2580040
Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.
Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos
2018-03-01
Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.
Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten
2015-01-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512
Wiesner, Darin L; Specht, Charles A; Lee, Chrono K; Smith, Kyle D; Mukaremera, Liliane; Lee, S Thera; Lee, Chun G; Elias, Jack A; Nielsen, Judith N; Boulware, David R; Bohjanen, Paul R; Jenkins, Marc K; Levitz, Stuart M; Nielsen, Kirsten
2015-03-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection.
Srivastava, Raghvendra M.; Lee, Steve C.; Filho, Pedro A. Andrade; Lord, Christopher A.; Jie, Hyun-bae; Davidson, H. Carter; López-Albaitero, Andrés; Gibson, Sandra P.; Gooding, William E.; Ferrone, Soldano; Ferris, Robert L.
2013-01-01
Purpose Tumor antigen (TA)-specific monoclonal antibodies (mAb) block oncogenic signaling and induce Fcγ receptor (FcγR)-mediated cytotoxicity. However, the role of CD8+ cytotoxic T lymphocyte (CTL) and FcγR in initiating innate and adaptive immune responses in mAb-treated human cancer patients is still emerging. Experimental Design FcγRIIIa codon 158 polymorphism was correlated with survival in 107 cetuximab-treated head and neck cancer (HNC) patients. Flow cytometry was performed to quantify EGFR-specific T cells in cetuximab-treated HNC patients. The effect of cetuximab on NK cell, dendritic cell (DC), and T cell activation was measured using IFN-γ release assays and flow cytometry. Results FcγR IIIa polymorphism did not predict clinical outcome in cetuximab-treated HNC patients, however elevated circulating EGFR -specific CD8+ 853-861 T cells were found in cetuximab-treated HNC patients (p<0.005). Cetuximab promoted EGFR-specific cellular immunity through the interaction of EGFR+ tumor cells and FcγRIIIa on NK cells, but not on the polymorphism per se. Cetuximab-activated NK cells induced IFN-γ dependent expression of DC maturation markers, antigen presentation machinery (APM) components such as TAP-1/2, and Th1 chemokines through NKG2D/MICA binding. Cetuximab initiated adaptive immune responses via NK-cell induced DC maturation, which enhanced cross-presentation to CTL specific for EGFR as well as another TA, MAGE-3. Conclusion Cetuximab-activated NK cells promote DC maturation and CD8+ T cell priming, leading to TA spreading and Th1 cytokine release through ‘NK-DC cross-talk.’ FcγRIIIa polymorphism did not predict clinical response to cetuximab, but was necessary for NK-DC interaction and mAb induced cross-presentation. EGFR-specific T cells in cetuximab treated HNC patients may contribute to clinical response. PMID:23444227
Tharmalingam, J; Prabhakar, A T; Gangadaran, P; Dorny, P; Vercruysse, J; Geldhof, P; Rajshekhar, V; Alexander, M; Oommen, A
2016-10-01
Neurocysticercosis (NCC), Taenia solium larval infection of the brain, is an important cause of acquired seizures in endemic countries, which relate to number, location and degenerating cysts in the brain. Multicyst infections are common in endemic countries although single-cyst infection prevails in India. Single-cyst infections in an endemic country suggest a role for host immunity limiting the infection. This study examined ex vivo CD4(+) T cells and in vitro Th1 and Th2 cytokine responses to T. solium cyst antigens of peripheral blood mononuclear cells of healthy subjects from endemic and nonendemic regions and of single- and multicyst-infected patients for association with cyst burden of NCC. T. solium cyst antigens elicited a Th1 cytokine response in healthy subjects of T. solium-endemic and T. solium-non-endemic regions and those with single-cyst infections and a Th2 cytokine response from subjects with multicyst neurocysticercosis. Multicyst neurocysticercosis subjects also exhibited low levels of effector memory CD4(+) T cells. Th1 cytokine response of T. solium exposure and low infectious loads may aid in limiting cyst number. Th2 cytokines and low effector T cells may enable multiple-cyst infections to establish and persist. © 2016 John Wiley & Sons Ltd.
Modulation of IL-33/ST2-TIR and TLR signalling pathway by fingolimod and analogues in immune cells.
Rüger, K; Ottenlinger, F; Schröder, M; Zivković, A; Stark, H; Pfeilschifter, J M; Radeke, H H
2014-12-01
For the immune modulatory drug fingolimod (FTY720), lymphocyte sequestration has been extensively studied and accepted as mode of action. Further, direct effects on immune cell signalling are incompletely understood. Herein, we used the parent drug and newly synthesized analogues to investigate their effects on dendritic cell (DC) calcium signalling and on Th1, Th2 and Th17 responses. DC calcium signalling was determined with a single cell-based confocal assay and IL-33/ST2-TIR Th2-like response with ST2-transduced EL4-6.1 thymoma cells. The Th1/Th17 responses were examined with a LPS/TLR-enhanced antigen presentation assay with OVA-TCRtg CD4 and CD8 spleen cells. Our results revealed a comparable influence of fingolimod and S1P on intracellular calcium level in DC, while an oxy-derivative of fingolimod exhibited an EC50 of 3.3 nm, being 14 times more potent than FTY720-P. The IL-33/ST2-TIR Th2-like response in ST2-EL4 cells was inhibited by fingolimod and analogues at varying degrees. Using the OVA-TCRtg LPS/TLR-enhanced spleen cell assay, we found that fingolimod inhibited both IL-17 and IFN-γ production. In contrast, fingolimod phosphate failed to decrease Th1 cytokines. Interestingly, the effects of the parent compound fingolimod were modulated by the PP2A inhibitor okadaic acid, thus suggesting PP2A as relevant intracellular target. These studies describe detailed immune-modulating properties of fingolimod, including interference with a prototypical Th2 response via IL-33/ST2-TIR. Moreover, differential effects of fingolimod versus its phosphorylated derivative on TLR-activated and antigen-dependent Th1 activation suggest PP2A as an additional target of fingolimod immune therapy. Together with the analogues tested, these data may guide the development of more specific fingolimod derivatives. © 2014 John Wiley & Sons Ltd.
Li, Jianqiang; Ge, Jun; Ren, Sulin; Zhou, Tong; Sun, Ying; Sun, Honglin; Gu, Yue; Huang, Hongying; Xu, Zhenxing; Chen, Xiaoxiao; Xu, Xiaowei; Zhuang, Xiaoqian; Song, Cuiling; Jia, Fangmiao; Xu, Aiguo; Yin, Xiaojin; Du, Sean X
2015-08-20
Hepatitis B virus infection is a non-cytopathic hepatotropic virus which can lead to chronic liver disease and hepatocellular carcinoma. Traditional therapies fail to provide sustained control of viral replication and liver damage in most patients. As an alternative strategy, immunotherapeutic approaches have shown promising efficacy in the treatment of chronic hepatitis B patients. Here, we investigated the efficacy of a novel therapeutic vaccine formulation consisting of two HBV antigens, HBsAg and HBcAg, and CpG adjuvant. This vaccine formulation elicits forceful humoral responses directed against HBsAg/HBcAg, and promotes a Th1/Th2 balance response against HBsAg and a Th1-biased response against HBcAg in both C57BL/6 and HBV transgenic mice. Vigorous cellular immune response was also detected in HBV transgenic mice, for a significantly higher number of HBs/HBc-specific IFN-γ secreting CD4+ and CD8+ T cells was generated. Moreover, vaccinated mice elicited significantly intense in vivo CTL attack, reduced serum HBsAg level without causing liver damage in HBV transgenic mice. In summary, this study demonstrates a novel therapeutic vaccine with the potential to elicit vigorous humoral and cellular response, overcoming tolerance in HBV transgenic mice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aebischer, Toni; Wolfram, Markus; Patzer, Silke I.; Ilg, Thomas; Wiese, Martin; Overath, Peter
2000-01-01
A mixture of well-defined recombinant antigens together with an adjuvant that preferentially stimulates specific gamma interferon (IFN-γ)-secreting helper type 1 CD4+ T cells (Th1 cells) presents a rational option for a vaccine against leishmaniasis. The potential of this approach was investigated in murine infections with Leishmania mexicana, which are characterized by the absence of a parasite-specific Th1 response and uncontrolled parasite proliferation. A mixture of three antigens (glycoprotein 63, cysteine proteinases, and a membrane-bound acid phosphatase), which are all expressed in amastigotes, the mammalian stage of the parasite, were used for the immunization of C57BL/6 mice in combination with six adjuvants (interleukin 12 [IL-12], Detox, 4′-monophosphoryl lipid A, QS-21, Mycobacterium bovis BCG, and Corynebacterium parvum). All six vaccine formulations containing the mixture of recombinant antigens were protective against challenge infections with promastigotes, the insect stage of the parasite, in that mice controlled and healed infections but developed transient and, in certain cases, accentuated disease. The most effective adjuvants were IL-12 followed by Detox. Further studies using these two adjuvants showed that a similar protective effect was observed with a mixture of the corresponding native proteins, and mice which had controlled the infection showed a preponderance of IFN-γ-secreting CD4+ T cells in the lymph nodes draining the lesion. Using the recombinant proteins individually, it is shown that the relatively abundant cysteine proteinases and glycoprotein 63, but not the acid phosphatase, are able to elicit a protective response. The results are discussed in comparison to previous studies with subunit vaccines and with respect to cell biological aspects of antigen presentation in Leishmania-infected macrophages. PMID:10678945
Turned on by danger: activation of CD1d-restricted invariant natural killer T cells
Lawson, Victoria
2012-01-01
CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)–antigen–CD1d complex show how docking between CD1d–antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand–CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR–self-antigen–CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity. PMID:22734667
Sassi, Atfa; Kaak, Olfa; Elgaaied, Amel Benammar
2015-08-24
The C57BL/6 mouse strain is resistant to Leishmania (L.) major infection and, unlike susceptible BALB/c, develops small self healing cutaneous lesions. The specific antibody responses of C57BL/6 and BALB/c mice were previously characterized by the predominance of IgG2a ("resistant" isotype associated with Th1) and IgG1 ("pathogenic" isotype associated with Th2) antibodies, respectively. In this study, we looked for the presence of antigens able to elicit an exclusive or predominant IgG1 production during the early stages of C57BL/6 lesion development and checked whether they are recognized or not by BALB/c mice. We demonstrate first that IgG2a predominance in C57BL/6 sera occurs only late after infection whereas in BALB/c, IgG1 antibodies dominate mostly in the early stages. Interestingly, soon after inoculation of live amastigotes, C57BL/6 displayed an exclusive IgG1 reactivity against particular L. major antigens but with MWs different from those identified in BALB/c. Furthermore, mice immunized with killed amastigotes displayed striking differences in their immunodetection profiles, particularly for the IgG1 isotype. Taken together, the observed differences in the specific antibody repertoires between infected mice resulted, at least in part, from immunological events independent from those triggered by the replicating parasite, and bring new insights into the selection of future vaccine candidates. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Mikecz, Katalin; Glant, Tibor T; Markovics, Adrienn; Rosenthal, Kenneth S; Kurko, Julia; Carambula, Roy E; Cress, Steve; Steiner, Harold L; Zimmerman, Daniel H
2017-07-13
Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lv, Jin; Zhang, Ying-Ying; Lu, Xun; Zhang, Hao; Wei, Lin; Gao, Jun; Hu, Bin; Hu, Wen-Wei; Hu, Dun-Zhong; Jia, Na; Feng, Xin
2017-03-01
The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Marciani, Dante J
2016-06-01
The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines. © 2016 International Society for Neurochemistry.
Maywald, Martina; Rink, Lothar
2017-08-01
The essential trace element zinc plays a fundamental role in immune function and regulation since its deficiency is associated with autoimmunity, allergies, and transplant rejection. Thus, we investigated the influence of zinc supplementation on the Th1-driven alloreaction in mixed lymphocyte cultures (MLC), on generation of antigen-specific T cells, and analyzed underlying molecular mechanisms. Cell proliferation and pro-inflammatory cytokine production were monitored by [ 3 H]-thymidine proliferation assay and ELISA, respectively. Analysis of surface and intracellular T cell marker was performed by flow cytometry. Western blotting and mRNA analysis were used for Foxp3, KLF-10, and IRF-1 expression. Zinc supplementation on antigen-specific T cells in physiological doses (50 µM) provokes a significant amelioration of cell proliferation and pro-inflammatory cytokine production after reactivation compared to untreated controls. Zinc administration on MLC results in an increased induction and stabilization of CD4 + CD25 + Foxp3 + and CD4 + CD25 + CTLA-4 + T cells (p < 0.05). The effect is based on zinc-induced upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. However, in resting lymphocytes zinc increases IRF-1. In summary, zinc is capable of ameliorating the allogeneic immune reaction by enhancement of antigen-specific iTreg cells due to modulation of essential molecular targets: Foxp3, KLF-10, and IRF-1. Thus, zinc can be seen as an auspicious tool for inducing tolerance in adverse immune reactions.
Coupet, Charles-Antoine; Gouanvic, Marie; Schmitt, Doris; Ray, Aurélie; Hoffmann, Chantal; Schultz, Huguette; Tyagi, Sandeep; Soni, Heena; Converse, Paul J.; Arias, Lilibeth; Kleinpeter, Patricia; Sansas, Benoît; Mdluli, Khisimuzi; Vilaplana, Cristina; Cardona, Pere-Joan; Nuermberger, Eric; Marchand, Jean-Baptiste; Silvestre, Nathalie; Inchauspé, Geneviève
2018-01-01
Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host’s immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections. PMID:29718990
Leung-Theung-Long, Stéphane; Coupet, Charles-Antoine; Gouanvic, Marie; Schmitt, Doris; Ray, Aurélie; Hoffmann, Chantal; Schultz, Huguette; Tyagi, Sandeep; Soni, Heena; Converse, Paul J; Arias, Lilibeth; Kleinpeter, Patricia; Sansas, Benoît; Mdluli, Khisimuzi; Vilaplana, Cristina; Cardona, Pere-Joan; Nuermberger, Eric; Marchand, Jean-Baptiste; Silvestre, Nathalie; Inchauspé, Geneviève
2018-01-01
Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host's immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.
Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nallapali, Samson; Verma, Dheeraj; Singh, Nameirakpam D.; Banks, Robert K.; Chakrabarti, Debopam; Daniell, Henry
2009-01-01
Summary Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10+ T cell but not Foxp3+ regulatory T cells, suppression of interferon-γ and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity. PMID:20051036
Pitoiset, Fabien; Vazquez, Thomas; Levacher, Beatrice; Nehar-Belaid, Djamel; Dérian, Nicolas; Vigneron, James; Klatzmann, David; Bellier, Bertrand
2017-11-01
Retrovirus-derived virus-like particles (VLPs) are particularly interesting vaccine platforms, as they trigger efficient humoral and cellular immune responses and can be used to display heterologous antigens. In this study, we characterized the intrinsic immunogenicity of VLPs and investigated their possible adjuvantization by incorporation of Toll-like receptor (TLR) ligands. We designed a noncoding single-stranded RNA (ncRNA) that could be encapsidated by VLPs and induce TLR7/8 signaling. We found that VLPs efficiently induce in vitro dendritic cell activation, which can be improved by ncRNA encapsidation ( ncRNA VLPs). Transcriptome studies of dendritic cells harvested from the spleens of immunized mice identified antigen presentation and immune activation as the main gene expression signatures induced by VLPs, while TLR signaling and Th1 signatures characterize ncRNA VLPs. In vivo and compared with standard VLPs, ncRNA VLPs promoted Th1 responses and improved CD8 + T cell proliferation in a MyD88-dependent manner. In an HIV vaccine mouse model, HIV-pseudotyped ncRNA VLPs elicited stronger antigen-specific cellular and humoral responses than VLPs. Altogether, our findings provide molecular evidence for a strong vaccine potential of retrovirus-derived VLPs that can be further improved by harnessing TLR-mediated immune activation. IMPORTANCE We previously reported that DNA vaccines encoding antigens displayed in/on retroviral VLPs are more efficient than standard DNA vaccines at inducing cellular and humoral immune responses. We aimed to decipher the mechanisms and investigated the VLPs' immunogenicity independently of DNA vaccination. We show that VLPs have the ability to activate antigen-presenting cells directly, thus confirming their intrinsic immunostimulatory properties and their potential to be used as an antigenic platform. Notably, this immunogenicity can be further improved and/or oriented by the incorporation into VLPs of ncRNA, which provides further TLR-mediated activation and Th1-type CD4 + and CD8 + T cell response orientation. Our results highlight the versatility of retrovirus-derived VLP design and the value of using ncRNA as an intrinsic vaccine adjuvant. Copyright © 2017 American Society for Microbiology.
Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuyama, Yoshiko; Tokuhara, Daisuke; Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639
Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FLmore » activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.« less
NASA Astrophysics Data System (ADS)
Weiner, George J.; Liu, Hsin-Ming; Wooldridge, James E.; Dahle, Christopher E.; Krieg, Arthur M.
1997-09-01
Recent advances in our understanding of the immune response are allowing for the logical design of new approaches to cancer immunization. One area of interest is the development of new immune adjuvants. Immunostimulatory oligodeoxynucleotides containing the CpG motif (CpG ODN) can induce production of a wide variety of cytokines and activate B cells, monocytes, dendritic cells, and NK cells. Using the 38C13 B cell lymphoma model, we assessed whether CpG ODN can function as immune adjuvants in tumor antigen immunization. The idiotype served as the tumor antigen. Select CpG ODN were as effective as complete Freund's adjuvant at inducing an antigen-specific antibody response but were associated with less toxicity. These CpG ODN induced a higher titer of antigen-specific IgG2a than did complete Freund's adjuvant, suggesting an enhanced TH1 response. Mice immunized with CpG ODN as an adjuvant were protected from tumor challenge to a degree similar to that seen in mice immunized with complete Freund's adjuvant. We conclude that CpG ODN are effective as immune adjuvants and are attractive as part of a tumor immunization strategy.
Veselenak, Ronald L.; Li, Yansong; Yu, Jieh-Juen; Murthy, Ashlesh K.; Cap, Andrew P.; Guentzel, M. Neal; Chambers, James P.; Zhong, Guangming; Rank, Roger G.; Pyles, Richard B.; Arulanandam, Bernard P.
2014-01-01
Guinea pigs have been used as a second animal model to validate putative anti-chlamydial vaccine candidates tested in mice. However, the lack of guinea pig-specific reagents has limited the utility of this animal model in Chlamydia sp. vaccine studies. Using a novel guinea pig-specific transcriptome array, we determined correlates of protection in guinea pigs vaccinated with Chlamydia caviae (C. caviae) via the intranasal route, previously reported by us and others to provide robust antigen specific immunity against subsequent intravaginal challenge. C. caviae vaccinated guinea pigs resolved genital infection by day 3 post challenge. In contrast, mock vaccinated animals continued to shed viable Chlamydia up to day 18 post challenge. Importantly, at day 80 post challenge, vaccinated guinea pigs experienced significantly reduced genital pathology - a sequelae of genital chlamydial infections, in comparison to mock vaccinated guinea pigs. Sera from vaccinated guinea pigs displayed antigen specific IgG responses and increased IgG1 and IgG2 titers capable of neutralizing GPIC in vitro. Th1-cellular/inflammatory immune genes and Th2-humoral associated genes were also found to be elevated in vaccinated guinea pigs at day 3 post-challenge and correlated with early clearance of the bacterium. Overall, this study provides the first evidence of guinea pig-specific genes involved in anti-chlamydial vaccination and illustrates the enhancement of the utility of this animal model in chlamydial pathogenesis. PMID:25502875
Matsuda, Masaya; Doi, Kana; Tsutsumi, Tatsuya; Fujii, Shinya; Kishima, Maki; Nishimura, Kazuma; Kuroda, Ikue; Tanahashi, Yu; Yuasa, Rino; Kinjo, Toshihiko; Kuramoto, Nobuyuki; Mizutani, Nobuaki; Nabe, Takeshi
2017-10-05
Anti-inflammatory pharmacotherapy for asthma has mainly depended on the inhalation of glucocorticoids, which non-specifically suppress immune responses. If the anti-inflammatory cytokine interleukin (IL)-10 can be induced by a specific antigen, asthmatic airway inflammation could be suppressed when individuals are exposed to the antigen. The purpose of this study was to develop cellular immunotherapeutics for atopic diseases using IL-10-producing CD4 + T cells. Spleen cells isolated from ovalbumin (OVA)-sensitized mice were cultured with the antigen, OVA and growth factors, IL-21, IL-27 and TGF-β for 7 days. After the 7-day culture, the CD4 + T cells were purified using a murine CD4 magnetic beads system. When the induced CD4 + T cells were stimulated by OVA in the presence of antigen-presenting cells, IL-10 was preferentially produced in vitro. When CD4 + T cells were adoptively transferred to OVA-sensitized mice followed by intratracheal OVA challenges, IL-10 was preferentially produced in the serum and bronchoalveolar lavage fluid in vivo. IL-10 production coincided with the inhibition of eosinophilic airway inflammation and epithelial mucus plugging. Most of the IL-10-producing CD4 + T cells were negative for Foxp3 and GATA-3, transcription factors of naturally occurring regulatory T cells and Th2 cells, respectively, but double positive for LAG-3 and CD49b, surface markers of inducible regulatory T cells, Tr1 cells. Collectively, most of the induced IL-10-producing CD4 + T cells could be Tr1 cells, which respond to the antigen to produce IL-10, and effectively suppressed allergic airway inflammation. The induced Tr1 cells may be useful for antigen-specific cellular immunotherapy for atopic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Portela, Áquila S B; Costa, Lourena E; Salles, Beatriz C S; Lima, Mariana P; Santos, Thaís T O; Ramos, Fernanda F; Lage, Daniela P; Martins, Vívian T; Caligiorne, Rachel B; Lessa, Daniela R; Silva, Fabiana R; Machado, Amanda S; Nascimento, Guilherme F; Gama, Isabela S; Chávez-Fumagalli, Miguel A; Teixeira, Antonio L; Rocha, Manoel O C; Rocha, Regina L; Coelho, Eduardo A F
2018-03-01
Visceral leishmaniasis (VL) is a potentially fatal disease, in which the treatment based on chemotherapy is considered toxic. The cure of disease is associated with the life-long Th1-type immunity against the infection. The Th1-related cytokines production by peripheral blood mononuclear cells (PBMCs) seems to be crucial for host control of parasite load and clinical cure. In the current study, we used five proteins (IgE-dependent histamine-releasing factor [HRF], LiHyD, LiHyV, LiHyT and LiHyp6) recently shown to be antigenic and/or immunogenic in the canine VL, aiming to evaluate the antigen-specific antibody levels and cytokine production in PBMCs culture supernatants collected from VL patients before and after anti-VL treatment. In the results, when PBMCs were exposed to rHRF, rLiHyD and rLiHyT, higher IFN-γ and lower IL-10 levels were observed in all patients that were treated and clinically cured. Analysis of specific antibody subclasses was in line with in vitro cellular response, since a higher IgG2 production was found in the treated and cured patients, when compared to the IgG1 subclass levels. In addition, evaluating the diagnostic efficacy of the recombinant molecules, the rHRF, rLiHyD and rLiHyT proteins showed the best results in the serology assays to identify all VL patients, as well as these antigens were not recognized by antibodies in sera from non-infected subjects or those with leishmaniasis-related diseases. Our results corroborate the view that clinical cure of VL is associated with a sustained Th1-related response, and indicate the potential use of rHRF, rLiHyD and rLiHyT as immune biomarkers of VL treatment. Copyright © 2017 Elsevier GmbH. All rights reserved.
Lakhrif, Zineb; Moreau, Alexis; Hérault, Bruno; Di-Tommaso, Anne; Juste, Matthieu; Moiré, Nathalie; Dimier-Poisson, Isabelle; Mévélec, Marie-Noëlle; Aubrey, Nicolas
2018-01-01
Toxoplasmosis is a major public health problem and the development of a human vaccine is of high priority. Efficient vaccination against Toxoplasma gondii requires both a mucosal and systemic Th1 immune response. Moreover, dendritic cells play a critical role in orchestrating the innate immune functions and driving specific adaptive immunity to T. gondii. In this study, we explore an original vaccination strategy that combines administration via mucosal and systemic routes of fusion proteins able to target the major T. gondii surface antigen SAG1 to DCs using an antibody fragment single-chain fragment variable (scFv) directed against DEC205 endocytic receptor. Our results show that SAG1 targeting to DCs by scFv via intranasal and subcutaneous administration improved protection against chronic T. gondii infection. A marked reduction in brain parasite burden is observed when compared with the intranasal or the subcutaneous route alone. DC targeting improved both local and systemic humoral and cellular immune responses and potentiated more specifically the Th1 response profile by more efficient production of IFN-γ, interleukin-2, IgG2a, and nasal IgA. This study provides evidence of the potential of DC targeting for the development of new vaccines against a range of Apicomplexa parasites. PMID:29515595
Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells
Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E.; Wang, Rong-Fu; Wang, Helen Y.
2015-01-01
Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8+ T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4+ T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4+ T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4+ Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4+ T cell-mediated immunotherapy in melanoma. PMID:25993655
Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells.
Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E; Wang, Rong-Fu; Wang, Helen Y
2015-01-01
Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8(+) T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4(+) T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4(+) T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4(+) Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4(+) T cell-mediated immunotherapy in melanoma.
Vonk, Marlotte M; Wagenaar, Laura; Pieters, Raymond H H; Knippels, Leon M J; Willemsen, Linette E M; Smit, Joost J; van Esch, Betty C A M; Garssen, Johan
2017-01-01
Antigen-specific immunotherapy (AIT) is a promising therapeutic approach for both cow's milk allergy (CMA) and peanut allergy (PNA), but needs optimization in terms of efficacy and safety. Compare oral immunotherapy (OIT) and subcutaneous immunotherapy (SCIT) in murine models for CMA and PNA and determine the dose of allergen needed to effectively modify parameters of allergy. Female C3H/HeOuJ mice were sensitized intragastrically (i.g.) to whey or peanut extract with cholera toxin. Mice were treated orally (5 times/week) or subcutaneously (3 times/week) for three consecutive weeks. Hereafter, the acute allergic skin response, anaphylactic shock symptoms and body temperature were measured upon intradermal (i.d.) and intraperitoneal (i.p.) challenge, and mast cell degranulation was measured upon i.g. challenge. Allergen-specific IgE, IgG1 and IgG2a were measured in serum at different time points. Single cell suspensions derived from lymph organs were stimulated with allergen to induce cytokine production and T cell phenotypes were assessed using flow cytometry. Both OIT and SCIT decreased clinically related signs upon challenge in the CMA and PNA model. Interestingly, a rise in allergen-specific IgE was observed during immunotherapy, hereafter, treated mice were protected against the increase in IgE caused by allergen challenge. Allergen-specific IgG1 and IgG2a increased due to both types of AIT. In the CMA model, SCIT and OIT reduced the percentage of activated Th2 cells and increased the percentage of activated Th1 cells in the spleen. OIT increased the percentage of regulatory T cells (Tregs) and activated Th2 cells in the MLN. Th2 cytokines IL-5, IL-13 and IL-10 were reduced after OIT, but not after SCIT. In the PNA model, no differences were observed in percentages of T cell subsets. SCIT induced Th2 cytokines IL-5 and IL-10, whereas OIT had no effect. We have shown clinical protection against allergic manifestations after OIT and SCIT in a CMA and PNA model. Although similar allergen-specific antibody patterns were observed, differences in T cell and cytokine responses were shown. Whether these findings are related to a different mechanism of AIT in CMA and PNA needs to be elucidated.
Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*
Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva
2018-01-01
Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367
Potential immunomodulatory effects of plant lectins in Schistosoma mansoni infection.
Reis, Eliana A G; Athanazio, Daniel A; Cavada, Benildo Sousa; Teixeira, Edson Holanda; de Paulo Teixeira Pinto, Vicente; Carmo, Theomira M A; Reis, Alice; Trocolli, Graziela; Croda, Julio; Harn, Donald; Barral-Netto, Manoel; Reis, Mitermayer G
2008-01-01
Lectins are sugar-binding glycoproteins that can stimulate, in a non-antigen-specific fashion, lymphocytes, leading to proliferation and cytokine production. Some lectins are utilized as in vitro mitogenic lymphocyte stimulators and their use as immunomodulators against infectious diseases has been evaluated experimentally. In the experimental murine model, the immune response to schistosomiasis is Th1-like during the initial stage of infection, with a shift towards a Th2-like response after oviposition. We report the response of schistosomiasis patients' (n=37) peripheral blood mononuclear cells (PBMC) to stimulation by lectins, including newly isolated lectins from Brazilian flora, and by Schistosomamansoni soluble egg antigens (SEA). Cytokine production upon lectin stimulation ex vivo was assessed in PBMC supernatants, collected at 24 and 72 h, by sandwich ELISA to IL-5, IL-10, TNF-alpha and IFN-gamma. In PBMC from infected patients all but one of the lectins induced a Th2-like cytokine response, characterized by elevated IL-5 production that was higher than that induced by SEA stimulation alone. Our results show that the Th2 environment present during schistosomiasis is not affected and that it may be further stimulated by the presence of lectins.
[Anaphylactic reactions to low-molecular weight chemicals].
Nowak, Daria; Panaszek, Bernard
2015-02-06
Low-molecular weight chemicals (haptens) include a large group of chemical compounds occurring in work environment, items of everyday use (cleaning products, clothing, footwear, gloves, furniture), jewelry (earrings, bracelets), drugs, especially in cosmetics. They cause type IV hypersensitive reactions. During the induction phase of delayed-type hypersensitivity, haptens form complexes with skin proteins. After internalization through antigen presenting cells, they are bound to MHC class II molecules. Next, they are exposed against specific T-lymphocytes, what triggers activation of Th1 cells mainly. After repeating exposition to that hapten, during effector phase, Th1 induce production of cytokines affecting non-specific inflammatory cells. Usually, it causes contact dermatitis. However, occasionally incidence of immediate generalized reactions after contact with some kinds of haptens is noticed. A question arises, how the hapten does induce symptoms which are typical for anaphylaxis, and what contributes to amplification of this mechanism. It seems that this phenomenon arises from pathomechanism occurring in contact urticaria syndrome in which an anaphylactic reaction may be caused either by contact of sensitized skin with protein antigens, high-molecular weight allergens, or haptens. One of the hypotheses indicates the leading role of basophiles in this process. Their contact with haptens, may cause to release mediators of immediate allergic reaction (histamine, eicosanoids) and to produce cytokines corresponding to Th2 cells profile. Furthermore, Th17 lymphocytes secreting pro-inflammatory interleukin-17 might be engaged into amplifying hypersensitivity into immediate reactions and regulatory T-cells may play role in the process, due to insufficient control of the activity of effector cells.
Zhou, Xiao-Yang; Zhu, Fa-Ming; Li, Jian-Ping; Mao, Wei; Zhang, De-Mei; Liu, Meng-Li; Hei, Ai-Lian; Dai, Da-Peng; Jiang, Ping; Shan, Xiao-Yan; Zhang, Bo-Wei; Zhu, Chuan-Fu; Shen, Jie; Deng, Zhi-Hui; Wang, Zheng-Lei; Yu, Wei-Jian; Chen, Qiang; Qiao, Yan-Hui; Zhu, Xiang-Ming; Lv, Rong; Li, Guo-Ying; Li, Guo-Liang; Li, Heng-Cong; Zhang, Xu; Pei, Bin; Jiao, Li-Xin; Shen, Gang; Liu, Ying; Feng, Zhi-Hui; Su, Yu-Ping; Xu, Zhao-Xia; Di, Wen-Ying; Jiang, Yao-Qin; Fu, Hong-Lei; Liu, Xiang-Jun; Liu, Xiang; Zhou, Mei-Zhen; Du, Dan; Liu, Qi; Han, Ying; Zhang, Zhi-Xin; Cai, Jian-Ping
2015-01-01
Allogeneic hematopoietic stem cell transplantation is a widely used and effective therapy for hematopoietic malignant diseases and numerous other disorders. High-resolution human leukocyte antigen (HLA) haplotype frequency distributions not only facilitate individual donor searches but also determine the probability with which a particular patient can find HLA-matched donors in a registry. The frequencies of the HLA-A, -B, -C, -DRB1, and -DQB1 alleles and haplotypes were estimated among 169,995 Chinese volunteers using the sequencing-based typing (SBT) method. Totals of 191 HLA-A, 244 HLA-B, 146 HLA-C, 143 HLA-DRB1 and 47 HLA-DQB1 alleles were observed, which accounted for 6.98%, 7.06%, 6.46%, 9.11% and 7.91%, respectively, of the alleles in each locus in the world (IMGT 3.16 Release, Apr. 2014). Among the 100 most common haplotypes from the 169,995 individuals, nine distinct haplotypes displayed significant regionally specific distributions. Among these, three were predominant in the South China region (i.e., the 20th, 31st, and 81sthaplotypes), another three were predominant in the Southwest China region (i.e., the 68th, 79th, and 95th haplotypes), one was predominant in the South and Southwest China regions (the 18th haplotype), one was relatively common in the Northeast and North China regions (the 94th haplotype), and one was common in the Northeast, North and Northwest China (the 40th haplotype). In conclusion, this is the first to analyze high-resolution HLA diversities across the entire country of China, based on a detailed and complete data set that covered 31 provinces, autonomous regions, and municipalities. Specifically, we also evaluated the HLA matching probabilities within and between geographic regions and analyzed the regional differences in the HLA diversities in China. We believe that the data presented in this study might be useful for unrelated HLA-matched donor searches, donor registry planning, population genetic studies, and anthropogenesis studies. PMID:26421847
Patients with cystic fibrosis have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes.
Chan, Yvonne R; Chen, Kong; Duncan, Steven R; Lathrop, Kira L; Latoche, Joseph D; Logar, Alison J; Pociask, Derek A; Wahlberg, Brendon J; Ray, Prabir; Ray, Anuradha; Pilewski, Joseph M; Kolls, Jay K
2013-04-01
IL-17 is an important cytokine signature of the TH differentiation pathway TH17. This T-cell subset is crucial in mediating autoimmune disease or antimicrobial immunity in animal models, but its presence and role in human disease remain to be completely characterized. We set out to determine the frequency of TH17 cells in patients with cystic fibrosis (CF), a disease in which there is recurrent infection with known pathogens. Explanted lungs from patients undergoing transplantation or organ donors (CF samples=18; non-CF, nonbronchiectatic samples=10) were collected. Hilar nodes and parenchymal lung tissue were processed and examined for TH17 signature by using immunofluorescence and quantitative real-time PCR. T cells were isolated and stimulated with antigens from Pseudomonas aeruginosa and Aspergillus species. Cytokine profiles and staining with flow cytometry were used to assess the reactivity of these cells to antigen stimulation. We found a strong IL-17 phenotype in patients with CF compared with that seen in control subjects without CF. Within this tissue, we found pathogenic antigen-responsive CD4+IL-17+ cells. There were double-positive IL-17+IL-22+ cells [TH17(22)], and the IL-22+ population had a higher proportion of memory characteristics. Antigen-specific TH17 responses were stronger in the draining lymph nodes compared with those seen in matched parenchymal lungs. Inducible proliferation of TH17(22) with memory cell characteristics is seen in the lungs of patients with CF. The function of these individual subpopulations will require further study regarding their development. T cells are likely not the exclusive producers of IL-17 and IL-22, and this will require further characterization. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Impairments of Antigen-Presenting Cells in Pulmonary Tuberculosis
Sakhno, Ludmila V.; Shevela, Ekaterina Ya.; Tikhonova, Marina A.; Nikonov, Sergey D.; Ostanin, Alexandr A.; Chernykh, Elena R.
2015-01-01
The phenotype and functional properties of antigen-presenting cells (APC), that is, circulating monocytes and generated in vitro macrophages and dendritic cells, were investigated in the patients with pulmonary tuberculosis (TB) differing in lymphocyte reactivity to M. tuberculosis antigens (PPD-reactive versus PPD-anergic patients). We revealed the distinct impairments in patient APC functions. For example, the monocyte dysfunctions were displayed by low CD86 and HLA-DR expression, 2-fold increase in CD14+CD16+ expression, the high numbers of IL-10-producing cells, and enhanced IL-10 and IL-6 production upon LPS-stimulation. The macrophages which were in vitro generated from peripheral blood monocytes under GM-CSF were characterized by Th1/Th2-balance shifting (downproduction of IFN-γ coupled with upproduction of IL-10) and by reducing of allostimulatory activity in mixed lymphocyte culture. The dendritic cells (generated in vitro from peripheral blood monocytes upon GM-CSF + IFN-α) were characterized by impaired maturation/activation, a lower level of IFN-γ production in conjunction with an enhanced capacity to produce IL-10 and IL-6, and a profound reduction of allostimulatory activity. The APC dysfunctions were found to be most prominent in PPD-anergic patients. The possible role of APC impairments in reducing the antigen-specific T-cell response to M. tuberculosis was discussed. PMID:26339660
Bortolatto, Juliana; Mirotti, Luciana; Rodriguez, Dunia; Gomes, Eliane; Russo, Momtchilo
2015-01-01
Aluminum salts gels (alum) are TLR-independent adjuvants and have been used to boost antibody responses in alum-based vaccines such as diphtheria, pertussis, and tetanus toxoid (DPT) triple vaccine. However, the pro-Th2 activity of alum-based vaccine formulations has not been fully appreciated. Here we found that alum-based tetanus toxoid (TT) vaccine was biased toward a Th-2 profile as shown by TT-induced airway eosinophilic inflammation, type 2 cytokine production, and high levels of IgE anaphylactic antibodies. The adsorption into alum of prototypic TLR4 agonists such as lipopolysaccharides (LPS) derived from Escherichia coli consistently dampened TT-induced Th2 activities without inducing IFNγ or Th1-like responses in the lung. Conversely, adsorption of monophosphoryl lipid A (MPLA) extracted from Salmonella minnesota, which is a TIR-domain-containing adapter-inducing interferon-β- (TRIF-) biased TLR4 agonist, was less effective in decreasing Th-2 responses. Importantly, in a situation with antigenic competition (OVA plus TT), TT-specific IgG1 or IgG2a was decreased compared with TT sensitization. Notably, LPS increased the production of IgG1 and IgG2a TT-specific antibodies. In conclusion, the addition of LPS induces a more robust IgG1 and IgG2a TT-specific antibody production and concomitantly decreases Th2-cellular and humoral responses, indicating a potential use of alum/TLR-based vaccines.
Marks, Benjamin R.; Nowyhed, Heba N.; Choi, Jin-Young; Poholek, Amanda C.; Odegard, Jared M.; Flavell, Richard A.; Craft, Joe
2009-01-01
Interleukin 17 (IL-17)-producing CD4+ T (TH-17) cells share a developmental relationship with FoxP3+ regulatory T (Treg) cells. Here we show that a TH-17 population differentiates within the thymus in a manner influenced by self-antigen recognition, and by the cytokines IL-6 and transforming growth factor (TGF)-β. Like previously described TH-17 cells, TH-17 cells that develop in the thymus expressed the orphan nuclear receptor RORγt and the IL-23 receptor. These cells also expressed α4β1 integrins and the chemokine receptor CCR6, and were recruited to the lung, gut, and liver. In the liver these cells secreted IL-22 in response to self-antigen and mediated host protection during inflammation. Thus, TH-17 cells, like Treg cells, can be selected by self-antigens in the thymus. PMID:19734905
Bhaumik, Suniti; Basu, Rajatava
2017-01-01
After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs. PMID:28408906
Querec, Troy; Bennouna, Soumaya; Alkan, Sefik; Laouar, Yasmina; Gorden, Keith; Flavell, Richard; Akira, Shizuo; Ahmed, Rafi; Pulendran, Bali
2006-02-20
The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most effective vaccines available, with a 65-yr history of use in >400 million people globally. Despite this efficacy, there is presently no information about the immunological mechanisms by which YF-17D acts. Here, we present data that suggest that YF-17D activates multiple Toll-like receptors (TLRs) on dendritic cells (DCs) to elicit a broad spectrum of innate and adaptive immune responses. Specifically, YF-17D activates multiple DC subsets via TLRs 2, 7, 8, and 9 to elicit the proinflammatory cytokines interleukin (IL)-12p40, IL-6, and interferon-alpha. Interestingly, the resulting adaptive immune responses are characterized by a mixed T helper cell (Th)1/Th2 cytokine profile and antigen-specific CD8+ T cells. Furthermore, distinct TLRs appear to differentially control the Th1/Th2 balance; thus, whilst MyD88-deficient mice show a profound impairment of Th1 cytokines, TLR2-deficient mice show greatly enhanced Th1 and Tc1 responses to YF-17D. Together, these data enhance our understanding of the molecular mechanism of action of YF-17D, and highlight the potential of vaccination strategies that use combinations of different TLR ligands to stimulate polyvalent immune responses.
Cendron, Delphine; Ingoure, Sophie; Martino, Angelo; Casetti, Rita; Horand, Françoise; Romagné, François; Sicard, Hélène; Fournié, Jean-Jacques; Poccia, Fabrizio
2007-02-01
Phosphoantigens are mycobacterial non-peptide antigens that might enhance the immunogenicity of current subunit candidate vaccines for tuberculosis. However, their testing requires monkeys, the only animal models suitable for gammadelta T cell responses to mycobacteria. Thus here, the immunogenicity of 6-kDa early secretory antigenic target-mycolyl transferase complex antigen 85B (ESAT-6-Ag85B) (H-1 hybrid) fusion protein associated or not to a synthetic phosphoantigen was compared by a prime-boost regimen of two groups of eight cynomolgus. Although phosphoantigen activated immediately a strong release of systemic Th1 cytokines (IL-2, IL-6, IFN-gamma, TNF-alpha), it further anergized blood gammadelta T lymphocytes selectively. By contrast, the hybrid H-1 induced only memory alphabeta T cell responses, regardless of phosphoantigen. These latter essentially comprised cytotoxic T lymphocytes specific for Ag85B (on average + 430 cells/million PBMC) and few IFN-gamma-secreting cells (+ 40 cells/million PBMC, equally specific for ESAT-6 and for Ag85B). Hence, in macaques, a prime-boost with the H-1/phosphoantigen subunit combination induces two waves of immune responses, successively by gammadelta T and alphabeta T lymphocytes.
van der Lee, Saskia; Kemmeren, Jeanet M; de Rond, Lia G H; Öztürk, Kemal; Westerhof, Anneke; de Melker, Hester E; Sanders, Elisabeth A M; Berbers, Guy A M; van der Maas, Nicoline A T; Rümke, Hans C; Buisman, Anne-Marie
2017-09-01
In the Netherlands, acellular pertussis vaccines replaced the more reactogenic whole-cell pertussis vaccines. This replacement in the primary immunization schedule of infants coincided with a significant increase in pronounced local adverse events (AEs) in 4 years old children shortly after the administration of a fifth diphtheria, tetanus, acellular pertussis and inactivated polio (DTaP-IPV) vaccine. The objective of this study was to investigate possible differences in vaccine antigen-specific immune responses between children with and without a pronounced local AE after the fifth DTaP-IPV vaccination. Blood was sampled in 2 groups of 4-year-olds: a case group reporting pronounced local swelling and/or erythema up to extensive limb swelling at the injection site (n = 30) and a control group (n = 30). Peripheral blood mononuclear cells were stimulated with individual vaccine antigens. Plasma antigen-specific IgG, IgG subclass and total IgE concentrations and T-cell cytokine [interferon-gamma, interleukin (IL)-13, IL-17 and IL-10] production by stimulated peripheral blood mononuclear cells were determined by multiplex bead-based fluorescent multiplex immunoassays. In children with AEs, significantly higher total IgE and vaccine antigen-specific IgG and IgG4 responses as well as levels of the T-helper 2 (Th2) cytokine IL-13 were found after pertussis, tetanus and diphtheria stimulation compared with controls. Children with pronounced local reactions show higher humoral and cellular immune responses. Acellular vaccines are known to skew toward more Th2 responses. The pronounced local AEs may be associated with more Th2 skewing after the fifth DTaP-IPV vaccination, but other biologic factors may also impact the occurrence of these pronounced local reactions.
Allard, Jenna B.; Rinaldi, Lisa; Wargo, Matt; Allen, Gilman; Akira, Shizuo; Uematsu, Satoshi; Poynter, Matthew E.; Hogan, Deborah A.; Rincon, Mercedes; Whittaker, Laurie A.
2009-01-01
SUMMARY Allergic airway disease is characterized by eosinophilic inflammation, mucus hypersecretion and increased airway resistance. Fungal antigens are ubiquitous within the environment and are well know triggers of allergic disease. Bacterial products are also frequently encountered within the environment and may alter the immune response to certain antigens. The consequence of simultaneous exposure to bacterial and fungal products on the lung adaptive immune response has not been explored. Here we show that oropharyngeal aspiration of fungal lysates (Candida albicans, Aspergillus fumigatus) promotes airway eosinophilia, secretion of Th2 cytokines and mucus cell metaplasia. In contrast, oropharyngeal exposure to bacterial lysates (Pseudomonas aeruginosa) promotes airway inflammation characterized by neutrophils, Th1 cytokine secretion and no mucus production. More importantly, administration of bacterial lysates together with fungal lysates deviates the adaptive immune response to a Th1 type associated with neutrophilia and diminished mucus production. The immunomodulatory effect that bacterial lysates have on the response to fungi is TLR4-independent but MyD88 dependent. Thus, different types of microbial products within the airway can alter the host's adaptive immune response, and potentially impact the development of allergic airway disease to environmental fungal antigens. PMID:19224641
Uchida, Masaki; Nagashima, Kotomi; Akatsuka, Yui; Murakami, Takashi; Ito, Akira; Imai, Soichi; Ike, Kazunori
2013-02-01
Neospora caninum is an obligate intracellular protozoan parasite that causes severe neuromuscular diseases, repeated abortion, stillbirth, and congenital infection in livestock and companion animals. The development of an effective vaccine against neosporosis in cattle is an important issue due to the significant worldwide economic impact of this disease. We evaluated the immunogenicity of four bradyzoite antigens, NcBAG1 (first described in this study), NcBSR4, NcMAG1, and NcSAG4, using an acute infection mouse model to determine synergistic effects with the tachyzoite antigen as a candidate for vaccine production. Mice were inoculated with the recombinant vaccines (r-)NcBAG1, rNcBSR4, rNcMAG1, rNcSAG4, or phosphate-buffered saline (PBS) (adjuvant control group) in an oil-in-water emulsion with bitter gourd extract, a Th1 immune stimulator, or PBS alone as the infection control group. Mice inoculated with each vaccine developed antigen-specific IgG1 and IgG2a antibodies and isolated splenocytes from mice produced high levels of interferon-γ when infected with the N. caninum tachyzoite. The mice inoculated with rNcBAG1, rNcMAG1, or rNcSAG4 developed slight to moderate clinical symptoms but did not succumb to infection. In contrast, rNcBSR4 and both control groups developed severe disease and some mice required euthanasia. The parasitic burden in the brain tissues of vaccinated mice was assessed by N. caninum-specific real-time PCR at 5 weeks after infection. The parasite load in rNcBAG1-, rNcMAG1-, and rNcSAG4-inoculated mice was significantly lower than that in adjuvant and infection control mice. Therefore, these antigens may be useful for the production of a N. caninum-specific vaccination protocol.
Bumgardner, Sara A.; Zhang, Lin; LaVoy, Alora S.; Frank, Chad B.; Kajikawa, Akinobu; Klaenhammer, Todd R.
2018-01-01
Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform. PMID:29734365
Moreno, Javier; Vouldoukis, Ioannis; Martin, Virginie; McGahie, David; Cuisinier, Anne-Marie; Gueguen, Sylvie
2012-01-01
Canine leishmaniasis is an important zoonotic disease of dogs. The clinical outcome of infection is variable, with the efficiency of the immune response being the key determining factor. There is now a general consensus that a predominant Th1 immune profile in an overall mixed Th1/Th2 response is associated with resistance in dogs, and the absence of a strong Th1 influence is associated with a progression to clinical disease. As a result, there has been a growing demand for vaccines that can induce a specific, strong Th1 response. In this study, we measured the impact of a primary course of a newly available LiESP/QA-21 vaccine on selected humoral and cellular markers of the canine immune response during the onset of immunity. All vaccinated dogs developed a humoral response characterised by IgG2 production. More importantly, vaccinated dogs developed significantly stronger cell-mediated immunity responses than did control dogs. Vaccination induced specific cellular reactivity to soluble Leishmania antigens, with a Leishmania-specific lymphoproliferation (p = 0.0072), characterised by an increased population of T lymphocytes producing IFN-γ (p = 0.0021) and a significant ability of macrophages to reduce intracellular parasite burdens in vitro after co-culture with autologous lymphocytes (p = 0.0014). These responses were correlated with induction of the NOS pathway and production of NO derivatives, which has been shown to be an important leishmanicidal mechanism. These results confirm that vaccination with LiESP/QA-21 induces an appropriate Th1-profile cell-mediated response within three weeks of completing the primary course, and that this response effectively reduces the parasite load in pre-infected macrophages in vitro. PMID:22724031
Renand, Amedee; Archila, Luis D; McGinty, John; Wambre, Erik; Robinson, David; Hales, Belinda J; Thomas, Wayne R; Kwok, William W
2015-12-01
In human subjects, allergen tolerance has been observed after high-dose allergen exposure or after completed allergen immunotherapy, which is related to the accumulation of anti-inflammatory IgG4. However, the specific T-cell response that leads to IgG4 induction during chronic allergen exposure remains poorly understood. We sought to evaluate the relationship between cat allergen-specific T-cell frequency, cat allergen-specific IgE and IgG4 titers, and clinical status in adults with cat allergy with and without cat ownership and the cellular mechanism by which IgG4 is produced. Fel d 1-, Fel d 4-, Fel d 7-, and Fel d 8-specific T-cell responses were characterized by CD154 expression after antigen stimulation. In allergic subjects without cat ownership, the frequency of cat allergen (Fel d 1 and Fel d 4)-specific TH2 (sTH2) cells correlates with higher IgE levels and is linked to asthma. Paradoxically, we observed that subjects with cat allergy and chronic cat exposure maintain a high frequency of sTH2 cells, which correlates with higher IgG4 levels and low sensitization. B cells from allergic, but not nonallergic subjects, are able to produce IgG4 after cognate interactions with sTH2 clones and Fel d 1 peptide or the Fel d 1 recombinant protein. These experiments suggest that (1) allergen-experienced B cells with the capacity to produce IgG4 are present in allergic subjects and (2) cat allergen exposure induces an IgG4 response in a TH2 cell-dependent manner. Thus IgG4 accumulation could be mediated by chronic activation of the TH2 response, which in turn drives desensitization. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.
Im, Young Bin; Park, Woo Bin; Jung, Myunghwan; Kim, Suk; Yoo, Han Sang
2016-06-28
Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis.
Motrich, Ruben D; Breser, María L; Sánchez, Leonardo R; Godoy, Gloria J; Prinz, Immo; Rivero, Virginia E
2016-03-01
Pain and inflammation in the absence of infection are hallmarks in chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) patients. The etiology of CP/CPPS is unclear, and autoimmunity has been proposed as a cause. Experimental autoimmune prostatitis (EAP) models have long been used for studying CP/CPPS. Herein, we studied prostate inflammation induction and chronic pelvic pain development in EAP using IL-12p40-KO, IL-4-KO, IL-17-KO, and wild-type (C57BL/6) mice. Prostate antigen (PAg) immunization in C57BL/6 mice induced specific Th1 and Th17 immune responses and severe prostate inflammation and cell infiltration, mainly composed of CD4 T cells and macrophages. Moreover, chronic pelvic pain was evidenced by increased allodynia responses. In immunized IL-17-KO mice, the presence of a prominent PAg-specific Th1 immune response caused similar prostate inflammation and chronic pelvic pain. Furthermore, markedly high PAg-specific Th1 immune responses, exacerbated prostate inflammation, and chronic pelvic pain were detected in immunized IL-4-KO mice. Conversely, immunized IL-12p40-KO mice developed PAg-specific Th2 immune responses, characterized by high IL-4 secretion and neither infiltration nor damage in the prostate. As observed in wild-type control animals, IL12p40-KO mice did not evidence tactile allodynia responses. Our results suggest that, as in patients, chronic pelvic pain is a consequence of prostate inflammation. After PAg immunization, a Th1-associated immune response develops and induces prostate inflammation and chronic pelvic pain. The absence of Th1 or Th2 cytokines, respectively, diminishes or enhances EAP susceptibility. In addition, IL-17 showed not to be essential for pathology induction and chronic pelvic pain development.
Le Rouzic, Olivier; Koné, Bachirou; Kluza, Jerome; Marchetti, Philippe; Hennegrave, Florence; Olivier, Cécile; Kervoaze, Gwenola; Vilain, Eva; Mordacq, Clémence; Just, Nicolas; Perez, Thierry; Bautin, Nathalie; Pichavant, Muriel; Gosset, Philippe
2016-07-26
Chronic obstructive pulmonary disease (COPD) is associated with chronic inflammation and impaired immune response to pathogens leading to bacteria-induced exacerbation of the disease. A defect in Th17 cytokines in response to Streptococcus pneumoniae, a bacteria associated with COPD exacerbations, has been recently reported. Dendritic cells (DC) are professional antigen presenting cells that drive T-cells differentiation and activation. In this study, we hypothesized that exposure to cigarette smoke, the main risk factor of COPD, might altered the pro-Th17 response to S. pneumoniae in COPD patients and human DC. Pro-Th1 and -Th17 cytokine production by peripheral blood mononuclear cells (PBMC) from COPD patients was analyzed and compared to those from smokers and non-smokers healthy subjects. The effect of cigarette smoke extract (CSE) was analyzed on human monocyte-derived DC (MDDC) from controls exposed or not to S. pneumoniae. Bacteria endocytosis, maturation of MDDC and secretion of cytokines were assessed by flow cytometry and ELISA, respectively. Implication of the oxidative stress was analyzed by addition of antioxidants and mitochondria inhibitors. In parallel, MDDC were cocultured with autologous T-cells to analyze the consequence on Th1 and Th17 cytokine production. PBMC from COPD patients exhibited defective production of IL-1β, IL-6, IL-12 and IL-23 to S. pneumoniae compared to healthy subjects and smokers. CSE significantly reduced S. pneumoniae-induced MDDC maturation, secretion of pro-Th1 and -Th17 cytokines and activation of Th1 and Th17 T-cell responses. CSE exposure was also associated with sustained CXCL8 secretion, bacteria endocytosis and mitochondrial oxidative stress. Antioxidants did not reverse these effects. Inhibitors of mitochondrial electron transport chain partly reproduced inhibition of S. pneumoniae-induced MDDC maturation but had no effect on cytokine secretion and T cell activation. We observed a defective pro-Th1 and -Th17 response to bacteria in COPD patients. CSE exposure was associated with an inhibition of DC capacity to activate antigen specific T-cell response, an effect that seems to be not only related to oxidative stress. These results suggest that new therapeutics boosting this response in DC may be helpful to improve treatment of COPD exacerbations.
Hygiene hypothesis and prevalence of glomerulonephritis.
Hurtado, Abdias; Johnson, Richard J
2005-08-01
The hygiene hypothesis was proposed to explain the marked increase in allergies that has been observed in industrialized (Westernized) societies. This hypothesis proposes that early and frequent exposure to bacterial and other antigens, such as is common in developing nations, leads to a normal Th1 response, but that better public hygiene and less infections observed in industrialized nations may lead to persistence of the Th2 phenotype and thereby increase our risk for developing allergies. Infection early in life with measles or hepatitis A virus, immunization with bacille Calmette-Guérin, certain gastrointestinal bacteria (lactobacillus), and environmental endotoxin exposure may protect individuals from developing allergy in adulthood. Paradoxically, infestation by parasites stimulates a Th2-cell response; however, the incidence of allergic disease is very low, perhaps due to the stimulation of T-regulatory lymphocytes that can downregulate Th1 and Th2 responses. Some types of human glomerulonephritis (GN) have Th1-predominant immune responses, including crescentic and membranoproliferative GN, whereas other types of GN have a predominant Th2 immune response, including membranous nephropathy, minimal change disease, and immunoglobulin A nephropathy. A review of the prevalence of specific GN shows that the higher prevalence of membranoproliferative GN in developing countries and the higher frequency of immunoglobulin A nephropathy and minimal change disease in industrialized countries could be explained by the hygiene hypothesis. We suggest that studies examining Th1/Th2 balance, particularly as it develops in childhood, should be performed to determine if early polarization of the immune response is responsible for the later development of specific forms of GN.
Dorňáková, Veronika; Salazar-Sanchez, Renzo; Borrini-Mayori, Katty; Carrion-Navarro, Oscar; Levy, Michael Z.; Schaub, Günter A.; Schwarz, Alexandra
2014-01-01
Background Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure. Methodology and Principal Findings In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs. Conclusion Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure. PMID:24699441
IT-25DEVELOPMENTALLY REGULATED ANTIGENS FOR IMMUNOLOGIC TARGETING OF MEDULLOBLASTOMA SUBTYPES
Pham, Christina; Flores, Catherine; Pei, Yanxin; Wechsler-Reya, Robert; Mitchell, Duane
2014-01-01
INTRODUCTION: Medulloblastoma (MB) remains incurable in one third of patients despite aggressive multi-modality standard therapies. Immunotherapy presents a promising alternative by specifically targeting cancer cells. To date, there have been no successful immunologic applications targeting MB. Emerging evidence from integrated genomic studies has suggested MB variants arise from deregulation of pathways affecting proliferation of progenitor cell populations within the developing cerebellum. Using total embryonic RNA as a source of tumor rejection antigens is attractive because it can be delivered as a single vaccine, target both known and unknown fetal proteins, and can be refined to preferentially treat distinct MB subtypes. METHODS: We have created two transplantable, syngeneic animal MB models recapitulating human SHH and Group 3 variants to investigate the immunologic targeting of different MB subtypes. We generated T cells specific to the developing mouse cerebellum (P5) and tested their reactivity to target cells pulsed with total RNA from two MB subtypes and the normal brain. Immune responses were evaluated by measuring cytokine secretion following re-stimulation of activated T cells with both normal and tumor cell targets. In vivo antitumor efficacy was also tested in survival studies of intracranial tumor-bearing animals. RESULTS: We generated T cells specific to the developing cerebellum in vitro, confirming the immunogenicity of developmentally regulated antigens. Additionally, we have shown that developmental antigen-specific T cells produce high levels of Th1-type cytokines in response to tumor cells of two immunologically distinct subtypes of MB. Interestingly, developmental antigen specific T cells do not show cross reactivity with the normal brain or subsequent stages of the developing brain after P5. Targeting developmental antigens also conferred a significant survival benefit in a treatment model of Group 3 tumor bearing animals. CONCLUSIONS: Developmental antigens can safely target multiple MB subtypes with equal effectiveness compared to previously established total tumor strategies.
Asahi, Hiroko; Osman, Ahmed; Cook, Rosemary M.; LoVerde, Philip T.; Stadecker, Miguel J.
2000-01-01
In schistosomiasis mansoni, hepatic granulomatous inflammation surrounding parasite eggs is mediated by CD4+ T helper (Th) cells sensitized to schistosomal egg antigens (SEA). We previously showed that a prominent lymphoproliferative response of CD4+ Th cells from schistosome-infected C57BL/6 (BL/6) mice was directed against a 62-kDa component of SEA. A partial amino acid sequence of the 62-kDa component was found to be identical with one present in the enzyme phosphoenolpyruvate carboxykinase (PEPCK). Based on this sequence, a cDNA clone containing the entire coding region of PEPCK was identified, and the full recombinant Schistosoma mansoni PEPCK (rSm-PEPCK) of 626 amino acids was purified from a prokaryotic expression system. rSm-PEPCK strongly stimulated a specific T-cell hybridoma, 4E6, as well as CD4+ Th cells from SEA-immunized BL/6 mice and from infected BL/6, CBA, and BALB/c mice. In the infected mice, rSm-PEPCK elicited significant gamma interferon production as well as, to a lesser extent, production of interleukin-2 and -5. In BL/6 and BALB/c mice, the CD4+ Th cell response to rSm-PEPCK was greater than that directed against the egg antigen Sm-p40; conversely, CBA mice responded better to Sm-p40 than to Sm-PEPCK. A 12-amino-acid region (residues 398 to 409: DKSKDPKAHPNS) was demonstrated to contain a T-cell epitope; synthetic peptides containing this epitope significantly stimulated specific hybridoma 4E6 and polyclonal CD4+ Th cells. The identification and characterization of immunogenic egg components will contribute to the understanding and possible control of T-cell-mediated schistosomal disease. PMID:10816489
Jiang, Hao; Hu, Yijun; Yang, Mei; Liu, Hao; Jiang, Guangshui
2017-05-01
The strength of immune responses induced by DNA vaccine is closely associated with the expression level of cloned antigens available to the antigen presenting cells (APCs). To acquire a larger and more persistent amount of antigen, a dual-promoter, which could double the target antigen output through its expression both in prokaryotic and eukaryotic cells, was employed in the constructed anti-caries DNA vaccine with attenuated Salmonella as mucosal delivery vector in this study. Here, both CMV and nirB promoters were included in the plasmid that harbors the genes encoding the functional epitopes of two virulence factors of S. mutans, i.e. the saliva-binding region (SBR) of PAc and the glucan-binding region (GBR) of glucosyltransferase-I (GTF-I). Delivered by attenuated Salmonella Typhimurium strain SL3261, the anti-caries vaccine was administered intragastrointestinally to BALB/c mice for evaluation of the effectiveness of this immune regime. Specific anti-SBR and anti-GBR antibodies were detected in the serum and saliva of experimental animals by week 3 after immunization. These immune responses were further enhanced after a booster vaccination at week 16. However, in mice receiving Salmonella expressing SBR and GBR under the control of nirB alone these antibody responses were significantly (P<0.01) lower. The serum IgG subclass profiles suggested a Th1/Th2-mixed but Th2 biased immune response to the cloned antigens, which was further confirmed by a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-10) cytokines in splenocytes of immunized mice upon stimulation with SBR or GBR. To further determine the protective efficacy of these responses, a challenge test with S. mutans strain UA159 was performed in mice after the second immunization. Following challenge, mice immunized with Salmonella expressing SBR and GBR under the control of the CMV-nirB promoter showed a significant (P<0.01) reduction in the number of S. mutans in the dental plaque compared to the empty vector-immunized or unimmunized mice, and the reduction was also significant at weeks 3-8 (P<0.05) post-challenge when compared with those receiving Salmonella clones with nirB promoter alone. These results provide evidence for the effectiveness of a dual-promoter strategy in the anti-caries DNA vaccine when employing attenuated Salmonella as delivering vehicle for mucosal immunization. Copyright © 2017 Elsevier GmbH. All rights reserved.
Tournoy, K G; Hove, C; Grooten, J; Moerloose, K; Brusselle, G G; Joos, G F
2006-01-01
Non-specific anti-inflammatory medication is actually the treatment of choice for controlling the T-helper type 2 (Th-2) cell-driven airway inflammation in asthma. The induction of counterbalancing Th-1 cell clones, long considered a promising approach for immunotherapy, has failed to fulfil its promise because of potentially detrimental side-effects. This is therefore probably not a valid option for the treatment of asthma. With the increasing awareness that active immune mechanisms exist to control inflammatory responses, interest rises to investigate whether these can be exploited to control allergen-induced airway disease. The induction of antigen-specific T cells with suppressive characteristics (regulatory T cells) is therefore a potentially interesting approach. These regulatory T cells mediate tolerance in healthy, non-atopic individuals and have the potential of becoming an effective means of preventing allergen-induced airway inflammation and possibly of suppressing ongoing allergic immune responses. Here we review the available knowledge about allergen-induced suppressive immunity obtained from animal models taking into account the different developmental stages of allergic airway disease.
Faburay, Bonto; McGill, Jodi; Jongejan, Frans
2017-01-01
Heartwater, or cowdriosis, is a tick-borne disease of domestic and wild ruminants that is endemic in the Caribbean and sub-Saharan Africa. The disease is caused by an intracellular pathogen, Ehrlichia ruminantium and may be fatal within days of the onset of clinical signs with mortality rates of up to 90% in susceptible hosts. Due to the presence of competent tick vectors in North America, there is substantial risk of introduction of heartwater with potentially devastating consequences to the domestic livestock industry. There is currently no reliable or safe vaccine for use globally. To develop a protective DIVA (differentiate infected from vaccinated animals) subunit vaccine for heartwater, we targeted the E. ruminantium immunodominant major antigenic protein1 (MAP1) with the hypothesis that MAP1 is a glycosylated protein and glycans contained in the antigenic protein are important epitope determinants. Using a eukaryotic recombinant baculovirus expression system, we expressed and characterized, for the first time, a glycoform profile of MAP1 of two Caribbean E. ruminantium isolates, Antigua and Gardel. We have shown that the 37-38 kDa protein corresponded to a glycosylated form of the MAP1 protein, whereas the 31-32 kDa molecular weight band represented the non-glycosylated form of the protein frequently reported in scientific literature. Three groups of sheep (n = 3-6) were vaccinated with increasing doses of a bivalent (Antigua and Gardel MAP1) rMAP1 vaccine cocktail formulation with montanide ISA25 as an adjuvant. The glycosylated recombinant subunit vaccine induced E. ruminantium-specific humoral and Th1 type T cell responses, which are critical for controlling intracellular pathogens, including E. ruminantium, in infected hosts. These results provide an important basis for development of a subunit vaccine as a novel strategy to protect susceptible livestock against heartwater in non-endemic and endemic areas.
McGill, Jodi; Jongejan, Frans
2017-01-01
Heartwater, or cowdriosis, is a tick-borne disease of domestic and wild ruminants that is endemic in the Caribbean and sub-Saharan Africa. The disease is caused by an intracellular pathogen, Ehrlichia ruminantium and may be fatal within days of the onset of clinical signs with mortality rates of up to 90% in susceptible hosts. Due to the presence of competent tick vectors in North America, there is substantial risk of introduction of heartwater with potentially devastating consequences to the domestic livestock industry. There is currently no reliable or safe vaccine for use globally. To develop a protective DIVA (differentiate infected from vaccinated animals) subunit vaccine for heartwater, we targeted the E. ruminantium immunodominant major antigenic protein1 (MAP1) with the hypothesis that MAP1 is a glycosylated protein and glycans contained in the antigenic protein are important epitope determinants. Using a eukaryotic recombinant baculovirus expression system, we expressed and characterized, for the first time, a glycoform profile of MAP1 of two Caribbean E. ruminantium isolates, Antigua and Gardel. We have shown that the 37–38 kDa protein corresponded to a glycosylated form of the MAP1 protein, whereas the 31–32 kDa molecular weight band represented the non-glycosylated form of the protein frequently reported in scientific literature. Three groups of sheep (n = 3–6) were vaccinated with increasing doses of a bivalent (Antigua and Gardel MAP1) rMAP1 vaccine cocktail formulation with montanide ISA25 as an adjuvant. The glycosylated recombinant subunit vaccine induced E. ruminantium-specific humoral and Th1 type T cell responses, which are critical for controlling intracellular pathogens, including E. ruminantium, in infected hosts. These results provide an important basis for development of a subunit vaccine as a novel strategy to protect susceptible livestock against heartwater in non-endemic and endemic areas. PMID:28957443
A Polymer/Oil Based Nanovaccine as a Single-Dose Immunization Approach
Vicente, Sara; Diaz-Freitas, Belen; Peleteiro, Mercedes; Sanchez, Alejandro; Pascual, David W.; Gonzalez-Fernandez, Africa; Alonso, Maria J.
2013-01-01
The recognized necessity for new antigen delivery carriers with the capacity to boost, modulate and prolong neutralizing immune responses prompted our approach, in which we describe a multifunctional nanocarrier consisting of an oily nanocontainer protected by a polymeric shell made of chitosan (CS), named CS nanocapsules (CSNC). The CS shell can associate the antigen on its surface, whereas the oily core might provide additional immunostimulating properties. In this first characterization of the system, we intended to study the influence of different antigen organizations on the nanocarrier's surface (using the recombinant hepatitis B surface antigen –rHBsAg– as a model antigen) on their long-term immunopotentiating effect, without any additional immunostimulant. Thus, two prototypes of antigen-loaded CSNC (CSNC+ and CSNC−), exhibiting similar particle size (200 nm) and high antigen association efficiency (>80%), were developed with different surface composition (polymer/antigen ratios) and surface charge (positive/negative, respectively). The biological evaluation of these nanovaccines evidenced the superiority of the CSNC+ as compared to CSNC- and alum-rHBsAg in terms of neutralizing antibody responses, following intramuscular vaccination. Moreover, a single dose of CSNC+ led to similar IgG levels to the positive control. The IgG1/IgG2a ratio suggested a mixed Th1/Th2 response elicited by CSNC+, in contrast to the typical Th2-biased response of alum. Finally, CSNC+ could be freeze-dried without altering its physicochemical properties and adjuvant effect in vivo. In conclusion, the evaluation of CSNC+ confirms its interesting features for enhancing, prolonging and modulating the type of immune response against subunit antigens, such as rHBsAg. PMID:23614052
Kopf, Manfred; Herren, Suzanne; Wiles, Michael V.; Pepys, Mark B.; Kosco-Vilbois, Marie H.
1998-01-01
Mice rendered deficient for interleukin (IL) 6 by gene targeting were evaluated for their response to T cell–dependent antigens. Antigen-specific immunoglobulin (Ig)M levels were unaffected whereas all IgG isotypes showed varying degrees of alteration. Germinal center reactions occurred but remained physically smaller in comparison to those in the wild-type mice. This concurred with the observations that molecules involved in initial signaling events leading to germinal center formation were not altered (e.g., B7.2, CD40 and tumor necrosis factor R1). T cell priming was not impaired nor was a gross imbalance of T helper cell (Th) 1 versus Th2 cytokines observed. However, B7.1 molecules, absent from wild-type counterparts, were detected on germinal center B cells isolated from the deficient mice suggesting a modification of costimulatory signaling. A second alteration involved impaired de novo synthesis of C3 both in serum and germinal center cells from IL-6–deficient mice. Indeed, C3 provided an essential stimulatory signal for wild-type germinal center cells as both monoclonal antibodies that interrupted C3-CD21 interactions and sheep anti–mouse C3 antibodies caused a significant decrease in antigen-specific antibody production. In addition, germinal center cells isolated from C3–deficient mice produced a similar defect in isotype production. Low density cells with dendritic morphology were the local source of IL-6 and not the germinal center lymphocytes. Adding IL-6 in vitro to IL-6–deficient germinal center cells stimulated cell cycle progression and increased levels of antibody production. These findings reveal that the germinal center produces and uses molecules of the innate immune system, evolutionarily pirating them in order to optimally generate high affinity antibody responses. PMID:9815267
Immunopathology of leishmaniasis: an update.
Mansueto, P; Vitale, G; Di Lorenzo, G; Rini, G B; Mansueto, S; Cillari, E
2007-01-01
Leishmaniasis represents a severe, increasing, public health problem. The perspective of its control is highly dependent on research progress, on therapeutic manipulations of the immune system, and on vaccine development. There is a correlation between the clinical outcome of Leishmania infection and the cytokine response profile. While a protective immune response against Leishmania has been clearly identified to be related to the influence of a type-1 response and IFN-gamma production, the precise role of T helper (TH) 2 cytokines in non-healing infections requires further exploration. IL-4 and IL-13 (TH2 cytokines) can promote disease progression in cutaneous leishmaniasis, whereas IL-4 would appear to enhance protective type-1 responses in visceral leishmaniasis. Thus, the TH1/TH2 paradigm of resistance/susceptibility to intracellular parasites is probably an oversimplification of a more complicated network of regulatory/counter regulatory interactions. Moreover, the presence of antigen specific regulatory T cell subsets may provide an environment that contributes to the balance between TH1 and TH2 cells. Finally, the involvement of CD8 positive T cells has been described, but the modality of their function in this kind of infection has not been so far elucidated.
Ibañez, Andrés E.; Smaldini, Paola; Coria, Lorena M.; Delpino, María V.; Pacífico, Lucila G. G.; Oliveira, Sergio C.; Risso, Gabriela S.; Pasquevich, Karina A.; Fossati, Carlos Alberto; Giambartolomei, Guillermo H.; Docena, Guillermo H.; Cassataro, Juliana
2013-01-01
The discovery of novel mucosal adjuvants will help to develop new formulations to control infectious and allergic diseases. In this work we demonstrate that U-Omp16 from Brucella spp. delivered by the nasal route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage (BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The usefulness of U-Omp16 was also assessed in a mouse model of food allergy. U-Omp16 i.n. administration during sensitization ameliorated the hypersensitivity responses of sensitized mice upon oral exposure to Cow’s Milk Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be used as a broad Th1 mucosal adjuvant for different Ag formulations. PMID:23861971
Yang, Kai; Shrestha, Sharad; Zeng, Hu; Karmaus, Peer W.F.; Neale, Geoffrey; Vogel, Peter; Guertin, David A.; Lamb, Richard F.; Chi, Hongbo
2014-01-01
SUMMARY Naïve T cells respond to antigen stimulation by exiting from quiescence and initiating clonal expansion and functional differentiation, but the control mechanism is elusive. Here we describe that Raptor-mTORC1-dependent metabolic programming is a central determinant of this transitional process. Loss of Raptor abrogated T cell priming and Th2 cell differentiation, although Raptor function is less important for continuous proliferation of actively cycling cells. mTORC1 coordinated multiple metabolic programs in T cells including glycolysis, lipid synthesis and oxidative phosphorylation to mediate antigen-triggered exit from quiescence. mTORC1 further linked glucose metabolism to the initiation of Th2 cell differentiation by orchestrating cytokine receptor expression and cytokine responsiveness. Activation of Raptor-mTORC1 integrated T cell receptor and CD28 co-stimulatory signals in antigen-stimulated T cells. Our studies identify a Raptor-mTORC1-dependent pathway linking signal-dependent metabolic reprogramming to quiescence exit, and this in turn coordinates lymphocyte activation and fate decisions in adaptive immunity. PMID:24315998
The risk of a second diagnostic window with 4th generation HIV assays: Two cases.
Niederhauser, C; Ströhle, A; Stolz, M; Müller, F; Tinguely, C
2009-08-01
Despite the improved sensitivity of the 4th generation combined antigen/antibody HIV assays, detection of HIV in the early phase of an infection may still be ineffective. Description of two cases that highlight the existence of the "second diagnostic window phase" observed with commonly used sensitive 4th generation HIV assays. Samples were screened with different 4th generation HIV assays. HIV infection was confirmed with an HIV I/II antibody assay, a HIV-1 p24 antigen assay, the INNO-LIA HIV I/II Score Line immunoassay and HIV-1 PCR. In both investigated cases, the limitations of the 4th generation HIV assays within the second diagnostic window were apparent. The overall sensitivity of the commercial 4th generation HIV assays is currently higher than the 3rd generation HIV assays. Nevertheless, the rare occurrence of a second diagnostic window with 4th generation HIV assays strongly suggests that the following up testing algorithms need to be adjusted accordingly.
Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun
2015-01-01
Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929
Costa, Lourena Emanuele; Goulart, Luiz Ricardo; Pereira, Nathália Cristina de Jesus; Lima, Mayara Ingrid Sousa; Duarte, Mariana Costa; Martins, Vivian Tamietti; Lage, Paula Sousa; Menezes-Souza, Daniel; Ribeiro, Tatiana Gomes; Melo, Maria Norma; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz
2014-01-01
The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as successful immunogens in vaccine formulations against VL.
Holdenrieder, Stefan; Molina, Rafael; Qiu, Ling; Zhi, Xiuyi; Rutz, Sandra; Engel, Christine; Kasper-Sauer, Pia; Dayyani, Farshid; Korse, Catharina M
2018-04-01
In squamous cell carcinoma, squamous cell carcinoma antigen levels are often elevated. This multi-center study evaluated the technical performance of a new Elecsys ® squamous cell carcinoma assay, which measures serum squamous cell carcinoma antigen 1 and 2 levels in an equimolar manner, and investigated the potential of squamous cell carcinoma antigen for differential diagnosis of cervical, lung, and head and neck squamous cell carcinoma.Assay precision and method comparison experiments were performed across three European sites. Reference ranges for reportedly healthy individuals were determined using samples from banked European and Chinese populations. Differential diagnosis experiments determined whether cervical, lung, or head and neck cancer could be differentiated from apparently healthy, benign, or other malignant cohorts using squamous cell carcinoma antigen levels alone. Squamous cell carcinoma antigen cut-off levels were calculated based on squamous cell carcinoma antigen levels at 95% specificity. Repeatability coefficients of variation across nine analyte concentrations were ≤5.3%, and intermediate precision coefficients of variation were ≤10.3%. Method comparisons showed good correlations with Architect and Kryptor systems (slopes of 1.1 and 1.5, respectively). Reference ranges for 95th percentiles for apparently healthy individuals were 2.3 ng/mL (95% confidence interval: 1.9-3.8; European cohort, n = 153) and 2.7 ng/mL (95% confidence interval: 2.2-3.3; Chinese cohort, n = 146). Strongest differential diagnosis results were observed for cervical squamous cell carcinoma: receiver operating characteristic analysis showed that squamous cell carcinoma antigen levels (2.9 ng/mL cut-off) differentiate cervical squamous cell carcinoma (n = 127) from apparently healthy females (n = 286; area under the curve: 86.2%; 95% confidence interval: 81.8-90.6; sensitivity: 61.4%; specificity: 95.6%), benign diseases (n = 187; area under the curve: 86.3%; 95% confidence interval: 81.2-91.3; sensitivity: 61.4%; specificity: 95.0%), and other cervical cancers (n = 157; area under the curve: 78.9%; 95% confidence interval: 70.8-87.1; sensitivity: 61.4%; specificity: 86.7%). Squamous cell carcinoma may also aid in the differential diagnosis of lung cancer. The Elecsys squamous cell carcinoma assay exhibited good technical performance and is suitable for differential diagnosis of cervical squamous cell carcinoma in clinical practice.
Ren, Shoufeng; Wei, Qimei; Cai, Liya; Yang, Xuejing; Xing, Cuicui; Tan, Feng; Leavenworth, Jianmei W.; Liang, Shaohui; Liu, Wenquan
2018-01-01
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention. PMID:29375526
Devasundaram, Santhi; Raja, Alamelu
2017-07-01
The partial effectiveness against pulmonary tuberculosis (PTB), displayed by the existing tuberculosis (TB) vaccine, bacillus Calmette-Guérin (BCG), highlights the need for novel vaccines to replace or improve BCG. In TB immunology, antigen-specific cellular immune response is frequently considered indispensable. Latency-associated antigens are intriguing as targets for TB vaccine development. The mycobacterial protein, dihydrolipoamide dehydrogenase (Lpd; Rv0462), the third enzyme of the pyruvate dehydrogenase (PDH) complex, facilitates Mycobacterium tuberculosis to resist host reactive nitrogen intermediates. Multicolor flow cytometry analysis of whole-blood cultures showed higher Lpd-specific Th1 recall response (IFN-γ, TNF-α, and IL-2; P = 0.0006) and memory CD4 + and CD8 + T cells (CCR7 + CD45RA - and CCR7 - CD45RA - ) in healthy household contacts (HHC) of TB ( P < 0.0001), which is comparable with or higher than the standard antigens, ESAT-6 and CFP-10. The frequency of Lpd-specific multifunctional T cells was higher in HHC compared with PTB patients. However, there is no significant statistical correlation. Regulatory T cell (T reg ) analysis of HHCs and active TB patients demonstrated very low Lpd-specific CD4 + T regs relative to ESAT-6 and CFP-10. Our study demonstrates that the Lpd antigen induces a strong cellular immune response in healthy mycobacteria-infected individuals. In consideration of this population having demonstrated immunologic protection against active TB disease development, our data are encouraging about the possible use of Lpd as a target for further TB subunit vaccine development. © Society for Leukocyte Biology.
Anuradha, Rajamanickam; George, Parakkal Jovvian; Hanna, Luke E.; Chandrasekaran, Vedachalam; Kumaran, P. Paul; Nutman, Thomas B.; Babu, Subash
2014-01-01
Background Two different Th2 subsets have been defined recently on the basis of IL-5 expression – an IL-5+Th2 subset and an IL-5−Th2 subset in the setting of allergy. However, the role of these newly described CD4+ T cells subpopulations has not been explored in other contexts. Methods To study the role of the Th2 subpopulation in a chronic, tissue invasive parasitic infection (lymphatic filariasis), we examined the frequency of IL-5+IL-4+IL-13+ CD4+ T cells and IL-5−IL-4 IL-13+ CD4+ T cells in asymptomatic, infected individuals (INF) and compared them to frequencies (Fo) in filarial-uninfected (UN) individuals and to those with filarial lymphedema (CP). Results INF individuals exhibited a significant increase in the spontaneously expressed and antigen-induced Fo of both Th2 subpopulations compared to the UN and CP. Interestingly, there was a positive correlation between the Fo of IL-5+Th2 cells and the absolute eosinophil and neutrophil counts; in addition there was a positive correlation between the frequency of the CD4+IL-5−Th2 subpopulation and the levels of parasite antigen – specific IgE and IgG4 in INF individuals. Moreover, blockade of IL-10 and/or TGFβ demonstrated that each of these 2 regulatory cytokines exert opposite effects on the different Th2 subsets. Finally, in those INF individuals cured of infection by anti-filarial therapy, there was a significantly decreased Fo of both Th2 subsets. Conclusions Our findings suggest that both IL-5+ and IL-5−Th2 cells play an important role in the regulation of immune responses in filarial infection and that these two Th2 subpopulations may be regulated by different cytokine-receptor mediated processes. PMID:24498448
Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease.
Kidd, Parris
2003-08-01
One theory of immune regulation involves homeostasis between T-helper 1 (Th1) and T-helper 2 (Th2) activity. The Th1/Th2 hypothesis arose from 1986 research suggesting mouse T-helper cells expressed differing cytokine patterns. This hypothesis was adapted to human immunity, with Th1- and Th2-helper cells directing different immune response pathways. Th1 cells drive the type-1 pathway ("cellular immunity") to fight viruses and other intracellular pathogens, eliminate cancerous cells, and stimulate delayed-type hypersensitivity (DTH) skin reactions. Th2 cells drive the type-2 pathway ("humoral immunity") and up-regulate antibody production to fight extracellular organisms; type 2 dominance is credited with tolerance of xenografts and of the fetus during pregnancy. Overactivation of either pattern can cause disease, and either pathway can down-regulate the other. But the hypothesis has major inconsistencies; human cytokine activities rarely fall into exclusive pro-Th1 or -Th2 patterns. The non-helper regulatory T cells, or the antigen-presenting cells (APC), likely influence immunity in a manner comparable to Th1 and Th2 cells. Many diseases previously classified as Th1 or Th2 dominant fail to meet the set criteria. Experimentally, Th1 polarization is readily transformed to Th2 dominance through depletion of intracellular glutathione, and vice versa. Mercury depletes glutathione and polarizes toward Th2 dominance. Several nutrients and hormones measurably influence Th1/Th2 balance, including plant sterols/sterolins, melatonin, probiotics, progesterone, and the minerals selenium and zinc. The long-chain omega-3 fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) significantly benefit diverse inflammatory and autoimmune conditions without any specific Th1/Th2 effect. Th1/Th2-based immunotherapies, e.g., T-cell receptor (TCR) peptides and interleukin-4 (IL-4) injections, have produced mixed results to date.
Noti, Mario; Kim, Brian S; Siracusa, Mark C; Rak, Gregory D; Kubo, Masato; Moghaddam, Amin E; Sattentau, Quentin A; Comeau, Michael R; Spergel, Jonathan M; Artis, David
2014-05-01
Exposure to food allergens through a disrupted skin barrier has been recognized as a potential factor in the increasing prevalence of food allergy. We sought to test the immunologic mechanisms by which epicutaneous sensitization to food allergens predisposes to intestinal food allergy. Mice were epicutaneously sensitized with ovalbumin or peanut on an atopic dermatitis-like skin lesion, followed by intragastric antigen challenge. Antigen-specific serum IgE levels and T(H)2 cytokine responses were measured by ELISA. Expression of type 2 cytokines and mast cell proteases in the intestine were measured by using real-time PCR. Accumulation of basophils in the skin and mast cells in the intestine was examined by using flow cytometry. In vivo basophil depletion was achieved by using diphtheria toxin treatment of Baso-DTR mice. For cell-transfer studies, the basophil population was expanded in vivo by means of hydrodynamic tail vein injection of thymic stromal lymphopoietin (TSLP) cDNA plasmid. Sensitization to food allergens through an atopic dermatitis-like skin lesion is associated with an expansion of TSLP-elicited basophils in the skin that promote antigen-specific T(H)2 cytokine responses, increased antigen-specific serum IgE levels, and accumulation of mast cells in the intestine, promoting the development of intestinal food allergy. Critically, disruption of TSLP responses or depletion of basophils reduced the susceptibility to intestinal food allergy, whereas transfer of TSLP-elicited basophils into intact skin promoted disease. Epicutaneous sensitization on a disrupted skin barrier is associated with accumulation of TSLP-elicited basophils, which are necessary and sufficient to promote antigen-induced intestinal food allergy. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Noti, Mario; Kim, Brian S.; Siracusa, Mark C.; Rak, Gregory D.; Kubo, Masato; Moghaddam, Amin E.; Sattentau, Quentin A.; Comeau, Michael R.; Spergel, Jonathan M.; Artis, David
2014-01-01
Background Exposure to food allergens through a disrupted skin barrier has been recognized as a potential factor in the increasing prevalence of food allergy. Objective To test the immunological mechanisms by which epicutaneous sensitization to food allergens predisposes to intestinal food allergy. Methods Mice were epicutaneously sensitized with ovalbumin (OVA) or peanut on an atopic dermatitis-like skin lesion followed by intragastric antigen challenge. Antigen-specific serum IgE levels and Th2 cytokine responses were measured by ELISA. Expression of type-2 cytokines and mast cell proteases in the intestine were measured by real-time PCR. Accumulation of basophils in the skin and mast cells in the intestine was examined by flow cytometry. In vivo basophil depletion was achieved by diphtheria toxin treatment of Baso-DTR mice. For cell transfer studies, the basophil population was expanded in vivo by hydrodynamic tail vein injection of thymic stromal lymphopoietin cDNA plasmid. Results Sensitization to food allergens through an atopic dermatitis-like skin lesion is associated with an expansion of TSLP-elicited basophils in the skin that promote antigen-specific Th2 cytokine responses, elevated antigen-specific serum IgE levels and the accumulation of mast cells in the intestine promoting the development of intestinal food allergy. Critically, disruption of TSLP responses or depletion of basophils reduced the susceptibility to intestinal food allergy while transfer of TSLP-elicited basophils into intact skin promoted disease. Conclusion Epicutaneous sensitization on a disrupted skin barrier is associated with the accumulation of TSLP-elicited basophils that are necessary and sufficient to promote antigen-induced intestinal food allergy. PMID:24560412
Tarasenko, Tatyana; Kole, Hemanta K.; Chi, Anthony W.; Mentink-Kane, Margaret M.; Wynn, Thomas A.; Bolland, Silvia
2007-01-01
The 5′-phosphoinositol phosphatase SHIP negatively regulates signaling pathways triggered by antigen, cytokine and Fc receptors in both lymphocytes and myeloid cells. Mice with germ-line (null) deletion of SHIP develop a myeloproliferative-like syndrome that causes early lethality. Lymphocyte anomalies have been observed in SHIP-null mice, but it is unclear whether they are due to an intrinsic requirement of SHIP in these cells or a consequence of the severe myeloid pathology. To precisely address the function of SHIP in T cells, we have generated mice with T cell-specific deletion of SHIP. In the absence of SHIP, we found no differences in thymic selection or in the activation state and numbers of regulatory T cells in the periphery. In contrast, SHIP-deficient T cells do not skew efficiently to Th2 in vitro. Mice with T cell-specific deletion of SHIP show poor antibody responses on Alum/NP-CGG immunization and diminished Th2 cytokine production when challenged with Schistosoma mansoni eggs. The failure to skew to Th2 responses may be the consequence of increased basal levels of the Th1-associated transcriptional factor T-bet, resulting from enhanced sensitivity to cytokine-mediated T-bet induction. SHIP-deficient CD8+ cells show enhanced cytotoxic responses, consistent with elevated T-bet levels in these cells. Overall our experiments indicate that in T cells SHIP negatively regulates cytokine-mediated activation in a way that allows effective Th2 responses and limits T cell cytotoxicity. PMID:17585010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi
2007-05-25
We have investigated the efficiency of N-terminal 1-260 residues of Edema factor (EFn) as a delivery system for ESAT-6, an antigenic protein of Mycobacterium tuberculosis H{sub 37}R{sub v}, into the cytosol of mammalian cells. The EFn.ESAT-6 recombinant protein was obtained by genetic fusion of EFn and ESAT-6 DNA. Our data shows that in the presence of PA, EFn.ESAT-6 fusion protein is internalized into the cytosol of antigen presenting cells, and the splenocytes produced both Th1 and Th2 cytokines in vitro. Further, EFn.ESAT-6 elicited effective cytotoxicT lymphocyte (CTL) response in an in vitro CTL assay. This study for the first timemore » demonstrates that EFn can be used as a vehicle to deliver heterologous proteins of therapeutic importance.« less
Eraghi, Vida; Derakhshandeh, Abdollah; Hosseini, Arsalan; Motamedi-Boroojeni, Azar
2017-12-01
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants and there has been a shift in the public health approach to MAP and human diseases like Crohn's disease. The prevention of infection by MAP in ruminants is thought to deter the high impact of economic losses in the level of dairy industry and possible spreading of this pathogen in dairy products. The present study was done to investigate the construction and expression of the soluble form of a novel fusion protein, consisting of Heparin-binding hemagglutinin (HBHA) and high antigenic region of Fibronectin Attachment Protein-P (FAP-P), in order to introduce as a Th1 inducer subunit vaccine against MAP. HBHA is a mycobacterial adhesin and it has been demonstrated that a HBHA-specific IFN-γ response, in latent M. tuberculosis infection, depends on the methylation of the antigen. Further, FAP-P induces Th1 polarization. Because methylation of HBHA was not performed in E. coli , Pichia pastoris was chosen as the host. The desired fusion protein had a similar 3D structure to that of HBHA with its native form and post-translational methylation in C-terminal. Hence, the uptake of the purified fusion protein will be done by M cells because of HBHA, and cell-mediated immunity will be induced because of both antigens. Eventually, successful construction and expression of the newly-designed chimeric protein under the mentioned conditions is reported in this article.
Borsutzky, Stefan; Fiorelli, Valeria; Ebensen, Thomas; Tripiciano, Antonella; Rharbaoui, Faiza; Scoglio, Arianna; Link, Claudia; Nappi, Filomena; Morr, Michael; Buttó, Stefano; Cafaro, Aurelio; Mühlradt, Peter F; Ensoli, Barbara; Guzmán, Carlos A
2003-06-01
A major requirement for HIV/AIDS research is the development of a mucosal vaccine that stimulates humoral and cell-mediated immune responses at systemic and mucosal levels, thereby blocking virus replication at the entry port. Thus, a vaccine prototype based on biologically active HIV-1 Tat protein as antigen and the synthetic lipopeptide, macrophage-activating lipopeptide-2 (MALP-2), asa mucosal adjuvant was developed. Intranasal administration to mice stimulated systemic and mucosal anti-Tat antibody responses, and Tat-specific T cell responses, that were more efficient than those observed after i.p. immunization with Tat plus incomplete Freund's adjuvant. Major linear B cell epitopes mapped within aa 1-20 and 46-60, whereas T cell epitopes were identified within aa 36-50 and 56-70. These epitopes have also been described in vaccinated primates and in HIV-1-infected individuals with better prognosis. Analysis of the anti-Tat IgG isotypes in serum, and the cytokine profile of spleen cells indicated that a dominant Th1 helper response was stimulated by Tat plus MALP-2, as opposed to the Th2 response observed with Tat plus incomplete Freund's adjuvant. Tat-specific IFN-gamma-producing cells were significantly increased only in response to Tat plus MALP-2. These data suggest that Malp-2 may represent an optimal mucosal adjuvant for candidate HIV vaccines based on Tat alone or in combination with other HIV antigens.
Magheli, Ahmed; Hinz, Stefan; Hege, Claudia; Stephan, Carsten; Jung, Klaus; Miller, Kurt; Lein, Michael
2010-01-01
We investigated the value of pretreatment prostate specific antigen density to predict Gleason score upgrading in light of significant changes in grading routine in the last 2 decades. Of 1,061 consecutive men who underwent radical prostatectomy between 1999 and 2004, 843 were eligible for study. Prostate specific antigen density was calculated and a cutoff for highest accuracy to predict Gleason upgrading was determined using ROC curve analysis. The predictive accuracy of prostate specific antigen and prostate specific antigen density to predict Gleason upgrading was evaluated using ROC curve analysis based on predicted probabilities from logistic regression models. Prostate specific antigen and prostate specific antigen density predicted Gleason upgrading on univariate analysis (as continuous variables OR 1.07 and 7.21, each p <0.001) and on multivariate analysis (as continuous variables with prostate specific antigen density adjusted for prostate specific antigen OR 1.07, p <0.001 and OR 4.89, p = 0.037, respectively). When prostate specific antigen density was added to the model including prostate specific antigen and other Gleason upgrading predictors, prostate specific antigen lost its predictive value (OR 1.02, p = 0.423), while prostate specific antigen density remained an independent predictor (OR 4.89, p = 0.037). Prostate specific antigen density was more accurate than prostate specific antigen to predict Gleason upgrading (AUC 0.61 vs 0.57, p = 0.030). Prostate specific antigen density is a significant independent predictor of Gleason upgrading even when accounting for prostate specific antigen. This could be especially important in patients with low risk prostate cancer who seek less invasive therapy such as active surveillance since potentially life threatening disease may be underestimated. Further studies are warranted to help evaluate the role of prostate specific antigen density in Gleason upgrading and its significance for biochemical outcome.
Altin, John A.; Daley, Stephen R.; Howitt, Jason; Rickards, Helen J.; Batkin, Alison K.; Horikawa, Keisuke; Prasad, Simon J.; Nelms, Keats A.; Kumar, Sharad; Wu, Lawren C.; Tan, Seong-Seng; Cook, Matthew C.; Goodnow, Christopher C.
2014-01-01
The NDFIP1 (neural precursor cell expressed, developmentally down-regulated protein 4 family-interacting protein 1) adapter for the ubiquitin ligase ITCH is genetically linked to human allergic and autoimmune disease, but the cellular mechanism by which these proteins enable foreign and self-antigens to be tolerated is unresolved. Here, we use two unique mouse strains—an Ndfip1-YFP reporter and an Ndfip1-deficient strain—to show that Ndfip1 is progressively induced during T-cell differentiation and activation in vivo and that its deficiency causes a cell-autonomous, Forkhead box P3-independent failure of peripheral CD4+ T-cell tolerance to self and exogenous antigen. In small cohorts of antigen-specific CD4+ cells responding in vivo, Ndfip1 was necessary for tolerogen-reactive T cells to exit cell cycle after one to five divisions and to abort Th2 effector differentiation, defining a step in peripheral tolerance that provides insights into the phenomenon of T-cell anergy in vivo and is distinct from the better understood process of Bcl2-interacting mediator of cell death-mediated apoptosis. Ndfip1 deficiency precipitated autoimmune pancreatic destruction and diabetes; however, this depended on a further accumulation of nontolerant anti-self T cells from strong stimulation by exogenous tolerogen. These findings illuminate a peripheral tolerance checkpoint that aborts T-cell clonal expansion against allergens and autoantigens and demonstrate how hypersensitive responses to environmental antigens may trigger autoimmunity. PMID:24520172
Garcia-Pelayo, M Carmen; Bachy, Véronique S; Kaveh, Daryan A; Hogarth, Philip J
2015-01-01
It is generally assumed that the inbred mouse strains BALB/c (H-2(d)) and C57BL/6 (H-2(b)) respond to mycobacterial infection with distinct polarisation of T helper responses, with C57BL/6 predisposed to Th1 and BALB/c to Th2. We investigated this in a BCG-immunisation, Mycobacterium bovis challenge model. Following immunisation, lung and spleen cell cytokine responses to in vitro re-stimulation with a cocktail of seven secreted, immunogenic, recombinant mycobacterial proteins were determined. In both lung and spleen, BALB/c cells produced at least 2-fold more IFN-γ, and up to 7-fold more IL-2 and IL-17 than C57BL/6 cells, whereas IL-10 production was reciprocally increased in C57BL/6 mice. These data suggest that, contrary to reports in the literature, specific mycobacterial antigens are able to induce strong Th1 and Th17 responses in BALB/c mice following BCG vaccination, whilst in C57BL/6 mice, the Th1 response is partly counterbalanced by IL-10. After subsequent M. bovis low dose challenge, protection, as measured in the lungs and dissemination to the spleen, was equivalent in BALB/c and C57BL/6 mice, indicating that BCG-induced immunity was equivalent in both strains. Thus, the differential immune responses do not appear to have a role in protection, but further, as yet unidentified, specific immune responses play a significant role. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Elvin, Stephen J; Eyles, James E; Howard, Kenneth A; Ravichandran, Easwaran; Somavarappu, Satyanarayan; Alpar, H Oya; Williamson, E Diane
2006-05-15
Protection against virulent plague challenge by the parenteral and aerosol routes was afforded by a single administration of microencapsulated Caf1 and LcrV antigens from Yersinia pestis in BALB/c mice. Recombinant Caf1 and LcrV were individually encapsulated in polymeric microspheres, to the surface of which additional antigen was adsorbed. The microspheres containing either Caf1 or LcrV were blended and used to immunise mice on a single occasion, by either the intra-nasal or intra-muscular route. Both routes of immunisation induced systemic and local immune responses, with high levels of serum IgG being developed in response to both vaccine antigens. In Elispot assays, secretion of cytokines by spleen and draining lymph node cells was demonstrated, revealing activation of both Th1 and Th2 associated cytokines; and spleen cells from animals immunised by either route were found to proliferate in vitro in response to both vaccine antigens. Virulent challenge experiments demonstrated that non-invasive immunisation by intra-nasal instillation can provide strong systemic and local immune responses and protect against high level challenge. Microencapsulation of these vaccine antigens has the added advantage that controlled release of the antigens occurs in vivo, so that protective immunity can be induced after only a single immunising dose.
[Immunological characteristics of Mycobacterium tuberculosis antigen Rv2628].
Yin, Yuelan; Gao, Yunfei; Zhao, Dan; Lian, Kai; Chen, Xiang; Xu, Zhengzhong; Pan, Zhiming; Jiao, Xin'an
2014-02-01
Antigen Rv2628 of Mycobacterium tuberculosis is associated with latent tuberculosis infection. In this study, Rv2628 was prokaryotic expressed and purified, its immunological characteristics was evaluated with macrophage cell line RAW264.7 and BALB/c mice. The results show that Rv2628 was mainly expressed in form of inclusion body confirmed by SDS-PAGE, and could react with rabbit anti-H37Rv polyclonal antibody detected by Western blotting assay, indicating that the protein had an effective immunoreactivity. The interactions between Rv2628 and macrophage cell line RAW264.7 confirmed that it could effectively induce cells to produce pro-inflammatory cytokines, the relative expression level of IL-6 mRNA was higher than the control group in 1-12 h. BALB/c mice were subcutaneously immunized with Rv2628 protein, the production of IFN-gamma and IL-4 in the spleen cells was determined by Sandwich ELISA, in the Rv2628 immunized group, the level of IFN-gamma was significantly higher than that of IL-4 (P < 0.000 1). It indicated the protein induced Th1-tendency immune responses. At the same time, Rv2628(11-30) peptide used as coating antigen, the murine serum antibody titer detected by indirect-ELISA was 1:1 600, which demonstrated that Rv2628 could also induce humoral immune responses. In summary, Rv2628 could induce specific pro-inflammatory cytokines, affectively induce strongly Th1-tendency immune response and humoral response, it could be a potential target for developing subunit vaccine against TB. In addition, it laid foundation for probing the cross-talk between M. tb and host.
Tsuda, Masato; Arakawa, Haruka; Ishii, Narumi; Ubukata, Chihiro; Michimori, Mana; Noda, Masanari; Takahashi, Kyoko; Kaminogawa, Shuichi; Hosono, Akira
2017-01-01
Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice. OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week. Body weight and mucosal mast cell protease 1 in the serum were measured as the indicator of intestinal inflammation. Single-cell suspensions were prepared from intestinal and systemic lymphoid tissues for cellular analysis. Cytokine production was measured by ELISA. Activation markers and intracellular cytokines in CD4+ T cells were analyzed by flow cytometry. Activated CD4+ T cells were purified to examine cytokine production. Dietary intake of FOS provided moderate protection from the intestinal inflammation induced by the OVA-containing diet. FOS significantly reduced food allergy-induced Th2 cytokine responses in intestinal tissues but not in systemic tissues. FOS decreased OVA diet-induced IFN-γ+IL-4+ double-positive CD4+ T cells and early-activated CD45RBhighCD69+CD4+ T cells in the mesenteric lymph nodes. Furthermore, we confirmed that these CD45RBhighCD69+CD4+ T cells are able to produce high levels of IFN-γ and moderate level of IL-4, IL-10, and IL-13. Dietary intake of FOS during the development of food allergy attenuates the induction of intestinal Th2 cytokine responses by regulating early activation of naïve CD4+ T cells, which produce both Th1 and Th2 cytokines. Our results suggest FOS might be a potential food agent for the prevention of food allergy by modulating oral sensitization to food antigens. © 2017 S. Karger AG, Basel.
Anugraha, Gandhirajan; Jeyaprita, Parasurama Jawaharlal; Madhumathi, Jayaprakasam; Sheeba, Tamilvanan; Kaliraj, Perumal
2013-12-01
Although multiple vaccine strategy for lymphatic filariasis has provided tremendous hope, the choice of antigens used in combination has determined its success in the previous studies. Multiple antigens comprising key vaccine candidates from different life cycle stages would provide a promising strategy if the antigenic combination is chosen by careful screening. In order to analyze one such combination, we have used a chimeric construct carrying the well studied B. malayi antigens thioredoxin (BmTRX) and venom allergen homologue (BmVAH) as a fusion protein (TV) and evaluated its immune responses in mice model. The efficacy of fusion protein vaccine was explored in comparison with the single antigen vaccines and their cocktail. In mice, TV induced significantly high antibody titer of 1,28,000 compared to cocktail vaccine TRX+VAH (50,000) and single antigen vaccine TRX (16,000) or VAH (50,000). Furthermore, TV elicited higher level of cellular proliferative response together with elevated levels of IFN-γ, IL-4 and IL-5 indicating a Th1/Th2 balanced response. The isotype antibody profile showed significantly high level of IgG1 and IgG2b confirming the balanced response elicited by TV. Immunization with TV antigen induced high levels of both humoral and cellular immune responses compared to either cocktail or antigen given alone. The result suggests that TV is highly immunogenic in mice and hence the combination needs to be evaluated for its prophylactic potential.
Nicholas, Benjamin L; Brennan, F R; Martinez-Torrecuadrada, J L; Casal, J I; Hamilton, W D; Wakelin, D
2002-06-21
NIH mice were vaccinated subcutaneously or intranasally with chimaeric cow pea mosaic virus (CPMV) constructs expressing a 17-mer peptide sequence from canine parvovirus (CPV) as monomers or dimers on the small or large protein surface subunits. Responses to the chimaeric virus particles (CVPs) were compared with those of mice immunized with the native virus or with parvovirus peptide conjugated to keyhole limpet haemocyanin (KLH). The characteristics of the immune response to vaccination were examined by measuring serum and mucosal antibody responses in ELISA, in vitro antigen-induced spleen cell proliferation and cytokine responses. Mice made strong antibody responses to the native plant virus and peptide-specific responses to two of the four CVP constructs tested which were approximately 10-fold lower than responses to native plant virus. The immune response generated by the CVP constructs showed a marked TH1 bias, as determined by a predominantly IgG(2a) isotype peptide-specific antibody response and the release of IFN-gamma but not IL-4 or IL-5 from lymphocytes exposed to antigen in vitro. In comparison, parvovirus peptide conjugated to KLH generated an IgG(1)-biased (TH2) response. These data indicate that the presentation of peptides on viral particles could be used to bias the immune response in favor of a TH1 response.Anti-viral and anti-peptide IgA were detected in intestinal and bronchial lavage fluid of immunized mice, demonstrating that a mucosal immune response to CPV can be generated by systemic and mucosal immunization with CVP vaccines. Serum antibody from both subcutaneously-vaccinated and intranasally-vaccinated mice showed neutralizing activity against CPV in vitro.
Cui, Junqing; Watanabe, Naohiro; Kawano, Tetsu; Yamashita, Masakatsu; Kamata, Tohru; Shimizu, Chiori; Kimura, Motoko; Shimizu, Eiko; Koike, Jyunzo; Koseki, Haruhiko; Tanaka, Yujiro; Taniguchi, Masaru; Nakayama, Toshinori
1999-01-01
Murine Vα14 natural killer T (NKT) cells are thought to play a crucial role in various immune responses, including infectious, allergic, and autoimmune diseases. Because Vα14 NKT cells produce large amounts of both interleukin (IL)-4 and interferon (IFN)-γ upon in vivo stimulation with a specific ligand, α-galactosylceramide (α-GalCer), or after treatment with anti-CD3 antibody, a regulatory role on helper T (Th) cell differentiation has been proposed for these cells. However, the identity of the cytokine produced by Vα14 NKT cells that play a dominant role on the Th cell differentiation still remains controversial. Here, we demonstrate by using Vα14 NKT-deficient mice that Vα14 NKT cells are dispensable for the induction of antigen-specific immunoglobulin (Ig)E responses induced by ovalbumin immunization or Nippostrongylus brasiliensis infection. However, upon in vivo activation with α-GalCer, Vα14 NKT cells are found to suppress antigen-specific IgE production. The suppression appeared to be IgE specific, and was not detected in either Vα14 NKT– or IFN-γ–deficient mice. Consistent with these results, we also found that ligand-activated Vα14 NKT cells inhibited Th2 cell differentiation in an in vitro induction culture system. Thus, it is likely that activated Vα14 NKT cells exert a potent inhibitory effect on Th2 cell differentiation and subsequent IgE production by producing a large amount of IFN-γ. In marked contrast, our studies have revealed that IL-4 produced by Vα14 NKT cells has only a minor effect on Th2 cell differentiation. PMID:10499917
Repurposing Ospemifene for Potentiating an Antigen-Specific Immune Response
Kao, Chiao-Jung; Wurz, Gregory T.; Lin, Yi-Chen; Vang, Daniel P.; Phong, Brian; DeGregorio, Michael W.
2016-01-01
Objective Ospemifene, an estrogen receptor agonist/antagonist approved for treatment of dyspareunia and vaginal dryness in postmenopausal women, has potential new indications as an immune modulator. The overall objective of the present series of preclinical studies was to evaluate the immunomodulatory activity of ospemifene in combination with a peptide cancer vaccine. Methods Immune regulating effects, mechanism of action and structure activity relationships of ospemifene and related compounds were evaluated by examining expression of T cell activating cytokines in vitro, and antigen-specific immune response and cytotoxic T-lymphocyte activity in vivo. The effects of ospemifene (OSP) on the immune response to a peptide cancer vaccine (PV) were evaluated following chronic [control (n=22); OSP 50 mg/kg (n=16); PV (n=6); OSP+PV (n=11)], intermittent [control (n=10); OSP 10 and 50 mg/kg (n=11); PV (n=11); combination treatment (n=11 each dose)] and pretreatment [control; OSP 100 mg/kg; PV 100 µg; combination treatment (n=8 all groups)] ospemifene oral dosing schedules in a total of 317 mixed-sex tumor-bearing and non-tumor-bearing mice. Results The results showed that ospemifene induced expression of the key TH1 cytokines interferon gamma and interleukin-2 in vitro, which may be mediated by stimulating T cells through phosphoinositide 3-kinase and calmodulin signaling pathways. In combination with an antigen-specific peptide cancer vaccine, ospemifene increased antigen-specific immune response and increased cytotoxic T-lymphocyte activity in tumor-bearing and non-tumor-bearing mice. The pretreatment, intermittent, and chronic dosing schedules of ospemifene activate naïve T cells, modulate antigen-induced tolerance and reduce tumor-associated, pro-inflammatory cytokines, respectively. Conclusions Taken together, ospemifene’s dose response and schedule-dependent immune modulating activity offers a method of tailoring and augmenting the efficacy of previously failed antigen-specific cancer vaccines for a wide range of malignancies. PMID:27922937
Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin
2018-06-05
CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Evaluation of the co-agglutination test in diagnosis of experimental microsporidiosis.
Gaafar, Maha R
2011-05-01
Microsporidiosis is an emerging and opportunistic infection associated with wide range of clinical syndromes in humans. Confirmation of the presence of microsporidia in different samples is laborious, costly and often difficult. The present study was designed to evaluate the utility of the Co-agglutination test (Co-A test) for detection of urinary, fecal and circulating microsporidial antigens in experimentally infected mice. One hundred and twenty male Swiss albino mice were divided into non infected control and infected experimental groups which were further subdivided into two equal subgroups; immunosuppressed and immunocompetent. Microsporidial spores were isolated from human stools and identified to be Encephalitozoon intestinalis by the molecular methods. They were used to infect each subgroup of mice, then their urine, stools and sera were collected at the 1st, 3rd, 5th, 7th and 9th days post-infection (PI). Co-A test, using prepared hyperimmune serum, was used to detect antigens in all samples collected. The cross reactivity of microsporidial hyperimmune sera with antigens of Cyclospora cyatenensis and Cryptosporidium parvum was investigated by Co-A test. The results showed that Co-A test was effective in detecting microsporidial antigen in stool of immunosuppressed infected mice from the 1st day PI, and in urine and serum from the 3rd day PI till the end of the study. In the immunocompetent subgroup, Co-A test detected microsporidial antigens in stool, serum and urine of mice from the 1st day, 3rd day and the 5th day PI, respectively till the end of the study, without cross reactivity with C. cyatenensis or C. parvum in both subgroups. Co-A test proved to be simple and suitable tool for detecting microsporidial antigen in different specimens and did not need sophisticated equipment. It is very practical under field or rural conditions and in poorly equipped clinical laboratories. Copyright © 2011 Elsevier Inc. All rights reserved.
Parlane, Natalie A; Wedlock, D Neil; Buddle, Bryce M; Rehm, Bernd H A
2009-12-01
Bioengineered bacterial polyester inclusions have the potential to be used as a vaccine delivery system. The biopolyester beads were engineered to display a fusion protein of the polyester synthase PhaC and the two key antigens involved in immune response to the infectious agent that causes tuberculosis, Mycobacterium tuberculosis, notably antigen 85A (Ag85A) and the 6-kDa early secreted antigenic target (ESAT-6) from Mycobacterium tuberculosis. Polyester beads displaying the respective fusion protein at a high density were successfully produced (henceforth called Ag85A-ESAT-6 beads) by recombinant Escherichia coli. The ability of the Ag85A-ESAT-6 beads to enhance mouse immunity to the displayed antigens was investigated. The beads were not toxic to the animals, as determined by weight gain and absence of lesions at the inoculation site in immunized animals. In vivo injection of the Ag85A-ESAT-6 beads in mice induced significant humoral and cell-mediated immune responses to both Ag85A and ESAT-6. Vaccination with Ag85A-ESAT-6 beads was efficient at stimulating immunity on their own, and this ability was enhanced by administration of the beads in an oil-in-water emulsion. In addition, vaccination with the Ag85A-ESAT-6 beads induced significantly stronger humoral and cell-mediated immune responses than vaccination with an equivalent dose of the fusion protein Ag85A-ESAT-6 alone. The immune response induced by the beads was of a mixed Th1/Th2 nature, as assessed from the induction of the cytokine gamma interferon (Th1 immune response) and increased levels of immunoglobulin G1 (Th2 immune response). Hence, engineered biopolyester beads displaying foreign antigens represent a new class of versatile, safe, and biocompatible vaccines.
Zhang, Shouxin; Liu, Xiaoyan; Sun, Chengming; Yang, Jun; Wang, Lihong; Liu, Jie; Gong, Lei; Jing, Yanyan
2016-04-01
This study aims to investigate the protective effect of apigenin on the development of experimental autoimmune myocarditis (EAM) and the underlying mechanisms. An EAM model was induced in BALB/c mice by the injection of porcine cardiac myosin. Apigenin was orally administered from day 1 to 21. The severity of myocarditis was assessed by determination of heart weight/body weight ratio (HW/BW) and histopathological evaluation. Echocardiography was conducted to evaluate the cardiac function and heart structure. Antigen-specific T cell proliferation responses to cardiac myosin were evaluated by the lymphocyte proliferation assay. ELISA was used to determine serum levels of type 1 helper (Th1) and Th2 cytokines. Apigenin treatment significantly decreased HW/BW. Histopathologic analysis showed that the infiltration of inflammatory cells was reduced significantly by apigenin treatment. Meanwhile, apigenin administration effectively ameliorated autoimmune myocarditis-induced cardiac hypertrophy and cardiac dysfunction as well as inhibited lymphocyte proliferation in mice immunized with myosin. Furthermore, Th1 cytokines tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-2 (IL-2) were significantly downregulated, while Th2 cytokines IL-4 and IL-10 were markedly upregulated. The results indicated that apigenin can alleviate EAM due to its immunomodulatory reactions in modification of helper T cell balance.
Milani, Alireza; Bolhassani, Azam; Shahbazi, Sepideh; Motevalli, Fatemeh; Sadat, Seyed Mehdi; Soleymani, Sepehr
2017-11-01
Novel vaccine modalities have been designed to improve the efficiency of vaccines against HIV infections. In this way, the HIV-1 Nef protein has been known as an attractive antigenic candidate in therapeutic vaccine development. Moreover, the endogenous adjuvants such as heat shock proteins (HSPs) and high mobility group box 1 protein (HMGB1) have been suggested effectively to induce antigen-specific humoral and cellular immune responses. In this study, different Nef DNA and protein constructs were produced in eukaryotic and prokaryotic expression systems, and their immunostimulatory properties were evaluated using small heat shock protein 27 (Hsp27) and the HMGB1-derived peptide (Hp91) in a mouse model. Generally, our results indicated that the Hsp27-Nef fusion DNA or protein could significantly elicit higher humoral and cellular immune responses than Nef DNA or protein, respectively. Analysis of the immune responses demonstrated that the Hsp27-Nef fusion protein, and also the mixture of Nef and Hp91 significantly enhanced the Nef-specific T cell responses. Indeed, these regimens induced high levels of IgG2a and IFN-γ directed toward Th1 responses and also Granzyme B secretion as compared to other immunization strategies. The immunostimulatory properties of Freund's adjuvant were significantly less than Hsp27 and Hp91 peptide in various immunization strategies. These findings showed that the use of Hsp27 and Hp91 in protein strategy could improve HIV-1 Nef-specific B- and T-cell immune responses, and also represent a promising HIV-1 vaccine candidate in future. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Castillo, Adrian; Grogan, Tristan R; Wegrzyn, Grace H; Ly, Karrie V; Walker, Valencia P; Calkins, Kara L
2018-01-01
No validated biomarker at birth exists to predict which newborns will develop severe hyperbilirubinemia. This study's primary aim was to build and validate a prediction model for severe hyperbilirubinemia using umbilical cord blood bilirubins (CBB) and risk factors at birth in neonates at risk for maternal-fetal blood group incompatibility. This study's secondary aim was to compare the accuracy of CBB to the direct antigen titer. Inclusion criteria for this prospective cohort study included: ≥35 weeks gestational age, mother with blood type O and/or Rh negative or positive antibody screen, and <24 hours of age. The primary outcome was severe hyperbilirubinemia, defined as phototherapy during the initial hospital stay. Secondary outcomes were a total serum bilirubin concentration >95th and >75th percentile during the initial hospital stay. The predictive performance and accuracy of the two tests (CBB and direct antigen titer) for each outcome was assessed using area under a receiver-operating characteristic curve (AUC), sensitivity, and specificity. When compared to neonates who did not receive phototherapy (n = 463), neonates who received phototherapy (n = 36) had a greater mean CBB ± standard deviation (2.5 ± 0.7 vs. 1.6 ± 0.4 mg/dL, p<0.001). For every 0.3 mg/dL increase in CBB, a neonate was 3.20 (95% confidence interval, 2.31-4.45), 2.10 (1.63-2.70), and 3.12 (2.44-3.99) times more likely to receive phototherapy or have a total serum bilirubin concentration >95th and >75th percentile, respectively. The AUC ± standard error (95% confidence interval) for CBB for phototherapy and a total serum bilirubin concentration >95th and >75th percentile was 0.89 ± 0.03 (0.82-0.95), 0.81 ± 0.04 (0.73-0.90), and 0.84 ± 0.02 (0.80-0.89), respectively. However, the AUC for gestational age and maternal Asian race for these outcomes was only 0.55 ± 0.05 (0.45-0.66), 0.66 ± 0.05 (0.56-0.76), and 0.57 ± 0.04 (0.05-0.64), respectively. When the CBB was combined with gestational age and maternal Asian race, the AUC for a total serum bilirubin concentration >95th percentile improved to 0.87 ± 0.03 (0.81-0.92) (p = 0.034 vs. the model with CBB only and p<0.001 vs. the model with clinical risk factors only). In a sub-group of subjects (n = 189), the AUC for the direct antigen titer for phototherapy was 0.64 ± 0.06 (0.52-0.77) with a 52% sensitivity and 77% specificity. In contrast, a CBB cut-point of 1.85 mg/dL was 92% sensitive and 70% specific for phototherapy with an AUC of 0.87 ± 0.04 (0.80-0.95). CBB, in combination with gestational age and maternal race, may be a useful, non-invasive test to predict shortly after birth which neonates will develop severe hyperbilirubinemia.
Moon, James J; Suh, Heikyung; Polhemus, Mark E; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J
2012-01-01
The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.
Effective antigen presentation to helper T cells by human eosinophils.
Farhan, Ruhaifah K; Vickers, Mark A; Ghaemmaghami, Amir M; Hall, Andrew M; Barker, Robert N; Walsh, Garry M
2016-12-01
Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4 + T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co-stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non-allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co-culture with autologous CD4 + Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA-DR/DP/DQ and the co-stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro- and anti-inflammatory cytokines. Eosinophils up-regulated surface expression of HLA-DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen-presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease. © 2016 John Wiley & Sons Ltd.
Albrecht, Mark T; Livingston, Brian D; Pesce, John T; Bell, Matt G; Hannaman, Drew; Keane-Myers, Andrea M
2012-07-06
Electroporation of DNA vaccines represents a platform technology well positioned for the development of multivalent biodefense vaccines. To evaluate this hypothesis, three vaccine constructs were produced using codon-optimized genes encoding Bacillus anthracis Protective Antigen (PA), and the Yersinia pestis genes LcrV and F1, cloned into pVAX1. A/J mice were immunized on a prime-boost schedule with these constructs using the electroporation-based TriGrid Delivery System. Immunization with the individual pDNA vaccines elicited higher levels of antigen-specific IgG than when used in combination. DNA vaccine effectiveness was proven, the pVAX-PA titers were toxin neutralizing and fully protective against a lethal B. anthracis spore challenge when administered alone or co-formulated with the plague pDNA vaccines. LcrV and F1 pVAX vaccines against plague were synergistic, resulting in 100% survival, but less protective individually and when co-formulated with pVAX-PA. These DNA vaccine responses were Th1/Th2 balanced with high levels of IFN-γ and IL-4 in splenocyte recall assays, contrary to complimentary protein Alum vaccinations displaying a Th2 bias with increased IL-4 and low levels of IFN-γ. These results demonstrate the feasibility of electroporation to deliver and maintain the overall efficacy of an anthrax-plague DNA vaccine cocktail whose individual components have qualitative immunological differences when combined. Published by Elsevier Ltd.
Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.
Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A
2016-09-01
GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pulmonary arterial remodeling induced by a Th2 immune response
Daley, Eleen; Emson, Claire; Guignabert, Christophe; de Waal Malefyt, Rene; Louten, Jennifer; Kurup, Viswanath P.; Hogaboam, Cory; Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.; Rabinovitch, Marlene; Grunig, Ekkehard; Grunig, Gabriele
2008-01-01
Pulmonary arterial remodeling characterized by increased vascular smooth muscle density is a common lesion seen in pulmonary arterial hypertension (PAH), a deadly condition. Clinical correlation studies have suggested an immune pathogenesis of pulmonary arterial remodeling, but experimental proof has been lacking. We show that immunization and prolonged intermittent challenge via the airways with either of two different soluble antigens induced severe muscularization in small- to medium-sized pulmonary arteries. Depletion of CD4+ T cells, antigen-specific T helper type 2 (Th2) response, or the pathogenic Th2 cytokine interleukin 13 significantly ameliorated pulmonary arterial muscularization. The severity of pulmonary arterial muscularization was associated with increased numbers of epithelial cells and macrophages that expressed a smooth muscle cell mitogen, resistin-like molecule α, but surprisingly, there was no correlation with pulmonary hypertension. Our data are the first to provide experimental proof that the adaptive immune response to a soluble antigen is sufficient to cause severe pulmonary arterial muscularization, and support the clinical observations in pediatric patients and in companion animals that muscularization represents one of several injurious events to the pulmonary artery that may collectively contribute to PAH. PMID:18227220
Bouguyon, Edwige; Goncalves, Elodie; Shevtsov, Alexander; Maisonnasse, Pauline; Remyga, Stepan; Goryushev, Oleg; Deville, Sebastien; Bertho, Nicolas; Ben Arous, Juliette
2015-11-01
Vaccination is the most effective way to control swine influenza virus (SIV) in the field. Classical vaccines are based on inactivated antigens formulated with an oil emulsion or a polymeric adjuvant. Standard adjuvants enhance the humoral response and orient the immune response toward a Th2 response. An important issue is that current vaccines do not protect against new strains. One approach to improve cross-protection is to enhance Th1 and cytotoxic responses. The development of adjuvants orienting the immune response of inactivated vaccines toward Th1/Cytotoxic responses would be highly beneficial. This study shows that the water in oil in water emulsion adjuvant Montanide™ ISA 201 VG allows the induction of anti-influenza CD8 T cell in mice and induces homologous protection against an H1N1 challenge in swine. Such adjuvants that induce both humoral and cell-mediated immunity could improve the protection conferred by SIV vaccines in the field.
Wallin, Jeffrey J; Bendell, Johanna C; Funke, Roel; Sznol, Mario; Korski, Konstanty; Jones, Suzanne; Hernandez, Genevive; Mier, James; He, Xian; Hodi, F Stephen; Denker, Mitchell; Leveque, Vincent; Cañamero, Marta; Babitski, Galina; Koeppen, Hartmut; Ziai, James; Sharma, Neeraj; Gaire, Fabien; Chen, Daniel S; Waterkamp, Daniel; Hegde, Priti S; McDermott, David F
2016-08-30
Anti-tumour immune activation by checkpoint inhibitors leads to durable responses in a variety of cancers, but combination approaches are required to extend this benefit beyond a subset of patients. In preclinical models tumour-derived VEGF limits immune cell activity while anti-VEGF augments intra-tumoral T-cell infiltration, potentially through vascular normalization and endothelial cell activation. This study investigates how VEGF blockade with bevacizumab could potentiate PD-L1 checkpoint inhibition with atezolizumab in mRCC. Tissue collections are before treatment, after bevacizumab and after the addition of atezolizumab. We discover that intra-tumoral CD8(+) T cells increase following combination treatment. A related increase is found in intra-tumoral MHC-I, Th1 and T-effector markers, and chemokines, most notably CX3CL1 (fractalkine). We also discover that the fractalkine receptor increases on peripheral CD8(+) T cells with treatment. Furthermore, trafficking lymphocyte increases are observed in tumors following bevacizumab and combination treatment. These data suggest that the anti-VEGF and anti-PD-L1 combination improves antigen-specific T-cell migration.
Wallin, Jeffrey J.; Bendell, Johanna C.; Funke, Roel; Sznol, Mario; Korski, Konstanty; Jones, Suzanne; Hernandez, Genevive; Mier, James; He, Xian; Hodi, F. Stephen; Denker, Mitchell; Leveque, Vincent; Cañamero, Marta; Babitski, Galina; Koeppen, Hartmut; Ziai, James; Sharma, Neeraj; Gaire, Fabien; Chen, Daniel S.; Waterkamp, Daniel; Hegde, Priti S.; McDermott, David F.
2016-01-01
Anti-tumour immune activation by checkpoint inhibitors leads to durable responses in a variety of cancers, but combination approaches are required to extend this benefit beyond a subset of patients. In preclinical models tumour-derived VEGF limits immune cell activity while anti-VEGF augments intra-tumoral T-cell infiltration, potentially through vascular normalization and endothelial cell activation. This study investigates how VEGF blockade with bevacizumab could potentiate PD-L1 checkpoint inhibition with atezolizumab in mRCC. Tissue collections are before treatment, after bevacizumab and after the addition of atezolizumab. We discover that intra-tumoral CD8+ T cells increase following combination treatment. A related increase is found in intra-tumoral MHC-I, Th1 and T-effector markers, and chemokines, most notably CX3CL1 (fractalkine). We also discover that the fractalkine receptor increases on peripheral CD8+ T cells with treatment. Furthermore, trafficking lymphocyte increases are observed in tumors following bevacizumab and combination treatment. These data suggest that the anti-VEGF and anti-PD-L1 combination improves antigen-specific T-cell migration. PMID:27571927
Immunological mechanisms for desensitization and tolerance in food allergy1
Rachid, Rima; Umetsu, Dale T.
2013-01-01
Food allergy is a major public health concern in westernized countries, estimated to affect 5% of children and 3-4 % of adults. Allergen specific immunotherapy for food allergy is currently being actively evaluated, but is still experimental. The optimal protocol, in terms of the route of administration of the food, target maintenance dose, duration of maintenance therapy and the optimal patient for these procedures are still being worked out. The mechanisms underlying successful food desensitization are also unclear, in part because there is no standard immunotherapy protocol. The mechanisms involved however, may include mast cell and basophil suppression, development of food-specific IgG4 antibodies, reduction in the food specific IgE/IgG4 ratio, up-regulation and expansion of natural or inducible regulatory T cells, a skewing from a Th2 to a Th1 profile and the development of anergy and/or deletion in antigen specific cells. Additional studies are required to elucidate and understand these mechanisms by which desensitization and tolerance are achieved, and which may reveal valuable biomarkers for evaluating and following food allergic patients on immunotherapy. PMID:22821087
Choi, Dae Woon; Kwon, Da-Ae; Jung, Sung Keun; See, Hye-Jeong; Jung, Sun Young; Shon, Dong-Hwa; Shin, Hee Soon
2018-05-26
Allergic contact dermatitis (ACD) is an inflammatory skin disease caused by hapten-specific immune response. Silkworm droppings are known to exert beneficial effects during the treatment of inflammatory diseases. Here, we studied whether topical treatment and oral administration of silkworm dropping extract (SDE) ameliorate trimellitic anhydride (TMA)-induced ACD. In ACD mice model, SDE treatment significantly suppressed the increase in both ear thickness and serum IgE levels. Furthermore, IL-1β and TNF-α levels were reduced by SDE. In allergic responses, SDE treatment significantly attenuated the production of the Th2-associated cytokine IL-4 in both ear tissue and draining lymph nodes. However, it increased the production of the Th1-mediated cytokine IL-12. Thus, these results showed that SDE attenuated TMA-induced ACD symptoms through regulation of Th1/Th2 immune response. Taken together, we suggest that SDE treatment might be a potential agent in the prevention or therapy of Th2-mediated inflammatory skin diseases such as ACD and atopic dermatitis. ACD: allergic contact dermatitis; AD: atopic dermatitis; APC: antigen presenting cells; CCL: chemokine (C-C motif) ligand; CCR: C-C chemokine receptor; Dex: dexamethasone; ELISA: enzyme-linked immunosorbent assay; IFN: interferon; Ig: immunoglobulin; IL: interleukin; OVA: ovalbumin; PS: prednisolone; SDE: silkworm dropping extract; Th: T helper; TMA: trimellitic anhydride; TNF: tumor necrosis factor.
Gu, Hao; Liao, Yaling; Zhang, Jin; Wang, Ying; Liu, Zhiyong; Cheng, Ping; Wang, Xingyong; Zou, Quanming; Gu, Jiang
2018-01-01
Escherichia coli (E. coli) K1 causes meningitis and remains an unsolved problem in neonates, despite the application of antibiotics and supportive care. The cross-reactivity of bacterial capsular polysaccharides with human antigens hinders their application as vaccine candidates. Thus, protein antigens could be an alternative strategy for the development of an E. coli K1 vaccine. Outer membrane protein A (OmpA) of E. coli K1 is a potential vaccine candidate because of its predominant contribution to bacterial pathogenesis and sub-cellular localization. However, little progress has been made regarding the use of OmpA for this purpose due to difficulties in OmpA production. In the present study, we first investigated the immunogenicity of the four extracellular loops of OmpA. Using the structure of OmpA, we rationally designed and successfully generated the artificial protein OmpAVac, composed of connected loops from OmpA. Recombinant OmpAVac was successfully produced in E. coli BL21 and behaved as a soluble homogenous monomer in the aqueous phase. Vaccination with OmpAVac induced Th1, Th2, and Th17 immune responses and conferred effective protection in mice. In addition, OmpAVac-specific antibodies were able to mediate opsonophagocytosis and inhibit bacterial invasion, thereby conferring prophylactic protection in E. coli K1-challenged adult mice and neonatal mice. These results suggest that OmpAVac could be a good vaccine candidate for the control of E. coli K1 infection and provide an additional example of structure-based vaccine design. PMID:29876324
Gu, Hao; Liao, Yaling; Zhang, Jin; Wang, Ying; Liu, Zhiyong; Cheng, Ping; Wang, Xingyong; Zou, Quanming; Gu, Jiang
2018-01-01
Escherichia coli ( E. coli ) K1 causes meningitis and remains an unsolved problem in neonates, despite the application of antibiotics and supportive care. The cross-reactivity of bacterial capsular polysaccharides with human antigens hinders their application as vaccine candidates. Thus, protein antigens could be an alternative strategy for the development of an E. coli K1 vaccine. Outer membrane protein A (OmpA) of E. coli K1 is a potential vaccine candidate because of its predominant contribution to bacterial pathogenesis and sub-cellular localization. However, little progress has been made regarding the use of OmpA for this purpose due to difficulties in OmpA production. In the present study, we first investigated the immunogenicity of the four extracellular loops of OmpA. Using the structure of OmpA, we rationally designed and successfully generated the artificial protein OmpAVac, composed of connected loops from OmpA. Recombinant OmpAVac was successfully produced in E. coli BL21 and behaved as a soluble homogenous monomer in the aqueous phase. Vaccination with OmpAVac induced Th1, Th2, and Th17 immune responses and conferred effective protection in mice. In addition, OmpAVac-specific antibodies were able to mediate opsonophagocytosis and inhibit bacterial invasion, thereby conferring prophylactic protection in E. coli K1-challenged adult mice and neonatal mice. These results suggest that OmpAVac could be a good vaccine candidate for the control of E. coli K1 infection and provide an additional example of structure-based vaccine design.
Ma, Yanjie; Cao, Huimin; Li, Zhixin; Fang, Jinzhi; Wei, Xiaomin; Cheng, Peng; Jiao, Rui; Liu, Xiaoran; Li, Ya; Xing, Yun; Tang, Jiali; Jin, Liang; Li, Taiming
2017-10-16
Hyperuricemia (HUA) is related to diabetes. Uric acid-induced inflammation and oxidative stress are risk factors for diabetes and its complications. Human urate transporter 1 (URAT1) regulates the renal tubular reabsorption of uric acid. IA-2(5)-P2-1, a potent immunogenic carrier designed by our laboratory, can induce high-titer specific antibodies when it carries a B cell epitope, such as B cell epitopes of DPP4 (Dipeptidyl peptidase-4), xanthine oxidase. In this report, we describe a novel multi-epitope vaccine composing a peptide of URAT1, an anti-diabetic B epitope of insulinoma antigen-2(IA-2) and a Th2 epitope (P2:IPALDSLTPANED) of P277 peptide in human heat shock protein 60 (HSP60). Immunization with the multi-epitope vaccine in streptozotocin-induced diabetes C57BL/6J mice successfully induced specific anti-URAT1 antibody, which inhibited URAT1 action and uric acid reabsorption, and increased pancreatic insulin level with a lower insulitis incidence. Vaccination with U-IA-2(5)-P2-1 (UIP-1) significantly reduced blood glucose and uric acid level, increased Th2 cytokines interleukin (IL)-10 and IL-4, and regulated immune reactions through a balanced Th1/Th2 ratio. These results demonstrate that the URAT1-based multi-epitope peptide vaccine may be a suitable therapeutic approach for diabetes and its complications.
Veldman, Christian; Pahl, Andreas; Hertl, Michael
2009-01-01
Pemphigus vulgaris (PV) is an autoimmune bullous skin disorder associated with autoantibodies against desmoglein (Dsg) 3. An imbalance of type 1 regulatory T (Tr1) cells and T helper type 2 (Th2) cells specific for Dsg3 may be critical for the loss of tolerance against Dsg3 in PV. Within the population of Dsg3-responsive, interleukin (IL)-10-secreting Tr1 cell clones, two major subpopulations were identified and sorted by fluorescence-activated cell sorting (FACS) based on their size and granularity. Upon in vitro culture, the larger subpopulation differentiated back into the two former subpopulations of the Tr1 cell clones, while the smaller subpopulation died within 2 weeks. The smaller subpopulation of the Tr1 cell clones was characterized by the expression of Foxp3, the secretion of IL-10, transforming growth factor (TGF)-β and IL-5 upon stimulation with Dsg3, a proliferative response to IL-2 but not to Dsg3 or mitogenic stimuli, and an inhibitory effect on the proliferative response of Dsg3-responsive Th clones in a Dsg3-specific manner. In contrast, the larger subpopulation showed a Th-like phenotype, lacking Foxp3, cytotoxic T-lymphocyte antigen 4 (CTLA4) and glucocorticoid-induced tumour necrosis factor receptor (GITR) expression and IL-2 secretion, and did not mount a proliferative response to Dsg3 and mitogenic stimuli. The two Tr1 subpopulations showed expression of identical T-cell receptor (TCR) Vβ chains which varied among the PV patients studied. Upon inhibition of Foxp3, the smaller Tr1 subpopulation developed a proliferate response to Dsg3 and mitogenic stimuli, no longer suppressed Dsg3-specific Th cells, lost expression of GITR and CTLA4 and secreted IL-2. Thus, our observations suggest a distinct relationship between Dsg3-specific Tr1 and Th-like cells which may be critical for the continuous generation and survival of Dsg3-specific Tr1 cells. PMID:18800988
Poly(d,l)-lactide-co-glycolide (PLGA) microspheres as immunoadjuvant for Brugia malayi antigens.
Saini, Vinay; Verma, Shiv Kumar; Murthy, P Kalpana; Kohli, Dharmveer
2013-08-28
Recently we identified in Brugia malayi adult worm extract (BmA) a pro-inflammatory 54-68kDa SDS-PAGE resolved fraction F6 that protects the host from the parasite via Th1/Th2 type responses. We are currently investigating F6 as a potential source of vaccine candidate(s) and the present study is aimed at investigating the suitability of poly(d,l)-lactide-co-glycolide microspheres (PLGA-Ms) as immunoadjuvant for the antigen administration in a single dose. PLGA-Ms were prepared aseptically by a modified double emulsion (w/o/w) solvent evaporation technique and their size, shape, antigen adsorption efficiency, in-process stability, and antigen release were characterized. Swiss mice were immunized by a single subcutaneous administration of BmA and F6 adsorbed on PLGA-Ms (lactide:glycolide ratios 50:50 and 75:25) and the immune responses were compared with administration of 1 or 2 doses of plain BmA and F6. Specific IgG, IgG1, IgG2a, IgG2b, IgE levels in serum, cellular-proliferative response and release of IFN-γ, TNF-α and nitric oxide from the cells of immunized host in response to the antigens/LPS/Con A challenge and antibody-dependant cellular cytotoxicity (ADCC) to parasite life stages were determined. The average size of PLGA-Ms 50:50 was smaller than the size of PLGA-Ms 75:25 and the % antigen adsorption efficiency of PLGA-Ms 50:50 was greater than PLGA-Ms 75:25. Single shot injection of PLGA-Ms 50:50/75:25-BmA/F6 produced better and stronger IgG, IgG1/IgG2a and cell-mediated immune responses than even two injections of plain BmA or F6. Further, PLGA-Ms 50:50-F6 produced stronger responses than PLGA-Ms 50:50-BmA. Anti-PLGA-Ms 50:50-F6 antibodies elicited higher ADCC response to infective larval and microfilarial stages of the parasite than anti-PLGA-Ms 75:25-F6 antibodies. The findings demonstrate that PLGA-Ms 50:50 is an excellent adjuvant for use with F6 in a single administration. This is the first ever report on PLGA as immunoadjuvant for filarial antigens. Copyright © 2013 Elsevier Ltd. All rights reserved.
ELISPOT Assays in 384-Well Format: Up to 30 Data Points with One Million Cells
Hanson, Jodi; Sundararaman, Srividya; Caspell, Richard; Karacsony, Edith; Karulin, Alexey Y.; Lehmann, Paul V.
2015-01-01
Comprehensive immune monitoring requires that frequencies of T cells, producing different cytokines, are measured to establish the magnitude of Th1, Th2, and Th17 components of cell-mediated immunity. Antigen titration provides additional information about the affinity of T cell response. In tumor immunity, it is also advisable to account for determinant spreading by testing multiple epitopes. Efforts for comprehensive immune monitoring would require substantial numbers of PBMC to run the above tests systematically, which in most test cases is limiting. Immune monitoring with ELISPOT assays have been performed, thus far, in a 96-well format. In this study we show that one can increase cell utilization by performing the assay in 384-well plates whose membrane surface area is one third that of 96-well plates. Systematic testing of PBMC for antigen-specific T cell response in the two formats demonstrated that the 384-well assay corresponds to a one-in-three miniaturization of the 96-well assay. The lowest number of cells that can be used in the 384-well format, while allowing for sufficient contact with APC, is 33,000 PBMC/well. Therefore, with one million PBMC typically obtained from 1 mL of blood, a 30 well T cell ELISPOT assay can be performed in a 384-well format. PMID:25643292
NASA Astrophysics Data System (ADS)
Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco
2004-07-01
The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.
T CELLS LOCALIZED TO THE ANDROGEN-DEPRIVED PROSTATE ARE TH1 AND TH17 BIASED
Morse, Matthew D.; McNeel, Douglas G.
2013-01-01
BACKGROUND T cells infiltrate the prostates of prostate cancer patients undergoing neoadjuvant androgen deprivation. These prostate-infiltrating T cells have an oligoclonal phenotype, suggesting the development of an antigen-specific T-cell response. We hypothesized that androgen deprivation might elicit a prostate tissue-specific T-cell response that could potentially be combined with other immune-active therapies, and consequently sought to investigate the nature and timing of this T-cell response following castration. METHODS We investigated the phenotype and cytokine expression of T cells at various time points in the prostates of Lewis rats following surgical castration, and used adoptive transfer of prostate-infiltrating lymphocytes to determine whether the infiltration by T cells was mediated by effects of castration on the prostate or lymphocytes. RESULTS Prostate T-cell infiltration shortly after castration was TH1 biased up to approximately 30 days, followed by a predominance of TH17-type cells, which persisted until at least 90 days post castration. Prostate-infiltrating lymphocytes from sham-treated or castrate rats localized to the prostates of castrate animals. CONCLUSIONS These observations suggest castration elicits a time-dependent prostate-specific T-cell infiltration, and this infiltration is likely mediated by effects of castration on prostate tissue rather than T cells. These findings have implications for the timing of immunotherapies combined with androgen deprivation as treatments for prostate cancer. PMID:22213030
Ber-H2 (CD30) Immunohistochemical Staining of Human Fetal Tissues
2005-01-01
OBJECTIVE: CD30 antigen has long been considered to be restricted to the tumour cells of Hodgkin's disease and of anaplastic large cell lymphoma as well as to T and B activated lymphocytes. It is now apparent that the range of normal and neoplastic cells, which may express CD30 antigen, is much wider than was at first thought. In order to gain insight into the physiological function of CD30 antigen, we studied the distribution of its expression in the tissues of fetuses from week 8th to week 16th. MATERIALS AND METHODS: We investigated the immunohistochemical expression of CD30 antigen in paraffin-embedded tissue samples representing all systems from 30 fetuses after therapeutic abortion at 8th to 10th and 12th to 16th week of gestation, respectively, using the monoclonal antibody Ber-H2. RESULTS: Our results demonstrated that CD30 is expressed early in human fetal development (8th to 10th week of gestation) in several fetal tissues derived from all three germ layers (gastrointestinal tract, special glands of the postpharyngeal foregut, urinary, musculoskeletal, reproductive, nervous, endocrine systems), with the exception of the skin and hematolymphoid system (thymus), in which the antigen is expressed later on (10th week onwards). Expression of CD30 was restricted to the hematolymphoid system in the 12-16 weeks of gestation. No expression of the marker was observed in the respiratory and cardiovascular systems during the entire period examined. CONCLUSIONS: CD30 antigen is of importance in cell development, and proliferation. It is also pathway-related to terminal differentiation in many fetal tissues and organs. PMID:16244703
Ingle, Nilesh B; Virkar, Rashmi G; Arankalle, Vidya A
2016-01-01
We documented earlier that Mw (heat-killed suspension of Mycobacterium indicus pranii ) adjuvant when used with conserved antigens, nucleoprotein (NP), and ectodomain of matrix (M2) protein (M2e) provided complete protection against homologous (clade 2.2) virus challenge in mice. The present study extends these observations to inter-clade challenge (clade 2.3.2.1) H5N1 virus and attempts to understand preliminary immunologic basis for the observed protection. Female BALB/c mice immunized with a single or two doses of vaccine formulations (clade 2.2 antigens) were challenged with 100LD50 homologous or heterologous (clade 2.3.2.1) virus. To understand the preliminary immunologic mechanism, we studied proportions of selected immune cell types, immune response gene expression, and Th1/Th2 cytokines induced by antigen-stimulated splenocytes from immunized mice, at different time points. Complete protection was conferred by Mw-HA, Mw-HA + NP, and Mw-HA + NP + M2e against homologous challenge. The protection correlated with IgG2a antibody titers indicating important role of Th1 response. Despite high inter-cladal antigenic differences, complete protection against the heterologous strain was achieved with Mw-HA + NP + M2e. Of note, a single dose with higher antigen concentrations (50 µg HA + 50 μg NP + 50 μg M2e) led to 80% protection against clade 2.3.2.1 strain. The protection conferred by Mw-HNM correlated with induction of IFN-γ, CD8 + T cytotoxic cells, and CD4 + T helper cells. Mw-adjuvanted HA + NP + M2e combination represents a promising vaccine candidate deserving further evaluation.
Moguche, Albanus O.; Shafiani, Shahin; Clemons, Corey; Larson, Ryan P.; Dinh, Crystal; Higdon, Lauren E.; Cambier, C.J.; Sissons, James R.; Gallegos, Alena M.; Fink, Pamela J.
2015-01-01
Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1+ cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1+ cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB. PMID:25918344
Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V
2010-09-01
Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.
Ohkusu-Tsukada, Kozo; Ito, Daiki; Takahashi, Kimimasa
2018-01-01
Although immunosuppressants for therapy of atopic dermatitis (AD) are still being sought, proteasome inhibitors are also potential candidates for the treatment of AD. Proteasome inhibitors exert various effects by blocking proteasomal degradation and help regulate processes such as apoptosis induction via caspase-9, cell cycle progression via cyclins, NF-κB inactivation via IκB, and downregulation of antigen cross-presentation. The cells targeted by proteasome inhibitors are therefore activated cells undergoing proliferation or differentiation, and antigen-presenting cells carrying out protein degradation. This study investigated the therapeutic effects and side effects of a proteasome inhibitor, MG132, on the treatment of AD. AD-like disease in NC/Nga mice housed under specific pathogen-free conditions was induced by repeated application of 2,4-dinitrofluorobenzene (DNFB). Disease progression was evaluated by inflammation score, histopathology, and serum IgE level, and the effects of systemic MG132 administration were investigated. The percentages and absolute numbers for each population of Th1, Th2, and Th17 cells in the axillary lymph nodes were analyzed by flow cytometry. DNFB application increased the expression of a unique major histocompatibility complex class I mutant molecule D/Ldm7 in dendritic cells (DCs), and increased Th1 and Th17 cells in NC/Nga mice. In vivo MG132 administration to NC/Nga mice with DNFB-induced dermatitis reduced Th17 cells but maintained the level of Th1 cells, resulting in the alleviation of dermatitis lesions by decreasing both serum IgE hyperproduction and mast cell migration. To understand the mechanisms maintaining Th1 cell levels following in vivo MG132-administration, we focused on the role of proteasomes regulating D/Ldm7 expression. Interestingly, 20S proteasome activity was higher in NC/Nga DCs than in BALB/c DCs. In vitro MG132 administration partially increased D/Ldm7 expression in a dose-dependent manner during DC maturation, and induced IFN-γ production from autoreactive CD8+ T cells but not from CD4+ T cells following coculturing with D/Ldm7-upregulated DCs. Although MG132 administration temporarily alleviated AD pathogenesis in NC/Nga mice, prolonged MG132 treatment may result in immunopathogenesis leading to chronic AD due to its side effect of maintaining Th1 levels via autoreactive CD8+ T cells. © 2018 S. Karger AG, Basel.
Upham, John W.; Rate, Angela; Rowe, Julie; Kusel, Merci; Sly, Peter D.; Holt, Patrick G.
2006-01-01
The capacity of the immune system in infants to develop stable T-cell memory in response to vaccination is attenuated, and the mechanism(s) underlying this developmental deficiency in humans is poorly understood. The present study focuses on the capacity for expression of in vitro recall responses to tetanus and diphtheria antigens in lymphocytes from 12-month-old infants vaccinated during the first 6 months of life. We demonstrate that supplementation of infant lymphocytes with “matured” dendritic cells (DC) cultured from autologous CD14+ precursors unmasks previously covert cellular immunity in the form of Th2-skewed cytokine production. Supplementation of adult lymphocytes with comparable prematured autologous DC also boosted vaccine-specific T-cell memory expression, but in contrast to the case for the infants, these cytokine responses were heavily Th1 skewed. Compared to adults, infants had significantly fewer circulating myeloid DC (P < 0.0001) and plasmacytoid DC (P < 0.0001) as a proportion of peripheral blood mononuclear cells. These findings suggest that deficiencies in the numbers of antigen-presenting cells and their functional competence at 12 months of age limit the capacity to express effector memory responses and are potentially a key factor in reduced vaccine responsiveness in infants. PMID:16428758
[Detection of antigen structures in blood cells in various prepared plasma transfusions].
Barz, D
1994-01-01
We investigated the content of antigen-bearing cells and cell fragments in Fresh Frozen Plasma (FFP) from blood centers, in Octaplas (virus-inactivated fresh plasma produced with the solvent/detergent technique by the Octapharma Company) and in MB-plasma (virus-inactivated fresh plasma after photodynamic treatment with methylen blue coming from the German Red Cross in Springe, Lower Saxony). With the aid of an immunoassay (MAIPA-test) these plasmas were tested regarding Rhesus-D-antigen, HLA-class-I- and HLA-class-II-antigens, platelet specific antigens HPA-1a/HPA-1b and granulocyte specific antigens NA1/NA2. In Octaplas (n = 10) we did not find cells or cell fragments and no antigen-bearing blood cell structures. In FFP (n = 28) there were platelet specific antigens in 27 cases (96.4%) and HLA-class-I-antigens in 4 cases (14.3%). In MB-plasma (n = 14) we found platelet specific antigens in all cases, HLA-class-I-antigens in 4 cases (18.6%), HLA-class-II-antigens and granulocyte specific antigens in 1 case (7.1%) and Rhesus-D-antigen in 3 cases (21.4%). Plasma derived from whole blood showed lower levels of cells and antigens than plasma which was produced with the aid of the cell separator.
Functional diversity of human vaginal APC subsets in directing T cell responses
Duluc, Dorothée; Gannevat, Julien; Anguiano, Esperanza; Zurawski, Sandra; Carley, Michael; Boreham, Muriel; Stecher, Jack; Dullaers, Melissa; Banchereau, Jacques; Oh, SangKon
2012-01-01
Human vaginal mucosa is the major entry site of sexually transmitted pathogens and thus has long been attractive as a site for mounting mucosal immunity. It is also known as a tolerogenic microenvironment. Here, we demonstrate that immune responses in the vagina are orchestrated by the functional diversity of four major antigen-presenting cell (APC) subsets. Langerhans cells (LCs) and CD14− lamina propria (LP)-DCs polarize CD4+ and CD8+ T cells toward Th2, whereas CD14+ LP-DCs and macrophages polarize CD4+ T cells toward Th1. Both LCs and CD14− LP-DCs are potent inducers of Th22. Due to their functional specialties and the different expression levels of pattern-recognition receptors on the APC subsets, microbial products do not bias them to elicit common types of immune responses (Th1 or Th2). To evoke desired types of adaptive immune responses in the human vagina, antigens may need to be targeted to proper APC subsets with right adjuvants. PMID:23131784
Prostate-specific antigen lowering effect of metabolic syndrome is influenced by prostate volume.
Choi, Woo Suk; Heo, Nam Ju; Paick, Jae-Seung; Son, Hwancheol
2016-04-01
To investigate the influence of metabolic syndrome on prostate-specific antigen levels by considering prostate volume and plasma volume. We retrospectively analyzed 4111 men who underwent routine check-ups including prostate-specific antigen and transrectal ultrasonography. The definition of metabolic syndrome was based on the modified Adult Treatment Panel III criteria. Prostate-specific antigen mass density (prostate-specific antigen × plasma volume / prostate volume) was calculated for adjusting plasma volume and prostate volume. We compared prostate-specific antigen and prostate-specific antigen mass density levels of participants with metabolic syndrome (metabolic syndrome group, n = 1242) and without metabolic syndrome (non-prostate-specific antigen metabolic syndrome group, n = 2869). To evaluate the impact of metabolic syndrome on prostate-specific antigen, linear regression analysis for the natural logarithm of prostate-specific antigen was used. Patients in the metabolic syndrome group had significantly older age (P < 0.001), larger prostate volume (P < 0.001), higher plasma volume (P < 0.001) and lower mean serum prostate-specific antigen (non-metabolic syndrome group vs metabolic syndrome group; 1.22 ± 0.91 vs 1.15 ± 0.76 ng/mL, P = 0.006). Prostate-specific antigen mass density in the metabolic syndrome group was still significantly lower than that in the metabolic syndrome group (0.124 ± 0.084 vs 0.115 ± 0.071 μg/mL, P = 0.001). After adjusting for age, prostate volume and plasma volume using linear regression model, the presence of metabolic syndrome was a significant independent factor for lower prostate-specific antigen (prostate-specific antigen decrease by 4.1%, P = 0.046). Prostate-specific antigen levels in patients with metabolic syndrome seem to be lower, and this finding might be affected by the prostate volume. © 2016 The Japanese Urological Association.
Casares, Sofia; Lin, Marvin; Zhang, Nan; Teijaro, John R; Stoica, Cristina; McEvoy, Robert; Farber, Donna L; Bona, Constantin; Brumeanu, Teodor D
2008-06-27
Transplantation of pancreatic islets showed a tremendous progress over the years as a promising, new therapeutic strategy in patients with type 1 diabetes. However, additional immunosuppressive drug therapy is required to prevent rejection of engrafted islets. The current immunosuppressive therapies showed limited success in maintaining long-term islet survival as required to achieve insulin independence in type 1 diabetes, and they induce severe adverse effects. Herein, we analyzed the effects of a soluble peptide-major histocompatibility complex (MHC) class II chimera aimed at devising an antigen-specific therapy for suppression of anti-islet T cell responses and to improve the survival of pancreatic islets transplants. Pancreatic islets from transgenic mice expressing the hemagglutinin antigen in the beta islets under the rat insulin promoter (RIP-HA) were grafted under the kidney capsule of diabetic, double transgenic mice expressing hemagglutinin in the pancreas and T cells specific for hemagglutinin (RIP-HA, TCR-HA). The recipient double transgenic mice were treated or not with the soluble peptide-MHC II chimera, and the progression of diabetes, graft survival, and T cell responses to the grafted islets were analyzed. The peptide-MHC II chimera protected syngeneic pancreatic islet transplants against the islet-reactive CD4 T cells, and prolonged the survival of transplanted islets. Protection of transplanted islets occurred by polarization of antigen-specific memory CD4 T cells toward a Th2 anti-inflammatory response. The peptide-MHC II chimera approach is an efficient and specific therapeutic approach to suppress anti-islet T cell responses and provides a long survival of pancreatic grafted islets.
Thakur, Ankita; Kaur, Harpreet; Kaur, Sukhbir
2015-09-01
Visceral leishmaniasis (VL) caused by Leishmania donovani persists as a major public health issue in tropical and subtropical areas of the world. Current treatment of this disease relies on use of drugs. It is doubtful that chemotherapy can alone eradicate the disease, so there is a need for an effective vaccine. Killed antigen candidates remain a good prospect considering their ease of formulation, stability, low cost and safety. To enhance the efficacy of killed vaccines suitable adjuvant and delivery system are needed. Therefore, the current study was conducted to determine the protective efficacy of freeze-thawed L. donovani antigen in combination with different adjuvants against experimental infection of VL. For this, BALB/c mice were immunized thrice at an interval of two weeks. Challenge infection was given two weeks after last immunization. Mice were sacrificed after last immunization and on different post challenge/infection days. Immunized mice showed significant reduction in parasite burden, enhanced DTH responses with increased levels of Th1 cytokines and lower levels of Th2 cytokines, thus indicating the development of a protective Th1 response. Maximum protection was achieved with liposome encapsulated freeze thawed promastigote (FTP) antigen of L. donovani and it was followed by group immunized with FTP+MPL-A, FTP+saponin, FTP+alum and FTP antigen (alone). The present study highlights greater efficacy of freeze thawed promastigote antigen as a potential vaccine candidate along with effective adjuvant formulations against experimental VL infection. Copyright © 2015 Elsevier GmbH. All rights reserved.
Weinberg, Adriana; Muresan, Petronella; Richardson, Kelly; Fenton, Terence; Dominguez, Teresa; Bloom, Anthony; Watts, D Heather; Abzug, Mark J; Nachman, Sharon A; Levin, Myron J
2015-11-01
We investigated the Th1 protective and regulatory T and B cell (Treg and Breg) responses to pH1N1 monovalent influenza vaccine (IIV1) in HIV-infected pregnant women on combination antiretroviral therapy (cART). Peripheral blood mononuclear cells (PBMCs) from 52 study participants were cryopreserved before and after vaccination and analyzed by flow cytometry. pH1N1-specific Th1, Treg, and Breg responses were measured in PBMCs after in vitro stimulation with pH1N1 and control antigen. The cohort analysis did not detect changes in pH1N1-Th1, Treg, or Breg subsets postvaccination. However, individual analyses distinguished subjects who mounted vigorous Th1 responses postvaccination from others who did not. Postvaccination, high pH1N1-Th1 correlated with high pH1N1-Treg and Breg responses, suggesting that low influenza effector responses did not result from excessive vaccine-induced immune regulation. High postvaccination pH1N1-Th1 responses correlated with baseline high PHA- and pH1N1-IFN-γ ELISpot and circulating CD4(+)CD39(+)% and CD8(+)CD39(+)% Treg, with low CD8(+) cell numbers and CD19(+)FOXP3(+)% Breg, but not with CD4(+) cell numbers or HIV viral load. These data highlight the heterogeneity of T cell responses to vaccines in HIV-infected individuals on cART. Predictors of robust Th1 responses to IIV include CD8(+) cell numbers, T cell functionality, and circulating Breg and Treg.
Ramadan, Gamal
2008-01-01
To overcome the cytotoxic T-lymphocytes (CTL) expansion limitations imposed by the lack of sufficient dendritic cells (DC) alternative sources of autologous antigen presenting cells (APC) such as Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell lines (BLCL), which are easy to establish in vitro, have been considered and studied in the present work. Non-adherent peripheral blood mononuclear cells of three healthy donors were repeatedly primed with autologous Aspergillus fumigatus commercial culture-filtrate antigen-pulsed fast monocyte-derived DC (Aspf-CFA-DC) alone, Aspf-CFA-pulsed BLCL (Aspf-CFA-BLCL) alone or Aspf-CFA-BLCL after one, two, or three primings with Aspf-CFA-DC (1DC/BLCL, 2DC/BLCL or 3DCIBLCL; respectively). After 5th priming, lines generated by Aspf-CFA-BLCL only showed strong/weak lytic activity for EBV/Aspf; respectively. Aspf-specific lytic activity in all donors was increased by increasing the number of primings with Aspf-CFA-DC before switching to Aspf-CFA-BLCL (18.20 +/- 1.65% versus 35.67 +/- 1.02% and 40.03 +/- 1.41% in bulk cultures generated by 1DC/BLCL versus 2DC/BLCL and 3DC/BLCL, respectively). Bulk cultures generated by Aspf-CFA-BLCL after at least two primings with Aspf-CFA-DC showed approximately the same Aspf-specific lytic activity, effector cell phenotype, expansion level and percentage expression of IFN-gamma, CD69 and CD107a without any significant differences (p > 0.05) as standard bulk cultures generated by only Aspf-CFA-DC. Thus, this study explored the use of a combined DC/BLCL protocol to establish/propagate Aspf-specific CTL for adoptive immunotherapy to prevent or treat invasive pulmonary aspergillosis.
Elson, L H; Days, A; Calvopiña, M; Paredes, W; Araujo, E; Guderian, R H; Bradley, J E; Nutman, T B
1996-01-01
Afro-Ecuadorian individuals from an area where Onchocerca volvulus is hyperendemic have been monitored for infection over the past 16 years. To determine whether in utero exposure to O. volvulus biases a child's subsequent immune responses, children (9 to 16 years old) for whom the mother's infection status was known were chosen for study. Children of infected mothers (n = 19) had significantly higher levels of skin microfilariae than children of uninfected mothers (n = 13; P = 0.021). While the serum levels of O. volvulus-specific immunoglobulin G (IgG), IgG subclasses, and IgE showed no significant differences between the two groups of children, peripheral blood mononuclear cells of children of infected mothers produced higher levels of Th2-type cytokines to several parasite antigens and lower levels of Th1-type cytokines to nonparasite antigens than those of children of uninfected mothers. Thus, in utero exposure to O. volvulus has a long-term effect on the child's subsequent cellular immune response that may render the child more susceptible to O. volvulus infection postnatally. PMID:8945547
Seier, Anne M.; Renkl, Andreas C.; Schulz, Guido; Uebele, Tanja; Sindrilaru, Anca; Iben, Sebastian; Liaw, Lucy; Kon, Shigeyuki; Uede, Toshimitsu; Weiss, Johannes M.
2010-01-01
Allergic contact dermatitis is a T cell-mediated immune response, which in its relapsing chronic form is of high socioeconomic impact. The phosphoglycoprotein osteopontin (OPN) has chemotactic and Th1 cytokine functions and in various models is essential for robust T cell-mediated immunity. Here we demonstrate that OPN is abundantly expressed by both effector T cells and keratinocytes in allergic contact dermatitis lesions. T cells from nickel-allergic donors secrete high levels of OPN following antigen-specific stimulation. OPN may substitute for missing IFN-γ secretion in T effector cells because low IFN-γ-producing T cell clones secrete high levels of OPN, and OPN down-modulates their interleukin-4 expression. Furthermore, interferon-γ from T effector cells augments OPN in allergic contact dermatitis by inducing OPN in keratinocytes, which in turn polarizes dendritic cells and attracts inflammatory cells. In the murine contact hypersensitivity (CHS) model for allergic contact dermatitis, OPN is strongly induced in antigen-specific proliferating T cells, and OPN null mice display a reduced chronic CHS inflammatory response due to a decreased influx of effector T cells. Importantly, because of its function for chronic allergic contact dermatitis, OPN may well be a therapeutic target, because anti-OPN antibody treatment in part suppresses established chronic CHS. PMID:20008129
Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG.
Ou-Yang, Hai-Feng; Hu, Xing-Bin; Ti, Xin-Yu; Shi, Jie-Ran; Li, Shu-Jun; Qi, Hao-Wen; Wu, Chang-Gui
2009-09-01
Allergic asthma is a chronic inflammatory disease mediated by T helper (Th)2 cell immune responses. Currently, immunotherapies based on both immune deviation and immune suppression, including the development of recombinant mycobacteria as immunoregulatory vaccines, are attractive treatment strategies for asthma. In our previous studies, we created a genetically recombinant form of bacille Calmette-Guerin (rBCG) that expressed Der p2 of house dust mites and established that it induced a shift from a Th2 response to a Th1 response in naive mice. However, it is unclear whether rBCG could suppress allergic airway inflammation in a mouse model. In this article we report that rBCG dramatically inhibited airway inflammation, eosinophilia, mucus production and mast cell degranulation in allergic mice. Analysis of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid (BALF) and lung tissue revealed that the suppression was associated with a shift from a Th2 response to a Th1 response. At the same time, rBCG induced a CD4(+) CD25(+) Foxp3(+) T-cell subtype that could suppress the proliferation of Th2 effector cells in vitro in an antigen-specific manner. Moreover, suppression of CD4(+) CD25(+) T cells could be adoptively transferred. Thus, our results demonstrate that rBCG induces both generic and specific immune responses. The generic immune response is associated with a shift from a Th2 to a Th1 cytokine response, whereas the specific immune response against Der p2 appears to be related to the expansion of transforming growth factor-beta (TGF-beta)-producing CD4(+) CD25(+) Foxp3(+) regulatory T cells. rBCG can suppress asthmatic airway inflammation through both immune deviation and immune suppression and may be a feasible, efficient immunotherapy for asthma.
Sha, Shanshan; Shi, Xiaoxia; Deng, Guoying; Chen, Lina; Xin, Yi; Ma, Yufang
2017-04-01
Mycobacterium tuberculosis can interfere with host immune response and escape clearance through its specific antigens. M. tuberculosis Rv1987 encoded by region of difference (RD)-2 gene is a secretory protein with immunogenic potency. Here, we investigated the impact of Rv1987 on host cytokine responses and T cell polarization in mouse aerosol model. A recombinant M. smegmatis mc 2 155 strain that overexpressed Rv1987 protein (named MS1987) was constructed and used to infect C57BL/6 mice. The mc 2 155 harbored the empty vector (named MSVec) was as a control. The results showed that MS1987 challenged mice promoted Th2-biased cytokine responses with lower secretion of IFN-γ but higher production of IL-4 and Rv1987-specific IgG antibody compared to MSVec infected mice. Neutrophilic inflammation and high bacterial burden were observed in the lung tissues of MS1987 infected mice probably own to the failed Th1 cell immunity. Besides, subcutaneous injection of Rv1987 protein could mediate the Th1 cytokine responses caused by M. bovis BCG in mice. These results indicated that M. tuberculosis Rv1987 protein could modulate host immune response towards Th2 profile, which probably contributed to the immune evasion of bacteria from host elimination. Copyright © 2017 Elsevier GmbH. All rights reserved.
Azizi, Hakim; Mirzaeei, Hadi; Nasiri, Ali Akbar; Bazi, Ali; Mirzapour, Aliyar; Khatami, Mehrdad; Nahavandi, Kareem Hatam; Azimi, Ako; Yaghoobi, Hajar
2018-06-01
Toxic effects of available therapeutics are major drawbacks for conventional management approaches in parasitic infections. Vaccines have provided a promising opportunity to obviate such unwanted complications. In present study, we examined immune augmenting capacities of an emerging adjuvant, Naltrexone, against Fasciola hepatica infection in BALB/c mice. Seventy BALB/c mice were divided into five experimental groups (14 mice per group) including 1- control (received PBS), 2- vaccine (immunized with F. hepatica E/S antigens), 3- Alum-vaccine (immunized with Alum adjuvant and E/S antigens), 4- NLT-vaccine (immunized with NLT adjuvant and E/S antigens), and 5- Alum-NLT-vaccine (immunized with mixed Alum-NLT adjuvant and E/S antigens). Lymphocyte stimulation index was assessed by MTT assay. Production of IFN-γ, IL-4, IgG2a and IgG1 was assessed by ELISA method. Results showed that NLT, either alone or in combination with alum, can induce immune response toward production of IFN-γ and IgG2a as representatives of Th1 immune response. Also, using this adjuvant in immunization experiment was associated with significantly high proliferative response of splenocytes/lymphocytes. Utilization of mixed Alum-NLT adjuvant revealed the highest protection rate (73.8%) in challenge test of mice infected with F. hepatica. These findings suggest the potential role of NLT as an effective adjuvant in induction of protective cellular and Th1 immune responses against fasciolosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Interferon-gamma and T-bet expression in a patient with toxoplasmic lymphadenopathy.
Jöhrens, Korinna; Moos, Verena; Schneider, Thomas; Stein, Harald; Anagnostopoulos, Ioannis
2010-04-01
Infection with Toxoplasma gondii (TG) presents in some individuals as a self-limited disease with a predominant lymphadenopathy characterized by prominent B-cell activation. As this is in contrast to the in vitro based concept of a T(h)1-immune response against TG, we investigated native lymphoid tissue and peripheral blood of a patient with serologic evidence of toxoplasmosis to verify which cells show T(h)1-response features. High-level expression of T-bet in monocytoid B-cells, in germinal center B-cells, and in a lesser amount in T cells could be demonstrated by immunohistochemistry. In vitro stimulation of lymph node cells with either TG, staphylococcus enterotoxin B, or phorbol 12-myristate 13-acetate/ionomycin revealed an interferon-gamma expression in T-bet(+) B cells only in the patient and not in controls. Similar results were found for T-bet(+) T cells which were also present in controls. CD4(+) peripheral blood cells stimulated with TG antigens showed a TG-specific but attenuated T(h)1-reactivity in the patient associated with a reduced expression of IL-2 when compared with controls. We conclude that the pathogenesis and course of toxoplasmic lymphadenopathy is based on a T(h)1-cell defect, which becomes compensated by the B cells mounting a T(h)1-like immune response.
[Pathogenic Mechanism and Diagnostic Testing for Drug Allergies].
Uno, Katsuji
2018-01-01
Three stages of the pathogenic mechanism of drug allergies can be considered: antigen formation, immune reaction and inflammation/disorder reaction. Drugs are thought to form 4 types of antigens: drug only, polymers, drug-carrier conjugates, and metabolite-carrier complexes. Antigens are recognized by B cell receptors and T cell receptors. Helper T cells (Th) are differentiated into four subsets, namely, Th1, Th2, Th17 and regulatory T cells (Treg). Th1 produces interleukin (IL)-2 and interferon (IFN)-γ, and activates macrophages and cytotoxic T cells (Tc). Macrophages induce type IV allergies, and Tc lead to serious type IV allergies. On the other hand, Th2 produces IL-4, IL-5, and IL-6, etc., and activates B cells. B cells produce IgE antibodies, and the IgE antibody affects mast cells and induces type I allergies. Activated eosinophil leads to the chronic state of type I allergy. Diagnostic testing for allergenic drugs is necessary for patients with drug allergies. Because in vivo diagnostic tests for allergenic drugs are associated with a risk and burden to the patient, in vitro allergy tests are recommended to identify allergenic drugs. In allergy tests performed in vitro, cytological tests are more effective than serological tests, and the leukocyte migration test (LMT) presently has the highest efficacy. An LMT-chamber is better than LMT-agarose in terms of usability and sensitivity, and it can detect about 80% of allergenic drugs.
The etiologic role of infectious antigens in sarcoidosis pathogenesis
Celada, Lindsay J.; Hawkins, Charlene; Drake, Wonder P.
2015-01-01
Sarcoidosis is a granulomatous disease of unknown etiology, characterized by a Th1 immunophenotype, most commonly involving the lung, skin, lymph node and eyes. Molecular and immunologic studies continue to strengthen the association of sarcoidosis with infectious antigens, particularly those derived from Propionibacterium and Mycobacterium species. Independent studies report the presence of microbial nucleic acids and proteins within sarcoidosis specimens. Complementary immunologic studies also support the role of infectious agents in sarcoidosis pathogenesis. Th-1 immune responses directed against mycobacterial virulence factors have been detected within sarcoidosis diagnostic bronchoalveolar lavage (BAL). Th1 and Th17 immune responses against propionibacteria have also been reported. More recently, case reports and clinical trials from Japanese, European and American investigators have emerged regarding the efficacy of antimicrobials against Propionibacterium and Mycobacterium species on pulmonary and cutaneous sarcoidosis. While these clinical investigations are not conclusive, they support increasing efforts to identify novel therapeutics, such as antimicrobials, that will impact the observed increase in sarcoidosis morbidity and mortality. PMID:26593133
Analysis of orbital T cells in thyroid-associated ophthalmopathy
Förster, G; Otto, E; Hansen, C; Ochs, K; Kahaly, G
1998-01-01
Thyroid-associated ophthalmopathy (TAO) has a major effect on the two compartments of the retro-orbital (RO) space, leading to enlargement of the extraocular muscles and other RO tissues. T lymphocyte infiltration of RO tissue is a characteristic feature of TAO and there is current interest in whether these T cells are specifically and selectively reactive to RO tissue itself. We recently established 18 T cell lines (TCL) from RO adipose/connective tissue of six patients with severe TAO by using IL-2, anti-CD3 antibodies and irradiated autologous peripheral blood mononuclear cells (PBMC) to maintain the growth of T cells reactive to autologous RO tissue protein fractions. Here we report on the phenotype characteristics and cytokine gene expression profiles of these orbital TCL and on their immunoreactivity to the organ-specific thyroid antigens thyrotropin receptor (TSH-R), thyroidal peroxidase (TPO) and thyroglobulin (TG). Flow cytometry revealed that 10 TCL were predominantly of CD4+ phenotype, three being mostly CD8+ and five neither CD4+ nor CD8+. Analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) of cytokine gene expression revealed both Th1- and Th2-like products in all TCL: IL-2 product (in 17 TCL), interferon-gamma (IFN-γ) (n = 10), tumour necrosis factor-beta (TNF-β) (n = 15), IL-4 (n = 12), IL-5 (n = 17), IL-6 (n = 13), TNF-α (n = 12) and IL-10 (n = 4). Reactivity to thyroid antigens was observed only in two TCL, the other 16 being uniformly unreactive. Although 10 out of 18 RO tissue-reactive TCL were predominantly CD4+ there were no significant relationships between TCL phenotype, cytokine gene profile, magnitude of reactivity to RO tissue protein or the (rare) occurrence of thyroid reactivity. The findings of both Th1- and Th2-like cytokine gene expression in all RO tissue-reactive TCL support the concept that TAO is a tissue-specific autoimmune disease, distinct immunologically from the thyroid, and involving both T cell and B cell autoimmune mechanisms in disease pathogenesis. PMID:9649211
Vickers, Andrew J; Wolters, Tineke; Savage, Caroline J; Cronin, Angel M; O'Brien, M Frank; Roobol, Monique J; Aus, Gunnar; Scardino, Peter T; Hugosson, Jonas; Schröder, Fritz H; Lilja, Hans
2010-09-01
Prostate specific antigen velocity has been proposed as a marker to aid in prostate cancer detection. We determined whether prostate specific antigen velocity could predict repeat biopsy results in men with persistently increased prostate specific antigen after initial negative biopsy. We identified 1,837 men who participated in the Göteborg or Rotterdam section of the European Randomized Screening study of Prostate Cancer and who underwent 1 or more subsequent prostate biopsies after an initial negative finding. We evaluated whether prostate specific antigen velocity improved predictive accuracy beyond that of prostate specific antigen alone. Of the 2,579 repeat biopsies 363 (14%) were positive for prostate cancer, of which 44 (1.7%) were high grade (Gleason score 7 or greater). Prostate specific antigen velocity was statistically associated with cancer risk but had low predictive accuracy (AUC 0.55, p <0.001). There was some evidence that prostate specific antigen velocity improved AUC compared to prostate specific antigen for high grade cancer. However, the small increase in risk associated with high prostate specific antigen velocity (from 1.7% to 2.8% as velocity increased from 0 to 1 ng/ml per year) had questionable clinical relevance. Men with prior negative biopsy are at lower risk for prostate cancer at subsequent biopsies with high grade disease particularly rare. We found little evidence to support prostate specific antigen velocity to aid in decisions about repeat biopsy for prostate cancer. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Bulera, S J; Sattler, C A; Gast, W L; Heath, S; Festerling, T A; Pitot, H C
1998-10-01
The hepatotoxicant thioacetamide (TH) has classically been used as a model to study hepatic necrosis; however, recent studies have shown that TH can also induce apoptosis. In this report we demonstrate that 2.68+/-0.54% of the albumin-SV40 T-antigen transgenic rat hepatocytes undergo TH-induced apoptosis, a level comparable to other in vivo models of liver apoptosis. In addition, TH could induce apoptosis and necrosis in the L37 albumin-SV40 T-antigen transgenic rat liver-derived cell line. Examination of dying L37 cells treated with 100 mM TH by electron microscopy revealed distinct morphological characteristics that could be attributed to apoptosis. Quantitation of apoptosis by FACS analysis 24 h after treatment with 100 mM TH revealed that 81.3+/-1.6% of the cells were undergoing apoptosis. In contrast, when L37 cells were treated with 250 mM TH, cells exhibited characteristics consistent with necrotic cell death. DNA fragmentation ladders were produced by growth factor withdrawal-induced apoptosis; however, in 100 mM TH-induced apoptosis, DNA fragmentation ladders were not observed. Analysis of endonuclease activity in L37 cells revealed that the enzymes were not inactivated in the presence of 100 mM TH. The data presented in this report indicate that the L37 cell line could be used to study the mechanism of TH-induced apoptosis that was not mediated through a mechanism requiring DNA fragmentation.
Xiong, Xiaolu; Meng, Yanfen; Wang, Xile; Qi, Yong; Li, Jiaming; Duan, Changsong; Wen, Bohai
2012-11-06
The recombinant membrane-associated proteins of Coxiella burnetii, Com1, Mip and GroEL, were used in vitro to stimulate BALB/c mouse bone marrow-derived dendritic cells (BMDCs). The antigen-activated BMDCs were transferred into naïve BALB/c mice. Seven days after challenge of C. burnetii, the bacterial loads of mice receiving BMDCs activated with Com1 or Mip, but not GroEL, were significantly lower than that of mice receiving BMDCs pulsed with TrxA (Esherichia coli thioredoxin) in a quantitative polymerase chain reaction assay. After in vitro interaction with cognate antigen-pulsed BMDCs, the percentages of CD69-positive cells and TNF-α-positive cells in CD4(+) and CD8(+) T cells isolated from the spleens of mice receiving Com1-, Mip-, or GroEL-pulsed BMDCs were significantly higher than that of mice receiving mock-pulsed BMDCs in flow cytometric analysis. The percentages of IFN-γ-positive cells in CD4(+) and CD8(+) T cells from mice receiving Com1- or Mip-pulsed BMDCs were significantly greater than that of mice receiving GroEL-pulsed BMDCs. However, the percentage of IL-4-positive cells in CD4(+) T cells of mice receiving GroEL-pulsed BMDCs was obviously higher than that of mice receiving Com1- or Mip-pulsed BMDCs. Our results demonstrate that Com1 and Mip are protective antigens and strongly indicate that they favor to induce IFN-γ-producing Th1 and Tc1 cells, whereas the non-protective antigen GroEL is biased to induce a Th2 response. Therefore, Com1 and Mip are key antigens to induce a protective immune response against C. burnetii infection. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John
2009-12-30
In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.
Alsuliman, Abdullah; Muftuoglu, Muharrem; Khoder, Ahmad; Ahn, Yong-Oon; Basar, Rafet; Verneris, Michael R.; Muranski, Pawel; Barrett, A. John; Liu, Enli; Li, Li; Stringaris, Kate; Armstrong-James, Darius; Shaim, Hila; Kondo, Kayo; Imahashi, Nobuhiko; Andersson, Borje; Marin, David; Champlin, Richard E.; Shpall, Elizabeth J.
2017-01-01
The establishment of long-lived pathogen-specific T cells is a fundamental property of the adaptive immune response. However, the mechanisms underlying long-term persistence of antigen-specific CD4+ T cells are not well-defined. Here we identify a subset of memory CD4+ T cells capable of effluxing cellular toxins, including rhodamine (Rho), through the multidrug efflux protein MDR1 (also known as P-glycoprotein and ABCB1). Drug-effluxing CD4+ T cells were characterized as CD161+CD95+CD45RA−CD127hiCD28+CD25int cells with a distinct chemokine profile and a Th1-polarized pro-inflammatory phenotype. CD4+CD161+Rho-effluxing T cells proliferated vigorously in response to stimulation with anti-CD3/CD28 beads and gave rise to CD161− progeny in vitro. These cells were also capable of self-renewal and maintained their phenotypic and functional characteristics when cultured with homeostatic cytokines. Multidrug-effluxing CD4+CD161+ T cells were enriched within the viral-specific Th1 repertoire of healthy donors and patients with acute myeloid leukemia (AML) and survived exposure to daunorubicin chemotherapy in vitro. Multidrug-effluxing CD4+CD161+ T cells also resisted chemotherapy-induced cytotoxicity in vivo and underwent significant expansion in AML patients rendered lymphopenic after chemotherapy, contributing to the repopulation of anti-CMV immunity. Finally, after influenza vaccination, the proportion of influenza-specific CD4+ T cells coexpressing CD161 was significantly higher after 2 years compared with 4 weeks after immunization, suggesting CD161 is a marker for long-lived antigen-specific memory T cells. These findings suggest that CD4+CD161+ T cells with rapid efflux capacity contribute to the maintenance of viral-specific memory T cells. These data provide novel insights into mechanisms that preserve antiviral immunity in patients undergoing chemotherapy and have implications for the development of novel immunotherapeutic approaches. PMID:27821506
Wern, Jeanette Erbo; Sorensen, Maria Rathmann; Olsen, Anja Weinreich; Andersen, Peter; Follmann, Frank
2017-01-01
The selection of any specific immunization route is critical when defining future vaccine strategies against a genital infection like Chlamydia trachomatis (C.t.). An optimal Chlamydia vaccine needs to elicit mucosal immunity comprising both neutralizing IgA/IgG antibodies and strong Th1/Th17 responses. A strategic tool to modulate this immune profile and mucosal localization of vaccine responses is to combine parenteral and mucosal immunizations routes. In this study, we investigate whether this strategy can be adapted into a two-visit strategy by simultaneous subcutaneous (SC) and nasal immunization. Using a subunit vaccine composed of C.t. antigens (Ags) adjuvanted with CAF01, a Th1/Th17 promoting adjuvant, we comparatively evaluated Ag-specific B and T cell responses and efficacy in mice following SC and simultaneous SC and nasal immunization (SIM). We found similar peripheral responses with regard to interferon gamma and IL-17 producing Ag-specific splenocytes and IgG serum levels in both vaccine strategies but in addition, the SIM protocol also led to Ag-specific IgA responses and increased B and CD4+ T cells in the lung parenchyma, and in lower numbers also in the genital tract (GT). Following vaginal infection with C.t., we observed that SIM immunization gave rise to an early IgA response and IgA-secreting plasma cells in the GT in contrast to SC immunization, but we were not able to detect more rapid recruitment of mucosal T cells. Interestingly, although SIM vaccination in general improved mucosal immunity we observed no improved efficacy against genital infection compared to SC, a finding that warrants for further investigation. In conclusion, we demonstrate a novel vaccination strategy that combines systemic and mucosal immunity in a two-visit strategy. PMID:28567043
Nielsen, C H; Hegedüs, L; Rieneck, K; Moeller, A C; Leslie, R G Q; Bendtzen, K
2007-01-01
Tumour necrosis factor (TNF)-α and interferon (IFN)-γ exert detrimental effects in organ-specific autoimmune disease, while both destructive and protective roles have been demonstrated for interleukin (IL)-10, IL-4 and IL-5. We examined the production of these cytokines by peripheral blood mononuclear cells (PBMC) from patients with Hashimoto's thyroiditis (HT), Graves' disease (GD) and healthy controls, upon exposure to a thyroid self-antigen, human thyroglobulin (Tg), in the presence of autologous serum. Initially, TNF-α and IL-2 were produced in all three groups, accompanied by IL-10. Release of IFN-γ, IL-4 and, notably, IL-5 ensued. Both patient groups exhibited increased TNF-α, IL-2, IFN-γ and IL-10 responses, and PBMC from HT patients secreted lower amounts of IL-5 than male, but not female, controls. Enhanced TNF-α production by HT cells also occurred in the presence of pooled normal sera, indicating a dependency on intrinsic cellular factors. Conversely, higher production of TNF-α and IL-5 occurred in the presence of autologous sera than in the presence of pooled normal sera in both patient groups, indicating a dependency on serum constituents. Complement appeared to promote the production of IL-2 and particularly IL-5, the levels of which were reduced by neutralization of complement by heat- or zymosan treatment. The production of IFN-γ and IL-2 of the three groups together correlated directly with the serum anti-Tg activity. Moreover, TNF-α, IFN-γ, IL-5 and IL-10 responses were markedly inhibited by partial denaturation of Tg by boiling. We hypothesize that autoantibodies and complement may promote mixed Th1/Th2 cell cytokine responses by enhancing the uptake of autoantigens by antigen-presenting cells. PMID:17223970
SAIKAI, T; TANAKA, H; SATO, N; ABE, S; MATSUURA, A
2004-01-01
Contemporary mushroom factories are places where there is a substantial risk of the occurrence of respiratory allergy. The aims of this investigation were to estimate its causative agents and to evaluate the contribution of innate immune response in mushroom workers who cultivate Hypsizigus marmoreus (Bunashimeji). Cross-sectional and follow-up studies were performed in the factory. We investigated CD1b, CD3, CD4, CD8, CD14, CD45RO, CD62L and CD161 expression in peripheral blood mononuclear cells (PBMC) by flow cytometry, and serum levels of interleukin (IL-2), IL-4, granulocyte-macrophage colony stimulating factor (GM-CSF), IL-13 and interferon (IFN)-γ by enzyme-linked immunosorbent assay (ELISA). Co-culture experiments of PBMC with spore extracts were also performed. Percentages of CD1b+ monocytes, natural killer (NK), NK T and CD4+ T cells were increased in the workers compared with controls. Increases in Th2 type cells, Th2/Th1 ratio and serum IL-13 and decreased IFN-γ were detected, indicating a Th2-biased status of the workers. The follow-up study showed that monocytes and NK cells increased soon after employment while CD4+ T, Th2 and NK T cells increased gradually as employment time lengthened. Serum precipitating antibody to the mushroom antigen could be detected at a later stage. Co-cultivation of PBMC with the spore extracts induced much higher CD1b expression, and suppressed secretion of Th1 cytokine in culture supernatants. These results indicate that the mushroom antigen contains highly immunogenic substances which stimulate PBMC into a Th2-biased in vivo status, and innate immune cells might also play a critical role in developing respiratory allergy in mushroom workers. PMID:14678272
Costa, Lourena Emanuele; Goulart, Luiz Ricardo; Pereira, Nathália Cristina de Jesus; Lima, Mayara Ingrid Sousa; Duarte, Mariana Costa; Martins, Vivian Tamietti; Lage, Paula Sousa; Menezes-Souza, Daniel; Ribeiro, Tatiana Gomes; Melo, Maria Norma; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz
2014-01-01
Background The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. Methodology/Main Findings Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. Conclusions/Significance This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as successful immunogens in vaccine formulations against VL. PMID:25333662
Connolly, Michael; Marketon, Anthony
2016-01-01
Allergies caused by Japanese Red Cedar (JRC) pollen affect up to a third of Japanese people, necessitating development of an effective therapeutic. We utilized the lysosomal targeting property of lysosomal-associated membrane protein-1 (LAMP-1) to make DNA vaccines that encode LAMP-1 and the sequences of immunodominant allergen CryJ1 or CryJ2 from the JRC pollen. This novel strategy is designed to skew the CD4 T cell responses to the target allergens towards a nonallergenic Th1 response. CryJ1-LAMP and CryJ2-LAMP were administrated to BALB/c mice and antigen-specific Th1-type IgG2a and Th2-type IgG1 antibodies, as well as IgE antibodies, were assayed longitudinally. We also isolated different T cell populations from immunized mice and adoptively transferred them into naïve mice followed by CryJ1/CryJ2 protein boosts. We demonstrated that CryJ-LAMP immunized mice produce high levels of IFN-γ and anti-CryJ1 or anti-CryJ2 IgG2a antibodies and low levels of IgE antibodies, suggesting that a Th1 response was induced. In addition, we found that CD4+ T cells are the immunological effectors of DNA vaccination in this allergy model. Together, our results suggest the CryJ-LAMP Vaccine has a potential as an effective therapeutic for JRC induced allergy by skewing Th1/Th2 responses. PMID:27239481
Toll-like receptor signaling: a perspective to develop vaccine against leishmaniasis.
Singh, Rakesh K; Srivastava, Ankita; Singh, Nisha
2012-09-06
The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis. Copyright © 2012 Elsevier GmbH. All rights reserved.
Modification of growth rate of Toxoplasma gondii by continuous passage in immune mice.
Yano, K; Nakabayashi, T; Inoki, S
1987-05-01
Growth of the RH strain of Toxoplasma gondii, is suppressed in mice immunized with Toxoplasma antigens. At the second passage, the growth of T. gondii harvested from immune mice is suppressed more strongly in immune mice than that of T. gondii from control mice. After 52 passages in immune mice, the growth of T. gondii was still suppressed in immune mice than in control mice. T. gondii did not possess ability of antigenic variation (Pfefferkorn et al., 1983). After vaccination with the S-273 strain of T. gondii, mice were challenged twice with the RH strain. Cysts in brains caused death of all mice by inoculation at the 1st, 2nd, 3rd, 4th and 8th week after the second challenge of the RH strain. But the cysts from mice at the 16th and 30th week have decreased virulence, causing death in only 2 out of 4 and 1 out of 4 mice, respectively. Virulence of cysts had no definite relationship to Toxoplasma antibodies by indirect latex agglutination test and the numbers of cysts per brain. Growth variation of T. gondii is proposed under unfavourable conditions as in mice immunized with Toxoplasma antigens or vaccinated with the S-273 strain.
Panteleev, Alexander V.; Nikitina, Irina Yu; Burmistrova, Irina A.; Kosmiadi, George A.; Radaeva, Tatyana V.; Amansahedov, Rasul B.; Sadikov, Pavel V.; Serdyuk, Yana V.; Larionova, Elena E.; Bagdasarian, Tatef R.; Chernousova, Larisa N.; Ganusov, Vitaly V.; Lyadova, Irina V.
2017-01-01
It is generally thought that Mycobacterium tuberculosis (Mtb)-specific CD4+ Th1 cells producing IFN-γ are essential for protection against tuberculosis (TB). In some studies, protection has recently been associated with polyfunctional subpopulation of Mtb-specific Th1 cells, i.e., with cells able to simultaneously secrete several type 1 cytokines. However, the role for Mtb-specific Th1 cells and their polyfunctional subpopulations during established TB disease is not fully defined. Pulmonary TB is characterized by a great variability of disease manifestations. To address the role for Mtb-specific Th1 responses during TB, we investigated how Th1 and other immune cells correlated with particular TB manifestations, such as the degree of pulmonary destruction, TB extent, the level of bacteria excretion, clinical disease severity, clinical TB forms, and “Timika X-ray score,” an integrative parameter of pulmonary TB pathology. In comparison with healthy Mtb-exposed controls, TB patients (TBP) did not exhibit deficiency in Mtb-specific cytokine-producing CD4+ cells circulating in the blood and differed by a polyfunctional profile of these cells, which was biased toward the accumulation of bifunctional TNF-α+IFN-γ+IL-2− lymphocytes. Importantly, however, severity of different TB manifestations was not associated with Mtb-specific cytokine-producing cells or their polyfunctional profile. In contrast, several TB manifestations were strongly correlated with leukocyte numbers, the percent or the absolute number of lymphocytes, segmented or band neutrophils. In multiple alternative statistical analyses, band neutrophils appeared as the strongest positive correlate of pulmonary destruction, bacteria excretion, and “Timika X-ray score.” In contrast, clinical TB severity was primarily and inversely correlated with the number of lymphocytes in the blood. The results suggest that: (i) different TB manifestations may be driven by distinct mechanisms; (ii) quantitative parameters and polyfunctional profile of circulating Mtb-specific CD4+ cells play a minor role in determining TB severity; and (iii) general shifts in production/removal of granulocytic and lymphocytic lineages represent an important factor of TB pathogenesis. Mechanisms leading to these shifts and their specific role during TB are yet to be determined but are likely to involve changes in human hematopoietic system. PMID:28871253
Ledur, Pauline C; Tondolo, Juliana S M; Jesus, Francielli P K; Verdi, Camila M; Loreto, Érico S; Alves, Sydney H; Santurio, Janio M
2018-03-01
Pythiosis is a life-threatening disease caused by the fungus-like microorganism Pythium insidiosum that can lead to death if not treated. Since P. insidiosum has particular cell wall characteristics, pythiosis is difficult to treat, as it does not respond well to traditional antifungal drugs. In our study, we investigated a new immunotherapeutic approach with potential use in treatment and in the acquisition of immunity against pythiosis. Dendritic cells from both human and mouse, pulsed with P. insidiosum heat-inactivated zoospore, (1,3)(1,6)-β-glucan and the immunotherapeutic PitiumVac ® efficiently induced naïve T cell differentiation in a Th1 phenotype by the activation of specific Th1 cytokine production in vitro. Heat-inactivated zoospores showed the greatest Th1 response among the tested groups, with a significant increase in IL-6 and IFN-γ production in human cells. In mice cells, we also observed a Th17 pathway induction, with an increase on the IL-17A levels in lymphocytes cultured with β-glucan pulsed DCs. These results suggest a potential use of DCs pulsed with P. insidiosum antigens as a new therapeutic strategy in the treatment and acquisition of immunity against pythiosis. Copyright © 2017 Elsevier GmbH. All rights reserved.
Liu, Wei; Tan, Zhoulin; Liu, Hai; Zeng, Zhiqin; Luo, Shuanghui; Yang, Huimin; Zheng, Lufeng; Xi, Tao; Xing, Yingying
2017-10-01
Gram-positive enhancer matrix particles (GEM) produced by Lactococcus lactis can enhance vaccine-induced immune response. However, the mechanism under which this adjuvant mounts the efficacy of orally administered vaccines remains unexplored. We used a prophylactic mice model to investigate the mechanism of GEM-adjuvanted vaccination. Helicobacter pylori urease-specific antibody response was monitored and detected in murine serum by ELISA. Urease-specific splenic cytokine profile was examined. Gastric inflammatory responses were measured on day 43 or 71 by quantitative real-time PCR, flow cytometry and histology. We found that GEM enhanced the efficiency of oral H. pylori vaccine by promoting innate immunity. The vaccine CUE-GEM composed of GEM particles and recombinant antigen CTB-UE provided protection of immunized mice against H. pylori insult. The protective response was associated with induction of postimmunization gastritis and local Th1/Th17 cell-medicated immune response. We showed that innate inflammatory responses including neutrophil chemokines CXCL1-2, neutrophils, and antimicrobial proteins S100A8 and MUC1 were significantly elevated. Within all infected mice, S100A8 and MUC1 levels were negatively correlated with H. pylori burden. Strikingly, mice receiving GEM also show reduction of colonization, possibly through natural host response pathways to recruit CD4 + T cells and promote S100A8 expression. These findings suggest that GEM-based vaccine may impact Th1/Th17 immunity to orchestrate innate immune response against H. pylori infection. © 2017 John Wiley & Sons Ltd.
Pathological and therapeutic roles of innate lymphoid cells in diverse diseases.
Kim, Jisu; Kim, Geon; Min, Hyeyoung
2017-11-01
Innate lymphoid cells (ILCs) are a recently defined type of innate-immunity cells that belong to the lymphoid lineage and have lymphoid morphology but do not express an antigen-specific B cell or T-cell receptor. ILCs regulate immune functions prior to the formation of adaptive immunity and exert effector functions through a cytokine release. ILCs have been classified into three groups according to the transcription factors that regulate their development and function and the effector cytokines they produce. Of note, ILCs resemble T helper (Th) cells, such as Th1, Th2, and Th17 cells, and show a similar dependence on transcription factors and distinct cytokine production. Despite their short history in immunology, ILCs have received much attention, and numerous studies have revealed biological functions of ILCs including host defense against pathogens, inflammation, tissue repair, and metabolic homeostasis. Here, we describe recent findings about the roles of ILCs in the pathogenesis of various diseases and potential therapeutic targets.
Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.
2015-01-01
The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973
Chen, Wanjun; Jin, Wenwen; Wahl, Sharon M.
1998-01-01
Evidence indicates that cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) may negatively regulate T cell activation, but the basis for the inhibitory effect remains unknown. We report here that cross-linking of CTLA-4 induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. CD4+ T helper type 1 (Th1), Th2, and Th0 clones all secrete TGF-β after antibody cross-linking of CTLA-4, indicating that induction of TGF-β by CTLA-4 signaling represents a ubiquitous feature of murine CD4+ T cells. Stimulation of the CD3–T cell antigen receptor complex does not independently induce TGF-β, but is required for optimal CTLA-4–mediated TGF-β production. The consequences of cross-linking of CTLA-4, together with CD3 and CD28, include inhibition of T cell proliferation and interleukin (IL)-2 secretion, as well as suppression of both interferon γ (Th1) and IL-4 (Th2). Moreover, addition of anti–TGF-β partially reverses this T cell suppression. When CTLA-4 was cross-linked in T cell populations from TGF-β1 gene–deleted (TGF-β1−/−) mice, the T cell responses were only suppressed 38% compared with 95% in wild-type mice. Our data demonstrate that engagement of CTLA-4 leads to CD4+ T cell production of TGF-β, which, in part, contributes to the downregulation of T cell activation. CTLA-4, through TGF-β, may serve as a counterbalance for CD28 costimulation of IL-2 and CD4+ T cell activation. PMID:9815262
Kadowaki, Atsushi; Miyake, Sachiko; Saga, Ryoko; Chiba, Asako; Mochizuki, Hideki; Yamamura, Takashi
2016-01-01
The gut environment has been found to significantly influence autoimmune diseases such as multiple sclerosis; however, immune cell mechanisms are unclear. Here we show that the gut epithelium of myelin oligodendrocyte glycoprotein(35-55)-specific T-cell receptor transgenic mice contains environmental stimuli-induced intraepithelial lymphocytes (IELs) that inhibit experimental autoimmune encephalomyelitis on transfer. These cells express surface markers phenotypical of ‘induced' IELs, have a TH17-like profile and infiltrate the central nervous system (CNS). They constitutively express Ctla4 and Tgfb1 and markedly upregulate Lag3 expression in the CNS, thereby inhibiting inflammation. We also demonstrate the suppressive capability of CD4+ IELs with alternative antigen specificities, their proliferation in response to gut-derived antigens and contribution of the microbiota and dietary aryl hydrocarbon receptor ligands to their induction. Thus, the gut environment favours the generation of autoreactive CD4+ T cells with unique regulatory functions, potentially important for preventing CNS autoimmunity. PMID:27198196
Sashihara, Toshihiro; Ikegami, Shuji; Sueki, Natsuko; Yamaji, Taketo; Kino, Kohsuke; Taketomo, Naoki; Gotoh, Minoru; Okubo, Kimihiro
2008-12-01
Lactobacillus gasseri OLL2809 strongly stimulates the production of interleukin (IL)-12 (p70) by innate immune cells. Thus, it is expected to ameliorate allergic diseases. We investigated whether the oral administration of heat-killed L. gasseri OLL2809 suppressed eosinophilia in cedar pollen antigen-challenged mice. BALB/c mice sensitized with Japanese cedar pollen extract were intraperitoneally challenged with the same extract. The mice were orally given heat-killed L. gasseri OLL2809 at doses of 0.5, 1, or 2mg/day throughout the experimental period (21 d). After 24 hours of the challenge, the eosinophil number and cytokine levels in the peritoneal lavage fluid and the serum antigen-specific IgG levels were determined. On administering varying amounts of heat-killed L. gasseri OLL2809, the number of eosinophils among the total number of cells was significantly reduced in all groups. In addition, the eosinophil number significantly decreased, and the eosinophil-suppression rate significantly increased by 44% in the 2-mg group. Although the serum immunoglobulin (Ig) G2a and IgG1 levels were not affected, the IgG2a/IgG1 ratio increased significantly in the 2-mg group compared with that of the control group. Furthermore, the administration of heat-killed L. gasseri OLL2809 resulted in the induction of IL-2 and reduction in granulocyte-macrophage colony-stimulating factor levels in peritoneal lavage fluid. We demonstrated that the oral administration of heat-killed L. gasseri OLL2809 suppresses eosinophilia via the modulation of Th1/Th2 balance. These observations suggested that heat-killed L. gasseri OLL2809 might potentially ameliorate the increased number of eosinophils in patients with Japanese cedar pollinosis.
IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity.
Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Robinson, Catherine M; Nomura, Masaru; Killingsworth, Murray; Hall, Bruce M
2012-05-10
Immune responses to foreign and self-Ags can be controlled by regulatory T cells (Tregs) expressing CD4 and IL-2Rα chain (CD25). Defects in Tregs lead to autoimmunity, whereas induction of Ag-specific CD4+CD25+ Tregs restores tolerance. Ag-specific CD4+CD25+ FOXP3+Tregs activated by the T helper type 2 (Th2) cytokine, IL-4, and specific alloantigen promote allograft tolerance. These Tregs expressed the specific IL-5Rα and in the presence of IL-5 proliferate to specific but not third-party Ag. These findings suggest that recombinant IL-5 (rIL-5) therapy may promote Ag-specific Tregs to mediate tolerance. This study showed normal CD4+CD25+ Tregs cultured with IL-4 and an autoantigen expressed Il-5rα. Treatment of experimental autoimmune neuritis with rIL-5 markedly reduced clinical paralysis, weight loss, demyelination, and infiltration of CD4+ (Th1 and Th17) CD8+ T cells and macrophages in nerves. Clinical improvement was associated with expansion of CD4+CD25+FOXP3+ Tregs that expressed Il-5rα and proliferated only to specific autoantigen that was enhanced by rIL-5. Depletion of CD25+ Tregs or blocking of IL-4 abolished the benefits of rIL-5. Thus, rIL-5 promoted Ag-specific Tregs, activated by autoantigen and IL-4, to control autoimmunity. These findings may explain how Th2 responses, especially to parasitic infestation, induce immune tolerance. rIL-5 therapy may be able to induce Ag-specific tolerance in autoimmunity.
Bannai, Hiroshi; Tsujimura, Koji; Kondo, Takashi; Nemoto, Manabu; Yamanaka, Takashi; Sugiura, Takeo; Maeda, Ken; Matsumura, Tomio
2011-04-01
An immunoglobulin G (IgG) subclass response against equine herpesvirus type 1 (EHV-1) infection was investigated in horses that were naïve to EHV-1/4 and those that had previously been exposed to EHV-4. The IgG subclass response was determined by an ELISA using EHV-1-specific recombinant gG protein as an antigen. In most horses naïve to EHV-1/4, IgGa, IgGb, and IgG(T) were induced after experimental infection with EHV-1. In contrast, a subclass response dominated by IgGa and IgGb, with no apparent increase in IgG(T), was observed after EHV-1 infection in horses previously infected with EHV-4. Horses naturally infected with EHV-1 in the field showed similar responses. These results indicated that pre-infection with EHV-4 induced a Th-1-biased IgG subclass response against subsequent EHV-1 infection.
Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis
Monin, Leticia; Griffiths, Kristin L.; Lam, Wing Y.; Gopal, Radha; Kang, Dongwan D.; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K.; Mitreva, Makedonka; Rosa, Bruce A.; Ramos-Payan, Rosalio; Morrison, Thomas E.; Murray, Peter J.; Rangel-Moreno, Javier; Pearce, Edward J.; Khader, Shabaana A.
2015-01-01
Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB. PMID:26571397
Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis.
Monin, Leticia; Griffiths, Kristin L; Lam, Wing Y; Gopal, Radha; Kang, Dongwan D; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K; Mitreva, Makedonka; Rosa, Bruce A; Ramos-Payan, Rosalio; Morrison, Thomas E; Murray, Peter J; Rangel-Moreno, Javier; Pearce, Edward J; Khader, Shabaana A
2015-12-01
Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1-expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1-expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB.
Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric
2012-12-01
Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.
Plasmodium parasite as an effective hepatocellular carcinoma antigen glypican-3 delivery vector.
Liu, Quan; Yang, Yijun; Tan, Xuefang; Tao, Zhu; Adah, Dickson; Yu, Songlin; Lu, Junnan; Zhao, Siting; Qin, Limei; Qin, Li; Chen, Xiaoping
2017-04-11
We have previously demonstrated that malaria parasite infection has an anti-tumor effect in a mouse model. This research aimed to investigate the possibility of using Plasmodium parasite as a novel vaccine vector for hepatocellular carcinoma (HCC) immunotherapy. We constructed a Plasmodium yoelii 17XNL strain (P.y) expressing murine glypican-3 (GPC3) protein (P.y-GPC3), and examined its therapeutic potency in a murine Hepa1-6-induced hepatoma model that highly expressed GPC3 protein. The prerequisites for invoking a CD8+ T cell response were assessed after P.y-based immunization, which included obviously increased concentrations of T helper cell type 1 (Th1)-associated cytokines, such as IL-2, IFN-γ and TNF-α, in serum and preferential expansion of the CD8α+ dendritic cell (DC) subset with higher expression of CD80 and CD86 molecules. Compared with uninfected and wild-type P.y-infected mice, a significant GPC3-specific cytotoxic T lymphocyte (CTL) response was detected in P.y-GPC3 vaccinated mice. Furthermore, P.y-GPC3-based vaccination dramatically inhibited Hepa1-6-induced tumor growth in the implanted HCC and prolonged the survival of tumor-bearing mice. We concluded that a Plasmodium-based vector is highly efficient in inducing tumor antigen-specific T cell-mediated immunity and protection against tumor cells. More broadly, this strategy supported our hypothesis that Plasmodium parasites, as novel therapeutic antigen vectors, may be applicable to tumor immunotherapy for patients with HCC.
Bentsen, Christopher; McLaughlin, Lisa; Mitchell, Elizabeth; Ferrera, Carol; Liska, Sally; Myers, Robert; Peel, Sheila; Swenson, Paul; Gadelle, Stephane; Shriver, M Kathleen
2011-12-01
A multi-center study was conducted to evaluate the Bio-Rad GS HIV Combo Ag/Ab EIA, a 4th generation HIV-1/HIV-2 assay for the simultaneous detection of HIV p24 antigen and antibodies to HIV-1 (groups M and O) and HIV-2 in human serum or plasma in adult and pediatric populations. The objectives of the study were to assess assay performance for the detection of acute HIV infections; sensitivity in known HIV positive samples; percent agreement with HIV status; specificity in low and high risk individuals of unknown HIV status; and to compare assay performance to a 3rd generation HIV assay. The evaluation included testing 9150 samples at four U.S. clinical trial sites, using three kit lots. Unlinked samples were from routine testing, repositories or purchased from vendors. GS HIV Combo Ag/Ab EIA detection in samples from individuals in two separate populations with acute HIV infection was 95.2% (20/21) and 86.4% (38/44). Sensitivity was 100% (1603/1603) in known antibody positive [HIV-1 Groups M and O, and HIV-2] samples. HIV p24 antigen detection was 100% (53/53) in HIV-1 culture supernatants. HIV-1 seroconversion panel detection improved by a range of 0-20 days compared to a 3rd generation HIV test. Specificity was 99.9% (5989/5996) in low risk, 99.9% (959/960) in high risk and 100% (100/100) in pediatric populations. The GS HIV Combo Ag/Ab EIA significantly reduced the diagnostic window when compared to the 3rd generation screening assay, enabling earlier diagnosis of HIV infection. The performance parameters of the Bio-Rad GS HIV Combo Ag/Ab EIA are well suited for use in HIV diagnostic settings. Copyright © 2011 Elsevier B.V. All rights reserved.
Keen, P; Conway, D P; Cunningham, P; McNulty, A; Couldwell, D L; Davies, S C; Smith, D E; Gray, J; Holt, M; O'Connor, C C; Read, P; Callander, D; Prestage, G; Guy, R
2017-01-01
The Trinity Biotech Uni-Gold HIV test (Uni-Gold) is often used as a supplementary rapid test in testing algorithms. To evaluate the operational performance of the Uni-Gold as a first-line screening test among gay and bisexual men (GBM) in a setting where 4th generation HIV laboratory assays are routinely used. We compared the performance of Uni-Gold with conventional HIV serology conducted in parallel among GBM attending 22 testing sites. Sensitivity was calculated separately for acute and established infection, defined using 4th generation screening Ag/Ab immunoassay (EIA) and Western blot results. Previous HIV testing history and results of supplementary 3rd generation HIV Ab EIA, and p24 antigen EIA were used to further characterise cases of acute infection. Of 10,793 specimens tested with Uni-Gold and conventional serology, 94 (0.90%, 95%CI:0.70-1.07) were confirmed as HIV-positive by conventional serology, and 37 (39.4%) were classified as acute infection. Uni-Gold sensitivity was 81.9% overall (77/94, 95%CI:72.6-89.1); 56.8% for acute infection (21/37, 95%CI:39.5-72.9) and 98.2% for established infection (56/57, 95%CI:90.6-100.0). Of 17 false non-reactive Uni-Gold results, 16 were acute infections, and of these seven were p24 antigen reactive but antibody negative. Uni-Gold specificity was 99.9% (10,692/10,699, 95%CI:99.9-100.0), PPV was 91.7% (95%CI:83.6-96.6) and NPV was 99.8% (95%CI:99.7-99.9), respectively. In this population, Uni-Gold had good specificity and sensitivity was high for established infections when compared to 4th generation laboratory assays, however sensitivity was lower in acute infections. Where rapid tests are used in populations with a high proportion of acute infections, additional testing strategies are needed to detect acute infections. Copyright © 2016 Elsevier B.V. All rights reserved.
Maestroni, Georges J M
2002-08-01
The information gathered by dendritic cells (DC) during the innate immune response to a pathogen is determinant for the type of adaptive response. Here we show that short-term (3 h) exposure of bone marrow-derived DC to norepinephrine (NE), at the beginning of lipopolysaccharide (LPS) or keyhole limpet hemocyanin (KLH) stimulation hampers IL-12 production and increases IL-10 release. The NE effect was mediated by both beta- and alpha2-adrenergic receptors. The capacity of NE-exposed DC to produce IL-12 upon CD40 cross-linking as well as to stimulate allogeneic T-helper (Th) lymphocytes was reduced. Adoptive transfer of NE-exposed DC induced a Th2 slanted response in vivo. Thus, a brief NE exposure of antigen-stimulated DC seems to limit their Th1 polarizing properties. Noteworthy, the ganglionic blocker pentolinium administered in mice before skin sensitization with fluoroscein isothiocyanate (FITC) could increase the Th1-type response in the draining lymph nodes. Our results suggest that the extent of Th differentiation in the response to an antigen might be influenced by the local sympathetic nervous activity in the early phase of dendritic cell stimulation.
Vo, Manh-Cuong; Nguyen-Pham, Thanh-Nhan; Lee, Hyun-Ju; Jaya Lakshmi, Thangaraj; Yang, Seoyun; Jung, Sung-Hoon; Kim, Hyeoung-Joon; Lee, Je-Jung
2017-04-18
In this study, we investigated efficacy of lenalidomide in combination with tumor antigen-loaded dendritic cells (DCs) in murine colon cancer model. MC-38 cell lines were injected subcutaneously to establish colon cancer-bearing mice. After tumor growth, lenalidomide (50 mg/kg/day) was injected intraperitoneally on 3 consecutive days in combination with tumor antigen-loaded DC vaccination on days 8, 12, 16, and 20. The tumor antigen-loaded DCs plus lenalidomide combination treatment exhibited a significant inhibition of tumor growth compared with the other groups. These effects were associated with a reduction in immune suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, with the induction of immune effector cells, such as natural killer cells, CD4+ T cells and CD8+ T cells in spleen, and with the activation of cytotoxic T lymphocytes and NK cells. This study suggests that a combination of tumor antigen-loaded DC vaccination and lenalidomide synergistically enhanced antitumor immune response in the murine colon cancer model, by inhibiting the generation of immune suppressive cells and recovery of effector cells, and demonstrated superior polarization of Th1/Th2 balance in favor of Th1 immune response. This combination approach with DCs and lenalidomide may provide a new therapeutic option to improve the treatment of colon cancer.
Moguche, Albanus O; Shafiani, Shahin; Clemons, Corey; Larson, Ryan P; Dinh, Crystal; Higdon, Lauren E; Cambier, C J; Sissons, James R; Gallegos, Alena M; Fink, Pamela J; Urdahl, Kevin B
2015-05-04
Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1(+) cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1(+) cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB. © 2015 Moguche et al.
Immune Impact Induced by PROSTVAC (PSA-TRICOM), a Therapeutic Vaccine for Prostate Cancer
Gulley, James L.; Madan, Ravi A.; Tsang, Kwong Y.; Jochems, Caroline; Marté, Jennifer L.; Farsaci, Benedetto; Tucker, Jo A.; Hodge, James W.; Liewehr, David J.; Steinberg, Seth M.; Heery, Christopher R.; Schlom, Jeffrey
2013-01-01
PSA-TRICOM (PROSTVAC) is a novel vector-based vaccine designed to generate a robust immune response against prostate-specific antigen (PSA)–expressing tumor cells. The purpose of this report is to present an overview of both published studies and new data in the evaluation of immune responses to the PSA-TRICOM vaccine platform, currently in phase III testing. Of 104 patients tested for T-cell responses, 57% (59/104) demonstrated a ≥ 2-fold increase in PSA-specific T cells 4 weeks after vaccine (median 5-fold increase) compared with pre-vaccine, and 68% (19/28) of patients tested mounted post-vaccine immune responses to tumor-associated antigens not present in the vaccine (antigen-spreading). The PSA-specific immune responses observed 28 days after vaccine (i.e., likely memory cells) are quantitatively similar to the levels of circulating T cells specific for influenza seen in the same patients. Measurements of systemic immune response to PSA may underestimate the true therapeutic immune response (as this does not account for cells that have trafficked to the tumor) and does not include antigen-spreading. Furthermore, while the entire PSA gene is the vaccine, only one epitope of PSA is evaluated in the T-cell responses. Since this therapeutic vaccine is directed at generating a cellular/Th1 immune response (T-cell costimulatory molecules and use of a viral vector), it is not surprising that < 0.6% of patients (2/349) tested have evidence of PSA antibody-induction following vaccine. This suggests that post-vaccine PSA kinetics were not affected by PSA antibodies. An ongoing phase III study will evaluate the systemic immune responses and correlation with clinical outcomes. PMID:24778277
Atanackovic, Djordje; Reinhard, Henrike; Meyer, Sabrina; Spöck, Stefanie; Grob, Tobias; Luetkens, Tim; Yousef, Sara; Cao, Yanran; Hildebrandt, York; Templin, Julia; Bartels, Katrin; Lajmi, Nesrine; Stoiber, Heribert; Kröger, Nicolaus; Atz, Judith; Seimetz, Diane; Izbicki, Jakob R; Bokemeyer, Carsten
2013-01-01
Background: Patients with gastric cancer benefit from perioperative chemotherapy, however, treatment is toxic and many patients will relapse. The trifunctional antibody catumaxomab targets EpCAM on tumor cells, CD3 on T cells, and the Fcγ-receptor of antigen-presenting cells. While in Europe catumaxomab is approved for treating malignant ascites, it has not been investigated in the perioperative setting and its exact immunological mode of action is unclear. Methods: In our study, gastric cancer patients received neoadjuvant platinum-based chemotherapy, one intraoperative application of catumaxomab, and 4 postoperative doses of intraperitoneal catumaxomab. Immunomonitoring was performed in 6 patients before surgery, after completion of catumaxomab treatment, and one month later. Results: Intraperitoneal application of catumaxomab caused an increased expression of activation markers on the patients’ T cells. This was accompanied by a transient decrease in numbers of CXCR3+ effector T cells with a T-helper (Th)-1 phenotype in the peripheral blood. All patients evidenced pre-existing EpCAM-specific CD4+ and/or CD8+ T cells. While these cells transiently disappeared from the blood stream after intraperitoneal application of catumaxomab, we detected increased numbers of peripheral EpCAM-specific cells and a modified EpCAM-specific T-cell repertoire 4 weeks after completion of treatment. Finally, catumaxomab also amplified humoral immunity to tumor antigens other than EpCAM. Conclusions: Our findings suggest that catumaxomab exerts its clinical effects by (1) activating peripheral T cells, (2) redistributing effector T cells from the blood into peripheral tissues, (3) expanding and shaping of the pre-existing EpCAM-specific T-cell repertoire, and (4) spreading of anti-tumor immunity to different tumor antigens. PMID:23955093
Bruffaerts, Nicolas; Pedersen, Lasse E.; Vandermeulen, Gaëlle; Préat, Véronique; Stockhofe-Zurwieden, Norbert; Huygen, Kris; Romano, Marta
2015-01-01
The only tuberculosis vaccine currently available, bacille Calmette-Guérin (BCG) is a poor inducer of CD8+ T cells, which are particularly important for the control of latent tuberculosis and protection against reactivation. As the induction of strong CD8+ T cell responses is a hallmark of DNA vaccines, a combination of BCG with plasmid DNA encoding a prototype TB antigen (Ag85A) was tested. As an alternative animal model, pigs were primed with BCG mixed with empty vector or codon-optimized pAg85A by the intradermal route and boosted with plasmid delivered by intramuscular electroporation. Control pigs received unformulated BCG. The BCG-pAg85A combination stimulated robust and sustained Ag85A specific antibody, lymphoproliferative, IL-6, IL-10 and IFN-γ responses. IgG1/IgG2 antibody isotype ratio reflected the Th1 helper type biased response. T lymphocyte responses against purified protein derivative of tuberculin (PPD) were induced in all (BCG) vaccinated animals, but responses were much stronger in BCG-pAg85A vaccinated pigs. Finally, Ag85A-specific IFN-γ producing CD8+ T cells were detected by intracellular cytokine staining and a synthetic peptide, spanning Ag85A131-150 and encompassing two regions with strong predicted SLA-1*0401/SLA-1*0801 binding affinity, was promiscuously recognized by 6/6 animals vaccinated with the BCG-pAg85A combination. Our study provides a proof of concept in a large mammalian species, for a new Th1 and CD8+ targeting tuberculosis vaccine, based on BCG-plasmid DNA co-administration. PMID:26172261
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinmetz, Martin, E-mail: martin.steinmetz@ukb.uni-bonn.de; Internal Medicine II, University Hospital Bonn, 53105 Bonn; Ponnuswamy, Padmapriya
Background: Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. Methods and results: OTII-transgenic mice that were treated with a single dose of 5 × 10{sup 7} OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lowermore » IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, “atherosclerosis-associated” antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein E − deficient (ApoE−/−) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE−/− mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE−/− mice. Conclusion: Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen-coupled splenocytes in its present form already impacts the immune responses and deserves further exploration. - Highlights: • OVA-SP reduce leucocyte proliferation and IFNγ production in OTII mice. • oxLDL- and ApoB100-splenocytes unexpectedly promote a Th1 response. • Atherosclerotic plaques are unchanged through injections of oxLDL-SP or ApoB100-SP.« less
Hinz, D; Oseroff, C; Pham, J; Sidney, J; Peters, B; Sette, A
2015-10-01
Allergens from house dust mites (HDM) are a common cause of asthma. Der p and Der f from Dermatophagoides sp. are strong immunogens in humans. Allergen extracts are used to study T helper (Th2) cell responses to HDM, which are implicated in the development and regulation of allergic disease. To define an epitope mixture that recapitulates, and might substitute for, HDM extract in terms of detecting and characterizing Th2 cell responses. Peripheral blood mononuclear cells (PBMC) from 52 HDM allergic and 10 non-allergic individuals were stimulated with HDM extracts and assayed with a set of 178 peptides spanning mite allergens group Der p 1, 2, 23 and Der f group 1 and 2 allergens. A pool of the most dominant T cell epitopes identified in the present study and from published literature was assembled and tested for ex vivo T cell responses. Correlation with HDM-specific IgE titres was examined. Patterns of T cell reactivity to Der p and Der f - derived peptides revealed a large number of epitopes. Clear patterns of immunodominance were apparent, with HDM allergen group 1 and 2 dominant over group 23. Furthermore, within a given antigen, 6-11 epitopes accounted for the vast majority of responses. Based on these results and published data, a comprehensive dust mite pool (DMP) of epitopes was designed and found to allow detection of ex vivo T cell responses. DMP ex vivo reactivity correlated with HDM-specific IgE titres and was similar to that detected with commonly used HDM extracts. Ex vivo DMP stimulation was associated with a predominant Th2 response in allergic donors, and minor reactivity of T cells producing IFNγ, IL17 and IL10. A detailed map of Der p and Der f antigens defined a pool of epitopes that can be used to detect ex vivo HDM responses. © 2015 John Wiley & Sons Ltd.
Kameyama, Natsuko; Ito, Akira; Imai, Soichi
2012-01-01
Abstract To assess the effect of edible mushroom extracts on the induction of T-helper 1 (Th1) immunity, we examined differences in interferon-gamma (IFN-γ) and interleukin (IL)-4 production in mice induced by hot-water extracts of 15 species of edible mushroom. Extracts from Agaricus bisporus, Flammulina velutipes, Hypsizigus marmoreus, Lentinula edodes, and Lyophyllum decastes induced both IFN-γ and IL-4 production in mice, whereas extracts from Pleurotus ostreatus only induced IL-4. In contrast, extracts from Agaricus blazei, Grifola frondosa, Morchella esculenta, Pholiota nameko, Pleurotus citrinopileatus, and Pleurotus eryngii induced only IFN-γ production. In particular, the extract from P. eryngii induced high levels of IFN-γ and reduced levels of IL-4. We further investigated the use of a trial immunogen using the P. eryngii extract as a Th1 immunostimulator. An oil-in-water emulsion of the hot-water extract from P. eryngii (immunostimulator) and ovalbumin (OVA; antigen) was used as a trial immunogen. This immunogen induced strong OVA-specific IgG2a antibody production in mice compared with the negative controls. In addition, OVA-specific IgG1 antibody levels were lower than those for the negative controls. Marked increases in serum IFN-γ levels and high-level production of IFN-γ in the culture supernatant from the CD4+ spleen cells in the trial immunogen group mice were observed. Our results suggested that the hot-water extract from P. eryngii induced Th1 immunity by acting as an immunostimulator. PMID:23134464
Cunnusamy, Khrishen; Niederkorn, Jerry Y.
2014-01-01
Th1 CD4+ cells are believed to be the primary mediators of corneal allograft rejection. However, rejection of fully allogeneic C57BL/6 corneal allografts soared from 50% to 90% in both INF-γ−/− and anti-IFN-γ-treated BALB/c mice. In contrast, similar deficits in IFN-γ in BALB/c hosts enhanced immune privilege of BALB.B (minor histocompatibility antigen-matched, MHC-mismatched) and NZB (major histocompatibility complex-matched, minor histocompatibility antigen-mismatched) corneal allografts – decreasing rejection from 80% to ~20%. This effect of IFN-γ was independent of CD4+ T cell lineage commitment as both anti-IFN-γ-treated acceptor and rejector mice displayed a Th2 cytokine profile. The presence of IFN-γ prevented the generation of alloantigen-specific CD4+CD25+ Tregs in hosts receiving either MHC only mismatched BALB.B or minor only histocompatibility (minor H)-mismatched NZB corneal allografts. Tregs in these hosts, promoted corneal allograft survival by suppressing Th2 effector cells. By contrast, IFN-γ was necessary for the generation of CD4+CD25+ Tregs that prevented rejection of fully allogeneic C57BL/6 corneal allografts in BALB/c hosts. These findings suggest that MHC-matching in combination with blockade of IFN-γ holds promise as a means of enhancing corneal allograft survival. PMID:24119152
Liu, Hui; Jia, Zhenghu; Yang, Chengmao; Song, Mei; Jing, Zhe; Zhao, Yapu; Wu, Zhenzhou; Zhao, Liqing; Wei, Dongsheng; Yin, Zhinan; Hong, Zhangyong
2018-06-01
Aluminum salt (Alum) is one of the most important immune adjuvants approved for use in humans, however it is not suitable for vaccination against various chronic infectious diseases and cancers for not being able to induce cell-mediated (Th1) immunity. Here, we encapsulated an Alum colloid inside β-glucan particles (GPs), which are a type of natural particles derived from the yeast glucan shells, to prepare hybrid GP-Alum (GP-Al) adjuvant particles with a very uniform size of 2-4 μm. These hybrid particles can be used to load antigen proteins through a simple mixing procedure, and can be highly specifically targeted to antigen-presenting cells (APCs) and strongly activate dendritic cells (DCs) maturation and cytokine secretion. In an animal model, they elicit a strong Th1-biased immune response and extremely high antibody titer, and cause marked prophylactic and therapeutic effects against tumors. As Alum has been proven to be a safe adjuvant to induce strong humoral responses and β-glucans are safe for human use, this very uniform hybrid Alum particulate system could have important application as a vaccine carrier to stimulate humoral and cellular immune responses at the same time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ulivieri, Cristina; Citro, Alessandra; Ivaldi, Federico; Mascolo, Dina; Ghittoni, Raffaella; Fanigliulo, Daniela; Manca, Fabrizio; Baldari, Cosima Tatiana; Li Pira, Giuseppina; Del Pozzo, Giovanna
2008-08-15
Several efforts have been invested in the identification of CTL and Th epitopes, as well as in the characterization of their immunodominance and MHC restriction, for the generation of a peptide-based HCMV vaccine. Small synthetic peptides are, however, poor antigens and carrier proteins are important for improving the efficacy of synthetic peptide vaccines. Recombinant bacteriophages appear as promising tools in the design of subunit vaccines. To investigate the antigenicity of peptides carried by recombinant bacteriophages we displayed different HCMV MHCII restricted peptides on the capsid of filamentous bacteriophage (fd) and found that hybrid bacteriophages are processed by human APC and activate HCMV-specific CD4 T-cells. Furthermore we constructed a reporter T-cell hybridoma expressing a chimeric TCR comprising murine alphabeta constant regions and human variable regions specific for the HLA-A2 restricted immunodominant NLV peptide of HCMV. Using the filamentous bacteriophage as an epitope carrier, we detected a more robust and long lasting response of the reporter T-cell hybridoma compared to peptide stimulation. Our results show a general enhancement of T-cell responses when antigenic peptides are carried by phages.
Straubinger, Kathrin; Paul, Sabine; Prazeres da Costa, Olivia; Ritter, Manuel; Buch, Thorsten; Busch, Dirk H; Layland, Laura E; Prazeres da Costa, Clarissa U
2014-12-01
Schistosomiasis, a chronic helminth infection, elicits distinct immune responses within the host, ranging from an initial TH1 and subsequent TH2 phase to a regulatory state, and is associated with dampened allergic reactions within the host. We sought to evaluate whether non-transplacental helminth infection during pregnancy alters the offspring's susceptibility to allergy. Ovalbumin-induced allergic airway inflammation was analyzed in offspring from Schistosoma mansoni-infected mothers mated during the TH1, TH2, or regulatory phase of infection. Embryos derived from in vitro fertilized oocytes of acutely infected females were transferred into uninfected foster mice to determine the role of placental environment. The fetomaternal unit was further characterized by helminth-specific immune responses and microarray analyses. Eventually, IFN-γ-deficient mice were infected to evaluate the role of this predominant cytokine on the offspring's allergy phenotype. We demonstrate that offspring from schistosome-infected mothers that were mated in the TH1 and regulatory phases, but not the TH2 immune phase, are protected against the onset of allergic airway inflammation. Interestingly, these effects were associated with distinctly altered schistosome-specific cytokine and gene expression profiles within the fetomaternal interface. Furthermore, we identified that it is not the transfer of helminth antigens but rather maternally derived IFN-γ during the acute phase of infection that is essential for the progeny's protective immune phenotype. Overall, we present a novel immune phase-dependent coherency between the maternal immune responses during schistosomiasis and the progeny's predisposition to allergy. Therefore, we propose to include helminth-mediated transmaternal immune modulation into the expanded hygiene hypothesis. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Aas-Hanssen, Kristin; Thompson, Keith M; Bogen, Bjarne; Munthe, Ludvig A
2015-01-01
Systemic lupus erythematosus (SLE) is marked by a T helper (Th) cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia. A feature of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-microbial, anti-histone, and anti-idiotype Th cell responses have been hypothesized to play a role. It has been entirely unclear if these seemingly disparate Th cell responses and hypotheses could be related or unified. Here, we describe that H chain CDR3 idiotypes from IgG(+) B cells of lupus mice have sequence similarities with both microbial and self peptides. Matched sequences were more frequent within the mutated CDR3 repertoire and when sequences were derived from lupus mice with expanded anti-dsDNA B cells. Analyses of histone sequences showed that particular histone peptides were similar to VDJ junctions. Moreover, lupus mice had Th cell responses toward histone peptides similar to anti-dsDNA CDR3 sequences. The results suggest that Th cells in lupus may have multiple cross-reactive specificities linked to the IgVH CDR3 Id-peptide sequences as well as similar DNA-associated protein motifs.
Nisini, R; Paroli, M; Accapezzato, D; Bonino, F; Rosina, F; Santantonio, T; Sallusto, F; Amoroso, A; Houghton, M; Barnaba, V
1997-01-01
The T-cell-mediated immune response plays a crucial role in defense against hepatotropic viruses as well as in the pathogenesis of viral chronic hepatitides. However, very little is known about the role of specific T cells during hepatitis delta virus (HDV) infection in humans. In this study, the T-cell response to HDV in chronic hepatitis B virus (HBV) carriers with HDV superinfection was investigated at different levels. Analysis of peripheral blood mononuclear cell (PBMC) proliferation in response to a recombinant form of large hepatitis delta antigen (HDAg) revealed that 8 of 30 patients studied (27%) specifically responded to HDAg. By employing synthetic peptides spanning the entire HDAg sequence, we found that T-cell recognition was directed against different antigenic determinants, with patient-to-patient variation in the pattern of response to peptides. Interestingly, all responders had signs of inactive HDV-induced disease, while none of the patients with active disease and none of the control subjects showed any significant proliferation. More accurate information about the specific T-cell response was obtained at the clonal level. A panel of HDAg-specific CD4+ T-cell clones from three HDV-infected individuals and fine-specificity analysis revealed that the clones tested individually recognized four epitopes corresponding to amino acids (aa) 26 to 41, 50 to 65, 66 to 81, or 106 to 121 of HDAg sequence. The study of human leukocyte antigen (HLA) restriction revealed that peptides 50 to 65 and 106 to 121 were presented to specific T cells in association with multiple class II molecules. In addition, peptide 26 to 41 was efficiently generated after processing of HDAg through the endogenous processing pathway. Cytokine secretion analysis showed that all the CD4+ T-cell clones assayed were able to produce high levels of gamma interferon (IFN-gamma), belonging either to T helper-1 (Th1) or Th0 subsets and that some of them were cytotoxic in a specific assay. This study provides the first evidence that detection of a specific T-cell response to HDAg in the peripheral blood of individuals with hepatitis delta is related to the decrease of HDV-induced disease activity. The HDAg epitopes identified here and particularly those recognized by CD4+ T cells in association with multiple major histocompatibility complex class II molecules may be potentially exploited for the preparation of a vaccine for prophylaxis and therapy of HDV infection. PMID:9032359
Kowalewicz-Kulbat, Magdalena; Kaźmierczak, Dominik; Donevski, Stefan; Biet, Franck; Pestel, Joël; Rudnicka, Wiesława
2008-01-01
Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a live vaccine that has been used in routine vaccination against tuberculosis for nearly 80 years. However, its efficacy is controversial. The failure of BCG vaccination may be at least partially explained by the induction of poor or inappropriate host responses. Dendritic cells (DCs) are likely to play a key role in the induction of immune response to mycobacteria by polarizing the reactivity of T lymphocytes toward a Th1 profile, contributing to the generation of protective cellular immunity against mycobacteria. In this study we aimed to investigate the production of Th1 and Th2 cytokines by naive CD4+ T cells to mycobacterial antigen-pulsed DCs in the group of young, healthy BCG vaccinated volunteers. The response of naive helper T cells was compared with the response of total blood lymphocytes. Our present results clearly showed that circulating naive CD45RA+CD4+ lymphocytes from BCG-vaccinated subjects can become effector helper cells producing IFN-gamma and IL-5 under the stimulation by autologous dendritic cells presenting mycobacterial protein antigen-PPD or infected with live M. bovis BCG bacilli.
Foster, A P; Knowles, T G; Moore, A Hotston; Cousins, P D G; Day, M J; Hall, E J
2003-05-12
In human food allergy, with or without concurrent atopy, there may be significant increases in serum allergen-specific IgE. Serological methods have been tried but are not currently recommended for diagnosis of suspected food allergy in dogs. The aim of this study was to investigate humoral immune responses to food antigens in dogs. Serum IgG and IgE antibodies specific for food antigens were measured by enzyme linked immunosorbent assay (ELISA) using polyclonal anti-dog IgG and IgE reagents. Antigens tested were beef, chicken, pork, lamb, chicken, turkey, white fish, whole egg, wheat, soybean, barley, rice, maize corn, potato, yeast and cow's milk. Three groups were examined: normal dogs, dogs with atopic dermatitis (AD); and dogs with one of four types of gastrointestinal (GI) disease: small intestinal bacterial overgrowth (SIBO), inflammatory bowel disease (IBD), food-responsive disease, and infectious diarrhoea. Statistically significant differences in food-specific antibodies were not detected between the GI subgroups. There were statistically significant differences in the IgE concentration between the normal dogs, and dogs with atopic or GI disease, for all of the antigens tested. There were statistically significant differences in the average IgG concentrations between the normal dogs, and dogs with atopic or GI disease, for all of the antigens tested, except egg and yeast. The relationship of antigen responses for pooled data was analysed using principle component analysis and cluster plots. Some clustering of variables was apparent for both IgE and IgG. For example, all dogs (normal and diseased) made a similar IgG antibody response to chicken and turkey. Compared with other groups, atopic dogs had more food allergen-specific IgE and this would be consistent with a Th(2) humoral response to food antigens. Dogs with GI disease had more food allergen-specific IgG compared with the other groups. This may reflect increased antigen exposure due to increased mucosal permeability which is a recognised feature of canine intestinal disease.
Th1 and Th17 Immunocompetence in Humanized NOD/SCID/γC-KO mice
Rajesh, Deepika; Zhou, Ying; Jankowska-Gan, Ewa; Ronneburg, Drew Allan; Dart, Melanie M; Torrealba, Jose; Burlingham, William J
2010-01-01
We evaluated the immunocompetence of human T cells in humanized NOD-scid IL2r-γ-null (Hu—NSG) mice bearing a human thymic organoid, after multilinegage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of CB17 SCID mice [trans-vivo (tv) DTH]. Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45+ cells, including CD3+ T cells, CD68+ macrophages and murine Ly6G+ neutrophils. We observed a significant correlation between % circulating human CD4+ cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-IFNγ, while the tvDTH response to collagen V was inhibited by anti IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. Hu-NSG mice were also capable of mounting a B cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17 - dependent cellular immune response supports the utility of Hu-NSG mice as a surrogate model of allograft rejection and autoimmunity. PMID:20298731
Sotillo, Javier; Cortés, Alba; Muñoz-Antoli, Carla; Fried, Bernard; Esteban, J Guillermo; Toledo, Rafael
2014-09-01
In the present study, we analyse the effect of glycosylation in Echinostoma caproni (Trematoda: Echinostomatidae) antigens in antibody responses against the parasite in experimentally infected mice. It has been previously demonstrated that the mouse is a host of high compatibility with E. caproni and develops elevated responses of IgG, IgG1, IgG3 and IgM as a consequence of the infection, though the role of glycans in these responses remains unknown. To this purpose, the responses generated in mice against non-treated excretory/secretory antigens of E. caproni were compared with those observed after N-deglycosylation, O-deglycosylation and double deglycosylation of the antigens by indirect ELISA and western blot. Our results suggest that E. caproni-expressed glycans play a major role in the modulation of the immune responses. The results obtained indicate that IgG subclass responses generated in mice against E. caproni are essentially due to glycoproteins and may affect the Th1/Th2 biasing. The reactivity significantly decreased after any of the deglycosylation treatments and the N-glycans appears to be of greater importance than O-glycans. Interestingly, the IgM response increased after N-deglycosylation suggesting that carbohydrates may mask peptide antigens.
Gutierrez-Sanchez, Maria de Los Angeles; Luna-Herrera, Julieta; Trejo-Castro, Lauro; Montenegro-Cristino, Natividad; Almanza-Gonzalez, Alfredo; Escobar-Gutierrez, Alejandro; de la Rosa-Arana, Jorge Luis
2015-08-28
We have studied the influence of both levamisole (AL) and Freund's adjuvant (AF) on the immunisation of mice with the secretory antigens of adults of the liver fluke Fasciola hepatica Linnaeus, 1758. Total IgG antibodies were detected in all groups where the F. hepatica antigen was administered, been levels of IgG1 increased respect to IgG2a antibodies. During immunisation, IL-4 and IFN-γ were only detected in AL and AF groups, but after infection, IL-4 boosted in all groups. IFN-γ increased two fold in AF and AL groups compared to the saline solution (AS) group. Worm recovering was of 32-35% in groups administered without antigen whereas in AS, AL and AF groups recovering was of 25%, 12% and 8%, respectively. Macroscopical lesions in the liver were scarce in AL and AF groups. Our data suggest that immunisation of mice with antigens of F. hepatica enhances the immune response avoiding both liver damage and worm establishment after challenge infection. The murine model of fasciolosis has appeared to be useful to elucidate the mechanism by which the parasite modulates immune responses toward a Th2 type but also the development of Th1 type-inducing vaccines.
Yang, Chao; Li, Zhuo; Kang, Wei; Tian, Yu; Yan, Yuzhu; Chen, Wei
2016-10-10
It has been considered that epigenetic modulation can affect a diverse array of cellular activities, in which ten eleven translocation (TET) methylcytosine dioxygenase family members refer to a group of fundamental components involved in catalyzation of 5-hydroxymethylcytosine and modification of gene expression. Even though the function of TET proteins has been gradually revealed, their roles in immune regulation are still largely unknown. Recent studies provided clues that TET2 could regulate several innate immune-related inflammatory mediators in mammals. This study sought to explore the function of TET family members in potential T-helper (Th) cell differentiation involved in adaptive immunity by utilizing a zebrafish model. As shown by results, soluble antigens could induce expression of zebrafish IL-4/13A (i.e. a pivotal Th2-type cytokine essential in Th2 cell differentiation and functions), and further trigger the expression of Th1- and Th2-related genes. It is noteworthy that this response was accompanied by the up-regulation of two TET family members (TET1 and TET3) both in immune organs (spleen and kidney) and cells (peripheral lymphocytes). Knocking-down of TET1 and TET3 will give rise to the decreased responses of IL-4/13A induction against exogenous soluble antigen stimulation, and further restrain the expression of Th2-related genes, which indicates a restrained Th2 cell differentiation. Nonetheless, TET2 did not exhibit effect on the modification of Th1/Th2 related gene expression. Hence, these data showed that TET1 and TET3 might be two significant epigenetic regulators involved in Th2 differentiation through regulation of IL-4/13A expression. This is the first report to show that TET family members play indispensable roles in Th2-type immunity, indicating an epigenetic modulation manner involved in adaptive immune regulations and responses. Copyright © 2016 Elsevier B.V. All rights reserved.
Kimura, Goro; Akagi, Hirofumi; Okada, Chiharu; Hirano, Atsushi; Amano, Yoshimi; Ohmura, Etsuko; Nakashige, Yoshito; Sunada, Yosuke; Fujii, Yusuke; Nakamura, Syoji; Soda, Ryo; Takahashi, Kiyoshi
2012-05-01
It has been reported that oral administration of Lactobacillus acidophilus strain L-55 (L-55) suppressed nasal symptom and antigen-specific IgE induced by antigen challenge in mice. We investigated clinical effects of L-55-contained yogurt on symptoms and IgE production in the patients with Japanese cedar pollinosis. The study was performed as a randomized double blind placebo-controlled trial. L-55-contained yogurt (L-55 yogurt) or placebo yogurt was started to administer to each subject from 4 weeks prior to the onset of Japanese cedar pollen release for total 13 weeks. The mean value of symptom score and symptom medication score were lower in L-55 yogurt group compared with placebo yogurt group during 5th week to 9th week from the first week of Japanese cedar pollination. Especially, in medicated subjects, total symptom score and throat symptom score were significantly lower in L-55 yogurt group compared with placebo yogurt group at 5th and 4th week from the first week of Japanese cedar pollination, respectively. Moreover, in medicated subjects, change ratio of serum total IgE was significantly lower in L-55 yogurt group compared with placebo yogurt group at 1st week from the first week of Japanese cedar pollination. Intake of L-55 during Japanese cedar pollinating season may be effective in alleviating the allergic symptoms related to Japanese cedar pollinosis. From these finding, it was suggested that L-55 is a possible candidate as a complementary medicine for Japanese cedar pollinosis.
Shrivastava, Shubham; Lole, Kavita S; Tripathy, Anuradha S; Shaligram, Umesh S; Arankalle, Vidya A
2009-11-05
To reduce extra injections, cost and ensure better coverage, use of combination vaccines is preferable. An attempt was made to evaluate the encapsulation of hepatitis E virus neutralizing epitope (NE) region and hepatitis B virus surface antigen (HBsAg) in liposomes as DNAs, proteins and DNA+protein. Mice groups were immunized with different liposome-encapsulated formulations and monitored for anti-HEV and anti-HBs titres, IgG subtypes, antigen-specific lymphocyte proliferation and cytokine levels. The protective levels of anti-HBs and in vitro virus-binding capacity of anti-HEV antibodies were assessed. Liposome-encapsulated DNA either singly or in combination did not elicit antibody response. Anti-HEV and anti-HBs IgG titres of individual component of protein alone (Lipo-E-P/Lipo-B-P) or DNA+protein formulations (Lipo-E-DP/Lipo-B-DP) were comparable to respective titres in combination vaccine of protein (Lipo-BE-P) and DNA+protein formulations (Lipo-BE-DP). IgG1 levels were significantly higher in Lipo-BE-P group whereas, equivalent levels of IgG1 and IgG2a were observed in Lipo-BE-DP group against both components of the vaccine. Combination vaccine group showed mixed Th1/Th2 cytokine profile. Liposome entrapped NE and HBsAg in protein and DNA+protein formats induce excellent immune response to both the components and need to be evaluated in higher animals.
Knolle, P A; Uhrig, A; Hegenbarth, S; Löser, E; Schmitt, E; Gerken, G; Lohse, A W
1998-12-01
Our study demonstrates that antigen-presenting liver sinusoidal endothelial cells (LSEC) induce production of interferon-gamma (IFN-gamma) from cloned Th1 CD4+ T cells. We show that LSEC used the mannose receptor for antigen uptake, which further strengthened the role of LSEC as antigen-presenting cell (APC) population in the liver. The ability of LSEC to activate cloned CD4+ T cells antigen-specifically was down-regulated by exogenous prostaglandin E2 (PGE2) and by IL-10. We identify two separate mechanisms by which IL-10 down-regulated T cell activation through LSEC. IL-10 decreased the constitutive surface expression of MHC class II as well as of the accessory molecules CD80 and CD86 on LSEC. Furthermore, IL-10 diminished mannose receptor activity in LSEC. Decreased antigen uptake via the mannose receptor and decreased expression of accessory molecules may explain the down-regulation of T cell activation through IL-10. Importantly, the expression of low numbers of antigen on MHC II in the absence of accessory signals on LSEC may lead to induction of anergy in T cells. Because PGE2 and IL-10 are released from LSEC or Kupffer cells (KC) in response to those concentrations of endotoxin found physiologically in portal venous blood, it is possible that the continuous presence of these mediators and their negative effect on the local APC may explain the inability of the liver to induce T cell activation and to clear chronic infections. Our results support the notion that antigen presentation by LSEC in the hepatic microenvironment contributes to the observed inability to mount an effective cell-mediated immune response in the liver.
Zambon, Carlo-Federico; Prayer-Galetti, Tommaso; Basso, Daniela; Padoan, Andrea; Rossi, Elisa; Secco, Silvia; Pelloso, Michela; Fogar, Paola; Navaglia, Filippo; Moz, Stefania; Zattoni, Filiberto; Plebani, Mario
2012-10-01
Of serum prostate specific antigen variability 40% depends on inherited factors. We ascertained whether the knowledge of KLK3 genetics would enhance prostate specific antigen diagnostic performance in patients with clinical suspicion of prostate cancer. We studied 1,058 men who consecutively underwent prostate biopsy for clinical suspicion of prostate cancer. At histology prostate cancer was present in 401 cases and absent in 657. Serum total prostate specific antigen and the free-to-total prostate specific antigen ratio were determined. Four polymorphisms of the KLK3 gene (rs2569733, rs2739448, rs925013 and rs2735839) and 1 polymorphism of the SRD5A2 gene (rs523349) were studied. The influence of genetics on prostate specific antigen variability was evaluated by multivariate linear regression analysis. The performance of total prostate specific antigen and the free-to-total prostate specific antigen ratio alone or combined with a genetically based patient classification were defined by ROC curve analyses. For prostate cancer diagnosis the free-to-total prostate specific antigen ratio index alone (cutoff 11%) was superior to total prostate specific antigen (cutoff 4 ng/ml) and to free-to-total prostate specific antigen ratio reflex testing (positive predictive value 61%, 43% and 54%, respectively). Prostate specific antigen correlated with KLK3 genetics (rs2735839 polymorphism p = 0.001, and rs2569733, rs2739448 and rs925013 haplotype combination p = 0.003). In patients with different KLK3 genetics 2 optimal free-to-total prostate specific antigen ratio cutoffs (11% and 14.5%) were found. For free-to-total prostate specific antigen ratio values between 11% and 14.5% the prostate cancer probability ranged from 30.0% to 47.4% according to patient genetics. The free-to-total prostate specific antigen ratio is superior to total prostate specific antigen for prostate cancer diagnosis, independent of total prostate specific antigen results. Free-to-total prostate specific antigen ratio findings below 11% are positively associated with prostate cancer and those above 14.5% are negatively associated with prostate cancer, while the interpretation of those between 11% and 14.5% is improved by patient KLK3 genetic analysis. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Brown, Chrysothemis C.; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M.; Noelle, Randolph J.
2015-01-01
Summary CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. PMID:25769610
The immune system and skin cancer.
Yu, Sherry H; Bordeaux, Jeremy S; Baron, Elma D
2014-01-01
Carcinogenesis involves multiple mechanisms that disturb genomic integrity and encourage abnormal proliferation. The immune system plays an integral role in maintaining homeostasis and these mechanisms may arrest or enhance dysplasia. There exists a large body of evidence from organ transplantation literature supporting the significance of the immune suppression in the development of skin cancer. Nonmelanoma skin cancers are the most frequent neoplasms after organ transplantation, with organ transplant recipients having a 65-fold increase in squamous cell carcinoma incidence and 10-fold increase in basal cell carcinoma incidence. Similarly, UV-radiation (UVR) induced immunosuppression is correlated with the development of cutaneous malignancies in a dose-dependent manner. This was first shown several decades ago by Margaret Kripke, when transplanted tumors were rejected in mice with competent immune systems, but grew unchecked in immunosuppressed specimens. After UV exposure, chromophores initiate a cascade that leads to immunosuppression via derangement of Langerhans cells' antigen-presenting capacity. UV-irradiated Langerhans cells present antigens to Th2 cells, but fail to stimulate Th1 cells. A subset of T regulatory cells, specific for the antigen encountered after UVR, is also stimulated to proliferate. In general UV irradiation leads to a greater number of T regulatory cells and fewer effector T cells in the skin, shiftingthe balance from T-cell-mediated immunity to immunosuppression. These regulatory cells have the phenotype CD4+, CD25+, Foxp3+, CTLA-4+. These and many other changes in local immunity lead to a suppressed immune state, which allow for skin cancer development.
Abou-Elhakam, H; Rabee, I; El Deeb, S; El Amir, A
2013-11-15
Yet no vaccine to protect ruminants against liver fluke infection has been commercialized. In an attempt to develop a suitable vaccine against Fasciola gigantica (F. gigantica) infection in rabbits, using 97 kDa Pmy antigen. It was found that, the mean worm burdens and bile egg count after challenge were reduced significantly by 58.40 and 61.40%, respectively. On the other hand, immunization of rabbits with Pmy induced a significant expression of humoral antibodies (IgM, total IgG, IgG1, IgG2 and IgG4) and different cytokines (IL-6, IL-10, L-12 and TNF-alpha). Among Ig isotypes, IgG2 and IgG4 were most dominant Post-infection (PI) while, recording a low IgG1 level. The dominance of IgG2 and IgG4 suggested late T helper1 (Th1) involvement in rabbit's cellular response. While, the low IgG1 level suggested Th2 response to adult F. gigantica worm Pmy. Among all cytokines, IL-10 was the highest in rabbits immunized with Pmy PI suggesting also the enhancement of Th2 response. It was clear that the native F. gigantica Pmy is considered as a relevant candidate for vaccination against fascioliasis. Also, these data suggested the immunoprophylactic effect of the native F. gigantica Pmy which is mediated by a mixed Th1/Th2 response.
Zaidi, Shane; Blanchard, Miran; Shim, Kevin; Ilett, Elizabeth; Rajani, Karishma; Parrish, Christopher; Boisgerault, Nicolas; Kottke, Tim; Thompson, Jill; Celis, Esteban; Pulido, Jose; Selby, Peter; Pandha, Hardev; Melcher, Alan; Harrington, Kevin; Vile, Richard
2015-05-01
We used a VSV-cDNA library to treat recurrent melanoma, identifying immunogenic antigens, allowing us to target recurrences with immunotherapy or chemotherapy. Primary B16 melanoma tumors were induced to regress by frontline therapy. Mice with recurrent tumors were treated with VSV-cDNA immunotherapy. A Th17 recall response was used to screen the VSV-cDNA library for individual viruses encoding rejection antigens, subsequently targeted using immunotherapy or chemotherapy. Recurrent tumors were effectively treated with a VSV-cDNA library using cDNA from recurrent B16 tumors. Recurrence-associated rejection antigens identified included Topoisomerase-IIα, YB-1, cdc7 kinase, and BRAF. Fourteen out of 16 recurrent tumors carried BRAF mutations (595-605 region) following frontline therapy, even though the parental B16 tumors were BRAF wild type. The emergence of mutated BRAF-containing recurrences served as an excellent target for BRAF-specific immune-(VSV-BRAF), or chemo-(PLX-4720) therapies. Successful PLX-4720 therapy of recurrent tumors was associated with the development of a broad spectrum of T-cell responses. VSV-cDNA technology can be used to identify recurrence specific antigens. Emergence of mutated BRAF may be a major effector of melanoma recurrence which could serve as a target for chemo or immune therapy. This study suggests a rationale for offering patients with initially wild-type BRAF melanomas an additional biopsy to screen for mutant BRAF upon recurrence.
Zaidi, Shane; Blanchard, Miran; Shim, Kevin; Ilett, Elizabeth; Rajani, Karishma; Parrish, Christopher; Boisgerault, Nicolas; Kottke, Tim; Thompson, Jill; Celis, Esteban; Pulido, Jose; Selby, Peter; Pandha, Hardev; Melcher, Alan; Harrington, Kevin; Vile, Richard
2015-01-01
We used a VSV-cDNA library to treat recurrent melanoma, identifying immunogenic antigens, allowing us to target recurrences with immunotherapy or chemotherapy. Primary B16 melanoma tumors were induced to regress by frontline therapy. Mice with recurrent tumors were treated with VSV-cDNA immunotherapy. A Th17 recall response was used to screen the VSV-cDNA library for individual viruses encoding rejection antigens, subsequently targeted using immunotherapy or chemotherapy. Recurrent tumors were effectively treated with a VSV-cDNA library using cDNA from recurrent B16 tumors. Recurrence-associated rejection antigens identified included Topoisomerase-IIα, YB-1, cdc7 kinase, and BRAF. Fourteen out of 16 recurrent tumors carried BRAF mutations (595–605 region) following frontline therapy, even though the parental B16 tumors were BRAF wild type. The emergence of mutated BRAF-containing recurrences served as an excellent target for BRAF-specific immune-(VSV-BRAF), or chemo-(PLX-4720) therapies. Successful PLX-4720 therapy of recurrent tumors was associated with the development of a broad spectrum of T-cell responses. VSV-cDNA technology can be used to identify recurrence specific antigens. Emergence of mutated BRAF may be a major effector of melanoma recurrence which could serve as a target for chemo or immune therapy. This study suggests a rationale for offering patients with initially wild-type BRAF melanomas an additional biopsy to screen for mutant BRAF upon recurrence. PMID:25544599
Pan, C-H; Yang, P-M; Hwang, L-H; Kao, Shing-F; Chen, P-J; Chiang, B-L; Chen, D-S
2002-07-01
The aim of this study was to further investigate the role of T-helper cells in hepatitis C virus (HCV) infection, focusing on the T-cell antigenic determinants and cytokine profiles of nonstructural 3 (NS3) protein-stimulated peripheral blood mononuclear cells (PBMCs) of HCV patients. A total of 12 recombinant proteins of theNS3 region were purified and used to test T-cell proliferative response and antigenic determinants of HCV-seropositive patients. In addition, cytokines produced by antigen stimulated PBMCs were measured. Our data showed that PBMCs from 55.7% (34/61) of HCV patients proliferated to at least one antigen, but PBMCs of HCV seronegative patients did not. In addition, PBMCs from about 82.0% (32/39) HCV-seropositive patients produced significant amounts of cytokines (10 pg/mL). Interestingly, PBMCs from 66% of patients produced TH2-related cytokines such as interleukin (IL)-4 and IL-5. In mappingexperiments, the data showed multiple T-cell antigenic determinants. Our data demonstrated that NS3 antigen-stimulated PBMCs of HCV patients recognized multiple T-cell antigenic determinants and produced significant amounts of TH0 or TH2-related cytokines, which might play a critical role in the chronicity of HCV infection.
Peifang, S.; Pira, G. L.; Fenoglio, D.; Harris, S.; Costa, M. G.; Venturino, V.; Dessì, V.; Layton, G.; Laman, J.; Huisman, J. G.; Manca, F.
1994-01-01
Recombinant virus-like particles (VLP), formed by the yeast Ty p1 protein, carrying the HIV gp120 V3 loop on their surface (V3-VLP) have been tested in vitro for immunogenicity and antigenicity by using VLP p1-specific human CD4+ T cell lines and clones. VLP-specific human T cell lines and clones were generated from normal individuals, indicating that VLP-specific precursor cells present in the peripheral lymphocyte pool can be induced to expand clonally upon antigen challenge in vitro, in the absence of previous immunization. It was also shown that V3-specific polyclonal antibodies enhance V3-VLP-induced activation of VLP-specific T cell clones. Antibody-dependent potentiation has been shown previously in other antigen systems, and it depends on enhanced uptake of complexed antigen by Fc receptor-positive antigen-presenting cells. Since in this case antigen is internalized by presenting cells as a complex, it can be inferred that a similar event of antibody-mediated antigen uptake can take place with V3-specific B cells, resulting in presentation by the B cells of T helper epitopes derived from processing of the VLP p1 moiety. This suggests that T helper cells specific for the carrier VLP p1 protein can be activated to provide help to V3-specific B cells in the presence of the appropriate antigen construct. PMID:7915974
Sabourin, Carol L.; Niemuth, Nancy A.; Li, Han; Semenova, Vera A.; Rudge, Thomas L.; Mayfield, Heather J.; Schiffer, Jarad; Mittler, Robert S.; Ibegbu, Chris C.; Wrammert, Jens; Ahmed, Rafi; Brys, April M.; Hunt, Robert E.; Levesque, Denyse; Estep, James E.; Barnewall, Roy E.; Robinson, David M.; Plikaytis, Brian D.; Marano, Nina
2012-01-01
A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r2 = 0.89 for log10-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4+ cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses. PMID:22933399
Quinn, Conrad P; Sabourin, Carol L; Niemuth, Nancy A; Li, Han; Semenova, Vera A; Rudge, Thomas L; Mayfield, Heather J; Schiffer, Jarad; Mittler, Robert S; Ibegbu, Chris C; Wrammert, Jens; Ahmed, Rafi; Brys, April M; Hunt, Robert E; Levesque, Denyse; Estep, James E; Barnewall, Roy E; Robinson, David M; Plikaytis, Brian D; Marano, Nina
2012-11-01
A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r(2) = 0.89 for log(10)-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4(+) cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses.
Rodríguez, Ernesto; Carasi, Paula; Frigerio, Sofía; da Costa, Valeria; van Vliet, Sandra; Noya, Verónica; Brossard, Natalie; van Kooyk, Yvette; García-Vallejo, Juan J; Freire, Teresa
2017-01-01
Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica , is a trematode zoonosis of interest in public health and livestock production. Like other helminths, F. hepatica modulates the host immune response by inducing potent polarized Th2 and regulatory T cell immune responses and by downregulating the production of Th1 cytokines. In this work, we show that F. hepatica glycans increase Th2 immune responses by immunomodulating TLR-induced maturation and function of dendritic cells (DCs). This process was mediated by the macrophage Gal/GalNAc lectin (MGL) expressed on DCs, which recognizes the Tn antigen (GalNAc-Ser/Thr) on parasite components. More interestingly, we identified MGL-expressing CD11c + cells in infected animals and showed that these cells are recruited both to the peritoneum and the liver upon F. hepatica infection. These cells express the regulatory cytokines IL-10, TNFα and TGFβ and a variety of regulatory markers. Furthermore, MGL + CD11c + cells expand parasite-specific Th2/regulatory cells and suppress Th1 polarization. The results presented here suggest a potential role of MGL in the immunomodulation of DCs induced by F. hepatica and contribute to a better understanding of the molecular and immunoregulatory mechanisms induced by this parasite.
Fasciola hepatica Immune Regulates CD11c+ Cells by Interacting with the Macrophage Gal/GalNAc Lectin
Rodríguez, Ernesto; Carasi, Paula; Frigerio, Sofía; da Costa, Valeria; van Vliet, Sandra; Noya, Verónica; Brossard, Natalie; van Kooyk, Yvette; García-Vallejo, Juan J.; Freire, Teresa
2017-01-01
Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is a trematode zoonosis of interest in public health and livestock production. Like other helminths, F. hepatica modulates the host immune response by inducing potent polarized Th2 and regulatory T cell immune responses and by downregulating the production of Th1 cytokines. In this work, we show that F. hepatica glycans increase Th2 immune responses by immunomodulating TLR-induced maturation and function of dendritic cells (DCs). This process was mediated by the macrophage Gal/GalNAc lectin (MGL) expressed on DCs, which recognizes the Tn antigen (GalNAc-Ser/Thr) on parasite components. More interestingly, we identified MGL-expressing CD11c+ cells in infected animals and showed that these cells are recruited both to the peritoneum and the liver upon F. hepatica infection. These cells express the regulatory cytokines IL-10, TNFα and TGFβ and a variety of regulatory markers. Furthermore, MGL+ CD11c+ cells expand parasite-specific Th2/regulatory cells and suppress Th1 polarization. The results presented here suggest a potential role of MGL in the immunomodulation of DCs induced by F. hepatica and contribute to a better understanding of the molecular and immunoregulatory mechanisms induced by this parasite. PMID:28360908
Villiers, M B; Villiers, C L; Jacquier-Sarlin, M R; Gabert, F M; Journet, A M; Colomb, M G
1996-01-01
Antigen opsonization by the C3b fragment of complement is a significant event in the modulation of cell-mediated immune response, but its mechanism is still largely unknown. The structural characteristics of C3b allow it to act as a bifunctional ligand between antigen and cells via their membrane C3b receptors. It was thus of interest to study the influence of the covalent link between C3b and antigen on the fixation and internalization of this antigen by antigen-presenting cells. Tetanus toxin (TT) was used as antigen, either free or covalently linked to C3b (TT-C3b). The antigen-presenting cells were TT-specific (4.2) or non-specific (BL15) Epstein-Barr virus (EBV)-transformed B cells. C3b was found to play an important role in antigen fixation and internalization by both antigen-specific and antigen non-specific cells. Covalent binding of C3b on TT (1) permitted fixation and internalization of this antigen by non-specific cells via their complement receptors; (2) enhanced antigen fixation and resulted in cross-linking between membrane immunoglobulins and complement receptors on antigen-specific cells. The consequences of covalent C3b binding to TT were analysed using antigen-specific and antigen-nonspecific cells. In both cases, a net increase in antigen fixation was observed. At the intracellular level, covalent C3b binding to TT resulted in a large TT incorporation in endosomes of nonspecific cells, similar to that observed in antigen-specific cells. Thus, C3b covalently linked to antigen enlarges the array of B-cell types capable of presenting antigen, including non-specific cells. Images Figure 2 PMID:8958046
Roche, Cherie M; Smith, Amanda; Lindsey, Devin R; Meher, Akshay; Schluns, Kimberly; Arora, Ashish; Armitige, Lisa Y; Jagannath, Chinnaswamy
2011-12-01
The ΔfbpA candidate vaccine derived from Mycobacterium tuberculosis (H37Rv) (Mtb) protects mice better than BCG against tuberculosis, and we investigated the hypothesis that ΔfbpA may induce a stronger Th1 immunity. Since T-bet transcription factor regulates Th1 immunity, mice infected with ΔfbpA, BCG vaccine and related mycobacteria were analyzed for T-bet positive T cells. Mouse dendritic cells (DCs) or macrophages were also pulsed with excretory-secreted antigens (ES; Antigen-85B, ESAT-6 and CFP10) and cocultured with T cells from immunized or naïve mice and tested for in vitro induction of T-bet and IFN-γ. In both models, ΔfbpA mutant induced a stronger response of T-bet(+)CD4 T cells, which correlated with an increased expansion of IFN-γ(+)CD4 T cells in vivo and in vitro. When DCs pulsed with ES antigens were allowed to stimulate T cells, ESAT-6 and CFP-10 failed to induce a recall expansion of T-bet(+)IFN-γ(+)CD4 T cells from BCG vaccinated mice. Thus, deletion of RD1 in BCG seems to reduce its ability to induce T-bet and induce stronger Th1 immunity. Finally, mice were vaccinated with ΔfbpA and BCG and challenged with virulent Mtb for evaluation of protection and T cell expansion. ΔfbpA vaccinated mice showed a rapid and stronger expansion of CD4(+)CXCR3(+) IFN-γ(+) T cells in the lungs of Mtb challenged mice, compared to those which had BCG vaccine. ΔfbpA immunized mice also showed a better decline of the Mtb bacterial counts of the lungs. Mtb derived ΔfbpA candidate vaccine therefore induces qualitatively better T-bet dependent Th1 immunity than BCG vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jain, Sonia; George, Parakkal Jovvian; Deng, Wanyan; Koussa, Joseph; Parkhouse, Kaela; Hensley, Scott E; Jiang, Jiu; Lu, Jie; Liu, Zhuyun; Wei, Junfei; Zhan, Bin; Bottazzi, Maria Elena; Shen, Hao; Lustigman, Sara
2018-06-14
Vaccination remains the most cost-effective biomedical approach for controlling influenza disease. In times of pandemics, however, these vaccines cannot be produced in sufficient quantities for worldwide use by the current manufacturing capacities and practices. What is needed is the development of adjuvanted vaccines capable of inducing an adequate or better immune response at a decreased antigen dose. Previously we showed that the protein adjuvant rOv-ASP-1 augments influenza-specific antibody titers and survival after virus challenge in both young adult and old-age mice when administered with the trivalent inactivated influenza vaccine (IIV3). In this study we show that a reduced amount of rOv-ASP-1, with 40-times less IIV3 can also induce protection. Apparently the potency of the rOv-ASP-1 adjuvanted IIV3 vaccine is independent of the IIV3-specific Th1/Th2 associated antibody responses, and independent of the presence of HAI antibodies. However, CD4 + T helper cells were indispensable for the protection. Further, rOv-ASP-1 with or without IIV3 elicited the increased level of various chemokines, which are known chemoattractant for immune cells, into the muscle 4 h after immunization, and significantly induced the recruitment of monocytes, macrophages and neutrophils into the muscles. The recruited monocytes had higher expression of the activation marker MHCII on their surface as well as CXCR3 and CCR2; receptors for IP-10 and MCP-1, respectively. These results show that the rOv-ASP-1 adjuvant allows substantial antigen sparing of IIV3 by stimulating at the site of injection the accumulation of chemokines and the recruitment of immune cells that can augment the activation of CD4 + T cell immune responses, essential for the production of antibody responses. Protection elicited by the rOv-ASP-1 adjuvanted IIV3 vaccine also appears to function in the absence of MyD88-signaling. Future studies will attempt to delineate the precise mechanisms by which the rOv-ASP-1 adjuvanted IIV3 vaccine works. Copyright © 2018 Elsevier Ltd. All rights reserved.
A role for Waldeyer's ring in immunological response to allergens.
Masieri, Simonetta; Trabattoni, Daria; Incorvaia, Cristoforo; De Luca, Maria Cristina; Dell'Albani, Ilaria; Leo, Gualtiero; Frati, Franco
2014-02-01
Adenoids, tubal tonsil, palatine tonsil, and lingual tonsil are immunological organs included in the Waldeyer's ring, the basic function of which is the antibody production to common environmental antigens. Adenoidal hypertrophy (AH) is a major medical issue in children, and adenoidectomy is still the most used treatment worldwide. The response of adenoids to allergens is a good model to evaluate their immunological function. This report assessed the immunological changes in adenoid tissues from children with allergic rhinitis (AR) undergoing sublingual immunotherapy (SLIT). Adenoid samples from 16 children (seven males, nine females, mean age 7.12 years) with AH and clinical indication to adenoidectomy were collected. Of them, five children were not allergic and 11 had house dust mite and grass pollen-induced AR. Among allergic children, in four AR was treated by antihistamines while in seven AR was treated by high-dose SLIT during 4-6 months. The evaluation addressed the T helper 1 (Th1), Th2, and Th3 cells by performing a PCR array on mRNA extracted from adenoid samples. In non-allergic children, a typical Th1 pattern was found. SLIT induced a strong down-regulation of genes involved in Th2 and Th1 activation and function. In particular, in SLIT-treated allergic children IL-4, CCR2, CCR3, and PTGDR2 (Th2 related genes) and CD28, IL-2, and INHA (Th1 related genes) expression was reduced, compared with children treated with antihistamines. These preliminary findings warrant investigation in trials including larger numbers of patients, but indicate that hypertrophic adenoids of allergic children have the typical response to the specific allergen administered by SLIT. This should suggest that one should reconsider the immunological role of adenoids.
IMMUNOGLOBULIN ISOANTIGENS (ALLOTYPES) IN THE MOUSE
Herzenberg, Leonard A.; Warner, Noel L.; Herzenberg, Leonore A.
1965-01-01
Eight antigens of 7S γ2-immunoglobulins controlled by alleles at a single locus Ig-1, have been identified in mice. This locus has previously been shown to determine antigenic specificities on the F fragments of 7S γ2a-globulins. The reactions of these antigens with various isoantisera have shown that the antigens all cross react with one another. New methods for the analysis of antigenic specificities of soluble proteins are presented in detail. A sensitive method for detecting in the order of 0.01 µg of these isoantigens has been developed, based on the quantitative inhibition of precipitation of I125-labeled antigen. Cross-reactions of the antigens were analysed in inhibition assays and the data is compatible with the existence of a minimum of eight antigenic specificities. Each of the antigens is composed of different combinations of these specificities, with only one antigen having a specificity not present in any other. Sixty-eight mouse strains have been tested with specific isoantisera, and on the basis of the results, have been placed into the eight allele groups. Evidence for close genetic linkage of the Ig-1 locus and 11 chromosome markers has been sought and not found. PMID:14270242
Vaitaitis, Gisela M.; Yussman, Martin G.; Waid, Dan M.; Wagner, David H.
2017-01-01
CD40-CD154 interaction is critically involved in autoimmune diseases, and CD4 T cells play a dominant role in the Experimental Autoimmune Encephalomyelitis (EAE) model of Multiple Sclerosis (MS). CD4 T cells expressing CD40 (Th40) are pathogenic in type I diabetes but have not been evaluated in EAE. We demonstrate here that Th40 cells drive a rapid, more severe EAE disease course than conventional CD4 T cells. Adoptively transferred Th40 cells are present in lesions in the CNS and are associated with wide spread demyelination. Primary Th40 cells from EAE-induced donors adoptively transfer EAE without further in-vitro expansion and without requiring the administration of the EAE induction regimen to the recipient animals. This has not been accomplished with primary, non-TCR-transgenic donor cells previously. If co-injection of Th40 donor cells with Freund’s adjuvant (CFA) in the recipient animals is done, the disease course is more severe. The CFA component of the EAE induction regimen causes generalized inflammation, promoting expansion of Th40 cells and infiltration of the CNS, while MOG-antigen shapes the antigen-specific TCR repertoire. Those events are both necessary to precipitate disease. In MS, viral infections or trauma may induce generalized inflammation in susceptible individuals with subsequent disease onset. It will be important to further understand the events leading up to disease onset and to elucidate the contributions of the Th40 T cell subset. Also, evaluating Th40 levels as predictors of disease onset would be highly useful because if either the generalized inflammation event or the TCR-honing can be interrupted, disease onset may be prevented. PMID:28192476
Delisle, Benjamin; Calinescu, Carmen; Mateescu, Mircea Alexandru; Fairbrother, John Morris; Nadeau, Éric
2012-01-01
F4 fimbriae are a potential candidate for an oral subunit vaccine for prevention of post-weaning diarrhea in swine due to infection with F4-positive enterotoxigenic Escherichia coli. However, large quantities of F4 fimbriae are required to induce a specific antibody response. The aim of the present study was to evaluate the effect of supplementation of F4 fimbriae with Cytosine-phosphate-Guanosine-oligodeoxynucleotide (CpG-A D19) or with complete cholera toxin (CT) as adjuvants on the F4-specific antibody response and cytokine production in weaned pigs following oral administration of F4 fimbrial antigen formulated with Carboxymethyl Starch (CMS). Oral dosage forms of F4 fimbriae alone or supplemented with CpG-A D19 or with CT were formulated with CMS as monolithic tablets, obtained by direct compression, and administered to weaned pigs. Blood and faecal samples were collected to determine the systemic and mucosal immune status of animals at various times until necropsy. During necropsy, contents of the jejunum and ileum were collected for determination of mucosal F4 specific antibodies. Segments of jejunum and ileum were also used to measure mRNA cytokine production. The presence of CpG in the formulation of the fimbriae significantly increased F4-specific immunoglobulin (Ig) IgM and IgG levels in intestinal secretions, and enhanced Th1 (Interferon-gamma / IFN-γ, Tumour Necrosis Factor-alpha / TNF-α, Interleukin-12p40 / IL-12p40, IL-1β) and Th2 (IL-4, IL-6) cytokine production in intestinal tissues. Supplementation with CT did not result in induction of F4-specific antibodies in secretions, although a significant Th1 response (IFN-α, IFN-γ, IL-18) was detected in tissues. Neither F4-specific systemic antibodies, nor intestinally secreted IgA were detected throughout the immunization trial for all groups. CpG-A D19 appeared to be a promising adjuvant for an oral F4 subunit vaccine formulated with CMS excipient as monolithic tablets. This matrix afforded gastro-protection and delivered the F4 fimbriae at their intestinal sites.
Soria, I; López-Relaño, J; Viñuela, M; Tudela, J-I; Angelina, A; Benito-Villalvilla, C; Díez-Rivero, C M; Cases, B; Manzano, A I; Fernández-Caldas, E; Casanovas, M; Palomares, O; Subiza, J L
2018-04-01
Polymerized allergoids coupled to nonoxidized mannan (PM-allergoids) may represent novel vaccines targeting dendritic cells (DCs). PM-allergoids are better captured by DCs than native allergens and favor Th1/Treg cell responses upon subcutaneous injection. Herein we have studied in mice the in vivo immunogenicity of PM-allergoids administered sublingually in comparison with native allergens. Three immunization protocols (4-8 weeks long) were used in Balb/c mice. Serum antibody levels were tested by ELISA. Cell responses (proliferation, cytokines, and Tregs) were assayed by flow cytometry in spleen and lymph nodes (LNs). Allergen uptake was measured by flow cytometry in myeloid sublingual cells. A quick antibody response and higher IgG2a/IgE ratio were observed with PM-allergoids. Moreover, stronger specific proliferative responses were seen in both submandibular LNs and spleen cells assayed in vitro. This was accompanied by a higher IFNγ/IL-4 ratio with a quick IL-10 production by submandibular LN cells. An increase in CD4 + CD25 high FOXP3 + Treg cells was detected in LNs and spleen of mice treated with PM-allergoids. These allergoids were better captured than native allergens by antigen-presenting (CD45 + MHC-II + ) cells obtained from the sublingual mucosa, including DCs (CD11b + ) and macrophages (CD64 + ). Importantly, all the differential effects induced by PM-allergoids were abolished when using oxidized instead of nonoxidized PM-allergoids. Our results demonstrate for the first time that PM-allergoids administered through the sublingual route promote the generation of Th1 and FOXP3 + Treg cells in a greater extent than native allergens by mechanisms that might well involve their better uptake by oral antigen-presenting cells. © 2018 The Authors. Allergy Published by John Wiley & Sons Ltd.
Muehling, Lyndsey M; Turner, Ronald B; Brown, Kenneth B; Wright, Paul W; Patrie, James T; Lahtinen, Sampo J; Lehtinen, Markus J; Kwok, William W; Woodfolk, Judith A
2018-01-17
Little is known about T cells that respond to human rhinovirus in vivo, due to timing of infection, viral diversity, and complex T-cell specificities. We tracked circulating CD4+ T cells with identical epitope specificities that responded to intranasal challenge with rhinovirus (RV)-A39, and we assessed T-cell signatures in the nose. Cells were monitored using a mixture of 2 capsid-specific major histocompatibility complex II tetramers over a 7-week period, before and after RV-A39 challenge, in 16 human leukocyte antigen-DR4+ subjects who participated in a trial of Bifidobacterium lactis (Bl-04) supplementation. Pre-existing tetramer+ T cells were linked to delayed viral shedding, enriched for activated CCR5+ Th1 effectors, and included a minor interleukin-21+ T follicular helper cell subset. After RV challenge, expansion and activation of virus-specific CCR5+ Th1 effectors was restricted to subjects who had a rise in neutralizing antibodies, and tetramer-negative CCR5+ effector memory types were comodulated. In the nose, CXCR3-CCR5+ T cells present during acute infection were activated effector memory type, whereas CXCR3+ cells were central memory type, and cognate chemokine ligands were elevated over baseline. Probiotic had no T-cell effects. We conclude that virus-specific CCR5+ effector memory CD4+ T cells primed by previous exposure to related viruses contribute to the control of rhinovirus. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Bashir, Samina; Ali, Shakir; Khan, Farah
2015-01-01
The present study was designed to assess the potential of supplementation of diet with Flaxseed (Linum usitatissimum, L.) oil (FXO), on obesity-related inflammation and reversal of obesity-induced insulin resistance. Swiss Albino mice, C57bl/6 mice and co-culture of 3T3-L1 adipocytes - RAW 264.7 macrophages to mimick obese adipose tissue environment were used for the study. Oral gavage of FXO at concentrations of 4, 8 or 16 mg/kg body weight (bwt) for 4 weeks or high-fat diet (HFD, 60% energy as fat) supplemented with dietary FXO (4, 8 or 16 mg/kg bwt) was given to the mice. FXO was characterised using gas chromatography - mass spectrometry. FXO supplemented HFD-fed mice (4 mg/kg bwt exhibited reduced adiposity index, serum glucose levels and triglycerides (8 and 16 mg/kg bwt) and improvement in insulin sensitisation (4, 8 and 16 mg/kg bwt) when compared with HFD mice. The co-culture showed a dose-dependent shift in cytokines towards anti-inflammatory (IL-4) state, with a decrease in pro-inflammatory TNF-α (p < 0.05). For immunomodulatory studies a dose-dependent increase (p < 0.05) was observed in antigen-specific levels of Th2 (IL-4) cytokine, serum anti-ova IgG1 and IgE levels. Suppression in anti-ova IgG2a, IgG2b, and IgG3 and antigen-specific Th1 cytokines like TNF-α and IFN-γ significantly (p < 0.05) was observed at 16 mg/kg bwt dosage. The results indicate that FXO exhibits an anti-inflammatory immunomodulatory potential and may partially relieve symptoms of obesity-associated insulin resistance.
Tai, Chih-Jaan; Liu, Feng-Yuan; Liang, Ji-An; Yang, Shih-Neng; Tsai, Ming-Hsui; Kao, Cbia-Hung
2002-01-01
CYFRA 21-1 is a tumor marker that is useful for detecting squamous cell carcinoma (SCC) of the lung. Tissue polypeptide specific antigen (TPS) is a tumor marker that indicates tumor proliferative rate rather than tumor burden. Our aim in this study was to compare the clinical value of CYFRA 21-1 and TPS in the detection of nasopharyngeal carcinoma (NPC). Serum levels of CYFRA 21-1 and TPS were measured in 60 patients with untreated NPC (including 36 differentiated SCC and 24 undifferentiated carcinomas) for comparison with each other. The cut-off values of CYFRA 21-1 and TPS, determined at the 95th percentile of the 43 healthy controls, were 2.50 ng/ml and 115.2 U/l, respectively. The results revealed that the mean serum values of CYFRA 21-1 (6.20 +/- 5.21 ng/ml) and TPS (153.9 +/- 17.3 U/l) in all 60 NPC patients were significantly higher than that in the 43 healthy controls (CYFRA 21-1 = 1.32 + 0.50 ng/ml, TPS = 85.0 +/- 16.0 U/l) (p value < 0.05). In addition, the detecting sensitivities of CYFRA 21-1 (60.0%) and TPS (58.3%) for all 60 NPC were not significantly different (p value > 0.05). In conclusion, our results suggest that both CYFRA 21-1 and TPS are potential tumor markers for the detection of NPC.
Angerami, Matias; Suarez, Guadalupe; Pascutti, Maria Fernanda; Salomon, Horacio; Bottasso, Oscar; Quiroga, Maria Florencia
2013-07-01
Cell-mediated immunity, cytokines induced during the specific immune response and T-cell populations are crucial factors for containing Mycobacterium tuberculosis infection. Recent reports suggest a cross-regulation between adrenal steroids (glucocorticoids and dehydroepiandrosterone, DHEA) and the function of antigen-presenting cells (APCs). Therefore, we investigated the role of adrenal hormones on the functional capacity of M. tuberculosis-induced dendritic cells (DCs). Cortisol significantly inhibited the functions of M. tuberculosis-induced DCs. Interestingly, the presence of DHEA enhanced the M. tuberculosis-induced expression of MHC I, MHC II and CD86 and also increased ERK1/2 phosphorylation. Moreover, DHEA improved the production of IL-12 in response to M. tuberculosis stimulation, diminished IL-10 secretion and could not modify TNF-α synthesis. Importantly, we observed that DHEA enhanced the antigen-specific T-cell proliferation and IFN-γ production induced by M. tuberculosis-stimulated DC. These data show for the first time the relevance of the adrenal axis (especially of DHEA) in the modulation of DC function in the context of tuberculosis, a disease where the induction of a Th1 environment by APCs is crucial for the development of an effective immune response to the mycobacteria.
Applications and mechanisms of immunotherapy in allergic rhinitis and asthma.
Kappen, Jasper H; Durham, Stephen R; Veen, Hans In 't; Shamji, Mohamed H
2017-01-01
Clinical and immunologic tolerance are hallmarks of successful allergen immunotherapy (AIT). Clinical benefits such as reduced symptoms, pharmacotherapy intake and improvement of quality of life persist following cessation of treatment. Successful AIT is associated with suppression of allergic inflammatory cells such as mast cells, eosinophils and basophils in target organs. Furthermore, AIT down-regulates type 2 innate lymphoid cells and allergen-specific type 2 T-helper (Th2) cells. The immunologic tolerant state following AIT is associated with the induction of distinct phenotypes of regulatory T-cells (T-regs) including interleukin (IL)-10-, IL-35- and transforming growth factor (TGF)-β- producing T-regs and FoxP3 + T-regs. B-cell responses, including the induction of IL-10 + regulatory B-cells (B-regs) and the production of IgG4-associated blocking antibodies are also induced following successful AIT. These events are associated with the suppression of antigen-specific Th2 responses and delayed immune deviation in favour of Th1 type responses. Insight into the mechanisms of AIT has allowed identification of novel biomarkers with potential to predict the clinical response to AIT and also novel therapeutic strategies for more effective and safer AIT.
Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea
2014-01-01
Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines. PMID:24566620
Kashino, Suely S.; Abeijon, Claudia; Qin, Lizeng; Kanunfre, Kelly A.; Kubrusly, Flávia S.; Silva, Fernando O.; Costa, Dorcas L.; Campos, Dioclécio; Costa, Carlos H.N.; Raw, Isaias; Campos-Neto, Antonio
2012-01-01
Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in Southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500,000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver, and bone marrow lesions and excreted in the patients’ urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1), and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in E. coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2 + BpMPLASE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to kala-azar and opens novel possibilities for vaccine development to other serious infectious diseases. PMID:22443237
1981-01-01
A highly specific and reproducible antigen-induced, antigen-specific culture and assay system for antibody production by human peripheral blood B lymphocytes has been developed. The system is clearly T cell and monocyte dependent and is independent of exogenous mitogens. The major factors in our ability to trigger specific antibody production with antigen alone have been the use of extremely low concentrations of antigen in vitro (doses several orders of magnitude below those inducing a peak blastogenic response), careful attention to in vitro cell density and culture vessel geometry, and appreciation of the kinetics of the circulating antigen-inducible B cell repertoire. A dichotomy and overlap between antigen-induced, antigen-specific and antigen-induced, polyclonal responses was observed in the study of doubly immunized individuals. Whereas antibody responses highly specific for the antigen in culture were observed under one set of culture conditions (flat-bottomed vessels, 1.5 x 10(6) cells), switching to another culture system (round-bottomed vessels, 5 x 10(5) cells) resulted in polyclonal responses to antigen. Despite these culture condition-related differences in the induction of antibody synthesis, the suppression of specific antibody production that occurred at high concentrations of antigen was specific only for the antigen in culture. The capability to easily and reproducibly look at truly antigen-induced, antigen specific antibody production should be a major tool in furthering the understanding of human B cell activation and immunoregulation. PMID:6169778
Gorday, William; Sadrzadeh, Hossein; de Koning, Lawrence; Naugler, Christopher T
2015-12-01
1.) Identify whether prostate-specific antigen velocity improves the ability to predict prostate biopsy diagnosis. 2.) Test whether there is an increase in the predictive capability of models when Gleason 7 prostate cancers are separated into a 3+4 and a 4+3 group. Calgary Laboratory Services' Clinical Laboratory Information System was searched for prostate biopsies reported between January 1, 2009 and December 31, 2013. Total prostate-specific antigen tests were recorded for each patient from January 1, 2007 to the most recent test before their recorded prostate biopsy. The data set was divided into the following three groups for comparison; benign, all prostate cancer and Gleason 7-10. The Gleason grade 7-10 group was further divided into 4+3 and 3+4 Gleason 7 prostate cancers. Prostate-specific antigen velocity was calculated using four different methods found in the literature. Receiver operator curves were used to assess operational characteristics of the tests. 4622 men between the ages of 40-89 with a prostate biopsy were included for analysis. Combining prostate-specific antigen velocity with total prostate-specific antigen (AUC=0.570-0.712) resulted in small non-statistically significant changes to the area under the curve compared to the area under the curve of total prostate-specific antigen alone (AUC=0.572-0.699). There were marked increases in the area under curves when 3+4 and 4+3 Gleason 7 cancers were separated. Prostate-specific antigen velocity does not add predictive value for prostate biopsy diagnosis. The clinical significance of the prostate specific antigen test can be improved by separating Gleason 7 prostate cancers into a 3+4 and 4+3 group. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Hashimoto, Takeshi; Ohori, Makoto; Shimodaira, Kenji; Kaburaki, Naoto; Hirasawa, Yosuke; Satake, Naoya; Gondo, Tatsuo; Nakagami, Yoshihiro; Namiki, Kazunori; Ohno, Yoshio
2018-06-01
To clarify the impact of prostate-specific antigen screening on surgical outcomes of prostate cancer. Patients who underwent radical prostatectomy were divided into two groups according to prostate-specific antigen testing opportunity (group 1, prostate-specific antigen screening; group 2, non-prostate-specific antigen screening). Perioperative clinical characteristics were compared using the Wilcoxon rank-sum and χ 2 -tests. Cox proportional hazards models were used to identify independent predictors of postoperative biochemical recurrence-free survival. In total, 798 patients (63.2%) and 464 patients (36.8%) were categorized into groups 1 and 2, respectively. Group 2 patients were more likely to have a higher prostate-specific antigen level and age at diagnosis and larger prostate volume. Clinical T stage, percentage of positive cores and pathological Gleason score did not differ between the groups. The 5-year biochemical recurrence-free survival rate was 83.9% for group 1 and 71.0% for group 2 (P < 0.001). On multivariate analysis, prostate-specific antigen testing opportunity (hazard ratio 2.530; P < 0.001) was an independent predictive factor for biochemical recurrence after surgery, as well as pathological T stage, pathological Gleason score, positive surgical margin and lymphovascular invasion. Additional analyses showed that prostate-specific antigen screening had a greater impact on biochemical recurrence in a younger patients, patients with a high prostate-specific antigen level, large prostate volume and D'Amico high risk, and patients meeting the exclusion criteria of the Prostate Cancer Research International Active Surveillance study. Detection by screening results in favorable outcomes after surgery. Prostate-specific antigen screening might contribute to reducing biochemical recurrence in patients with localized prostate cancer. © 2018 The Japanese Urological Association.
Li, Jianing; Wang, Yu; Tang, Lihua; de Villiers, Willem J S; Cohen, Donald; Woodward, Jerold; Finkelman, Fred D; Eckhardt, Erik R M
2013-02-01
The prevalence of peanut allergies is increasing. Peanuts and many other allergen sources contain significant amounts of triglycerides, which affect absorption of antigens but have unknown effects on sensitization and anaphylaxis. We recently reported that dietary medium-chain triglycerides (MCTs), which bypass mesenteric lymph and directly enter portal blood, reduce intestinal antigen absorption into blood compared with long-chain triglycerides (LCTs), which stimulate mesenteric lymph flow and are absorbed in chylomicrons through mesenteric lymph. We sought to test how dietary MCTs affect food allergy. C3H/HeJ mice were fed peanut butter protein in MCT, LCT (peanut oil), or LCT plus an inhibitor of chylomicron formation (Pluronic L81). Peanut-specific antibodies in plasma, responses of the mice to antigen challenges, and intestinal epithelial cytokine expression were subsequently measured. MCT suppressed antigen absorption into blood but stimulated absorption into Peyer patches. A single gavage of peanut protein with MCT, as well as prolonged feeding in MCT-based diets, caused spontaneous allergic sensitization. MCT-sensitized mice experienced IgG-dependent anaphylaxis on systemic challenge and IgE-dependent anaphylaxis on oral challenge. MCT feeding stimulated jejunal-epithelial thymic stromal lymphopoietin, Il25, and Il33 expression compared with that seen after LCT feeding and promoted T(H)2 cytokine responses in splenocytes. Moreover, oral challenges of sensitized mice with antigen in MCT significantly aggravated anaphylaxis compared with challenges with the LCT. Importantly, the effects of MCTs could be mimicked by adding Pluronic L81 to LCTs, and in vitro assays indicated that chylomicrons prevent basophil activation. Dietary MCTs promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating T(H)2 responses. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Li, Jianing; Wang, Yu; Tang, Lihua; de Villiers, Willem JS; Cohen, Donald; Woodward, Jerold; Finkelman, Fred D; Eckhardt, Erik RM
2012-01-01
BACKGROUND The prevalence of peanut allergies is rising. Peanuts and many other allergen sources contain significant amounts of triglycerides, which affect absorption of antigens but have unknown effects on sensitization and anaphylaxis. We recently reported that dietary medium-chain triglycerides (MCT), which bypass mesenteric lymph and directly enter portal blood, reduce intestinal antigen absorption into blood compared to long-chain triglycerides (LCT), which stimulate mesenteric lymph flow and are absorbed in chylomicrons via mesenteric lymph. OBJECTIVE Test how dietary MCT affect food allergy. METHODS C3H/HeJ mice were fed peanut butter protein in MCT, LCT (peanut oil), or LCT plus an inhibitor of chylomicron formation (Pluronic L81; “PL81”). Peanut-specific antibodies in plasma, responses of the mice to antigen challenges, and intestinal epithelial cytokine expression were subsequently measured. RESULTS MCT suppressed antigen absorption into blood, but stimulated absorption into Peyer's patches. A single gavage of peanut protein with MCT as well as prolonged feeding in MCT-based diets caused spontaneous allergic sensitization. MCT-sensitized mice experienced IgG-dependent anaphylaxis upon systemic challenge and IgE-dependent anaphylaxis upon oral challenge. MCT feeding stimulated jejunal-epithelial TSLP, IL-25 and IL-33 expression compared to LCT, and promoted Th2 cytokine responses in splenocytes. Moreover, oral challenges of sensitized mice with antigen in MCT significantly aggravated anaphylaxis compared to challenges with LCT. Importantly, effects of MCT could be mimicked by adding PL81 to LCT, and in vitro assays indicated that chylomicrons prevent basophil activation. CONCLUSION Dietary MCT promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating Th2 responses. PMID:23182172
Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne
2014-01-01
CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871
Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji
2014-09-01
Cationic lipid-incorporated liposomes modified with pH-sensitive polymers were prepared by introducing 3, 5-didodecyloxybenzamidine as a cationic lipid to egg yolk phosphatidylcholine liposomes modified with 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG) as a pH-sensitive polymer. These liposomes were stable at neutral pH, but were destabilized below pH 6.0 because MGlu-HPG changed its characteristics from hydrophilic to hydrophobic in response to the pH decrease. Cationic lipid inclusion improved their pH sensitivity at weakly acidic pH and association of liposomes with murine dendritic cell (DC) lines. Cationic lipid-incorporated liposomes delivered entrapped ovalbumin (OVA) molecules not only to cytosol but also to endosome/lysosome. Treatment with cationic lipid-incorporated liposomes induced up-regulation of antigen presentation-involved molecules on DCs, the promotion of cytokine production, and antigen presentation via both major histocompatibility complex (MHC) class I and II molecules. Especially, antigen presentation via MHC class II was promoted by cationic lipid inclusion, which might correspond to efficient endosome/lysosome delivery of OVA. Subcutaneous administration of OVA-loaded cationic lipid-incorporated liposomes induced antigen-specific antibody production in serum and Th1-dominant immune responses in the spleen. Furthermore, administration of the cationic lipid-incorporated liposomes to mice bearing E.G7-OVA tumor more significantly reduced the tumor volume than liposomes without cationic lipids. Therefore, cationic lipid inclusion into pH-sensitive polymer-modified liposomes, which can achieve both efficient antigen intracellular delivery and activation of antigen presenting cell, is an effective approach to develop antigen carriers for efficient cancer immunotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stafylis, Chrysovalantis; Klausner, Jeffrey D
2017-01-01
Fourth generation assays detect simultaneously antibodies for HIV and the p24 antigen, identifying HIV infection earlier than previous generation tests. Previous studies have shown that the Alere Determine HIV-1/2 Combo has lower than anticipated performance in detecting antibodies for HIV and the p24 antigen. Furthermore, there are currently very few studies evaluating the performance of Standard Diagnostics BIOLINE HIV Ag/Ab Combo. To evaluate the performance of the Alere Determine HIV-1/2 Combo and the Standard Diagnostics BIOLINE HIV Ag/Ab Combo in a panel of frozen serum samples. The testing panel included 133 previously frozen serum specimens from the UCLA Clinical Microbiology & Immunoserology laboratory. Reference testing included testing for HIV antibodies by a 3rd generation enzyme immunoassay followed by HIV RNA detection. Antibody negative and RNA positive sera were also tested by a laboratory 4th generation HIV Ab/Ag enzyme immunoassay. Reference testing yielded 97 positives for HIV infection and 36 negative samples. Sensitivity of the Alere test was 95% (88-98%), while the SD Bioline sensitivity was 91% (83-96%). Both assays showed 100% (90-100%) specificity. No indeterminate or invalid results were recorded. Among 13 samples with acute infection (HIV RNA positive, HIV antibody negative), 12 were found positive by the first assay and 8 by the second. The antigen component of the Alere assay detected 10 acute samples, while the SD Bioline assay detected only one. Both rapid assays showed very good overall performance in detecting HIV infection in frozen serum samples, but further improvements are required to improve the performance in acute infection.
The pathogenesis of oligoarticular/polyarticular vs systemic juvenile idiopathic arthritis.
Lin, Yu-Tsan; Wang, Chen-Ti; Gershwin, M Eric; Chiang, Bor-Luen
2011-06-01
Juvenile idiopathic arthritis (JIA) has had a long and difficult problem with classification. It is clearly a heterogeneous and multi-factorial autoimmune disease but all too often the distinctions among subtypes were unclear. In fact, there is now increasing evidence of a distinct pathogenesis of oligo/polyarticular JIA compared to systemic JIA. Oligo/polyarticular JIA is an antigen-driven lymphocyte-mediated autoimmune disease with abnormality in the adaptive immune system. Cartilage-derived auto-antigens activate autoreactive T cells including Th1 and Th17 cells with production of pro-inflammatory cytokines IFN-γ and IL-17. On the other hand, the inhibition of regulatory T (Treg) cells including natural Foxp3(+) Treg and self-heat shock protein-induced Treg cells with decreased anti-inflammatory cytokine IL-10 results in the loss of immune tolerance. Imbalance between autoreactive Th1/Th17 and Treg cells leads to the failure of T cell tolerance to self-antigens, which contributes to the synovial inflammation of oligo/polyarticular JIA. By contrast, systemic JIA is an autoinflammatory disease with abnormality in the innate immune system. A loss of control of the alternative secretory pathway leading to aberrant activation of phagocytes including monocytes, macrophages and neutrophils seems to be involved in the release of pro-inflammatory cytokines IL-1, IL-6, IL-18 and pro-inflammatory S100-proteins, which contribute to the multisystem inflammation of systemic JIA. Markedly distinct pathogenesis of oligo/polyarticular JIA and systemic JIA implies that they might need different treatment strategies. Copyright © 2011 Elsevier B.V. All rights reserved.
Bhakta, Gajadhar; Nurcombe, Victor; Maitra, Amarnath; Shrivastava, Anju
2014-01-01
The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein)-encapsulated PEGylated (meaning polyethylene glycol coated) magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles) for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-? and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP). Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi) nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation. PMID:24936399
Hess, Jessica A; Zhan, Bin; Torigian, April R; Patton, John B; Petrovsky, Nikolai; Zhan, Tingting; Bottazzi, Maria Elena; Hotez, Peter J; Klei, Thomas R; Lustigman, Sara; Abraham, David
2016-07-01
In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans.
Mouser, Emily E I M; Pollakis, Georgios; Paxton, William A
2012-05-01
In many regions of the world, a high prevalence of HIV-1, helminthic and Mycobacterium tuberculosis (Mtb) infections can be found. Here, we summarize the types of immune responses induced and/or modulated by these pathogens and the consequences for HIV-1 disease. Helminths predominantly induce strong T helper (Th) 2 cellular responses which are downregulated in chronic disease. The anatomical niche populated by helminths plays a key factor in the effect these parasites have on HIV-1 transmission and subsequent replication. Gut-associated helminths have been found to increase HIV-1 transmission via the lesions they provide. In spite of this, the many immune modulatory molecules secreted by the parasites may inhibit or slow HIV-1 infection. In contrast, Mtb is mainly restricted to the lung and the Mtb-specific Th cells induced are highly susceptible to HIV-1 infection and replication. Antigens from both pathogens have immunomodulatory activity that can skew cellular immune responses in specific directions. The effect of helminths and Mtb on modulating immune responses is varied and complex with both their location and phenotype potentially influencing HIV-1 disease. These pathogens have evolved a complex array of molecules which have the capacity to modulate immunity and preserve pathogen survival.
Thompson, Elizabeth A; Ols, Sebastian; Miura, Kazutoyo; Rausch, Kelly; Narum, David L; Spångberg, Mats; Juraska, Michal; Wille-Reece, Ulrike; Weiner, Amy; Howard, Randall F; Long, Carole A; Duffy, Patrick E; Johnston, Lloyd; O'Neil, Conlin P; Loré, Karin
2018-05-17
Transmission-blocking vaccines (TBVs) are considered an integral element of malaria eradication efforts. Despite promising evaluations of Plasmodium falciparum Pfs25-based TBVs in mice, clinical trials have failed to induce robust and long-lived Ab titers, in part due to the poorly immunogenic nature of Pfs25. Using nonhuman primates, we demonstrate that multiple aspects of Pfs25 immunity were enhanced by antigen encapsulation in poly(lactic-co-glycolic acid)-based [(PLGA)-based] synthetic vaccine particles (SVP[Pfs25]) and potent TLR-based adjuvants. SVP[Pfs25] increased Ab titers, Pfs25-specific plasmablasts, circulating memory B cells, and plasma cells in the bone marrow when benchmarked against the clinically tested multimeric form Pfs25-EPA given with GLA-LSQ. SVP[Pfs25] also induced the first reported Pfs25-specific circulating Th1 and Tfh cells to our knowledge. Multivariate correlative analysis indicated several mechanisms for the improved Ab responses. While Pfs25-specific B cells were responsible for increasing Ab titers, T cell responses stimulated increased Ab avidity. The innate immune activation differentially stimulated by the adjuvants revealed a strong correlation between type I IFN polarization, induced by R848 and CpG, and increased Ab half-life and longevity. Collectively, the data identify ways to improve vaccine-induced immunity to poorly immunogenic proteins, both by the choice of antigen and adjuvant formulation, and highlight underlying immunological mechanisms.
Braz, Luis; Grenha, Ana; Ferreira, Domingos; Rosa da Costa, Ana M; Gamazo, Carlos; Sarmento, Bruno
2017-03-01
This work proposes the design of nanoparticles based on locus bean gum (LBG) and chitosan to be used as oral immunoadjuvant for vaccination purposes. LBG-based nanoparticles were prepared by mild polyelectrolyte complexation between chitosan (CS) and a synthesized LBG sulfate derivative (LBGS). Morphological characterization suggested that nanoparticles present a solid and compact structure with spherical-like shape. Sizes around 180-200nm and a positive surface charge between +9mV and +14mV were obtained. CS/LBGS nanoparticles did not affect cell viability of Caco-2 cells after 3h and 24h of exposure when tested at concentrations up to 1.0mg/mL. Two model antigens (a particulate acellular extract HE of Salmonella enterica serovar Enteritidis, and ovalbumin as soluble antigen) were associated to CS/LBGS nanoparticles with efficiencies around 26% for ovalbumin and 32% for HE, which resulted in loading capacities up to 12%. The process did not affect the antigenicity of the associated antigens. BALB/c mice were orally immunized with ovalbumin-loaded nanoparticles (100μg), and results indicate an adjuvant effect of the CS/LBGS nanoparticles, eliciting a balanced Th1/Th2 immune response. Thus, CS/LBGS nanoparticles are promising as antigen mucosal delivery strategy, with particular interest for oral administration. Copyright © 2017 Elsevier B.V. All rights reserved.
Airway surface mycosis in chronic TH2-associated airway disease.
Porter, Paul C; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber
2014-08-01
Environmental fungi have been linked to TH2 cell-related airway inflammation and the TH2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. To determine the frequency of fungus isolation and fungus-specific immunity in patients with TH2-associated and non-TH2-associated airway disease. Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Filamentous fungi were significantly more commonly cultured in patients with TH2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-TH2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with TH2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with TH2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Wu, Youbin; Wu, Shipo; Hou, Lihua; Wei, Wei; Zhou, Meng; Su, Zhiguo; Wu, Jie; Chen, Wei; Ma, Guanghui
2012-08-01
A novel thermal sensitive hydrogel was formulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) and α, β-glycerophosphate (α, β-GP). A serial of hydrogels containing different amount of GP and HTCC with diverse quarternize degree (QD, 41%, 59%, 79.5%, and 99%) were prepared and characterized by rheological method. The hydrogel was subsequently evaluated for intranasal vaccine delivery with adenovirus based Zaire Ebola virus glycoprotein antigen (Ad-GPZ). Results showed that moderate quarternized HTCC (60% and 79.5%) hydrogel/antigen formulations induced highest IgG, IgG1, and IgG2a antibody titers in serum, as well as mucosal IgA responses in lung wash, which may attributed to the prolonged antigen residence time due to the thermal-sensitivity of this hydrogel. Furthermore, CD8(+) splenocytes for IFN-γ positive cell assay and the release profile of Th1/Th2 type cytokines (IFN-γ, IL-2, IL-10, and IL-4) showed that hydrogel/Ad-GPZ generated an overwhelmingly enhanced Th1 biased cellular immune response. In addition, this hydrogel displayed low toxicity to nasal tissue and epithelial cells even by frequently intranasal dosing of hydrogel. All these results strongly supported this hydrogel as a safe and effective delivery system for nasal immunization. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Differential TCR signals for T helper cell programming.
Morel, Penelope A
2018-05-02
Upon encounter with their cognate antigen naïve CD4 T cells become activated and are induced to differentiate into several possible T helper (Th) cell subsets. This differentiation depends on a number of factors including antigen presenting cells, cytokines and costimulatory molecules. The strength of the T cell receptor (TCR) signal, related to the affinity of TCR for antigen and antigen dose, has emerged as a dominant factor in determining Th cell fate. Recent studies have revealed that TCR signals of high or low strength do not simply induce quantitatively different signals in the T cells, but rather qualitatively distinct pathways can be induced based on TCR signal strength. This review examines the recent literature in this area and highlights important new developments in our understanding of Th cell differentiation and TCR signal strength. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Yasuda, Takuwa; Ura, Takehiro; Taniguchi, Masaru; Yoshida, Hisahiro
2016-01-01
Skin is protected by a tough but flexible multilayered barrier and is a front line for immune responses against invading particles. For many years now, skin has been a tissue where certain vaccines are injected for the prevention of infectious disease, however, the detailed mechanisms of the skin immune response are not yet well understood. Using thin and small injection needles, we carefully injected OVA into a restricted region of mouse skin, i.e., intradermal (ID), and examined the antibody response in comparison with subcutaneous (SC) injection or epicutaneous patch administration of OVA. Epicutaneous patches induced a high IgE response against OVA, but IgG production was low. High IgG production was induced by both ID and SC injection, moreover, ID injection induced higher IgG production without any adjutants. Furthermore, OVA-specific IgE production was diminished by ID injection. We found that ID injection could efficiently stimulate skin resident DCs, drive Th1-biased conditions and diminish IgE production. The ID injection response was regulated by Langerin+ dermal DCs, because OVA was taken up mainly by these cells and, after transiently deleting them, the IgE response was no longer diminished and IgG1 production was enhanced. We also tested whether ID injection might be an effective allergy treatment by attempting to inhibit ongoing IgE production in mice with experimentally induced high serum IgE levels. Multiple ID injections of OVA were shown to prevent elevation of serum OVA-specific IgE after repeated allergen challenge. In contrast, SC OVA injection could only transiently inhibit the OVA-specific IgE production. These findings indicated that ID injection results in higher induction of antigen-specific IgG, and thus may be useful for vaccine delivery with little or no adjuvant components. Moreover, the observed diminishment of IgE and induction of Th1-biased immune responses suggest that ID may be a useful injection route for allergy immunotherapy. PMID:27973543
Decline of maternal antibodies to small ruminant lentivirus in goat kids.
Czopowicz, Michał; Szaluś-Jordanow, Olga; Mickiewicz, Marcin; Moroz, Agata; Witkowski, Lucjan; Markowska-Daniel, Iwona; Reczyńska, Daria; Bagnicka, Emilia; Kaba, Jarosław
2018-06-06
We carried out this study to determine for how long small ruminant lentivirus (SRLV)-specific antibodies can be detected by three commercial ELISA kits in goat kids after suckling infected does in field conditions. Forty-one kids born to SRLV-seropositive asymptomatic does were blood sampled prior to colostrum consumption, and then weekly for 6 months in total. The sera were screened with three commercial ELISA kits: whole-virus ELISA (wELISA), recombinant transmembrane and capsid antigen ELISA (TM/CA-ELISA), and surface antigen ELISA (SU-ELISA). All but one kid were seronegative in all three ELISAs right after birth. At the age of 1 week all kids turned seropositive in wELISA, 39 kids (95%) in TM/CA-ELISA, and 35 kids (85%) in SU-ELISA. All seropositive kids turned seronegative in wELISA by the 15th week, and in SU-ELISA by the 19th week (median of 8 weeks in both ELISA), whereas in TM/CA-ELISA five kids (13% of 39 initially seropositive) were still seropositive at the age of 6 months (median of 11 weeks). Antibody levels at the age of 1 week proved significantly linked to the duration of maternal antibodies in all three ELISAs and could be employed to predict for how long maternal antibodies would remain detectable. © 2018 Japanese Society of Animal Science.
Gravisensitivity of various host plant -virus systems in simulated microgravity
NASA Astrophysics Data System (ADS)
Mishchenko, Lidiya; Taran, Oksana; Gordejchyk, Olga
In spite of considerable achievements in the study of gravity effects on plant development, some issues of gravitropism, like species-specificity and gravitation response remain unclear. The so-lution of such problems is connected with the aspects of life supply, in piloted space expeditions. The role of microgravity remains practically unstudied in the development of relations in the system host plant-virus, which are important for biotechnologies in crop production. It is ev-ident that the conditions of space flight can act as stressors, and the stress inducted by them favors the reactivation of latest herpes viruses in humans (satish et al., 2009) Viral infections of plants, which also can be in a latest state at certain stages of plant organism development, cause great damage to the growth and development of a host plant. Space flight conditions may cause both reactivation of latent viral infection in plants and its elimination, as it has been found by us for the system WSMW -wheat (Mishchenko et al., 2004). Our further research activities were concentrated on the identification of gravisensitivity in the system virus -potato plant to find out whether there was any species -related specificity of the reaction. In our research we used potato plants of Krymska Rosa, Zhuravushka, Agave, Belarosa, Kupalinka, and Zdubytok varieties. Simulated microgravity was ensured by clinostats KG-8 and Cycle -2. Gravisensitiv-ity has been studied the systems including PVX, PVM and PVY. Virus concentrations have been determined by ELISA using LOEWE reagents (placecountry-regionGermany). Virus iden-tification by morphological features were done by electron microscopy. For the system PVX -potato plant, we found the reduction in virus antigens content with prolonged clinostating. On the 18th day of cultivation, the plants showed a high level of X-virus antigen content on both stationary (control) and clinostated variants. On 36th and 47th day, depending plant variety, clinostated plants had lower X-virus antigen content, compared with negative control. In plants, cultivated without clinostating, PVX antigen content was 5-10 times greater than on negative control variants. Prolonged (over 43 days) clinostating, depending on potato plant genotype, may cause both simulation and impeding of the accumulation of Y-virus antigens in potato plants. Studying the interaction between the host plant and PVM, we found that prolonged clinorotation at first reduced the antigen content by 25-30% compared with stationary control. Further on after 44 days of experimentation, the antigen content increased with more intensive increase in non-clinostated plants. Thus, prolonged clinostating reduced the intensity of anti-gen accumulation but did not stop it completely. We admit that proves a low sensitivity of the system PVM -potato plant to simulated microgravity. The phenomena of PVX reproduction in simulated microgravity may find on employment in present-day biotechnologies.
Sokoll, Lori J; Zhang, Zhen; Chan, Daniel W; Reese, Adam C; Bivalacqua, Trinity J; Partin, Alan W; Walsh, Patrick C
2016-02-01
In this study we evaluate an ultrasensitive prostate specific antigen assay in patients with prostate cancer after radical prostatectomy to predict long-term biochemical recurrence-free survival. A total of 754 men who underwent radical prostatectomy and had an undetectable prostate specific antigen after surgery (less than 0.1 ng/ml) were studied. Prostate specific antigen was measured in banked serum specimens with an ultrasensitive assay (Hybritech® PSA, Beckman Coulter Access® 2) using a cutoff of 0.01 ng/ml. Prostate specific antigen was also measured in 44 men after cystoprostatectomy who had no pathological evidence of prostate cancer with the Hybritech assay and with the Quanterix AccuPSA™ assay. Of the 754 men 17% (131) experienced biochemical recurrence (median 4.0 years). Those men without biochemical recurrence (83%, 623) had a minimum of 5 years of followup (median 11). Prostate specific antigen was less than 0.01 ng/ml in 93.4% of men with no biochemical recurrence, whereas 30.5% of men with biochemical recurrence had a prostate specific antigen of 0.01 ng/ml or greater. On multivariate analysis postoperative prostate specific antigen at a 0.01 ng/ml cutoff, pathological stage and Gleason score, and surgical margins were significant independent predictors of biochemical recurrence risk. Kaplan-Meier estimates for mean biochemical recurrence-free survival were 15.2 years (95% CI 14.9-15.6) for prostate specific antigen less than 0.01 ng/ml and 10.0 years (95% CI 8.4-11.5) for prostate specific antigen 0.01 ng/ml or greater (p <0.0001). Biochemical recurrence-free rates 11 years after surgery were 86.1% (95% CI 83.2-89.0) for prostate specific antigen less than 0.01 ng/ml and 48.9% (95% CI 37.5-60.3) for prostate specific antigen 0.01 ng/ml or greater (p <0.0001). Prostate specific antigen concentrations in 44 men after cystoprostatectomy were all less than 0.03 ng/ml, with 95.4% less than 0.01 ng/ml. In men with a serum prostate specific antigen less than 0.1 ng/ml after radical prostatectomy a tenfold lower cutoff (0.01 ng/ml) stratified biochemical recurrence-free survival and was a significant independent predictor of biochemical recurrence, as were pathological features. Prostate specific antigen concentrations in men without pathological evidence of prostate cancer suggest that a higher prostate specific antigen concentration (0.03 ng/ml) in the ultrasensitive range may be needed to define the detection threshold. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Investigation of the immunosuppressive activity of Physalin H on T lymphocytes.
Yu, Youjun; Sun, Lijuan; Ma, Lei; Li, Jiyu; Hu, Lihong; Liu, Jianwen
2010-03-01
Physalis angulata is an annual herb widely used in folk medicine. It is mainly used for treating rheumatoid arthritis (RA). Following bioactivity-guided isolation, a representative immunosuppressive compound, Physalin H was been identified from this herb medicine. The purpose of this work was to assess the immunosuppressive activity of Physalin H on T cells and to explore its potential mode of action. The results showed that Physalin H in a dose-dependent manner significantly inhibited the proliferation of T cells induced by concanavalin A (ConA) and by the mixed lymphocyte culture reaction (MLR). This inhibitive activity was mainly due to interfering DNA replication in G1 stages. In vivo experiments showed that, administration of Physalin H dose-dependently suppressed CD4(+) T cell mediated delayed-type hypersensitivity (DTH) reactions, and suppressed antigen-specific T-cell response in ovalbumin (OVA) immunized mice. Further study indicated that Physalin H could modulate Th1/Th2 cytokine balance and induce the production of immune regulation target Heme oxygenase (HO)-1 in T-cells in vitro. In this study, we demonstrated the immunosuppressive effect of Physalin H on T cells both in vitro and in vivo, and the immunosuppressive activity might be attributed to the suppression of T cell activation and proliferation, the modulation of Th1/Th2 cytokine balance and the induction of HO-1 in T cells. Copyright 2009 Elsevier B.V. All rights reserved.
Khatri, Vishal; Chauhan, Nikhil; Vishnoi, Kanchan; von Gegerfelt, Agneta; Gittens, Courtney; Kalyanasundaram, Ramaswamy
2018-06-06
Lymphatic filariasis (LF) affects 120 million people around the world and another 856 million people are at risk of acquiring the infection. Mass Drug Administration (MDA) spearheaded by the World Health Organization is the only current strategy to control this infection. Recent reports suggest that despite several rounds of MDA, elimination has not been achieved and there is a need for more stringent control strategies for control of LF. An effective prophylactic vaccine combined with MDA has significant potential. Initial trials using a prophylactic trivalent recombinant Brugia malayi heat shock protein 12.6, abundant larval transcript -2 and tetraspanin large extra-cellular loop (rBmHAT) vaccine developed in our laboratory conferred only 35% protection in macaques. Therefore, the focus of the present study was to improve the current vaccine formulation to obtain better protection in non-human primates. We made two modifications to the current formulation: (i) the addition of another antigen, thioredoxin peroxidase-2 (TPX-2) to make it a tetravalent vaccine (rBmHAXT) and (ii) the inclusion of an adjuvant; AL019 (alum plus glucopyranosyl lipid adjuvant-stable emulsion) that is known to promote a balanced Th1/Th2 response. A double-blinded vaccination trial was performed with 40 macaques that were divided into three treatment groups and one control group (n = 10/group). Vaccinated animals received 4 immunisations at 1 month intervals with 150 µg/ml of rBmHAT plus alum, rBmHAT plus AL019 or rBmHAXT plus AL019. Control animals received AL019 only. All vaccinated macaques developed significant (P ≤ 0.003) titers of antigen-specific IgG antibodies (1:20,000) compared with the controls. One month after the last dose, all macaques were challenged s.c. with 130-180 B. malayi L3s. Our results showed that seven out of 10 (70%) of macaques given the improved rBmHAXT vaccine did not develop the infection compared with AL019 controls, of which seven out of 10 macaques developed the infection. Titers of antigen-specific IgG1 and IgG2 antibodies were significantly (P ≤ 0.01) higher in vaccinated animals and there was an increase in the percentage of IL-4 and IFN-γ secreting antigen-responding memory T cells. These studies demonstrated that the improved formulation (rBmHAXT plus AL019) is a promising vaccine candidate against human lymphatic filariasis. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Cai, Yeping; Zhou, Jiansheng; Webb, Dianne C
2009-01-01
Mouse models have provided a significant insight into the role of T-helper (Th) 2 cytokines such as IL-5 and IL-13 in regulating eosinophilia and other key features of asthma. However, the validity of these models can be compromised by inadvertent infection of experimental mouse colonies with pathogens such as oxyurid parasites (pinworms). While the benzimidazole derivative, fenbendazole (FBZ), is commonly used to treat such outbreaks, the effects of FBZ on mouse models of Th2 disease are largely unknown. In this investigation, we show that mice fed FBZ-supplemented food during the in utero and post-weaning period developed attenuated lung eosinophilia, antigen-specific IgG1 and Th2 cytokine responses in a model of asthma. Treatment of the mediastinal lymph node cells from allergic mice with FBZ in vitro attenuated cell proliferation, IL-5 and IL-13 production and expression of the early lymphocyte activation marker, CD69 on CD4(+) T cells and CD19(+) B cells. In addition, eosinophilia and Th2 responses remained attenuated after a 4-week withholding period in allergic mice treated preweaning with FBZ. Thus, FBZ modulates the amplitude of Th2 responses both in vivo and in vitro.
Abdul-Wahid, Aws; Faubert, Gaétan
2007-12-05
In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.
Mycobacterium tuberculosis impairs dendritic cell functions through the serine hydrolase Hip1.
Madan-Lala, Ranjna; Sia, Jonathan Kevin; King, Rebecca; Adekambi, Toidi; Monin, Leticia; Khader, Shabaana A; Pulendran, Bali; Rengarajan, Jyothi
2014-05-01
Mycobacterium tuberculosis is a highly successful human pathogen that primarily resides in host phagocytes, such as macrophages and dendritic cells (DCs), and interferes with their functions. Although multiple strategies used by M. tuberculosis to modulate macrophage responses have been discovered, interactions between M. tuberculosis and DCs are less well understood. DCs are the primary APCs of the immune system and play a central role in linking innate and adaptive immune responses to microbial pathogens. In this study, we show that M. tuberculosis impairs DC cytokine secretion, maturation, and Ag presentation through the cell envelope-associated serine hydrolase, Hip1. Compared to wild-type, a hip1 mutant strain of M. tuberculosis induced enhanced levels of the key Th1-inducing cytokine IL-12, as well as other proinflammatory cytokines (IL-23, IL-6, TNF-α, IL-1β, and IL-18) in DCs via MyD88- and TLR2/9-dependent pathways, indicating that Hip1 restricts optimal DC inflammatory responses. Infection with the hip1 mutant also induced higher levels of MHC class II and costimulatory molecules CD40 and CD86, indicating that M. tuberculosis impairs DC maturation through Hip1. Further, we show that M. tuberculosis promotes suboptimal Ag presentation, as DCs infected with the hip1 mutant showed increased capacity to present Ag to OT-II- and early secreted antigenic target 6-specific transgenic CD4 T cells and enhanced Th1 and Th17 polarization. Overall, these data show that M. tuberculosis impairs DC functions and modulates the nature of Ag-specific T cell responses, with important implications for vaccination strategies.
Chensue, Stephen W.; Lukacs, Nicholas W.; Yang, Tong-Yuan; Shang, Xiaozhou; Frait, Kirsten A.; Kunkel, Steven L.; Kung, Ted; Wiekowski, Maria T.; Hedrick, Joseph A.; Cook, Donald N.; Zingoni, Alessandra; Narula, Satwant K.; Zlotnik, Albert; Barrat, Franck J.; O'Garra, Anne; Napolitano, Monica; Lira, Sergio A.
2001-01-01
Chemokine receptors transduce signals important for the function and trafficking of leukocytes. Recently, it has been shown that CC chemokine receptor (CCR)8 is selectively expressed by Th2 subsets, but its functional relevance is unclear. To address the biological role of CCR8, we generated CCR8 deficient (−/−) mice. Here we report defective T helper type 2 (Th2) immune responses in vivo in CCR8−/− mice in models of Schistosoma mansoni soluble egg antigen (SEA)-induced granuloma formation as well as ovalbumin (OVA)- and cockroach antigen (CRA)-induced allergic airway inflammation. In these mice, the response to SEA, OVA, and CRA showed impaired Th2 cytokine production that was associated with aberrant type 2 inflammation displaying a 50 to 80% reduction in eosinophils. In contrast, a prototypical Th1 immune response, elicited by Mycobacteria bovis purified protein derivative (PPD) was unaffected by CCR8 deficiency. Mechanistic analyses indicated that Th2 cells developed normally and that the reduction in eosinophil recruitment was likely due to systemic reduction in interleukin 5. These results indicate an important role for CCR8 in Th2 functional responses in vivo. PMID:11238588
Yang, Nan; Patil, Sangita; Zhuge, Jian; Wen, Ming-Chun; Bolleddula, Jayaprakasam; Doddaga, Srinivasulu; Goldfarb, Joseph; Sampson, Hugh A.; Li, Xiu-Min
2012-01-01
Allergic asthma is associated with Th2-mediated inflammation. Several flavonoids were isolated from Glycyrrhiza uralensis, one of the herbs in the anti-asthma herbal medicine intervention, ASHMI. The aim of this investigation was to determine whether Glycyrrhiza uralensis flavonoids have inhibitory effects on memory Th2 responses in vitro, and antigen induced Th2 inflammation in vivo. The effects of three Glycyrrhiza uralensis flavonoids on effector memory Th2 cells, D10.G4.1 (D10 cells), were determined by measuring Th2 cytokine production. Isoliquiritigenin, 7, 4’-dihydroxyflavone (7, 4’-DHF) and liquiritigenin significantly suppressed IL-4 and IL-5 production in a dose dependent manner, 7, 4’-DHF being most potent. It was also evaluated for effects on D10 cell proliferation, GATA-3 expression and IL-4 mRNA expression, which were suppressed, with no loss of cell viability. Chronic treatment with 7, 4’-DHF in a murine model of allergic asthma not only significantly reduced eosinophilic pulmonary inflammation, serum IgE levels, IL-4 and IL-13 levels, but also increased IFN-γ production in lung cell cultures in response to antigen stimulation. PMID:23165939
2012-01-01
Background Most infections with human papillomavirus (HPV) are resolved without clinical intervention, but a minority evolves into chronic lesions of distinct grades, including cervical-uterine cancer. It is known that in most cases the immune system mediates elimination of HPV infection. However, the mechanism of immune evasion leading to HPV persistence and development of early cervical lesions is not fully understood. The aim of the present work was to evaluate the potential of peripheral blood leukocytes (PBL) from low-grade squamous intraepithelial lesions (LSIL) patients to be activated ex-vivo by vaccine antigens, the participation of cytotoxic lymphocytes and regulatory T cells, and to determine the secretion of Th1 and Th2 cytokines mediated by stimulation of T cell receptors. Results We found that PBL from LSIL patients showed a significantly lower proliferation rate to vaccine antigens as compared to that of healthy donors, even though there was not a difference in the presence of antibodies to those antigens in sera from both groups. We did not find differences in either the frequency of CD4 + CD25 + FoxP3+ in PBL, or the levels of IL-4, IL-5 and IL-10 in plasma or conditioned media from PBL incubated with TcR agonists in vitro, between the two groups. However, we detected a lower production of IL-2 and a higher proportion of CD8 + IFNγ + cells in PBL from LSIL patients as compared with PBL from normal donors. We also observed that PBL from patients infected by HPV-16 and −18 were not able to proliferate in the presence of soluble HPV antigens added to the culture; however, a high level of proliferation was attained when these antigens were presented by activated dendritic cells. Conclusions Our results suggest that the immunodeficiency reported in LSIL patients could be due to the inability of specific cytotoxic T lymphocytes that for some unknown reason are present but unable to mount a response when challenged with their antigens, probably related to an in situ IL-2 production deficiency. PMID:22642942
Wasihun, Araya Gebreyesus; Wlekidan, Letemichael Negash; Gebremariam, Senay Aregawi; Welderufael, Abadi Luel; Muthupandian, Saravanan; Haile, Tadesse Dejenie; Dejene, Tsehaye Asmelash
2015-06-01
To determine diagnostic value of the Widal test, treatment pattern of febrile patients and antimicrobial drug susceptibility pattern of blood isolates. Using cross sectional methods, blood samples were collected for culture and Widal test from 502 febrile outpatients attending Mekelle hospital and Mekelle health center with similar symptoms to typhoid. Sensitivity, specificity for anti-TH and anti-TO titers using culture confirmed typhoid fever cases, and Kappa agreement between Titer and slide Widal tests were calculated. Treatment pattern of patients and antimicrobial susceptibility pattern of the blood isolates was assessed. From the 502 febrile patients, 8(1.6%) of them had culture-proven typhoid fever. However, patients who have results indicative of recent infection by O and H antigens of the Widal slide agglutination test were 343 (68.5%), with specificity and sensitivity of 33% and 100%, respectively. Over prescription of antibiotics was seen by Widal slide test for Ciprofloxacin 268 (76.1%), Amoxicillin- Clavulanic acid 9(2.6%), Amoxicillin 8(2.4%) and Chloranphenicol 8(2.4%). Tube titer positivity was seen in 23(5.3%) patients with 75% sensitivity and 95.8% specificity. Widal slide and Tube titer tests showed poor agreement for both antigens (kappa=0.02 for O) and (Kappa=0.09 for H). A single anti-TH titer of ≥ 1:160 and anti-TO titer ≥ 1:80 higher in our study showed an indication for typhoid fever infection. Drug resistance pattern of blood isolates ranges from 0-89.7% for gram positive and 0-100% for Gram negative, with an overall multi-drug resistance rate of 61.7%. Patients were wrongly diagnosed and treated for typhoid fever by Widal test. The tube titration method was relatively good but still had poor sensitivity. Blood isolates showed multi drug resistance, which may be due to the indiscriminate prescription as seen in this study. Based on our results, the slide Widal test is not helpful in the diagnosis of typhoid, hence other tests with rapid, feasible, better sensitivity and specificity are urgently needed in Ethiopia. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Saini, Vinay; Verma, Atul Kumar; Kushwaha, Vikas; Joseph, Sujith Kurian; Murthy, P Kalpna; Kohli, Dharmveer
2014-05-01
In our recent studies, Brugia malayi molecules have shown interesting immune-stimulating and immune-suppressive properties. Among these, F6 a pro-inflammatory (54-68 kDa) SDS-PAGE resolved fraction of the parasite when administered with Freund's complete/incomplete adjuvant in animals, elicited both Th1 and Th2 type immune responses and protects the host from filarial parasite. The present study was aimed at developing biodegradable microspheres for filarial antigenic protein molecules and to investigate the immunoadjuvanticity of microspheres (Ms)-loaded F6 molecules. Poly-lactide microspheres (DL-PLA-Ms) were prepared using double emulsification and solvent evaporation method; and studied their size, shape, antigen adsorption efficiency, in-process stability, and antigen release profiles. F6 and B. malayi adult worm (BmA: ∼ 17 to 180 kDa) protein molecules adsorbed on the Ms were administered in a single shot into Swiss mice, subcutaneously, and investigated their immunoadjuvant effect and compared with one/two doses-schedule of plain F6/BmA. Immunization with F6/BmA-loaded DL-PLA-Ms resulted in upregulation of cellular proliferation, IFN- γ, TNF-α and NO release from host's cells stimulated with F6/BmA or LPS/Con A, IgG, IgG1 and IgG2a levels. These responses were well comparable with the responses produced by two doses of plain BmA/F6. In conclusion, a single dose of DL-PLA-Ms-F6 induced predominantly Th1 immune responses and well comparable with two doses of plain F6. This is the first ever report on potential of DL-PLA-Ms as adjuvant for filarial immunogen.
Campos-Neto, A; Webb, J R; Greeson, K; Coler, R N; Skeiky, Y A W; Reed, S G
2002-06-01
We have recently shown that a cocktail containing two leishmanial recombinant antigens (LmSTI1 and TSA) and interleukin-12 (IL-12) as an adjuvant induces solid protection in both a murine and a nonhuman primate model of cutaneous leishmaniasis. However, because IL-12 is difficult to prepare, is expensive, and does not have the stability required for a vaccine product, we have investigated the possibility of using DNA as an alternative means of inducing protective immunity. Here, we present evidence that the antigens TSA and LmSTI1 delivered in a plasmid DNA format either as single genes or in a tandem digene construct induce equally solid protection against Leishmania major infection in susceptible BALB/c mice. Immunization of mice with either TSA DNA or LmSTI1 DNA induced specific CD4(+)-T-cell responses of the Th1 phenotype without a requirement for specific adjuvant. CD8 responses, as measured by cytotoxic-T-lymphocyte activity, were generated after immunization with TSA DNA but not LmSTI1 DNA. Interestingly, vaccination of mice with TSA DNA consistently induced protection to a much greater extent than LmSTI1 DNA, thus supporting the notion that CD8 responses might be an important accessory arm of the immune response for acquired resistance against leishmaniasis. Moreover, the protection induced by DNA immunization was specific for infection with Leishmania, i.e., the immunization had no effect on the course of infection of the mice challenged with an unrelated intracellular pathogen such as Mycobacterium tuberculosis. Conversely, immunization of BALB/c mice with a plasmid DNA that is protective against challenge with M. tuberculosis had no effect on the course of infection of these mice with L. major. Together, these results indicate that the protection observed with the leishmanial DNA is mediated by acquired specific immune response rather than by the activation of nonspecific innate immune mechanisms. In addition, a plasmid DNA containing a fusion construct of the two genes was also tested. Similarly to the plasmids encoding individual proteins, the fusion construct induced both specific immune responses to the individual antigens and protection against challenge with L. major. These results confirm previous observations about the possibility of DNA immunization against leishmaniasis and lend support to the idea of using a single polygenic plasmid DNA construct to achieve polyspecific immune responses to several distinct parasite antigens.
Lorenzen, Emma; Follmann, Frank; Bøje, Sarah; Erneholm, Karin; Olsen, Anja Weinreich; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter
2015-01-01
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general. PMID:26734002
Maestroni, Georges J M; Mazzola, Paola
2003-11-01
We showed that norepinephrine (NE) hampers IL-12 and stimulates IL-10 production via adrenoceptors (ARs) in bone marrow-derived dendritic cells (BMDC) influencing their Th priming ability. Others have shown that Langerhans cells (LC) express mRNA for beta1-, beta2- and alpha1(A)-(ARs) and that catecholamines may inhibit the antigen-presenting capability via beta2-ARs. Here, we show that also BMDC express mRNA for beta1-, beta2-, alpha2(A)- and alpha2(C)-ARs. Inhibition of IL-12 is mediated by both beta2- and alpha2(A)-ARs, while stimulation of IL-10 by beta2-ARs only. In addition, LC migration, the contact hypersensitivity response (CHS) and production of IFN-gamma and IL-2 in draining lymph node cells is increased in mice treated topically with the beta2-AR antagonist ICI 118,551 during FITC sensitization. Activation of beta2-ARs in BMDC before adoptive transfer could reduce both migration and CHS response to FITC. Finally, preincubation of BMDC with LPS in presence of the specific beta2-AR agonist salbutamol impaired their chemotactic response to CCL19 and CCL21 and this effect was neutralized by anti-IL-10 mAb. We suggest that the physiological activation of beta2-ARs in DC (LC) results in stimulation of IL-10 which in turn restrains DC (LC) migration influencing antigen presentation and the consequent CHS response.
Szulc-Dąbrowska, Lidia; Gieryńska, Małgorzata; Boratyńska-Jasińska, Anna; Martyniszyn, Lech; Winnicka, Anna; Niemiałtowski, Marek G
2013-08-01
During mousepox in resistant (C57BL/6) or susceptible (BALB/c) strains of mice, stimulation of Th1 or Th2 cytokine immune response, respectively, is observed. Because mechanisms of different polarization of T cells remain elusive, in this study, we quantitatively assessed the phenotype of antigen-presenting cells (APCs) involved in ectromelia virus (ECTV) antigen presentation and cluster formation with effector cells in secondary lymphoid organs of BALB/c and C57BL/6 mice. We showed that both strains of mice display similar dynamics and kinetics of viral antigen presentation by CD11c(+) , CD11b(+) , and CD19(+) cells. CD11c(+) and CD11b(+) cells highly participated in viral antigen presentation during all stages of mousepox, whereas CD19(+) cells presented viral peptides later in infection. The main population of dendritic cells (DCs) engaged in ECTV antigen presentation and cell junction formation with effector cells was a population of myeloid CD11b(+) DCs (mDCs). We suggest that, on the one hand, ECTV may differentially affect the functions of APCs depending on the strain of mice. On the other hand, we suggest that some types of APCs, such as mDCs or other DCs subsets, have different abilities to direct the shape of immune response depending on the host resistance to mousepox. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Tiriveedhi, V; Angaswamy, N; Brand, D; Weber, J; Gelman, A G; Hachem, R; Trulock, E P; Meyers, B; Patterson, G; Mohanakumar, T
2012-01-01
Immune responses to human leucocyte antigen (HLA) and self-antigen collagen V (Col-V) have been proposed in the pathogenesis of chronic rejection (bronchiolitis obliterans syndrome, BOS) following human lung transplantation (LTx). In this study, we defined the role for the shift in immunodominant epitopes of Col-V in inducing T helper phenotype switch leading to immunity to Col-V and BOS. Sera and lavage from BOS(+) LTx recipients with antibodies to Col-V were analysed. Two years prior to BOS, patients developed antibodies to both Col-V,α1(V) and α2(V) chains. However, at clinical diagnosis of BOS, antibodies became restricted to α1(V). Further, lung biopsy from BOS(+) patients bound to antibodies to α1(V), indicating that these epitopes are exposed. Fourteen Col-V peptides [pep1-14, pep1-4 specific to α1(V), pep5-8 to α1,2(V) and pep9-14 to α2(V)] which bind to HLA-DR4 and -DR7, demonstrated that prior to BOS, pep 6, 7, 9, 11 and 14 were immunodominant and induced interleukin (IL)-10. However, at BOS, the response switched to pep1, 4 and 5 and induced interferon (IFN)-γ and IL-17 responses, but not IL-10. The T helper (Th) phenotype switch is accompanied by decreased frequency of regulatory T cells (T(regs) ) in the lavage. LTx recipients with antibodies to α1(V) also demonstrated increased matrix metalloproteinase (MMP) activation with decreased MMP inhibitor, tissue inhibitor of metalloproteinase (TIMP), suggesting that MMP activation may play a role in the exposure of new Col-V antigenic epitopes. We conclude that a shift in immunodominance of self-antigenic determinants of Col-V results in induction of IFN-γ and IL-17 with loss of tolerance leading to autoimmunity to Col-V, which leads to chronic lung allograft rejection. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R
2016-02-01
An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. © 2015 The Foundation for the Scandinavian Journal of Immunology.
Del L Yácono, María; Farran, Inmaculada; Becher, Melina L; Sander, Valeria; Sánchez, Vanesa R; Martín, Valentina; Veramendi, Jon; Clemente, Marina
2012-12-01
The parasitic protozoan Toxoplasma gondii, the causal agent of toxoplasmosis, can infect most mammals and birds. In human medicine, T. gondii can cause complications in pregnant women and immunodeficient individuals, while in veterinary medicine, T. gondii infection has economic importance due to abortion and neonatal loss in livestock. Thus, the development of an effective anti-Toxoplasma vaccine would be of great value. In this study, we analysed the expression of T. gondii GRA4 antigen by chloroplast transformation (chlGRA4) in tobacco plants and evaluated the humoral and cellular responses and the grade of protection after oral administration of chlGRA4 in a murine model. The Western blot analysis revealed a specific 34-kDa band mainly present in the insoluble fractions. The chlGRA4 accumulation levels were approximately 6 μg/g of fresh weight (equivalent to 0.2% of total protein). Oral immunization with chlGRA4 resulted in a decrease of 59% in the brain cyst load of mice compared to control mice. ChlGRA4 immunization elicited both a mucosal immune response characterized by the production of specific IgA, and IFN-γ, IL-4 and IL-10 secretion by mesenteric lymph node cells, and a systemic response in terms of GRA4-specific serum antibodies and secretion of IFN-γ, IL-4 and IL-10 by splenocytes. Our results indicate that oral administration of chlGRA4 promotes the elicitation of both mucosal and systemic balanced Th1/Th2 responses that control Toxoplasma infection, reducing parasite loads. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Sandmaier, B M; Oparin, D V; Holmberg, L A; Reddish, M A; MacLean, G D; Longenecker, B M
1999-01-01
Seven ovarian and 33 breast high-risk stage II/III and stage IV cancer patients received high-dose chemotherapy followed by stem cell rescue. Thirty to 151 days after stem cell transplantation, the patients received their first immunotherapy treatment with Theratope STn-KLH cancer vaccine. Most patients developed increasing IgG anti-STn titers to a sustained peak after the fourth or fifth immunizations. Only one patient had elevated CA27.29 (MUC1 mucin) serum levels at trial entry. Five of the seven patients with preimmunotherapy elevated serum CA125 levels demonstrated decreasing CA125 levels during immunotherapy, consistent with an antitumor response. Evidence of STn antigen-specific T-cell proliferation was obtained from 17 of the 27 evaluable patients who received at least three immunotherapy treatments. Eleven of the 26 patients tested had evidence of an anti-STn TH1 antigen-specific T-cell response as determined by interferon-gamma, but not interleukin (IL)-4, production. After immunization, lytic activity of peripheral blood lymphocytes (PBLs) tested against a lymphokine activated killer (LAK)-sensitive cell line, a natural killer (NK)-sensitive cell line, and an STn-expressing cancer cell line (OVCAR) increased significantly. In vitro IL-2 treatment of the PBLs after vaccination greatly enhanced killing of the STn+ cancer cell line. Evidence of the development of OVCAR specific killing activity, over and above that seen due to LAK or NK killing, is presented. These studies provide the strongest evidence in humans of the development of an antitumor T-cell response after immunization with a cancer-associated carbohydrate antigen.
CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice.
Bernard-Valnet, Raphaël; Yshii, Lidia; Quériault, Clémence; Nguyen, Xuan-Hung; Arthaud, Sébastien; Rodrigues, Magda; Canivet, Astrid; Morel, Anne-Laure; Matthys, Arthur; Bauer, Jan; Pignolet, Béatrice; Dauvilliers, Yves; Peyron, Christelle; Liblau, Roland S
2016-09-27
Narcolepsy with cataplexy is a rare and severe sleep disorder caused by the destruction of orexinergic neurons in the lateral hypothalamus. The genetic and environmental factors associated with narcolepsy, together with serologic data, collectively point to an autoimmune origin. The current animal models of narcolepsy, based on either disruption of the orexinergic neurotransmission or neurons, do not allow study of the potential autoimmune etiology. Here, we sought to generate a mouse model that allows deciphering of the immune mechanisms leading to orexin(+) neuron loss and narcolepsy development. We generated mice expressing the hemagglutinin (HA) as a "neo-self-antigen" specifically in hypothalamic orexin(+) neurons (called Orex-HA), which were transferred with effector neo-self-antigen-specific T cells to assess whether an autoimmune process could be at play in narcolepsy. Given the tight association of narcolepsy with the human leukocyte antigen (HLA) HLA-DQB1*06:02 allele, we first tested the pathogenic contribution of CD4 Th1 cells. Although these T cells readily infiltrated the hypothalamus and triggered local inflammation, they did not elicit the loss of orexin(+) neurons or clinical manifestations of narcolepsy. In contrast, the transfer of cytotoxic CD8 T cells (CTLs) led to both T-cell infiltration and specific destruction of orexin(+) neurons. This phenotype was further aggravated upon repeated injections of CTLs. In situ, CTLs interacted directly with MHC class I-expressing orexin(+) neurons, resulting in cytolytic granule polarization toward neurons. Finally, drastic neuronal loss caused manifestations mimicking human narcolepsy, such as cataplexy and sleep attacks. This work demonstrates the potential role of CTLs as final effectors of the immunopathological process in narcolepsy.
Phase I dendritic cell p53 peptide vaccine for head and neck cancer.
Schuler, Patrick J; Harasymczuk, Malgorzata; Visus, Carmen; Deleo, Albert; Trivedi, Sumita; Lei, Yu; Argiris, Athanassios; Gooding, William; Butterfield, Lisa H; Whiteside, Theresa L; Ferris, Robert L
2014-05-01
p53 accumulation in head and neck squamous cell carcinoma (HNSCC) cells creates a targetable tumor antigen. Adjuvant dendritic cell (DC)-based vaccination against p53 was tested in a phase I clinical trial. Monocyte-derived DC from 16 patients were loaded with two modified HLA-class I p53 peptides (Arm 1), additional Th tetanus toxoid peptide (Arm 2), or additional Th wild-type (wt) p53-specific peptide (Arm 3). Vaccine DCs (vDC) were delivered to inguinal lymph nodes at three time points. vDC phenotype, circulating p53-specific T cells, and regulatory T cells (Treg) were serially monitored by flow cytometry and cytokine production by Luminex. vDC properties were compared with those of DC1 generated with an alternative maturation regimen. No grade II-IV adverse events were observed. Two-year disease-free survival of 88% was favorable. p53-specific T-cell frequencies were increased postvaccination in 11 of 16 patients (69%), with IFN-γ secretion detected in four of 16 patients. Treg frequencies were consistently decreased (P = 0.006) relative to prevaccination values. The phenotype and function of DC1 were improved relative to vDC. Adjuvant p53-specific vaccination of patients with HNSCC was safe and associated with promising clinical outcome, decreased Treg levels, and modest vaccine-specific immunity. HNSCC patients' DC required stronger maturation stimuli to reverse immune suppression and improve vaccine efficacy. ©2014 AACR.
Annunziato, F; Cosmi, L; Manetti, R; Brugnolo, F; Parronchi, P; Maggi, E; Nagata, K; Romagnani, S
2001-11-01
The chemoattractant receptor homologous molecule expressed on T(H)2 cells (CRTH2) is a receptor for prostaglandin D(2), which among human T cells is selectively expressed by T(H)2 and type 2 cytotoxic effectors. Our purpose was to assess whether the cytokine production profile of T(H)2 effectors could be reversed by exploiting their selective expression of CRTH2. CRTH2(+) T cells were purified from the blood of allergic subjects, stimulated with the specific allergen in the absence or presence of IL-12, and assessed by flow cytometry at the single-cell level for their ability to produce IL-4 and/or IFN-gamma after antigen or polyclonal stimulation. Both IL-12 and the PS-DSP30 oligodeoxynucleotide enabled CRTH2(+) allergen-stimulated T(H)2 cells to produce IFN-gamma. This change in the profile of cytokine production by T(H)2 cells from allergic subjects was related to the upregulation of IL-12 receptor beta2 chain and was associated with the loss of CRTH2. These data demonstrate that the cytokine production pattern of fully differentiated T(H)2 effectors can be changed to a less polarized profile, thus providing the physiologic basis for new immunotherapeutic strategies in allergic disorders.
Beauvais, Anne; Beau, Remi; Candoni, Anna; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Zanetti, Eleonora; Quadrelli, Chiara; Codeluppi, Mauro; Guaraldi, Giovanni; Pagano, Livio; Caira, Morena; Giovane, Cinzia Del; Maccaferri, Monica; Stefani, Alessandro; Morandi, Uliano; Tazzioli, Giovanni; Girardis, Massimo; Delia, Mario; Specchia, Giorgina; Longo, Giuseppe; Marasca, Roberto; Narni, Franco; Merli, Francesco; Imovilli, Annalisa; Apolone, Giovanni; Carvalho, Agostinho; Comoli, Patrizia; Romani, Luigina; Latgè, Jean Paul; Luppi, Mario
2013-01-01
Several studies in mouse model of invasive aspergillosis (IA) and in healthy donors have shown that different Aspergillus antigens may stimulate different adaptive immune responses. However, the occurrence of Aspergillus-specific T cells have not yet been reported in patients with the disease. In patients with IA, we have investigated during the infection: a) whether and how specific T-cell responses to different Aspergillus antigens occur and develop; b) which antigens elicit the highest frequencies of protective immune responses and, c) whether such protective T cells could be expanded ex-vivo. Forty hematologic patients have been studied, including 22 patients with IA and 18 controls. Specific T cells producing IL-10, IFN-γ, IL-4 and IL-17A have been characterized through enzyme linked immunospot and cytokine secretion assays on 88 peripheral blood (PB) samples, by using the following recombinant antigens: GEL1p, CRF1p, PEP1p, SOD1p, α1–3glucan, β1–3glucan, galactomannan. Specific T cells were expanded through short term culture. Aspergillus-specific T cells producing non-protective interleukin-10 (IL-10) and protective interferon-gamma (IFN-γ) have been detected to all the antigens only in IA patients. Lower numbers of specific T cells producing IL-4 and IL-17A have also been shown. Protective T cells targeted predominantly Aspergillus cell wall antigens, tended to increase during the IA course and to be associated with a better clinical outcome. Aspergillus-specific T cells could be successfully generated from the PB of 8 out of 8 patients with IA and included cytotoxic subsets able to lyse Aspergillus hyphae. Aspergillus specific T-cell responses contribute to the clearance of the pathogen in immunosuppressed patients with IA and Aspergillus cell wall antigens are those mainly targeted by protective immune responses. Cytotoxic specific T cells can be expanded from immunosuppressed patients even during the infection by using the above mentioned antigens. These findings may be exploited for immunotherapeutic purposes in patients with IA. PMID:24023936
Maeda, Naoyoshi; Yamada, Chisato; Takahashi, Ami; Kuroki, Kimiko; Maenaka, Katsumi
2017-09-01
Human leukocyte antigen (HLA)-G is an immune checkpoint molecule that plays critical roles in immune response and in triggering inhibitory signaling to immune cells such as T cells, natural killer cells, and antigen-presenting cells. Thus, the application of HLA-G can be considered for treating immune response-related inflammatory disorders. We have previously reported that treatment with HLA-G1 and HLA-G2 ameliorates the joint swelling associated with collagen-induced arthritis of DBA/1 mice, an animal model for rheumatoid arthritis. In this study, we further investigated the effects of HLA-G1 on atopic dermatitis (AD), the most common inflammatory skin disorder. AD-like lesions were induced with the extract of the house dust mite Dermatophagoides farinae in NC/Nga mice. Continuous administration of HLA-G1 ameliorated the AD-like skin lesions in the mice. Furthermore, production of immunoglobulin E, interleukin (IL)-13, and IL-17A was significantly reduced in HLA-G1-treated mice, suggesting a Th2/Th17-mediated immune-inhibitory function of HLA-G1 in vivo. Our studies shed light on novel therapeutic strategies with recombinant HLA-G proteins for immune reaction-mediated chronic inflammatory disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Golshani, Maryam; Rafati, Sima; Dashti, Amir; Gholami, Elham; Siadat, Seyed Davar; Oloomi, Mana; Jafari, Anis; Bouzari, Saeid
2015-06-01
Brucellosis is the most common bacterial zoonotic disease worldwide and no vaccine is available for the prevention of human brucellosis. In humans, brucellosis is mostly caused by Brucella melitensis and Brucella abortus. The Outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens. In the present study, we evaluated the humoral and cellular immune responses induced by a fusion protein designed based on the Truncated form of Omp31 (TOmp31) and L7-L12 antigens. Vaccination of BALB/c mice with the recombinant fusion protein (rL7/L12-TOmp31) provided the significant protection level against B. melitensis and B. abortus challenge. Moreover, rL7/L12-TOmp31 elicited a strong specific IgG response (higher IgG2a titers) and significant IFN-γ/IL2 production and T-cell proliferation was also observed. The T helper1 (Th1) oriented response persisted for 12 weeks after the first immunization. The rL7/L12-TOmp31 could be a new potential antigen candidate for the development of a subunit vaccine against B. melitensis and B. abortus. Copyright © 2015 Elsevier Ltd. All rights reserved.
The active contribution of Toll-like receptors to allergic airway inflammation.
Chen, Keqiang; Xiang, Yi; Yao, Xiaohong; Liu, Ying; Gong, Wanghua; Yoshimura, Teizo; Wang, Ji Ming
2011-10-01
Epithelia lining the respiratory tract represent a major portal of entry for microorganisms and allergens and are equipped with innate and adaptive immune signaling receptors for host protection. These include Toll-like receptors (TLRs) that recognize microbial components and evoke diverse responses in cells of the respiratory system. TLR stimulation by microorganism-derived molecules activates antigen presenting cells, control T helper (Th) 1, Th2, and Th17 immune cell differentiation, cytokine production by mast cells, and activation of eosinophils. It is clear that TLR are involved in the pathophysiology of allergic airway diseases such as asthma. Dendritic cells (DCs), a kind of antigen presenting cells, which play a key role in the induction of allergic airway inflammation, are privileged targets for pathogen associated molecular patterns (PAMPs). During the allergic responses, engagement of TLRs on DCs determines the Th2 polarization of the T cells. TLR signaling in mast cells increases the release of IL-5, and TLR activation of airway epithelial cells forces the generation of proallergic Th2 type of cytokines. Although these responses aim to protect the host, they may also result in inflammatory tissue damage in the airway. Under certain conditions, stimulation of TLRs, in particular, TLR9, may reduce Th2-dependent allergic inflammation by induction of Th1 responses. Therefore, understanding the complex regulatory roles of TLRs in the pathogenesis of allergic airway inflammation should facilitate the development of preventive and therapeutic measures for asthmatic patients. Copyright © 2011 Elsevier B.V. All rights reserved.
Seo, Makoto; Yamagiwa, Takeo; Kobayashi, Ryo; Ikeda, Koji; Satoh, Masahiko; Inagaki, Naoki; Nagai, Hiroichi; Nagase, Hisamitsu
2008-01-01
Previously, we observed that tetrachloroethylene (perchloroethylene, PCE) increased histamine release and inflammatory mediator production from antigen-stimulated mast cells. In this study, we examined the enhancing effect of low concentrations of PCE in drinking water on antigen-stimulated allergic responses. After exposure of Wistar rats to PCE in drinking water for 2 or 4 weeks, we performed a passive cutaneous anaphylaxis (PCA) reaction. PCE exposure for 4 weeks enhanced PCA reaction in a dose-dependent manner. In pathological studies, PCE exposure for 2 weeks exacerbated inflammation characterized by infiltration of lymphocytes and accumulation of mast cells around the vessel. Non-purified mast cells (NPMCs) from rats treated with 1mg/L PCE in drinking water for 2 weeks increased antigen-stimulated histamine release. Furthermore, the leukocytes of rats treated with PCE in drinking water for 4 weeks showed increased interleukin (IL)-4 expression. The mechanism of enhancing the PCA reaction is assumed to be that PCE increases IL-4 production and PCE causes T helper (Th) 1/Th2-type helper T-cell imbalance and increases histamine release from excessively accumulated mast cells. The results suggest that the intake of PCE in drinking water, even at a low concentration, leads to the initiation and acceleration of allergic diseases.
Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Rui; Ekiert, Damian C.; Krause, Jens C.
The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for themore » age-related immunity to the current influenza pandemic.« less
In situ induction of dendritic cell–based T cell tolerance in humanized mice and nonhuman primates
Jung, Kyeong Cheon; Jeon, Yoon Kyung; Ban, Young Larn; Min, Hye Sook; Kim, Eun Ji; Kim, Ju Hyun; Kang, Byung Hyun; Bae, Youngmee; Yoon, Il-Hee; Kim, Yong-Hee; Lee, Jae-Il; Kim, Jung-Sik; Shin, Jun-Seop; Yang, Jaeseok; Kim, Sung Joo; Rostlund, Emily; Muller, William A.
2011-01-01
Induction of antigen-specific T cell tolerance would aid treatment of diverse immunological disorders and help prevent allograft rejection and graft versus host disease. In this study, we establish a method of inducing antigen-specific T cell tolerance in situ in diabetic humanized mice and Rhesus monkeys receiving porcine islet xenografts. Antigen-specific T cell tolerance is induced by administration of an antibody ligating a particular epitope on ICAM-1 (intercellular adhesion molecule 1). Antibody-mediated ligation of ICAM-1 on dendritic cells (DCs) led to the arrest of DCs in a semimature stage in vitro and in vivo. Ablation of DCs from mice completely abrogated anti–ICAM-1–induced antigen-specific T cell tolerance. T cell responses to unrelated antigens remained unaffected. In situ induction of DC-mediated T cell tolerance using this method may represent a potent therapeutic tool for preventing graft rejection. PMID:22025302
Gupta, Kanupriya; Ogendi, Brian M. O.; Bakshi, Rakesh K.; Kapil, Richa; Press, Christen G.; Sabbaj, Steffanie; Lee, Jeannette Y.
2017-01-01
ABSTRACT Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and can cause significant reproductive morbidity in women. There is insufficient knowledge of C. trachomatis-specific immune responses in humans, which could be important in guiding vaccine development efforts. In contrast, murine models have clearly demonstrated the essential role of T helper type 1 (Th1) cells, especially interferon gamma (IFN-γ)-producing CD4+ T cells, in protective immunity to chlamydia. To determine the frequency and magnitude of Th1 cytokine responses elicited to C. trachomatis infection in humans, we stimulated peripheral blood mononuclear cells from 90 chlamydia-infected women with C. trachomatis elementary bodies, Pgp3, and major outer membrane protein and measured IFN-γ-, tumor necrosis factor alpha (TNF-α)-, and interleukin-2 (IL-2)-producing CD4+ and CD8+ T-cell responses using intracellular cytokine staining. The majority of chlamydia-infected women elicited CD4+ TNF-α responses, with frequency and magnitude varying significantly depending on the C. trachomatis antigen used. CD4+ IFN-γ and IL-2 responses occurred infrequently, as did production of any of the three cytokines by CD8+ T cells. About one-third of TNF-α-producing CD4+ T cells coproduced IFN-γ or IL-2. In summary, the predominant Th1 cytokine response elicited to C. trachomatis infection in women was a CD4+ TNF-α response, not CD4+ IFN-γ, and a subset of the CD4+ TNF-α-positive cells produced a second Th1 cytokine. PMID:28100498
Schwenk, Robert; Nikki, Jennifer; Rein, Lisa; Spaccapelo, Roberta; Crisanti, Andrea; Wightman, Paul D.; Ockenhouse, Christian F.; Dutta, Sheetij
2014-01-01
The availability of a highly purified and well characterized circumsporozoite protein (CSP) is essential to improve upon the partial success of recombinant CSP-based malaria vaccine candidates. Soluble, near full-length, Plasmodium falciparum CSP vaccine antigen (CS/D) was produced in E. coli under bio-production conditions that comply with current Good Manufacturing Practices (cGMP). A mouse immunogenicity study was conducted using a stable oil-in-water emulsion (SE) of CS/D in combination with the Toll-Like Receptor 4 (TLR4) agonist Glucopyranosyl Lipid A (GLA/SE), or one of two TLR7/8 agonists: R848 (un-conjugated) or 3M-051 (covalently conjugated). Compared to Alum and SE, GLA/SE induced higher CS/D specific antibody response in Balb/c mice. Subclass analysis showed higher IgG2:IgG1 ratio of GLA/SE induced antibodies as compared to Alum and SE. TLR synergy was not observed when soluble R848 was mixed with GLA/SE. Antibody response of 3M051 formulations in Balb/c was similar to GLA/SE, except for the higher IgG2:IgG1 ratio and a trend towards higher T cell responses in 3M051 containing groups. However, no synergistic enhancement of antibody and T cell response was evident when 3M051 conjugate was mixed with GLA/SE. In C57Bl/6 mice, CS/D adjuvanted with 3M051/SE or GLA/SE induced higher CSP repeat specific titers compared to SE. While, 3M051 induced antibodies had high IgG2c:IgG1 ratio, GLA/SE promoted high levels of both IgG1 and IgG2c. GLA/SE also induced more potent T-cell responses compared to SE in two independent C57/BL6 vaccination studies, suggesting a balanced and productive TH1/TH2 response. GLA and 3M-051 similarly enhanced the protective efficacy of CS/D against challenge with a transgenic P. berghei parasite and most importantly, high levels of cytophilic IgG2 antibodies were associated with protection in this model. Our data indicated that the cGMP-grade, soluble CS/D antigen combined with the TLR4-containing adjuvant GLA/SE warrants further evaluation for protective responses in humans. PMID:25343487
Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.
Richards, Carl D
2017-02-01
Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.
Spiegel, Holger; Boes, Alexander; Kastilan, Robin; Kapelski, Stephanie; Edgue, Güven; Beiss, Veronique; Chubodova, Ivana; Scheuermayer, Matthias; Pradel, Gabriele; Schillberg, Stefan; Reimann, Andreas; Fischer, Rainer
2015-10-01
Multicomponent vaccines targeting different stages of Plasmodium falciparum represent a promising, holistic concept towards better malaria vaccines. Additionally, an effective vaccine candidate should demonstrate cross-strain specificity because many antigens are polymorphic, which can reduce vaccine efficacy. A cocktail of recombinant fusion proteins (VAMAX-Mix) featuring three diversity-covering variants of the blood-stage antigen PfAMA1, each combined with the conserved sexual-stage antigen Pfs25 and one of the pre-erythrocytic-stage antigens PfCSP_TSR or PfCelTOS, or the additional blood-stage antigen PfMSP1_19, was produced in Pichia pastoris and used to immunize rabbits. The immune sera and purified IgG were used to perform various assays determining antigen specific titers and in vitro efficacy against different parasite stages and strains. In functional in vitro assays we observed robust inhibition of blood-stage (up to 90%), and sexual-stage parasites (up to 100%) and biased inhibition of pre-erythrocytic parasites (0-40%). Cross-strain blood-stage efficacy was observed in erythrocyte invasion assays using four different P. falciparum strains. The quantification of antigen-specific IgGs allowed the determination of specific IC50 values. The significant difference in antigen-specific IC50 requirements, the direct correlation between antigen-specific IgG and the relative quantitative representation of antigens within the cocktail, provide valuable implementations for future multi-stage, multi-component vaccine designs. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Skyllouriotis, P; Skyllouriotis-Lazarou, M; Natter, S; Steiner, R; Spitzauer, S; Kapiotis, S; Valent, P; Hirschl, A M; Guber, S E; Laufer, G; Wollenek, G; Wolner, E; Wimmer, M; Valenta, R
1999-01-01
Studies performed in mice together with the demonstration of increased levels of heart-specific autoantibodies, cytokines and cytokine receptors in sera from cardiomyopathy (CMP) patients argued for a pathogenic role of autoimmune mechanisms in CMP. This study was designed to analyse the presence of IgG anti-heart antibodies in sera from patients suffering from hypertrophic and dilatative forms of CMP as well as from patients with ischaemic heart disease and healthy individuals. Patients' sera were analysed for IgG reactivity to Western-blotted extracts prepared from human epithelial and endothelial cells, heart and skeletal muscle specimens as well as from Streptococcus pyogenes. The IgG subclass (IgG1–4) reactivity to purified human cardiac myosin was analysed by ELISA. While sera from CMP patients and healthy individuals displayed comparable IgG reactivity to a variety of human proteins, cardiac myosin represented the prominent antigen detected strongly and preferentially by sera from CMP patients. Pronounced IgG anti-cardiac myosin reactivity was frequently found in sera from patients with dilatative CMP and reduced ventricular function. ELISA analyses revealed a prominent IgG2/IgG3 anti-cardiac myosin reactivity in CMP sera, indicating a preferential Th1-like immune response. Elevated anti-cytomegalovirus, anti-enterovirus IgG titres as well as IgG reactivity to nitrocellulose-blotted S. pyogenes proteins were also frequently observed in the group of CMP patients. If further work can support the hypothesis that autoreactivity to cardiac myosin represents a pathogenic factor in CMP, specific immunomodulation of this Th1- towards a Th2-like immune response may represent a promising therapeutic strategy for CMP. PMID:9933448
Bahi-Jaber, Narges; Petitdidier, Elodie; Markikou-Ouni, Wafa; Aoun, Karim; Moreno, Javier; Carrillo, Eugenia; Salotra, Poonam; Kaushal, Himanshu; Negi, Narender Singh; Arevalo, Jorge; Falconi-Agapito, Francesca; Privat, Angela; Cruz, Maria; Pagniez, Julie; Papierok, Gérard-Marie; Rhouma, Faten Bel Haj; Torres, Pilar; Lemesre, Jean-Loup; Chenik, Mehdi; Meddeb-Garnaoui, Amel
2014-01-01
PSA (Promastigote Surface Antigen) belongs to a family of membrane-bound and secreted proteins present in several Leishmania (L.) species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice. We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S) produced in a L. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm) or L. braziliensis (CCLb) or visceral leishmaniasis due to L. donovani (CVLd) and in healthy individuals. Healthy individuals were subdivided into immune (HHR-Lm and HHR-Li: Healthy High Responders living in an endemic area for L. major or L. infantum infection) or non immune/naive individuals (HLR: Healthy Low Responders), depending on whether they produce high or low levels of IFN-γ in response to Leishmania soluble antigen. Low levels of total IgG antibodies to LaPSA-38S were detected in sera from the studied groups. Interestingly, LaPSA-38S induced specific and significant levels of IFN-γ, granzyme B and IL-10 in CCLm, HHR-Lm and HHR-Li groups, with HHR-Li group producing TNF-α in more. No significant cytokine response was observed in individuals immune to L. braziliensis or L. donovani infection. Phenotypic analysis showed a significant increase in CD4+ T cells producing IFN-γ after LaPSA-38S stimulation, in CCLm. A high positive correlation was observed between the percentage of IFN-γ-producing CD4+ T cells and the released IFN-γ. We showed that the LaPSA-38S protein was able to induce a mixed Th1 and Th2/Treg cytokine response in individuals with immunity to L. major or L. infantum infection indicating that it may be exploited as a vaccine candidate. We also showed, to our knowledge for the first time, the capacity of Leishmania PSA protein to induce granzyme B production in humans with immunity to L. major and L. infantum infection. PMID:24786587
Drinić, Mirjana; Wagner, Angelika; Sarate, Priya; Zwicker, Christian; Korb, Elke; Loupal, Gerhard; Peschke, Roman; Joachim, Anja; Wiedermann, Ursula; Schabussova, Irma
2017-11-09
Epidemiological and experimental studies have shown an inverse relationship between infections with certain parasites and a reduced incidence of allergic diseases. We and others have shown that infection with Toxoplasma gondii prevents the development of allergy in mice. To establish whether this beneficial effect could be recapitulated by soluble products of this parasite, we tested an extract derived from T. gondii tachyzoites. Immunization of BALB/c mice with tachyzoites lysate antigen (TLA) elicited mixed Th1/Th2 responses. When TLA was applied together with the sensitizing ovalbumin (OVA), the development of allergic airway inflammation was reduced, with decreased airway hyperresponsiveness associated with reduced peribronchial and perivascular cellular infiltration, reduced production of OVA-specific Th2 cytokines in lungs and spleens and reduced levels of serum OVA-specific IgG1 as well as IgE-dependent basophil degranulation. Of note, TLA retained its immunomodulatory properties, inducing high levels of IL-6, TNFα, IL-10 and IL-12p70 in bone marrow-derived dendritic cells after heat-inactivation or proteinase K-treatment for disruption of proteins, but not after sodium metaperiodate-treatment that degrades carbohydrate structures, suggesting that carbohydrates may play a role in immunomodulatory properties of TLA. Here we show that extracts derived from parasites may replicate the benefits of parasitic infection, offering new therapies for immune-mediated disorders.
CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2 cytokine production.
Romagnani, Paola; Maggi, Laura; Mazzinghi, Benedetta; Cosmi, Lorenzo; Lasagni, Laura; Liotta, Francesco; Lazzeri, Elena; Angeli, Roberta; Rotondi, Mario; Filì, Lucia; Parronchi, Paola; Serio, Mario; Maggi, Enrico; Romagnani, Sergio; Annunziato, Francesco
2005-12-01
Two variants of the CXCR3 receptor exist, one (CXCR3-A) reactive with CXCL9, CXCL10, and CXCL11 and the other (CXCR3-B) also reactive with CXCL4. Both variants are contemporarily expressed by human T cells. We sought to investigate the in vitro effects of CXCL10 and CXCL4 on the production of TH1 or TH2 cytokines. The cytokine profile of antigen-specific human CD4+ T-cell lines obtained in the absence or presence of CXCL10 or CXCL4 was evaluated by means of quantitative RT-PCR, flow cytometry, and ELISA. CXCL10 upregulated IFN-gamma and downregulated IL-4, IL-5, and IL-13 production, whereas CXCL4 downregulated IFN-gamma and upregulated TH2 cytokines. Similar effects were also observed on polyclonally activated pure naive CD4+ T cells. The opposite effects of CXCL10 and CXCL4 on TH1 and TH2 cytokine production were inhibited by an anti-CXCR3 antibody able to neutralize both CXCR3-A and CXCR3-B and were apparently related to the activation of distinct signal transduction pathways. Moreover, CXCL10 upregulated mRNA levels of T-box expressed in T cells and downregulated GATA-3 expression, whereas CXCL4 downregulated T-box expressed in T cells and upregulated GATA-3. Finally, CXCL4, but not CXCL10, induced direct activation of IL-5 and IL-13 promoters. CXCL10 and CXCL4 exert opposite effects on the production of human TH1 and TH2 cytokines, likely through their respective interaction with CXCR3-A or CXCR3-B and the consequent activation of different signal transduction pathways. This might represent an internal regulatory pathway of TH cell responses and might contribute to the modulation of chronic inflammatory reactions, including allergy.
Kyte, Jon Amund; Gaudernack, Gustav; Faane, Anne; Lislerud, Kari; Inderberg, Else Marit; Brunsvig, Paal; Aamdal, Steinar; Kvalheim, Gunnar; Wälchli, Sébastien; Pule, Martin
2016-01-01
We herein report retargeting of T-helper (Th) cells against the universal cancer antigen telomerase for use in adoptive cell therapy. The redirected Th cells may counter tumor tolerance, transform the inflammatory milieu, and induce epitope spreading and cancer senescence. We have previously conducted a series of trials evaluating vaccination with telomerase peptides. From long-term survivors, we isolated >100 CD4 + Th-cell clones recognizing telomerase epitopes. The clones were characterized with regard to HLA restriction, functional avidity, fine specificity, proliferative capacity, cytokine profile, and recognition of naturally processed epitopes. DP4 is the most prevalent HLA molecule worldwide. Two DP4-restricted T-cell clones with different functional avidity, C13 and D71, were selected for molecular T-cell receptor (TCR) cloning. Both clones showed a high proliferative capacity, recognition of naturally processed telomerase epitopes, and a polyfunctional and Th1-weighted cytokine profile. TCR C13 and D71 were cloned into the retroviral vector MP71 together with the compact and GMP-applicable marker/suicide gene RQR8. Both TCRs were expressed well in recipient T cells after PBMC transduction. The transduced T cells co-expressed RQR8 and acquired the desired telomerase specificity, with a polyfunctional response including production of TNFa, IFNγ, and CD107a. Interestingly, the DP4-restricted TCRs were expressed and functional both in CD4 + and CD8 + T cells. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired hTERT-specificity and functionality. We hypothesize that adoptive therapy with Th cells may offer a powerful novel approach for overcoming tumor tolerance and synergize with other forms of immunotherapy.
Using Antigen-Specific B Cells to Combine Antibody and T Cell-Based Cancer Immunotherapy.
Wennhold, Kerstin; Thelen, Martin; Schlößer, Hans Anton; Haustein, Natalie; Reuter, Sabrina; Garcia-Marquez, Maria; Lechner, Axel; Kobold, Sebastian; Rataj, Felicitas; Utermöhlen, Olaf; Chakupurakal, Geothy; Theurich, Sebastian; Hallek, Michael; Abken, Hinrich; Shimabukuro-Vornhagen, Alexander; von Bergwelt-Baildon, Michael
2017-09-01
Cancer immunotherapy by therapeutic activation of T cells has demonstrated clinical potential. Approaches include checkpoint inhibitors and chimeric antigen receptor T cells. Here, we report the development of an alternative strategy for cellular immunotherapy that combines induction of a tumor-directed T-cell response and antibody secretion without the need for genetic engineering. CD40 ligand stimulation of murine tumor antigen-specific B cells, isolated by antigen-biotin tetramers, resulted in the development of an antigen-presenting phenotype and the induction of a tumor antigen-specific T-cell response. Differentiation of antigen-specific B cells into antibody-secreting plasma cells was achieved by stimulation with IL21, IL4, anti-CD40, and the specific antigen. Combined treatment of tumor-bearing mice with antigen-specific CD40-activated B cells and antigen-specific plasma cells induced a therapeutic antitumor immune response resulting in remission of established tumors. Human CEA or NY-ESO-1-specific B cells were detected in tumor-draining lymph nodes and were able to induce antigen-specific T-cell responses in vitro, indicating that this approach could be translated into clinical applications. Our results describe a technique for the exploitation of B-cell effector functions and provide the rationale for their use in combinatorial cancer immunotherapy. Cancer Immunol Res; 5(9); 730-43. ©2017 AACR . ©2017 American Association for Cancer Research.
González-García, Inés; Ocaña, Esther; Jiménez-Gómez, Gema; Campos-Caro, Antonio; Brieva, José A
2006-04-01
The present study shows that reimmunization with tetanus toxoid (tet) caused a transient increase of the human blood plasma cell (PC) pool, detectable from 6th to 15th day postboost, as well as the temporal alteration of several PC features. Labeling of specific PC with FITC-tet C fragment (tetC) allowed kinetics analysis of the tetC(+) and tetC(-) PC, and revealed remarkable differences between them: 1) the kinetics of tetC(+) PC occurrence was exponential, and most of them appeared in a narrow time frame (5th to 8th day postboost), whereas the tetC(-) PC increase was lower (three to five times) and more prolonged (4th to 15th day postboost). 2) The tetC(+) PC subset contained a fraction of cycling cells, expressed high levels of DR, CD138, and CD126, and responded to IL-6 by improving their survival and Ig secretion; in contrast, the tetC(-) PC showed higher CXCR4 and lower DR and CD138, did not respond to IL-6, and contained a fraction of apoptotic cells. 3) Sequential phenotypic analysis revealed maturational changes within the tetC(+), but not tetC(-), PC subset; sequencing of tetC(+) PC IgVH genes showed clear features of Ag selection. 4) The tetC(+) PC expressed several times more positive regulatory domain I- binding factor 1/B lymphocyte-induced maturation protein 1 transcription factor than the tetC(-) PC. 5) The tetC(-) PC and bone marrow resident PC similarly expressed low DR and high CXCR4, but differed in that the latter exhibited higher levels of CD31, CD138, and positive regulatory domain I- binding factor 1/B lymphocyte-induced maturation protein 1. These findings support the view that tetC(+) PC contain bone marrow PC precursors, and tetC(-) PC probably belong to a removable compartment of aged PC.
Burke, D S
1993-01-01
A review of the history of 'vaccine therapy' for infectious diseases is presented. The concept originated when Auzias-Turenne introduced 'syphilitic vaccination' or 'syphilization' as a treatment for syphilis in Paris in the mid-1800s; his clinical studies probably influenced Pasteur's successful rabies postexposure vaccine trials. Robert Koch in Berlin in the 1890s observed that inoculation of tuberculin into patients with tuberculosis induced an inflammatory response in affected tissues, and advocated 'tuberculin therapy'. Sir Almroth Wright in London in the early 20th century devised methods to measure changes in serum 'opsonizing' activity in response to therapeutic inoculations with microbe-derived vaccines. Since the advent of antibiotics, active specific immunization with microbe-derived antigens (vaccine therapy) has been largely forgotten as a strategy for treatment of infectious diseases. Advances in antigen production and in molecular immunology now permit new tactics to probe, analyse and selectively alter in vivo human immune responses to infectious microbes. Our recent demonstration that vaccine therapy can boost natural immunity to HIV in infected patients should rekindle interest in this approach.
Chen, Liye; Ridley, Anna; Hammitzsch, Ariane; Al-Mossawi, Mohammad Hussein; Bunting, Helen; Georgiadis, Dimitris; Chan, Antoni; Kollnberger, Simon; Bowness, Paul
2016-01-01
Objective Human leucocyte antigen (HLA)-B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly associated with ankylosing spondylitis (AS). ERAP1 is a key aminopeptidase in HLA class I presentation and can potentially alter surface expression of HLA-B27 free heavy chains (FHCs). We studied the effects of ERAP1 silencing/inhibition/variations on HLA-B27 FHC expression and Th17 responses in AS. Methods Flow cytometry was used to measure surface expression of HLA class I in peripheral blood mononuclear cells (PBMCs) from patients with AS carrying different ERAP1 genotypes (rs2287987, rs30187 and rs27044) and in ERAP1-silenced/inhibited/mutated HLA-B27-expressing antigen presenting cells (APCs). ERAP1-silenced/inhibited APCs were cocultured with KIR3DL2CD3ε-reporter cells or AS CD4+ T cells. Th17 responses of AS CD4+ T cells were measured by interleukin (IL)-17A ELISA and Th17 intracellular cytokine staining. FHC cell surface expression and Th17 responses were also measured in AS PBMCs following ERAP1 inhibition. Results The AS-protective ERAP1 variants, K528R and Q730E, were associated with reduced surface FHC expression by monocytes from patients with AS and HLA-B27-expressing APCs. ERAP1 silencing or inhibition in APCs downregulated HLA-B27 FHC surface expression, reduced IL-2 production by KIR3DL2CD3ε-reporter cells and suppressed the Th17 expansion and IL-17A secretion by AS CD4+ T cells. ERAP1 inhibition of AS PBMCs reduced HLA class I FHC surface expression by monocytes and B cells, and suppressed Th17 expansion. Conclusions ERAP1 activity determines surface expression of HLA-B27 FHCs and potentially promotes Th17 responses in AS through binding of HLA-B27 FHCs to KIR3DL2. Our data suggest that ERAP1 inhibition has potential for AS treatment. PMID:26130142
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Takeshi, E-mail: takeshi-takahashi@ciea.or.jp; Katano, Ikumi; Ito, Ryoji
Highlights: • β-Lactoglobulin (BLG) specific TCR genes were introduced to human HSC by retrovirus. • Human HSC with BLG-specific TCR were transplanted into NOG-HLA-DR4 I-A{sup −/−} mice. • BLG-specific TCR induced positive selection of thymocytes. • BLG-specific TCR positive CD4{sup +} T cells mediated immune responses in humanized mice. - Abstract: The development of severe immunodeficient mouse strains containing various human genes, including cytokines or HLA, has enabled the reconstitution of functional human immune systems after transplantation of human hematopoietic stem cells (HSC). Accumulating evidence has suggested that HLA-restricted antigen-specific human T-cell responses can be generated in these humanized mice.more » To directly monitor immune responses of human CD4{sup +} T cells, we introduced β-lactoglobulin (BLG)-specific T cell receptor (TCR) genes derived from CD4{sup +} T-cell clones of cow-milk allergy patients into HSCs, and subsequently transplanted them into NOG-HLA-DR4 transgenic/I-Aβ deficient mice (NOG-DR4/I-A{sup o}). In the thymus, thymocytes with BLG-specific TCR preferentially differentiated into CD4{sup +}CD8{sup −} single-positive cells. Adoptive transfer of mature CD4{sup +} T cells expressing the TCR into recipient NOG-DR4/I-A{sup o} mice demonstrated that human CD4{sup +} T cells proliferated in response to antigenic stimulation and produced IFN-γ in vivo, suggesting that functional T-cell reactions (especially Th1-skewed responses) were induced in humanized mice.« less
Kashino, S S; Abeijon, C; Qin, L; Kanunfre, K A; Kubrusly, F S; Silva, F O; Costa, D L; Campos, D; Costa, C H N; Raw, I; Campos-Neto, A
2012-07-01
Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500,000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients' urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases. © 2012 Blackwell Publishing Ltd.
Held, Jürgen; Kohlberger, Isabelle; Rappold, Elfriede; Busse Grawitz, Andrea; Häcker, Georg
2013-04-01
We conducted a case-control study using the Fungitell assay, the novel Platelia Candida Antigen (Ag) Plus and Candida Antibody (Ab) Plus assays, and the Cand-Tec latex agglutination test to evaluate the usefulness of (1→3)-β-D-glucan (BDG), mannan antigen with/without anti-mannan antibody, and Cand-Tec Candida antigen measurement for the diagnosis of candidemia. A total of 56 patients fulfilled the inclusion criteria and were enrolled. One hundred patients with bacteremia and 100 patients with sterile blood cultures served as negative controls. In the candidemia group, median (1→3)-β-D-glucan, mannan antigen, and anti-mannan antibody levels were 427 pg/ml, 190 pg/ml, and 18.6 antibody units (AU)/ml, respectively. All three parameters were significantly elevated in patients with candidemia. The sensitivity and specificity were, respectively, 87.5% and 85.5% for (1→3)-β-D-glucan, 58.9% and 97.5% for mannan antigen, 62.5% and 65.0% for anti-mannan antibody, 89.3% and 63.0% for mannan antigen plus anti-mannan antibody, 89.3% and 85.0% for BDG plus mannan antigen, and 13.0% and 93.9% for Cand-Tec Candida antigen. The low mannan antigen sensitivity was in part caused by Candida parapsilosis and Candida guilliermondii fungemias, which were not detected by the Platelia Candida Ag Plus assay. When the cutoff was lowered from 125 pg/ml to 50 pg/ml, mannan antigen sensitivity increased to 69.6% without severely affecting the specificity (93.5%). Contrary to recently published data, superficial candidiasis was not associated with elevated mannan antigen levels, not even after the cutoff was lowered. Combining procalcitonin (PCT) with (1→3)-β-D-glucan to increase specificity provided a limited advantage because the benefit of the combination did not outweigh the loss of sensitivity. Our results demonstrate that the Cand-Tec Candida antigen and the mannan antigen plus anti-mannan antibody measurements have unacceptably low sensitivity or specificity. Of the four tests compared, (1→3)-β-D-glucan and mannan antigen are the superior biomarkers, depending on whether a sensitivity-driven or specificity-driven approach is used.
Kohlberger, Isabelle; Rappold, Elfriede; Busse Grawitz, Andrea; Häcker, Georg
2013-01-01
We conducted a case-control study using the Fungitell assay, the novel Platelia Candida Antigen (Ag) Plus and Candida Antibody (Ab) Plus assays, and the Cand-Tec latex agglutination test to evaluate the usefulness of (1→3)-β-d-glucan (BDG), mannan antigen with/without anti-mannan antibody, and Cand-Tec Candida antigen measurement for the diagnosis of candidemia. A total of 56 patients fulfilled the inclusion criteria and were enrolled. One hundred patients with bacteremia and 100 patients with sterile blood cultures served as negative controls. In the candidemia group, median (1→3)-β-d-glucan, mannan antigen, and anti-mannan antibody levels were 427 pg/ml, 190 pg/ml, and 18.6 antibody units (AU)/ml, respectively. All three parameters were significantly elevated in patients with candidemia. The sensitivity and specificity were, respectively, 87.5% and 85.5% for (1→3)-β-d-glucan, 58.9% and 97.5% for mannan antigen, 62.5% and 65.0% for anti-mannan antibody, 89.3% and 63.0% for mannan antigen plus anti-mannan antibody, 89.3% and 85.0% for BDG plus mannan antigen, and 13.0% and 93.9% for Cand-Tec Candida antigen. The low mannan antigen sensitivity was in part caused by Candida parapsilosis and Candida guilliermondii fungemias, which were not detected by the Platelia Candida Ag Plus assay. When the cutoff was lowered from 125 pg/ml to 50 pg/ml, mannan antigen sensitivity increased to 69.6% without severely affecting the specificity (93.5%). Contrary to recently published data, superficial candidiasis was not associated with elevated mannan antigen levels, not even after the cutoff was lowered. Combining procalcitonin (PCT) with (1→3)-β-d-glucan to increase specificity provided a limited advantage because the benefit of the combination did not outweigh the loss of sensitivity. Our results demonstrate that the Cand-Tec Candida antigen and the mannan antigen plus anti-mannan antibody measurements have unacceptably low sensitivity or specificity. Of the four tests compared, (1→3)-β-d-glucan and mannan antigen are the superior biomarkers, depending on whether a sensitivity-driven or specificity-driven approach is used. PMID:23363830
2017-10-01
AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate
Evaluation of recombinant proteins of Burkholderia mallei for serodiagnosis of glanders.
Pal, Vijai; Kumar, Subodh; Malik, Praveen; Rai, Ganga Prasad
2012-08-01
Glanders is a contagious disease caused by the Gram-negative bacillus Burkholderia mallei. The number of equine glanders outbreaks has increased steadily during the last decade. The disease must be reported to the Office International des Epizooties, Paris, France. Glanders serodiagnosis is hampered by the considerable number of false positives and negatives of the internationally prescribed tests. The major problem leading to the low sensitivity and specificity of the complement fixation test (CFT) and enzyme-linked immunosorbent assay (ELISA) has been linked to the test antigens currently used, i.e., crude preparations of whole cells. False-positive results obtained from other diagnostic tests utilizing crude antigens lead to financial losses to animal owners, and false-negative results can turn a risk into a possible threat. In this study, we report on the identification of diagnostic targets using bioinformatics tools for serodiagnosis of glanders. The identified gene sequences were cloned and expressed as recombinant proteins. The purified recombinant proteins of B. mallei were used in an indirect ELISA format for serodiagnosis of glanders. Two recombinant proteins, 0375H and 0375TH, exhibited 100% sensitivity and specificity for glanders diagnosis. The proteins also did not cross-react with sera from patients with the closely related disease melioidosis. The results of this investigation highlight the potential of recombinant 0375H and 0375TH proteins in specific and sensitive diagnosis of glanders.
Evaluation of Recombinant Proteins of Burkholderia mallei for Serodiagnosis of Glanders
Kumar, Subodh; Malik, Praveen
2012-01-01
Glanders is a contagious disease caused by the Gram-negative bacillus Burkholderia mallei. The number of equine glanders outbreaks has increased steadily during the last decade. The disease must be reported to the Office International des Epizooties, Paris, France. Glanders serodiagnosis is hampered by the considerable number of false positives and negatives of the internationally prescribed tests. The major problem leading to the low sensitivity and specificity of the complement fixation test (CFT) and enzyme-linked immunosorbent assay (ELISA) has been linked to the test antigens currently used, i.e., crude preparations of whole cells. False-positive results obtained from other diagnostic tests utilizing crude antigens lead to financial losses to animal owners, and false-negative results can turn a risk into a possible threat. In this study, we report on the identification of diagnostic targets using bioinformatics tools for serodiagnosis of glanders. The identified gene sequences were cloned and expressed as recombinant proteins. The purified recombinant proteins of B. mallei were used in an indirect ELISA format for serodiagnosis of glanders. Two recombinant proteins, 0375H and 0375TH, exhibited 100% sensitivity and specificity for glanders diagnosis. The proteins also did not cross-react with sera from patients with the closely related disease melioidosis. The results of this investigation highlight the potential of recombinant 0375H and 0375TH proteins in specific and sensitive diagnosis of glanders. PMID:22695165
H1N1 seasonal influenza virus evolutionary rate changed over time.
Suptawiwat, Ornpreya; Kongchanagul, Alita; Boonarkart, Chompunuch; Auewarakul, Prasert
2018-05-02
It was previously shown that the seasonal H1N1 influenza virus antigenic drift occurred at a slower rate than the seasonal H3N2 virus during the first decade of the 21th century. It was hypothesized that the slower antigenic evolution led to a decrease in average ages of infection, which in turn resulted in lower level of global viral circulation. It is unclear what caused the difference between the two viruses, but a plausible explanation may be related to the fact that the H1N1 virus had been in human population for much longer than the H3N2 virus. This would suggest that H1N1 antigenic drift in an earlier period may have been different from a more recent period. To test this hypothesis, we analyzed seasonal H1N1 influenza sequences during various time periods. In comparison to more recent H1N1 virus, the older H1N1 virus during the first half of the 20th century showed evidences of higher nonsynnonymous/synonymous ration (dN/dS) in its hemagglutinin (HA) gene. We compared amino acid sequence changes in the HA epitopes for each outbreak season and found that there were less changes in later years. Amino acid sequence diversity in the epitopes as measured by sequence entropy became smaller for each passing decade. These suggest that there might be some limit to the antigenic drift. The longer an influenza virus has drifted in human population, the less flexibility it may become. With less flexibility to adapt and escape the host immunity, the virus may have to rely more on younger naïve population. Copyright © 2018 Elsevier B.V. All rights reserved.
Qin, Wanhai; Wang, Lei; Zhai, Ruidong; Ma, Qiuyue; Liu, Jianfang; Bao, Chuntong; Sun, Diangang; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng
2017-01-01
Actinobacillus pleuropneumoniae is the causative pathogen of porcine pleuropneumonia, which results in large economic losses in the pig industry worldwide. There are, however, no effective subunit vaccines are available in the market owing to the various serotypes and the absence of cross-protection against this pathogen. Therefore, the selection of protective components is of great significance for vaccine development. We previously showed that trimeric autotransporter adhesins are important virulence factors of A. pleuropneumoniae. To determine the potential role in vaccine development of the functional head domain (Apa2H1) of Apa2, a trimeric autotransporter adhesin found in A. pleuropneumoniae, we obtained nature-like trimeric Apa2H1 using a prokaryotic expression system and co-culture of Apa2H1 with bone marrow derived dendritic cells (BMDCs) in vitro resulted in maturation of BMDCs, characterised by the up-regulation of CD83, MHC-II, CCR7, ICAM-I and the increased expression of factors related to B lymphoid cells stimulation, such as proliferation-inducing ligand (APRIL), B lymphocyte stimulator (BLyS) and B cell activating factor (BAFF). The in vivo results showed that vaccination with Apa2H1 resulted in the robust production of antigen-specific antibodies, modestly induced mixed Th1 and Th2 immunity, impaired bacterial colonization and dissemination, and improved mouse survival rates. This study is the first to show that Apa2H1 is antigenic and can be used as a component of a subunit vaccine against A. pleuropneumoniae infection, providing valuable reference material for the development of an effective vaccine against A. pleuropneumoniae. Copyright © 2016 Elsevier Ltd. All rights reserved.
Type 1 diabetes in NOD mice unaffected by mast cell deficiency.
Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer
2014-11-01
Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Yukiko K.; Metea, Christina; Karstens, Lisa
The bacteria that live normally in our intestinal tract, or the gut microbiota contribute to the pathogenesis of extra intestinal autoimmune disease via their ability to dynamically educate the immune system. For example, in a mouse model of relapsing, remitting multiple sclerosis (MS), experimental autoimmune encephalomyelitis or EAE, several studies demonstrated that commensal microorganisms are essential in causing clinical disease activity. Interestingly, MS patients have a distinct gut microbiota to healthy controls. Several studies have also illustrated the importance of the gut microbiome in the development of other diseases, including Type 1 diabetes, metabolic syndrome, rheumatoid arthritis, and ankylosing spondylitis.more » Furthermore, HLA=B27 transgenic rats, which develop spontaneous spondyloarthropathy analogous to patients who have ankylosing spondylitis, associated with uveitis in humans, do not develop intestinal or peripheral join inflammation when raised in a germ-free environment. Our group has shown that HLA-B27 transgenic rats have an altered intestinal microbiota compared to healthy control rats. Given the similarities between the central nervous system (CNS) and the retina, as well as co-expression of potentially immunogenic self-antigens from the CNS and joint in the eye, we hypothesized that modulating the gut microbiome can result in amelioration of autoimmune uveitis. Although uveitis is a heterogeneous collection of diseases, in general immune-mediated, non-infectious, uveitis is thought to be due to a combination of genetic and environmental factors. It arises from an imbalance between the regulatory and effector arms of the immune system, result in an inappropriate immune reaction at an otherwise immune-privileged tissue site, the eye. Th1 and Th17 T lymphocytes are examples of effector immune cell subsets that my contribute to inflammatory disease of the eye, whereas regulatory T cells (Tregs) are an example of a regulatory immune cell subset that is typically required to downregulate an immune response to prevent uncontrolled disease. Experimental autoimmune uveitis (EAU) is a very robust, widely use model of T lymphoocyte mediated uveitis that can be induced in a certain strains of mice (e.g. B10.RIII) by immunizing these animals with a specific retinal antigen, interphotoreceptor binding protein (IRBP), but requires co-administration of an adjuvant containing killed Mycobacterium antigen. Lastly, this model of inducible uveitis is analogous to the EAE model of demyelinating disease mentioned above. EAU is a thought to be predominantly Th1 and Th17 mediated.« less
Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis
Nakamura, Yukiko K.; Metea, Christina; Karstens, Lisa; ...
2016-07-01
The bacteria that live normally in our intestinal tract, or the gut microbiota contribute to the pathogenesis of extra intestinal autoimmune disease via their ability to dynamically educate the immune system. For example, in a mouse model of relapsing, remitting multiple sclerosis (MS), experimental autoimmune encephalomyelitis or EAE, several studies demonstrated that commensal microorganisms are essential in causing clinical disease activity. Interestingly, MS patients have a distinct gut microbiota to healthy controls. Several studies have also illustrated the importance of the gut microbiome in the development of other diseases, including Type 1 diabetes, metabolic syndrome, rheumatoid arthritis, and ankylosing spondylitis.more » Furthermore, HLA=B27 transgenic rats, which develop spontaneous spondyloarthropathy analogous to patients who have ankylosing spondylitis, associated with uveitis in humans, do not develop intestinal or peripheral join inflammation when raised in a germ-free environment. Our group has shown that HLA-B27 transgenic rats have an altered intestinal microbiota compared to healthy control rats. Given the similarities between the central nervous system (CNS) and the retina, as well as co-expression of potentially immunogenic self-antigens from the CNS and joint in the eye, we hypothesized that modulating the gut microbiome can result in amelioration of autoimmune uveitis. Although uveitis is a heterogeneous collection of diseases, in general immune-mediated, non-infectious, uveitis is thought to be due to a combination of genetic and environmental factors. It arises from an imbalance between the regulatory and effector arms of the immune system, result in an inappropriate immune reaction at an otherwise immune-privileged tissue site, the eye. Th1 and Th17 T lymphocytes are examples of effector immune cell subsets that my contribute to inflammatory disease of the eye, whereas regulatory T cells (Tregs) are an example of a regulatory immune cell subset that is typically required to downregulate an immune response to prevent uncontrolled disease. Experimental autoimmune uveitis (EAU) is a very robust, widely use model of T lymphoocyte mediated uveitis that can be induced in a certain strains of mice (e.g. B10.RIII) by immunizing these animals with a specific retinal antigen, interphotoreceptor binding protein (IRBP), but requires co-administration of an adjuvant containing killed Mycobacterium antigen. Lastly, this model of inducible uveitis is analogous to the EAE model of demyelinating disease mentioned above. EAU is a thought to be predominantly Th1 and Th17 mediated.« less
Sojka, Dorothy K.; Fowell, Deborah J.
2011-01-01
CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707
Karnasuta, Chitraporn; Vasan, Sandhya; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Madnote, Sirinan; Savadsuk, Hathairat; Rittiroongrad, Surawach; Puangkaew, Jiraporn; Phogat, Sanjay; Tartaglia, James; Sinangil, Faruk; de Souza, Mark S.; Excler, Jean-Louis; Kim, Jerome H.; Robb, Merlin L.; Michael, Nelson L.; Ngauy, Viseth; O'Connell, Robert J.; Karasavvas, Nicos
2018-01-01
Sexual transmission is the principal driver of the human immunodeficiency virus (HIV) pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080) efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2) previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE) and Case A2 (subtype B) in cervico-vaginal mucus (CVM), seminal plasma (SP) and rectal secretions (RS) from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT) to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively), followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11–17 fold) and SP (2 fold) two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS), gp70V1V2 92TH023 (CVM, SP), and Case A2 (CVM) correlated with plasma IgG levels (p<0.001). Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA) in anogenital secretions will help determine their role in preventing mucosal HIV acquisition. PMID:29702672
Czarnowicki, Tali; Esaki, Hitokazu; Gonzalez, Juana; Malajian, Dana; Shemer, Avner; Noda, Shinji; Talasila, Sreya; Berry, Adam; Gray, Jayla; Becker, Lauren; Estrada, Yeriel; Xu, Hui; Zheng, Xiuzhong; Suárez-Fariñas, Mayte; Krueger, James G; Paller, Amy S; Guttman-Yassky, Emma
2015-10-01
Identifying differences and similarities between cutaneous lymphocyte antigen (CLA)(+) polarized T-cell subsets in children versus adults with atopic dermatitis (AD) is critical for directing new treatments toward children. We sought to compare activation markers and frequencies of skin-homing (CLA(+)) versus systemic (CLA(-)) "polar" CD4 and CD8 T-cell subsets in patients with early pediatric AD, adults with AD, and control subjects. Flow cytometry was used to measure CD69/inducible costimulator/HLA-DR frequency in memory cell subsets, as well as IFN-γ, IL-13, IL-9, IL-17, and IL-22 cytokines, defining TH1/cytotoxic T (TC) 1, TH2/TC2, TH9/TC9, TH17/TC17, and TH22/TC22 populations in CD4 and CD8 cells, respectively. We compared peripheral blood from 19 children less than 5 years old and 42 adults with well-characterized moderate-to-severe AD, as well as age-matched control subjects (17 children and 25 adults). Selective inducible costimulator activation (P < .001) was seen in children. CLA(+) TH2 T cells were markedly expanded in both children and adults with AD compared with those in control subjects, but decreases in CLA(+) TH1 T-cell numbers were greater in children with AD (17% vs 7.4%, P = .007). Unlike in adults, no imbalances were detected in CLA(-) T cells from pediatric patients with AD nor were there altered frequencies of TH22 T cells within the CLA(+) or CLA(-) compartments. Adults with AD had increased frequencies of IL-22-producing CD4 and CD8 T cells within the skin-homing population, compared with controls (9.5% vs 4.5% and 8.6% vs 2.4%, respectively; P < .001), as well as increased HLA-DR activation (P < .01). These data suggest that TH2 activation within skin-homing T cells might drive AD in children and that reduced counterregulation by TH1 T cells might contribute to excess TH2 activation. TH22 "spreading" of AD is not seen in young children and might be influenced by immune development, disease chronicity, or recurrent skin infections. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Guirado, Evelyn; Gil, Olga; Cáceres, Neus; Singh, Mahavir; Vilaplana, Cristina; Cardona, Pere-Joan
2008-08-01
RUTI is a therapeutic vaccine that is generated from detoxified and liposomed Mycobacterium tuberculosis cell fragments that has demonstrated its efficacy in the control of bacillus reactivation after short-term chemotherapy. The aim of this study was to characterize the cellular immune response generated after the therapeutic administration of RUTI and to corroborate the lack of toxicity of the vaccine. Mouse and guinea pig experimental models were infected with a low-dose M. tuberculosis aerosol. RUTI-treated animals showed the lowest bacillary load in both experimental models. RUTI also decreased the percentage of pulmonary granulomatous infiltration in the mouse and guinea pig models. This was not the case after Mycobacterium bovis BCG treatment. Cellular immunity was studied through the characterization of the intracellular gamma interferon (IFN-gamma)-producing cells after the splenocytes' stimulation with M. tuberculosis-specific structural and growth-related antigens. Our data show that the difference between the therapeutic administration of BCG and RUTI resides mainly in the stronger activation of IFN-gamma(+) CD4(+) cells and CD8(+) cells against tuberculin purified protein derivative, ESAT-6, and Ag85B that RUTI generates. Both vaccines also triggered a specific immune response against the M. tuberculosis structural antigens Ag16kDa and Ag38kDa and a marked mRNA expression of IFN-gamma, tumor necrosis factor, interleukin-12, inducible nitric oxide synthase, and RANTES in the lung. The results show that RUTI's therapeutic effect is linked not only to the induction of a Th1 response but also to the stimulation of a quicker and stronger specific immunity against structural and growth-related antigens that reduces both the bacillary load and the pulmonary pathology.
Guirado, Evelyn; Gil, Olga; Cáceres, Neus; Singh, Mahavir; Vilaplana, Cristina; Cardona, Pere-Joan
2008-01-01
RUTI is a therapeutic vaccine that is generated from detoxified and liposomed Mycobacterium tuberculosis cell fragments that has demonstrated its efficacy in the control of bacillus reactivation after short-term chemotherapy. The aim of this study was to characterize the cellular immune response generated after the therapeutic administration of RUTI and to corroborate the lack of toxicity of the vaccine. Mouse and guinea pig experimental models were infected with a low-dose M. tuberculosis aerosol. RUTI-treated animals showed the lowest bacillary load in both experimental models. RUTI also decreased the percentage of pulmonary granulomatous infiltration in the mouse and guinea pig models. This was not the case after Mycobacterium bovis BCG treatment. Cellular immunity was studied through the characterization of the intracellular gamma interferon (IFN-γ)-producing cells after the splenocytes' stimulation with M. tuberculosis-specific structural and growth-related antigens. Our data show that the difference between the therapeutic administration of BCG and RUTI resides mainly in the stronger activation of IFN-γ+ CD4+ cells and CD8+ cells against tuberculin purified protein derivative, ESAT-6, and Ag85B that RUTI generates. Both vaccines also triggered a specific immune response against the M. tuberculosis structural antigens Ag16kDa and Ag38kDa and a marked mRNA expression of IFN-γ, tumor necrosis factor, interleukin-12, inducible nitric oxide synthase, and RANTES in the lung. The results show that RUTI's therapeutic effect is linked not only to the induction of a Th1 response but also to the stimulation of a quicker and stronger specific immunity against structural and growth-related antigens that reduces both the bacillary load and the pulmonary pathology. PMID:18524883
Correale, Jorge; Farez, Mauricio F.
2012-01-01
Multiple sclerosis (MS) is an inflammatory autoimmune demyelinating disease affecting the Central Nervous System (CNS), in which Th1 and Th17 cells appear to recognize and react against certain myelin sheath components. Epidemiological evidence has accumulated indicating steady increase in autoimmune disease incidence in developed countries. Reduced infectious disease prevalence in particular has been proposed as the cause. In agreement with this hypothesis, we recently demonstrated significantly better clinical and radiological outcome in helminth-infected MS patients, compared to uninfected ones. Parasite-driven protection was associated with regulatory T cell induction and anti-inflammatory cytokine secretion, including increased TGF-β and IL-10 levels. Interestingly, surface expression of TLR2, on both B cells and dendritic cells (DC) was significantly higher in infected MS patients. Moreover, stimulation of myelin-specific T cell lines with a TLR2 agonist induced inhibition of T cell proliferation, suppression of IFN-γ, IL-12, and IL-17 secretion, as well as increase in IL-10 production, suggesting the functional responses observed correlate with TLR2 expression patterns. Furthermore, parasite antigens were able to induce TLR2 expression on both B cells and DCs. All functional effects mediated by TLR2 were abrogated when MyD88 gene expression was silenced; indicating helminth-mediated signaling induced changes in cytokine secretion in a MyD88-dependent manner. In addition, helminth antigens significantly enhanced co-stimulatory molecule expression, effects not mediated by MyD88. Parasite antigens acting on MyD88 induced significant ERK kinase phosphorylation in DC. Addition of the ERK inhibitor U0126 was associated with dose-dependent IL-10 inhibition and reciprocal enhancement in IL-12, both correlating with ERK inhibition. Finally, cytokine effects and changes observed in co-stimulatory DC molecules after helminth antigen exposure were lost when TLR2 was silenced. Overall, the data described indicate that helminth molecules exert potent regulatory effects on both DCs and B cells from MS patients through TLR2 regulation. PMID:22937527
Bergdahl, Anna Grenabo; Wilderäng, Ulrica; Aus, Gunnar; Carlsson, Sigrid; Damber, Jan-Erik; Frånlund, Maria; Geterud, Kjell; Khatami, Ali; Socratous, Andreas; Stranne, Johan; Hellström, Mikael; Hugosson, Jonas
2016-01-01
Background Magnetic resonance imaging (MRI) and targeted biopsies (TB) have shown potential to more accurately detect significant prostate cancer (PC) compared to prostate-specific antigen (PSA) and systematic biopsies (SB). Objective To compare sequential screening (PSA + MRI) with conventional PSA screening. Design, Setting and Participants Of 384 attendees in the 10th screening round of the Göteborg randomised screening trial, 124 men, median age 69.5, had a PSA of ≥1.8 ng/ml and underwent a prebiopsy MRI. Men with suspicious lesions on MRI and/or PSA ≥3.0 ng/ml were referred for biopsy. SB was performed blinded to MRI results and TB was performed in men with tumour-suspicious findings on MRI. Three screening strategies were compared (PSA≥3.0+SB; PSA≥3.0+MRI+TB and PSA≥1.8+MRI+TB). Outcome Measurements and Statistical Analysis Cancer detection rates, sensitivity and specificity were calculated per screening strategy and compared using McNemar´s test. Results and Limitations In total, 28 PC were detected, of which 20 were diagnosed in biopsy-naïve men. Both PSA≥3.0+MRI and PSA≥1.8+MRI significantly increased specificity compared with PSA≥3.0+SB (0.92 and 0.79 vs. 0.52; p<0.002 for both), while sensitivity was significantly higher for PSA≥1.8+MRI compared with PSA>=3.0+MRI (0.73 vs. 0.46, p=0.008). The detection rate of significant cancer was higher with PSA≥1.8+MRI compared to PSA≥3.0+SB (5.9 vs. 4.0%), while the detection rate of insignificant cancer was lowered by PSA≥3.0+MRI (0.3 vs. 1.2%). The primary limitation of this study is the small sample of men. Conclusion A screening strategy with a lowered PSA cut-off followed by TB in MRI-positive men seems to increase the detection of significant cancers while improving specificity. If replicated, these results may contribute to a paradigm shift in future screening. Patient Summary Major concerns in prostate-specific antigen screening are overdiagnosis and underdiagnosis. We evaluated whether prostate magnetic resonance imaging could improve the balance of benefits to harm in prostate cancer screening, and we found promising potential of using magnetic resonance imaging in addition to prostate-specific antigen. PMID:26724840
Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy
Sadhu, Soumi; Khaitan, Binod Kumar; Joshi, Beenu; Sengupta, Utpal; Nautiyal, Arvind Kumar; Mitra, Dipendra Kumar
2016-01-01
T cell defect is a common feature in lepromatous or borderline lepromatous leprosy (LL/BL) patients in contrast to tuberculoid or borderline tuberculoid type (TT/BT) patients. Tuberculoid leprosy is characterized by strong Th1-type cell response with localized lesions whereas lepromatous leprosy is hallmarked by its selective Mycobacterium leprae specific T cell anergy leading to disseminated and progressive disease. FoxP3+ Regulatory T cells (Treg) which are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases also dampen proinflammatory T cells that include T helper 17 (Th17) cells. This study is aimed at evaluating the role of Treg cells in influencing other effector T cells and its relationship with the cytokine polarized state in leprosy patients. Peripheral blood mononuclear cells from of BT/TT (n = 15) and BL/LL (n = 15) patients were stimulated with M. leprae antigen (WCL) in presence of golgi transport inhibitor monensin for FACS based intracellular cytokine estimation. The frequency of Treg cells showed >5-fold increase in BL/LL in comparison to BT/TT and healthy contacts. These cells produced suppressive cytokine, IL-10 in BL/LL as opposed to BT/TT (p = 0.0200) indicating their suppressive function. The frequency of Th17 cells (CD4, CD45RO, IL-17) was, however, higher in BT/TT. Significant negative correlation (r = -0.68, P = 0.03) was also found between IL-10 of Treg cells and IL-17+ T cells in BL/LL. Blocking IL-10/TGF-β restored the IL-17+ T cells in BL/LL patients. Simultaneously, presence of Th17 related cytokines (TGF-β, IL-6, IL-17 and IL-23) decreased the number of FoxP3+ Treg cells concomitantly increasing IL-17 producing CD4+ cells in lepromatous leprosy. Higher frequency of Programmed Death-1/PD-1+ Treg cells and its ligand, PDL-1 in antigen presenting cells (APCs) was found in BL/LL patients. Inhibition of this pathway led to rescue of IFN-γ and IL-17 producing T cells. Results indicate that Treg cells are largely responsible for the kind of immunosuppression observed in BL/LL patients. This study also proves that Treg cells are profoundly affected by the cytokine milieu and this property may be utilized for benefit of the host. PMID:26751584
Th17-lineage cells in pulmonary sarcoidosis and Löfgren's syndrome: Friend or foe?
Miedema, Jelle R; Kaiser, Ylva; Broos, Caroline E; Wijsenbeek, Marlies S; Grunewald, Johan; Kool, Mirjam
2018-02-01
Sarcoidosis, a multisystem granulomatous disorder, has historically been classified as Th1-driven disease. However, increasing data demonstrate a key role of Th17-cell plasticity in granuloma formation and maintenance. In Löfgren's syndrome (LS), an acute and distinct phenotype of sarcoidosis with a favorable outcome, differences in Th17-lineage cell subsets, cytokine expression and T-cell suppressive mechanisms may account for differences in clinical presentation as well as prognosis compared to non-LS sarcoidosis. In contrast with LS, up to 20% of non-LS sarcoidosis patients may progress to irreversible pulmonary fibrosis. In non-LS sarcoidosis patients, IFN-γ-producing Th17.1-cells appear to be more pathogenic and possibly linked to disease progression, while a broader range of cytokines is found in bronchoalveolar lavage fluid (BALF) in LS patients. Differences in Cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression on Th17-cells and regulatory T-cells (Treg) could contribute to Th17-cell pathogenicity and consequently to either disease resolution or ongoing inflammation in sarcoidosis. Furthermore, several genes and SNPs are associated with disease susceptibility and outcome in sarcoidosis, the majority of which are involved in antigen presentation, T-cell activation or regulation of T-cell survival. Novel insights into the role of Th17-cells in the pathogenesis of both LS and non-LS sarcoidosis will unravel pathogenic and benign Th17-lineage cell function and drivers of Th17-cell plasticity. This will also help identify new treatment strategies for LS and non-LS sarcoidosis patients by altering Th17-cell activation, suppress conversion into more pathogenic subtypes, or influence cytokine signaling towards a beneficial signature of Th17-lineage cells. In this review, we summarize new insights into Th17-cell plasticity in the complex pathogenesis of sarcoidosis and connect these cells to the different disease phenotypes, discuss the role of genetic susceptibility and autoimmunity and focus on possible treatment strategies. Copyright © 2017. Published by Elsevier Ltd.
Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Zhou, Hongyan; Miller, Harvey; Patel, Girishchandra B.; Chen, Wangxue
2011-01-01
Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen. PMID:21789200
Fukuyama, Tomoki; Ueda, Hideo; Hayashi, Koichi; Tajima, Yukari; Shuto, Yasufumi; Saito, Toru R; Harada, Takanori; Kosaka, Tadashi
2008-10-01
The inhalation of many types of chemicals, including pesticides, perfumes, and other low-molecular weight chemicals, is a leading cause of allergic respiratory diseases. We attempted to develop a new test protocol to detect environmental chemical-related respiratory hypersensitivity at low and weakly immunogenic doses. We used long-term dermal sensitization followed by a low-dose intratracheal challenge to evaluate sensitization by the well-known respiratory sensitizers trimellitic anhydride (TMA) and toluene diisocyanate (TDI) and the contact sensitizer 2,4-dinitrochlorobenzene (DNCB). After topically sensitizing BALB/c mice (9 times in 3 weeks) and challenging them intratracheally with TMA, TDI, or DNCB, we assayed differential cell counts and chemokine levels in bronchoalveolar lavage fluid (BALF); lymphocyte counts, surface antigen expression of B cells, and local cytokine production in lung-associated lymph nodes (LNs); and antigen-specific IgE levels in serum and BALF. TMA induced marked increases in antigen-specific IgE levels in both serum and BALF, proliferation of eosinophils and chemokines (MCP-1, eotaxin, and MIP-1beta) in BALF, and proliferation of Th2 cytokines (interleukin (IL)-4, IL-10, and IL-13) in restimulated LN cells. TDI induced marked increases in levels of cytokines (IL-4, IL-10, IL-13, and IFN-gamma) produced by restimulated LN cells. In contrast, DNCB treatment yielded, at most, small, nonsignificant increases in all parameters. Our protocol thus detected respiratory allergic responses to low-molecular weight chemicals and may be useful for detecting environmental chemical-related respiratory allergy.
Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K.; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B.; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip
2015-01-01
Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4+ T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4+ T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that leads to the generation of protective Th1 responses in BALB/c mice. PMID:26169275
Bhattacharya, Parna; Dey, Ranadhir; Dagur, Pradeep K; Kruhlak, Michael; Ismail, Nevien; Debrabant, Alain; Joshi, Amritanshu B; Akue, Adovi; Kukuruga, Mark; Takeda, Kazuyo; Selvapandiyan, Angamuthu; McCoy, John Philip; Nakhasi, Hira L
2015-10-01
Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modified Leishmania donovani parasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice both in vitro and in vivo. In vitro infection of macrophages with live attenuated parasites (compared to that with wild-type [WT] L. donovani parasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4(+) T cell activation in vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WT L. donovani-infected mice. Furthermore, an ex vivo antigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4(+) T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that leads to the generation of protective Th1 responses in BALB/c mice. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Kirchenbaum, Greg A.; Carter, Donald M.
2015-01-01
ABSTRACT Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses directed at the HA stalk region. Moreover, ferrets possessing HA stalk-specific antibody were protected against novel H1N1 virus infection and did not transmit the virus to naive contacts. PMID:26559834
Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH.
Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Alvarez-Domínguez, Carmen
2014-01-01
The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189-201 and LLO91-99 and the GAPDH peptide, GAPDH1-22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1-22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91-99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1-22-specific CD4(+) and CD8(+) immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4(+) and CD8(+) epitopes.
Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH
Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M. Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L.; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Álvarez-Domínguez, Carmen
2014-01-01
The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189−201 and LLO91−99 and the GAPDH peptide, GAPDH1−22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1−22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91−99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1−22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes. PMID:24600592
Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew
2012-01-01
The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317
Park, Sung-Hyun; Chen, Wen-Chi; Durmus, Nedim; Bleck, Bertram; Reibman, Joan; Riemekasten, Gabriela; Grunig, Gabriele
2015-01-01
Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell-deficient and wild type mice. Our studies have identified B cells and antigen specific IgG1 as potential therapeutic targets for pulmonary hypertension associated with immune dysfunction and environmental exposures. PMID:26079807
de Jesus Pereira, Nathália Cristina; Régis, Wiliam César Bento; Costa, Lourena Emanuele; de Oliveira, Jamil Silvano; da Silva, Alanna Gomes; Martins, Vivian Tamietti; Duarte, Mariana Costa; de Souza, José Roberto Rodrigues; Lage, Paula Sousa; Schneider, Mônica Santos; Melo, Maria Norma; Soto, Manuel; Soares, Sandra Aguiar; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz
2015-06-01
The development of effective prophylactic strategies to prevent leishmaniasis has become a high priority. No less important than the choice of an antigen, the association of an appropriate adjuvant is necessary to achieve a successful vaccination, as the majority of the tested antigens contain limited immunogenic properties, and need to be supplemented with immune response adjuvants in order to boost their immunogenicity. However, few effective adjuvants that can be used against leishmaniasis exist on the market today; therefore, it is possible to speculate that the research aiming to identify new adjuvants could be considered relevant. Recently, Agaricus blazei extracts have proved to be useful in enhancing the immune response to DNA vaccines against some diseases. This was based on the Th1 adjuvant activity of the polysaccharide-rich fractions from this mushroom. In this context, the present study evaluated purified fractions derived from Agaricus blazei as Th1 adjuvants through in vitro assays of their immune stimulation of spleen cells derived from naive BALB/c mice. Two of the tested six fractions (namely F2 and F4) were characterized as polysaccharide-rich fractions, and were able to induce high levels of IFN-γ, and low levels of IL-4 and IL-10 in the spleen cells. The efficacy of adjuvant action against L. infantum was evaluated in BALB/c mice, with these fractions being administered together with a recombinant antigen, LiHyp1, which was previously evaluated as a vaccine candidate, associated with saponin, against visceral leishmaniasis (VL). The associations between LiHyp1/F2 and LiHyp1/F4 were able to induce an in vivo Th1 response, which was primed by high levels of IFN-γ, IL-12, and GM-CSF, by low levels of IL-4 and IL-10; as well as by a predominance of IgG2a antibodies in the vaccinated animals. After infection, the immune profile was maintained, and the vaccines proved to be effective against L. infantum. The immune stimulatory effects in the BALB/c mice proved to be similar when comparing the F2 and F4 fractions with a known Th1 adjuvant (saponin), though animals vaccinated with saponin did present a slight to moderate inflammatory edema on their hind footpads. In conclusion, the F2 and F4 fractions appear to induce a Th1-type immune response and, in this context, they could be evaluated in association with other protective antigens against Leishmania, as well as in other disease models. Copyright © 2015 Elsevier Inc. All rights reserved.
Jayashankar, Bindhya; Singh, Divya; Tanwar, Himanshi; Mishra, K P; Murthy, Swetha; Chanda, Sudipta; Mishra, Jigni; Tulswani, R; Misra, K; Singh, S B; Ganju, Lilly
2017-03-01
Hippophae rhamnoides L. commonly known as Seabuckthorn (SBT), a wild shrub of family Elaegnacea, has extensively used for treating various ailments like skin diseases, jaundice, asthma, lung troubles. SBT leaves have been reported to possess several pharmacological properties including immunomodulatory, antioxidant, anti-inflammatory, antimicrobial and tissue regeneration etc. The present study was undertaken to evaluate the adjuvant property of supercritical carbon dioxide extracts (SCEs 300ET and 350ET) of SBT leaves in balb/c mice immunized with Tetanus and Diphtheria toxoids. The dynamic changes in the immune response were measured in terms of humoral and cell-mediated immune responses. We have seen the effect of SCEs on immunoglobulin subtypes and secondary immune response generation. In addition, the effect of SCEs on antigen specific cellular immunity was evaluated. Our results show that SCEs 300ET and 350ET significantly enhanced antibody titers in response to both TT and DT antigens. The secondary immune response generated was significantly increased in case of TT immunized animals. SCEs also enhanced cytokine levels (IFN-γ, IL-4, TNF-α and IL-1β) and increased lymphoproliferation. Besides, both SCEs did not show any toxic effects. Therefore, the study suggests that SCEs are safe and have potent immunostimulatory activity and hence, seems to be a promising balanced Th1 and Th2 directing immunological adjuvant for various veterinary as well as human vaccines. Copyright © 2017. Published by Elsevier B.V.
Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko
2014-02-01
T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.
Everts, Bart; Hussaarts, Leonie; Driessen, Nicole N.; Meevissen, Moniek H.J.; Schramm, Gabriele; van der Ham, Alwin J.; van der Hoeven, Barbara; Scholzen, Thomas; Burgdorf, Sven; Mohrs, Markus; Pearce, Edward J.; Hokke, Cornelis H.; Haas, Helmut; Smits, Hermelijn H.
2012-01-01
Omega-1, a glycosylated T2 ribonuclease (RNase) secreted by Schistosoma mansoni eggs and abundantly present in soluble egg antigen, has recently been shown to condition dendritic cells (DCs) to prime Th2 responses. However, the molecular mechanisms underlying this effect remain unknown. We show in this study by site-directed mutagenesis of omega-1 that both the glycosylation and the RNase activity are essential to condition DCs for Th2 polarization. Mechanistically, we demonstrate that omega-1 is bound and internalized via its glycans by the mannose receptor (MR) and subsequently impairs protein synthesis by degrading both ribosomal and messenger RNA. These experiments reveal an unrecognized pathway involving MR and interference with protein synthesis that conditions DCs for Th2 priming. PMID:22966004
TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.
Tsagaratou, Ageliki; González-Avalos, Edahí; Rautio, Sini; Scott-Browne, James P; Togher, Susan; Pastor, William A; Rothenberg, Ellen V; Chavez, Lukas; Lähdesmäki, Harri; Rao, Anjana
2017-01-01
TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4 + CD8 + double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR).
Rheumatoid arthritis patients exhibit impaired Candida albicans-specific Th17 responses.
Bishu, Shrinivas; Su, Ee Wern; Wilkerson, Erich R; Reckley, Kelly A; Jones, Donald M; McGeachy, Mandy J; Gaffen, Sarah L; Levesque, Marc C
2014-02-11
Accumulating data implicate the CD4+ T cell subset (Th17 cells) in rheumatoid arthritis (RA). IL-17 is an inflammatory cytokine that induces tumor necrosis factor (TNF)α, IL-1β and IL-6, all of which are targets of biologic therapies used to treat RA. RA patients are well documented to experience more infections than age-matched controls, and biologic therapies further increase the risk of infection. The Th17/IL-17 axis is vital for immunity to fungi, especially the commensal fungus Candida albicans. Therefore, we were prompted to examine the relationship between RA and susceptibility to C. albicans because of the increasing interest in Th17 cells and IL-17 in driving autoimmunity, and the advent of new biologics that target this pathway. We analyzed peripheral blood and saliva from 48 RA and 33 healthy control subjects. To assess C. albicans-specific Th17 responses, PBMCs were co-cultured with heat-killed C. albicans extract, and IL-17A levels in conditioned supernatants were measured by ELISA. The frequency of Th17 and Th1 cells was determined by flow cytometry. As a measure of IL-17A-mediated effector responses, we evaluated C. albicans colonization rates in the oral cavity, salivary fungicidal activity and levels of the antimicrobial peptide β-defensin 2 (BD2) in saliva. Compared to controls, PBMCs from RA subjects exhibited elevated baseline production of IL-17A (P = 0.004), although they had similar capacity to produce IL-17A in response to Th17 cell differentiating cytokines (P = 0.91). However RA PBMCs secreted less IL-17A in response to C. albicans antigens (P = 0.006). Significantly more RA patients were colonized with C. albicans in the oral cavity than healthy subjects (P = 0.02). Concomitantly, RA saliva had reduced concentrations of salivary BD2 (P = 0.02). Nonetheless, salivary fungicidal activity was preserved in RA subjects (P = 0.70). RA subjects exhibit detectable impairments in oral immune responses to C. albicans, a strongly Th17-dependent opportunistic pathogen, despite an overall elevated baseline production of IL-17A.
Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian
2002-01-01
The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853
T cells and cytokines in the pathogenesis of acquired myasthenia gravis.
Milani, Monica; Ostlie, Norma; Wang, Wei; Conti-Fine, Bianca M
2003-09-01
Although the symptoms of myasthenia gravis (MG) and experimental MG (EAMG) are caused by autoantibodies, CD4(+) T cells specific for the target antigen, the nicotinic acetylcholine receptor, and the cytokines they secrete, have an important role in these diseases. CD4(+) T cells have a pathogenic role, by permitting and facilitating the synthesis of high-affinity anti-AChR antibodies. Th1 CD4(+) cells are especially important because they drive the synthesis of anti-AChR complement-fixing IgG subclasses. Binding of those antibodies to the muscle AChR at the neuromuscular junction will trigger the complement-mediated destruction of the postsynaptic membrane. Thus, IL-12, a crucial cytokine for differentiation of Th1 cells, is necessary for development of EAMG. Th2 cells secrete different cytokines, with different effects on the pathogenesis of EAMG. Among them, IL-10, which is a potent growth and differentiation factor for B cells, facilitates the development of EAMG. In contrast, IL-4 appears to be involved in the differentiation of AChR-specific regulatory CD4(+) T cells, which can prevent the development of EAMG and its progression to a self-maintaining, chronic autoimmune disease. Studies on the AChR-specific CD4(+) cells commonly present in the blood of MG patients support a crucial role of CD4(+) T cells in the development of MG. Circumstantial evidence supports a pathogenic role of IL-10 also in human MG. On the other hand, there is no direct or circumstantial evidence yet indicating a role of IL-4 in the modulatory or immunosuppressive circuits in MG.
De Souza, Mark S; Phanuphak, Nittaya; Pinyakorn, Suteeraporn; Trichavaroj, Rapee; Pattanachaiwit, Supanit; Chomchey, Nitiya; Fletcher, James L; Kroon, Eugene D; Michael, Nelson L; Phanuphak, Praphan; Kim, Jerome H; Ananworanich, Jintanat
2015-04-24
To assess the addition of HIV nucleic acid testing (NAT) to fourth-generation (4thG) HIV antigen/antibody combination immunoassay in improving detection of acute HIV infection (AHI). Participants attending a major voluntary counseling and testing site in Thailand were screened for AHI using 4thG HIV antigen/antibody immunoassay and sequential less sensitive HIV antibody immunoassay. Samples nonreactive by 4thG antigen/antibody immunoassay were further screened using pooled NAT to identify additional AHI. HIV infection status was verified following enrollment into an AHI study with follow-up visits and additional diagnostic tests. Among 74 334 clients screened for HIV infection, HIV prevalence was 10.9% and the overall incidence of AHI (N = 112) was 2.2 per 100 person-years. The inclusion of pooled NAT in the testing algorithm increased the number of acutely infected patients detected, from 81 to 112 (38%), relative to 4thG HIV antigen/antibody immunoassay. Follow-up testing within 5 days of screening marginally improved the 4thG immunoassay detection rate (26%). The median CD4 T-cell count at the enrollment visit was 353 cells/μl and HIV plasma viral load was 598 289 copies/ml. The incorporation of pooled NAT into the HIV testing algorithm in high-risk populations may be beneficial in the long term. The addition of pooled NAT testing resulted in an increase in screening costs of 22% to identify AHI: from $8.33 per screened patient to $10.16. Risk factors of the testing population should be considered prior to NAT implementation given the additional testing complexity and costs.
Lin, Xiaoyun; Chen, Shao; Xue, Xiangyang; Lu, Lijun; Zhu, Shanli; Li, Wenshu; Chen, Xiangmin; Zhong, Xiaozhi; Jiang, Pengfei; Sename, Torsoo Sophia; Zheng, Yi; Zhang, Lifang
2016-01-01
Epstein–Barr virus (EBV) is prevalent throughout the world and is associated with several malignant diseases in humans. Latent membrane protein 2 (LMP2) of EBV plays a crucial role in the pathogenesis of EBV-associated tumors; therefore, LMP2 has been considered to be a potential immunodiagnostic and immunotherapeutic target. A multi-epitope-based antigen is a promising option for therapeutic vaccines and diagnoses of such malignancies. In this study, we systematically screened cytotoxic T lymphocyte (CTL), helper T cell (Th) and B-cell epitopes within EBV-LMP2 using bioinformatics. Based on the screen, two peptides rich in overlapping epitopes of both T cells and B cells were selected to construct a plasmid containing the sequence for a chimeric multi-epitope protein referred to as EBV-LMP2m, which is composed of LMP2aa195∼232 and LMP2aa419∼436. The EBV-LMP2m protein was expressed in E. coli BL21 (DE3) after prokaryotic codon optimization. Inoculation of the purified chimeric antigen in BALB/c mice induced not only high levels of specific IgG in the serum and secretory IgA in the vaginal mucus but also a specific CTL response. By using purified EBV-LMP2m as an antigen, the presence of specific IgG in the serum specimens of 202 nasopharyngeal carcinoma (NPC) patients was effectively detected with 52.84% sensitivity and 95.40% specificity, which represents an improvement over the traditional detection method based on VCA-IgA (60.53% sensitivity and 76.86% specificity). The above results indicate that EBV-LMP2m may be used not only as a potential target antigen for EBV-associated tumors but also a diagnostic agent for NPC patients. PMID:25864917
Induction of human antigen-specific suppressor factors in vitro.
Kontiainen, S; Woody, J N; Rees, A; Feldmann, M
1981-01-01
Based on methods used for the in vitro induction of antigen-specific suppressor cells in the mouse, we have cultured Ficoll-Isopaque-separated human blood cells with high dose of antigen (100 microgram/ml) in Marbrook culture vessels for 4 days. The resulting cells, when further recultured for 24 hr with a low dose of antigen (1 microgram/ml), released into the supernatant material, termed 'suppressor factor', which inhibited, in an antigen-specific manner, the antibody response of mouse spleen cells in culture. The suppressor factor was analysed using immunoabsorbents, and was bound to and eluted from specific antigen, concanavalin A and lentil lectin, anti-human Ia antibodies, and anti-mouse suppressor factor antibodies, but was not bound to antibodies against human IgG. PMID:6169475
de Costa, Fernanda; Yendo, Anna Carolina A.; Cibulski, Samuel P.; Fleck, Juliane D.; Roehe, Paulo M.; Spilki, Fernando R.; Gosmann, Grace; Fett-Neto, Arthur G.
2014-01-01
Inactivated polio vaccines (IPV) have an important role at the final stages of poliomyelitis eradication programs, reducing the risks associated with the use of attenuated polio vaccine (OPV). An affordable option to enhance vaccine immunogenicity and reduce costs of IPV may be the use of an effective and renewable adjuvant. In the present study, the adjuvant activity of aqueous extract (AE) and saponin fraction QB-90 from Quillaja brasiliensis using poliovirus antigen as model were analyzed and compared to a preparation adjuvanted with Quil-A, a well-known saponin-based commercial adjuvant. Experimental vaccines were prepared with viral antigen plus saline (control), Quil-A (50 µg), AE (400 µg) or QB-90 (50 µg). Sera from inoculated mice were collected at days 0, 28, 42 and 56 post-inoculation of the first dose of vaccine. Serum levels of specific IgG, IgG1 and IgG2a were significantly enhanced by AE, QB-90 and Quil-A compared to control group on day 56. The magnitude of enhancement was statistically equivalent for QB-90 and Quil-A. The cellular response was evaluated through DTH and analysis of IFN-γ and IL-2 mRNA levels using in vitro reestimulated splenocytes. Results indicated that AE and QB-90 were capable of stimulating the generation of Th1 cells against the administered antigen to the same extent as Quil-A. Mucosal immune response was enhanced by the vaccine adjuvanted with QB-90 as demonstrated by increases of specific IgA titers in bile, feces and vaginal washings, yielding comparable or higher titers than Quil-A. The results obtained indicate that saponins from Q. brasiliensis are potent adjuvants of specific cellular and humoral immune responses and represent a viable option to Quil-A. PMID:25148077
Distinct Inflammatory Profiles of Myelin-Reactive T cells from Patients with Multiple Sclerosis
Cao, Yonghao; Goods, Brittany A.; Raddassi, Khadir; Nepom, Gerald T.; Kwok, William W.; Love, J. Christopher; Hafler, David A.
2015-01-01
Myelin-reactive T cells have been identified in patients with multiple sclerosis (MS) and healthy subjects with comparable frequencies, but the functional programs of self-reactive T cells that promote disease remain unknown. A total of 13,324 T cell libraries generated from blood of 23 patients and 22 healthy controls were interrogated for reactivity to myelin antigens. Libraries derived from CCR6+ myelin-reactive T cells from patients with MS exhibited significantly enhanced production of IFN-γ, IL-17, and GM-CSF compared to healthy controls. Single-cell clones isolated by MHC/peptide tetramers from CCR6+ T cell libraries also secreted more pro-inflammatory cytokines while clones isolated from controls secreted more IL-10. The transcriptomes of myelin-specific CCR6+ T cells from patients with MS were distinct from those derived from healthy controls, and of note, were enriched in Th17-induced experimental autoimmune encephalitis (EAE) gene signatures and gene signatures derived from Th17 cells isolated other human autoimmune diseases. These data, although not casual, imply that functional differences between antigen specific T cells from MS and healthy controls is fundamental to disease development and support the notion that IL-10 production from myelin-reactive T cells may act to limit disease progression, or even pathogenesis. PMID:25972006
Skuljec, Jelena; Chmielewski, Markus; Happle, Christine; Habener, Anika; Busse, Mandy; Abken, Hinrich; Hansen, Gesine
2017-01-01
Cellular therapy with chimeric antigen receptor (CAR)-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg)-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR) and a chronic, T helper-2 (Th2) cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma.
Immune Checkpoints in Leprosy: Immunotherapy As a Feasible Approach to Control Disease Progression.
Lima, Hayana Ramos; Gasparoto, Thaís Helena; de Souza Malaspina, Tatiana Salles; Marques, Vinícius Rizzo; Vicente, Marina Jurado; Marcos, Elaine Camarinha; Souza, Fabiana Corvolo; Nogueira, Maria Renata Sales; Barreto, Jaison Antônio; Garlet, Gustavo Pompermaier; da Silva, João Santana; Brito-de-Souza, Vânia Nieto; Campanelli, Ana Paula
2017-01-01
Leprosy remains a health problem in several countries. Current management of patients with leprosy is complex and requires multidrug therapy. Nonetheless, antibiotic treatment is insufficient to prevent nerve disabilities and control Mycobacterium leprae . Successful infectious disease treatment demands an understanding of the host immune response against a pathogen. Immune-based therapy is an effective treatment option for malignancies and infectious diseases. A promising therapeutic approach to improve the clinical outcome of malignancies is the blockade of immune checkpoints. Immune checkpoints refer to a wide range of inhibitory or regulatory pathways that are critical for maintaining self-tolerance and modulating the immune response. Programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4, and lymphocyte-activation gene-3 are the most important immune checkpoint molecules. Several pathogens, including M. leprae , are supposed to utilize these mechanisms to evade the host immune response. Regulatory T cells and expression of co-inhibitory molecules on lymphocytes induce specific T-cell anergy/exhaustion, leading to disseminated and progressive disease. From this perspective, we outline how the co-inhibitory molecules PD-1, PD-L1, and Th1/Th17 versus Th2/Treg cells are balanced, how antigen-presenting cell maturation acts at different levels to inhibit T cells and modulate the development of leprosy, and how new interventions interfere with leprosy development.
Neumann, Frank; Wagner, Claudia; Preuss, Klaus-Dieter; Kubuschok, Boris; Schormann, Claudia; Stevanovic, Stefan; Pfreundschuh, Michael
2005-11-01
Because of their frequent expression in a wide spectrum of malignant tumors but not in normal tissue except testis, cancer testis antigens are promising targets. However, except for HOM-TES-14/SCP1, their expression in malignant lymphomas is rare. SCP1 (synaptonemal complex protein 1) has been shown to elicit antibody responses in the autologous host, but no T-cell responses against HOM-TES-14/SCP1 have been reported. Using the SYFPEITHI algorithm, we selected peptides with a high binding affinity to major histocompatibility complex class 2 (MHC 2) molecules. The pentadecamer epitope p635-649 induced specific CD4+ T-cell responses that were shown to be restricted by HLA-DRB1*1401. The responses could be blocked by preincubation of T cells with anti-CD4 and antigen-presenting cells with anti-HLA-DR, respectively, proving the HLA-DR-restricted presentation of p635-649 and a CD4+ T-cell-mediated effector response. Responding CD4+ cells did not secrete interleukin-5 (IL-5), indicating that they belong to the T(H)1 subtype. The natural processing and presentation of p635-649 were demonstrated by pulsing autologous and allogeneic dendritic cells with a protein fragment covering p635-649. Thus, p635-649 is the first HOM-TES-14/SCP1-derived epitope to fulfill all prerequisites for use as a peptide vaccine in patients with HOM-TES-14/SCP1-expressing tumors, which is the case in two thirds of peripheral T-cell lymphomas.
Yuan, Xuefeng; Teng, Xindong; Jing, Yukai; Ma, Jilei; Tian, Maopeng; Yu, Qi; Zhou, Lei; Wang, Ruibo; Wang, Weihua; Li, Li; Fan, Xionglin
2015-12-01
Tuberculosis (TB) remains one of the most menacing infectious diseases, although attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine has been widely used to protect children against primary TB. There are increasing evidences that rapid growing and dormant Mycobacterium tuberculosis (M. tuberculosis) coexist in vivo after infection. However, BCG vaccine only elicits cell-mediated immune responses to secretory antigens expressed by rapid growing pathogen. BCG vaccine is thus unable to thwart the reactivation of latent tuberculosis infection (LTBI), and its protection wanes over age after neonatal immunization. In order to extend its ability for a durable protection, a novel recombinant BCG (rBCG) strain, named rBCG::XB, was constructed by overexpressing immunodominant multistage antigens of Ag85B and HspX, which are expressed by both rapid replicating and dormant M. tuberculosis. Long-term protective effect and immunogenicity of rBCG::XB were compared with the parental BCG in vaccinated C57BL/6 mice. Our results demonstrated that rBCG::XB provided the stronger and long-lasting protection against M. tuberculosis H37Rv intranasal infection than BCG. The rBCG::XB not only elicited the more durable multistage antigen-specific CD4(+)Th1-biased immune responses and specific polyfunctional CD4(+)T cells but also augmented the CD8(+) CTL effects against Ag85B in vivo. In particular, higher levels of CD4(+) TEM and CD8(+) TCM cells, dominated by IL2(+) CD4(+) and CD8(+) TCM cells, were obtained in the spleen of rBCG::XB vaccinated mice. Therefore, our findings indicate that rBCG::XB is a promising candidate to improve the efficacy of BCG.
Kim, Jae Heon; Doo, Seung Whan; Yang, Won Jae; Lee, Kwang Woo; Lee, Chang Ho; Song, Yun Seob; Jeon, Yoon Su; Kim, Min Eui; Kwon, Soon-Sun
2014-10-01
To evaluate the impact of obesity on the biopsy detection of prostate cancer. We retrospectively reviewed data of 1182 consecutive Korean patients (≥50 years) with serum prostate-specific antigen levels of 3-10 ng/mL who underwent initial extended 12-cores biopsy from September 2009 to March 2013. Patients who took medications that were likely to influence the prostate-specific antigen level were excluded. Receiver operating characteristic curves were plotted for prostate-specific antigen and prostate-specific antigen density predicting cancer status among non-obese and obese men. A total of 1062 patients (mean age 67.1 years) were enrolled in the analysis. A total of 230 men (21.7%) had a positive biopsy. In the overall study sample, the area under the receiver operator characteristic curve of serum prostate-specific antigen for predicting prostate cancer on biopsy were 0.584 and 0.633 for non-obese and obese men, respectively (P = 0.234). However, the area under the curve for prostate-specific antigen density in predicting cancer status showed a significant difference (non-obese 0.696, obese 0.784; P = 0.017). There seems to be a significant difference in the ability of prostate-specific antigen density to predict biopsy results between non-obese and obese men. Obesity positively influenced the overall ability of prostate-specific antigen density to predict prostate cancer. © 2014 The Japanese Urological Association.
Okano, M; Nagano, T; Nakada, M; Masuda, Y; Kino, K; Yasueda, H; Nose, Y; Nishimura, Y; Ohta, N
1996-01-01
T-cell epitopes of Der p II, a major allergen of Dermatophagoides pteronyssinus, were analyzed by using human T-cell clones. We tested 38 cloned T cells from two Japanese patients with allergic rhinitis, and identified at least two peptides (K33-T47 and I58-C73) as helper T-cell epitopes. The former epitope was shown to be restricted by HLA-DRB1*1502, and the latter by HLA-DRB1*0405, both of which are typical Japanese HLA-DR alleles, suggesting that those T-cell epitopes might be important for the onset of house-dust mite allergy in the Japanese population. We prepared 15 analog peptides of the HLA- DRB1*1502-restricted 15-mer peptide. Of those 15 residues, five (F35, L37, A39, F41, and E42) were critical for the epitope activity, and three residues (F35, A39, and E42) seemed to be included in anchor motifs for HLA-DRB1*1502. The epitope peptide was also recognized by HLA-DRB1*1502-positive healthy donors; however, only allergic T cells showed Th2 functions. Antigen-presenting cells of nonallergic donors were able to activate allergic T cells to express Th2 function. This seemed to suggest that antigen recognition of T cells, as well as additional unknown factors which promote Th2, rather than Th1, responses, might be important for the onset of house-dust mite allergy.
A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen
Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano
2015-01-01
In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses. PMID:26208356
Carrillo, Eugenia; Crusat, Martín; Nieto, Javier; Chicharro, Carmen; Thomas, Maria del Carmen; Martínez, Enrique; Valladares, Basilio; Cañavate, Carmen; Requena, Jose María; López, Manuel Carlos; Alvar, Jorge; Moreno, Javier
2008-03-28
Zoonotic visceral leishmaniasis (ZVL) is a parasitic disease caused by Leishmania infantum/L. chagasi that is emerging as an important medical and veterinary problem. Dogs are the domestic reservoir for this parasite and, therefore, the main target for controlling the transmission to humans. In the present work, we have evaluated the immunogenicity of the Leishmania infantum heat shock protein (HSP)-70, paraflagellar rod protein (PFR)-2 and kinetoplastida membrane protein (KMP)-11 recombinant proteins in dogs experimentally infected with the parasite. We have shown that peripheral blood mononuclear cells (PBMC) from experimentally infected dogs proliferated in response to these recombinant antigens and against the soluble leishmanial antigen (SLA). We have also quantified the mRNA expression level of the cytokines induced in PBMC upon stimulation with the HSP-70, PFR-2 and KMP-11 proteins. These recombinant proteins induced an up-regulation of IFN-gamma. HSP-70 and PFR-2 also produced an increase of the TNF-alpha transcripts abundance. No measurable induction of IL-10 was observed and low levels of IL-4 mRNA were produced in response to the three mentioned recombinant antigens. Serum levels of specific antibodies against HSP-70, PFR-2 and KMP-11 recombinant proteins were also determined in these animals. Our study showed that HSP-70, KMP-11 and PFR-2 proteins are recognized by infected canines. Furthermore, these antigens produce a Th1-type immune response, suggesting that they may be involved in protection. The identification as vaccine candidates of Leishmania antigens that elicit appropriate immune responses in the canine model is a key step in the rational approach to generate a vaccine for canine visceral leishmaniasis.
Liu, Yingru; Hammer, Laura A.; Liu, Wensheng; Hobbs, Marcia M.; Zielke, Ryszard A.; Sikora, Aleksandra E.; Jerse, Ann E.; Egilmez, Nejat K.; Russell, Michael W.
2017-01-01
Female mice were immunized intravaginally with gonococcal outer membrane vesicles (OMV) plus microencapsulated IL-12, and challenged using an established model of genital infection with Neisseria gonorrhoeae. Whereas sham-immunized and control animals cleared the infection in 10–13 days, those immunized with OMV plus IL-12 cleared infection with homologous gonococcal strains in 6–9 days. Significant protection was also seen after challenge with antigenically distinct strains of N. gonorrhoeae, and protective anamnestic immunity persisted for at least 6 months after immunization. Serum and vaginal IgG and IgA antibodies were generated against antigens expressed by homologous and heterologous strains. Iliac lymph node CD4+ T cells secreted IFNγ, but not IL-4, in response to immunization, and produced IL-17 in response to challenge regardless of immunization. Antigens recognized by immunized mouse serum included several shared between gonococcal strains, including two identified by immunoproteomics approaches as EF-Tu and PotF3. Experiments with immunodeficient mice showed that protective immunity depended upon IFNγ and B cells, presumably to generate antibodies. The results demonstrated that immunity to gonococcal infection can be induced by immunization with a non-living gonococcal antigen, and suggest that efforts to develop a human vaccine should focus on strategies to generate Th1-driven immune responses in the genital tract. PMID:28272393
Kumari, Shraddha; Samant, Mukesh; Misra, Pragya; Khare, Prashant; Sisodia, Brijesh; Shasany, Ajit K; Dube, Anuradha
2008-10-23
Our earlier studies identified a fraction (F2) of Leishmania donovani soluble promastigote antigen belonging to 97.4-68 kDa for its ability to stimulate Th1-type cellular responses in cured visceral leishmaniasis (VL) patients as well as in cured hamsters. A further fractionation of F2-fraction into seven subfractions (F2.1-F2.7) and re-assessment for their immunostimulatory responses revealed that out of these, only four (F2.4-F2.7) belonging to 89.9-97.1 kDa, stimulated remarkable Th1-type cellular responses either individually or in a pooled form (P4-7). In this study these potential subfractions were further assessed for their prophylactic potential in combination with BCG against L. donovani challenge in hamsters. Optimum parasite inhibition ( approximately 99%) was obtained in hamsters vaccinated with pooled subfractions and they survived for 1 year. The protection was further supported by remarkable lymphoproliferative, IFN-gamma and IL-12 responses along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody as observed on days 45, 90 and 120 post-challenge suggesting that a successful subunit vaccine against VL may require multiple Th1-immunostimulatory proteins. MALDI-TOF-MS/MS analysis of these subfractions further revealed that of the 19 identified immunostimulatory proteins, Elongation factor-2, p45, Heat shock protein-70/83, Aldolase, Enolase, Triosephosphate isomerase, Disulfideisomerase and Calreticulin were the major ones in these subfractions.
Immunology mini-review: the basics of T(H)17 and interleukin-6 in transplantation.
Nakagiri, T; Inoue, M; Minami, M; Shintani, Y; Okumura, M
2012-05-01
The outcomes of organ transplantation are determined by graft rejection, the mechanisms of which are some of the most important areas of study in the transplantation field. The main cause of rejection is the immunologic response of the recipient toward the transplanted organ. The immunologic responses are regulated by T-cell subsets, especially helper T-cells, which have been characterized as T(H)1 or T(H)2 cells according to their profiles of cytokines production. A unique subset of recently identified lymphocytes, the regulatory T cells (T(reg)s), seem to play a role in tolerance. The recently identified T(H)17 cells are a subset of effector-helper lymphocytes that specifically secrete interleukin (IL) 17. Interestingly, T(H)17 and T(reg) both develop from naïve T cells on stimulation by transforming growth factor β. The difference is only the existence of IL-6, a proinflammatory cytokine. T(H)17 clears pathogens that are not adequately handled by T(H)1 and T(H)2 elements, as well as contributing to autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory diseases. Autoimmune diseases are caused by reactions to self-antigens. T(H)17 (or IL-17) and IL-6 are also thought to be involved in rejection after organ transplantation. We examined the contributions of T(H)17 and IL-6 in bronchiolitis obliterans (BO), the histologic finding in chronic rejection of lung transplantations. Earlier studies have reported that T(H)17 and IL-6 contribute not only to chronic rejection of lung transplantations, but also to the rejection of other solid organs, e.g., heart, liver, and kidney. In addition, prospective avenues of research on T(H)17 and IL-6 in transplantation have emerged from the perspectives of recent studies. Copyright © 2012 Elsevier Inc. All rights reserved.
Russano, A M; Agea, E; Casciari, C; de Benedictis, F M; Spinozzi, F
2008-11-01
Recent advances in allergy research mostly focussed on two major headings: improving protein allergen purification, which is aimed towards a better characterization of IgE- and T-cell reactive epitopes, and the potential new role for unconventional innate and regulatory T cells in controlling airway inflammation. These advancements could appear to be in conflict each other, as innate T cells have a poorly-defined antigen specificity that is often directed toward nonprotein substances, such as lipids. To reconcile these contrasting findings, the model of cypress pollinosis as paradigmatic for studying allergic diseases in adults is suggested. The biochemical characterization of major native protein allergens from undenatured pollen grain demonstrated that the most relevant substance with IgE-binding activity is a glycohydrolase enzyme, which easily denaturizes in stored grains. Moreover, lipids from the pollen membrane are implicated in early pollen grain capture and recognition by CD1(+) dendritic cells (DC) and CD1-restricted T lymphocytes. These T cells display Th0/Th2 functional activity and are also able to produce regulatory cytokines, such as IL-10 and TGF-beta. CD1(+) immature DCs expand in the respiratory mucosa of allergic subjects and are able to process both proteins and lipids. A final scenario may suggest that expansion and functional activation of CD1(+) DCs is a key step for mounting a Th0/Th2-deviated immune response, and that such innate response does not confer long-lasting protective immunity.
van Langelaar, Jamie; van der Vuurst de Vries, Roos M; Janssen, Malou; Wierenga-Wolf, Annet F; Spilt, Isis M; Siepman, Theodora A; Dankers, Wendy; Verjans, Georges M G M; de Vries, Helga E; Lubberts, Erik; Hintzen, Rogier Q; van Luijn, Marvin M
2018-05-01
Interleukin-17-expressing CD4+ T helper 17 (Th17) cells are considered as critical regulators of multiple sclerosis disease activity. However, depending on the species and pro-inflammatory milieu, Th17 cells are functionally heterogeneous, consisting of subpopulations that differentially produce interleukin-17, interferon-gamma and granulocyte macrophage colony-stimulating factor. In the current study, we studied distinct effector phenotypes of human Th17 cells and their correlation with disease activity in multiple sclerosis patients. T helper memory populations single- and double-positive for C-C chemokine receptor 6 (CCR6) and CXC chemokine receptor 3 (CXCR3) were functionally assessed in blood and/or cerebrospinal fluid from a total of 59 patients with clinically isolated syndrome, 35 untreated patients and 24 natalizumab-treated patients with relapsing-remitting multiple sclerosis, and nine patients with end-stage multiple sclerosis. Within the clinically isolated syndrome group, 23 patients had a second attack within 1 year and 26 patients did not experience subsequent attacks during a follow-up of >5 years. Low frequencies of T helper 1 (Th1)-like Th17 (CCR6+CXCR3+), and not Th17 (CCR6+CXCR3-) effector memory populations in blood strongly associated with a rapid diagnosis of clinically definite multiple sclerosis. In cerebrospinal fluid of clinically isolated syndrome and relapsing-remitting multiple sclerosis patients, Th1-like Th17 effector memory cells were abundant and showed increased production of interferon-gamma and granulocyte macrophage colony-stimulating factor compared to paired CCR6+ and CCR6-CD8+ T cell populations and their blood equivalents after short-term culturing. Their local enrichment was confirmed ex vivo using cerebrospinal fluid and brain single-cell suspensions. Across all pro-inflammatory T helper cells analysed in relapsing-remitting multiple sclerosis blood, Th1-like Th17 subpopulation T helper 17.1 (Th17.1; CCR6+CXCR3+CCR4-) expressed the highest very late antigen-4 levels and selectively accumulated in natalizumab-treated patients who remained free of clinical relapses. This was not found in patients who experienced relapses during natalizumab treatment. The enhanced potential of Th17.1 cells to infiltrate the central nervous system was supported by their predominance in cerebrospinal fluid of early multiple sclerosis patients and their preferential transmigration across human brain endothelial layers. These findings reveal a dominant contribution of Th1-like Th17 subpopulations, in particular Th17.1 cells, to clinical disease activity and provide a strong rationale for more specific and earlier use of T cell-targeted therapy in multiple sclerosis.
Huang, T J; MacAry, P A; Eynott, P; Moussavi, A; Daniel, K C; Askenase, P W; Kemeny, D M; Chung, K F
2001-01-01
Th2 T cell immune-driven inflammation plays an important role in allergic asthma. We studied the effect of counterbalancing Th1 T cells in an asthma model in Brown Norway rats that favors Th2 responses. Rats received i.v. transfers of syngeneic allergen-specific Th1 or Th2 cells, 24 h before aerosol exposure to allergen, and were studied 18-24 h later. Adoptive transfer of OVA-specific Th2 cells, but not Th1 cells, and OVA, but not BSA exposure, induced bronchial hyperresponsiveness (BHR) to acetylcholine and eosinophilia in a cell number-dependent manner. Importantly, cotransfer of OVA-specific Th1 cells dose-dependently reversed BHR and bronchoalveolar lavage (BAL) eosinophilia, but not mucosal eosinophilia. OVA-specific Th1 cells transferred alone induced mucosal eosinophilia, but neither BHR nor BAL eosinophilia. Th1 suppression of BHR and BAL eosinophilia was allergen specific, since cotransfer of BSA-specific Th1 cells with the OVA-specific Th2 cells was not inhibitory when OVA aerosol alone was used, but was suppressive with OVA and BSA challenge. Furthermore, recipients of Th1 cells alone had increased gene expression for IFN-gamma in the lungs, while those receiving Th2 cells alone showed increased IL-4 mRNA. Importantly, induction of these Th2 cytokines was inhibited in recipients of combined Th1 and Th2 cells. Anti-IFN-gamma treatment attenuated the down-regulatory effect of Th1 cells. Allergen-specific Th1 cells down-regulate efferent Th2 cytokine-dependent BHR and BAL eosinophilia in an asthma model via mechanisms that depend on IFN-gamma. Therapy designed to control the efferent phase of established asthma by augmenting down-regulatory Th1 counterbalancing mechanisms should be effective.
[Theories on the mode of action of desensitization].
Klimek, L; Reske-Kunz, A B; Saloga, J
1999-01-01
Specific immunotherapy (SIT) has been practised successfully for about 80 years. In classic immunotherapy, an allergen-extract is repeatedly injected subcutaneously in increasing doses. A large number of clinically controlled studies have proved the efficacy of this kind of immunotherapy, while its mode of action is not precisely known yet. A successful SIT leads to an impairment of allergic symptoms (symptom score), and a concordant decrease in drug use. Furthermore, a reduced reactivity in specific dermal, nasal and bronchial provocation tests is induced as well as a diminished unspecific reagibility in the affected tissues. Several studies showed reduced values for allergen-specific IgE (serum) that followed an initial increase. A reduced immigration of eosinophils was found, both after provocation with allergen and during the pollen season, as well as diminished values of markers for the activity of eosinophils, e.g. eosinophil cationic protein (ECP). Also, a reduced allergen-induced histamine-liberation from mast cells and basophils has been reported. The underlying mechanism for these effects of SIT might be a reorientation of the allergen-induced lymphokine-production to a dominant TH1-cytokine-profile. Because the relation between the quantity of IL-4 and its regulator IFN-gamma controls the extent of IgE-synthesis by B-cells, the reorientation leads to a diminished production of IgE. IFN-gamma inhibits the differentiation of TH2-cells; by this less TH2-cells are present to help B-cells to produce IgE-antibodies, and to induce the differentiation of mast cells and basophils as well as immigration, differentiation and activation of eosinophils. Thus, the positive effects of SIT can be explained by the reorientation T-cell lymphokine profile. The mechanism under discussion for explaining this reorientation include: 1) an increased differentiation of allergen-specific CD4+ precursor-cells or a reorientation of established TH2-cells to the production of IFN-gamma, 2) the differentiation of IFN-gamma-producing CD8+ T-cells and of T-cells with receptors for T-cell-antigenes of the gamma, delta-type; and 3) the induction of an energy in TH2-cells.
Ramírez, Laura; Santos, Diego M; Souza, Ana P; Coelho, Eduardo A F; Barral, Aldina; Alonso, Carlos; Escutia, Marta R; Bonay, Pedro; de Oliveira, Camila I; Soto, Manuel
2013-02-18
Four new antigenic proteins located in Leishmania ribosomes have been characterized: S4, S6, L3 and L5. Recombinant versions of the four ribosomal proteins from Leishmania major were recognized by sera from human and canine patients suffering different clinical forms of leishmaniasis. The prophylactic properties of these proteins were first studied in the experimental model of cutaneous leishmaniasis caused by L. major inoculation into BALB/c mice. The administration of two of them, LmL3 or LmL5 combined with CpG-oligodeoxynucleotides (CpG-ODN) was able to protect BALB/c mice against L. major infection. Vaccinated mice showed smaller lesions and parasite burden compared to mice inoculated with vaccine diluent or vaccine adjuvant. Protection was correlated with an antigen-specific increased production of IFN-γ paralleled by a decrease of the antigen-specific IL-10 mediated response in protected mice relative to non-protected controls. Further, it was demonstrated that BALB/c mice vaccinated with recombinant LmL3 or LmL5 plus CpG-ODN were also protected against the development of cutaneous lesions following inoculation of L. braziliensis. Together, data presented here indicate that LmL3 or LmL5 ribosomal proteins combined with Th1 inducing adjuvants, may be relevant components of a vaccine against cutaneous leishmaniasis caused by distinct species. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hill, Jim; Copse, Catherine; Leary, Sophie; Stagg, Anthony J; Williamson, E Diane; Titball, Richard W
2003-04-01
Monoclonal antibodies specific for Yersinia pestis V antigen and F1 antigen, administered singly or in combination, protected mice in models of bubonic and pneumonic plague. Antibodies showed synergy when administered prophylactically and as a therapy 48 h postinfection. Monoclonal antibodies therefore have potential as a treatment for plague.
Latta, Markus; Mohan, Karkada; Issekutz, Thomas B
2007-01-01
Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4–6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6+ T cells to 35–50% and anti-T-cell receptor (TCR) activation to 60–80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6+ T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6+ in virus-induced peritoneal exudates (∼47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6+, whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6+, but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge. PMID:17437534
Latta, Markus; Mohan, Karkada; Issekutz, Thomas B
2007-08-01
Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4-6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6(+) T cells to 35-50% and anti-T-cell receptor (TCR) activation to 60-80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6(+) T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6(+) in virus-induced peritoneal exudates (approximately 47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6(+), whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6(+), but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge.
Consonni, Alessandra; Sharma, Sapna; Schön, Karin; Lebrero-Fernández, Cristina; Rinaldi, Elena; Lycke, Nils Yngve; Baggi, Fulvio
2017-01-01
Reinstating tissue-specific tolerance has attracted much attention as a means to treat autoimmune diseases. However, despite promising results in rodent models of autoimmune diseases, no established tolerogenic therapy is clinically available yet. In the experimental autoimmune myasthenia gravis (EAMG) model several protocols have been reported that induce tolerance against the prime disease-associated antigen, the acetylcholine receptor (AChR) at the neuromuscular junction. Using the whole AChR, the extracellular part or peptides derived from the receptor, investigators have reported variable success with their treatments, though, usually relatively large amounts of antigen has been required. Hence, there is a need for better formulations and strategies to improve on the efficacy of the tolerance-inducing therapies. Here, we report on a novel targeted fusion protein carrying the immunodominant peptide from AChR, mCTA1-T146, which given intranasally in repeated microgram doses strongly suppressed induction as well as ongoing EAMG disease in mice. The results corroborate our previous findings, using the same fusion protein approach, in the collagen-induced arthritis model showing dramatic suppressive effects on Th1 and Th17 autoaggressive CD4 T cells and upregulated regulatory T cell activities with enhanced IL10 production. A suppressive gene signature with upregulated expression of mRNA for TGFβ, IL10, IL27, and Foxp3 was clearly detectable in lymph node and spleen following intranasal treatment with mCTA1-T146. Amelioration of EAMG disease was accompanied by reduced loss of muscle AChR and lower levels of anti-AChR serum antibodies. We believe this targeted highly effective fusion protein mCTA1-T146 is a promising candidate for clinical evaluation in myasthenia gravis patients.
Consonni, Alessandra; Sharma, Sapna; Schön, Karin; Lebrero-Fernández, Cristina; Rinaldi, Elena; Lycke, Nils Yngve; Baggi, Fulvio
2017-01-01
Reinstating tissue-specific tolerance has attracted much attention as a means to treat autoimmune diseases. However, despite promising results in rodent models of autoimmune diseases, no established tolerogenic therapy is clinically available yet. In the experimental autoimmune myasthenia gravis (EAMG) model several protocols have been reported that induce tolerance against the prime disease-associated antigen, the acetylcholine receptor (AChR) at the neuromuscular junction. Using the whole AChR, the extracellular part or peptides derived from the receptor, investigators have reported variable success with their treatments, though, usually relatively large amounts of antigen has been required. Hence, there is a need for better formulations and strategies to improve on the efficacy of the tolerance-inducing therapies. Here, we report on a novel targeted fusion protein carrying the immunodominant peptide from AChR, mCTA1–T146, which given intranasally in repeated microgram doses strongly suppressed induction as well as ongoing EAMG disease in mice. The results corroborate our previous findings, using the same fusion protein approach, in the collagen-induced arthritis model showing dramatic suppressive effects on Th1 and Th17 autoaggressive CD4 T cells and upregulated regulatory T cell activities with enhanced IL10 production. A suppressive gene signature with upregulated expression of mRNA for TGFβ, IL10, IL27, and Foxp3 was clearly detectable in lymph node and spleen following intranasal treatment with mCTA1–T146. Amelioration of EAMG disease was accompanied by reduced loss of muscle AChR and lower levels of anti-AChR serum antibodies. We believe this targeted highly effective fusion protein mCTA1–T146 is a promising candidate for clinical evaluation in myasthenia gravis patients. PMID:28959261
Hashimoto, Yuki; Takaoka, Akiko; Sugimoto, Masanori; Honma, Yusuke; Sakurai, Takanobu; Futaki, Nobuko; Arai, Iwao
2011-10-01
Atopic dermatitis (AD) is related to immunoglobulin E (IgE) production, and a type-1 and type-2 helper T cell (Th1/Th2) imbalance has been hypothesized as the aetiology. While itching and scratching are important factors in the development of dermatitis, the mechanisms underlying these phenomena are poorly understood. We investigated the relationship between scratching, transepidermal water loss (TEWL), signs of dermatitis and serum Ig levels in NC/Nga mice, a model of AD. We also sensitized specific pathogen-free (SPF)-NC/Nga mice and BALB/c mice to mite antigen to determine the effects of IgE overproduction on scratching and investigated the involvement of mast cells and T/B cells in the induction of scratching using WBB6F1-W/W(v) mice and C.B.17/Icr-scid mice. Under conventional conditions, the scratch counts increased, followed by increases in TEWL and the inflammation score in NC/Nga mice that were not kept under SPF conditions. However, no change was observed in scratching, TEWL, or signs of dermatitis in mite antigen-sensitized SPF-NC/Nga and BALB/c mice, although the serum total IgE, IgG(1) and IgG(2a) levels increased. The scratch count increased significantly in both the WBB6F1-W/W(v) mice and C.B.17/Icr-scid mice when they were co-housed with skin-lesioned NC/Nga mice, raised under conventional conditions. These results show that IgE overproduction results from itch-associated scratching-induced dermatitis in NC/Nga mice. © 2011 John Wiley & Sons A/S.
Andriole, Gerald L; McCullum-Hill, Christie; Sandhu, Gurdarshan S; Crawford, E David; Barry, Michael J; Cantor, Alan
2013-02-01
Saw palmetto extracts are used to treat lower urinary tract symptoms in men despite level I evidence that saw palmetto is ineffective in reducing these lower urinary tract symptoms. We determined whether higher doses of saw palmetto as studied in the CAMUS (Complementary and Alternative Medicine for Urologic Symptoms) trial affect serum prostate specific antigen levels. The CAMUS trial was a randomized, placebo controlled, double-blind, multicenter, North American trial conducted between June 5, 2008 and October 10, 2012, in which 369 men older than 45 years with an AUA symptom score of 8 to 24 were randomly assigned to placebo or dose escalation of saw palmetto, which consisted of 320 mg for the first 24 weeks, 640 mg for the next 24 weeks and 960 mg for the last 24 weeks of this 72-week trial. Serum prostate specific antigen levels were obtained at baseline and at weeks 24, 48 and 72, and were compared between treatment groups using the pooled t test and Fisher's exact test. Serum prostate specific antigen was similar at baseline for the placebo (mean ± SD 1.93 ± 1.59 ng/ml) and saw palmetto groups (2.20 ± 1.95, p = 0.16). Changes in prostate specific antigen during the study were similar, with a mean change in the placebo group of 0.16 ± 1.08 ng/ml and 0.23 ± 0.83 ng/ml in the saw palmetto group (p = 0.50). In addition, no differential effect on serum prostate specific antigen was observed between treatment arms when the groups were stratified by baseline prostate specific antigen. Saw palmetto extract does not affect serum prostate specific antigen more than placebo, even at relatively high doses. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib
2016-11-01
To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D. Copyright © 2016 by The American Association of Immunologists, Inc.
Gonzalez-Rey, Elena; Chorny, Alejo; Del Moral, Raimundo G; Varela, Nieves; Delgado, Mario
2007-05-01
Rheumatoid arthritis is a chronic autoimmune disease of unknown aetiology characterised by chronic inflammation in the joints and subsequent destruction of the cartilage and bone. To propose a new strategy for the treatment of arthritis based on the administration of cortistatin, a newly discovered neuropeptide with anti-inflammatory actions. DBA/1J mice with collagen-induced arthritis were treated with cortistatin after the onset of disease, and the clinical score and joint histopathology were evaluated. Inflammatory response was determined by measuring the levels of various inflammatory mediators (cytokines and chemokines) in joints and serum. T helper cell type 1 (Th1)-mediated autoreactive response was evaluated by determining the proliferative response and cytokine profile of draining lymph node cells stimulated with collagen and by assaying the content of serum autoantibodies. Cortistatin treatment significantly reduced the severity of established collagen-induced arthritis, completely abrogating joint swelling and destruction of cartilage and bone. The therapeutic effect of cortistatin was associated with a striking reduction in the two deleterious components of the disease-that is, the Th1-driven autoimmune and inflammatory responses. Cortistatin downregulated the production of various inflammatory cytokines and chemokines, decreased the antigen-specific Th1-cell expansion, and induced the production of regulatory cytokines, such as interleukin 10 and transforming growth factor beta1. Cortistatin exerted its effects on synovial cells through both somatostatin and ghrelin receptors, showing a higher effect than both peptides protecting against experimental arthritis. This work provides a powerful rationale for the assessment of the efficacy of cortistatin as a novel therapeutic approach to the treatment of rheumatoid arthritis.
[Differentiation of nonspecific serological reactions in brucellosis].
Khristoforov, L
1979-01-01
Differentiation of non-specific agglutination was performed by the complement binding reaction, Coombs' reaction, Hajdu reaction, the surface fixation and agglutination reaction and the reaction of complement binding with heterologic antigens. For that purpose the following were used: 1) Serums--antiglobulin against cattle globulin, 5720 serum of various animals which had manifested non-specific agglutination with brucella antigen and brucella serums of experimentally infected sheep, of naturally infected swine and of cattle--received from abroad. 2) Antigens--of Br. abortus 99, of bacteria heterologic to brucellae: Proteus vulgaris, Listeria monocytogenes, Staphylococcus albus, Escherichia coli, Streptococcus pyogenes, S. abortus ovis, for O and OH agglutination, water extraction antigens--for complement binding and concentrated suspensions of all bacteria used in brucellose and non-brucellose serum absorption. Highest number of non-specific reactions were observed in cattle serums and lowest--in goat serums. Titers with heterologic antigens were higher than these with brucella antigens. Often the serum having non-specific agglutiantion reacted not only with one, but with more heterologic antigens. Non-specific complement binding reactions were not produced in complete antibodies with the brucella antigen. Heterologic brucella antigens were exhausted more fully than heterologic complement binding antibodies. In their effectiveness (differentiation of non-specific agglutination with brucella antigen in cattle serum) the serological reactions studied rank as follows: complement binding reaction, slow agglutination with serums absorbed by heterologic antigens, surface fixation reaction, Coombs' reaction, and Hadju agglutination.
Immunological findings in autism.
Cohly, Hari Har Parshad; Panja, Asit
2005-01-01
The immunopathogenesis of autism is presented schematically in Fig. 1. Two main immune dysfunctions in autism are immune regulation involving pro-inflammatory cytokines and autoimmunity. Mercury and an infectious agent like the measles virus are currently two main candidate environmental triggers for immune dysfunction in autism. Genetically immune dysfunction in autism involves the MHC region, as this is an immunologic gene cluster whose gene products are Class I, II, and III molecules. Class I and II molecules are associated with antigen presentation. The antigen in virus infection initiated by the virus particle itself while the cytokine production and inflammatory mediators are due to the response to the putative antigen in question. The cell-mediated immunity is impaired as evidenced by low numbers of CD4 cells and a concomitant T-cell polarity with an imbalance of Th1/Th2 subsets toward Th2. Impaired humoral immunity on the other hand is evidenced by decreased IgA causing poor gut protection. Studies showing elevated brain specific antibodies in autism support an autoimmune mechanism. Viruses may initiate the process but the subsequent activation of cytokines is the damaging factor associated with autism. Virus specific antibodies associated with measles virus have been demonstrated in autistic subjects. Environmental exposure to mercury is believed to harm human health possibly through modulation of immune homeostasis. A mercury link with the immune system has been postulated due to the involvement of postnatal exposure to thimerosal, a preservative added in the MMR vaccines. The occupational hazard exposure to mercury causes edema in astrocytes and, at the molecular level, the CD95/Fas apoptotic signaling pathway is disrupted by Hg2+. Inflammatory mediators in autism usually involve activation of astrocytes and microglial cells. Proinflammatory chemokines (MCP-1 and TARC), and an anti-inflammatory and modulatory cytokine, TGF-beta1, are consistently elevated in autistic brains. In measles virus infection, it has been postulated that there is immune suppression by inhibiting T-cell proliferation and maturation and downregulation MHC class II expression. Cytokine alteration of TNF-alpha is increased in autistic populations. Toll-like-receptors are also involved in autistic development. High NO levels are associated with autism. Maternal antibodies may trigger autism as a mechanism of autoimmunity. MMR vaccination may increase risk for autism via an autoimmune mechanism in autism. MMR antibodies are significantly higher in autistic children as compared to normal children, supporting a role of MMR in autism. Autoantibodies (IgG isotype) to neuron-axon filament protein (NAFP) and glial fibrillary acidic protein (GFAP) are significantly increased in autistic patients (Singh et al., 1997). Increase in Th2 may explain the increased autoimmunity, such as the findings of antibodies to MBP and neuronal axonal filaments in the brain. There is further evidence that there are other participants in the autoimmune phenomenon. (Kozlovskaia et al., 2000). The possibility of its involvement in autism cannot be ruled out. Further investigations at immunological, cellular, molecular, and genetic levels will allow researchers to continue to unravel the immunopathogenic mechanisms' associated with autistic processes in the developing brain. This may open up new avenues for prevention and/or cure of this devastating neurodevelopmental disorder.
LOCAL ORGAN HYPERSENSITIVENESS
Seegal, David; Seegal, Beatrice Carrier
1931-01-01
1. Rabbit eyes sensitized with guinea pig red blood cells or fresh egg white respond with an inflammatory reaction following the intravenous injection of the homologous antigen, but not the heterologous. 2. Two-tenths of 1.0 cc. of a multiple antigen containing ten separate ingredients, or in other words, 0.02 cc. of each foreign protein, when introduced into the rabbit's anterior chamber, is sufficient to produce an altered ocular reactivity such that when 1 cc. of one of the ten antigens is introduced intravenously the eye shows hyperemia of the iris and conjunctiva with more or less edema and lacrimation during the next 24 hours. 3. For as long as 8 months after sensitization eyes will respond with an inflammatory reaction following the intravenous injection of fractions of the total antigen. 4. Repeated daily intravenous injections of a single antigen usually produce no reaction in the sensitized eye after the first few days. Injection of different antigens intravenously on succeeding days produces a continued sterile inflammatory process in the sensitized eye. After the total number of single antigens has been injected, repetition of these injections now fails to produce a similar response. Instead, the eye reaction is at a much lower level and the inflammatory response is manifested only to a few of the antigens injected intravenously. 5. Unless massive doses of antigen are used to desensitize, permanent desensitization of the eye has not occurred in animals which have been followed for at least 8 months. Animals may develop maximal eye responses following repeated intravenous injections of the same antigen, if sufficient time has elapsed between injections. Nevertheless, the eye reactions which can be elicited 6 or 7 months after sensitization are less intense than the initial responses. 6. The ability of the eye inflammation to light up following the intravenous injection of homologous antigen is not due to an initial tissue injury as proven by the fact that the reaction is specific and anterior chambers injured with typhoid vaccine, iodine, saline, glycerine, or albolene will not respond subsequently when the various proteins used for sensitization of the other eyes are injected intravenously. 7. It has been impossible to demonstrate sensitivity in the eye by the intravenous shocking route until at least the 5th day following introduction of the antigen into the anterior chamber. 8. The eye reaction can be produced by the subcutaneous as well as the intravenous injection of antigen. 9. Rabbits vary considerably in the intensity of the eye reaction which can be elicited in them, but only rarely was an animal found which failed completely to give a reaction. PMID:19869914