Manipulating regulatory T cells: a promising strategy to treat autoimmunity.
Zhang, Dunfang; Tu, Eric; Kasagi, Shimpei; Zanvit, Peter; Chen, Qianming; Chen, WanJun
2015-01-01
CD4(+)CD25(+)Foxp3(+)regulatory T cells (Treg cells) are extremely important in maintaining immune tolerance. Manipulation of Treg cells, especially autoantigen-specific Treg cells is a promising approach for treatments of autoimmune disease since Treg cells may provide the advantage of antigen specificity without overall immune suppression. However, the clinical application of Treg cells has long been limited due to low numbers of Treg cells and the difficulty in identifying their antigen specificity. In this review, we summarize studies that demonstrate regression of autoimmune diseases using Treg cells as therapeutics. We also discuss approaches to generate polyclonal and autoantigen-specific Treg cells in vitro and in vivo. We also discuss our recent study that describes a novel approach of generating autoantigen-specific Treg cells in vivo and restoring immune tolerance by two steps apoptosis-antigen therapy.
Development and maintenance of intestinal regulatory T cells.
Tanoue, Takeshi; Atarashi, Koji; Honda, Kenya
2016-05-01
Gut-resident forkhead box P3 (FOXP3)(+)CD4(+) regulatory T cells (Treg cells) are distinct from those in other organs and have gut-specific phenotypes and functions. Whereas Treg cells in other organs have T cell receptors (TCRs) specific for self antigens, intestinal Treg cells have a distinct set of TCRs that are specific for intestinal antigens, and these cells have pivotal roles in the suppression of immune responses against harmless dietary antigens and commensal microorganisms. The differentiation, migration and maintenance of intestinal Treg cells are controlled by specific signals from the local environment. In particular, certain members of the microbiota continuously provide antigens and immunoregulatory small molecules that modulate intestinal Treg cells. Understanding the development and the maintenance of intestinal Treg cells provides important insights into disease-relevant host-microorganism interactions.
Sheng, Jian Rong; Muthusamy, Thiruppathi; Prabahakar, Bellur S.; Meriggioli, Matthew N.
2011-01-01
We and others have demonstrated the ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) to suppress autoimmunity by increasing the number of CD4+CD25+ regulatory T cells (Tregs). In the current study, we have explored the critical role of induced antigen specific Tregs in the therapeutic effects of GM-CSF in murine experimental autoimmune myasthenia gravis (EAMG). Specifically, we show that Tregs from GM-CSF treated EAMG mice (GM-CSF/AChR-induced-Tregs) adoptively transferred into animals with EAMG suppressed clinical disease more potently than equal numbers of Tregs from either GM-CSF untreated EAMG mice or healthy mice treated with GM-CSF. In addition, GM-CSF/AChR-induced-Tregs selectively suppressed antigen specific T cell proliferation induced by AChR relative to that induced by an irrelevant self antigen, (thyroglobulin) and failed to significantly alter T cell proliferation in response to an exogenous antigen (ovalbumin). These results are consistent with the hypothesized mechanism of action of GM-CSF involving the mobilization of tolerogenic dendritic cell precursors which, upon antigen (AChR) capture, suppress the anti-AChR immune response through the induction/expansion of AChR-specific Tregs. PMID:22099723
Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S; Tellides, George; Lakkis, Fadi G
2004-01-01
CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.
Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S.; Tellides, George; Lakkis, Fadi G.
2004-01-01
CD4+CD25+ regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8+ T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8+ T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8+ T cells was observed when Treg cells lacked CD30 or when CD30 ligand–CD30 interaction was blocked with anti–CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses. PMID:14722622
[Difference in target antigens between central tolerance and peripheral tolerance deficiencies].
Chida, Natsuko; Kobayashi, Ichiro
2015-01-01
Failure of the immunotolerance mechanisms causes multiple organ-specific autoimmune disorders. Mutations of autoimmune regulator (AIRE) gene result in central immunotolerance deficiency named autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy (APECED). Mutations of FOXP3 genes cause regulatory T cell (Treg) deficiency named immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Because T cell tolerance influences B cell tolerance, autoantibodies seem to reflect the presence of autoreactive T cells with the same antigen specificity. To date many differences in both clinical features and autoantibody profiles have been described between APECED and IPEX syndrome. In addition to the differences in target organs, we have found differences in the target antigens in the same organ, small intestine, between both disorders; anti-autoimmune enteropathy-related 75 kDa antigen (AIE-75) antibodies are specific to IPEX syndrome, whereas anti-tryptophan hydroxylase-1 (TPH-1) antibodies are specific to APECED. These facts suggest that immunotolerance to AIE-75 depends on the Treg, whereas the tolerance to TPH-1 depends on the central mechanisms. Furthermore, given the earlier onset and more serious clinical features of IPEX syndrome than APECED, physiological roles of Aire on the selection of Treg may be, if present, limited.
Mechanisms Underlying CD4+ Treg Immune Regulation in the Adult: From Experiments to Models
Caridade, Marta; Graca, Luis; Ribeiro, Ruy M.
2013-11-18
To maintain immunological balance the organism has to be tolerant to self while remaining competent to mount an effective immune response against third-party antigens. An important mechanism of this immune regulation involves the action of regulatory T-cell (Tregs). In this mini-review, we discuss some of the known and proposed mechanisms by which Tregs exert their influence in the context of immune regulation, and the contribution of mathematical modeling for these mechanistic studies. These models explore the mechanisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback loopsmore » between APC, Tregs, and effector cells; or production of specific cytokines that act on effector cells. As the field matures, and competing models are winnowed out, it is likely that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade, affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based tolerance.« less
Nazimek, Katarzyna; Ptak, Wlodzimierz; Nowak, Bernadeta; Ptak, Maria; Askenase, Philip W; Bryniarski, Krzysztof
2015-09-01
Murine contact sensitivity (CS) reaction could be antigen-specifically regulated by T CD8(+) suppressor (Ts) lymphocytes releasing microRNA-150 in antibody light-chain-coated exosomes that were formerly suggested to suppress CS through action on macrophages (Mφ). The present studies investigated the role of Mφ in Ts cell-exosome-mediated antigen-specific suppression as well as modulation of Mφ antigen-presenting function in humoral and cellular immunity by suppressive exosomes. Mice depleted of Mφ by clodronate liposomes could not be tolerized and did not produce suppressive exosomes. Moreover, isolated T effector lymphocytes transferring CS were suppressed by exosomes only in the presence of Mφ, demonstrating the substantial role of Mφ in the generation and action of Ts cell regulatory exosomes. Further, significant decrease of number of splenic B cells producing trinitrophenyl (TNP) -specific antibodies with the alteration of the ratio of serum titres of IgM to IgG was observed in recipients of exosome-treated, antigen-pulsed Mφ and the significant suppression of CS was demonstrated in recipients of exosome-treated, TNP-conjugated Mφ. Additionally, exosome-pulsed, TNP-conjugated Mφ mediated suppression of CS in mice pre-treated with a low-dose of cyclophosphamide, suggesting de novo induction of T regulatory (Treg) lymphocytes. Treg cell involvement in the effector phase of the studied suppression mechanism was proved by unsuccessful tolerization of DEREG mice depleted of Treg lymphocytes. Furthermore, the inhibition of proliferation of CS effector cells cultured with exosome-treated Mφ in a transmembrane manner was observed. Our results demonstrated the essential role of Mφ in antigen-specific immune suppression mediated by Ts cell-derived exosomes and realized by induction of Treg lymphocytes and inhibition of T effector cell proliferation. © 2015 John Wiley & Sons Ltd.
Geng, Shuang; Yu, Yang; Kang, Youmin; Pavlakis, George; Jin, Huali; Li, Jinyao; Hu, Yanxin; Hu, Weibin; Wang, Shuang; Wang, Bin
2011-05-05
We previously showed that co-immunization with a protein antigen and a DNA vaccine coding for the same antigen induces CD40 low IL-10 high tolerogenic DCs, which in turn stimulates the expansion of antigen-specific CD4+CD25-Foxp3+ regulatory T cells (CD25- iTreg). However, it was unclear how to choose the antigen sequence to maximize tolerogenic antigen presentation and, consequently, CD25- iTreg induction. In the present study, we demonstrated the requirement of highly antigenic epitopes for CD25- iTreg induction. Firstly, we showed that the induction of CD25- iTreg by tolerogenic DC can be blocked by anti-MHC-II antibody. Next, both the number and the suppressive activity of CD25- iTreg correlated positively with the overt antigenicity of an epitope to activate T cells. Finally, in a mouse model of dermatitis, highly antigenic epitopes derived from a flea allergen not only induced more CD25- iTreg, but also more effectively prevented allergenic reaction to the allergen than did weakly antigenic epitopes. Our data thus indicate that efficient induction of CD25- iTreg requires highly antigenic peptide epitopes. This finding suggests that highly antigenic epitopes should be used for efficient induction of CD25- iTreg for clinical applications such as flea allergic dermatitis.
Blat, Dan; Zigmond, Ehud; Alteber, Zoya; Waks, Tova; Eshhar, Zelig
2014-01-01
The adoptive transfer of regulatory T cells (Tregs) offers a promising strategy to combat pathologies that are characterized by aberrant immune activation, including graft rejection and autoinflammatory diseases. Expression of a chimeric antigen receptor (CAR) gene in Tregs redirects them to the site of autoimmune activity, thereby increasing their suppressive efficiency while avoiding systemic immunosuppression. Since carcinoembryonic antigen (CEA) has been shown to be overexpressed in both human colitis and colorectal cancer, we treated CEA-transgenic mice that were induced to develop colitis with CEA-specific CAR Tregs. Two disease models were employed: T-cell-transfer colitis as well as the azoxymethane–dextran sodium sulfate model for colitis-associated colorectal cancer. Systemically administered CEA-specific (but not control) CAR Tregs accumulated in the colons of diseased mice. In both model systems, CEA-specific CAR Tregs suppressed the severity of colitis compared to control Tregs. Moreover, in the azoxymethane–dextran sodium sulfate model, CEA-specific CAR Tregs significantly decreased the subsequent colorectal tumor burden. Our data demonstrate that CEA-specific CAR Tregs exhibit a promising potential in ameliorating ulcerative colitis and in hindering colorectal cancer development. Collectively, this study provides a proof of concept for the therapeutic potential of CAR Tregs in colitis patients as well as in other autoimmune inflammatory disorders. PMID:24686242
Alijotas-Reig, Jaume; Melnychuk, Taisiia; Gris, Josep Maria
2015-03-15
Because maternal alloreactive lymphocytes are not depleted during pregnancy, local and/or systemic mechanisms have to play a key role in altering the maternal immune response. Peripheral T regulatory cells (pTregs) at the maternal-foetal interface are necessary in situ to prevent early abortion, but only those pTregs that have been previously exposed to paternal alloantigens. It has been showed that pregnancy selectively stimulates the accumulation of maternal Foxp3(+)CD4(+)CD25(+) (Foxp3Tregs) cells with foetal specificity. Interestingly, after delivery, foetal-specific pTregs persist at elevated levels, maintain tolerance to pre-existing foetal antigen, and rapidly re-accumulate during subsequent pregnancy. pTreg up-regulation could be hypothesized as a possible future therapeutic strategy in humans. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Promises and paradoxes of regulatory T cells in inflammatory bowel disease.
Lord, James D
2015-10-28
Since their discovery two decades ago, CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) have become the subject of intense investigation by immunologists. Unlike other T cells, which promote an immune response, Tregs actively inhibit inflammation when activated by their cognate antigen, thus raising hope that these cells could be engineered into a highly targeted, antigen-specific, immunosuppressant therapy. Although Tregs represent less than 10% of circulating CD4(+)T cells, they have been shown to play an essential role in preventing or limiting inflammation in a variety of animal models and human diseases. In particular, spontaneous intestinal inflammation has been shown to occur in the absence of Tregs, suggesting that there may be a Treg defect central to the pathogenesis of human inflammatory bowel disease (IBD). However, over the past decade, multiple groups have reported no qualitative or quantitative deficits in Tregs from the intestines and blood of IBD patients to explain why these cells fail to regulate inflammation in Crohn's disease and ulcerative colitis. In this review, we will discuss the history of Tregs, what is known about them in IBD, and what progress and obstacles have been seen with efforts to employ them for therapeutic benefit.
Antigen-specific, CD4+CD25+ regulatory T cell clones induced in Peyer's patches.
Tsuji, Noriko M; Mizumachi, Koko; Kurisaki, Jun-Ichi
2003-04-01
Since intestine is exposed to numerous exogenous antigens such as food and commensal bacteria, the organ bears efficient mechanisms for establishment of tolerance and induction of regulatory T cells (T(reg)). Intestinal and inducible T(reg) include T(r)1-like and T(h)3 cells whose major effector molecules are IL-10 and transforming growth factor (TGF)-beta. These antigen-specific T(reg) are expected to become clinical targets to modify the inflammatory immune response associated with allergy, autoimmune diseases and transplantation. In the present study, we characterized the antigen-specific T(reg) induced in the intestine by orally administering high-dose beta-lactoglobulin (BLG) to BALB/c mice. Seven days after feeding, only Peyer's patch (PP) cells among different organs exerted significant suppressive effect on antibody production upon in vitro BLG stimulation. This suppressive effect was also prominent in six BLG-specific CD4(+) T cell clones (OPP1-6) established from PP from mice orally administered with high doses of BLG and was partially reversed by antibodies to TGF-beta. Intravenous transfer of OPP2 efficiently suppressed BLG-specific IgG1 production in serum following immunization, indicating the role of such T(reg) in the systemic tolerance after oral administration of antigen (oral tolerance). OPP clones secrete TGF-beta, IFN-gamma and low levels of IL-10, a cytokine pattern similar to that secreted by anergic T cells. OPP clones bear a CD4(+)CD25(+) phenotype and show significantly lower proliferative response compared to T(h)0 clones. This lower response is recovered by the addition of IL-2. Thus, antigen-specific CD4(+)CD25(+) T(reg), which have characteristics of anergic cells and actively suppress antibody production are induced in PP upon oral administration of protein antigen.
Karaki, S; Garcia, G; Tcherakian, C; Capel, F; Tran, T; Pallardy, M; Humbert, M; Emilie, D; Godot, V
2014-05-01
Respiratory allergies rely on a defect of IL-10-secreting regulatory CD4(+) T-cells (IL-10-Tregs ) leading to excessive Th2-biased immune responses to allergens. According to clinical data, the restoration of allergen-specific IL-10-Tregs is required to control respiratory allergies and cure patients. The discovery of mechanisms involved in the generation of IL-10-Tregs will thus help to provide effective treatments. We previously demonstrated that dendritic cells (DCs) expressing high levels of the glucocorticoid-induced leucine zipper protein (GILZ) generate antigen-specific IL-10-Tregs . We suspect a defective expression of GILZ in the DCs of respiratory allergic patients and speculate that increasing its expression might restore immune tolerance against allergens through the induction of IL-10-Tregs . We assessed GILZ expression in blood DCs of patients and healthy nonallergic donors by qPCR. We compared the ability of patients' DCs to induce allergen-specific IL-10-Tregs before and after an in vivo up-regulation of GILZ expression by steroid administration, steroids being inducers of GILZ. We report lower levels of GILZ in DCs of respiratory allergic patients that return to normal levels after steroid administration. We show that patients' DCs with increased levels of GILZ generate allergen-specific IL-10-Tregs again. We further confirm unequivocally that GILZ is required in patients' DCs to activate these IL-10-Tregs . This proof of concept study shows that the re-establishment of GILZ expression in patients' DCs to normal levels restores their capacity to activate allergen-specific IL-10-Tregs . We thus highlight the up-regulation of GILZ in DCs as a new interventional approach to restore the immune tolerance to allergens. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caridade, Marta; Graca, Luis; Ribeiro, Ruy M.
To maintain immunological balance the organism has to be tolerant to self while remaining competent to mount an effective immune response against third-party antigens. An important mechanism of this immune regulation involves the action of regulatory T-cell (Tregs). In this mini-review, we discuss some of the known and proposed mechanisms by which Tregs exert their influence in the context of immune regulation, and the contribution of mathematical modeling for these mechanistic studies. These models explore the mechanisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback loopsmore » between APC, Tregs, and effector cells; or production of specific cytokines that act on effector cells. As the field matures, and competing models are winnowed out, it is likely that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade, affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based tolerance.« less
Boardman, D A; Philippeos, C; Fruhwirth, G O; Ibrahim, M A A; Hannen, R F; Cooper, D; Marelli-Berg, F M; Watt, F M; Lechler, R I; Maher, J; Smyth, L A; Lombardi, G
2017-04-01
Regulatory T cell (Treg) therapy using recipient-derived Tregs expanded ex vivo is currently being investigated clinically by us and others as a means of reducing allograft rejection following organ transplantation. Data from animal models has demonstrated that adoptive transfer of allospecific Tregs offers greater protection from graft rejection compared to polyclonal Tregs. Chimeric antigen receptors (CAR) are clinically translatable synthetic fusion proteins that can redirect the specificity of T cells toward designated antigens. We used CAR technology to redirect human polyclonal Tregs toward donor-MHC class I molecules, which are ubiquitously expressed in allografts. Two novel HLA-A2-specific CARs were engineered: one comprising a CD28-CD3ζ signaling domain (CAR) and one lacking an intracellular signaling domain (ΔCAR). CAR Tregs were specifically activated and significantly more suppressive than polyclonal or ΔCAR Tregs in the presence of HLA-A2, without eliciting cytotoxic activity. Furthermore, CAR and ΔCAR Tregs preferentially transmigrated across HLA-A2-expressing endothelial cell monolayers. In a human skin xenograft transplant model, adoptive transfer of CAR Tregs alleviated the alloimmune-mediated skin injury caused by transferring allogeneic peripheral blood mononuclear cells more effectively than polyclonal Tregs. Our results demonstrated that the use of CAR technology is a clinically applicable refinement of Treg therapy for organ transplantation. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.
Hasenberg, Mike; Reichardt, Peter; Gunzer, Matthias
2013-01-01
Regulatory T-cells (Tregs) are central for immune homeostasis and divided in thymus-derived natural Tregs and peripherally induced iTreg. However, while phenotype and function of iTregs are well known, a remarkable lack exists in knowledge about signaling mechanisms leading to their generation from naïve precursors in peripheral tissues. Using antigen specific naïve T-cells from mice, we investigated CD4+ CD25+ FoxP3- iTreg induction during antigen-specific T-cell receptor (TCR) stimulation with weak antigen presenting cells (APC). We show that early signaling pathways such as ADAM-17-activation appeared similar in developing iTreg and effector cells (Teff) and both initially shedded CD62-L. But iTreg started reexpressing CD62-L after 24 h while Teff permanently downmodulated it. Furthermore, between 24 and 72 hours iTreg presented with significantly lower phosphorylation levels of Akt-S473 suggesting lower activity of the PI3K/Akt-axis. This was associated with a higher expression of the Akt hydrophobic motif-specific phosphatase PHLPP1 in iTreg. Importantly, the lack of costimulatory signals via CD28 from weak APC was central for the development of regulatory function in iTreg but not for the reappearance of CD62-L. Thus, T-cells display a window of sensitivity after onset of TCR triggering within which the intensity of the PI3K/Akt signal controls entry into either effector or regulatory pathways. PMID:23874604
Schmetterer, Klaus G; Haiderer, Daniela; Leb-Reichl, Victoria M; Neunkirchner, Alina; Jahn-Schmid, Beatrice; Küng, Hans J; Schuch, Karina; Steinberger, Peter; Bohle, Barbara; Pickl, Winfried F
2011-01-01
Regulatory T (Treg) cells establish and maintain tolerance to self-antigens and many foreign antigens, such as allergens, by suppressing effector T-cell proliferation and function. We have previously shown that human T-cell receptor (TCR) αβ-chains specific for allergen-derived epitopes confer allergen specificity on peripheral blood T cells of individuals with and without allergy. To study the feasibility of generating allergen-specific human Treg cells by retroviral transduction of a transcription unit encoding forkhead box protein 3 (FOXP3) and allergen-specific TCR αβ-chains. cDNAs encoding the α and β-chains of a Bet v 1(142-153)-specific TCR (TCR alpha variable region 6/TCR beta variable region 20) and human FOXP3 were linked via picornaviral 2A sequences and expressed as single translational unit from an internal ribosomal entry site-green fluorescence protein-containing retroviral vector. Retrovirally transduced peripheral blood T cells were tested for expression of transgenes, Treg phenotype, and regulatory capacity toward allergen-specific effector T cells. Transduced T cells displayed a Treg phenotype with clear-cut upregulation of CD25, CD39, and cytotoxic T-lymphocyte antigen 4. The transduced cells were hyporesponsive in cytokine production and secretion and, like naturally occurring Treg cells, did not proliferate after antigen-specific or antigen-mimetic stimulation. However, proliferation was inducible upon exposure to exogenous IL-2. In coculture experiments, TRAV6(+)TRBV20(+)FOXP3(+) transgenic T cells, unlike FOXP3(+) single transgenic T cells or naturally occurring Treg cells, highly significantly suppressed T cell cytokine production and proliferation of corresponding allergen-specific effector T cells in an allergen-specific, dose-dependent manner. We demonstrate a transgenic approach to engineer human allergen-specific Treg cells that exert their regulatory function in an activation-dependent manner. Customized Treg cells might become useful for tolerance induction therapies in individuals with allergic and other immune-mediated diseases. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Pathogen-Sensing and Regulatory T Cells: Integrated Regulators of Immune Responses
Grossman, Zvi; Paul, William E.
2014-01-01
We present the concept that pathogen-sensing and Tregs mutually regulate immune responses to conventional and tumor antigens through countervailing effects on dendritic cells. Normally, conventional CD4 T cells recognizing their cognate antigen-presented by a dendritic cell will respond only if the dendritic cell also receives a signal through its pathogen-sensing/ danger / adjuvant recognition systems (the pathogen-sensing triad). However, if Tregs capable of interacting with the same DC are absent, dendritic cells are competent to present antigens, both foreign and self, even without the stimulation provided by the pathogen-sensing triad. Tregs recognizing an antigen presented by the DC that is also presenting antigen to a conventional CD4 T cell will prevent such responses but a signal delivered by a member of the pathogen-sensing traid will overcome the Tregs’inhibitory action and will allow responses to go forward. These considerations take on special meaning for responses to “weak antigens” such as many of the antigens displayed by spontaneous human tumors. PMID:24894087
Nowak, Anna; Lock, Dominik; Bacher, Petra; Hohnstein, Thordis; Vogt, Katrin; Gottfreund, Judith; Giehr, Pascal; Polansky, Julia K.; Sawitzki, Birgit; Kaiser, Andrew; Walter, Jörn; Scheffold, Alexander
2018-01-01
Regulatory T cells (Tregs) are an attractive therapeutic tool for several different immune pathologies. Therapeutic Treg application often requires prolonged in vitro culture to generate sufficient Treg numbers or to optimize their functionality, e.g., via genetic engineering of their antigen receptors. However, purity of clinical Treg expansion cultures is highly variable, and currently, it is impossible to identify and separate stable Tregs from contaminating effector T cells, either ex vivo or after prior expansion. This represents a major obstacle for quality assurance of expanded Tregs and raises significant safety concerns. Here, we describe a Treg activation signature that allows identification and sorting of epigenetically imprinted Tregs even after prolonged in vitro culture. We show that short-term reactivation resulted in expression of CD137 but not CD154 on stable FoxP3+ Tregs that displayed a demethylated Treg-specific demethylated region, high suppressive potential, and lack of inflammatory cytokine expression. We also applied this Treg activation signature for rapid testing of chimeric antigen receptor functionality in human Tregs and identified major differences in the signaling requirements regarding CD137 versus CD28 costimulation. Taken together, CD137+CD154− expression emerges as a universal Treg activation signature ex vivo and upon in vitro expansion allowing the identification and isolation of epigenetically stable antigen-activated Tregs and providing a means for their rapid functional testing in vitro. PMID:29467769
Nowak, Anna; Lock, Dominik; Bacher, Petra; Hohnstein, Thordis; Vogt, Katrin; Gottfreund, Judith; Giehr, Pascal; Polansky, Julia K; Sawitzki, Birgit; Kaiser, Andrew; Walter, Jörn; Scheffold, Alexander
2018-01-01
Regulatory T cells (Tregs) are an attractive therapeutic tool for several different immune pathologies. Therapeutic Treg application often requires prolonged in vitro culture to generate sufficient Treg numbers or to optimize their functionality, e.g., via genetic engineering of their antigen receptors. However, purity of clinical Treg expansion cultures is highly variable, and currently, it is impossible to identify and separate stable Tregs from contaminating effector T cells, either ex vivo or after prior expansion. This represents a major obstacle for quality assurance of expanded Tregs and raises significant safety concerns. Here, we describe a Treg activation signature that allows identification and sorting of epigenetically imprinted Tregs even after prolonged in vitro culture. We show that short-term reactivation resulted in expression of CD137 but not CD154 on stable FoxP3+ Tregs that displayed a demethylated Treg-specific demethylated region, high suppressive potential, and lack of inflammatory cytokine expression. We also applied this Treg activation signature for rapid testing of chimeric antigen receptor functionality in human Tregs and identified major differences in the signaling requirements regarding CD137 versus CD28 costimulation. Taken together, CD137+CD154- expression emerges as a universal Treg activation signature ex vivo and upon in vitro expansion allowing the identification and isolation of epigenetically stable antigen-activated Tregs and providing a means for their rapid functional testing in vitro .
Wilkinson, Daniel S.; Ghosh, Debjani; Nickle, Rebecca A.; Moorman, Cody D.; Mannie, Mark D.
2017-01-01
FOXP3+ regulatory T cells (Tregs) represent a promising platform for effective adoptive immunotherapy of chronic inflammatory disease, including autoimmune diseases such as multiple sclerosis. Successful Treg immunotherapy however requires new technologies to enable long-term expansion of stable, antigen-specific FOXP3+ Tregs in cell culture. Antigen-specific activation of naïve T cells in the presence of TGF-β elicits the initial differentiation of the FOXP3+ lineage, but these Treg lines lack phenotypic stability and rapidly transition to a conventional T cell (Tcon) phenotype during in vitro propagation. Because Tregs and Tcons differentially express CD25, we hypothesized that anti-CD25 monoclonal antibodies (mAbs) would only partially block IL-2 signaling in CD25high FOXP3+ Tregs while completely blocking IL-2 responses of CD25low-intermediate Tcons to enable preferential outgrowth of Tregs during in vitro propagation. Indeed, murine TGF-β-induced MOG-specific Treg lines from 2D2 transgenic mice that were maintained in IL-2 with the anti-CD25 PC61 mAb rapidly acquired and indefinitely maintained a FOXP3high phenotype during long-term in vitro propagation (>90% FOXP3+ Tregs), whereas parallel cultures lacking PC61 rapidly lost FOXP3. These results pertained to TGF-β-inducible “iTregs” because Tregs from 2D2-FIG Rag1−/− mice, which lack thymic or natural Tregs, were stabilized by continuous culture in IL-2 and PC61. MOG-specific and polyclonal Tregs upregulated the Treg-associated markers Neuropilin-1 (NRP1) and Helios (IKZF2). Just as PC61 stabilized FOXP3+ Tregs during expansion in IL-2, TGF-β fully stabilized FOXP3+ Tregs during cellular activation in the presence of dendritic cells and antigen/mitogen. Adoptive transfer of blastogenic CD25high FOXP3+ Tregs from MOG35-55-specific 2D2 TCR transgenic mice suppressed experimental autoimmune encephalomyelitis in pretreatment and therapeutic protocols. In conclusion, low IL-2 concentrations coupled with high PC61 concentrations constrained IL-2 signaling to a low-intensity range that enabled dominant stable outgrowth of suppressive CD25high FOXP3+ Tregs. The ability to indefinitely expand stable Treg lines will provide insight into FOXP3+ Treg physiology and will be foundational for Treg-based immunotherapy. PMID:29312311
Saini, Chaman; Ramesh, Venkatesh; Nath, Indira
2014-01-01
Background Lepromatous leprosy caused by Mycobacterium leprae is associated with antigen specific T cell unresponsiveness/anergy whose underlying mechanisms are not fully defined. We investigated the role of CD25+FOXP3+ regulatory T cells in both skin lesions and M.leprae stimulated PBMC cultures of 28 each of freshly diagnosed patients with borderline tuberculoid (BT) and lepromatous leprosy (LL) as well as 7 healthy household contacts of leprosy patients and 4 normal skin samples. Methodology/Principle Findings Quantitative reverse transcribed PCR (qPCR), immuno-histochemistry/flowcytometry and ELISA were used respectively for gene expression, phenotype characterization and cytokine levels in PBMC culture supernatants. Both skin lesions as well as in vitro antigen stimulated PBMC showed increased percentage/mean fluorescence intensity of cells and higher gene expression for FOXP3+, TGF-β in lepromatous (p<0.01) as compared to tuberculoid leprosy patients. CD4+CD25+FOXP3+ T cells (Tregs) were increased in unstimulated basal cultures (p<0.0003) and showed further increase in in vitro antigen but not mitogen (phytohemaglutinin) stimulated PBMC (iTreg) in lepromatous as compared to tuberculoid leprosy patients (p<0.002). iTregs of lepromatous patients showed intracellular TGF-β which was further confirmed by increase in TGF-β in culture supernatants (p<0.003). Furthermore, TGF-β in iTreg cells was associated with phosphorylation of STAT5A. TGF-β was seen in CD25+ cells of the CD4+ but not that of CD8+ T cell lineage in leprosy patients. iTregs did not show intracellular IFN-γ or IL-17 in lepromatous leprosy patients. Conclusions/Significance Our results indicate that FOXP3+ iTregs with TGF-β may down regulate T cell responses leading to the antigen specific anergy associated with lepromatous leprosy. PMID:24454972
Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.
2008-01-01
Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698
Sojka, Dorothy K.; Fowell, Deborah J.
2011-01-01
CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707
Luo, Shasha; Zou, Qiang
2016-01-01
It is well known that dendritic cells (DCs) play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs), a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG-) specific experimental autoimmune encephalomyelitis (EAE) model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS). Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT) disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs). Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS. PMID:28070525
Foxp3+ regulatory T cells impede the priming of protective CD8+ T cells
Ertelt, James M.; Rowe, Jared H.; Mysz, Margaret A.; Singh, Charanjeet; Roychowdhury, Monika; Aguilera, Marijo N.; Way, Sing Sing
2011-01-01
T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. Herein, we explored the impacts of Foxp3+ regulatory T cell (Treg) suppression in priming antigen-specific T cell activation under non-infection and infection conditions. We find the transient ablation of Foxp3+ Tregs unleashes the robust expansion and activation of peptide stimulated CD8+ T cells that provide protection against Listeria monocytogenes (Lm) infection in an antigen-specific fashion. By contrast, Treg-ablation had non-significant impacts on the CD8+ T cell response primed by infection with recombinant Lm. Similarly, non-recombinant Lm administered with peptide stimulated the expansion and activation of CD8+ T cells that paralleled the response primed by Treg-ablation. Interestingly, these adjuvant properties of Lm did not require CD8+ T cell stimulation by IL-12 produced in response to infection, but instead were associated with sharp reductions in Foxp3+ Treg suppressive potency. Therefore, Foxp3+ Tregs impose critical barriers that when overcome naturally during infection or artificially with ablation allows the priming of protective antigen-specific CD8+ T cells. PMID:21810602
Cook, Laura; Munier, C Mee Ling; Seddiki, Nabila; van Bockel, David; Ontiveros, Noé; Hardy, Melinda Y; Gillies, Jana K; Levings, Megan K; Reid, Hugh H; Petersen, Jan; Rossjohn, Jamie; Anderson, Robert P; Zaunders, John J; Tye-Din, Jason A; Kelleher, Anthony D
2017-12-01
Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3) + Treg cells. Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4 + T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4 + T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4 + T cells were FOXP3 + CD39 + Treg cells, which reside within the pool of memory CD4 + CD25 + CD127 low CD45RO + Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3 + CD39 + Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. This study provides the first estimation of FOXP3 + CD39 + Treg cell frequency within circulating gluten-specific CD4 + T cells after oral gluten challenge of patients with celiac disease. FOXP3 + CD39 + Treg cells comprised a major proportion of all circulating gluten-specific CD4 + T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key contributor to disease pathogenesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya
2013-01-01
Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112
Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion1
Turner, Michael S.; Kane, Lawrence P.; Morel, Penelope A.
2009-01-01
The definitions of tolerogenic vs. immunogenic dendritic cells (DC) remain controversial. Immature DC have been shown to induce T regulatory cells (Treg) specific for foreign and allo-antigens. However, we have previously reported that mature DC (G4DC) prevented the onset of autoimmune diabetes whereas immature DC (GMDC) were therapeutically ineffective. In this study, islet-specific CD4+ T cells from BDC2.5 TCR Tg mice were stimulated, in the absence of exogenous cytokine, with GMDC or G4DC pulsed with high- or low-affinity antigenic peptides and examined for Treg induction. Both GMDC and G4DC presenting low peptide doses induced weak TCR signaling via the Akt/mTOR pathway, resulting in significant expansion of Foxp3+ Treg. Furthermore, unpulsed G4DC, but not GMDC, also induced Treg. High peptide doses induced strong Akt/mTOR signaling and favored the expansion of Foxp3neg Th cells. The inverse correlation of Foxp3 and Akt/mTOR signaling was also observed in DO11.10 and OT-II TCR-Tg T cells and was recapitulated with anti-CD3/CD28 stimulation in the absence of DC. IL-6 production in these cultures correlated positively with antigen dose and inversely with Treg expansion. Studies with T cells or DC from IL-6−/− mice revealed that IL-6 production by T cells was more important in the inhibition of Treg induction at low antigen doses. These studies indicate that strength of Akt/mTOR signaling, a critical T cell intrinsic determinant for Treg vs Th induction, can be controlled by adjusting the dose of antigenic peptide. Furthermore, this operates in a dominant fashion over DC phenotype and cytokine production. PMID:19801514
CD4+CD25+ Treg derived from hepatocellular carcinoma mice inhibits tumor immunity.
Chen, Xin; Du, Yong; Huang, Zhiming
2012-01-01
CD4+CD25+ regulatory T cells (Tregs) play an essential role in the establishment and persistence of tumor immune suppression. Tregs can prevent anti-tumor-specific T cells from clearing the tumor, making Tregs a significant barrier for effective immunotherapy. An increase in the number of Tregs has been detected in the peripheral blood and tumor infiltrating lymphocytes of patients with hepatocellular carcinoma. Dendritic cells (DCs) are antigen-presenting cells that play a pivotal role in the initiation of immune responses. The evidence for their ability to act as natural adjuvant in the stimulation of specific anti-tumor cytotoxic T lymphocytes and in the induction of protective and therapeutic anti-tumor immunity is now overwhelming. The aim of our study was to investigate the variation of Tregs in hepatocellular carcinoma mice and how Tregs derived from the tumor mice affect DCs' function. We found that Tregs derived from the tumor mice down-regulated the expression of costimulatory molecules CD80/CD86 on DCs and inhibited the production of TNF-α and IL-12 from DCs. The suppressive function of Tregs was mediated by cell-to-cell contact, CTLA-4 expression and IL-10 secretion. In conclusion, these mechanisms acting in hepatocellular carcinoma may be necessary to better understand the immunosuppression of Tregs and helpful to the tumor immunotherapy. Copyright © 2012 Elsevier B.V. All rights reserved.
Hombach, Andreas A.; Abken, Hinrich
2017-01-01
Evidences are accumulating that CD4+ T cells can physiologically mediate antigen specific target cell lysis. By circumventing major histocompatibility complex (MHC)-restrictions through an engineered chimeric antigen receptor (CAR), CD4+ T cells lyse defined target cells as efficiently as do CD8+ T cells. However, the cytolytic capacity of redirected CD4+CD25− T cells, in comparison with CD4+CD25+ regulatory T (Treg) cells was so far not thoroughly defined. Treg cells require a strong CD28 signal together with CD3ζ for activation. We consequently used a CAR with combined CD28CD3ζ signalling for redirecting CD4+CD25− T cells and CD4+CD25+ Treg cells from the same donor. CAR redirected activation of these T cell subsets and induced a distinct cytokine pattern with high IL-10 and a lack of IL-2 release by Treg cells. Despite strong antigen-specific activation, CAR Treg cells produced only weak target cell lysis, whereas CD4+CD25− CAR T cells were potent killers. Cytolysis did not correlate with the target cell sensitivity to Fas/FasL mediated killing; CD4+CD25− T cells upregulated perforin and granzyme B upon CAR activation, whereas Treg cells did less. The different cytolytic capacities of CAR redirected conventional CD4+ cells and Treg cells imply their use for different purposes in cell therapy. PMID:28850063
Tordesillas, Leticia; Berin, M Cecilia
2018-02-27
Oral tolerance is a state of systemic unresponsiveness that is the default response to food antigens in the gastrointestinal tract, although immune tolerance can also be induced by other routes, such as the skin or inhalation. Antigen can be acquired directly by intestinal phagocytes, or pass through enterocytes or goblet cell-associated passages prior to capture by dendritic cells (DCs) in the lamina propria. Mucin from goblet cells acts on DCs to render them more tolerogenic. A subset of regulatory DCs expressing CD103 is responsible for delivery of antigen to the draining lymph node and induction of Tregs. These DCs also imprint gastrointestinal homing capacity, allowing the recently primed Tregs to home back to the lamina propria where they interact with macrophages that produce IL-10 and expand. Tregs induced by dietary antigen include Foxp3 + Tregs and Foxp3 - Tregs. In addition to Tregs, T cell anergy can also contribute to oral tolerance. The microbiota plays a key role in the development of oral tolerance, through regulation of macrophages and innate lymphoid cells that contribute to the regulatory phenotype of gastrointestinal dendritic cells. Absence of microbiota is associated with a susceptibility to food allergy, while presence of Clostridia strains can suppress development of food allergy through enhancement of Tregs and intestinal barrier function. It is not clear if feeding of antigens can also induce true immune tolerance after a memory immune response has been generated, but mechanistic studies of oral immunotherapy trials demonstrate shared pathways in oral tolerance and oral immunotherapy, with a role for Tregs and anergy. An important role for IgA and IgG antibodies in development of immune tolerance is also supported by studies of oral tolerance in humans. The elucidation of key pathways in oral tolerance could identify new strategies to increase efficacy of immunotherapy treatments for food allergy.
Shin, Jin-Young; Yoon, Il-Hee; Lim, Jong-Hyung; Shin, Jun-Seop; Nam, Hye-Young; Kim, Yong-Hee; Cho, Hyoung-Soo; Hong, So-Hee; Kim, Jung-Sik; Lee, Won-Woo; Park, Chung-Gyu
2015-09-01
Regulatory T cells (Tregs) are a specialized subpopulation of T cells that control the immune response and thereby maintain immune system homeostasis and tolerance to self-antigens. Many subsets of CD4(+) Tregs have been identified, including Foxp3(+), Tr1, Th3, and Foxp3neg iT(R)35 cells. In this study, we identified a new subset of CD4(+)VEGFR1(high) Tregs that have immunosuppressive capacity. CD4(+)VEGFR1high T cells, which constitute approximately 1.0% of CD4(+) T cells, are hyporesponsive to T-cell antigen receptor stimulation. Surface marker and FoxP3 expression analysis revealed that CD4(+)VEGFR1(high) T cells are distinct from known Tregs. CD4(+)VEGFR1(high) T cells suppressed the proliferation of CD4(+)CD25(-) T cell as efficiently as CD4(+)CD25(high) natural Tregs in a contact-independent manner. Furthermore, adoptive transfer of CD4(+)VEGFR1(+) T cells from wild type to RAG-2-deficient C57BL/6 mice inhibited effector T-cell-mediated inflammatory bowel disease. Thus, we report CD4(+) VEGFR1(high) T cells as a novel subset of Tregs that regulate the inflammatory response in the intestinal tract.
Mayer, Elisabeth; Bannert, Christina; Gruber, Saskia; Klunker, Sven; Spittler, Andreas; Akdis, Cezmi A; Szépfalusi, Zsolt; Eiwegger, Thomas
2012-01-01
Upon antigen exposure, cord blood derived T cells respond to ubiquitous environmental antigens by high proliferation. To date it remains unclear whether these "excessive" responses relate to different regulatory properties of the putative T regulatory cell (Treg) compartment or even expansion of the Treg compartment itself. Cord blood (>37 week of gestation) and peripheral blood (healthy controls) were obtained and different Treg cell subsets were isolated. The suppressive potential of Treg populations after antigen exposure was evaluated via functional inhibition assays ([(3)H]thymidine incorporation assay and CFSE staining) with or without allergen stimulation. The frequency and markers of CD4(+)CD25(high)FoxP3(+) T cells were characterized by mRNA analysis and flow cytometry. Cord blood derived CD4(+)CD25(high) cells did not show substantial suppressor capacity upon TCR activation, in contrast to CD4(+)CD25(high) cells freshly purified from adult blood. This could not be explained by a lower frequency of FoxP3(+)CD4(+)CD25(high)cells or FOXP3 mRNA expression. However, after antigen-specific stimulation in vitro, these cells showed strong proliferation and expansion and gained potent suppressive properties. The efficiency of their suppressive capacity can be enhanced in the presence of endotoxins. If T-cells were sorted according to their CD127 expression, a tiny subset of Treg cells (CD4(+)CD25(+)CD127(low)) is highly suppressive even without prior antigen exposure. Cord blood harbors a very small subset of CD4(+)CD25(high) Treg cells that requires antigen-stimulation to show expansion and become functional suppressive Tregs.
Tarique, Mohd; Saini, Chaman; Naqvi, Raza Ali; Khanna, Neena; Rao, D N
2017-03-01
The clinical forms of leprosy consist of a spectrum that reflects the host's immune response to the M. leprae; it provides an ideal model to study the host pathogen interaction and immunological dysregulation in humans. IL-10 and TGF-β producing Tregs are high in leprosy patients and responsible for immune suppression and M. leprae specific T cells anergy. In leprosy, involvement of IL-35 producing Tregs and Bregs remain unstudied. To study the role of IL-35 producing Tregs and Bregs in the human leprosy. Peripheral blood mononuclear cells from leprosy patients were isolated and stimulated with M. leprae antigen (MLCwA) for 48h. Intracellular cytokine IL-35 was evaluated in CD4 + CD25 + Tregs, CD19 + cells by FACS. Expression of PD-1 on CD4 + CD25 + Tregs, CD19 + cells and its ligand (PD-L1) on B cells, CD11c cells were evaluated by flow cytometry (FACS). Serum IL-35 level was estimated by ELISA. The frequency of IL-35 producing Tregs and Bregs cells were found to be high in leprosy patients (p<0.0001) as compared to healthy controls. These cells produced suppressive cytokine IL-35 which showed positive correlation with bacteriological index (BI) and TGF-β producing Tregs, indicating its suppressive nature. We found higher expression of PD-1 on Tregs, B cell and its ligand (PD-L1) on antigen presenting cells in leprosy patients. This study point out a shift in our understanding of the immunological features that mediate and regulate the immune suppression and the disease progression in leprosy patients with a new paradigm (IL-35 producing Tregs and Bregs) that is beyond TGF-β and IL-10 producing Treg cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sharma, Madhav D.; Huang, Lei; Choi, Jeong-Hyeon; Lee, Eun-Joon; Wilson, James M.; Lemos, Henrique; Pan, Fan; Blazar, Bruce R.; Pardoll, Drew M.; Mellor, Andrew L; Shi, Huidong; Munn, David H.
2013-01-01
SUMMARY At sites of inflammation, certain regulatory T cells (Treg cells) can undergo rapid reprogramming into helper-like cells, without loss of the transcription factor Foxp3. We show that reprogramming is controlled by down-regulation of the transcription factor Eos (Ikzf4), an obligate co-repressor for Foxp3. Reprogramming was restricted to a specific subset of “Eoslabile” Treg cells which were present in the thymus and identifiable by characteristic surface markers and DNA methylation. Mice made deficient in this subset became impaired in their ability to provide help for presentation of new antigens to naive T cells. Down-regulation of Eos required the pro-inflammatory cytokine IL-6, and mice lacking IL-6 had impaired development and function of the Eos-labile subset. Conversely, the immunoregulatory enzyme IDO blocked loss of Eos, and prevented the Eos-labile Treg cells from reprogramming. Thus, the Foxp3+ lineage contains a committed subset of Treg cells capable of rapid conversion into biologically important helper cells. PMID:23684987
GARP: a key receptor controlling FOXP3 in human regulatory T cells.
Probst-Kepper, M; Geffers, R; Kröger, A; Viegas, N; Erck, C; Hecht, H-J; Lünsdorf, H; Roubin, R; Moharregh-Khiabani, D; Wagner, K; Ocklenburg, F; Jeron, A; Garritsen, H; Arstila, T P; Kekäläinen, E; Balling, R; Hauser, H; Buer, J; Weiss, S
2009-09-01
Recent evidence suggests that regulatory pathways might control sustained high levels of FOXP3 in regulatory CD4(+)CD25(hi) T (T(reg)) cells. Based on transcriptional profiling of ex vivo activated T(reg) and helper CD4(+)CD25(-) T (T(h)) cells we have identified GARP (glycoprotein-A repetitions predominant), LGALS3 (lectin, galactoside-binding, soluble, 3) and LGMN (legumain) as novel genes implicated in human T(reg) cell function, which are induced upon T-cell receptor stimulation. Retroviral overexpression of GARP in antigen-specific T(h) cells leads to an efficient and stable re-programming of an effector T cell towards a regulatory T cell, which involves up-regulation of FOXP3, LGALS3, LGMN and other T(reg)-associated markers. In contrast, overexpression of LGALS3 and LGMN enhance FOXP3 and GARP expression, but only partially induced a regulatory phenotype. Lentiviral down-regulation of GARP in T(reg) cells significantly impaired the suppressor function and was associated with down-regulation of FOXP3. Moreover, down-regulation of FOXP3 resulted in similar phenotypic changes and down-regulation of GARP. This provides compelling evidence for a GARP-FOXP3 positive feedback loop and provides a rational molecular basis for the known difference between natural and transforming growth factor-beta induced T(reg) cells as we show here that the latter do not up-regulate GARP. In summary, we have identified GARP as a key receptor controlling FOXP3 in T(reg) cells following T-cell activation in a positive feedback loop assisted by LGALS3 and LGMN, which represents a promising new system for the therapeutic manipulation of T cells in human disease.
Skuljec, Jelena; Chmielewski, Markus; Happle, Christine; Habener, Anika; Busse, Mandy; Abken, Hinrich; Hansen, Gesine
2017-01-01
Cellular therapy with chimeric antigen receptor (CAR)-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg)-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR) and a chronic, T helper-2 (Th2) cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma.
Immunotherapy using regulatory T cells in cancer suggests more flavors of hypersensitivity type IV.
Pakravan, Nafiseh; Hassan, Zuhair Mohammad
2018-03-01
Regulatory T cells (Tregs) profoundly affect tumor microenvironment and exert dominant suppression over antitumor immunity in response to self-antigen expressed by tumor. Immunotherapy targeting Tregs lead to a significant improvement in antitumor immunity. Intradermal injection of tumor antigen results in negative delayed-type hypersensitivity (DTH) type IV. However, anti-Tregs treatment/use of adjuvant along with tumor antigens turns DTH to positive. Considering Tregs as the earliest tumor sensor/responders, tumor can be regarded as Treg-mediated type IV hypersensitivity and negative DTH to tumor antigen is due to anti-inflammatory action of Tregs to tumor antigens at the injection site. Such a view would help us in basic and clinical situations to testify a candidate vaccine via dermal administration and evaluation of Treg proportion at injection site.
Disrupted regulatory T cell homeostasis in inflammatory bowel diseases.
Pedros, Christophe; Duguet, Fanny; Saoudi, Abdelhadi; Chabod, Marianne
2016-01-21
In the gut, where billions of non-self-antigens from the food and the microbiota are present, the immune response must be tightly regulated to ensure both host protection against pathogenic microorganisms and the absence of immune-related pathologies. It has been well documented that regulatory T cells (Tregs) play a pivotal role in this context. Indeed, Tregs are able to prevent excessive inflammation, which can lead to the rupture of intestinal homeostasis observed in inflammatory bowel diseases (IBDs). Both the worldwide incidence and prevalence of such diseases have increased throughout the latter part of the 20(th) century. Therefore, it is crucial to understand how Tregs suppress the colitogenic immune cells to establish new treatments for patients suffering from IBDs. In this review, we will first summarize the results obtained in animal model studies that highlight the importance of Tregs in maintaining intestinal homeostasis and describe the specific suppressive mechanisms involved. Next, our current knowledge about Tregs contribution to human IBDs will be reviewed, as well as the current therapeutic perspective on using Tregs for clinical IBD treatment and the challenges that remain to be resolved to ensure both the safety and effectiveness of these therapies in targeting this critical immune-regulatory cell population.
Litterman, Adam J; Dudek, Arkadiusz Z; Largaespada, David A
2013-01-01
Alkylating chemotherapy exerts both antineoplastic and immunostimulatory effects. However, in addition to depleting regulatory T cells (Treg), alkylating agents also mediate a long lasting antiproliferative effect on responder lymphocytes. Our recent findings indicate that this antiproliferative effect profoundly impairs vaccination-induced immune responses, especially in the case of vaccines that target specific tumor-associated neo-antigens that do not require Treg depletion. PMID:24251080
Tasso, Roberta; Ilengo, Cristina; Quarto, Rodolfo; Cancedda, Ranieri; Caspi, Rachel R; Pennesi, Giuseppina
2012-02-01
Mesenchymal stem/progenitor cells (MSCs) have regenerative and immunomodulatory properties, exerted by cell-cell contact and in a paracrine fashion. Part of their immunosuppressive activity has been ascribed to their ability to promote the induction of CD4+CD25+FoxP3+ T lymphocytes with regulatory functions (Treg). Here the authors studied the effect of MSCs on the induction of Treg and on the development of autoimmunity, and they examined the possibility that MSC-mediated Treg induction could be attributed to the secretion of soluble factors. The authors induced experimental autoimmune uveitis (EAU) in mice by immunization with the 1-20 peptide of the intraphotoreceptor binding protein. At the same time, some of the animals were treated intraperitoneally with syngeneic MSCs. The authors checked T-cell responses and in vitro Treg conversion by cell proliferation and blocking assays, in cell-cell contact and transwell settings. TGFβ and TGFβ receptor gene expression analyses were performed by real-time PCR. The authors found that a single intraperitoneal injection of MSCs was able to significantly attenuate EAU and that a significantly higher percentage of adaptive Treg was present in MSC-treated mice than in MSC-untreated animals. In vitro blocking of antigen presentation by major histocompatibility complex class II precluded priming and clonal expansion of antigen-specific Treg, whereas blockade of TGFβ impaired the expression of FoxP3, preventing the conversion of CD4+ T cells into functionally active Treg. The authors demonstrated that MSCs can inhibit EAU and that their immunomodulatory function is due at least in part to the induction of antigen-specific Treg in a paracrine fashion by secreting TGFβ.
Mahan, C Scott; Thomas, Jeremy J; Boom, W Henry; Rojas, Roxana E
2009-01-01
Vδ2+ T cells, the major circulating T-cell receptor-γδ-positive (TCR-γδ+) T-cell subset in healthy adults, are involved in immunity against many microbial pathogens including Mycobacterium tuberculosis. Vδ2+ T cells recognize small phosphorylated metabolites (phosphoantigens), expand in response to whole M. tuberculosis bacilli, and complement the protective functions of CD4+ T cells. CD4+ CD25high Foxp3+ T cells (Tregs) comprise 5–10% of circulating T cells and are increased in patients with active tuberculosis (TB). We investigated whether, in addition to their known role in suppressing TCR-αβ+ lymphocytes, Tregs suppress Vδ2+ T-cell function. We found that depletion of Tregs from peripheral blood mononuclear cells increased Vδ2+ T-cell expansion in response to M. tuberculosis (H37Ra) in tuberculin-skin-test-positive donors. We developed a suppression assay with fluorescence-activated cell sorting-purified Tregs and Vδ2+ T cells by coincubating the two cell types at a 1 : 1 ratio. The Tregs partially suppressed interferon-γ secretion by Vδ2+ T cells in response to anti-CD3 monoclonal antibody plus interleukin-2 (IL-2). In addition, Tregs downregulated the Vδ2+ T-cell interferon-γ responses induced by phosphoantigen (BrHPP) and IL-2. Under the latter conditions there was no TCR stimulus for Tregs and therefore IL-2 probably triggered suppressor activity. Addition of purified protein derivative (PPD) increased the suppression of Vδ2+ T cells, suggesting that PPD activated antigen-specific Tregs. Our study provides evidence that Tregs suppress both anti-CD3 and antigen-driven Vδ2+ T-cell activation. Antigen-specific Tregs may therefore contribute to the Vδ2+ T-cell functional deficiencies observed in TB. PMID:19019089
Regulatory T-cell stability and plasticity in mucosal and systemic immune systems.
Murai, M; Krause, P; Cheroutre, H; Kronenberg, M
2010-09-01
Regulatory T cells (Treg) express the forkhead box p3 (Foxp3) transcription factor and suppress pathological immune responses against self and foreign antigens, including commensal microorganisms. Foxp3 has been proposed as a master key regulator for Treg, required for their differentiation, maintenance, and suppressive functions. Two types of Treg have been defined. Natural Treg (nTreg) are usually considered to be a separate sublineage arising during thymus differentiation. Induced Treg (iTreg) originate upon T cell receptor (TCR) stimulation in the presence of tumor growth factor beta. Although under homeostatic conditions most Treg in the periphery are nTreg, special immune challenges in the intestine promote more frequently the generation of iTreg. Furthermore, recent observations have challenged the notion that Treg are a stable sublineage, and they suggest that, particularly under lymphopenic and/or inflammatory conditions, Treg may lose Foxp3 and/or acquire diverse effector functions, especially in the intestine, which may contribute to uncontrolled inflammation.
Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition
Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily
2016-01-01
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040
Control of regulatory T cell lineage commitment and maintenance.
Josefowicz, Steven Z; Rudensky, Alexander
2009-05-01
Foxp3-expressing regulatory T (Treg) cells suppress pathology mediated by immune responses against self and foreign antigens and commensal microorganisms. Sustained expression of the transcription factor Foxp3, a key distinguishing feature of Treg cells, is required for their differentiation and suppressor function. In addition, Foxp3 expression prevents deviation of Treg cells into effector T cell lineages and confers dependence of Treg cell survival and expansion on growth factors, foremost interleukin-2, provided by activated effector T cells. In this review we discuss Treg cell differentiation and maintenance with a particular emphasis on molecular regulation of Foxp3 expression, arguably a key to mechanistic understanding of biology of regulatory T cells.
Overcoming food allergy through acquired tolerance conferred by transfer of Tregs in a murine model.
Yamashita, H; Takahashi, K; Tanaka, H; Nagai, H; Inagaki, N
2012-02-01
The number of food allergy patients is increasing. Some children outgrow their food allergies through tolerance, whereas others remain susceptible throughout their lives. We aimed to contribute to food allergy therapeutics by understanding induction of oral tolerance in a murine food allergy model. We modified an existing murine food allergy model by using ovalbumin (OVA) to induce oral tolerance, either by pretreating mice with OVA or by transferring mesenteric lymph node (MLN) cells or T cells derived from mice treated with OVA. Pretreatment with OVA prevented food allergy, with complete suppression of OVA-specific immunoglobulin (Ig)E and IgA antibody production and interleukin (IL)-4, IL-10, and IL-9 mRNA expression. The proportion of regulatory T cells (Tregs) in MLN cells and expression of transforming growth factor-β mRNA increased. In the transfer model, anaphylaxis secondary to OVA intake was suppressed by transfer of whole MLN cells and Tregs from OVA-treated mice. However, OVA-specific IgE and IgA expressions were partially attenuated by transfer of antigen-specific and nonspecific Tregs, but not by whole MLN cells from OVA-treated mice. In the Treg transfer model, IL-4 and IL-10 mRNA expression decreased, but IL-9 mRNA expression increased. We concluded that oral tolerance for food antigens is induced in two ways: (i) by initial exposure to antigen, or inherent tolerance, and (ii) by transfer of Tregs, or acquired tolerance. Because food allergies occur when inherent tolerance is absent, understanding of acquired tolerance is important for the development of therapies for food allergy. © 2011 John Wiley & Sons A/S.
Disrupted regulatory T cell homeostasis in inflammatory bowel diseases
Pedros, Christophe; Duguet, Fanny; Saoudi, Abdelhadi; Chabod, Marianne
2016-01-01
In the gut, where billions of non-self-antigens from the food and the microbiota are present, the immune response must be tightly regulated to ensure both host protection against pathogenic microorganisms and the absence of immune-related pathologies. It has been well documented that regulatory T cells (Tregs) play a pivotal role in this context. Indeed, Tregs are able to prevent excessive inflammation, which can lead to the rupture of intestinal homeostasis observed in inflammatory bowel diseases (IBDs). Both the worldwide incidence and prevalence of such diseases have increased throughout the latter part of the 20th century. Therefore, it is crucial to understand how Tregs suppress the colitogenic immune cells to establish new treatments for patients suffering from IBDs. In this review, we will first summarize the results obtained in animal model studies that highlight the importance of Tregs in maintaining intestinal homeostasis and describe the specific suppressive mechanisms involved. Next, our current knowledge about Tregs contribution to human IBDs will be reviewed, as well as the current therapeutic perspective on using Tregs for clinical IBD treatment and the challenges that remain to be resolved to ensure both the safety and effectiveness of these therapies in targeting this critical immune-regulatory cell population. PMID:26811641
Leveque-El mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A.; Cheong, Melody; Kuns, Rachel D.; Lineburg, Katie E.; Teal, Bianca E.; Alexander, Kylie A.; Clouston, Andrew D.; Blazar, Bruce R.; Hill, Geoffrey R.
2016-01-01
Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD. PMID:27338097
Leveque-El Mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A; Cheong, Melody; Kuns, Rachel D; Lineburg, Katie E; Teal, Bianca E; Alexander, Kylie A; Clouston, Andrew D; Blazar, Bruce R; Hill, Geoffrey R; MacDonald, Kelli P A
2016-08-11
Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD. © 2016 by The American Society of Hematology.
Curiel, Tyler J; Coukos, George; Zou, Linhua; Alvarez, Xavier; Cheng, Pui; Mottram, Peter; Evdemon-Hogan, Melina; Conejo-Garcia, Jose R; Zhang, Lin; Burow, Matthew; Zhu, Yun; Wei, Shuang; Kryczek, Ilona; Daniel, Ben; Gordon, Alan; Myers, Leann; Lackner, Andrew; Disis, Mary L; Knutson, Keith L; Chen, Lieping; Zou, Weiping
2004-09-01
Regulatory T (T(reg)) cells mediate homeostatic peripheral tolerance by suppressing autoreactive T cells. Failure of host antitumor immunity may be caused by exaggerated suppression of tumor-associated antigen-reactive lymphocytes mediated by T(reg) cells; however, definitive evidence that T(reg) cells have an immunopathological role in human cancer is lacking. Here we show, in detailed studies of CD4(+)CD25(+)FOXP3(+) T(reg) cells in 104 individuals affected with ovarian carcinoma, that human tumor T(reg) cells suppress tumor-specific T cell immunity and contribute to growth of human tumors in vivo. We also show that tumor T(reg) cells are associated with a high death hazard and reduced survival. Human T(reg) cells preferentially move to and accumulate in tumors and ascites, but rarely enter draining lymph nodes in later cancer stages. Tumor cells and microenvironmental macrophages produce the chemokine CCL22, which mediates trafficking of T(reg) cells to the tumor. This specific recruitment of T(reg) cells represents a mechanism by which tumors may foster immune privilege. Thus, blocking T(reg) cell migration or function may help to defeat human cancer.
Rose, Marie-Clare St.; Taylor, Roslyn A.; Bandyopadhyay, Suman; Qui, Harry Z.; Hagymasi, Adam T.; Vella, Anthony T.; Adler, Adam J.
2012-01-01
T cell tolerance to tumor antigens represents a major hurdle in generating tumor immunity. Combined administration of agonistic monoclonal antibodies to the costimulatory receptors CD134 plus CD137 can program T cells responding to tolerogenic antigen to undergo expansion and effector T cell differentiation, and also elicits tumor immunity. Nevertheless, CD134 and CD137 agonists can also engage inhibitory immune components. To understand how immune stimulatory versus inhibitory components are regulated during CD134 plus CD137 dual costimulation, the current study utilized a model where dual costimulation programs T cells encountering a highly tolerogenic self-antigen to undergo effector differentiation. IFN-γ was found to play a pivotal role in maximizing the function of effector T cells while simultaneously limiting the expansion of CD4+CD25+Foxp3+ Tregs. In antigen-responding effector T cells, IFN-γ operates via a direct cell-intrinsic mechanism to cooperate with IL-2 to program maximal expression of granzyme B. Simultaneously, IFN-γ limits expression of the IL-2 receptor alpha chain (CD25) and IL-2 signaling through a mechanism that does not involve T-bet-mediated repression of IL-2. IFN-γ also limited CD25 and Foxp3 expression on bystanding CD4+Foxp3+ Tregs, and limited the potential of these Tregs to expand. These effects could not be explained by the ability of IFN-γ to limit IL-2 availability. Taken together, during dual costimulation IFN-γ interacts with IL-2 through distinct mechanisms to program maximal expression of effector molecules in antigen-responding T cells while simultaneously limiting Treg expansion. PMID:23295363
Yan, Lisa; Da Silva, Diane M.; Verma, Bhavna; Gray, Andrew; Brand, Heike E.; Skeate, Joseph G.; Porras, Tania B.; Kanodia, Shreya; Kast, W. Martin
2014-01-01
Background LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown in a virus induced tumor model to activate immune cells and result in tumor regression, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Methods Real Time PCR was used to evaluate expression of forced LIGHT and various other genes in prostate tumors samples. Adenovirus encoding murine LIGHT was injected intratumorally into TRAMP C2 prostate cancer cell tumor bearing mice for in vivo studies. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor specific lymphocytes were quantified via an ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. Results LIGHT expression peaked within 48 hours of infection, recruited effector T cells into the tumor microenvironment that recognized mouse prostate stem cell antigen (PSCA) and inhibited the infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. Conclusion Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated immunosuppression. PMID:25399517
Yan, Lisa; Da Silva, Diane M; Verma, Bhavna; Gray, Andrew; Brand, Heike E; Skeate, Joseph G; Porras, Tania B; Kanodia, Shreya; Kast, W Martin
2015-02-15
LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown to activate immune cells and result in tumor regression in a virally-induced tumor model, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration toward an anti-tumoral milieu, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Real Time PCR was used to evaluate expression of forced LIGHT and other immunoregulatory genes in prostate tumors samples. For in vivo studies, adenovirus encoding murine LIGHT was injected intratumorally into TRAMP-C2 prostate cancer cell tumor bearing mice. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor-specific lymphocytes were quantified via ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. LIGHT expression peaked within 48 hr of infection, recruited effector T cells that recognized mouse prostate stem cell antigen (PSCA) into the tumor microenvironment, and inhibited infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated immunosuppression. Prostate 75:280-291, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases
Abdel-Gadir, Azza; Massoud, Amir H.; Chatila, Talal A.
2018-01-01
Allergic diseases are chronic inflammatory disorders in which there is failure to mount effective tolerogenic immune responses to inciting allergens. The alarming rise in the prevalence of allergic diseases in recent decades has spurred investigations to elucidate the mechanisms of breakdown in tolerance in these disorders and means of restoring it. Tolerance to allergens is critically dependent on the generation of allergen-specific regulatory T (Treg) cells, which mediate a state of sustained non-responsiveness to the offending allergen. In this review, we summarize recent advances in our understanding of mechanisms governing the generation and function of allergen-specific Treg cells and their subversion in allergic diseases. We will also outline approaches to harness allergen-specific Treg cell responses to restore tolerance in these disorders. PMID:29375821
Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy
NASA Astrophysics Data System (ADS)
Min, Yuanzeng; Roche, Kyle C.; Tian, Shaomin; Eblan, Michael J.; McKinnon, Karen P.; Caster, Joseph M.; Chai, Shengjie; Herring, Laura E.; Zhang, Longzhen; Zhang, Tian; Desimone, Joseph M.; Tepper, Joel E.; Vincent, Benjamin G.; Serody, Jonathan S.; Wang, Andrew Z.
2017-09-01
Immunotherapy holds tremendous promise for improving cancer treatment. To administer radiotherapy with immunotherapy has been shown to improve immune responses and can elicit the 'abscopal effect'. Unfortunately, response rates for this strategy remain low. Herein we report an improved cancer immunotherapy approach that utilizes antigen-capturing nanoparticles (AC-NPs). We engineered several AC-NP formulations and demonstrated that the set of protein antigens captured by each AC-NP formulation is dependent on the NP surface properties. We showed that AC-NPs deliver tumour-specific proteins to antigen-presenting cells (APCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment using the B16F10 melanoma model, generating up to a 20% cure rate compared with 0% without AC-NPs. Mechanistic studies revealed that AC-NPs induced an expansion of CD8+ cytotoxic T cells and increased both CD4+T/Treg and CD8+T/Treg ratios (Treg, regulatory T cells). Our work presents a novel strategy to improve cancer immunotherapy with nanotechnology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogg, Mark; Murphy, John R.; Lorch, Jochen
Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, asmore » well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.« less
Espinoza Mora, Maria del Rosario; Steeg, Christiane; Tartz, Susanne; Heussler, Volker; Sparwasser, Tim; Link, Andreas; Fleischer, Bernhard; Jacobs, Thomas
2014-01-01
Regulatory T cells (Treg) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4+CD25+ Treg were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3+CD25− Treg. To obtain more insights in the specific function of Treg during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when Treg are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed. PMID:25115805
IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity.
Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Robinson, Catherine M; Nomura, Masaru; Killingsworth, Murray; Hall, Bruce M
2012-05-10
Immune responses to foreign and self-Ags can be controlled by regulatory T cells (Tregs) expressing CD4 and IL-2Rα chain (CD25). Defects in Tregs lead to autoimmunity, whereas induction of Ag-specific CD4+CD25+ Tregs restores tolerance. Ag-specific CD4+CD25+ FOXP3+Tregs activated by the T helper type 2 (Th2) cytokine, IL-4, and specific alloantigen promote allograft tolerance. These Tregs expressed the specific IL-5Rα and in the presence of IL-5 proliferate to specific but not third-party Ag. These findings suggest that recombinant IL-5 (rIL-5) therapy may promote Ag-specific Tregs to mediate tolerance. This study showed normal CD4+CD25+ Tregs cultured with IL-4 and an autoantigen expressed Il-5rα. Treatment of experimental autoimmune neuritis with rIL-5 markedly reduced clinical paralysis, weight loss, demyelination, and infiltration of CD4+ (Th1 and Th17) CD8+ T cells and macrophages in nerves. Clinical improvement was associated with expansion of CD4+CD25+FOXP3+ Tregs that expressed Il-5rα and proliferated only to specific autoantigen that was enhanced by rIL-5. Depletion of CD25+ Tregs or blocking of IL-4 abolished the benefits of rIL-5. Thus, rIL-5 promoted Ag-specific Tregs, activated by autoantigen and IL-4, to control autoimmunity. These findings may explain how Th2 responses, especially to parasitic infestation, induce immune tolerance. rIL-5 therapy may be able to induce Ag-specific tolerance in autoimmunity.
Coutinho, A; Caramalho, I; Seixas, E; Demengeot, J
2005-01-01
The seminal work of Le Douarin and colleagues (Ohki et al. 1987; Ohki et al. 1988; Salaun et al. 1990; Coutinho et al. 1993) first demonstrated that peripheral tissue-specific tolerance is centrally established in the thymus, by epithelial stromal cells (TEC). Subsequent experiments have shown that TEC-tolerance is dominant and mediated by CD4 regulatory T cells (Treg) that are generated intrathymically by recognition of antigens expressed on TECs (Modigliani et al. 1995; Modigliani et al. 1996a). From these and other observations, in 1996 Modigliani and colleagues derived a general model for the establishment and maintenance of natural tolerance (MM96) (Modigliani et al. 1996b), with two central propositions: (1) T cell receptor (TCR)-dependent sorting of emergent repertoires generates TEC-specific Treg displaying the highest TCR self-affinities below deletion thresholds, thus isolating repertoires undergoing positive and negative selection; (2) Treg are intrathymically committed (and activated) for a unique differentiative pathway with regulatory effector functions. The model explained the embryonic/perinatal time window of natural tolerance acquisition, by developmental programs determining (1) TCR multireactivity, (2) the cellular composition in the thymic stroma (relative abundance of epithelial vs hemopoietic cells), and (3) the dynamics of peripheral lymphocyte pools, built by accumulation of recent thymic emigrants (RTE) that remain recruitable to regulatory functions. We discuss here the MM96 in the light of recent results demonstrating the promiscuous expression of tissue-specific antigens by medullary TECs (Derbinski et al. 2001; Anderson et al. 2002; Gotter et al. 2004) and indicating that Treg represent a unique differentiative pathway (Fontenot et al. 2003; Hori et al. 2003; Khattri et al. 2003), which is adopted by CD4 T cells with high avidity for TEC-antigens (Bensinger et al. 2001; Jordan et al. 2001; Apostolou et al. 2002). In the likelihood that autoimmune diseases (AID) result from Treg deficits, some of which might have a thymic origin, we also speculate on therapeutic strategies aiming at selectively stimulating their de novo production or peripheral function, within recent findings on Treg responses to inflammation (Caramalho et al. 2003; Lopes-Carvalho et al., submitted, Caramalho et al., submitted). In short, the MM96 argued that natural tolerance is dominant, established and maintained by the activity of Treg, which are selected upon high-affinity recognition of self-ligands on TECs, and committed intrathymically to a unique differentiative pathway geared to anti-inflammatory and antiproliferative effector functions. By postulating the intrathymic deletion of self-reactivities on hemopoietic stromal cells (THC), together with the inability of peripheral resident lymphocytes to engage in the regulatory pathway, the MM96 simultaneously explained the maintenance of responsiveness to non-self in a context of suppression mediating dominant self-tolerance. The major difficulty of the MM96 is related to the apparent tissue specificity of Treg repertoires generated intrathymically. This difficulty has now been principally solved by the work of Hanahan, Kyewski and others (Jolicoeur et al. 1994; Derbinski et al. 2001; Anderson et al. 2002; Gotter et al. 2004), demonstrating the selective expression of a variety of tissue-specific antigens by TECs, in topological patterns that are compatible with the MM96, but difficult to conciliate with recessive tolerance models (Kappler et al. 1987; Kisielow et al. 1988). While the developmentally regulated multireactivity of TCR repertoires (Gavin and Bevan 1995), as well as the peripheral recruitment of Treg among RTE (Modigliani et al. 1996a) might add to this process, it would seem that the establishment of tissue-specific tolerance essentially stems from the "promiscuous expression of tissue antigens" by TEC. The findings of AID resulting from natural mutations (reviewed in Pitkanen and Peterson 2003) or the targeted inactivation (Anderson et al. 2002; Ramsey et al. 2002) of the AIRE transcription factor that regulates promiscuous gene expression on TECs support this conclusion. The observations on the correlation of natural or forced expression of the Foxp3 transcription factor in CD4 T cells with Treg phenotype and function (Fontenot et al. 2003; Hori et al. 2003; Khattri et al. 2003) provided support for the MM96 contention that Treg represent a unique differentiative pathway that is naturally established inside the thymus. Furthermore, Caton and colleagues (Jordan et al. 2001), as well as several other groups (Bensinger et al. 2001; Apostolou et al. 2002), have provided direct evidence for our postulate that Treg are selected among differentiating CD4 T cells with high affinity for ligands expressed on TECs (Modigliani et al. 1996b). Finally, the demonstration by Caramalho et al. that Treg express innate immunity receptors (Caramalho et al. 2003) and respond to pro-inflammatory signals and products of inflammation (Caramalho et al., submitted) brought about a new understanding on the peripheral regulation of Treg function. Together with the observation that Treg also respond to ongoing activities of "naïve/effector" T cells--possibly through the IL-2 produced in these conditions--these findings explain the participation of Treg in all immune responses (Onizuka et al. 1999; Shimizu et al. 1999; Annacker et al. 2001; Curotto de Lafaille et al. 2001; Almeida et al. 2002; Shevach 2002; Bach and Francois Bach 2003; Wood and Sakaguchi 2003; Mittrucker and Kaufmann 2004; Sakaguchi 2004), beyond their fundamental role in ensuring self-tolerance (e.g., Modigliani et al. 1996a; Shevach 2000; Hori et al. 2003; Sakaguchi 2004; Thompson and Powrie 2004). Thus, anti-inflammatory and anti-proliferative Treg are amplified by signals that promote or mediate inflammation and proliferation, accounting for the quality control of responses (Coutinho et al. 2001). In turn, such natural regulation of Treg by immune responses to non-self may well explain the alarming epidemiology of allergic and AID in wealthy societies (Wills-Karp et al. 2001; Bach 2002; Yazdanbakhsh et al. 2002), where a variety of childhood infections have become rare or absent. Thus, it is plausible that Treg were evolutionarily set by a given density of infectious agents in the environment. With hindsight, it is not too surprising that natural Treg performance falls once hygiene, vaccination, and antibiotics suddenly (i.e., 100 years) plunged infectious density to below some critical physiological threshold. As the immune system is not adapted to modern clean conditions of postnatal development, clinical immunologists must now deal with frequent Treg deficiencies (allergies and AID) for which they have no curative or rational treatments. It is essential, therefore, that basic immunologists concentrate on strategies to selectively stimulate the production, survival, and activity of this set of lymphocytes that is instrumental in preventing immune pathology. We have argued that the culprit of this inability of basic research to solve major clinical problems has been the self-righteousness of recessive tolerance champions, from Ehrlich to some of our contemporaries. It is ironical, however, that none of us--including the heretic opponents of horror autotoxicus--had understood that self-tolerance, or its robustness at least, is in part determined by the frequency and intensity of the responses to non-self. In the evolution of ideas on immunological tolerance, the time might be ripe for some kinds of synthesis. First, conventional theory reduced self-tolerance to negative selection and microbial defense to positive selection, while the MM96 solution was the precise opposite: positive selection of autoreactivities for self-tolerance (Treg) and negative selection (of Treg) for ridding responses. In contrast, it would now appear that positive and negative selection of autoreactive T cells are both necessary to establish either self-tolerance or competence to eliminate microbes, two processes that actually reinforce each other in the maintenance of self-integrity. Second, V-region recognition has generally been held responsible for specific discrimination between what should be either tolerated or eliminated from the organism. In contrast again, it would now seem that both processes of self-tolerance and microbial defense (self/non-self discrimination) also operate on the basis of evolutionarily ancient, germ-line-encoded innate, nonspecific receptors (Medzhitov and Janeway 2000) capable of a coarse level of self/non-self discrimination (Coutinho 1975). It could thus be interesting to revisit notions of cooperativity between V-regions and such mitogen receptors, both in single cell functions (Coutinho et al. 1974) and in the system's evolution (Coutinho 1975, 1980) as well. After all, major transitions in evolution were cooperative (Maynard-Smith and Szathmary 1995).
Mihalyo, Marianne A.; Hagymasi, Adam T.; Slaiby, Aaron M.; Nevius, Erin E.; Adler, Adam J.
2010-01-01
BACKGROUND Prostate cancer promotes the development of T cell tolerance towards prostatic antigens, potentially limiting the efficacy of prostate cancer vaccines targeting these antigens. Here, we sought to determine the stage of disease progression when T cell tolerance develops, as well as the role of steady state dendritic cells (DC) and CD4+CD25+ T regulatory cells (Tregs) in programming tolerance. METHODS The response of naïve HA-specific CD4+ T cells were analyzed following adoptive transfer into Pro-HA × TRAMP transgenic mice harboring variably-staged HA-expressing prostate tumors on two genetic backgrounds that display different patterns and kinetics of tumorigenesis. The role of DC and Tregs in programming HA-specific CD4 cell responses were assessed via depletion. RESULTS HA-specific CD4 cells underwent non-immunogenic responses at all stages of tumorigenesis in both genetic backgrounds. These responses were completely dependent on DC, but not appreciably influenced by Tregs. CONCLUSIONS These results suggest that tolerogenicity is an early and general property of prostate tumors. PMID:17221844
Shin, Wonhwa; Jeon, Youkyoung; Choi, Inhak; Kim, Yeon-Jeong
2018-04-01
Oral tolerance can prevent unnecessary immune responses against dietary antigens. Members of the B7 protein family play critical roles in the positive and/or negative regulation of T cell responses to interactions between APCs and T cells. V-set and Ig domain-containing 4 (VSIG4), a B7-related co-signaling molecule, has been known to act as a co-inhibitory ligand and may be critical in establishing immune tolerance. Therefore, we investigated the regulation of VSIG4 signaling in a food allergy and experimental oral tolerance murine models. We analyzed the contributions of the two main sites involved in oral tolerance, the mesenteric lymph node (MLN) and the liver, in VSIG4-mediated oral tolerance induction. Through the comparative analysis of major APCs, dendritic cells (DCs) and macrophages, we found that Kupffer cells play a critical role in inducing regulatory T cells (Tregs) and establishing immune tolerance against oral antigens via VSIG4 signaling. Taken together, these results suggest the possibility of VSIG4 signaling-based regulation of orally administered antigens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gibson, Andrew; Faulkner, Lee; Lichtenfels, Maike; Ogese, Monday; Al-Attar, Zaid; Alfirevic, Ana; Esser, Philipp R.; Martin, Stefan F.; Pirmohamed, Munir; Park, B. Kevin; Naisbitt, Dean J.
2017-01-01
Drug hypersensitivity involves the activation of T-cells in an HLA allele-restricted manner. Since the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T-cell response. Thus, we have utilized a T-cell priming assay and nitroso sulfamethoxazole (SMX-NO) as a model antigen to investigate (1) the activation of specific T-cell receptor (TCR)Vβ subtypes, (2) the impact of PD-1, CTLA4 and TIM-3 co-inhibitory signalling on activation of naïve and memory T-cells and (3) the ability of Tregs to prevent responses. An expansion of the TCR repertoire was observed for nine different Vβ subtypes, while spectratyping revealed that SMX-NO-specific T-cell responses are controlled by public TCRs present in all individuals alongside private TCR repertoires specific to each individual. We proceeded to evaluate the extent to which the activation of these TCR Vβ-restricted antigen-specific T-cell responses is governed by regulatory signals. Blockade of PDL-1/CTLA4 signalling dampened activation of SMX-NO-specific naïve and memory T-cells, while blockade of TIM-3 produced no effect. PD-1, CTLA4, and TIM-3 displayed discrete expression profiles during drug-induced T-cell activation and expression of each receptor was enhanced on dividing T-cells. As these receptors are also expressed on Tregs, Treg-mediated suppression of SMX-NO-induced T-cell activation was investigated. Tregs significantly dampened the priming of T-cells. In conclusion, our findings demonstrate that distinct TCR Vβ subtypes, dysregulation of co-inhibitory signalling pathways and dysfunctional Tregs may influence predisposition to hypersensitivity. PMID:28687658
Feinerman, Ofer; Jentsch, Garrit; Tkach, Karen E; Coward, Jesse W; Hathorn, Matthew M; Sneddon, Michael W; Emonet, Thierry; Smith, Kendall A; Altan-Bonnet, Grégoire
2010-01-01
Understanding how the immune system decides between tolerance and activation by antigens requires addressing cytokine regulation as a highly dynamic process. We quantified the dynamics of interleukin-2 (IL-2) signaling in a population of T cells during an immune response by combining in silico modeling and single-cell measurements in vitro. We demonstrate that IL-2 receptor expression levels vary widely among T cells creating a large variability in the ability of the individual cells to consume, produce and participate in IL-2 signaling within the population. Our model reveals that at the population level, these heterogeneous cells are engaged in a tug-of-war for IL-2 between regulatory (Treg) and effector (Teff) T cells, whereby access to IL-2 can either increase the survival of Teff cells or the suppressive capacity of Treg cells. This tug-of-war is the mechanism enforcing, at the systems level, a core function of Treg cells, namely the specific suppression of survival signals for weakly activated Teff cells but not for strongly activated cells. Our integrated model yields quantitative, experimentally validated predictions for the manipulation of Treg suppression. PMID:21119631
T regulatory cells in childhood asthma.
Strickland, Deborah H; Holt, Patrick G
2011-09-01
Asthma is a chronic disease of the airways, most commonly driven by immuno-inflammatory responses to ubiquitous airborne antigens. Epidemiological studies have shown that disease is initiated early in life when the immune and respiratory systems are functionally immature and less able to maintain homeostasis in the face of continuous antigen challenge. Here, we examine the cellular and molecular mechanisms that underlie initial aeroallergen sensitization and the ensuing regulation of secondary responses to inhaled allergens in the airway mucosa. In particular, we focus on how T-regulatory (Treg) cells influence early asthma initiation and the potential of Treg cells as therapeutic targets for drug development in asthma. Copyright © 2011 Elsevier Ltd. All rights reserved.
Acid Sphingomyelinase (ASM) is a Negative Regulator of Regulatory T Cell (Treg) Development.
Zhou, Yuetao; Salker, Madhuri S; Walker, Britta; Münzer, Patrick; Borst, Oliver; Gawaz, Meinrad; Gulbins, Erich; Singh, Yogesh; Lang, Florian
2016-01-01
Regulatory T cell (Treg) is required for the maintenance of tolerance to various tissue antigens and to protect the host from autoimmune disorders. However, Treg may, indirectly, support cancer progression and bacterial infections. Therefore, a balance of Treg function is pivotal for adequate immune responses. Acid sphingomyelinase (ASM) is a rate limiting enzyme involved in the production of ceramide by breaking down sphingomyelin. Previous studies in T-cells have suggested that ASM is involved in CD28 signalling, T lymphocyte granule secretion, degranulation, and vesicle shedding similar to the formation of phosphatidylserine-exposing microparticles from glial cells. However, whether ASM affects the development of Treg has not yet been described. Splenocytes, isolated Naive T lymphocytes and cultured T cells were characterized for various immune T cell markers by flow cytometery. Cell proliferation was measured by Carboxyfluorescein succinimidyl ester (CFSE) dye, cell cycle analysis by Propidium Iodide (PI), mRNA transcripts by q-RT PCR and protein expression by Western Blotting respectively. ASM deficient mice have higher number of Treg compared with littermate control mice. In vitro induction of ASM deficient T cells in the presence of TGF-β and IL-2 lead to a significantly higher number of Foxp3+ induced Treg (iTreg) compared with control T-cells. Further, ASM deficient iTreg has less AKT (serine 473) phosphorylation and Rictor levels compared with control iTreg. Ceramide C6 led to significant reduction of iTreg in both ASM deficient and WT mice. The reduction in iTreg leads to induction of IL-1β, IL-6 and IL-17 but not IFN-γ mRNA levels. ASM is a negative regulator of natural and iTreg. © 2016 The Author(s) Published by S. Karger AG, Basel.
PD-1 regulates extrathymic regulatory T-cell differentiation
Chen, Xiufen; Fosco, Dominick; Kline, Douglas E.; Meng, Liping; Nishi, Saki; Savage, Peter A.; Kline, Justin
2014-01-01
Regulatory T (Treg) cells and the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway are both critical for maintaining peripheral tolerance to self antigens. A significant subset of Treg cells constitutively expresses PD-1, which prompted an investigation into the role of PD-1/PD-L1 interactions in Treg-cell development, function and induction in vivo. The phenotype and abundance of Treg cells was not significantly altered in PD-1-deficient mice. The thymic development of polyclonal and monospecific Treg cells was not negatively impacted by PD-1 deficiency. The suppressive function of PD-1−/− Treg cells was similar to their PD-1+/+ counterparts both in vitro and in vivo. However, in three different in vivo experimental settings, PD-1−/− conventional CD4+ T cells demonstrated a strikingly diminished tendency toward differentiation into peripherally induced Treg (pTreg) cells. Our results demonstrate that PD-1 is dispensable for thymic (tTreg) Treg-cell development and suppressive function, but is critical for the extrathymic differentiation of pTreg cells in vivo. These data suggest that antibody blockade of the PD-1/PD-L1 pathway may augment T-cell responses by acting directly on conventional T cells, and also by suppressing the differentiation of pTreg cells. PMID:24975127
Applications and mechanisms of immunotherapy in allergic rhinitis and asthma.
Kappen, Jasper H; Durham, Stephen R; Veen, Hans In 't; Shamji, Mohamed H
2017-01-01
Clinical and immunologic tolerance are hallmarks of successful allergen immunotherapy (AIT). Clinical benefits such as reduced symptoms, pharmacotherapy intake and improvement of quality of life persist following cessation of treatment. Successful AIT is associated with suppression of allergic inflammatory cells such as mast cells, eosinophils and basophils in target organs. Furthermore, AIT down-regulates type 2 innate lymphoid cells and allergen-specific type 2 T-helper (Th2) cells. The immunologic tolerant state following AIT is associated with the induction of distinct phenotypes of regulatory T-cells (T-regs) including interleukin (IL)-10-, IL-35- and transforming growth factor (TGF)-β- producing T-regs and FoxP3 + T-regs. B-cell responses, including the induction of IL-10 + regulatory B-cells (B-regs) and the production of IgG4-associated blocking antibodies are also induced following successful AIT. These events are associated with the suppression of antigen-specific Th2 responses and delayed immune deviation in favour of Th1 type responses. Insight into the mechanisms of AIT has allowed identification of novel biomarkers with potential to predict the clinical response to AIT and also novel therapeutic strategies for more effective and safer AIT.
Seay, Howard R; Putnam, Amy L; Cserny, Judit; Posgai, Amanda L; Rosenau, Emma H; Wingard, John R; Girard, Kate F; Kraus, Morey; Lares, Angela P; Brown, Heather L; Brown, Katherine S; Balavage, Kristi T; Peters, Leeana D; Bushdorf, Ashley N; Atkinson, Mark A; Bluestone, Jeffrey A; Haller, Michael J; Brusko, Todd M
2017-03-17
Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs) are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA)-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP)-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 10 9 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR). Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.
Marks, Benjamin R.; Nowyhed, Heba N.; Choi, Jin-Young; Poholek, Amanda C.; Odegard, Jared M.; Flavell, Richard A.; Craft, Joe
2009-01-01
Interleukin 17 (IL-17)-producing CD4+ T (TH-17) cells share a developmental relationship with FoxP3+ regulatory T (Treg) cells. Here we show that a TH-17 population differentiates within the thymus in a manner influenced by self-antigen recognition, and by the cytokines IL-6 and transforming growth factor (TGF)-β. Like previously described TH-17 cells, TH-17 cells that develop in the thymus expressed the orphan nuclear receptor RORγt and the IL-23 receptor. These cells also expressed α4β1 integrins and the chemokine receptor CCR6, and were recruited to the lung, gut, and liver. In the liver these cells secreted IL-22 in response to self-antigen and mediated host protection during inflammation. Thus, TH-17 cells, like Treg cells, can be selected by self-antigens in the thymus. PMID:19734905
Quezada, Sergio A.; Peggs, Karl S.; Curran, Michael A.; Allison, James P.
2006-01-01
CTL-associated antigen 4 (CTLA4) blockade releases inhibitory controls on T cell activation and proliferation, inducing antitumor immunity in both preclinical and early clinical trials. We examined the mechanisms of action of anti-CTLA4 and a GM-CSF–transduced tumor cell vaccine (Gvax) and their impact on the balance of effector T cells (Teffs) and Tregs in an in vivo model of B16/BL6 melanoma. Tumor challenge increased the frequency of Tregs in lymph nodes, and untreated tumors became infiltrated by CD4+Foxp3– and CD4+Foxp3+ T cells but few CD8+ T cells. Anti-CTLA4 did not deplete Tregs or permanently impair their function but acted in a cell-intrinsic manner on both Tregs and Teffs, allowing them to expand, most likely in response to self antigen. While Gvax primed the tumor-reactive Teff compartment, inducing activation, tumor infiltration, and a delay in tumor growth, the combination with CTLA4 blockade induced greater infiltration and a striking change in the intratumor balance of Tregs and Teffs that directly correlated with tumor rejection. The data suggest that Tregs control both CD4+ and CD8+ T cell activity within the tumor, highlight the importance of the intratumor ratio of effectors to regulators, and demonstrate inversion of the ratio and correlation with tumor rejection during Gvax/anti-CTLA4 immunotherapy. PMID:16778987
Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity
Pedros, Christophe; Canonigo-Balancio, Ann J.; Kong, Kok-Fai
2017-01-01
The ability of Tregs to control the development of immune responses is essential for maintaining immune system homeostasis. However, Tregs also inhibit the development of efficient antitumor responses. Here, we explored the characteristics and mechanistic basis of the Treg-intrinsic CTLA4/PKCη signaling pathway that we recently found to be required for contact-dependent Treg-mediated suppression. We show that PKCη is required for the Treg-mediated suppression of tumor immunity in vivo. The presence of PKCη-deficient (Prkch–/–) Tregs in the tumor microenvironment was associated with a significantly increased expression of the costimulatory molecule CD86 on intratumoral CD103+ DCs, enhanced priming of antigen-specific CD8+ T cells, and greater levels of effector cytokines produced by these cells. Similar to mouse Tregs, the GIT/PAK/PIX complex also operated downstream of CTLA4 and PKCη in human Tregs, and GIT2 knockdown in Tregs promoted antitumor immunity. Collectively, our data suggest that targeting the CTLA4/PKCη/GIT/PAK/PIX signaling pathway in Tregs could represent a novel immunotherapeutic strategy to alleviate the negative impact of Tregs on antitumor immune responses. PMID:29212947
Sutmuller, Roger P.M.; van Duivenvoorde, Leonie M.; van Elsas, Andrea; Schumacher, Ton N.M.; Wildenberg, Manon E.; Allison, James P.; Toes, Rene E.M.; Offringa, Rienk; Melief, Cornelis J.M.
2001-01-01
Therapeutic efficacy of a tumor cell–based vaccine against experimental B16 melanoma requires the disruption of either of two immunoregulatory mechanisms that control autoreactive T cell responses: the cytotoxic T lymphocyte–associated antigen (CTLA)-4 pathway or the CD25+ regulatory T (Treg) cells. Combination of CTLA-4 blockade and depletion of CD25+ Treg cells results in maximal tumor rejection. Efficacy of the antitumor therapy correlates with the extent of autoimmune skin depigmentation as well as with the frequency of tyrosinase-related protein 2180–188–specific CTLs detected in the periphery. Furthermore, tumor rejection is dependent on the CD8+ T cell subset. Our data demonstrate that the CTL response against melanoma antigens is an important component of the therapeutic antitumor response and that the reactivity of these CTLs can be augmented through interference with immunoregulatory mechanisms. The synergism in the effects of CTLA-4 blockade and depletion of CD25+ Treg cells indicates that CD25+ Treg cells and CTLA-4 signaling represent two alternative pathways for suppression of autoreactive T cell immunity. Simultaneous intervention with both regulatory mechanisms is therefore a promising concept for the induction of therapeutic antitumor immunity. PMID:11560997
Regulatory T-cells in autoimmune diseases: challenges, controversies and--yet--unanswered questions.
Grant, Charlotte R; Liberal, Rodrigo; Mieli-Vergani, Giorgina; Vergani, Diego; Longhi, Maria Serena
2015-02-01
Regulatory T cells (Tregs) are central to the maintenance of self-tolerance and tissue homeostasis. Markers commonly used to define human Tregs in the research setting include high expression of CD25, FOXP3 positivity and low expression/negativity for CD127. Many other markers have been proposed, but none unequivocally identifies bona fide Tregs. Tregs are equipped with an array of mechanisms of suppression, including the modulation of antigen presenting cell maturation and function, the killing of target cells, the disruption of metabolic pathways and the production of anti-inflammatory cytokines. Treg impairment has been reported in a number of human autoimmune conditions and includes Treg numerical and functional defects and conversion into effector cells in response to inflammation. In addition to intrinsic Treg impairment, resistance of effector T cells to Treg control has been described. Discrepancies in the literature are common, reflecting differences in the choice of study participants and the technical challenges associated with investigating this cell population. Studies differ in terms of the methodology used to define and isolate putative regulatory cells and to assess their suppressive function. In this review we outline studies describing Treg frequency and suppressive function in systemic and organ specific autoimmune diseases, with a specific focus on the challenges faced when investigating Tregs in these conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism
Moreno-Fernandez, Maria E.; Rueda, Cesar Mauricio; Rusie, Laura K.
2011-01-01
We hypothesized that regulatory T cells (Tregs) could play a beneficial role during HIV infection by controlling HIV replication in conventional T cells (Tcons). Purified Tregs and Tcons from healthy donors were activated separately. Tcons were infected with the X4 or R5 HIV strains and cultured with or without autologous Tregs. Coculture of Tcons and Tregs resulted in a dose-dependent inhibition of Tcon infection, which was significant when a 1:1 Treg:Tcon ratio was used. Treg suppression of HIV infection was largely mediated by contact-dependent mechanisms. Blockage of cytotoxic T-lymphocyte–associated antigen-4 did not significantly reduce Treg function. In contrast, Tregs acted through cAMP-dependent mechanisms, because the decrease of cAMP levels in Tregs, the blockade of gap junction formation between Tregs and Tcons, the blockage of CD39 activity, and the blockage of protein kinase A in Tcons all abolished Treg-mediated suppression of HIV replication. Our data suggest a complex role for Tregs during HIV infection. Although Tregs inhibit specific immune responses, their inhibition of HIV replication in Tcons may play a beneficial role, particularly during early HIV infection, when the effector immune cells are not yet activated. Such a protective role of Tregs could have a profound impact on infection outcome. PMID:21436067
Fogg, Mark; Murphy, John R.; Lorch, Jochen; Posner, Marshall; Wang, Fred
2013-01-01
Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. PMID:23601786
Langenhorst, Daniela; Tabares, Paula; Gulde, Tobias; Becklund, Bryan R; Berr, Susanne; Surh, Charles D; Beyersdorf, Niklas; Hünig, Thomas
2017-01-01
In rodents, low doses of CD28-specific superagonistic monoclonal antibodies (CD28 superagonists, CD28SA) selectively activate regulatory T cells (Treg). This observation has recently been extended to humans, suggesting an option for the treatment of autoimmune and inflammatory diseases. However, a mechanistic explanation for this phenomenon is still lacking. Given that CD28SA amplify T cell receptor (TCR) signals, we tested the hypothesis that the weak tonic TCR signals received by conventional CD4 + T cells (Tconv) in the absence of cognate antigen require more CD28 signaling input for full activation than the stronger TCR signals received by self-reactive Treg. We report that in vitro , the response of mouse Treg and Tconv to CD28SA strongly depends on MHC class II expression by antigen-presenting cells. To separate the effect of tonic TCR signals from self-peptide recognition, we compared the response of wild-type Treg and Tconv to low and high CD28SA doses upon transfer into wild-type or H-2M knockout mice, which lack a self-peptide repertoire. We found that the superior response of Treg to low CD28SA doses was lost in the absence of self-peptide presentation. We also tested if potentially pathogenic autoreactive Tconv would benefit from self-recognition-induced sensitivity to CD28SA stimulation by transferring TCR transgenic OVA-specific Tconv into OVA-expressing mice and found that low-dose CD28SA application inhibited, rather than supported, their expansion, presumably due to the massive concomitant activation of Treg. Finally, we report that also in the in vitro response of human peripheral blood mononuclear cells to CD28SA, HLA II blockade interferes with the expansion of Treg by low-dose CD28SA stimulation. These results provide a rational basis for the further development of low-dose CD28SA therapy for the improvement of Treg activity.
Kleijwegt, Fleur S; Laban, Sandra; Duinkerken, Gaby; Joosten, Antoinette M; Zaldumbide, Arnaud; Nikolic, Tatjana; Roep, Bart O
2010-08-01
TNF is a pleiotropic cytokine with differential effects on immune cells and diseases. Anti-TNF therapy was shown to be effective in rheumatoid arthritis but proved inefficient or even detrimental in other autoimmune diseases. We studied the role of TNF in the induction of Ag-specific regulatory T cells (Tregs) by tolerogenic vitamin D3-modulated human dendritic cells (VD3-DCs), which previously were shown to release high amounts of soluble TNF (sTNF) upon maturation with LPS. First, production of TNF by modulated VD3-DCs was analyzed upon maturation with LPS or CD40L with respect to both secreted (cleaved) TNF (sTNF) and expression of the membrane-bound (uncleaved) form of TNF (mTNF). Next, TNF antagonists were tested for their effect on induction of Ag-specific Tregs by modulated DCs and the subsequent functionality of these Tregs. VD3-DCs expressed greater amounts of mTNF than did control DCs (nontreated DCs), independent of the maturation protocol. Inhibition of TNF with anti-TNF Ab (blocking both sTNF and mTNF) during the priming of Tregs with VD3-DCs prevented generation of Tregs and their suppression of proliferation of CD4(+) T cells. In contrast, sTNF receptor II (sTNFRII), mainly blocking sTNF, did not change the suppressive capacity of Tregs. Blocking of TNFRII by anti-CD120b Ab during Treg induction similarly abrogated their subsequent suppressive function. These data point to a specific role for mTNF on VD3-DCs in the induction of Ag-specific Tregs. Interaction between mTNF and TNFRII instructs the induction of suppressive Tregs by VD3-DCs. Anti-TNF therapy may therefore act adversely in different patients or disease pathways.
Jin, Jin; Ding, Zheng; Meng, Fengxia; Liu, Qiyong; Ng, Terry; Hu, Yanxin; Zhao, Gan; Zhai, Bing; Chu, Hsien-Jue; Wang, Bin
2010-02-23
Flea allergy dermatitis (FAD) is considered a harmful and persistent allergic disease in cats, dogs and humans. Effective and safe antigen-specific treatments are lacking. Previously we reported that the simultaneous co-immunization with a DNA vaccine and its cognate coded protein antigen could induce antigen-specific iTreg cells (inducible Treg cells); demonstrating its potential to protect animals from FAD in a murine model. Its clinical efficacy however, remains to be demonstrated. In this report, we clinically tested this protocol to treat established FAD in cats following flea infestations. We present data showing a profound therapeutic improvement of dermatitis in these FAD cats following two co-immunizations, not only in relieving clinical symptoms, but also the amelioration of the allergic responses, including antigen-induced wheal formation, elevated T cell proliferation, infiltration of lymphocytes and migration of mast cells to the sites. This study demonstrates that a co-immunization approach as described can be used to treat flea-induced allergic disease in animals, thus implicating its potential for a practical clinical application. Copyright 2009 Elsevier Ltd. All rights reserved.
Weinberg, Adriana; Muresan, Petronella; Richardson, Kelly; Fenton, Terence; Dominguez, Teresa; Bloom, Anthony; Watts, D Heather; Abzug, Mark J; Nachman, Sharon A; Levin, Myron J
2015-11-01
We investigated the Th1 protective and regulatory T and B cell (Treg and Breg) responses to pH1N1 monovalent influenza vaccine (IIV1) in HIV-infected pregnant women on combination antiretroviral therapy (cART). Peripheral blood mononuclear cells (PBMCs) from 52 study participants were cryopreserved before and after vaccination and analyzed by flow cytometry. pH1N1-specific Th1, Treg, and Breg responses were measured in PBMCs after in vitro stimulation with pH1N1 and control antigen. The cohort analysis did not detect changes in pH1N1-Th1, Treg, or Breg subsets postvaccination. However, individual analyses distinguished subjects who mounted vigorous Th1 responses postvaccination from others who did not. Postvaccination, high pH1N1-Th1 correlated with high pH1N1-Treg and Breg responses, suggesting that low influenza effector responses did not result from excessive vaccine-induced immune regulation. High postvaccination pH1N1-Th1 responses correlated with baseline high PHA- and pH1N1-IFN-γ ELISpot and circulating CD4(+)CD39(+)% and CD8(+)CD39(+)% Treg, with low CD8(+) cell numbers and CD19(+)FOXP3(+)% Breg, but not with CD4(+) cell numbers or HIV viral load. These data highlight the heterogeneity of T cell responses to vaccines in HIV-infected individuals on cART. Predictors of robust Th1 responses to IIV include CD8(+) cell numbers, T cell functionality, and circulating Breg and Treg.
Vandenbon, Alexis; Dinh, Viet H.; Mikami, Norihisa; Kitagawa, Yohko; Teraguchi, Shunsuke; Ohkura, Naganari; Sakaguchi, Shimon
2016-01-01
High-throughput gene expression data are one of the primary resources for exploring complex intracellular dynamics in modern biology. The integration of large amounts of public data may allow us to examine general dynamical relationships between regulators and target genes. However, obstacles for such analyses are study-specific biases or batch effects in the original data. Here we present Immuno-Navigator, a batch-corrected gene expression and coexpression database for 24 cell types of the mouse immune system. We systematically removed batch effects from the underlying gene expression data and showed that this removal considerably improved the consistency between inferred correlations and prior knowledge. The data revealed widespread cell type-specific correlation of expression. Integrated analysis tools allow users to use this correlation of expression for the generation of hypotheses about biological networks and candidate regulators in specific cell types. We show several applications of Immuno-Navigator as examples. In one application we successfully predicted known regulators of importance in naturally occurring Treg cells from their expression correlation with a set of Treg-specific genes. For one high-scoring gene, integrin β8 (Itgb8), we confirmed an association between Itgb8 expression in forkhead box P3 (Foxp3)-positive T cells and Treg-specific epigenetic remodeling. Our results also suggest that the regulation of Treg-specific genes within Treg cells is relatively independent of Foxp3 expression, supporting recent results pointing to a Foxp3-independent component in the development of Treg cells. PMID:27078110
Cross-Generational Reproductive Fitness Enforced by Microchimeric Maternal Cells.
Kinder, Jeremy M; Jiang, Tony T; Ertelt, James M; Xin, Lijun; Strong, Beverly S; Shaaban, Aimen F; Way, Sing Sing
2015-07-30
Exposure to maternal tissue during in utero development imprints tolerance to immunologically foreign non-inherited maternal antigens (NIMA) that persists into adulthood. The biological advantage of this tolerance, conserved across mammalian species, remains unclear. Here, we show maternal cells that establish microchimerism in female offspring during development promote systemic accumulation of immune suppressive regulatory T cells (Tregs) with NIMA specificity. NIMA-specific Tregs expand during pregnancies sired by males expressing alloantigens with overlapping NIMA specificity, thereby averting fetal wastage triggered by prenatal infection and non-infectious disruptions of fetal tolerance. Therefore, exposure to NIMA selectively enhances reproductive success in second-generation females carrying embryos with overlapping paternally inherited antigens. These findings demonstrate that genetic fitness, canonically thought to be restricted to Mendelian inheritance, is enhanced in female placental mammals through vertically transferred maternal cells that promote conservation of NIMA and enforce cross-generational reproductive benefits. Copyright © 2015 Elsevier Inc. All rights reserved.
Matta, Bharati; Jha, Purushottam; Bora, Puran S; Bora, Nalini S
2010-02-01
The objective of this study was to inhibit experimental autoimmune anterior uveitis (EAAU) by establishing antigen-specific immune tolerance in animals pre-sensitized with melanin-associated antigen (MAA). Intravenous administration of MAA on days 6, 7, 8 and 9 post-immunization induced tolerance and inhibited EAAU in all Lewis rats. The number of cells (total T cells, CD4(+) T cells and CD8(+) T cells) undergoing apoptosis dramatically increased in the popliteal lymph nodes (LNs) of the tolerized animals compared with non-tolerized animals. In addition, Fas ligand (FasL), TNF receptor 1 (TNFR1) and caspase-8 were upregulated in tolerized rats. Proliferation of total lymphocytes, CD4(+)T cells and CD8(+) T cells (harvested from the popliteal LNs) in response to antigenic stimulation was drastically reduced in the state of tolerance compared with the cells from non-tolerized animals. The level of interferon (IFN)-gamma and IL-2 decreased, whereas TGF-beta2 was elevated in the state of tolerance. Furthermore, the number of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) increased in the popliteal LNs of tolerized animals compared with non-tolerized animals. In conclusion, our results suggest that deletion of antigen-specific T cells by apoptosis and active suppression mediated by Tregs has an important role in the induction of antigen specific immune tolerance in animals with an established immune response against MAA.
Improved Anti-Treg Vaccination Targeting Foxp3 Efficiently Decreases Regulatory T Cells in Mice.
Mousavi Niri, Neda; Memarnejadian, Arash; Pilehvar-Soltanahmadi, Younes; Agha Sadeghi, Mohammadreza; Mahdavi, Mehdi; Kheshtchin, Nasim; Arab, Samaneh; Namdar, Afshin; Jadidi, Farhad; Zarghami, Nosratollah; Hajati, Jamshid
2016-09-01
The critical role of regulatory T (Treg) cells in dampening immune responses against tumor cells is apparent. Therefore, several methods have been introduced for eliminating Treg. Among them, inducing immune responses against Treg cells expressing Foxp3 transcription factor is a hopeful approach to decrease the frequency of Tregs. In current study, we used the chimeric FoxP3-Fc(IgG) fusion construct/protein to effectively stimulate the immune responses against Treg cells. Previously constructed FoxP3-Fc(IgG) DNA vaccine and its protein counterpart were injected into C57BL/6 mice in a prime/boost regimen. After 2 weeks, the mice were killed to measure the frequency of Tregs in their spleens, as well as analyze their specific cytokine production, T-cell proliferation, and CD8 T-cell cytotoxicity against FoxP3 protein. FACS analysis of FoxP3 CD4 cells in splenocytes revealed the efficiency of FoxP3 DNA-prime protein-boost strategy to decrease the Treg cells and further showed considerable superiority of Fc(IgG) fusion strategy. This significant reduction in Treg frequency was also concomitant with higher FoxP3-specific CTL and Th1 responses in FoxP3-Fc vaccinated animals. Prime/boost vaccination against FoxP3 in addition to enhanced antigen presentation by means of Fc fusion strategy could be successfully considered for Treg depletion studies. Validity of this approach should be experimentally tested in preclinical tumor models.
Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis.
Brenu, Ekua Weba; Huth, Teilah K; Hardcastle, Sharni L; Fuller, Kirsty; Kaur, Manprit; Johnston, Samantha; Ramos, Sandra B; Staines, Don R; Marshall-Gradisnik, Sonya M
2014-04-01
Perturbations in immune processes are a hallmark of a number of autoimmune and inflammatory disorders. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is an inflammatory disorder with possible autoimmune correlates, characterized by reduced NK cell activity, elevations in regulatory T cells (Tregs) and dysregulation in cytokine levels. The purpose of this article is to examine innate and adaptive immune cell phenotypes and functional characteristics that have not been previously examined in CFS/ME patients. Thirty patients with CFS/ME and 25 non-fatigued controls were recruited for this study. Whole blood samples were collected from all participants for the assessment of cell phenotypes, functional properties, receptors, adhesion molecules, antigens and intracellular proteins using flow cytometric protocols. The cells investigated included NK cells, dendritic cells, neutrophils, B cells, T cells, γδT cells and Tregs. Significant changes were observed in B-cell subsets, Tregs, CD4(+)CD73(+)CD39(+) T cells, cytotoxic activity, granzyme B, neutrophil antigens, TNF-α and IFN-γ in the CFS/ME patients in comparison with the non-fatigued controls. Alterations in B cells, Tregs, NK cells and neutrophils suggest significant impairments in immune regulation in CFS/ME and these may have similarities to a number of autoimmune disorders.
Immune Privilege and Eye-Derived T-Regulatory Cells.
Keino, Hiroshi; Horie, Shintaro; Sugita, Sunao
2018-01-01
Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF- β ), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2 α ), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.
McArthur, Monica A; Fresnay, Stephanie; Magder, Laurence S; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B
2015-05-01
Salmonella Typhi (S. Typhi), the causative agent of typhoid fever, causes significant morbidity and mortality worldwide. Currently available vaccines are moderately efficacious, and identification of immunological responses associated with protection or disease will facilitate the development of improved vaccines. We investigated S. Typhi-specific modulation of activation and homing potential of circulating regulatory T cells (Treg) by flow and mass cytometry using specimens obtained from a human challenge study. Peripheral blood mononuclear cells were obtained from volunteers pre- and at multiple time-points post-challenge with wild-type S. Typhi. We identified differing patterns of S. Typhi-specific modulation of the homing potential of circulating Treg between volunteers diagnosed with typhoid (TD) and those who were not (No TD). TD volunteers demonstrated up-regulation of the gut homing molecule integrin α4ß7 pre-challenge, followed by a significant down-regulation post-challenge consistent with Treg homing to the gut. Additionally, S. Typhi-specific Treg from TD volunteers exhibited up-regulation of activation molecules post-challenge (e.g., HLA-DR, LFA-1). We further demonstrate that depletion of Treg results in increased S. Typhi-specific cytokine production by CD8+ TEM in vitro. These results suggest that the tissue distribution of activated Treg, their characteristics and activation status may play a pivotal role in typhoid fever, possibly through suppression of S. Typhi-specific effector T cell responses. These studies provide important novel insights into the regulation of immune responses that are likely to be critical in protection against typhoid and other enteric infectious diseases.
Decline of FoxP3+ Regulatory CD4 T Cells in Peripheral Blood of Children Heavily Exposed to Malaria
Boyle, Michelle J.; Jagannathan, Prasanna; Farrington, Lila A.; Eccles-James, Ijeoma; Wamala, Samuel; McIntyre, Tara I; Vance, Hilary M.; Bowen, Katherine; Nankya, Felistas; Auma, Ann; Nalubega, Mayimuna; Sikyomu, Esther; Naluwu, Kate; Rek, John; Katureebe, Agaba; Bigira, Victor; Kapisi, James; Tappero, Jordan; Muhindo, Mary K; Greenhouse, Bryan; Arinaitwe, Emmanuel; Dorsey, Grant; Kamya, Moses R.; Feeney, Margaret E.
2015-01-01
FoxP3+ regulatory CD4 T cells (Tregs) help to maintain the delicate balance between pathogen-specific immunity and immune-mediated pathology. Prior studies suggest that Tregs are induced by P. falciparum both in vivo and in vitro; however, the factors influencing Treg homeostasis during acute and chronic infections, and their role in malaria immunopathogenesis, remain unclear. We assessed the frequency and phenotype of Tregs in well-characterized cohorts of children residing in a region of high malaria endemicity in Uganda. We found that both the frequency and absolute numbers of FoxP3+ Tregs in peripheral blood declined markedly with increasing prior malaria incidence. Longitudinal measurements confirmed that this decline occurred only among highly malaria-exposed children. The decline of Tregs from peripheral blood was accompanied by reduced in vitro induction of Tregs by parasite antigen and decreased expression of TNFR2 on Tregs among children who had intense prior exposure to malaria. While Treg frequencies were not associated with protection from malaria, there was a trend toward reduced risk of symptomatic malaria once infected with P. falciparum among children with lower Treg frequencies. These data demonstrate that chronic malaria exposure results in altered Treg homeostasis, which may impact the development of antimalarial immunity in naturally exposed populations. PMID:26182204
Jackson-Sillah, Dolly; Cliff, Jacqueline M; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A; Addo, Kwasi K; Ottenhoff, Tom H M; Bothamley, Graham; Dockrell, Hazel M
2013-01-01
Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+)FoxP3(+)CD25(hi) cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.
Nuclear matrix protein SMAR1 control regulatory T-cell fate during inflammatory bowel disease (IBD)
Mirlekar, B; Ghorai, S; Khetmalas, M; Bopanna, R; Chattopadhyay, S
2015-01-01
Regulatory T (Treg) cells are essential for self-tolerance and immune homeostasis. Transcription factor Foxp3, a positive regulator of Treg cell differentiation, has been studied to some extent. Signal transducer and activator of transcription factor 3 (STAT3) is known to negatively regulate Foxp3. It is not clear how STAT3 is regulated during Treg differentiation. We show that SMAR1, a known transcription factor and tumor suppressor, is directly involved in maintaining Treg cell fate decision. T-cell-specific conditional knockdown of SMAR1 exhibits increased susceptibility towards inflammatory disorders, such as colitis. The suppressive function of Treg cells is compromised in the absence of SMAR1 leading to increased T helper type 17 (Th17) differentiation and inflammation. Compared with wild-type, the SMAR1−/− Treg cells showed increased susceptibility of inflammatory bowel disease in Rag1−/− mice, indicating the role of SMAR1 in compromising Treg cell differentiation resulting in severe colitis. We show that SMAR1 negatively regulate STAT3 expression favoring Foxp3 expression and Treg cell differentiation. SMAR1 binds to the MAR element of STAT3 promoter, present adjacent to interleukin-6 response elements. Thus Foxp3, a major driver of Treg cell differentiation, is regulated by SMAR1 via STAT3 and a fine-tune balance between Treg and Th17 phenotype is maintained. PMID:25993445
Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei
2012-09-21
MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.
The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells
Khor, Bernard; Gagnon, John D; Goel, Gautam; Roche, Marly I; Conway, Kara L; Tran, Khoa; Aldrich, Leslie N; Sundberg, Thomas B; Paterson, Alison M; Mordecai, Scott; Dombkowski, David; Schirmer, Melanie; Tan, Pauline H; Bhan, Atul K; Roychoudhuri, Rahul; Restifo, Nicholas P; O'Shea, John J; Medoff, Benjamin D; Shamji, Alykhan F; Schreiber, Stuart L; Sharpe, Arlene H; Shaw, Stanley Y; Xavier, Ramnik J
2015-01-01
The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity. DOI: http://dx.doi.org/10.7554/eLife.05920.001 PMID:25998054
CD28-CD80 interactions control regulatory T cell motility and immunological synapse formation1,2
Thauland, Timothy J.; Koguchi, Yoshinobu; Dustin, Michael L.; Parker, David C.
2014-01-01
Regulatory T cells (Tregs) are essential for tolerance to self and environmental antigens, acting in part by downmodulating costimulatory molecules on the surface of dendritic cells (DCs) and altering naïve CD4 T cell-DC interactions. Here, we show that Tregs form stable conjugates with DCs before, but not after, they decrease surface expression of the costimulatory molecule CD80 on the DCs. We use supported planar bilayers to show that Tregs dramatically slow down, but maintain a highly polarized and motile phenotype after recognizing antigen in the absence of costimulation. These motile cells are characterized by distinct accumulations of LFA-1-ICAM-1 in the lamella and TCR-MHC in the uropod, consistent with a motile immunological synapse or ‘kinapse’. However, in the presence of high, but not low, concentrations of CD80, Tregs form stationary, symmetrical synapses. Using blocking antibodies, we show that, while CTLA-4 is required for CD80 downmodulation, CD28-CD80 interactions are critical for modulating Treg motility in the presence of antigen. Together, these results support the hypothesis that Tregs are tuned to alter their motility depending on costimulatory signals. PMID:25355918
Non-suppressive regulatory T cell subset expansion in pulmonary arterial hypertension.
Sada, Yoshiharu; Dohi, Yoshihiro; Uga, Sayuri; Higashi, Akifumi; Kinoshita, Hiroki; Kihara, Yasuki
2016-08-01
Regulatory T cells (Tregs) have been reported to play a pivotal role in the vascular remodeling of pulmonary arterial hypertension (PAH). Recent studies have revealed that Tregs are heterogeneous and can be characterized by three phenotypically and functionally different subsets. In this study, we investigated the roles of Treg subsets in the pathogenesis of PAH in eight patients with PAH and 14 healthy controls. Tregs and their subsets in peripheral blood samples were analyzed by flow cytometry. Treg subsets were defined as CD4(+)CD45RA(+)FoxP3(low) resting Tregs (rTregs), CD4(+)CD45RA(-)FoxP3(high) activated Tregs (aTregs), and CD4(+)CD45RA(-)FoxP3(low) non-suppressive Tregs (non-Tregs). The proportion of Tregs among CD4(+) T cells was significantly higher in PAH patients than in controls (6.54 ± 1.10 vs. 3.81 ± 0.28 %, p < 0.05). Of the three subsets, the proportion of non-Tregs was significantly elevated in PAH patients compared with controls (4.06 ± 0.40 vs. 2.79 ± 0.14 %, p < 0.01), whereas those of rTregs and aTregs were not different between the two groups. Moreover, the expression levels of cytotoxic T lymphocyte antigen 4, a functional cell surface molecule, in aTregs (p < 0.05) and non-Tregs (p < 0.05) were significantly higher in PAH patients compared with controls. These results suggested the non-Treg subset was expanded and functionally activated in peripheral lymphocytes obtained from IPAH patients. We hypothesize that immunoreactions involving the specific activation of the non-Treg subset might play a role in the vascular remodeling of PAH.
Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization.
Fuchs, Anke; Gliwiński, Mateusz; Grageda, Nathali; Spiering, Rachel; Abbas, Abul K; Appel, Silke; Bacchetta, Rosa; Battaglia, Manuela; Berglund, David; Blazar, Bruce; Bluestone, Jeffrey A; Bornhäuser, Martin; Ten Brinke, Anja; Brusko, Todd M; Cools, Nathalie; Cuturi, Maria Cristina; Geissler, Edward; Giannoukakis, Nick; Gołab, Karolina; Hafler, David A; van Ham, S Marieke; Hester, Joanna; Hippen, Keli; Di Ianni, Mauro; Ilic, Natasa; Isaacs, John; Issa, Fadi; Iwaszkiewicz-Grześ, Dorota; Jaeckel, Elmar; Joosten, Irma; Klatzmann, David; Koenen, Hans; van Kooten, Cees; Korsgren, Olle; Kretschmer, Karsten; Levings, Megan; Marek-Trzonkowska, Natalia Maria; Martinez-Llordella, Marc; Miljkovic, Djordje; Mills, Kingston H G; Miranda, Joana P; Piccirillo, Ciriaco A; Putnam, Amy L; Ritter, Thomas; Roncarolo, Maria Grazia; Sakaguchi, Shimon; Sánchez-Ramón, Silvia; Sawitzki, Birgit; Sofronic-Milosavljevic, Ljiljana; Sykes, Megan; Tang, Qizhi; Vives-Pi, Marta; Waldmann, Herman; Witkowski, Piotr; Wood, Kathryn J; Gregori, Silvia; Hilkens, Catharien M U; Lombardi, Giovanna; Lord, Phillip; Martinez-Caceres, Eva M; Trzonkowski, Piotr
2017-01-01
Cellular therapies with CD4+ T regulatory cells (Tregs) hold promise of efficacious treatment for the variety of autoimmune and allergic diseases as well as posttransplant complications. Nevertheless, current manufacturing of Tregs as a cellular medicinal product varies between different laboratories, which in turn hampers precise comparisons of the results between the studies performed. While the number of clinical trials testing Tregs is already substantial, it seems to be crucial to provide some standardized characteristics of Treg products in order to minimize the problem. We have previously developed reporting guidelines called minimum information about tolerogenic antigen-presenting cells, which allows the comparison between different preparations of tolerance-inducing antigen-presenting cells. Having this experience, here we describe another minimum information about Tregs (MITREG). It is important to note that MITREG does not dictate how investigators should generate or characterize Tregs, but it does require investigators to report their Treg data in a consistent and transparent manner. We hope this will, therefore, be a useful tool facilitating standardized reporting on the manufacturing of Tregs, either for research purposes or for clinical application. This way MITREG might also be an important step toward more standardized and reproducible testing of the Tregs preparations in clinical applications.
TSC1 regulates the balance between effector and regulatory T cells.
Park, Yoon; Jin, Hyung-Seung; Lopez, Justine; Elly, Chris; Kim, Gisen; Murai, Masako; Kronenberg, Mitchell; Liu, Yun-Cai
2013-12-01
Mammalian target of rapamycin (mTOR) plays a crucial role in the control of T cell fate determination; however, the precise regulatory mechanism of the mTOR pathway is not fully understood. We found that T cell-specific deletion of the gene encoding tuberous sclerosis 1 (TSC1), an upstream negative regulator of mTOR, resulted in augmented Th1 and Th17 differentiation and led to severe intestinal inflammation in a colitis model. Conditional Tsc1 deletion in Tregs impaired their suppressive activity and expression of the Treg marker Foxp3 and resulted in increased IL-17 production under inflammatory conditions. A fate-mapping study revealed that Tsc1-null Tregs that lost Foxp3 expression gained a stronger effector-like phenotype compared with Tsc1-/- Foxp3+ Tregs. Elevated IL-17 production in Tsc1-/- Treg cells was reversed by in vivo knockdown of the mTOR target S6K1. Moreover, IL-17 production was enhanced by Treg-specific double deletion of Tsc1 and Foxo3a. Collectively, these studies suggest that TSC1 acts as an important checkpoint for maintaining immune homeostasis by regulating cell fate determination.
Stamou, Panagiota; Marioli, Dimitra; Patmanidi, Alexandra L; Sgourou, Argyro; Vittoraki, Angeliki; Theofani, Efthymia; Pierides, Chryso; Taraviras, Stavros; Costeas, Paul A; Spyridonidis, Alexandros
2017-04-01
Major barriers in using classical FOXP3+ regulatory T cells (Tregs) in clinical practice are their low numbers in the circulation, the lack of specific cell surface markers for efficient purification and the loss of expression of Treg signature molecules and suppressive function after in vitro expansion or in a pro-inflammatory microenviroment. A surface molecule with potent immunosuppressive function is the human leukocyte antigen-G (HLA-G), which is normally expressed in placenta protecting the "semi-allogeneic" fetus from maternal immune attack. Because HLA-G expression is strongly regulated by methylation, we asked whether hypomethylating agents (HA) may be used in vitro to induce HLA-G expression on conventional T cells and convert them to Tregs. Human peripheral blood T cells were exposed to azacytidine/decitabine and analyzed for HLA-G expression and their in vitro suppressor properties. HA treatment induces de novo expression of HLA-G on T cells through hypomethylation of the HLA-G proximal promoter. The HA-induced CD4 + HLA-G pos T cells are FOXP3 negative and have potent in vitro suppression function, which is dependent to a large extent, but not exclusively, on the HLA-G molecule. Converted HLA-G pos suppressors retain their suppressor function in the presence of tumor necrosis factor (TNF) and preserve hypomethylated the HLA-G promoter for at least 2 days after azacytidine exposure. Decitabine-treated T cells suppressed ex vivo the proliferation of T cells isolated from patients suffering from graft-versus-host disease (GVHD). We propose, in vitro generation of HLA-G-expressing T cells through pharmacological hypomethylation as a simple, Good Manufacturing Practice (GMP)-compatible and efficient strategy to produce a stable Treg subset of a defined phenotype that can be easily purified for adoptive immunotherapy. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Kochetkova, Irina; Thornburg, Theresa; Callis, Gayle; Holderness, Kathryn; Maddaloni, Massimo; Pascual, David W.
2014-01-01
A Salmonella therapeutic expressing enterotoxigenic E. coli colonization factor antigen I (CFA/I) fimbriae protects against collagen-induced arthritis (CIA) by eliciting two regulatory T cell (Treg) subsets: TGF-β-producing Foxp3−CD39+CD4+ and IL-10-producing Foxp3+CD39+CD4+ T cells. However, it is unclear if CFA/I fimbriae alone are protective, and if other regulatory cytokines are involved especially in the context for the EBI3-sharing cytokines, Treg-derived IL-35 and APC-derived IL-27, both capable of suppressing Th17 cells and regulating autoimmune diseases. Subsequent evaluation revealed that a single oral dose of purified, soluble CFA/I fimbriae protected against CIA as effectively as Salmonella-CFA/I, and found Foxp3+CD39+CD4+ T cells as the source of secreted IL-35, whereas IL-27 production by CD11c+ cells was inhibited. Inquiring into their relevance, CFA/I fimbriae-treated IL-27 receptor-deficient (WSX-1−/−) mice were equally protected against CIA as wild-type mice suggesting a limited role for IL-27. In contrast, CFA/I fimbriae-mediated protection was abated in EBI3−/− mice accompanied by the loss of TGF-β- and IL-10-producing Tregs. Adoptive transfer of B6 CD39+CD4+ T cells to EBI3−/− mice with concurrent CFA/I plus IL-35 treatment effectively stimulated Tregs suppressing proinflammatory CII-specific Th cells. Opposingly, recipients co-transferred with B6 and EBI3−/− CD39+CD4+ T cells and treated with CFA/I plus IL-35 failed in protecting mice implicating the importance for endogenous IL-35 to confer CFA/I-mediated protection. Thus, CFA/I fimbriae stimulate IL-35 required for the co-induction of TGF-β and IL-10. PMID:24337375
HP-1γ Controls High-Affinity Antibody Response to T-Dependent Antigens
Ha, Ngoc; Pham, Duc-Hung; Shahsafaei, Aliakbar; Naruse, Chie; Asano, Masahide; Thai, To-Ha
2014-01-01
In vitro observations suggest a role for the mouse heterochromatin protein 1γ (HP-1γ) in the immune system. However, it has not been shown if and how HP-1γ contributes to immunity in vivo. Here we show that in mice, HP-1γ positively regulates the germinal center reaction and high-affinity antibody response to thymus (T)-dependent antigens by limiting the size of CD8+ regulatory T-cell (Treg) compartment without affecting progenitor B- or T-cell-development. Moreover, HP-1γ does not control cell proliferation or class switch recombination. Haploinsufficiency of cbx-3 (gene encoding HP-1γ) is sufficient to expand the CD8+ Treg population and impair the immune response in mice despite the presence of wild-type HP-1α and HP-1β. This is the first in vivo evidence demonstrating the non-redundant role of HP-1γ in immunity. PMID:24971082
Yang, Nianlan; Baban, Babak; Isales, Carlos M; Shi, Xing-Ming
2015-09-01
Bone marrow is a reservoir for regulatory T (T(reg)) cells, but how T(reg) cells are regulated in that environment remains poorly understood. We show that expression of glucocorticoid (GC)-induced leucine zipper (GILZ) in bone marrow mesenchymal lineage cells or bone marrow-derived mesenchymal stem cells (BMSCs) increases the production of T(reg) cells via a mechanism involving the up-regulation of developmental endothelial locus-1 (Del-1), an endogenous leukocyte-endothelial adhesion inhibitor. We found that the expression of Del-1 is increased ∼4-fold in the bone tissues of GILZ transgenic (Tg) mice, and this increase is coupled with a significant increase in the production of IL-10 (2.80 vs. 0.83) and decrease in the production of IL-6 (0.80 vs. 2.33) and IL-12 (0.25 vs. 1.67). We also show that GILZ-expressing BMSCs present antigen in a way that favors T(reg) cells. These results indicate that GILZ plays a critical role mediating the crosstalk between BMSCs and T(reg) in the bone marrow microenvironment. These data, together with our previous findings that overexpression of GILZ in BMSCs antagonizes TNF-α-elicited inflammatory responses, suggest that GILZ plays important roles in bone-immune cell communication and BMSC immune suppressive functions. © FASEB.
Sela, Uri; Park, Chae Gyu; Park, Andrew; Olds, Peter; Wang, Shu; Fischetti, Vincent A.
2016-01-01
Cytokines secreted from dendritic cells (DCs) play an important role in the regulation of T helper (Th) cell differentiation and activation into effector cells. Therefore, controlling cytokine secretion from DCs may potentially regulate Th differentiation/activation. DCs also induce de-novo generation of regulatory T cells (Treg) that modulate the immune response. In the current study we used the mixed leukocyte reaction (MLR) to investigate the effect of allospecific Treg on IL-12, TNFα and IL-6 secretion by DCs. Treg cells were found to markedly down-regulate IL-12 secretion from DCs following stimulation with TLR7/8 agonist. This down-regulation of IL-12 was neither due to a direct suppression of its production by the DCs nor a result of marked DC death. We found that IL-12 was rather actively consumed by Treg cells. IL-12 consumption was mediated by a subpopulation of IL-12Rβ2-expressing Treg cells and was dependent on MHC class-II expressed on dendritic cells. Furthermore, IL-12 consumption by Tregs increased their suppressive effect on T cell proliferation and Th1 activation. These results provide a new pathway of Th1 response regulation where IL-12 secreted by DCs is consumed by a sub-population of IL-12Rβ2-expressing Treg cells. Consumption of IL-12 by Tregs not only reduces the availability of IL-12 to Th effector cells but also enhances the Treg immunosuppressive effect. This DC-induced IL-12Rβ2-expressing Treg subpopulation may have a therapeutic advantage in suppressing Th1 mediated autoimmunity. PMID:26745371
DeTemple, Daphne E.; Oldhafer, Felix; Falk, Christine S.; Chen‐Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael
2018-01-01
Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune‐mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte‐induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+CD25highCD127low Tregs were added to cocultures in single‐/trans‐well setups with/without supplementation of anti‐interferon γ (IFNγ) antibodies. Hepatocyte‐induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ‐induced major histocompatibility complex (MHC) class II up‐regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up‐regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte‐induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up‐regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407–419 2018 AASLD. PMID:29365365
Hayatsu, Norihito; Miyao, Takahisa; Tachibana, Masashi; Murakami, Ryuichi; Kimura, Akihiko; Kato, Takako; Kawakami, Eiryo; Endo, Takaho A; Setoguchi, Ruka; Watarai, Hiroshi; Nishikawa, Takeshi; Yasuda, Takuwa; Yoshida, Hisahiro; Hori, Shohei
2017-08-15
Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues. Mechanistically, repressed BATF expression contributed to these A384T effects. At the molecular level, the A384T mutation altered Foxp3 interactions with its specific target genes including Batf by broadening its DNA-binding specificity. Our findings identify BATF as a critical regulator of tissue Treg cells and suggest that sequence-specific perturbations of Foxp3-DNA interactions can influence specific facets of Treg cell physiology and the immunopathologies they regulate. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhou, Angela X; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya
2013-05-15
The role of surface-bound TGF-β on regulatory T cells (Tregs) and the mechanisms that mediate its functions are not well defined. We recently identified a cell-surface molecule called Glycoprotein A Repetitions Predominant (GARP), which is expressed specifically on activated Tregs and was found to bind latent TGF-β and mediate a portion of Treg suppressive activity in vitro. In this article, we address the role of GARP in regulating Treg and conventional T cell development and immune suppression in vivo using a transgenic mouse expressing GARP on all T cells. We found that, despite forced expression of GARP on all T cells, stimulation through the TCR was required for efficient localization of GARP to the cell surface. In addition, IL-2 signals enhanced GARP cell surface expression specifically on Tregs. GARP-transgenic CD4(+) T cells and Tregs, especially those expressing higher levels of GARP, were significantly reduced in the periphery. Mature Tregs, but not conventional CD4(+) T cells, were also reduced in the thymus. CD4(+) T cell reduction was more pronounced within the effector/memory subset, especially as the mouse aged. In addition, GARP-overexpressing CD4(+) T cells stimulated through the TCR displayed reduced proliferative capacity, which was restored by inhibiting TGF-β signaling. Furthermore, inhibiting TGF-β signals greatly enhanced surface expression of GARP on Tregs and blocked the induction of Foxp3 in activated CD4(+) T cells overexpressing GARP. These findings suggest a role for GARP in natural and induced Treg development through activation of bound latent TGF-β and signaling, which negatively regulates GARP expression on Tregs.
Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L
2017-01-17
FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian
2013-08-14
Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.
Dyck, Lydia; Wilk, Mieszko M; Raverdeau, Mathilde; Misiak, Alicja; Boon, Louis; Mills, Kingston H G
2016-12-01
The co-inhibitory molecule PD-1 suppresses T cell responses and has been targeted in the treatment of cancer. Here, we examined the role of PD-1 in regulating the balance between regulatory and effector T cells and whether blocking PD-1 could enhance tumour vaccine-induced protective immunity. A significantly higher proportion of tumour-resident T cells expressed PD-1 and Foxp3 compared with T cells in the tumour circulation or draining lymph nodes, and this correlated with a lower frequency of IFN-γ- and TNF-secreting CD8 T cells. Blocking PD-1 with a specific antibody reduced Foxp3 + regulatory T (Treg) cell induction and enhanced proliferation, cytokine production, and tumour killing by CD8 T cells. Treatment of CT26 tumour-bearing mice with anti-PD-1 in combination with a vaccine, comprising heat-shocked irradiated tumour cells and a TLR 7/8 agonist, significantly reduced tumour growth and enhanced survival. Furthermore, surviving mice resisted tumour re-challenge. The rejection of tumours in mice treated with the anti-PD-1 vaccine combination was associated with a reduction in tumour-infiltrating Treg cells and enhancement of IFN-γ-secreting CD8 T cells. Our findings demonstrate that high PD-1 expression correlates with increased tumour-infiltrating Treg cells and reduced effector T cells and that when combined with a potent antigen-adjuvant combination, blocking PD-1 effectively enhances anti-tumour immunity.
Kwon, Douglas S.; Angin, Mathieu; Hongo, Tomoyuki; Law, Kenneth M.; Johnson, Jessica; Porichis, Filippos; Hart, Meghan G.; Pavlik, David F.; Tighe, Daniel P.; Kavanagh, Daniel G.; Streeck, Hendrik; Addo, Marylyn M.
2012-01-01
T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14+ monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion. PMID:22496237
Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes.
Mor, Adi; Luboshits, Galia; Planer, David; Keren, Gad; George, Jacob
2006-11-01
Considerable evidence supports the role of innate and adaptive immunity in the progression and destabilization of the atheromatous plaque. Naturally occurring CD4(+)CD25(+) regulatory T cells (Tregs) are a subpopulation of lymphocytes that are capable of suppressing the progression of experimental autoimmune disorders. We have hypothesized that peripheral numbers and function of Tregs would be deranged in patients with acute coronary syndromes (ACS). Peripheral numbers of Tregs were evaluated by FACS employing labelled antibodies to CD4 and CD25. Functional suppressive properties of Tregs were assayed by establishing a triple-cell culture in which purified Tregs were incubated with irradiated antigen-presenting cells and anti-CD3-activated responder T cells. Proliferation in the presence or absence of oxidized LDL (oxLDL) was evaluated by thymidine incorporation. mRNA and protein content of foxp3, a master transcriptional regulator of Tregs, were determined for all subjects. Patients with ACS exhibited significantly reduced numbers of peripheral Tregs as compared with patients with stable angina and normal coronary artery subjects. Moreover, oxLDL induced a more profound reduction in Treg numbers in patients with ACS. Tregs in ACS patients were significantly compromised as their ability to suppress responder CD4(+)CD25(-) T-cell proliferation was attenuated. mRNA and protein content of foxp3 were significantly reduced in purified Tregs obtained from patients with ACS. In patients with ACS, naturally occurring CD4(+)CD25(+) Treg numbers are reduced and their functional properties compromised. These findings may aid in understanding the mechanisms leading to culprit plaque associated T-cell activation in patients with ACS.
In Situ Patrolling of Regulatory T Cells Is Essential for Protecting Autoimmune Exocrinopathy
Ishimaru, Naozumi; Nitta, Takeshi; Arakaki, Rieko; Yamada, Akiko; Lipp, Martin; Takahama, Yousuke; Hayashi, Yoshio
2010-01-01
Background Migration of T cells, including regulatory T (Treg) cells, into the secondary lymph organs is critically controlled by chemokines and adhesion molecules. However, the mechanisms by which Treg cells regulate organ-specific autoimmunity via these molecules remain unclear. Although we previously reported autoimmune exocrinopathy resembling Sjögren's syndrome (SS) in the lacrimal and salivary glands from C-C chemokine receptor 7 (CCR7)-deficient mice, it is still unclear whether CCR7 signaling might specifically affect the dynamics and functions of Treg cells in vivo. We therefore investigated the cellular mechanism for suppressive function of Treg cells via CCR7 in autoimmunity using mouse models and human samples. Methods and Findings Patrolling Treg cells were detected in the exocrine organs such as lacrimal and salivary glands from normal mice that tend to be targets for autoimmunity while the Treg cells were almost undetectable in the exocrine glands of CCR7 −/− mice. In addition, we found the significantly increased retention of CD4+CD25+Foxp3+ Treg cells in the lymph nodes of CCR7 −/− mice with aging. Although Treg cell egress requires sphingosine 1-phosphate (S1P), chemotactic function to S1P of CCR7−/− Treg cells was impaired compared with that of WT Treg cells. Moreover, the in vivo suppression activity was remarkably diminished in CCR7 −/− Treg cells in the model where Treg cells were co-transferred with CCR7 −/− CD25-CD4+ T cells into Rag2 −/− mice. Finally, confocal analysis showed that CCR7+Treg cells were detectable in normal salivary glands while the number of CCR7+Treg cells was extremely decreased in the tissues from patients with Sjögren's syndrome. Conclusions These results indicate that CCR7 essentially governs the patrolling functions of Treg cells by controlling the traffic to the exocrine organs for protecting autoimmunity. Characterization of this cellular mechanism could have clinical implications by supporting development of new diagnosis or treatments for the organ-specific autoimmune diseases such as Sjögren's syndrome and clarifying how the local immune system regulates autoimmunity. PMID:20052419
Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis
NASA Astrophysics Data System (ADS)
Dawkins, Bryan A.; Laverty, Sean M.
2016-03-01
Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.
Jackson-Sillah, Dolly; Cliff, Jacqueline M.; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A.; Addo, Kwasi K.; Ottenhoff, Tom H. M.; Bothamley, Graham; Dockrell, Hazel M.
2013-01-01
Background Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)–specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Methods Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. Results The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4+FoxP3+CD25hi cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. Conclusions These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes. PMID:23826366
Jochems, Caroline; Fantini, Massimo; Fernando, Romaine I; Kwilas, Anna R; Donahue, Renee N; Lepone, Lauren M; Grenga, Italia; Kim, Young-Seung; Brechbiel, Martin W; Gulley, James L; Madan, Ravi A; Heery, Christopher R; Hodge, James W; Newton, Robert; Schlom, Jeffrey; Tsang, Kwong Y
2016-06-21
Epacadostat is a novel inhibitor of indoleamine-2,3-dioxygenase-1 (IDO1) that suppresses systemic tryptophan catabolism and is currently being evaluated in ongoing clinical trials. We investigated the effects of epacadostat on (a) human dendritic cells (DCs) with respect to maturation and ability to activate human tumor antigen-specific cytotoxic T-cell (CTL) lines, and subsequent T-cell lysis of tumor cells, (b) human regulatory T cells (Tregs), and (c) human peripheral blood mononuclear cells (PBMCs) in vitro. Simultaneous treatment with epacadostat and IFN-γ plus lipopolysaccharide (LPS) did not change the phenotype of matured human DCs, and as expected decreased the tryptophan breakdown and kynurenine production. Peptide-specific T-cell lines stimulated with DCs pulsed with peptide produced significantly more IFN-γ, TNFα, GM-CSF and IL-8 if the DCs were treated with epacadostat. These T cells also displayed higher levels of tumor cell lysis on a per cell basis. Epacadostat also significantly decreased Treg proliferation induced by IDO production from IFN-γ plus LPS matured human DCs, although the Treg phenotype did not change. Multicolor flow cytometry was performed on human PBMCs treated with epacadostat; analysis of 123 discrete immune cell subsets revealed no changes in major immune cell types, an increase in activated CD83+ conventional DCs, and a decrease in immature activated Tim3+ NK cells. These studies show for the first time several effects of epacadostat on human DCs, and subsequent effects on CTL and Tregs, and provide a rationale as to how epacadostat could potentially increase the efficacy of immunotherapeutics, including cancer vaccines.
Excessive expression of miR-27 impairs Treg-mediated immunological tolerance
Cruz, Leilani O.; Hashemifar, Somaye Sadat; Wu, Cheng-Jang; Cho, Sunglim; Nguyen, Duc T.; Lin, Ling-Li; Khan, Aly Azeem
2017-01-01
MicroRNAs (miRs) are tightly regulated in the immune system, and aberrant expression of miRs often results in hematopoietic malignancies and autoimmune diseases. Previously, it was suggested that elevated levels of miR-27 in T cells isolated from patients with multiple sclerosis facilitate disease progression by inhibiting Th2 immunity and promoting pathogenic Th1 responses. Here we have demonstrated that, although mice with T cell–specific overexpression of miR-27 harbor dysregulated Th1 responses and develop autoimmune pathology, these disease phenotypes are not driven by miR-27 in effector T cells in a cell-autonomous manner. Rather, dysregulation of Th1 responses and autoimmunity resulted from a perturbed Treg compartment. Excessive miR-27 expression in murine T cells severely impaired Treg differentiation. Moreover, Tregs with exaggerated miR-27–mediated gene regulation exhibited diminished homeostasis and suppressor function in vivo. Mechanistically, we determined that miR-27 represses several known as well as previously uncharacterized targets that play critical roles in controlling multiple aspects of Treg biology. Collectively, our data show that miR-27 functions as a key regulator in Treg development and function and suggest that proper regulation of miR-27 is pivotal to safeguarding Treg-mediated immunological tolerance. PMID:28067667
Bhattacharya, Kaushik; Chandra, Sarmila; Mandal, Chitra
2014-05-01
Regulatory T (Treg) cells act to suppress activation of the immune system and thereby maintain immunological homeostasis and tolerance to self-antigens. The frequency and suppressing activity of Treg cells in general are high in different malignancies. We wanted to identify the role and regulation of CD4(+) CD25(+) FoxP3(+) Treg cells in B-cell acute lymphoblastic leukaemia (B-ALL). We have included patients at diagnosis (n = 54), patients in clinical remission (n = 32) and normal healthy individuals (n = 35). These diagnosed patients demonstrated a lower number of CD4(+) CD25(+) cells co-expressing a higher level of FoxP3, interleukin-10, transforming growth factor-β and CD152/CTLA-4 than the normal population. Treg cells from patients showed a higher suppressive capability on CD4(+) CD25(-) responder T (Tresp) cells than normal. The frequency and immunosuppressive potential of CD4(+) CD25(+) FoxP3(+) Treg cells became high with the progression of malignancy in B-ALL. Relative distribution of Tresp and Treg cells was only ~5 : 1 in B-ALL but ~35 : 1 in normal healthy individuals, further confirming the elevated immunosuppression in patients. A co-culture study at these definite ex vivo ratios, indicated that Treg cells from B-ALL patients exhibited higher immunosuppression than Treg cells from normal healthy individuals. After chemotherapy using the MCP841 protocol, the frequency of CD4(+) CD25(+) cells was gradually enhanced with the reduction of FoxP3, interleukin-10 positivity corresponded with disease presentation, indicating reduced immunosuppression. Taken together, our study indicated that the CD4(+) CD25(+) FoxP3(+) Treg cells played an important role in immunosuppression, resulting in a positive disease-correlation in these patients. To the best of our knowledge, this is the first detailed report on the frequency, regulation and functionality of Treg cells in B-ALL. © 2013 John Wiley & Sons Ltd.
Zhou, Ru; Horai, Reiko; Silver, Phyllis B; Mattapallil, Mary J; Zárate-Bladés, Carlos R; Chong, Wai Po; Chen, Jun; Rigden, Rachael C; Villasmil, Rafael; Caspi, Rachel R
2011-01-01
Immune privilege is used by the eye, brain, reproductive organs and gut to preserve structural and functional integrity in the face of inflammation. The eye is arguably the most vulnerable, and therefore also the most “privileged” of tissues, but paradoxically, remains subject to destructive autoimmunity. It has been proposed, although never proven in vivo, that the eye can induce T regulatory cells (Tregs) locally. Using FoxP3-GFP reporter mice expressing a retina-specific T cell receptor, we now show that uncommitted T cells rapidly convert in the living eye to FoxP3+ Tregs in a process involving retinal antigen recognition, de novo FoxP3 induction and proliferation. This takes place within the ocular tissue and is supported by retinoic acid, which is normally present in the eye due to its function in the chemistry of vision. Non-converted T cells showed evidence of priming, but appeared restricted from expressing effector function in the eye. Preexisting ocular inflammation impeded conversion of uncommitted T cells into Tregs. Importantly, retina-specific T cells primed in vivo before introduction into the eye were resistant to Treg conversion in the ocular environment, and instead caused severe uveitis. Thus, uncommitted T cells can be disarmed, but immune privilege is unable to protect from uveitogenic T cells that have acquired effector function prior to entering the eye. These findings shed new light on the phenomenon of immune privilege and on its role, as well as its limitations, in actively controlling immune responses in the tissue. PMID:22238462
Regulatory T cells: mechanisms of differentiation and function.
Josefowicz, Steven Z; Lu, Li-Fan; Rudensky, Alexander Y
2012-01-01
The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.
Cunnusamy, Khrishen; Niederkorn, Jerry Y.
2014-01-01
Th1 CD4+ cells are believed to be the primary mediators of corneal allograft rejection. However, rejection of fully allogeneic C57BL/6 corneal allografts soared from 50% to 90% in both INF-γ−/− and anti-IFN-γ-treated BALB/c mice. In contrast, similar deficits in IFN-γ in BALB/c hosts enhanced immune privilege of BALB.B (minor histocompatibility antigen-matched, MHC-mismatched) and NZB (major histocompatibility complex-matched, minor histocompatibility antigen-mismatched) corneal allografts – decreasing rejection from 80% to ~20%. This effect of IFN-γ was independent of CD4+ T cell lineage commitment as both anti-IFN-γ-treated acceptor and rejector mice displayed a Th2 cytokine profile. The presence of IFN-γ prevented the generation of alloantigen-specific CD4+CD25+ Tregs in hosts receiving either MHC only mismatched BALB.B or minor only histocompatibility (minor H)-mismatched NZB corneal allografts. Tregs in these hosts, promoted corneal allograft survival by suppressing Th2 effector cells. By contrast, IFN-γ was necessary for the generation of CD4+CD25+ Tregs that prevented rejection of fully allogeneic C57BL/6 corneal allografts in BALB/c hosts. These findings suggest that MHC-matching in combination with blockade of IFN-γ holds promise as a means of enhancing corneal allograft survival. PMID:24119152
Harker-Murray, Paul; Porter, Stephen B.; Merkel, Sarah C.; Londer, Aryel; Taylor, Dawn K.; Bina, Megan; Panoskaltsis-Mortari, Angela; Rubinstein, Pablo; Van Rooijen, Nico; Golovina, Tatiana N.; Suhoski, Megan M.; Miller, Jeffrey S.; Wagner, John E.; June, Carl H.; Riley, James L.
2008-01-01
Previously, we showed that human umbilical cord blood (UCB) regulatory T cells (Tregs) could be expanded approximately 100-fold using anti-CD3/28 monoclonal antibody (mAb)–coated beads to provide T-cell receptor and costimulatory signals. Because Treg numbers from a single UCB unit are limited, we explored the use of cell-based artificial antigen-presenting cells (aAPCs) preloaded with anti-CD3/28 mAbs to achieve higher levels of Treg expansion. Compared with beads, aAPCs had similar expansion properties while significantly increasing transforming growth factor β (TGF-β) secretion and the potency of Treg suppressor function. aAPCs modified to coexpress OX40L or 4-1BBL expanded UCB Tregs to a significantly greater extent than bead- or nonmodified aAPC cultures, reaching mean expansion levels exceeding 1250-fold. Despite the high expansion and in contrast to studies using other Treg sources, neither OX40 nor 4-1BB signaling of UCB Tregs reduced in vitro suppression. UCB Tregs expanded with 4-1BBL expressing aAPCs had decreased levels of proapoptotic bim. UCB Tregs expanded with nonmodified or modified aAPCs versus beads resulted in higher survival associated with increased Treg persistence in a xeno-geneic graft-versus-host disease lethality model. These data offer a novel approach for UCB Treg expansion using aAPCs, including those coexpressing OX40L or 4-1BBL. PMID:18645038
Regulatory T cells in multiple sclerosis and myasthenia gravis.
Danikowski, K M; Jayaraman, S; Prabhakar, B S
2017-06-09
Multiple sclerosis (MS) is a chronic debilitating disease of the central nervous system primarily mediated by T lymphocytes with specificity to neuronal antigens in genetically susceptible individuals. On the other hand, myasthenia gravis (MG) primarily involves destruction of the neuromuscular junction by antibodies specific to the acetylcholine receptor. Both autoimmune diseases are thought to result from loss of self-tolerance, which allows for the development and function of autoreactive lymphocytes. Although the mechanisms underlying compromised self-tolerance in these and other autoimmune diseases have not been fully elucidated, one possibility is numerical, functional, and/or migratory deficits in T regulatory cells (Tregs). Tregs are thought to play a critical role in the maintenance of peripheral immune tolerance. It is believed that Tregs function by suppressing the effector CD4+ T cell subsets that mediate autoimmune responses. Dysregulation of suppressive and migratory markers on Tregs have been linked to the pathogenesis of both MS and MG. For example, genetic abnormalities have been found in Treg suppressive markers CTLA-4 and CD25, while others have shown a decreased expression of FoxP3 and IL-10. Furthermore, elevated levels of pro-inflammatory cytokines such as IL-6, IL-17, and IFN-γ secreted by T effectors have been noted in MS and MG patients. This review provides several strategies of treatment which have been shown to be effective or are proposed as potential therapies to restore the function of various Treg subsets including Tr1, iTr35, nTregs, and iTregs. Strategies focusing on enhancing the Treg function find importance in cytokines TGF-β, IDO, interleukins 10, 27, and 35, and ligands Jagged-1 and OX40L. Likewise, strategies which affect Treg migration involve chemokines CCL17 and CXCL11. In pre-clinical animal models of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune myasthenia gravis (EAMG), several strategies have been shown to ameliorate the disease and thus appear promising for treating patients with MS or MG.
Regulatory T cells: Friends or foe in human Mycobacterium leprae infection?
Chaves, Ana T; Ribeiro-Junior, Atvaldo F; Lyon, Sandra; Medeiros, Nayara I; Cassirer-Costa, Fábio; Paula, Karina S; Alecrim, Edilamar S; Menezes, Cristiane A S; Correa-Oliveira, Rodrigo; Rocha, Manoel O C; Gomes, Juliana A S
Regulatory T cells (Tregs) are known to control immune responses by suppressing the antigen-presenting and effector T cells. Some mechanisms adopted by Tregs in combating Mycobacterium infections have been proposed. Nevertheless, in M. leprae infection, also known as leprosy or Hansen's disease, the role of Tregs has not been completely elucidated. Using multicolor flow cytometry, we evaluated the expression of different cell surface and intracellular molecules present in Tregs from peripheral blood samples of leprosy patients. Before initiating treatment, thirteen new cases of leprosy were grouped according to the Ridley-Jopling classification in to the paucibacilary (PB) or multibacilary (MB) group. Fifteen non-infected individuals (NI) were included as control subjects. Tregs were higher in the MB group than in the NI group. Tregs also co-expressed high amounts of PD1 and PDL-1, indicating that these cells could induce apoptosis of effector cells and simultaneously prevent their own apoptosis. Our data showed that compared to the NI group, Tregs from the PB group expressed higher levels of CD95L, which may be associated with other apoptotic pathways that may decrease Tregs in these patients. Correlation analysis reinforced that PD1 and CD95L are efficient apoptosis' pathway that decreased levels of Tregs in the NI and PB groups. We also observed significant differences in cytokine expression of Tregs from the PB and MB groups. Compared to the NI group, Tregs from the MB group showed higher IL-17 expression; however, compared to the PB group, the expression of IL-10 in Tregs from the MB group was lower, suggesting inefficient control of inflammation. Therefore, we concluded that different pathways were involved in Treg-induced suppression of leprosy. Moreover, Treg-mediated regulation of inflammation via IL-10 and IL-17 expression in leprosy patients was inefficient. Thus, we propose that during M. leprae infection, Tregs may impair the immune responses elicited against this bacillus, favor bacterial replication, and aid in persistence of a disseminated multibacillary disease. Copyright © 2017 Elsevier GmbH. All rights reserved.
Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP.
Elkord, Eyad; Abd Al Samid, May; Chaudhary, Belal
2015-08-21
Regulatory T cells (Tregs) are key players of immune regulation/dysregulation both in physiological and pathophysiological settings. Despite significant advances in understanding Treg function, there is still a pressing need to define reliable and specific markers that can distinguish different Treg subpopulations. Herein we show for the first time that markers of activated Tregs [latency associated peptide (LAP) and glycoprotein A repetitions predominant (GARP, or LRRC32)] are expressed on CD4+FoxP3- T cells expressing Helios (FoxP3-Helios+) in the steady state. Following TCR activation, GARP/LAP are up-regulated on CD4+Helios+ T cells regardless of FoxP3 expression (FoxP3+/-Helios+). We show that CD4+GARP+/-LAP+ Tregs make IL-10 immunosuppressive cytokine but not IFN-γ effector cytokine. Further characterization of FoxP3/Helios subpopulations showed that FoxP3+Helios+ Tregs proliferate in vitro significantly less than FoxP3+Helios- Tregs upon TCR stimulation. Unlike FoxP3+Helios- Tregs, FoxP3+Helios+ Tregs secrete IL-10 but not IFN-γ or IL-2, confirming they are bona fide Tregs with immunosuppressive characteristics. Taken together, Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP, and FoxP3+Helios+ Tregs have more suppressive characteristics, compared with FoxP3+Helios- Tregs. Our work implies that therapeutic modalities for treating autoimmune and inflammatory diseases, allergies and graft rejection should be designed to induce and/or expand FoxP3+Helios+ Tregs, while therapies against cancers or infectious diseases should avoid such expansion/induction.
Choi, Seung-Chul; Hutchinson, Tarun E.; Titov, Anton A.; Seay, Howard R.; Li, Shiwu; Brusko, Todd M.; Croker, Byron P.; Salek-Ardakani, Shahram; Morel, Laurence
2016-01-01
Pbx1 controls chromatin accessibility to a large number of genes and is entirely conserved between mice and humans. The Pbx1-d dominant negative isoform is more frequent in the CD4+ T cells from lupus patients than from healthy controls. Pbx1-d is associated with the production of autoreactive T cells in mice carrying the Sle1a1 lupus susceptibility locus. Transgenic expression of Pbx1-d in CD4+ T cells reproduced the phenotypes of Sle1a1 mice, with increased inflammatory functions of CD4+ T cells and impaired regulatory T cell homeostasis. Pbx1-d Tg also expanded the number of follicular helper T cells in a cell-intrinsic and antigen-specific manner that was enhanced in recall responses, and resulted in TH1-biased antibodies. Moreover, Pbx1-d Tg CD4+ T cells upregulated the expression of miR-10a, miR-21 and miR-155, which have been implicated in Treg and TFH cell homeostasis. Our results suggest that Pbx1-d impacts lupus development by regulating effector T cell differentiation and promoting TFH cells at the expense of Treg cells. In addition, our results identify Pbx1 as a novel regulator of CD4+ T cell effector function. PMID:27296664
Schlossberger, V; Schober, L; Rehnitz, J; Schaier, M; Zeier, M; Meuer, S; Schmitt, E; Toth, B; Strowitzki, T; Steinborn, A
2013-11-01
Are there differences in composition of the total regulatory T cell (Treg) pool and distinct Treg subsets (naïve CD45RA(+)-Tregs, HLA-DR(-)- and HLA-DR(+)-memory Tregs) between successfully and non-successfully IVF/ICSI-treated women? Non-successfully IVF/ICSI-treated women have a decreased percentage of naïve CD45RA(+)-Tregs and an increased percentage of HLA-DR(-)-memory Tregs within the total Treg pool. Immunosuppressive Tregs play a significant role in human reproduction and studies have shown that their number and function are reduced in reproductive failure and complications of pregnancy such as pre-eclampsia and preterm labor. However, no data exist concerning the importance of Tregs for a successful outcome following assisted reproduction technologies. Blood samples were obtained from 210 women undergoing IVF/ICSI treatment, where 14 patients were excluded due to biochemical pregnancy or missed abortion. Age control blood samples were collected from 20 neonates and 176 healthy female volunteers. The study was performed between October 2010 and March 2012. In this study, we determined prospectively the quantity and composition of the total CD4(+)CD127(low+/-)CD25(+)FoxP3(+)-Treg pool and three different Treg subsets (naïve CD45RA(+)-Tregs, HLA-DR(-)- and HLA-DR(+)-memory Tregs) in all women undergoing IVF/ICSI treatment. We examined whether there were differences between those who became pregnant (n = 36) and those who did not (n = 160). The blood samples were collected within 1 h before the embryo transfer and analyzed by six-color flow cytometry. In order to evaluate these results with regard to the normal age-related changes in composition of the total Treg pool, the same analysis was performed using samples of umbilical cord blood and from healthy female volunteers aged between 17 and 76 years. The composition of the total Treg pool was documented for successfully IVF/ICSI-treated women (n = 5) throughout their pregnancy and we assessed the suppressive activity of each Treg subset in pregnant (n = 10) compared with non-pregnant women (n = 10) using suppression assays. The percentage of CD4(+)CD127(low+/-)CD25(+)FoxP3(+)-Tregs within the total CD4(+)-T cell pool did not change with age and did not differ between IVF/ICSI-treated women who did or did not become pregnant. For the total Treg pool, the percentage of the naïve CD45RA(+)-Tregs decreased continuously, while the percentage of HLA-DR(-)- and HLA-DR(+)-memory Tregs increased with aging. From the age of about 40 years, the increase in HLA-DR(+)-memory Tregs in particular became less pronounced, indicating that conversion of naïve CD45RA(+)Tregs into HLA-DR(+)-memory Tregs decreases with age. Women who did not achieve a pregnancy with IVF/ICSI were older than those who did (P < 0.01). However, multiple logistic regression analysis revealed that irrespective of age, the percentage of naïve CD45RA(+)-Tregs within the total Treg pool was decreased (P < 0.05), while the percentage of HLA-DR(-)-memory Tregs was increased (P < 0.01) in women who did not become pregnant compared with those who did. At the beginning of pregnancy, naïve CD45RA(+)-Tregs showed a major decrease but increased again during pregnancy and these cells showed a higher suppressive activity (P < 0.0001) in pregnant compared with non-pregnant women. There was a large variation in the percentages of the Treg subsets within the total Treg pool between successfully and non-successfully IVF/ICSI-treated women. Therefore, their determination would not allow us to predict the IVF/ICSI outcome with sufficient specificity and sensitivity. We did not examine the antigen specificity of the Treg subsets and therefore could not discern whether the naïve CD45RA(+)-Tregs recognized maternal or paternal antigens. Our findings suggest that Tregs, especially the naïve CD45RA(+)-Treg subset, may play a role in determining the probability of both becoming pregnant and maintenance of the pregnancy. This work was supported by the German Research Council (DFG) grant STE 885/3-2 (to A.S.). All authors declare to have no conflict of interest.
Tsang, Julia Yuen-Shan; Tanriver, Yakup; Jiang, Shuiping; Xue, Shao-An; Ratnasothy, Kulachelvy; Chen, Daxin; Stauss, Hans J.; Bucy, R. Pat; Lombardi, Giovanna; Lechler, Robert
2008-01-01
T cell responses to MHC-mismatched transplants can be mediated via direct recognition of allogeneic MHC molecules on the cells of the transplant or via recognition of allogeneic peptides presented on the surface of recipient APCs in recipient MHC molecules — a process known as indirect recognition. As CD4+CD25+ Tregs play an important role in regulating alloresponses, we investigated whether mouse Tregs specific for allogeneic MHC molecules could be generated in vitro and could promote transplantation tolerance in immunocompetent recipient mice. Tregs able to directly recognize allogeneic MHC class II molecules (dTregs) were obtained by stimulating CD4+CD25+ cells from C57BL/6 mice (H-2b) with allogeneic DCs from BALB/c mice (H-2d). To generate Tregs that indirectly recognized allogeneic MHC class II molecules, dTregs were retrovirally transduced with TCR genes conferring specificity for H-2Kd presented by H-2Ab MHC class II molecules. The dual direct and indirect allospecificity of the TCR-transduced Tregs was confirmed in vitro. In mice, TCR-transduced Tregs, but not dTregs, induced long-term survival of partially MHC-mismatched heart grafts when combined with short-term adjunctive immunosuppression. Further, although dTregs were only slightly less effective than TCR-transduced Tregs at inducing long-term survival of fully MHC-mismatched heart grafts, histologic analysis of long-surviving hearts demonstrated marked superiority of the TCR-transduced Tregs. Thus, Tregs specific for allogeneic MHC class II molecules are effective in promoting transplantation tolerance in mice, which suggests that such cells have clinical potential. PMID:18846251
DeTemple, Daphne E; Oldhafer, Felix; Falk, Christine S; Chen-Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael; Vondran, Florian W R
2018-03-01
Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune-mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte-induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4 + CD25 high CD127 low Tregs were added to cocultures in single-/trans-well setups with/without supplementation of anti-interferon γ (IFNγ) antibodies. Hepatocyte-induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ-induced major histocompatibility complex (MHC) class II up-regulation on hepatocytes and mediated by CD4 + T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8 + T cells showed early up-regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte-induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4 + T cell alloresponse in vitro, which is associated with MHC class II up-regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407-419 2018 AASLD. © 2018 The Authors. Liver Transplantation published by Wiley Periodicals, Inc. on behalf of American Association for the Study of Liver Diseases.
Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie
2015-08-14
Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N
2013-01-01
Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275
Jebbawi, Fadi; Fayyad-Kazan, Hussein; Merimi, Makram; Lewalle, Philippe; Verougstraete, Jean-Christophe; Leo, Oberdan; Romero, Pedro; Burny, Arsene; Badran, Bassam; Martiat, Philippe; Rouas, Redouane
2014-08-06
Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.
Li, Jiang; Du, Xingrong; Shi, Hao; Deng, Kejing; Chi, Hongbo; Tao, Wufan
2015-12-25
Regulatory T cells (Tregs) play crucial roles in maintaining immune tolerance. The transcription factor Foxp3 is a critical regulator of Treg development and function, and its expression is regulated at both transcriptional and post-translational levels. Acetylation by lysine acetyl transferases/lysine deacetylases is one of the main post-translational modifications of Foxp3, which regulate Foxp3's stability and transcriptional activity. However, the mechanism(s) by which the activities of these lysine acetyl transferases/lysine deacetylases are regulated to preserve proper Foxp3 acetylation during Treg development and maintenance of Treg function remains to be determined. Here we report that Mst1 can enhance Foxp3 stability, its transcriptional activity, and Treg function by modulating the Foxp3 protein at the post-translational level. We discovered that Mst1 could increase the acetylation of Foxp3 by inhibiting Sirt1 activity, which requires the Mst1 kinase activity. We also found that Mst1 could attenuate Sirt1-mediated deacetylation of Foxp3 through directly interacting with Foxp3 to prevent or interfere the interaction between Sirt1 and Foxp3. Therefore, Mst1 can regulate Foxp3 stability in kinase-dependent and kinase-independent manners. Finally, we showed that treatment of Mst1(-/-) Tregs with Ex-527, a Sirt1-specific inhibitor, partially restored the suppressive function of Mst1(-/-) Tregs. Our studies reveal a novel mechanism by which Mst1 enhances Foxp3 expression and Treg function at the post-translational level. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Immunotherapy with myeloid cells for tolerance induction
Rodriguez-García, Mercedes; Boros, Peter; Bromberg, Jonathan S.; Ochando, Jordi C.
2013-01-01
Purpose of review Understanding the interplay between myeloid dendritic cells and T cells under tolerogenic conditions, and whether their interactions induce the development of antigen-specific regulatory T cells (Tregs) is critical to uncover the mechanisms involved in the induction of indefinite allograft survival. Recent findings Myeloid dendritic cell–T-cell interactions are seminal events that determine the outcome of the immune response, and multiple in-vitro protocols suggest the generation of tolerogenic myeloid dendritic cells that modulate T-cell responses, and determine the outcome of the immune response to an allograft following adoptive transfer. We believe that identifying specific conditions that lead to the generation of tolerogenic myeloid dendritic cells and Tregs are critical for the manipulation the immune response towards the development of transplantation tolerance. Summary We summarize recent findings regarding specific culture conditions that generate tolerogenic myeloid dendritic cells that induce T-cell hyporesponsiveness and Treg development, and represents a novel immunotherapeutic approach to promote the induction of indefinite graft survival prolongation. The interpretations presented here illustrate that different mechanisms govern the generation tolerogenic myeloid dendritic cells, and we discuss the concomitant therapeutic implications. PMID:20616727
Emerging Functions of Regulatory T Cells in Tissue Homeostasis
Sharma, Amit; Rudra, Dipayan
2018-01-01
CD4+Foxp3+ regulatory T-cells (Tregs) are a unique subset of helper T-cells, which regulate immune response and establish peripheral tolerance. Tregs not only maintain the tone and tenor of an immune response by dominant tolerance but, in recent years, have also been identified as key players in resolving tissue inflammation and as mediators of tissue healing. Apart from being diverse in their origin (thymic and peripheral) and location (lymphoid and tissue resident), Tregs are also phenotypically heterogeneous as per the orientation of ongoing immune response. In this review, we discuss the recent advances in the field of Treg biology in general, and non-lymphoid and tissue-resident Tregs in particular. We elaborate upon well-known visceral adipose tissue, colon, skin, and tumor-infiltrating Tregs and newly identified tissue Treg populations as in lungs, skeletal muscle, placenta, and other tissues. Our attempt is to differentiate Tregs based on distinctive properties of their location, origin, ligand specificity, chemotaxis, and specific suppressive mechanisms. Despite ever expanding roles in maintaining systemic homeostasis, Tregs are employed by large varieties of tumors to dampen antitumor immunity. Thus, a comprehensive understanding of Treg biology in the context of inflammation can be instrumental in effectively managing tissue transplantation, autoimmunity, and antitumor immune responses. PMID:29887862
Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP
Elkord, Eyad; Abd Al Samid, May; Chaudhary, Belal
2015-01-01
Regulatory T cells (Tregs) are key players of immune regulation/dysregulation both in physiological and pathophysiological settings. Despite significant advances in understanding Treg function, there is still a pressing need to define reliable and specific markers that can distinguish different Treg subpopulations. Herein we show for the first time that markers of activated Tregs [latency associated peptide (LAP) and glycoprotein A repetitions predominant (GARP, or LRRC32)] are expressed on CD4+FoxP3− T cells expressing Helios (FoxP3−Helios+) in the steady state. Following TCR activation, GARP/LAP are up-regulated on CD4+Helios+ T cells regardless of FoxP3 expression (FoxP3+/−Helios+). We show that CD4+GARP+/−LAP+ Tregs make IL-10 immunosuppressive cytokine but not IFN-γ effector cytokine. Further characterization of FoxP3/Helios subpopulations showed that FoxP3+Helios+ Tregs proliferate in vitro significantly less than FoxP3+Helios− Tregs upon TCR stimulation. Unlike FoxP3+Helios− Tregs, FoxP3+Helios+ Tregs secrete IL-10 but not IFN-γ or IL-2, confirming they are bona fide Tregs with immunosuppressive characteristics. Taken together, Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP, and FoxP3+Helios+ Tregs have more suppressive characteristics, compared with FoxP3+Helios− Tregs. Our work implies that therapeutic modalities for treating autoimmune and inflammatory diseases, allergies and graft rejection should be designed to induce and/or expand FoxP3+Helios+ Tregs, while therapies against cancers or infectious diseases should avoid such expansion/induction. PMID:26343373
Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold
2016-01-01
DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model. PMID:27406624
Soria, I; López-Relaño, J; Viñuela, M; Tudela, J-I; Angelina, A; Benito-Villalvilla, C; Díez-Rivero, C M; Cases, B; Manzano, A I; Fernández-Caldas, E; Casanovas, M; Palomares, O; Subiza, J L
2018-04-01
Polymerized allergoids coupled to nonoxidized mannan (PM-allergoids) may represent novel vaccines targeting dendritic cells (DCs). PM-allergoids are better captured by DCs than native allergens and favor Th1/Treg cell responses upon subcutaneous injection. Herein we have studied in mice the in vivo immunogenicity of PM-allergoids administered sublingually in comparison with native allergens. Three immunization protocols (4-8 weeks long) were used in Balb/c mice. Serum antibody levels were tested by ELISA. Cell responses (proliferation, cytokines, and Tregs) were assayed by flow cytometry in spleen and lymph nodes (LNs). Allergen uptake was measured by flow cytometry in myeloid sublingual cells. A quick antibody response and higher IgG2a/IgE ratio were observed with PM-allergoids. Moreover, stronger specific proliferative responses were seen in both submandibular LNs and spleen cells assayed in vitro. This was accompanied by a higher IFNγ/IL-4 ratio with a quick IL-10 production by submandibular LN cells. An increase in CD4 + CD25 high FOXP3 + Treg cells was detected in LNs and spleen of mice treated with PM-allergoids. These allergoids were better captured than native allergens by antigen-presenting (CD45 + MHC-II + ) cells obtained from the sublingual mucosa, including DCs (CD11b + ) and macrophages (CD64 + ). Importantly, all the differential effects induced by PM-allergoids were abolished when using oxidized instead of nonoxidized PM-allergoids. Our results demonstrate for the first time that PM-allergoids administered through the sublingual route promote the generation of Th1 and FOXP3 + Treg cells in a greater extent than native allergens by mechanisms that might well involve their better uptake by oral antigen-presenting cells. © 2018 The Authors. Allergy Published by John Wiley & Sons Ltd.
Hezova, Renata; Slaby, Ondrej; Faltejskova, Petra; Mikulkova, Zuzana; Buresova, Ivana; Raja, K R Muthu; Hodek, Jan; Ovesna, Jaroslava; Michalek, Jaroslav
2010-01-01
Regulatory T cells (Tregs) are critical regulators of autoimmune diseases, including type 1 diabetes mellitus. It is hypothesised that Tregs' function can be influenced by changes in the expression of specific microRNAs (miRNAs). Thus, we performed miRNAs profiling in a population of Tregs separated from peripheral blood of five type 1 diabetic patients and six healthy donors. For more detailed molecular characterisation of Tregs, we additionally compared miRNAs expression profiles of Tregs and conventional T cells. Tregs were isolated according to CD3+, CD4+, CD25(hi)+ and CD127- by flow cytometry, and miRNA expression profiling was performed using TaqMan Array Human MicroRNA Panel-1 (384-well low density array). In Tregs of diabetic patients we found significantly increased expression of miRNA-510 (p=0.05) and decreased expression of both miRNA-342 (p<0.0001) and miRNA-191 (p=0.0079). When comparing Tregs and T cells, we revealed that Tregs had significant higher expression of miRNA-146a and lower expression of eight specific miRNAs (20b, 31, 99a, 100, 125b, 151, 335, and 365). To our knowledge, this is the first study demonstrating changes in miRNA expression profiles occurring in Tregs of T1D patients and a miRNAs signature of adult Tregs.
da Silva, Marcos V; Massaro Junior, Vladimir J; Machado, Juliana R; Silva, Djalma A A; Castellano, Lúcio R; Alexandre, Patricia B D; Rodrigues, Denise B R; Rodrigues, Virmondes
2015-01-01
Tuberculosis (TB) remains a major global health problem and is the second biggest cause of death by infectious disease worldwide. Here, we investigate in vitro the Th1, Th2, Th17, and Treg cytokines and transcriptional factors produced after Mycobacterium-specific antigen stimulation in patients with active pulmonary tuberculosis, clinically cured pulmonary tuberculosis, and healthy donors with a positive tuberculin skin test (TST+). Together, our data indicate that clinical cure after treatment increases the percentages of Mycobacterium-specific Th1, Th2, and Th17 cells compared with those found in active-TB and TST+ healthy donors. These results show that the host-parasite equilibrium in latent TB breaks in favor of the microorganism and that the subsequent clinical recovery posttreatment does not return the percentage levels of such cells to those observed in latent tuberculosis. Additionally, our results indicate that rather than showing an increase in the percentage of Mycobacterium-specific Tregs, active-TB patients display lower Th1 : Treg and Th17 : Treg ratios. These data, together with lower Th1 : Th2 and Th17 : Th2 ratios, may indicate a mechanism by which the breakdown of the host-parasite equilibrium leads to active-TB and changes in the repertoire of Mycobacterium-specific Th cells that are associated with clinical cure after treatment of pulmonary tuberculosis.
Gao, Yuan; Min, Kyungji; Zhang, Yibing; Su, John; Greenwood, Matthew; Gronert, Karsten
2015-01-01
Immune-driven dry eye disease primarily affects women; the cause for this sex-specific prevalence is unknown. PMN have distinct phenotypes that drive inflammation but also regulate lymphocytes and are the rate-limiting cell for generating anti-inflammatory lipoxin A4 (LXA4). Estrogen regulates the LXA4 circuit to induce delayed female-specific wound healing in the cornea. However, the role of PMN in dry eye disease remains unexplored. We discovered a LXA4-producing tissue-PMN population in the corneal limbus, lacrimal glands and cervical lymph nodes of healthy male and female mice. These tissue-PMN, unlike inflammatory-PMN, expressed a highly amplified LXA4 circuit and were sex-specifically regulated during immune-driven dry eye disease. Desiccating stress in females, unlike in males, triggered a remarkable decrease in lymph node PMN and LXA4 formation that remained depressed during dry eye disease. Depressed lymph node PMN and LXA4 in females correlated with an increase in T effector cells (TH1 and TH17), a decrease in regulatory T cells (Treg) and increased dry eye pathogenesis. Antibody depletion of tissue-PMN abrogated LXA4 formation in lymph nodes, caused a marked increase in TH1 and TH17 and decrease in Treg cells. To establish an immune regulatory role for PMN-derived LXA4 in dry eye females were treated with LXA4. LXA4 treatment markedly inhibited TH1 and TH17 and amplified Treg cells in draining lymph nodes, while reducing dry eye pathogenesis. These results identify female-specific regulation of LXA4-producing tissue-PMN as a potential key factor in aberrant T effector cell activation and initiation of immune-driven dry eye disease. PMID:26324767
Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis
Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna
2016-01-01
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS. PMID:27729910
Fas-Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis.
Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna
2016-01-01
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas-FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas-FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas-FasL in regulating Th17 and Treg cells' functions, in the context of MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas-Inchaustegui, Diego A.; Xiao, Peng; Hogg, Alison E.
High-level T cell expression of PD-1 during SIV infection is correlated with impaired proliferation and function. We evaluated the phenotype and distribution of T cells and Tregs during antiretroviral therapy plus PD-1 modulation (using a B7-DC-Ig fusion protein) and post-ART. Chronically SIV-infected rhesus macaques received: 11 weeks of ART (Group A); 11 weeks of ART plus B7-DC-Ig (Group B); 11 weeks of ART plus B7-DC-Ig, then 12 weeks of B7-DC-Ig alone (Group C). Continuous B7-DC-Ig treatment (Group C) decreased rebound viremia post-ART compared to pre-ART levels, associated with decreased PD-1{sup hi} expressing T cells and Tregs in PBMCs, and PD-1{supmore » hi} Tregs in lymph nodes. It transiently decreased expression of Ki67 and α{sub 4}β{sub 7} in PBMC CD4{sup +} and CD8{sup +} Tregs for up to 8 weeks post-ART and maintained Ag-specific T-cell responses at low levels. Continued immune modulation targeting PD-1{sup hi} cells during and post-ART helps maintain lower viremia, keeps a favorable T cell/Treg repertoire and modulates antigen-specific responses. - Highlights: • B7-DC-Ig modulates PD-1{sup hi} cells in SIV-infected rhesus macaques during and post-ART. • Continued PD-1 modulation post-ART maintains PD-1{sup hi} cells at low levels. • Continued PD-1 modulation post-ART maintains a favorable T cell and Treg repertoire.« less
GP96 is a GARP chaperone and controls regulatory T cell functions.
Zhang, Yongliang; Wu, Bill X; Metelli, Alessandra; Thaxton, Jessica E; Hong, Feng; Rachidi, Saleh; Ansa-Addo, Ephraim; Sun, Shaoli; Vasu, Chenthamarakshan; Yang, Yi; Liu, Bei; Li, Zihai
2015-02-01
Molecular chaperones control a multitude of cellular functions via folding chaperone-specific client proteins. CD4+FOXP3+ Tregs play key roles in maintaining peripheral tolerance, which is subject to regulation by multiple molecular switches, including mTOR and hypoxia-inducible factor. It is not clear whether GP96 (also known as GRP94), which is a master TLR and integrin chaperone, controls Treg function. Using murine genetic models, we demonstrated that GP96 is required for Treg maintenance and function, as loss of GP96 resulted in instability of the Treg lineage and impairment of suppressive functions in vivo. In the absence of GP96, Tregs were unable to maintain FOXP3 expression levels, resulting in systemic accumulation of pathogenic IFN-γ-producing and IL-17-producing T cells. We determined that GP96 serves as an essential chaperone for the cell-surface protein glycoprotein A repetitions predominant (GARP), which is a docking receptor for latent membrane-associated TGF-β (mLTGF-β). The loss of both GARP and integrins on GP96-deficient Tregs prevented expression of mLTGF-β and resulted in inefficient production of active TGF-β. Our work demonstrates that GP96 regulates multiple facets of Treg biology, thereby placing Treg stability and immunosuppressive functions strategically under the control of a major stress chaperone.
Maywald, Martina; Rink, Lothar
2017-08-01
The essential trace element zinc plays a fundamental role in immune function and regulation since its deficiency is associated with autoimmunity, allergies, and transplant rejection. Thus, we investigated the influence of zinc supplementation on the Th1-driven alloreaction in mixed lymphocyte cultures (MLC), on generation of antigen-specific T cells, and analyzed underlying molecular mechanisms. Cell proliferation and pro-inflammatory cytokine production were monitored by [ 3 H]-thymidine proliferation assay and ELISA, respectively. Analysis of surface and intracellular T cell marker was performed by flow cytometry. Western blotting and mRNA analysis were used for Foxp3, KLF-10, and IRF-1 expression. Zinc supplementation on antigen-specific T cells in physiological doses (50 µM) provokes a significant amelioration of cell proliferation and pro-inflammatory cytokine production after reactivation compared to untreated controls. Zinc administration on MLC results in an increased induction and stabilization of CD4 + CD25 + Foxp3 + and CD4 + CD25 + CTLA-4 + T cells (p < 0.05). The effect is based on zinc-induced upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. However, in resting lymphocytes zinc increases IRF-1. In summary, zinc is capable of ameliorating the allogeneic immune reaction by enhancement of antigen-specific iTreg cells due to modulation of essential molecular targets: Foxp3, KLF-10, and IRF-1. Thus, zinc can be seen as an auspicious tool for inducing tolerance in adverse immune reactions.
Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Tabasi, Nafiseh; Zamani, Shahrzad; Aghaee, Azita; Salehipour, Zohre; Mahmoudi, Mahmoud
2016-05-01
Multiple sclerosis (MS) is a central nervous system disorder mainly characterized by inflammation, demyelination and axonal injury. Anti-inflammatory agents can be used to ameliorate the disease process. Hypericum perforatum L or St. John's wort is widely used as an anti-depressant and anti-inflammatory remedy in traditional and herbal medicine. Based on St. John's wort properties, the therapeutic potentials of an H. perforatum extract (HPE) and a single component, hyperforin were evaluated for effectiveness against MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. Female C57BL/6 mice were immunized with specific antigen MOG35-55 and then administered different doses of hyperforin or HPE post-immunization. Clinical symptoms/other relevant parameters were assessed daily. Histological analysis of the spinal cord was performed. T-cell proliferative activity was also evaluated using a BrdU assay. The effect of hyperforin on regulatory T-cells (Treg cells) was assessed using flow cytometry. The results indicate hyperforin and HPE reduced the incidence and severity of EAE, an outcome that closely correlated with an inhibition of pathological features (leukocyte infiltration and demyelination) and antigen-specific T-cell proliferation. The study also showed that hyperforin caused increased Treg cell levels in the spleen. These results indicated that hyperforin and HPE could attenuate EAE autoimmune responses by inhibiting immune cell infiltration and expansion of Treg cell and could eventually be considered as a potential candidate for use in the treatment of MS.
Developmental plasticity of murine and human Foxp3(+) regulatory T cells.
Liston, Adrian; Piccirillo, Ciriaco A
2013-01-01
Murine and human CD4(+) regulatory T (Treg) cells expressing the Forkhead box p3 (Foxp3) transcription factor represent a distinct, highly differentiated CD4(+) T cell lineage that is programmed for dominant self-tolerance and control of immune responses against a variety of foreign antigens. Sustained Foxp3 expression in these cells drives the differentiation of a regulatory phenotype and ensures the stability of their suppressive functions under a variety of inflammatory settings. Some recent studies have challenged this premise and advanced the notion that Foxp3(+) Treg cells manifest a high degree of functional plasticity that enables them to adapt and reprogram into effector-like T cells in response to various inflammatory stimuli. The concept of Treg cell plasticity remains highly contentious, with a high degree of variation in measured plasticity potential observed under different experimental conditions. In this chapter, we propose a unifying model of Treg cell plasticity, which hypothesizes that the stable fates of regulatory and effector T (Teff) cell lineages allow transient plasticity into the alternative lineage under a discrete set of microenvironmental influences associated with, respectively, the initiation and resolution phases of infection. This model utilizes a theoretical framework consistent with the requirements for effective immune regulation and accounts for both the extraordinary long-term stability of Treg cells and the observed fate plasticity. Copyright © 2013 Elsevier Inc. All rights reserved.
Cusick, Matthew F.; Schiller, Jennifer J.; Gill, Joan C.; Eckels, David D.
2011-01-01
Regulatory T cell markers are increased in chronically infected individuals with the hepatitis C virus (HCV), but to date, the induction and maintenance of Tregs in HCV infection has not been clearly defined. In this paper, we demonstrate that naturally occurring viral variants suppress T cell responses to cognate NS3358-375 in an antigen-specific manner. Of four archetypal variants, S370P induced regulatory T cell markers in comparison to NS3358-375-stimulated CD4 T cells. Further, the addition of variant-specific CD4 T cells back into a polyclonal culture in a dose-dependent manner inhibited the T cell response. These results suggest that HCV is able to induce antigen-specific regulatory T cells to suppress the antiviral T cell response in an antigen-specific manner, thus contributing to a niche within the host that could be conducive to HCV persistence. PMID:21197453
Ichikawa, Ayako; Miyoshi, Hiroaki; Arakawa, Fumiko; Kiyasu, Junichi; Sato, Kensaku; Niino, Daisuke; Kimura, Yoshizo; Yoshida, Maki; Kawano, Riko; Muta, Hiroko; Sugita, Yasuo; Ohshima, Koichi
2017-06-01
Human T-cell lymphotropic virus type (HTLV)-1 Tax is a viral protein that has been reported to be important in the proliferation of adult T-cell leukemia/lymphoma (ATLL) cells and to be a target of HTLV-1-specific cytotoxic T lymphocytes (CTLs). However, it is not clear how Tax-specific CTLs behave in lymph nodes of ATLL patients. The present study analyzed the immunostaining of Tax-specific CTLs. Furthermore, ATLL tumor cells are known to be positive for forkhead box P3 (Foxp3)and to have a regulatory T (Treg)-cell-like function. The association between T-reg function and number and activity of Tax-specific CTLs was also investigated. A total of 15 ATLL lymphoma cases with human leukocyte antigen (HLA)-A24, for which Tax has a high affinity, were selected from the files of the Department of Pathology, School of Medicine, Kurume University (Kurume, Japan) using a polymerase chain reaction (PCR) method. Immunostaining was performed for cluster of differentiation (CD) 20, CD3, CD4, CD8, T-cell intracellular antigen-1 and Foxp3 in paraffin sections, and for Tax, interferon γ and HLA-A24 in frozen sections. In addition, the staining of Tax-specific CTLs (HLA-A24-restricted) was analyzed by MHC Dextramer ® assay in frozen sections. In addition, the messenger RNA expression of Tax and HTLV-1 basic leucine zipper factor were also evaluated by reverse transcription-PCR. Immunohistochemical staining of Tax protein in lymphoma tissue revealed the presence of positive lymphoma cells ranging from 5 to 80%, and immunohistochemical staining of HLA-A24 revealed the presence of positive lymphoma cells ranging from 1 to 95%. The expression of Tax and HLA-A24 was downregulated by viral function. Foxp3, a marker for Treg cells, was expressed in 0-90% of cells. Several cases exhibited Tax-specific CTL (HLA-A24-restricted)-positive cells, and there was an inverse correlation between Tax-specific CTLs and Foxp3. However, neither Tax nor HLA-A24 expression was associated with CTL or Foxp3. Our study indicated the possibility that ATLL cells, which expressed Tax, target of CTL, evade the CTL-mediated immune control by expression of Foxp3 as a Treg function.
Ichikawa, Ayako; Miyoshi, Hiroaki; Arakawa, Fumiko; Kiyasu, Junichi; Sato, Kensaku; Niino, Daisuke; Kimura, Yoshizo; Yoshida, Maki; Kawano, Riko; Muta, Hiroko; Sugita, Yasuo; Ohshima, Koichi
2017-01-01
Human T-cell lymphotropic virus type (HTLV)-1 Tax is a viral protein that has been reported to be important in the proliferation of adult T-cell leukemia/lymphoma (ATLL) cells and to be a target of HTLV-1-specific cytotoxic T lymphocytes (CTLs). However, it is not clear how Tax-specific CTLs behave in lymph nodes of ATLL patients. The present study analyzed the immunostaining of Tax-specific CTLs. Furthermore, ATLL tumor cells are known to be positive for forkhead box P3 (Foxp3)and to have a regulatory T (Treg)-cell-like function. The association between T-reg function and number and activity of Tax-specific CTLs was also investigated. A total of 15 ATLL lymphoma cases with human leukocyte antigen (HLA)-A24, for which Tax has a high affinity, were selected from the files of the Department of Pathology, School of Medicine, Kurume University (Kurume, Japan) using a polymerase chain reaction (PCR) method. Immunostaining was performed for cluster of differentiation (CD) 20, CD3, CD4, CD8, T-cell intracellular antigen-1 and Foxp3 in paraffin sections, and for Tax, interferon γ and HLA-A24 in frozen sections. In addition, the staining of Tax-specific CTLs (HLA-A24-restricted) was analyzed by MHC Dextramer® assay in frozen sections. In addition, the messenger RNA expression of Tax and HTLV-1 basic leucine zipper factor were also evaluated by reverse transcription-PCR. Immunohistochemical staining of Tax protein in lymphoma tissue revealed the presence of positive lymphoma cells ranging from 5 to 80%, and immunohistochemical staining of HLA-A24 revealed the presence of positive lymphoma cells ranging from 1 to 95%. The expression of Tax and HLA-A24 was downregulated by viral function. Foxp3, a marker for Treg cells, was expressed in 0–90% of cells. Several cases exhibited Tax-specific CTL (HLA-A24-restricted)-positive cells, and there was an inverse correlation between Tax-specific CTLs and Foxp3. However, neither Tax nor HLA-A24 expression was associated with CTL or Foxp3. Our study indicated the possibility that ATLL cells, which expressed Tax, target of CTL, evade the CTL-mediated immune control by expression of Foxp3 as a Treg function. PMID:28599462
Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy
Sadhu, Soumi; Khaitan, Binod Kumar; Joshi, Beenu; Sengupta, Utpal; Nautiyal, Arvind Kumar; Mitra, Dipendra Kumar
2016-01-01
T cell defect is a common feature in lepromatous or borderline lepromatous leprosy (LL/BL) patients in contrast to tuberculoid or borderline tuberculoid type (TT/BT) patients. Tuberculoid leprosy is characterized by strong Th1-type cell response with localized lesions whereas lepromatous leprosy is hallmarked by its selective Mycobacterium leprae specific T cell anergy leading to disseminated and progressive disease. FoxP3+ Regulatory T cells (Treg) which are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases also dampen proinflammatory T cells that include T helper 17 (Th17) cells. This study is aimed at evaluating the role of Treg cells in influencing other effector T cells and its relationship with the cytokine polarized state in leprosy patients. Peripheral blood mononuclear cells from of BT/TT (n = 15) and BL/LL (n = 15) patients were stimulated with M. leprae antigen (WCL) in presence of golgi transport inhibitor monensin for FACS based intracellular cytokine estimation. The frequency of Treg cells showed >5-fold increase in BL/LL in comparison to BT/TT and healthy contacts. These cells produced suppressive cytokine, IL-10 in BL/LL as opposed to BT/TT (p = 0.0200) indicating their suppressive function. The frequency of Th17 cells (CD4, CD45RO, IL-17) was, however, higher in BT/TT. Significant negative correlation (r = -0.68, P = 0.03) was also found between IL-10 of Treg cells and IL-17+ T cells in BL/LL. Blocking IL-10/TGF-β restored the IL-17+ T cells in BL/LL patients. Simultaneously, presence of Th17 related cytokines (TGF-β, IL-6, IL-17 and IL-23) decreased the number of FoxP3+ Treg cells concomitantly increasing IL-17 producing CD4+ cells in lepromatous leprosy. Higher frequency of Programmed Death-1/PD-1+ Treg cells and its ligand, PDL-1 in antigen presenting cells (APCs) was found in BL/LL patients. Inhibition of this pathway led to rescue of IFN-γ and IL-17 producing T cells. Results indicate that Treg cells are largely responsible for the kind of immunosuppression observed in BL/LL patients. This study also proves that Treg cells are profoundly affected by the cytokine milieu and this property may be utilized for benefit of the host. PMID:26751584
Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N
2013-12-01
Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell-deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)-null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1-null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. © 2013 The Authors. Arthritis & Rheumatism is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.
CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer
Gu-Trantien, Chunyan; Migliori, Edoardo; de Wind, Alexandre; Brohée, Sylvain; Garaud, Soizic; Noël, Grégory; Dang Chi, Vu Luan; Lodewyckx, Jean-Nicolas; Naveaux, Céline; Duvillier, Hugues; Larsimont, Denis
2017-01-01
T follicular helper cells (TFH cells) are important regulators of antigen-specific B cell responses. The B cell chemoattractant CXCL13 has recently been linked with TFH cell infiltration and improved survival in human cancer. Although human TFH cells can produce CXCL13, their immune functions are currently unknown. This study presents data from human breast cancer, advocating a role for tumor-infiltrating CXCL13-producing (CXCR5–) TFH cells, here named TFHX13 cells, in promoting local memory B cell differentiation. TFHX13 cells potentially trigger tertiary lymphoid structure formation and thereby generate germinal center B cell responses at the tumor site. Follicular DCs are not potent CXCL13 producers in breast tumor tissues. We used the TFH cell markers PD-1 and ICOS to identify distinct effector and regulatory CD4+ T cell subpopulations in breast tumors. TFHX13 cells are an important component of the PD-1hiICOSint effector subpopulation and coexpanded with PD-1intICOShiFOXP3hi Tregs. IL2 deprivation induces CXCL13 expression in vitro with a synergistic effect from TGFβ1, providing insight into TFHX13 cell differentiation in response to Treg accumulation, similar to conventional TFH cell responses. Our data suggest that human TFHX13 cell differentiation may be a key factor in converting Treg-mediated immune suppression to de novo activation of adaptive antitumor humoral responses in the chronic inflammatory breast cancer microenvironment. PMID:28570278
Ganguly, Sudipto; Ross, Duncan B.; Panoskaltsis-Mortari, Angela; Kanakry, Christopher G.; Blazar, Bruce R.; Levy, Robert B.
2014-01-01
Posttransplantation cyclophosphamide (PTCy) is an effective prophylaxis against graft-versus-host disease (GVHD). However, it is unknown whether PTCy works singularly by eliminating alloreactive T cells via DNA alkylation or also by restoring the conventional (Tcon)/regulatory (Treg) T-cell balance. We studied the role of Tregs in PTCy-mediated GVHD prophylaxis in murine models of allogeneic blood or marrow transplantation (alloBMT). In 2 distinct MHC-matched alloBMT models, infusing Treg-depleted allografts abrogated the GVHD-prophylactic activity of PTCy. Using allografts in which Foxp3+ Tregs could be selectively depleted in vivo, either pre- or post-PTCy ablation of donor thymus–derived Tregs (tTregs) abolished PTCy protection against GVHD. PTCy treatment was associated with relative preservation of donor Tregs. Experiments using combinations of Foxp3– Tcons and Foxp3+ Tregs sorted from different Foxp3 reporter mice indicated that donor Treg persistence after PTCy treatment was predominantly caused by survival of functional tTregs that retained Treg-specific demethylation and also induction of peripherally derived Tregs. Finally, adoptive transfer of tTregs retrieved from PTCy-treated chimeras rescued PTCy-treated, Treg-depleted recipients from lethal GVHD. Our findings indicate that PTCy-mediated protection against GVHD is not singularly dependent on depletion of donor alloreactive T cells but also requires rapidly recovering donor Tregs to initiate and maintain alloimmune regulation. PMID:25139358
T follicular helper and T follicular regulatory cells have different TCR specificity
Maceiras, Ana Raquel; Almeida, Silvia Cristina Paiva; Mariotti-Ferrandiz, Encarnita; Chaara, Wahiba; Jebbawi, Fadi; Six, Adrien; Hori, Shohei; Klatzmann, David; Faro, Jose; Graca, Luis
2017-01-01
Immunization leads to the formation of germinal centres (GCs) that contain both T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. Whether T-cell receptor (TCR) specificity defines the differential functions of Tfh and Tfr cells is unclear. Here we show that antigen-specific T cells after immunization are preferentially recruited to the GC to become Tfh cells, but not Tfr cells. Tfh cells, but not Tfr cells, also proliferate efficiently on restimulation with the same immunizing antigen in vitro. Ex vivo TCR repertoire analysis shows that immunization induces oligoclonal expansion of Tfh cells. By contrast, the Tfr pool has a TCR repertoire that more closely resembles that of regulatory T (Treg) cells. Our data thus indicate that the GC Tfh and Tfr pools are generated from distinct TCR repertoires, with Tfh cells expressing antigen-responsive TCRs to promote antibody responses, and Tfr cells expressing potentially autoreactive TCRs to suppress autoimmunity. PMID:28429709
Wigren, M; Kolbus, D; Dunér, P; Ljungcrantz, I; Söderberg, I; Björkbacka, H; Fredrikson, G N; Nilsson, J
2011-05-01
Autoimmune responses against oxidized low-density lipoprotein are considered to play an important pro-inflammatory role in atherosclerosis and to promote disease progression. T-regulatory cells (Tregs) are immunosuppressive cells that have an important part in maintaining self-tolerance and protection against autoimmunity. We investigated whether aBp210, a prototype atherosclerosis vaccine based on a peptide sequence derived from apolipoprotein B, inhibits atherosclerosis through the activation of Tregs. Six-week-old Apoe(-/-) mice were immunized with aBp210 and received booster immunizations 3 and 5 weeks later, as well as 1 week before being killed at 25 weeks of age. At 12 weeks, immunized mice had increased expression of the Treg marker CD25 on circulating CD4 cells, and concanavalin A (Con A)-induced interferon-γ, interleukin (IL)-4, and IL-10 release from splenocytes was markedly depressed. At 25 weeks, there was a fivefold expansion of splenic CD4+ CD25+ Foxp3 Tregs, a 65% decrease in Con A-induced splenic T-cell proliferation and a 37% reduction in the development of atherosclerosis in immunized mice. Administration of blocking antibodies against CD25 neutralized aBp210-induced Treg activation as well as the reduction of atherosclerosis. The present findings demonstrate that immunization of Apoe(-/-) mice with the apolipoprotein B peptide vaccine aBp210 is associated with activation of Tregs. Administration of antibodies against CD25 results in depletion of Tregs and blocking of the atheroprotective effect of the vaccine. Modulation in atherosclerosis-related autoimmunity by antigen-specific activation of Tregs represents a novel approach for treatment of atherosclerosis. © 2010 The Association for the Publication of the Journal of Internal Medicine.
Kehrmann, Jan; Tatura, Roman; Zeschnigk, Michael; Probst-Kepper, Michael; Geffers, Robert; Steinmann, Joerg; Buer, Jan
2014-07-01
The epigenetic regulation of transcription factor genes is critical for T-cell lineage specification. A specific methylation pattern within a conserved region of the lineage specifying transcription factor gene FOXP3, the Treg-specific demethylated region (TSDR), is restricted to regulatory T (Treg) cells and is required for stable expression of FOXP3 and suppressive function. We analysed the impact of hypomethylating agents 5-aza-2'-deoxycytidine and epigallocatechin-3-gallate on human CD4(+) CD25(-) T cells for generating demethylation within FOXP3-TSDR and inducing functional Treg cells. Gene expression, including lineage-specifying transcription factors of the major T-cell lineages and their leading cytokines, functional properties and global transcriptome changes were analysed. The FOXP3-TSDR methylation pattern was determined by using deep amplicon bisulphite sequencing. 5-aza-2'-deoxycytidine induced FOXP3-TSDR hypomethylation and expression of the Treg-cell-specific genes FOXP3 and LRRC32. Proliferation of 5-aza-2'-deoxycytidine-treated cells was reduced, but the cells did not show suppressive function. Hypomethylation was not restricted to FOXP3-TSDR and expression of master transcription factors and leading cytokines of T helper type 1 and type 17 cells were induced. Epigallocatechin-3-gallate induced global DNA hypomethylation to a lesser extent than 5-aza-2'-deoxycitidine, but no relevant hypomethylation within FOXP3-TSDR or expression of Treg-cell-specific genes. Neither of the DNA methyltransferase inhibitors induced fully functional human Treg cells. 5-aza-2'-deoxycitidine-treated cells resembled Treg cells, but they did not suppress proliferation of responder cells, which is an essential capability to be used for Treg cell transfer therapy. Using a recently developed targeted demethylation technology might be a more promising approach for the generation of functional Treg cells. © 2014 John Wiley & Sons Ltd.
Yeste, Ada; Nadeau, Meghan; Burns, Evan J.; Weiner, Howard L.; Quintana, Francisco J.
2012-01-01
The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3+ Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)35–55 to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG35–55 expanded the FoxP3+ Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders. PMID:22745170
Weaver, Kriston F.; Stokes, John V.; Gunnoe, Sagen A.; Follows, Joyce S.; Shafer, Lydia; Ammari, Mais G.; Archer, Todd M.; Thomason, John M.; Mackin, Andrew J.; Pinchuk, Lesya M.
2015-01-01
Regulatory T cells (Tregs) are known to control autoreactivity during and subsequent to the development of the peripheral immune system. Professional antigen presenting cells (APCs), dendritic cells (DCs) and monocytes, have an important role in inducing Tregs. For the first time, this study evaluated proportions and phenotypes of Tregs in canine peripheral blood depleted of professional APCs, utilizing liposomal clodronate (LC) and multicolor flow cytometry analysis. Our results demonstrate that LC exposure promoted short term decreases followed by significant increases in the proportions or absolute numbers of CD4+CD25+FOXP3+ Tregs in dogs. In general, the LC-dependent Treg fluctuations were similar to the changes in the levels of CD14+ monocytes in Walker hounds. However, the proportions of monocytes showed more dramatic changes compared to the proportions of Tregs that were visually unchanged after LC treatment over the study period. At the same time, absolute Treg numbers showed, similarly to the levels of CD14+ monocytes, significant compensatory gains as well as the recovery during the normalization period. We confirm the previous data that CD4+ T cells with the highest CD25 expression were highly enriched for FOXP3. Furthermore, for the first time, we report that CD4+CD25lowFOXP3+ is the major regulatory T cell subset affected by LC exposure. The increases within the lowest CD25 expressers of CD4+FOXP3+ cells together with compensatory gains in the proportion of CD14+ monocytes during compensatory and normalization periods suggest the possible direct or indirect roles of monocytes in active recruitment and generation of Tregs from naïve CD4+ T cells. PMID:25950023
Cabrera, Gabriel; Burzyn, Dalia; Mundiñano, Juliana; Courreges, M. Cecilia; Camicia, Gabriela; Lorenzo, Daniela; Costa, Héctor; Ross, Susan R.; Nepomnaschy, Irene; Piazzon, Isabel
2008-01-01
Mouse mammary tumor virus (MMTV) is a milk-borne betaretrovirus that has developed strategies to exploit and subvert the host immune system. Here, we show in a natural model of MMTV infection that the virus causes early and progressive increases in superantigen (SAg)-specific Foxp3+ regulatory T cells (Treg) in Peyer's patches (PP). These increases were shown to be dependent on the presence of dendritic cells. CD4+ CD25+ T cells from the PP of infected mice preferentially suppress the proliferative response of T cells to SAg-expressing antigen-presenting cells ex vivo. We investigated the influence of the depletion of CD25+ cells at different stages of the infection. When CD25+ cells were depleted before MMTV infection, an increase in the number of PP SAg-cognate Foxp3− T cells was found at day 6 of infection. Since the SAg response is associated with viral amplification, the possibility exists that Treg cells attenuate the increase in viral load at the beginning of the infection. In contrast, depletion of CD25+ cells once the initial SAg response has developed caused a lower viral load, suggesting that at later stages Treg cells may favor viral persistence. Thus, our results indicated that Treg cells play an important and complex role during MMTV infection. PMID:18495774
Regulatory T Cells in Allergy and Asthma
Martín-Orozco, Elena; Norte-Muñoz, María; Martínez-García, Javier
2017-01-01
The immune system’s correct functioning requires a sophisticated balance between responses to continuous microbial challenges and tolerance to harmless antigens, such as self-antigens, food antigens, commensal microbes, allergens, etc. When this equilibrium is altered, it can lead to inflammatory pathologies, tumor growth, autoimmune disorders, and allergy/asthma. The objective of this review is to show the existing data on the importance of regulatory T cells (Tregs) on this balance and to underline how intrauterine and postnatal environmental exposures influence the maturation of the immune system in humans. Genetic and environmental factors during embryo development and/or early life will result in a proper or, conversely, inadequate immune maturation with either beneficial or deleterious effects on health. We have focused herein on Tregs as a reflection of the maturity of the immune system. We explain the types, origins, and the mechanisms of action of these cells, discussing their role in allergy and asthma predisposition. Understanding the importance of Tregs in counteracting dysregulated immunity would provide approaches to diminish asthma and other related diseases in infants. PMID:28589115
Gerriets, Valerie A.; Danzaki, Keiko; Kishton, Rigel J.; Eisner, William; Nichols, Amanda G.; Saucillo, Donte C.; Shinohara, Mari L.; MacIver, Nancie J.
2016-01-01
Upon activation, T cells require energy for growth, proliferation and function. Effector T cells (Teff), such as Th1 and Th17, utilize high levels of glucose uptake and glycolysis to fuel proliferation and function. In contrast, Treg instead require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg metabolism is altered in settings of malnutrition, when nutrients are limited and circulating leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff number, function, and glucose metabolism, but did not alter Treg metabolism or suppressive function. Using the autoimmune model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff, but not Treg, glucose metabolism and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg. PMID:27222115
Li, Rong; Zhang, Yujuan; Zheng, Xiufen; Peng, Shanshan; Yuan, Keng; Zhang, Xusheng; Min, Weiping
2017-01-01
Rheumatoid arthritis (RA) is an autoimmune disease characterized by progressive immune-mediated joint deterioration. Current treatments are not antigen specific and are associated with various adverse. We have previously demonstrated that tolerogenic dendritic cells (Tol-DC) are potent antigen-specific immune regulators, which hold great promise in immunotherapy of autoimmune diseases. In this study, we aimed to develop new immunotherapy by combining Tol-DC and mesenchymal stem cells (MSC). We demonstrated that RelB gene silencing resulted in generation of Tol-DC that suppressed T cell responses and selectively promoted Treg generation. The combination of MSC synergized the tolerogenic capacity of Tol-DC in inhibition of T cell responses. In murine collagen-induced arthritis (CIA) model, we demonstrated that progression of arthritis was inhibited with administration of RelB gene-silenced Tol-DC or MSC. This therapeutic effect was remarkably enhanced with concurrent treatment of combination Tol-DC and MSC as demonstrated by improved clinical symptoms, decreased clinical scores and attenuated joint damage. These therapeutic effects were associated with suppression of CII-specific T cell responses, polarization of Th and inhibition of proinflammatory cytokines, and reduced cartilage degeneration. This study for the first time demonstrates a new approach to treat autoimmune inflammatory joint disease with concurrent treatment of RelB gene-silenced Tol-DC and MSC. PMID:28230210
Xu, Sha-Sha; Liu, Qing-Mei; Xiao, An-Feng; Maleki, Soheila J; Alcocer, Marcos; Gao, Yuan-Yuan; Cao, Min-Jie; Liu, Guang-Ming
2017-04-19
In the present study, the anti-food allergy activity of Eucheuma cottonii sulfated oligosaccharide (ESO) was investigated. ESO was obtained by enzymatic degradation and purified by column chromatography. RBL-2H3 cells and BALB/c mouse model were used to test the anti-food allergy activity of ESO. The effects of ESO on the regulatory T (Treg) cells and bone marrow-derived mast cells (BMMCs) were investigated by flow cytometry. The results of in vivo assay showed that ESO decreased the levels of mast cell protease-1 and histamine and inhibited the levels of specific IgE by 77.7%. In addition, the production of interleukin (IL)-4 and IL-13 was diminished in the ESO groups compared to the non-ESO-treated group. Furthermore, ESO could up-regulate Treg cells by 22.2-97.1%. In conclusion, ESO decreased the allergy response in mice by reducing basophil degranulation, up-regulating Treg cells via Forkhead box protein 3 (Foxp3), and releasing IL-10. ESO may have preventive and therapeutic potential in allergic disease.
Foxp3+ regulatory T cells, immune stimulation and host defence against infection
Rowe, Jared H; Ertelt, James M; Way, Sing Sing
2012-01-01
The immune system is intricately regulated allowing potent effectors to expand and become rapidly mobilized after infection, while simultaneously silencing potentially detrimental responses that averts immune-mediated damage to host tissues. This relies in large part on the delicate interplay between immune suppressive regulatory CD4+ T (Treg) cells and immune effectors that without active suppression by Treg cells cause systemic and organ-specific autoimmunity. Although these beneficial roles have been classically described as counterbalanced by impaired host defence against infection, newfound protective roles for Treg cells against specific viral pathogens (e.g. herpes simplex virus 2, lymphocytic choriomeningitis virus, West Nile virus) have been uncovered using transgenic mice that allow in vivo Treg-cell ablation based on Foxp3 expression. In turn, Foxp3+ Treg cells also provide protection against some parasitic (Plasmodium sp., Toxoplasma gondii) and fungal (Candida albicans) pathogens. By contrast, for bacterial and mycobacterial infections (e.g. Listeria monocytogenes, Salmonella enterica, Mycobacterium tuberculosis), experimental manipulation of Foxp3+ cells continues to indicate detrimental roles for Treg cells in host defence. This variance is probably related to functional plasticity in Treg cell suppression that shifts discordantly following infection with different types of pathogens. Furthermore, the efficiency whereby Treg cells silence immune activation coupled with the plasticity in Foxp3+ cell activity suggest that overriding Treg-mediated suppression represents a prerequisite ‘signal zero’ that together with other stimulation signals [T-cell receptor (signal 1), co-stimulation (signal 2), inflammatory cytokines (signal 3)] are essential for T-cell activation in vivo. Herein, the importance of Foxp3+ Treg cells in host defence against infection, and the significance of infection-induced shifts in Treg-cell suppression are summarized. PMID:22211994
Slc3a2 Mediates Branched-Chain Amino-Acid-Dependent Maintenance of Regulatory T Cells.
Ikeda, Kayo; Kinoshita, Makoto; Kayama, Hisako; Nagamori, Shushi; Kongpracha, Pornparn; Umemoto, Eiji; Okumura, Ryu; Kurakawa, Takashi; Murakami, Mari; Mikami, Norihisa; Shintani, Yasunori; Ueno, Satoko; Andou, Ayatoshi; Ito, Morihiro; Tsumura, Hideki; Yasutomo, Koji; Ozono, Keiichi; Takashima, Seiji; Sakaguchi, Shimon; Kanai, Yoshikatsu; Takeda, Kiyoshi
2017-11-14
Foxp3 + regulatory T (Treg) cells, which suppress immune responses, are highly proliferative in vivo. However, it remains unclear how the active replication of Treg cells is maintained in vivo. Here, we show that branched-chain amino acids (BCAAs), including isoleucine, are required for maintenance of the proliferative state of Treg cells via the amino acid transporter Slc3a2-dependent metabolic reprogramming. Mice fed BCAA-reduced diets showed decreased numbers of Foxp3 + Treg cells with defective in vivo proliferative capacity. Mice lacking Slc3a2 specifically in Foxp3 + Treg cells showed impaired in vivo replication and decreased numbers of Treg cells. Slc3a2-deficient Treg cells showed impaired isoleucine-induced activation of the mTORC1 pathway and an altered metabolic state. Slc3a2 mutant mice did not show an isoleucine-induced increase of Treg cells in vivo and exhibited multi-organ inflammation. Taken together, these findings demonstrate that BCAA controls Treg cell maintenance via Slc3a2-dependent metabolic regulation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleinopathies.
Rockenstein, Edward; Ostroff, Gary; Dikengil, Fusun; Rus, Florentina; Mante, Michael; Florio, Jazmin; Adame, Anthony; Trinh, Ivy; Kim, Changyoun; Overk, Cassia; Masliah, Eliezer; Rissman, Robert A
2018-01-24
Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-β1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies. SIGNIFICANCE STATEMENT We show that a novel vaccination modality combining an antigen-presenting cell-targeting glucan particle (GP) vaccine delivery system with encapsulated antigen (α-synuclein) + rapamycin (RAP) induced both strong anti-α-synuclein antibody titers and regulatory T cells (Tregs). This vaccine, collectively termed GP+RAP/α-syn, is capable of triggering neuroprotective Treg responses in synucleinopathy models, and the combined vaccine is more effective than the humoral or cellular immunization alone. Together, these results support the further development of this multifunctional vaccine approach for the treatment of synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple systems atrophy. Copyright © 2018 the authors 0270-6474/18/381000-15$15.00/0.
Photodynamic therapy for cancer and activation of immune response
NASA Astrophysics Data System (ADS)
Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.
2010-02-01
Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.
Prehn, Richmond T; Prehn, Liisa M
2013-06-25
There exists a very large literature suggesting that T cells come in a variety of species and that without the action of Tregs tumors would seldom survive inhibition by T cell effectors. We believe that much of the evidence supporting the role of Tregs in cancer is compatible with a perhaps simpler hypothesis based upon the demonstration that that small quantities of effector T cells tend to stimulate tumors while larger quantities of seemingly the same cells are inhibitory (an hormesis-like effect). This possibility seems to destroy much of the need to postulate a role for T cell suppressors (Tregs) in cancer, but the exposure of effector T cells to antigen may convert them into Tregs (Tregs do exist). Furthermore, many other data suggest the possibility that immune inhibition of cancer could be a laboratory artifact seldom if ever seen in unmodified nature.
2013-01-01
There exists a very large literature suggesting that T cells come in a variety of species and that without the action of Tregs tumors would seldom survive inhibition by T cell effectors. We believe that much of the evidence supporting the role of Tregs in cancer is compatible with a perhaps simpler hypothesis based upon the demonstration that that small quantities of effector T cells tend to stimulate tumors while larger quantities of seemingly the same cells are inhibitory (an hormesis-like effect). This possibility seems to destroy much of the need to postulate a role for T cell suppressors (Tregs) in cancer, but the exposure of effector T cells to antigen may convert them into Tregs (Tregs do exist). Furthermore, many other data suggest the possibility that immune inhibition of cancer could be a laboratory artifact seldom if ever seen in unmodified nature. PMID:23800315
Mohr Gregoriussen, Angelica Maria; Bohr, Henrik Georg
2017-01-01
Donor-specific blood transfusion (DST) can lead to significant prolongation of allograft survival in experimental animal models and sometimes human recipients of solid organs. The mechanisms responsible for the beneficial effect on graft survival have been a topic of research and debate for decades and are not yet fully elucidated. Once we discover how the details of the mechanisms involved are linked, we could be within reach of a procedure making it possible to establish donor-specific tolerance with minimal or no immunosuppressive medication. Today, it is well established that CD4+Foxp3+ regulatory T cells (Tregs) are indispensable for maintaining immunological self-tolerance. A large number of animal studies have also shown that Tregs are essential for establishing and maintaining transplantation tolerance. In this paper, we present a hypothesis of one H2-haplotype-matched DST-induced transplantation tolerance (in mice). The formulated hypothesis is based on a re-interpretation of data from an immunogenetic experiment published by Niimi and colleagues in 2000. It is of importance that the naïve recipient mice in this study were never immunosuppressed and were therefore fully immune competent during the course of tolerance induction. Based on the immunological status of the recipients, we suggest that one H2-haplotype-matched self-specific Tregs derived from the transfusion blood can be activated and multiply in the host by binding to antigen-presenting cells presenting allopeptides in their major histocompatibility complex (MHC) class II (MHC-II). We also suggest that the endothelial and epithelial cells within the solid organ allograft upregulate the expression of MHC-II and attract the expanded Treg population to suppress inflammation within the graft. We further suggest that this biological process, here termed MHC-II recruitment, is a vital survival mechanism for organs (or the organism in general) when attacked by an immune system. PMID:28270810
The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation
Huang, Weishan; August, Avery
2015-01-01
T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115
Wang, Adele Y; Crome, Sarah Q; Jenkins, Kristina M; Medin, Jeffrey A; Bramson, Jonathan L; Levings, Megan K
2011-03-01
Dendritic cell (DC) vaccines offer a robust platform for the development of cancer vaccines, but their effectiveness is thought to be limited by T regulatory cells (Tregs). Recombinant adenoviruses (RAdV) have been used successfully to engineer tumor antigen expression in DCs, but the impact of virus transduction on susceptibility to suppression by Tregs is unknown. We investigated the functional consequences of exposure to adenovirus on interactions between human monocyte-derived DCs and Tregs. Since the development of Tregs is linked to that of pro-inflammatory Th17 cells, the role of Th17 cells and IL-17-producing Tregs in the context of DC-based immunotherapies was also investigated. We found that Tregs potently suppressed the co-stimulatory capacity of RAdV-transduced DCs, regardless of whether the DCs were maturated by inflammatory cytokines or by exposure to Th1 or Th17 cells. Furthermore, exposure of Tregs to RAdV-exposed DCs increased IL-17 production and suppressive capacity, and correlated with enhanced secretion of IL-1β and IL-6 by DCs. The findings that DCs exposed to RAdV are suppressed by Tregs, promote Treg plasticity, and enhance Treg suppression indicates that strategies to limit Tregs will be required to enhance the efficacy of such DC-based immunotherapies.
Turner, Joseph D.; Jenkins, Gavin R.; Hogg, Karen G.; Aynsley, Sarah A.; Paveley, Ross A.; Cook, Peter C.; Coles, Mark C.; Mountford, Adrian P.
2011-01-01
Eggs of the helminth Schistosoma mansoni accumulate in the colon following infection and generate Th2-biassed inflammatory granulomas which become down- modulated in size as the infection proceeds to chronicity. However, although CD4+CD25+FoxP3+regulatory T cells (Tregs) are known to suppress Th1-mediated colitis, it is not clear whether they control Th2 –associated pathologies of the large intestine which characterise several helminth infections. Here we used a novel 3D-multiphoton confocal microscopy approach to visualise and quantify changes in the size and composition of colonic granulomas at the acute and chronic phases of S. mansoni infection. We observed decreased granuloma size, as well as reductions in the abundance of DsRed+ T cells and collagen deposition at 14 weeks (chronic) compared to 8 weeks (acute) post-infection. Th2 cytokine production (i.e. IL-4, IL-5) in the colonic tissue and draining mesenteric lymph node (mLN) decreased during the chronic phase of infection, whilst levels of TGF-β1 increased, co-incident with reduced mLN proliferative responses, granuloma size and fibrosis. The proportion of CD4+CD25+FoxP3+Tregs: CD4+ cells in the mLN increased during chronic disease, while within colonic granulomas there was an approximate 4-fold increase. The proportion of CD4+CD25+FoxP3+Tregs in the mLN that were CD103+ and CCR5+ also increased indicating an enhanced potential to home to intestinal sites. CD4+CD25+ cells suppressed antigen-specific Th2 mLN cell proliferation in vitro, while their removal during chronic disease resulted in significantly larger granulomas, partial reversal of Th2 hypo-responsiveness and an increase in the number of eosinophils in colonic granulomas. Finally, transfer of schistosome infection-expanded CD4+CD25+Tregs down-modulated the development of colonic granulomas, including collagen deposition. Therefore, CD4+CD25+FoxP3+Tregs appear to control Th2 colonic granulomas during chronic infection, and are likely to play a role in containing pathology during intestinal schistosomiasis. PMID:21858239
Garp as a therapeutic target for modulation of T regulatory cell function.
Shevach, Ethan M
2017-02-01
Foxp3 + T regulatory cells (Tregs) play critical roles in immune homeostasis primarily by suppressing many aspects of the immune response. Tregs uniquely express GARP on their cell surface and GARP functions as a delivery system for latent TGF-β. As Treg-derived TGF-β may mediate the suppressive functions of Tregs, GARP may represent a target to inhibit Treg suppression in cancer or augment suppression in autoimmunity. Areas covered: This article will focus on 1) the role of Treg-derived TGF-β in the suppressive activity of Treg, 2) the cellular and molecular regulation of expression of GARP on mouse and human Tregs, 3) the role of integrins in the activation of latent-TGF-β/GARP complex, 4) an overview of our present understanding of the function of the latent-TGF-β/GARP complex. Expert opinion: Two approaches are outlined for targeting the L-TGF-β1/GARP complex for therapeutic purposes. Tregs play a major role in suppressive effector T cell responses to tumors and TGF-β1 may be a major contributor to this process. One approach is to specifically block the production of active TGF-β1 from Tregs as an adjunct to tumor immunotherapy. The second approach in autoimmunity is to selectively enhance the production of TGF-β by Tregs at sites of chronic inflammation.
Methylation of an intragenic alternative promoter regulates transcription of GARP.
Haupt, Sonja; Söntgerath, Viktoria Sophie Apollonia; Leipe, Jan; Schulze-Koops, Hendrik; Skapenko, Alla
2016-02-01
Alternative promoter usage has been proposed as a mechanism regulating transcriptional and translational diversity in highly elaborated systems like the immune system in humans. Here, we report that transcription of human glycoprotein A repetitions predominant (GARP) in regulatory CD4 T cells (Tregs) is tightly regulated by two alternative promoters. An intragenic promoter contains several CpGs and acts as a weak promoter that is demethylated and initiates transcription Treg-specifically. The strong up-stream promoter containing a CpG-island is, in contrast, fully demethylated throughout tissues. Transcriptional activity of the strong promoter was surprisingly down-regulated upon demethylation of the weak promoter. This demethylation-induced transcriptional attenuation regulated the magnitude of GARP expression and correlated with disease activity in rheumatoid arthritis. Treg-specific GARP transcription was initiated by synergistic interaction of forkhead box protein 3 (Foxp3) with nuclear factor of activated T cells (NFAT) and was underpinned by permissive chromatin remodeling caused by release of the H3K4 demethylase, PLU-1. Our findings describe a novel function of alternative promoters in regulating the extent of transcription. Moreover, since GARP functions as a transporter of transforming growth factor β (TGFβ), a cytokine with broad pleiotropic traits, GARP transcriptional attenuation by alternative promoters might provide a mechanism regulating peripheral TGFβ to avoid unwanted harmful effects. Copyright © 2015 Elsevier B.V. All rights reserved.
Bedke, Tanja; Iannitti, Rossana G; De Luca, Antonella; Giovannini, Gloria; Fallarino, Francesca; Berges, Carsten; Latgé, Jean-Paul; Einsele, Hermann; Romani, Luigina; Topp, Max S
2014-01-01
Unlike induced Foxp3+ regulatory T cells (Foxp3+ iTreg) that have been shown to play an essential role in the development of protective immunity to the ubiquitous mold Aspergillus fumigatus, type-(1)-regulatory T cells (Tr1) cells have, thus far, not been implicated in this process. Here, we evaluated the role of Tr1 cells specific for an epitope derived from the cell wall glucanase Crf-1 of A. fumigatus (Crf-1/p41) in antifungal immunity. We identified Crf-1/p41-specific latent-associated peptide+ Tr1 cells in healthy humans and mice after vaccination with Crf-1/p41+zymosan. These cells produced high amounts of interleukin (IL)-10 and suppressed the expansion of antigen-specific T cells in vitro and in vivo. In mice, in vivo differentiation of Tr1 cells was dependent on the presence of the aryl hydrocarbon receptor, c-Maf and IL-27. Moreover, in comparison to Tr1 cells, Foxp3+ iTreg that recognize the same epitope were induced in an interferon gamma-type inflammatory environment and more potently suppressed innate immune cell activities. Overall, our data show that Tr1 cells are involved in the maintenance of antifungal immune homeostasis, and most likely play a distinct, yet complementary, role compared with Foxp3+ iTreg. PMID:24820384
Kopitar, A N; Ihan Hren, N; Ihan, A
2006-02-01
In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.
Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms.
Ramos-Leví, Ana Maria; Marazuela, Mónica
2016-10-01
Hashimoto's thyroiditis (HT) and Graves' disease (GD) are two very common organ-specific autoimmune diseases which are characterized by circulating antibodies and lymphocyte infiltration. Although humoral and cellular mechanisms have been classically considered separately in the pathogenesis of autoimmune thyroid diseases (AITD), recent research suggests a close reciprocal relationship between these two immune pathways. Several B- and T-cell activation pathways through antigen-presenting cells (APCs) and cytokine production lead to specific differentiation of T helper (Th) and T regulatory (Treg) cells. This review will focus on the cellular mechanisms involved in the pathogenesis of AITD. Specifically, it will provide reasons for discarding the traditional simplistic dichotomous view of the T helper type 1 and 2 pathways (Th1/Th2) and will focus on the role of the recently characterized T cells, Treg and Th17 lymphocytes, as well as B lymphocytes and APCs, especially dendritic cells (DCs). Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.
Correlation of PD-1/PD-L1 Signaling Pathway with Treg/Th17 Imbalance from Asthmatic Children.
Xi, Xia; Liu, Jing-Mei; Guo, Jun-Ying
2018-06-06
The balance between T helper 17 (Th17) and regulatory T cells (Treg) is a new paradigm in asthma pathogenesis, but no therapeutic targets could modulate the Th17/Treg balance specifically for asthma. Since previous studies have shown the programmed cell death-1(PD-1)/PD-ligand 1 (PD-L1) pathway is critical to immune homeostasis in this disease, we hypothesized that the PD-1/PD-L1 pathway might be involved in the regulation of Treg/Th17 imbalance in asthmatic children. The percentage of Treg and Th17 cells and the expression of PD-1 and PD-L1 were detected by flow cytometry in children with asthma and healthy controls. CD4+ T cells were stimulated with Th17 and Treg differentiating factors, and treated with anti-PD-1. Then cells were harvested and measured for Th17 and Treg percentages and Foxp3 and RORγt levels using RT-PCR. We observed an inverse correlation between the percentages of Treg and Th17 cells, and the expression of PD-1 and PD-L1 in the two subsets also changed in the mild persistent and moderate to severe persistent groups compared with healthy controls. In vitro, administration of anti-PD-1 could decrease Th17 percentages and RORγt mRNA, and increase Treg percentages and Foxp3 mRNA in CD4+ T cells of children with asthma in the mild persistent and moderate to persistent groups. Additionally, the role played by anti-PD-1 in regulating Treg/Th17 balance was further confirmed in an asthmatic mouse model. Alteration of the PD-1/PD-L1 pathway can modulate Treg/Th17 balance in asthmatic children. Treatment with anti-PD-1 posed protective effects on asthma models, providing a novel theoretical target for asthma. © 2018 S. Karger AG, Basel.
O'Brien, Carleigh A; Overall, Christopher; Konradt, Christoph; O'Hara Hall, Aisling C; Hayes, Nikolas W; Wagage, Sagie; John, Beena; Christian, David A; Hunter, Christopher A; Harris, Tajie H
2017-05-15
Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4 + T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4 + T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c + cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c + cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c + cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c + cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c + populations regulates their local behavior during T. gondii infection. Copyright © 2017 by The American Association of Immunologists, Inc.
CD11c-expressing cells affect Treg behavior in the meninges during CNS infection1
O’Brien, Carleigh A.; Overall, Christopher; Konradt, Christoph; O’Hara Hall, Aisling C.; Hayes, Nikolas W.; Wagage, Sagie; John, Beena; Christian, David A.; Hunter, Christopher A.; Harris, Tajie H.
2017-01-01
Treg cells play an important role in the CNS during multiple infections as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, the Treg cells in the CNS during T. gondii infection are Th1-polarized, exemplified by T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC Class II tetramer reagent specific for T. gondii did not recognize Treg cells isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector and regulatory T cells in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Treg cells were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, while Treg cells moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 antibodies to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg cell migration. These data suggest that Treg cells are anatomically restricted within the CNS and the interaction with CD11c+ populations regulates their local behavior during T. gondii infection. PMID:28389591
Antigen-Specific Tolerance in Immunotherapy of Th2-Associated Allergic Diseases
Smarr, Charles B.; Bryce, Paul J.; Miller, Stephen D.
2013-01-01
Allergic diseases are an increasing health concern, particularly in the developed world. The standard clinical approach to treatment of allergic disease focuses on allergen avoidance and symptom control but does little to address the underlying Th2 bias of disease. Specific immunotherapy (SIT) consisting of controlled administration of allergen, however, has been demonstrated to successfully induce desensitization and tolerance in an antigen-specific manner for a variety of Th2-mediated diseases. This review focuses on the mechanisms by which current SIT approaches induce tolerance as well as discussing attempts to modify the safety and efficacy of SIT. These refinements focus on three major aspects of SIT: the route of antigen administration, modification of the antigen to remove allergenic epitopes and reduce adverse events and choice of adjuvant used to induce tolerance and/or immune deviation from Th2 to Th1 and regulatory T cell (Treg) phenotypes. Synthesis of these recent developments in SIT provides considerable promise for more robust therapies with improved safety profiles to improve resolution of allergic disease and its associated costs. PMID:24099300
CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis.
Stagg, John; Divisekera, Upulie; Duret, Helene; Sparwasser, Tim; Teng, Michele W L; Darcy, Phillip K; Smyth, Mark J
2011-04-15
CD73 is a cell-surface enzyme that suppresses immune responses by producing extracellular adenosine. In this study, we employed CD73 gene-targeted mice to investigate the role of host-derived CD73 on antitumor immunity and tumor cell metastasis. We found that CD73 ablation significantly suppressed the growth of ovalbumin-expressing MC38 colon cancer, EG7 lymphoma, AT-3 mammary tumors, and B16F10 melanoma. The protective effect of CD73 deficiency on primary tumors was dependent on CD8(+) T cells and associated with an increased frequency of antigen-specific CD8(+) T cells in peripheral blood and tumors and increased antigen-specific IFN-γ production. Replicate studies in bone marrow chimeras established that both hematopoietic and nonhematopoietic expression of CD73 was important to promote tumor immune escape. Using adoptive reconstitution of T regulatory cell (Treg)-depleted DEREG (depletion of regulatory T cells) mice, we demonstrated that part of the protumorigenic effect of Tregs was dependent on their expression of CD73. CD73-deficient mice were also protected against pulmonary metastasis of B16F10 melanoma cells after intravenous injection. Unexpectedly, we found that the prometastatic effect of host-derived CD73 was dependent on CD73 expression on nonhematopoietic cells. CD73 expression on nonhematopoietic cells, most likely endothelial cells, was critical for promoting lung metastasis in a manner independent from immunosuppressive effects. Notably, in vivo blockade of CD73 with a selective inhibitor or anti-CD73 monoclonal antibody significantly reduced tumor growth and metastasis of CD73-negative tumors. Taken together, our findings indicate that CD73 may be targeted at multiple levels to induce anticancer effects including at the level of tumor cells, Tregs, and nonhematopoietic cells. ©2011 AACR.
T regulatory cells participate in the control of germinal centre reactions
Alexander, Carla-Maria; Tygrett, Lorraine T; Boyden, Alexander W; Wolniak, Kristy L; Legge, Kevin L; Waldschmidt, Thomas J
2011-01-01
Germinal centre (GC) reactions are central features of T-cell-driven B-cell responses, and the site where antibody-producing cells and memory B cells are generated. Within GCs, a range of complex cellular and molecular events occur which are critical for the generation of high affinity antibodies. These processes require exquisite regulation not only to ensure the production of desired antibodies, but to minimize unwanted autoreactive or low affinity antibodies. To assess whether T regulatory (Treg) cells participate in the control of GC responses, immunized mice were treated with an anti-glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR) monoclonal antibody (mAb) to disrupt Treg-cell activity. In anti-GITR-treated mice, the GC B-cell pool was significantly larger compared with control-treated animals, with switched GC B cells composing an abnormally high proportion of the response. Dysregulated GCs were also observed regardless of strain, T helper type 1 or 2 polarizing antigens, and were also seen after anti-CD25 mAb treatment. Within the spleens of immunized mice, CXCR5+ and CCR7− Treg cells were documented by flow cytometry and Foxp3+ cells were found within GCs using immunohistology. Final studies demonstrated administration of either anti-transforming growth factor-β or anti-interleukin-10 receptor blocking mAb to likewise result in dysregulated GCs, suggesting that generation of inducible Treg cells is important in controlling the GC response. Taken together, these findings indicate that Treg cells contribute to the overall size and quality of the humoral response by controlling homeostasis within GCs. PMID:21635248
Zhang, Mingfeng; Racine, Jeremy J.; Lin, Qing; Liu, Yuqing; Tang, Shanshan; Qin, Qi; Qi, Tong; Riggs, Arthur D.; Zeng, Defu
2018-01-01
Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs. PMID:29463744
2011-01-01
Background Active-specific immunotherapy used as an adjuvant therapeutic strategy is rather unexplored for cancers with poorly characterized tumor antigens like gastric cancer. The aim of this study was to augment a therapeutic immune response to a low immunogenic tumor cell line derived from a spontaneous gastric tumor of a CEA424-SV40 large T antigen (CEA424-SV40 TAg) transgenic mouse. Methods Mice were treated with a lymphodepleting dose of cyclophosphamide prior to reconstitution with syngeneic spleen cells and vaccination with a whole tumor cell vaccine combined with GM-CSF (a treatment strategy abbreviated as LRAST). Anti-tumor activity to subcutaneous tumor challenge was examined in a prophylactic as well as a therapeutic setting and compared to corresponding controls. Results LRAST enhances tumor-specific T cell responses and efficiently inhibits growth of subsequent transplanted tumor cells. In addition, LRAST tended to slow down growth of established tumors. The improved anti-tumor immune response was accompanied by a transient decrease in the frequency and absolute number of CD4+CD25+FoxP3+ T cells (Tregs). Conclusions Our data support the concept that whole tumor cell vaccination in a lymphodepleted and reconstituted host in combination with GM-CSF induces therapeutic tumor-specific T cells. However, the long-term efficacy of the treatment may be dampened by the recurrence of Tregs. Strategies to counteract suppressive immune mechanisms are required to further evaluate this therapeutic vaccination protocol. PMID:21859450
Stabilizing human regulatory T cells for tolerance inducing immunotherapy.
He, Xuehui; Koenen, Hans Jpm; Slaats, Jeroen Hr; Joosten, Irma
2017-08-01
Many autoimmune diseases develop as a consequence of an altered balance between autoreactive immune cells and suppressive FOXP3 + Treg. Restoring this balance through amplification of Treg represents a promising strategy to treat disease. However, FOXP3 + Treg might become unstable especially under certain inflammatory conditions, and might transform into proinflammatory cytokine-producing cells. The issue of heterogeneity and instability of Treg has caused considerable debate in the field and has important implications for Treg-based immunotherapy. In this review, we discuss how Treg stability is defined and what the molecular mechanisms underlying the maintenance of FOXP3 expression and the regulation of Treg stability are. Also, we elaborate on current strategies used to stabilize human Treg for clinical purposes. This review focuses on human Treg, but considering that cell-intrinsic mechanisms to regulate Treg stability in mice and in humans might be similar, data derived from mice studies are also discussed in this paper.
Steinberg, Shannon M.; Zhang, Peisheng; Turk, Mary Jo
2011-01-01
Background We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma. Methodology and Principal Findings To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision. Conclusions and Significance This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer. PMID:22046294
Phase I dendritic cell p53 peptide vaccine for head and neck cancer.
Schuler, Patrick J; Harasymczuk, Malgorzata; Visus, Carmen; Deleo, Albert; Trivedi, Sumita; Lei, Yu; Argiris, Athanassios; Gooding, William; Butterfield, Lisa H; Whiteside, Theresa L; Ferris, Robert L
2014-05-01
p53 accumulation in head and neck squamous cell carcinoma (HNSCC) cells creates a targetable tumor antigen. Adjuvant dendritic cell (DC)-based vaccination against p53 was tested in a phase I clinical trial. Monocyte-derived DC from 16 patients were loaded with two modified HLA-class I p53 peptides (Arm 1), additional Th tetanus toxoid peptide (Arm 2), or additional Th wild-type (wt) p53-specific peptide (Arm 3). Vaccine DCs (vDC) were delivered to inguinal lymph nodes at three time points. vDC phenotype, circulating p53-specific T cells, and regulatory T cells (Treg) were serially monitored by flow cytometry and cytokine production by Luminex. vDC properties were compared with those of DC1 generated with an alternative maturation regimen. No grade II-IV adverse events were observed. Two-year disease-free survival of 88% was favorable. p53-specific T-cell frequencies were increased postvaccination in 11 of 16 patients (69%), with IFN-γ secretion detected in four of 16 patients. Treg frequencies were consistently decreased (P = 0.006) relative to prevaccination values. The phenotype and function of DC1 were improved relative to vDC. Adjuvant p53-specific vaccination of patients with HNSCC was safe and associated with promising clinical outcome, decreased Treg levels, and modest vaccine-specific immunity. HNSCC patients' DC required stronger maturation stimuli to reverse immune suppression and improve vaccine efficacy. ©2014 AACR.
Diet and the anti-inflammatory effect of heat shock proteins.
van Eden, Willem
2015-01-01
Stress proteins or heat shock proteins (HSPs) have a critical role in gut health and immune regulation. They have a functional significance as molecular chaperones for cell skeleton proteins and intercellular tight junction proteins. Herewith HSPs ensure gut epithelium integrity and effective intestinal barrier function. In addition, stress protein molecules such as HSP70 are a target for anti-inflammatory regulatory T cells (Tregs). Inflamed sites in the body feature inflammatory-stress induced enhanced levels of HSPs, which enable the immune system to target Tregs selectively to sites of inflammation. We have shown in experimental models of inflammatory diseases that both microbial HSP and endogenous (self) HSP molecules are capable of inducing the expansion of disease suppressive Tregs. Since the gut associated lymphoid tissue (GALT) is well poised towards the induction of regulation and tolerance, we set out to promote HSP expression and induction of Tregs in the gut lymphoid tissues by the oral administration of HSP co-inducing compounds. For the identification, selection and characterization of such compounds we have developed assay systems, such as reporter cell-lines, HSP specific T cell hybridomas and a transgenic mouse model (expression a HSP specific T cell receptor). The introduction of HSP coinducers into the diet constitutes a novel food based preventive or possibly even therapeutic approach in inflammatory diseases.
De Rosa, Veronica; Galgani, Mario; Porcellini, Antonio; Colamatteo, Alessandra; Santopaolo, Marianna; Zuchegna, Candida; Romano, Antonella; De Simone, Salvatore; Procaccini, Claudio; La Rocca, Claudia; Carrieri, Pietro Biagio; Maniscalco, Giorgia Teresa; Salvetti, Marco; Buscarinu, Maria Chiara; Franzese, Adriana; Mozzillo, Enza; La Cava, Antonio; Matarese, Giuseppe
2016-01-01
Human regulatory T cells (Treg cells) that develop from conventional T cells (Tconv cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced Treg cells (iTreg cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iTreg cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2–related suppressive activity of iTreg cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of Treg cells in health and in autoimmunity. PMID:26414764
Increased regulatory T cells in acute lymphoblastic leukaemia patients.
Idris, Siti-Zuleha; Hassan, Norfarazieda; Lee, Le-Jie; Md Noor, Sabariah; Osman, Raudhawati; Abdul-Jalil, Marsitah; Nordin, Abdul-Jalil; Abdullah, Maha
2016-05-01
Regulation in adaptive immune response balances a fine line that prevents instigation of self-damage or fall into unresponsiveness permitting abnormal cell growth. Mechanisms that keep this balance in check include regulatory T cells (Tregs). Tregs consist of a small but heterogeneous population, which may be identified by the phenotype, CD3+CD4+CD25+CD127-. The role of Tregs in pathogenesis of cancers is thus far supported by evidence of increased Tregs in various cancers and may contribute to poorer prognosis. Tregs may also be important in acute leukaemias. A review of the literature on Tregs in acute leukaemias was conducted and Tregs were determined in B-cell acute lymphoblastic leukaemias (ALLs). Studies on Tregs in B-cell ALL are few and controversial. We observed a significantly increased percentage of Tregs (mean±SD, 9.72 ± 3.79% vs. 7.05 ± 1.74%; P = 0.047) in the bone marrow/peripheral blood of ALL (n = 17) compared to peripheral blood of normal controls (n = 35). A positive trend between Tregs and age (R = 0.474, P = 0.055, n = 17) implicates this factor of poor prognosis in B-cell ALL. Tregs in cancer are particularly significant in immunotherapy. The manipulation of the immune system to treat cancer has for a long time ignored regulatory mechanisms inducible or in place. In lymphoma studies, tumour-specific mechanisms that are unlike conventional methods in the induction of Tregs have been hypothesized. In addition, tumour-infiltrating Tregs may present different profiles from peripheral blood pictures. Tregs will continue to be dissected to reveal its mysteries and their impact on clinical significance.
Ramakrishnan, Radha; Davidowitz, Andrew; Balu-Iyer, Sathy V
2015-08-01
A major complication of replacement therapy with Factor VIII (FVIII) for hemophilia A (HA) is the development of unwanted immune responses. Previous studies showed that administration of FVIII in the presence of phosphatidyl serine (PS) reduced the development of anti-FVIII antibodies in HA mice. However, the impact of PS-mediated effects on immunological memory, such as generation of memory B-cells, is not clear. The effect of PS on memory B-cells was therefore investigated using adoptive transfer approach in FVIII(-/-) HA mice. Adoptive transfer of memory B-cells from a PS-FVIII-treated group to naïve mice followed by challenge of the recipient mice with FVIII showed a significantly reduced anti-FVIII antibody response in the recipient mice, compared with animals that received memory B-cells from free FVIII and FVIII-charge matched phosphatidyl glycerol (PG) group. The decrease in memory B-cell response is accompanied by an increase in FoxP3 expressing regulatory T-cells (Tregs). Flow cytometry studies showed that the generation of Tregs is higher in PS-treated animals as compared with FVIII and FVIII-PG treated animals. The PS-mediated hyporesponsiveness was found to be antigen-specific. The PS-FVIII immunization showed hyporesponsiveness toward FVIII rechallenge but not against ovalbumin (OVA) rechallenge, an unrelated antigen. This demonstrates that PS reduces immunologic memory of FVIII and induces antigen-specific peripheral tolerance in HA mice. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
No prolongation of skin allograft survival by immunoproteasome inhibition in mice.
Mundt, Sarah; Basler, Michael; Sawitzki, Birgit; Groettrup, Marcus
2017-08-01
The immunoproteasome, a distinct class of proteasomes, which is inducible under inflammatory conditions and constitutively expressed in monocytes and lymphocytes, is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Moreover, inhibition of the immunoproteasome subunit LMP7 ameliorates clinical symptoms of autoimmune diseases in vivo and was shown to suppress the development of T helper cell (Th) 1 and Th17 cells and to promote regulatory T-cell (Treg) generation independently of its function in antigen processing. Since Th1 and Th17 cells are detrimental and Treg cells are critical for transplant acceptance, we investigated the influence of the LMP7-selective inhibitor ONX 0914 in a mixed lymphocyte reaction (MLR) in vitro as well as on allograft rejection in a MHC-disparate (C57BL/6 to BALB/c) and a multiple minor histocompatibility antigen (miHA)-disparate (B10.Br to C3H) model of skin transplantation in vivo. Although we observed reduced allo-specific IL-17 production of T cells in vitro, we found that selective inhibition of LMP7 had neither an influence on allograft survival in an MHC-mismatch model nor in a multiple minor mismatch skin transplantation model. We conclude that inhibition of the immunoproteasome is not effective in prolonging skin allograft survival in skin allotransplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gerriets, Valerie A; Danzaki, Keiko; Kishton, Rigel J; Eisner, William; Nichols, Amanda G; Saucillo, Donte C; Shinohara, Mari L; MacIver, Nancie J
2016-08-01
Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The NOTCH1-autophagy interaction: Regulating self-eating for survival.
Sarin, Apurva; Marcel, Nimi
2017-02-01
T-cell subsets in the mammalian immune system use varied mechanisms for survival, a demand imposed by the diverse and dynamic niches that they function in. In a recent study, we showed that survival of natural T-regulatory cells (Tregs) was determined by spatially regulated NOTCH1 activity signaling leading to the activation of macroautophagy/autophagy. While this interaction was revealed in experimental conditions of limited nutrient availability in vitro, the consequences of this interaction were confirmed in the context of immune physiology. Consistently, disrupting NOTCH signaling or the autophagy cascade was deleterious to Tregs. At the molecular level, ligand-activated NOTCH1, which is enriched outside the nucleus in Tregs, was detected in complexes that included specific molecular intermediates controlling the progression of autophagy. Mitochondria were a prominent cellular target, with organelle remodeling and function dependent on NOTCH1 signaling to autophagy. It is tempting to speculate that the link between autophagy and the developmental regulator NOTCH1 identified in this work may be conserved in other biological contexts.
Edwards, Justin P.; Fujii, Hodaka; Zhou, Angela X.; Creemers, John; Unutmaz, Derya; Shevach, Ethan M.
2013-01-01
GARP/LRRC32 has previously been defined as a marker of activated human regulatory T-cells (Tregs) that is responsible for surface localization of latent TGF-β1. We find that GARP and latent TGF-β1 are also found on mouse Tregs activated via TCR stimulation, but in contrast to human Tregs, GARP is also expressed at a low level on resting Tregs. The expression of GARP can be upregulated on mouse Tregs by IL-2 or IL-4 exposure in the absence of TCR signaling. GARP is expressed at a low level on Tregs within the thymus and Treg precursors from the thymus concomitantly express GARP and Foxp3 upon exposure to IL-2. The expression of GARP is independent of TGF-β1 and TGF-β1 loading into GARP and is independent of furin-mediated processing of pro-TGF-β1 to latent TGF-β1. Specific deletion of GARP in CD4+ T cells results in lack of expression of latent-TGF-β1 on activated Tregs. GARP-deficient Tregs develop normally, are present in normal numbers in peripheral tissues, and are fully competent suppressors of the activation of T conventional cells in vitro. Activated Tregs expressing GARP/latent-TGF-β1 complexes are potent inducers of Th17 differentiation in the presence of exogenous IL-6 and inducers of Treg in the presence of IL-2. Induction of both Th17 producing cells and Treg is preferentially induced by Tregs expressing the latent-TGF-β1/GARP complex on their cell surface rather than by secreted latent-TGF-β1. PMID:23645881
Edwards, Justin P; Fujii, Hodaka; Zhou, Angela X; Creemers, John; Unutmaz, Derya; Shevach, Ethan M
2013-06-01
GARP/LRRC32 was defined as a marker of activated human regulatory T cells (Tregs) that is responsible for surface localization of latent TGF-β1. We find that GARP and latent TGF-β1 are also found on mouse Tregs activated via TCR stimulation; however, in contrast to human Tregs, GARP is also expressed at a low level on resting Tregs. The expression of GARP can be upregulated on mouse Tregs by IL-2 or IL-4 exposure in the absence of TCR signaling. GARP is expressed at a low level on Tregs within the thymus, and Treg precursors from the thymus concomitantly express GARP and Foxp3 upon exposure to IL-2. The expression of GARP is independent of TGF-β1 and TGF-β1 loading into GARP and is independent of furin-mediated processing of pro-TGF-β1 to latent TGF-β1. Specific deletion of GARP in CD4(+) T cells results in lack of expression of latent TGF-β1 on activated Tregs. GARP-deficient Tregs develop normally, are present in normal numbers in peripheral tissues, and are fully competent suppressors of the activation of conventional T cells in vitro. Activated Tregs expressing GARP/latent TGF-β1 complexes are potent inducers of Th17 differentiation in the presence of exogenous IL-6 and inducers of Treg in the presence of IL-2. Induction of both Th17-producing cells and Tregs is caused preferentially by Tregs expressing the latent TGF-β1/GARP complex on their cell surface rather than by secreted latent TGF-β1.
Webb, Tonya J.; Potter, James P.; Li, Zhiping
2011-01-01
Background/Aims Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells. Methods The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis. Results CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury. Conclusions NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity. PMID:22073248
The pathogenesis of oligoarticular/polyarticular vs systemic juvenile idiopathic arthritis.
Lin, Yu-Tsan; Wang, Chen-Ti; Gershwin, M Eric; Chiang, Bor-Luen
2011-06-01
Juvenile idiopathic arthritis (JIA) has had a long and difficult problem with classification. It is clearly a heterogeneous and multi-factorial autoimmune disease but all too often the distinctions among subtypes were unclear. In fact, there is now increasing evidence of a distinct pathogenesis of oligo/polyarticular JIA compared to systemic JIA. Oligo/polyarticular JIA is an antigen-driven lymphocyte-mediated autoimmune disease with abnormality in the adaptive immune system. Cartilage-derived auto-antigens activate autoreactive T cells including Th1 and Th17 cells with production of pro-inflammatory cytokines IFN-γ and IL-17. On the other hand, the inhibition of regulatory T (Treg) cells including natural Foxp3(+) Treg and self-heat shock protein-induced Treg cells with decreased anti-inflammatory cytokine IL-10 results in the loss of immune tolerance. Imbalance between autoreactive Th1/Th17 and Treg cells leads to the failure of T cell tolerance to self-antigens, which contributes to the synovial inflammation of oligo/polyarticular JIA. By contrast, systemic JIA is an autoinflammatory disease with abnormality in the innate immune system. A loss of control of the alternative secretory pathway leading to aberrant activation of phagocytes including monocytes, macrophages and neutrophils seems to be involved in the release of pro-inflammatory cytokines IL-1, IL-6, IL-18 and pro-inflammatory S100-proteins, which contribute to the multisystem inflammation of systemic JIA. Markedly distinct pathogenesis of oligo/polyarticular JIA and systemic JIA implies that they might need different treatment strategies. Copyright © 2011 Elsevier B.V. All rights reserved.
Chan, Olivia; Hall, Håkan; Elford, Alisha R.; Yen, Patty; Calzascia, Thomas; Spencer, David M.; Ohashi, Pamela S.
2017-01-01
Although the role of T cells in autoimmunity has been explored for many years, the mechanisms leading to the initial priming of an autoimmune T cell response remain enigmatic. The ‘hit and run’ model suggests that self-antigens released upon cell death can provide the initial signal for a self-sustaining autoimmune response. Using a novel transgenic mouse model where we could induce the release of self-antigens via caspase-dependent apoptosis. We tracked the fate of CD8+ T cells specific for the self-antigen. Our studies demonstrated that antigens released from apoptotic cells were cross-presented by CD11c+ cells in the draining lymph node. This cross-presentation led to proliferation of self-antigen specific T cells, followed by a transient ability to produce IFN-γ, but did not lead to the development of autoimmune diabetes. Using this model we examined the consequences on T cell immunity when apoptosis was combined with dendritic cell maturation signals, an autoimmune susceptible genetic background, and the deletion of Tregs. The results of our study demonstrate that autoimmune diabetes cannot be initiated by the presentation of antigens released from apoptotic cells in vivo even in the presence of factors known to promote autoimmunity. PMID:28257518
Immune Interventions to Preserve Beta Cell Function in Type 1 Diabetes
Ehlers, Mario R.
2015-01-01
Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic beta cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual beta cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. Over the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off-therapy in the majority of treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T cell-directed therapies, including therapies that lead to partial depletion or modulation of effector T (Teff) cells and preservation or augmentation of regulatory T (Treg) cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: a Teff-depleting or modulating drug, a cytokine-based tolerogenic (Treg-promoting) agent, and an antigen-specific component. The long-term goal is to reestablish immunologic tolerance to beta cells, thereby preserving residual beta cells early after diagnosis or enabling restoration of beta cell mass from autologous stem cells or induced neogenesis in patients with established T1D. PMID:26225763
Type I IFN gene delivery suppresses regulatory T cells within tumors.
Hashimoto, H; Ueda, R; Narumi, K; Heike, Y; Yoshida, T; Aoki, K
2014-12-01
Type I interferon (IFN) is a pleiotropic cytokine regulating the cancer cell death and immune response. IFN-α can, as we have also reported, effectively induce an antitumor immunity by the activation of tumor-specific T cells and maturation of dendritic cells in various animal models. Unknown, however, is how the type I IFN alters the immunotolerant microenvironment in the tumors. Here, we found that intratumoral IFN-α gene transfer significantly decreased the frequency of regulatory T cells (Tregs) per CD4(+) T cells in tumors. The concentration of a Treg-inhibitory cytokine, interleukin (IL)-6, was correlated with the IFN-α expression level in tumors, and intratumoral CD11c(+) cells produced IL-6 in response to IFN-α stimulation. To confirm the role of IL-6 in the suppression of Tregs in tumors, an anti-IL-6 receptor antibody was administered in IFN-α-treated mice. The antibody increased the frequency of Tregs in the tumors, and attenuated systemic tumor-specific immunity induced by IFN-α. Furthermore, the IFN-α-mediated IL-6 production increased the frequency of Th17 cells in the tumors, which may be one of the mechanisms for the reduction of Tregs. The study demonstrated that IFN-α gene delivery creates an environment strongly supporting the enhancement of antitumor immunity through the suppression of Tregs.
Vella, Jennifer L.; Reis, Isildinha M.; De la fuente, Adriana C.; Gomez, Carmen; Sargi, Zoukaa; Nazarian, Ronen; Califano, Joseph; Borrello, Ivan
2015-01-01
Purpose Myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) play a key role in the progression of head and neck squamous cell carcinoma (HNSCC). On the basis of our preclinical data demonstrating that phosphodiesterase-5 (PDE5) inhibition can modulate these cell populations, we evaluated whether the PDE5 inhibitor tadalafil can revert tumor-induced immunosuppression and promote tumor immunity in patients with HNSCC. Experimental Design First, we functionally and phenotypically characterized MDSCs in HNSCCs and determined, retrospectively, whether their presence at the tumor site correlates with recurrence. Then, we performed a prospective single-center, double-blinded, randomized, three-arm study in which patients with HNSCC undergoing definitive surgical resection of oral and oropharyngeal tumors were treated with tadalafil 10 μg/day, 20 μg/day, or placebo for at least 20 days preoperatively. Blood and tumor MDSC and Treg presence and CD8+ T-cell reactivity to tumor antigens were evaluated before and after treatment. Results MDSCs were characterized in HNSCC and their intratumoral presence significantly correlates with recurrence. Tadalafil treatment was well tolerated and significantly reduced both MDSCs and Treg concentrations in the blood and in the tumor (P < 0.05). In addition, the concentration of blood CD8+ T cells reactive to autologous tumor antigens significantly increased after treatment (P < 0.05). Tadalafil immunomodulatory activity was maximized at an intermediate dose but not at higher doses. Mechanistic analysis suggests a possible off-target effect on PDE11 at high dosages that, by increasing intracellular cAMP, may negatively affect antitumor immunity. Conclusions Tadalafil seems to beneficially modulate the tumor micro- and macro-environment in patients with HNSCC by lowering MDSCs and Tregs and increasing tumor-specific CD8+ T cells in a dose-dependent fashion. PMID:25320361
Zhou, Ru; Horai, Reiko; Silver, Phyllis B; Mattapallil, Mary J; Zárate-Bladés, Carlos R; Chong, Wai Po; Chen, Jun; Rigden, Rachael C; Villasmil, Rafael; Caspi, Rachel R
2012-02-15
Immune privilege is used by the eye, brain, reproductive organs, and gut to preserve structural and functional integrity in the face of inflammation. The eye is arguably the most vulnerable and, therefore, also the most "privileged" of tissues; paradoxically, it remains subject to destructive autoimmunity. It has been proposed, although never proven in vivo, that the eye can induce T regulatory cells (Tregs) locally. Using Foxp3-GFP reporter mice expressing a retina-specific TCR, we now show that uncommitted T cells rapidly convert in the living eye to Foxp3(+) Tregs in a process involving retinal Ag recognition, de novo Foxp3 induction, and proliferation. This takes place within the ocular tissue and is supported by retinoic acid, which is normally present in the eye because of its function in the chemistry of vision. Nonconverted T cells showed evidence of priming but appeared restricted from expressing effector function in the eye. Pre-existing ocular inflammation impeded conversion of uncommitted T cells into Tregs. Importantly, retina-specific T cells primed in vivo before introduction into the eye were resistant to Treg conversion in the ocular environment and, instead, caused severe uveitis. Thus, uncommitted T cells can be disarmed, but immune privilege is unable to protect from uveitogenic T cells that have acquired effector function prior to entering the eye. These findings shed new light on the phenomenon of immune privilege and on its role, as well as its limitations, in actively controlling immune responses in the tissue.
Bonnefoy, Francis; Daoui, Anna; Valmary-Degano, Séverine; Toussirot, Eric; Saas, Philippe; Perruche, Sylvain
2016-08-11
Apoptotic cell-based therapies have been proposed to treat chronic inflammatory diseases. The aim of this study was to investigate the effect of intravenous (i.v.) apoptotic cell infusion in ongoing collagen-induced arthritis (CIA) and the interaction of this therapy with other treatments used in rheumatoid arthritis (RA), including methotrexate (MTX) or anti-TNF therapy. The effects of i.v. apoptotic cell infusion were evaluated in a CIA mouse model in DBA/1 mice immunized with bovine type II collagen. The number and functions of antigen-presenting cells (APC), regulatory CD4(+) T cells (Treg), and circulating anti-collagen auto-antibodies were analyzed in CIA mice. Treatment of arthritic mice with i.v. apoptotic cell infusion significantly reduced the arthritis clinical score. This therapeutic approach modified T cell responses against the collagen auto-antigen with selective induction of collagen-specific Treg. In addition, we observed that APC from apoptotic-cell-treated animals were resistant to toll-like receptor ligand activation and favored ex vivo Treg induction, indicating APC reprogramming. Apoptotic cell injection-induced arthritis modulation was dependent on transforming growth factor (TGF)-β, as neutralizing anti-TGF-β antibody prevented the effects of apoptotic cells. Methotrexate did not interfere, while anti-TNF therapy was synergic with apoptotic-cell-based therapy. Overall, our data demonstrate that apoptotic-cell-based therapy is efficient in treating ongoing CIA, compatible with current RA treatments, and needs to be evaluated in humans in the treatment of RA.
Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects.
Rosenkranz, Eva; Hilgers, Ralf-Dieter; Uciechowski, Peter; Petersen, Arnd; Plümäkers, Birgit; Rink, Lothar
2017-03-01
The trace element zinc is essential for immune function and its regulation. Since zinc deficiency and allergic hyperresponsive reactions are often accompanied, the influence of zinc on allergen-induced cell growth, CD4+ regulatory T (Treg) cell numbers and cytokine expression during allergic immune reactions was investigated. Peripheral blood mononuclear cells (PBMCs) from non-atopic and atopic subjects were treated with timothy grass allergen pre-incubated with or without zinc. Proliferation was determined by analyzing the incorporation of 3 H-thymidine. Intracellular zinc and Foxp3 levels and cell surface antigens were measured by FACS, cytokine expression by ELISA and real-time PCR. Incubation with 50 μM zinc sulfate (Zn50) enhances cytosolic zinc concentrations in CD3+ T cells. The data also reveal that the combination of Zn50 plus allergen significantly reduces PBMC proliferation of atopic subjects. Additionally, Zn50 plus allergen enhances Th1 cytokine responses shown by increased interferon (IFN)-γ/interleukin (IL)-10 ratios as well as enhanced tumor necrosis factor-α release. In response to allergen, zinc increases Treg cells and upregulates the mRNA expression of cytotoxic T-lymphocyte antigen-4 in atopic subjects. Interestingly, Zn50 alone leads to an increase of CD4+CD25high(hi)+ cells in atopic and non-atopic subjects. Zinc may regulate unwanted hyperresponsive immune reactions by suppressing proliferation through a significant shift from IL-10 to the Th1 cytokine IFN-γ, and enhanced regulatory T cell numbers. Therefore, zinc supplementation may be a promising tool for the therapy of allergies, without negatively affecting the immune system.
Li, Shao-You; Xia, Hou-Jun; Dai, Zheng-Xi; Zhang, Gao-Hong; Fan, Bo; Li, Ming-Hua; Wang, Rui-Rui; Zheng, Yong-Tang
2012-05-01
CD4(+)CD25(high) regulatory T cells (Treg), which are a specialized subset of T cells, play an important role in the prevention of autoimmune diseases, maintenance of immune system homeostasis and tolerance to self-antigens. Chinese rhesus macaques (CRMs) are widely used in preclinical research on potential therapeutic drugs, vaccines and mechanisms of human diseases. However, the basic immunological characterization of Treg cells of CRMs has not been well established. To characterize Treg cells, peripheral blood of 43 adult CRMs was analyzed for CD4+ T lymphocytes by flow cytometry. It was found that Treg cells ranged from 1.52% to 11.1% of CD4+ T cells, and the average value was 5.7%. With our SIV-infected CRM model, through further studies, it was found that Treg cells in peripheral blood increased both in relative and absolute quantities. Moreover, Treg cells maintained their functions by suppressing Th1 cytokine secretion of their target cells. The results show that Treg cells might render cellular immunity against SIV viruses dysfunctional during the early stage after infection.
Hawse, William F; Boggess, William C; Morel, Penelope A
2017-07-15
The Akt/mTOR pathway is a key driver of murine CD4 + T cell differentiation, and induction of regulatory T (Treg) cells results from low TCR signal strength and low Akt/mTOR signaling. However, strong TCR signals induce high Akt activity that promotes Th cell induction. Yet, it is unclear how Akt controls alternate T cell fate decisions. We find that the strength of the TCR signal results in differential Akt enzymatic activity. Surprisingly, the Akt substrate networks associated with T cell fate decisions are qualitatively different. Proteomic profiling of Akt signaling networks during Treg versus Th induction demonstrates that Akt differentially regulates RNA processing and splicing factors to drive T cell differentiation. Interestingly, heterogeneous nuclear ribonucleoprotein (hnRNP) L or hnRNP A1 are Akt substrates during Treg induction and have known roles in regulating the stability and splicing of key mRNAs that code for proteins in the canonical TCR signaling pathway, including CD3ζ and CD45. Functionally, inhibition of Akt enzymatic activity results in the dysregulation of splicing during T cell differentiation, and knockdown of hnRNP L or hnRNP A1 results in the lower induction of Treg cells. Together, this work suggests that a switch in substrate specificity coupled to the phosphorylation status of Akt may lead to alternative cell fates and demonstrates that proteins involved with alternative splicing are important factors in T cell fate decisions. Copyright © 2017 by The American Association of Immunologists, Inc.
Guo, Hao; Zhang, Hong; Lu, Lien; Ezzelarab, Mohamed B.; Thomson, Angus W.
2015-01-01
We expanded flow-sorted Foxp3+ cynomolgus monkey regulatory T cells (Treg) >1000-fold after three rounds of stimulation with anti-CD3 mAb-loaded artificial antigen-presenting cells, rapamycin (first round only) and IL-2. The expanded Treg maintained their expression of Treg signature markers, CD25, CD27, CD39, Foxp3, Helios, and CTLA-4, as well as CXCR3, which plays an important role in T cell migration to sites of inflammation. In contrast to expanded effector T cells (Teff), expanded Treg produced minimal IFN-γ and IL-17 and no IL-2 and potently suppressed Teff proliferation. Following cryopreservation, thawed Treg were less viable than their freshly-expanded counterparts, although no significant changes in phenotype or suppressive ability were observed. Additional rounds of stimulation/expansion restored maximal viability. Furthermore, adoptively-transferred autologous Treg expanded from cryopreserved second round stocks and labeled with CFSE or VPD450 were detected in blood and secondary lymphoid tissues of normal or immunosuppressed recipients at least two months after their systemic infusion. PMID:25732601
Fenoglio, Daniela; Battaglia, Florinda; Parodi, Alessia; Stringara, Silvia; Negrini, Simone; Panico, Nicoletta; Rizzi, Marta; Kalli, Francesca; Conteduca, Giuseppina; Ghio, Massimo; De Palma, Raffaele; Indiveri, Francesco; Filaci, Gilberto
2011-06-01
Aim of the study has been to understand the relationship between TH17 and Treg cell subsets in patients affected with systemic sclerosis (SSc). Phenotypes and functions of Th17 and Treg cell subsets were analyzed in a series of 36 SSc patients. Th17 cell concentration in the peripheral blood was found to be increased in SSc patients with respect to healthy controls independently from type or stage of disease. After PBMC stimulation with a polyclonal stimulus or Candida albicans antigens the frequency of Th17 T cell clones was significantly higher in SSc patients with respect to controls suggesting the skewing of immune response in SSc patients toward Th17 cell generation/expansion. Concerning the Treg compartment, both CD4+CD25+ and CD8+CD28- Treg subsets showed quantitative and qualitative alteration in the peripheral blood of SSc patients. Collectively, these data highlight the existence of an imbalanced ratio between Th17 and Treg cell subsets in SSc patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy
Engler, Jan Broder; Kursawe, Nina; Solano, María Emilia; Patas, Kostas; Wehrmann, Sabine; Heckmann, Nina; Lühder, Fred; Reichardt, Holger M.; Arck, Petra Clara; Gold, Stefan M.
2017-01-01
Pregnancy is one of the strongest inducers of immunological tolerance. Disease activity of many autoimmune diseases including multiple sclerosis (MS) is temporarily suppressed by pregnancy, but little is known about the underlying molecular mechanisms. Here, we investigated the endocrine regulation of conventional and regulatory T cells (Tregs) during reproduction. In vitro, we found the pregnancy hormone progesterone to robustly increase Treg frequencies via promiscuous binding to the glucocorticoid receptor (GR) in T cells. In vivo, T-cell–specific GR deletion in pregnant animals undergoing experimental autoimmune encephalomyelitis (EAE), the animal model of MS, resulted in a reduced Treg increase and a selective loss of pregnancy-induced protection, whereas reproductive success was unaffected. Our data imply that steroid hormones can shift the immunological balance in favor of Tregs via differential engagement of the GR in T cells. This newly defined mechanism confers protection from autoimmunity during pregnancy and represents a potential target for future therapy. PMID:28049829
Regulation of Effector Treg Cells in Murine Lupus.
Chandrasekaran, Uma; Yi, Woelsung; Gupta, Sanjay; Weng, Chien-Huan; Giannopoulou, Eugenia; Chinenov, Yurii; Jessberger, Rolf; Weaver, Casey T; Bhagat, Govind; Pernis, Alessandra B
2016-06-01
Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development. © 2016, American College of Rheumatology.
Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases.
Chen, Beidi; Sun, Luxi; Zhang, Xuan
2017-09-01
The interaction between genetic predisposition and environmental factors are of great significance in the pathogenesis and development of autoimmune diseases (AIDs). The human mucosa is the most frequent site that interacts with the exterior environment, and commensal microbiota at the gut and other human mucosal cavities play a crucial role in the regulation of immune system. Growing evidence has shown that the compositional and functional changes of mucosal microbiota are closely related to AIDs. Gut dysbiosis not only influence the expression level of Toll-like receptors (TLRs) of antigen presenting cells, but also contribute to Th17/Treg imbalance. Epigenetic modifications triggered by environmental factors is an important mechanism that leads to altered gene expression. Researches addressing the role of DNA methylation, histone modification and non-coding RNA in AIDs have been increasing in recent years. Furthermore, studies showed that human microbiota and their metabolites can regulate immune cells and cytokines via epigenomic modifications. For example, short-chain fatty acids (SCFAs) produced by gut microbiota promote the differentiation of naïve T cell into Treg by suppressing histone deacetylases (HDACs). Therefore, we propose that dysbiosis and resulting metabolites may cause aberrant immune responses via epigenetic modifications, and lead to AIDs. With the development of high-throughput sequencing, metagenome analysis has been applied to investigate the dysbiosis in AIDs patients. We have tested the fecal, dental and salivary samples from treatment-naïve rheumatoid arthritis (RA) individuals by metagenomic shotgun sequencing and a metagenome-wide association study. Dysbiosis was detected in the gut and oral microbiomes of RA patients, but it was partially restored after treatment. We also found functional changes of microbiota and molecular mimicry of human antigens in RA individuals. By integrating the analysis of multi-omics of microbiome and epigenome, we could explore the interaction between human immune system and microbiota, and thereby unmasking specific and more sensitive biomarkers as well as potential therapeutic targets. Future studies aiming at the crosstalk between human dysbiosis and epigenetic modifications and their influences on AIDs will facilitate our understanding and better managing of these debilitating AIDs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.
2013-01-01
Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445
Cui, Huantian; Cai, Yuzi; Wang, Li; Jia, Beitian; Li, Junchen; Zhao, Shuwu; Chu, Xiaoqian; Lin, Jin; Zhang, Xiaoyu; Bian, Yuhong; Zhuang, Pengwei
2018-01-01
Berberine (BBR), an alkaloid isolated from Rhizoma Coptidis, Cortex Phellode , and Berberis , has been widely used in the treatment of ulcerative colitis (UC). However, the mechanism of BBR on UC is unknown. In this study, we investigated the activities of T regulatory cell (Treg) and T helper 17 cell (Th17) in a dextran sulfate sodium (DSS)-induced UC mouse model after BBR administration. We also investigated the changes of gut microbiota composition using 16S rRNA analysis. We also examined whether BBR could regulate the Treg/Th17 balance by modifying gut microbiota. The mechanism was further confirmed by depleting gut microbiota through a combination of antibiotic treatment and fecal transplantations. Results showed that BBR treatment could improve the Treg/Th17 balance in the DSS-induced UC model. BBR also reduced diversity of the gut microbiota and interfered with the relative abundance of Desulfovibrio, Eubacterium , and Bacteroides. Moreover, BBR treatment did not influence the Treg/Th17 balance after the depletion of gut microbiota. Our results also revealed that fecal transplantation from BBR-treated mice could relieve UC and regulate the Treg/Th17 balance. In conclusion, our study provides evidence that BBR prevents UC by modifying gut microbiota and regulating the balance of Treg/Th17.
Litjens, Nicolle H R; Boer, Karin; Zuijderwijk, Joke M; Klepper, Mariska; Peeters, Annemiek M A; Prens, Errol P; Verschoor, Wenda; Kraaijeveld, Rens; Ozgur, Zeliha; van den Hout-van Vroonhoven, Mirjam C; van IJcken, Wilfred F J; Baan, Carla C; Betjes, Michiel G H
2015-06-01
Expansion of Ag-specific naturally occurring regulatory T cells (nTregs) is required to obtain sufficient numbers of cells for cellular immunotherapy. In this study, different allogeneic stimuli were studied for their capacity to generate functional alloantigen-specific nTregs. A highly enriched nTreg fraction (CD4(+)CD25(bright)CD127(-) T cells) was alloantigen-specific expanded using HLA-mismatched immature, mature monocyte-derived dendritic cells (moDCs), or PBMCs. The allogeneic mature moDC-expanded nTregs were fully characterized by analysis of the demethylation status within the Treg-specific demethylation region of the FOXP3 gene and the expression of both protein and mRNA of FOXP3, HELIOS, CTLA4, and cytokines. In addition, the Ag-specific suppressive capacity of these expanded nTregs was tested. Allogeneic mature moDCs and skin-derived DCs were superior in inducing nTreg expansion compared with immature moDCs or PBMCs in an HLA-DR- and CD80/CD86-dependent way. Remarkably, the presence of exogenous IL-15 without IL-2 could facilitate optimal mature moDC-induced nTreg expansion. Allogeneic mature moDC-expanded nTregs were at low ratios (<1:320), potent suppressors of alloantigen-induced proliferation without significant suppression of completely HLA-mismatched, Ag-induced proliferation. Mature moDC-expanded nTregs were highly demethylated at the Treg-specific demethylation region within the FOXP3 gene and highly expressed of FOXP3, HELIOS, and CTLA4. A minority of the expanded nTregs produced IL-10, IL-2, IFN-γ, and TNF-α, but few IL-17-producing nTregs were found. Next-generation sequencing of mRNA of moDC-expanded nTregs revealed a strong induction of Treg-associated mRNAs. Human allogeneic mature moDCs are highly efficient stimulator cells, in the presence of exogenous IL-15, for expansion of stable alloantigen-specific nTregs with superior suppressive function. Copyright © 2015 by The American Association of Immunologists, Inc.
Stubbe, Tobias; Ebner, Friederike; Richter, Daniel; Randolf Engel, Odilo; Klehmet, Juliane; Royl, Georg; Meisel, Andreas; Nitsch, Robert; Meisel, Christian; Brandt, Christine
2013-01-01
Local and peripheral immune responses are activated after ischemic stroke. In our present study, we investigated the temporal distribution, location, induction, and function of regulatory T cells (Tregs) and the possible involvement of microglia, macrophages, and dendritic cells after middle cerebral artery occlusion (MCAO). C57BL/6J and Foxp3EGFP transgenic mice were subjected to 30 minutes MCAO. On days 7, 14, and 30 after MCAO, Tregs and antigen presenting cells were analyzed using fluorescence activated cell sorting multicolor staining and immunohistochemistry. A strong accumulation of Tregs was observed on days 14 and 30 in the ischemic hemisphere accompanied by the elevated presence and activation of microglia. Dendritic cells and macrophages were found on each analyzed day. About 60% of Foxp3+ Tregs in ischemic hemispheres were positive for the proliferation marker Ki-67 on days 7 and 14 after MCAO. The transfer of naive CD4+ cells depleted of Foxp3+ Tregs into RAG1−/− mice 1 day before MCAO did not lead to a de novo generation of Tregs 14 days after surgery. After depletion of CD25+ Tregs, no changes regarding neurologic outcome were detected. The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms. PMID:22968321
Stubbe, Tobias; Ebner, Friederike; Richter, Daniel; Engel, Odilo; Randolf Engel, Odilo; Klehmet, Juliane; Royl, Georg; Meisel, Andreas; Nitsch, Robert; Meisel, Christian; Brandt, Christine
2013-01-01
Local and peripheral immune responses are activated after ischemic stroke. In our present study, we investigated the temporal distribution, location, induction, and function of regulatory T cells (Tregs) and the possible involvement of microglia, macrophages, and dendritic cells after middle cerebral artery occlusion (MCAO). C57BL/6J and Foxp3(EGFP) transgenic mice were subjected to 30 minutes MCAO. On days 7, 14, and 30 after MCAO, Tregs and antigen presenting cells were analyzed using fluorescence activated cell sorting multicolor staining and immunohistochemistry. A strong accumulation of Tregs was observed on days 14 and 30 in the ischemic hemisphere accompanied by the elevated presence and activation of microglia. Dendritic cells and macrophages were found on each analyzed day. About 60% of Foxp3(+) Tregs in ischemic hemispheres were positive for the proliferation marker Ki-67 on days 7 and 14 after MCAO. The transfer of naive CD4(+) cells depleted of Foxp3(+) Tregs into RAG1(-/-) mice 1 day before MCAO did not lead to a de novo generation of Tregs 14 days after surgery. After depletion of CD25(+) Tregs, no changes regarding neurologic outcome were detected. The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms.
Moosbrugger-Martinz, Verena; Tripp, Christoph H; Clausen, Björn E; Schmuth, Matthias; Dubrac, Sandrine
2016-05-01
Atopic dermatitis (AD) is a widespread inflammatory skin disease with an early onset, characterized by pruritus, eczematous lesions and skin dryness. This chronic relapsing disease is believed to be primarily a result of a defective epidermal barrier function associated with genetic susceptibility, immune hyper-responsiveness of the skin and environmental factors. Although the important role of abnormal immune reactivity in the pathogenesis of AD is widely accepted, the role of regulatory T cells (Tregs) remains elusive. We found that the Treg population is expanded in a mouse model of AD, i.e. mice topically treated with vitamin D3 (VitD). Moreover, mice with AD-like symptoms exhibit increased inducible T-cell costimulator (ICOS)-, cytotoxic T-lymphocyte antigen-4 (CTLA-4)- and Glycoprotein-A repetitions predominant receptor (GARP)-expressing Tregs in skin-draining lymph nodes. Importantly, the differentiation of Tregs into thymus-derived Tregs is favoured in our mouse model of AD. Emigrated skin-derived dendritic cells are required for Treg induction and Langerhans cells are responsible for the biased expansion of thymus-derived Tregs . Intriguingly, thymus-derived Tregs isolated from mice with AD-like symptoms exhibit a Th2 cytokine profile. Thus, AD might favour the expansion of pathogenic Tregs able to produce Th2 cytokines and to promote the disease instead of alleviating symptoms. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.
Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei
2012-01-01
Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.
Adoptive Transfer of Induced-Treg Cells Effectively Attenuates Murine Airway Allergic Inflammation
Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei
2012-01-01
Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4+FoxP3+) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275
Schumacher, Anne; Dauven, Dominique; Zenclussen, Ana C
2017-03-01
Best known for its endocrine and immunologic properties, progesterone (P4) is a pivotal player for pregnancy success. However, the immunologic actions underlying P4 protection are not completely understood. Here, we investigated whether P4 application in a murine abortion-prone combination regulates regulatory T cells (Treg) and dendritic cells (DCs) and thereby affects pregnancy outcome. Progesterone or vehicle was applied to DBA/2J-mated CBA/J abortion-prone animals in early pregnancy. On gestation day 10, peripheral and local DC and Treg numbers were analyzed and pregnancy outcome was determined. Progesterone application provoked a significant increase in the uterine Treg pool but did not alter the abortion rate. Moreover, no significant changes could be observed in peripheral Treg levels and DC numbers after P4 application. Our findings suggest that P4-induced local Treg elevation is not sufficient to overcome fetal rejection in this specific model of disturbed fetal tolerance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billiard, Fabienne; Buard, Valerie; Benderitter, Marc
Purpose: To assess the frequency and the functional characteristics of one major component of immune tolerance, the CD4{sup +}FoxP3{sup +} regulatory T cells (Tregs) in a mouse model of abdominal irradiation. Methods and Materials: Mice were exposed to a single abdominal dose of {gamma}-radiation (10 Gy). We evaluated small intestine Treg infiltration by Foxp3 immunostaining and the functional suppressive activity of Tregs isolated from mesenteric lymph nodes. Results: Foxp3 immunostaining showed that radiation induced a long-term infiltration of the intestine by Tregs (levels 5.5 times greater than in controls). Co-culture of Tregs from mesenteric lymph nodes with CD4{sup +} effectormore » cells showed that the Tregs had lost their suppressive function. This loss was associated with a significant decrease in the levels of Foxp3, TGF-{beta}, and CTLA-4 mRNA, all required for optimal Treg function. At Day 90 after irradiation, Tregs regained their suppressive activity as forkhead box P3 (Foxp3), transforming growth factor beta (TGF-{beta}), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression returned to normal. Analysis of the secretory function of mesenteric lymph node Tregs, activated in vitro with anti-CD3/anti-CD28 Abs, showed that this dysfunction was independent of a defect in interleukin-10 secretion. Conclusion: Radiation caused a long-term accumulation of function-impaired Foxp3{sup +}CD4{sup +} Tregs in the intestine. Our study provides new insights into how radiation affects the immune tolerance in peripheral tissues.« less
Regulatory and activated effector T cells in chronic hepatitis C virus: Relation to autoimmunity
Fouad, Hanan; El Raziky, Maissa; Hassan, Eman Medhat; Aziz, Ghada Mahmoud Abdel; Darweesh, Samar K; Sayed, Ahmed Reda
2016-01-01
AIM To investigate how Tregs are regulated in chronic hepatitis C virus (HCV) patients via assessment of Tregs markers (granzyme 2, CD69 and FoxP3), Teffs markers [TNFRSF4 (OX40), INFG] and CD4, CD25 genes. METHODS A prospective study was conducted on 120 subjects divided into 4 groups: Group I (n = 30) treatment naïve chronic HCV patients; Group II (n = 30) chronic HCV treated with Peg/Riba; Group III (n = 30) chronic HCV associated with non-organ specific autoantibody and Group IV (n = 30) healthy persons as a control group. Tregs and Teffs markers were assessed in peripheral blood mononuclear cells by quantitative real time reverse transcriptase-polymerase chain reaction. RESULTS Chronic HCV patients exhibited significant higher levels of both Teffs and Tregs in comparison to healthy control group. Tregs markers were significantly decreased in Peg/Riba treated HCV patients in comparison to treatment naïve HCV group. In HCV patients with antinuclear antibody (ANA) +ve, Tregs markers were significantly decreased in comparison to all other studied groups. Teffs markers were significantly elevated in all HCV groups in comparison to control and in HCV group with ANA +ve in comparison to treatment naïve HCV group. CONCLUSION Elevated Tregs cells in chronic HCV patients dampen both CD4+ and CD8+ autologous T cell immune response. Interferon-α and ribavirin therapy suppress proliferation of Tregs. More significant suppression of Tregs was observed in HCV patients with autoantibodies favoring pathological autoimmune response. PMID:27843539
Wang, Xiaogang; Dong, Haisheng; Li, Qi; Li, Yingxian; Hong, An
2015-01-01
Metastatic melanoma is a highly aggressive cancer that is very difficult to treat. Additionally, the antitumor immune reaction of melanoma is still unclear. Here we demonstrate an association between the expression and secretion of the antioxidant protein thioredoxin (TRX) and increasing tumor stage and metastasis in melanoma. To elucidate the role of TRX in melanoma, we assessed the correlation of TRX expression with different disease parameters in melanoma. We also examined the in vitro and in vivo effects of modulating TRX levels in melanoma cells using various methods of TRX depletion and augmentation. We further explored the effects of TRX on the cytokine milieu and the ability of TRX to regulate the proportion and specific activities of T-cell populations. We demonstrate that TRX expression correlates with Treg representation in clinical samples and, that modulation of TRX influences the induction of Tregs and the generation of an immunotolerant cytokine profile in mouse serum. Using a murine metastatic melanoma model, we identified a tumor immunoevasion mechanism whereby melanoma cell-secreted TRX enhances Treg infiltration. TRX displays chemotactic effects in recruiting Tregs, stimulates the conversion of conventional T cells to Tregs, and confers survival advantage to Tregs in the tumor microenvironment. In turn, this increase of Tregs generates immunotolerance in tissues and therefore decreases antitumor immune reactions. These results elucidate a mechanism by which TRX promotes metastatic melanoma in part through Treg recruitment to inhibit T-cell antitumor effects and suggest that TRX antibody may be useful in the clinic as a therapy against melanoma. PMID:26405597
The Dynamics of Treg/Th17 and the Imbalance of Treg/Th17 in Clonorchis sinensis-Infected Mice
Hua, Hui; Li, Bo; Zhang, Bo; Yu, Qian; Li, Xiang-Yang; Liu, Ying; Pan, Wei; Liu, Xiang-Ye; Tang, Ren-Xian; Zheng, Kui-Yang
2015-01-01
Clonorchiasis, caused by the liver fluke Clonorchis sinensis, is a chronic parasitic infection regulated by T cell subsets. An imbalance of CD4+CD25+ Foxp3+regulatory T (Treg) and interleukin (IL)-17-secreting T cells (Th17) may control inflammation and play an important role in the pathogenesis of immune evasion. In the present study, we assessed the dynamics of Treg/Th17 and determined whether the Treg/Th17 ratio is altered in C. sinensis-infected mice. The results showed that the percentages of splenic Treg cells in CD4+ T cells were suppressed on day 14 post-infection (PI) but increased on day 56 PI, while Th17 cells were increased on day 56 PI compared with normal control (NC) mice. The Treg/Th17 ratio steadily increased from day 28 to day 56 PI. The hepatic levels of their specific transcription factors (Foxp3 for Treg and RORγt for Th17) were increased in C. sinensis-infected mice from day 14 to 56 PI, and significantly higher than those in NC mice. Meanwhile, serum levels of IL-2 and IL-17 were profoundly increased in C. sinensis-infected mice throughout the experiment; while the concentrations of IL-6 and transforming growth factor β1 (TGF-β1) peaked on day 14 PI, but then decreased on day 28 and 56 PI. Our results provide the first evidence of an increased Treg/Th17 ratio in C. sinensis-infected mice, suggesting that a Treg/Th17 imbalance may play a role in disease outcomes of clonorchiasis. PMID:26599407
Lv, Qi; Wang, Kai; Qiao, Simiao; Yang, Ling; Xin, Yirong; Dai, Yue; Wei, Zhifeng
2018-02-15
Norisoboldine (NOR), a natural aryl hydrocarbon receptor (AhR) agonist, has been demonstrated to attenuate ulcerative colitis (UC) and induce the generation of Treg cells. Under UC condition, hypoxia widely exists in colonic mucosa, and secondary changes of microRNAs (miRs) expressions and glycolysis contribute to Treg differentiation. At present, we worked for exploring the deep mechanisms for NOR-promoted Treg differentiation in hypoxia and its subsequent anti-UC action from the angle of AhR/miR or AhR/glycolysis axis. Results showed that NOR promoted Treg differentiation in hypoxia and the effect was stronger relative to normoxia. It activated AhR in CD4 + T cells under hypoxic microenvironment; CH223191 (a specific AhR antagonist) and siAhR-3 abolished NOR-promoted Treg differentiation. Furthermore, the progress of glycolysis, levels of Glut1 and HK2, and expression of miR-31 rather than miR-219 and miR-490 in CD4 + T cells were downregulated by NOR treatment under hypoxic microenvironment. However, HK2 plasmid but not miR-31 mimic significantly interfered NOR-enhanced Treg polarization. In addition, NOR reduced NAD + and SIRT1 levels, facilitated the ubiquitin-proteasomal degradation of SUV39H1 protein, and inhibited the enrichment of H3K9me3 at -1, 201 to -1,500 region of Foxp3 promoter in CD4 + T cells under hypoxic microenvironment, which was weakened by HK2 plasmid, CH223191, and siAhR-3. Finally, the correlation between NOR-mediated activation of AhR, repression of glycolysis, regulation of NAD + /SIRT1/SUV39H1/H3K9me3 signals, induction of Treg cells, and remission of colitis was confirmed in mice with DSS-induced colitis by using CH223191 and HK2 plasmid. In conclusion, NOR promoted Treg differentiation and then alleviated the development of colitis by regulating AhR/glycolysis axis and subsequent NAD + /SIRT1/SUV39H1/H3K9me3 signaling pathway.
Zewdie, Martha; Howe, Rawleigh; Hoff, Søren T; Doherty, T Mark; Getachew, Nahom; Tarekegne, Azeb; Tessema, Bamlak; Yamuah, Lawrence; Aseffa, Abraham; Abebe, Markos
2016-09-01
Regulatory T cells (Treg) are an essential arm of adaptive immunity not only in tolerance and autoimmunity but also in infectious diseases. In Tuberculosis (TB), it has been suggested that the frequency of Tregs is higher in the blood of TB patients when compared to healthy controls with subsequent decline after treatment. However, with the discovery that FOXP3, the hallmark marker of Tregs, is not exclusive to Tregs and the lack of specific markers for Tregs, it has been a challenge to fully understand the role of Tregs in TB. We isolated PBMC from smear positive TB patients (TB, N = 13) before and after treatment, latent TB infected participants (LTBI, N = 8), and healthy endemic controls (EC, N = 9) and evaluated the frequency of different populations of Tregs and expression of FOXP3 by flowcytometry using six markers. The findings in this study showed that the association of Treg frequency with TB disease depends on the phenotypic markers used. While the frequency of CD4(+)CD25(+/hi) T cells was higher in TB patients compared to LTBI individuals, there was no difference in the frequency of CD4(+)CD25(+)FOXP3(+)CD127(lo) Treg among TB, LTBI, or EC. However, delineation of Tregs into active and naïve subsets revealed a significant increase in FOXP3 expression in active primed Tregs (CD4(+)CD25(+)FOXP3(+)CD127(lo)CD45RO(+)Ki-67(+)) of TB patients compared to LTBI and EC; and a significantly higher frequency of resting primed (CD45RO(+)Ki-67(-)) Treg in QuantiFERON negative EC compared to TB patients. After treatment completion, there was a significant decline in the frequency of active primed Treg, median (IQR) from 12.4% (9.5-21.9) of Tregs to 9.3% (7.0-12.2); P = 0.003 Wilcoxon signed rank test. We conclude that Treg subsets may be differentially regulated and expressed in TB disease, cure, and infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zewdie, Martha; Howe, Rawleigh; Hoff, Søren T.; Doherty, T. Mark; Getachew, Nahom; Tarekegne, Azeb; Tessema, Bamlak; Yamuah, Lawrence; Aseffa, Abraham; Abebe, Markos
2016-01-01
SUMMARY Background Regulatory T cells (Treg) are an essential arm of adaptive immunity not only in tolerance and autoimmunity but also in infectious diseases. In Tuberculosis (TB), it has been suggested that the frequency of Tregs is higher in the blood of TB patients when compared to healthy controls with subsequent decline after treatment. However, with the discovery that FOXP3, the hallmark marker of Tregs, is not exclusive to Tregs and the lack of specific markers for Tregs, it has been a challenge to fully understand the role of Tregs in TB. Method We isolated PBMC from smear positive TB patients (TB, N = 13) before and after treatment, latent TB infected participants (LTBI, N = 8), and healthy endemic controls (EC, N = 9) and evaluated the frequency of different populations of Tregs and expression of FOXP3 by flowcytometry using six markers. Results The findings in this study showed that the association of Treg frequency with TB disease depends on the phenotypic markers used. While the frequency of CD4+CD25+/hi T cells was higher in TB patients compared to LTBI individuals, there was no difference in the frequency of CD4+CD25+FOXP3+CD127lo Treg among TB, LTBI, or EC. However, delineation of Tregs into active and naïve subsets revealed a significant increase in FOXP3 expression in active primed Tregs (CD4+CD25+FOXP3+CD127loCD45RO+Ki-67+) of TB patients compared to LTBI and EC; and a significantly higher frequency of resting primed (CD45RO+Ki-67−) Treg in QuantiFERON negative EC compared to TB patients. After treatment completion, there was a significant decline in the frequency of active primed Treg, median (IQR) from 12.4% (9.5–21.9) of Tregs to 9.3% (7.0–12.2); P = 0.003 Wilcoxon signed rank test. We conclude that Treg subsets may be differentially regulated and expressed in TB disease, cure, and infection. PMID:27553411
Midkine and multiple sclerosis
Takeuchi, Hideyuki
2014-01-01
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by inflammatory demyelination with subsequent neuronal damage in the CNS. MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have been thought as autoreactive Th1 and Th17 cell-mediated diseases. CD4+CD25+FoxP3+ regulatory T-cell (Treg) plays a pivotal role in autoimmune tolerance, and tolerogenic dendritic cells (DCreg) drive the development of inducible Treg cells. Thus, a dysfunction in the development of Treg and DCreg leads to the development of autoimmune diseases. However, the factors that regulate Treg and DCreg are largely unknown. We recently showed that removal of midkine (MK) suppressed EAE due to an expansion of the Treg cell population as well as a decrease in the numbers of autoreactive Th1 and Th17 cells. MK decreased the Treg cell population by suppressing the phosphorylation of STAT5, which is essential for the expression of Foxp3, the master transcriptional factor of Treg cell differentiation. Furthermore, MK reduces the DCreg cell population by inhibiting the phosphorylation of STAT3, which is critical for DCreg development. Blockade of MK signalling by a specific RNA aptamer significantly elevated the population of DCreg and Treg cells and ameliorated EAE without detectable adverse effects. Therefore, the inhibition of MK may provide an effective therapeutic strategy against autoimmune diseases including MS. Linked Articles This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4 PMID:24460675
The Effects of TLR Activation on T-Cell Development and Differentiation
Jin, Bo; Sun, Tao; Yu, Xiao-Hong; Yang, Ying-Xiang; Yeo, Anthony E. T.
2012-01-01
Invading pathogens have unique molecular signatures that are recognized by Toll-like receptors (TLRs) resulting in either activation of antigen-presenting cells (APCs) and/or costimulation of T cells inducing both innate and adaptive immunity. TLRs are also involved in T-cell development and can reprogram Treg cells to become helper cells. T cells consist of various subsets, that is, Th1, Th2, Th17, T follicular helper (Tfh), cytotoxic T lymphocytes (CTLs), regulatory T cells (Treg) and these originate from thymic progenitor thymocytes. T-cell receptor (TCR) activation in distinct T-cell subsets with different TLRs results in differing outcomes, for example, activation of TLR4 expressed in T cells promotes suppressive function of regulatory T cells (Treg), while activation of TLR6 expressed in T cells abrogates Treg function. The current state of knowledge of regarding TLR-mediated T-cell development and differentiation is reviewed. PMID:22737174
Pang, Nannan; Zhang, Fengbo; Ma, Xiumin; Zhu, Yuejie; Zhao, Hui; Xin, Yan; Wang, Song; Chen, Zhaolun; Wen, Hao; Ding, Jianbing
2014-05-01
Alveolar echinococcosis (AE) is a severe parasitic disease caused by the infection of Echinococcus multilocularis (Em). Very little is known on the relationship between TGF-β/Smad signaling pathway and Treg/Th17 balance in the infected liver at different periods after Em infection. Using qRT-PCR, immunohistochemistry, flow cytometry and CBA assay, we measured the expression levels of TGF-β, Smad2/3/7, ROR-γt, Foxp3, IL-17, IL-10 and percentages of Th17 cells and Treg cells in mouse AE model, from day 2 to day 270 after infection. In the early stage of infection (day 2 to day 30), Smad7 was up-regulated and the TGF-β pathway was inactivated. In the middle stage of infection (day 30 to day 90), TGF-β and Smad2/3 were up-regulated. And levels of Treg cells, Foxp3, Th17 cells, RORγt, IL-17, IL-10 and IL-6 were significantly increased. In the late stage of infection (day 90 to day 270), Treg cells, Foxp3, TGF-β and IL-10 maintained at high levels whereas Th17 cells and IL-17 decreased significantly. TGF-β/Smad signaling pathway was activated during the chronic infection. Our data suggest that there were Treg/Th17 imbalance in the middle and especially in the late stage of Em infection and that Treg/Th17 imbalance may be regulated by TGF-β/Smad signaling pathway. Treg and Th17 subsets may be involved in regulating immune tolerance and tissue inflammation, and facilitating the long-term survival of Em in the host. Copyright © 2014 Elsevier B.V. All rights reserved.
2012-01-01
Background DNA vaccines represent promising therapeutic strategies in autoimmune disorders such as multiple sclerosis (MS). However, the precise mechanisms by which DNA vaccines induce immune regulation remain largely unknown. Here, we aimed to expand previous knowledge existing on the mechanisms of action of DNA vaccines in the animal model of MS, experimental autoimmune encephalomyelitis (EAE), by treating EAE mice with a DNA vaccine encoding the myelin oligodendrocyte glycoprotein (MOG), and exploring the therapeutic effects on the disease-induced inflammatory and neurodegenerative changes. Methods EAE was induced in C57BL6/J mice by immunization with MOG35-55 peptide. Mice were intramuscularly treated with a MOG-DNA vaccine or vehicle in prophylactic and therapeutic approaches. Histological studies were performed in central nervous system (CNS) tissue. Cytokine production and regulatory T cell (Treg) quantification were achieved by flow cytometry. Gene expression patterns were determined using microarrays, and the main findings were validated by real-time PCR. Results MOG-DNA treatment reduced the clinical and histopathological signs of EAE when administered in both prophylactic and therapeutic settings. Suppression of clinical EAE was associated with dampening of antigen (Ag)-specific proinflammatory Th1 and Th17 immune responses and, interestingly, expansion of Treg in the periphery and upregulation in the CNS of genes encoding neurotrophic factors and proteins involved in remyelination. Conclusions These results suggest for the first time that the beneficial effects of DNA vaccines in EAE are not limited to anti-inflammatory mechanisms, and DNA vaccines may also exert positive effects through hitherto unknown neuroprotective mechanisms. PMID:22727044
Synergy of Immune Checkpoint Blockade with a Novel Synthetic Consensus DNA Vaccine Targeting TERT.
Duperret, Elizabeth K; Wise, Megan C; Trautz, Aspen; Villarreal, Daniel O; Ferraro, Bernadette; Walters, Jewell; Yan, Jian; Khan, Amir; Masteller, Emma; Humeau, Laurent; Weiner, David B
2018-02-07
Immune checkpoint blockade antibodies are setting a new standard of care for cancer patients. It is therefore important to assess any new immune-based therapies in the context of immune checkpoint blockade. Here, we evaluate the impact of combining a synthetic consensus TERT DNA vaccine that has improved capacity to break tolerance with immune checkpoint inhibitors. We observed that blockade of CTLA-4 or, to a lesser extent, PD-1 synergized with TERT vaccine, generating more robust anti-tumor activity compared to checkpoint alone or vaccine alone. Despite this anti-tumor synergy, none of these immune checkpoint therapies showed improvement in TERT antigen-specific immune responses in tumor-bearing mice. αCTLA-4 therapy enhanced the frequency of T-bet + /CD44 + effector CD8 + T cells within the tumor and decreased the frequency of regulatory T cells within the tumor, but not in peripheral blood. CTLA-4 blockade synergized more than Treg depletion with TERT DNA vaccine, suggesting that the effect of CTLA-4 blockade is more likely due to the expansion of effector T cells in the tumor rather than a reduction in the frequency of Tregs. These results suggest that immune checkpoint inhibitors function to alter the immune regulatory environment to synergize with DNA vaccines, rather than boosting antigen-specific responses at the site of vaccination. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Li, Xuan; Meng, Yiming; Plotnikoff, Nicolas P; Youkilis, Gene; Griffin, Noreen; Wang, Enhua; Lu, Changlong; Shan, Fengping
2015-01-01
Methionine enkephalin (MENK), an endogenous neuropeptide, plays an crucial role in both neuroendocrine and immune systems. CD4+Foxp3+ regulatory T cells (Tregs) are identified as a major subpopulation of T lymphocytes in suppressing immune system to keep balanced immunity. The aim of this research work was to elucidate the mechanisms via which MENK interacts with Tregs in cancer situation. The influence of MENK on transforming growth factor-β (TGF-β) mediated conversion from naïve CD4+CD25- T cells to CD4+CD25+ Tregs was determined and the data from flow cytometry (FCM) analysis indicated that MENK effectively inhibited the expression of Foxp3 during the process of TGF-βinduction. Furthermore, this inhibiting process was accompanied by diminishing phosphorylation and nuclear translocation of Smad2/3, confirmed by western blot (WB) analysis and immunofluorescence (IF) at molecular level. We established sarcoma mice model with S180 to investigate whether MENK could modulate Tregs in tumor circumstance. Our findings showed that MENK delayed the development of tumor in S180 tumor bearing mice and down-regulated level of Tregs. Together, these novel findings reached a conclusion that MENK could inhibit Tregs activity directly and retard tumor development through down-regulating Tregs in mice. This work advances the deepening understanding of the influence of MENK on Tregs in cancer situation, and relation of MENK with immune system, supporting the implication of MENK as a new strategy for cancer immunotherapy.
Bal, Madhusmita; Ranjit, Manoranjan; Achary, K Gopinath; Satapathy, Ashok K
2016-11-01
Children born from filarial infected mothers are comparatively more susceptible to filarial infection than the children born to uninfected mothers. But the mechanism of such increased susceptibility to infection in early childhood is not exactly known. Several studies have shown the association of active filarial infection with T cell hypo-responsiveness which is mediated by regulatory T cells (Tregs). Since the Tregs develop in the thymus from CD4+ CD25hi thymocytes at an early stage of the human fetus, it can be hypothesized that the maternal infection during pregnancy affects the development of Tregs in children at birth as well as early childhood. Hence the present study was designed to test the hypothesis by selecting a cohort of pregnant mothers and children born to them subsequently in a filarial endemic area of Odisha, India. A total number of 49 pregnant mothers and children born to them subsequently have been followed up (mean duration 4.4 years) in an area where the microfilariae (Mf) rate has come down to <1% after institution of 10 rounds of annual mass drug administration (MDA). The infection status of mother, cord and children were assessed through detection of microfilariae (Mf) and circulating filarial antigen (CFA). Expression of Tregs cells were measured by flow cytometry. The levels of IL-10 were evaluated by using commercially available ELISA kit. A significantly high level of IL-10 and Tregs have been observed in children born to infected mother compared to children of uninfected mother at the time of birth as well as during early childhood. Moreover a positive correlation between Tregs and IL-10 has been observed among the children born to infected mother. From these observations we predict that early priming of the fetal immune system by filarial antigens modulate the development of Tregs, which ultimately scale up the production of IL-10 in neonates and creates a milieu for high rate of acquisition of infection in children born to infected mothers. The mechanism of susceptibility and implication of the results in global elimination programme of filariasis has been discussed.
Bal, Madhusmita; Ranjit, Manoranjan; Achary, K. Gopinath; Satapathy, Ashok K.
2016-01-01
Background Children born from filarial infected mothers are comparatively more susceptible to filarial infection than the children born to uninfected mothers. But the mechanism of such increased susceptibility to infection in early childhood is not exactly known. Several studies have shown the association of active filarial infection with T cell hypo-responsiveness which is mediated by regulatory T cells (Tregs). Since the Tregs develop in the thymus from CD4+ CD25hi thymocytes at an early stage of the human fetus, it can be hypothesized that the maternal infection during pregnancy affects the development of Tregs in children at birth as well as early childhood. Hence the present study was designed to test the hypothesis by selecting a cohort of pregnant mothers and children born to them subsequently in a filarial endemic area of Odisha, India. Methodology and Principal finding A total number of 49 pregnant mothers and children born to them subsequently have been followed up (mean duration 4.4 years) in an area where the microfilariae (Mf) rate has come down to <1% after institution of 10 rounds of annual mass drug administration (MDA). The infection status of mother, cord and children were assessed through detection of microfilariae (Mf) and circulating filarial antigen (CFA). Expression of Tregs cells were measured by flow cytometry. The levels of IL-10 were evaluated by using commercially available ELISA kit. A significantly high level of IL-10 and Tregs have been observed in children born to infected mother compared to children of uninfected mother at the time of birth as well as during early childhood. Moreover a positive correlation between Tregs and IL-10 has been observed among the children born to infected mother. Significance From these observations we predict that early priming of the fetal immune system by filarial antigens modulate the development of Tregs, which ultimately scale up the production of IL-10 in neonates and creates a milieu for high rate of acquisition of infection in children born to infected mothers. The mechanism of susceptibility and implication of the results in global elimination programme of filariasis has been discussed. PMID:27861499
Anti-tumor immune response after photodynamic therapy
NASA Astrophysics Data System (ADS)
Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.
2009-06-01
Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp3+) and potentiate immune response after PDT in the case of tumors that express self-antigens. These data suggest that PDT alone will stimulate a strong immune response when tumors express a robust antigen, and in cases where tumors express a self-antigen, T-reg depletion can unmask the immune response after PDT.
Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Joon-Young; Kim, Han-Jong; Hurt, Elaine M.
2007-10-12
FOXP3, a forkhead transcription factor is essential for the development and function of CD4{sup +}CD25{sup +} regulatory T cells (Tregs). In contrast to conversion of murine naive T cells to Tregs by transduction of Foxp3, it is controversial whether ectopic expression of FOXP3 in human CD4{sup +} T cells is sufficient for acquisition of suppressive activity. Here, we show that retroviral transduction of FOXP3 induces a Treg phenotype in human leukemic CD4{sup +} Jurkat-T cells, evidenced by increased expression of Treg-associated cell surface markers as well as inhibition of cytokine production. Furthermore, FOXP3-transduced Jurkat-T cells suppress the proliferation of humanmore » CD4{sup +}CD25{sup -} T cells. Additionally, DNA microarray analysis identifies Treg-related genes regulated by FOXP3. Our study demonstrates that enforced expression of FOXP3 confers Treg-like properties on Jurkat-T cells, which can be a convenient and efficient Treg-like cell model for further study to identify Treg cell surface markers and target genes regulated by FOXP3.« less
Cutting Edge: c-Maf Is Required for Regulatory T Cells To Adopt RORγt+ and Follicular Phenotypes.
Wheaton, Joshua D; Yeh, Chen-Hao; Ciofani, Maria
2017-12-15
Regulatory T cells (Tregs) adopt specialized phenotypes defined by coexpression of lineage-defining transcription factors, such as RORγt, Bcl-6, or PPARγ, alongside Foxp3. These Treg subsets have unique tissue distributions and diverse roles in maintaining organismal homeostasis. However, despite extensive functional characterization, the factors driving Treg specialization are largely unknown. In this article, we show that c-Maf is a critical transcription factor regulating this process in mice, essential for generation of both RORγt + Tregs and T follicular regulatory cells, but not for adipose-resident Tregs. c-Maf appears to function primarily in Treg specialization, because IL-10 production, expression of other effector molecules, and general immune homeostasis are not c-Maf dependent. As in other T cells, c-Maf is induced in Tregs by IL-6 and TGF-β, suggesting that a combination of inflammatory and tolerogenic signals promote c-Maf expression. Therefore, c-Maf is a novel regulator of Treg specialization, which may integrate disparate signals to facilitate environmental adaptation. Copyright © 2017 by The American Association of Immunologists, Inc.
Ferreira, Maria Carolina; de Oliveira, Rômulo Tadeu Dias; da Silva, Rosiane Maria; Blotta, Maria Heloisa Souza Lima; Mamoni, Ronei Luciano
2010-10-01
Patients with paracoccidioidomycosis (PCM) exhibit a suppression of the cellular immune response characterized by negative delayed-type hypersensitivity (DTH) to Paracoccidioides brasiliensis antigens, the apoptosis of lymphocytes, and high levels of expression of cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), interleukin-10 (IL-10), and transforming growth factor β (TGF-β). The aim of this study was to investigate whether and how regulatory T cells (Treg cells) are involved in this immunosuppression by analyzing the number, phenotype, and activity of these cells in patients with active disease (AD group) and patients who had received treatment (TD group). Our results showed that the AD patients had more Treg cells than the TD patients or controls (C group) and also had elevated levels of expression of regulatory markers (glucocorticoid-induced tumor necrosis factor [TNF] receptor-related protein [GITR], CTLA-4, CD95L, LAP-1, and CD38). An analysis of regulatory activity showed that Treg cells from the AD group had greater activity than did cells from the other groups and that cell-cell contact is mandatory for this activity in the C group but was only partially involved in the regulatory activity of cells from AD patients. The addition of anti-IL-10 and anti-TGF-β neutralizing antibodies to the cultures showed that the production of cytokines may be another mechanism used by Treg cells. In conclusion, the elevated numbers of these cells with an increased regulatory phenotype and strong suppressive activity suggest a potential role for them in the immunosuppression characteristic of paracoccidioidomycosis. In addition, our results indicate that while Treg cells act by cell-cell contact, cytokine production also plays an important role.
Warth, Sebastian C; Hoefig, Kai P; Hiekel, Anian; Schallenberg, Sonja; Jovanovic, Ksenija; Klein, Ludger; Kretschmer, Karsten; Ansel, K Mark; Heissmeyer, Vigo
2015-01-01
Peripheral induction of regulatory T (Treg) cells provides essential protection from inappropriate immune responses. CD4+ T cells that lack endogenous miRNAs are impaired to differentiate into Treg cells, but the relevant miRNAs are unknown. We performed an overexpression screen with T-cell-expressed miRNAs in naive mouse CD4+ T cells undergoing Treg differentiation. Among 130 candidates, the screen identified 29 miRNAs with a negative and 10 miRNAs with a positive effect. Testing reciprocal Th17 differentiation revealed specific functions for miR-100, miR-99a and miR-10b, since all of these promoted the Treg and inhibited the Th17 program without impacting on viability, proliferation and activation. miR-99a cooperated with miR-150 to repress the expression of the Th17-promoting factor mTOR. The comparably low expression of miR-99a was strongly increased by the Treg cell inducer “retinoic acid”, and the abundantly expressed miR-150 could only repress Mtor in the presence of miR-99a. Our data suggest that induction of Treg cell differentiation is regulated by a miRNA network, which involves cooperation of constitutively expressed as well as inducible miRNAs. PMID:25712478
Functional defect in regulatory T cells in myasthenia gravis
Thiruppathi, Muthusamy; Rowin, Julie; Jiang, Qin Li; Sheng, Jian Rong; Prabhakar, Bellur S.; Meriggioli, Matthew N.
2012-01-01
Forkhead box P3 (FOXP3)+ is a transcription factor necessary for the function of regulatory T cells (Treg cells). Treg cells maintain immune homeostasis and self-tolerance, and play an important role in the prevention of autoimmune disease. Here, we discuss the role of Treg cells in the pathogenesis of myasthenia gravis (MG) and review evidence indicating that a significant defect in Treg cell in vitro suppressive function exists in MG patients, without an alteration in circulating frequency. This functional defect is associated with a reduced expression of key functional molecules such as FOXP3 on isolated Treg cells and appears to be more pronounced in immunosuppression-naive MG patients. In vitro administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the suppressive function of Treg cells and up-regulated FOXP3 expression. These findings indicate a clinically relevant Treg cell–intrinsic defect in immune regulation in MG that may reveal a novel therapeutic target. PMID:23252899
Sun, Im-Hong; Oh, Min-Hee; Zhao, Liang; Patel, Chirag H; Arwood, Matthew L; Xu, Wei; Tam, Ada J; Blosser, Richard L; Wen, Jiayu; Powell, Jonathan D
2018-06-08
The mechanistic/mammalian target of rapamycin (mTOR) has emerged as a critical integrator of signals from the immune microenvironment capable of regulating T cell activation, differentiation, and function. The precise role of mTOR in the control of regulatory T cell (Treg) differentiation and function is complex. Pharmacologic inhibition and genetic deletion of mTOR promotes the generation of Tregs even under conditions that would normally promote generation of effector T cells. Alternatively, mTOR activity has been observed to be increased in Tregs, and the genetic deletion of the mTOR complex 1 (mTORC1)-scaffold protein Raptor inhibits Treg function. In this study, by employing both pharmacologic inhibitors and genetically altered T cells, we seek to clarify the role of mTOR in Tregs. Our studies demonstrate that inhibition of mTOR during T cell activation promotes the generation of long-lived central Tregs with a memory-like phenotype in mice. Metabolically, these central memory Tregs possess enhanced spare respiratory capacity, similar to CD8 + memory cells. Alternatively, the generation of effector Tregs (eTregs) requires mTOR function. Indeed, genetic deletion of Rptor leads to the decreased expression of ICOS and PD-1 on the eTregs. Overall, our studies define a subset of mTORC1 hi eTregs and mTORC1 lo central Tregs. Copyright © 2018 by The American Association of Immunologists, Inc.
Zhang, Lingyun; Ke, Fang; Liu, Zhaoyuan; Bai, Jing; Liu, Jinlin; Yan, Sha; Xu, Zhenyao; Lou, Fangzhou; Wang, Hong; Zhu, Huiyuan; Sun, Yang; Cai, Wei; Gao, Yuanyuan; Li, Qun; Yu, Xue-Zhong; Qian, Youcun; Hua, Zichun; Deng, Jiong; Li, Qi-Jing; Wang, Honglin
2015-01-01
Peripherally derived regulatory T (pTreg) cell generation requires T-cell receptor (TCR) signalling and the cytokines TGF-β1 and IL-2. Here we show that TCR signalling induces the microRNA miR-31, which negatively regulates pTreg-cell generation. miR-31 conditional deletion results in enhanced induction of pTreg cells, and decreased severity of experimental autoimmune encephalomyelitis (EAE). Unexpectedly, we identify Gprc5a as a direct target of miR-31. Gprc5a is known as retinoic acid-inducible protein 3, and its deficiency leads to impaired pTreg-cell induction and increased EAE severity. By generating miR-31 and Gprc5a double knockout mice, we show that miR-31 promotes the development of EAE through inhibiting Gprc5a. Thus, our data identify miR-31 and its target Gprc5a as critical regulators for pTreg-cell generation, suggesting a previously unrecognized epigenetic mechanism for dysfunctional Treg cells in autoimmune diseases. PMID:26165721
Effects of natalizumab treatment on Foxp3+ T regulatory cells.
Stenner, Max-Philipp; Waschbisch, Anne; Buck, Dorothea; Doerck, Sebastian; Einsele, Hermann; Toyka, Klaus V; Wiendl, Heinz
2008-10-06
Natalizumab, a monoclonal humanized antibody targeting the alpha-4 chain of very late activation antigen 4 (VLA-4) exerts impressive therapeutic effects in patients with relapsing-remitting multiple sclerosis. Our objective was to study impacts of Natalizumab therapy on Foxp3+ T regulatory cells (Tregs) in multiple sclerosis (MS) patients. A combined approach of in vitro and ex vivo experiments using T cells isolated from the peripheral blood of healthy donors and Natalizumab treated MS patients was chosen. We determined binding of Natalizumab and its effects on the frequency, transmigratory behaviour and suppressive function of Tregs. Binding of Natalizumab and expression of CD49d (alpha-4 chain of VLA-4) differed between non-regulatory and regulatory cells. Albeit Foxp3+ Tregs had lower levels of CD49d, Natalizumab blocked the transmigration of Foxp3+ Tregs similar to non-regulatory T cells. The frequency of peripheral blood Tregs was unaffected by Natalizumab treatment. Natalizumab does not alter the suppressive capacity of CD4+CD25(high)CD127(low)Foxp3+ Tregs under in vitro conditions. Furthermore, the impaired function of Tregs in MS patients is not restored by Natalizumab treatment. We provide a first detailed analysis of Natalizumab effects on the regulatory T cell population. Our prospective study shows that Foxp3+ Tregs express lower levels of VLA-4 and bind less Natalizumab. We further the understanding of the mechanisms of action of Natalizumab by demonstrating that unlike other immunomodulatory drugs the beneficial therapeutic effects of the monoclonal antibody are largely independent of alterations in Treg frequency or function.
Effects of Natalizumab Treatment on Foxp3+ T Regulatory Cells
Buck, Dorothea; Doerck, Sebastian; Einsele, Hermann; Toyka, Klaus V.; Wiendl, Heinz
2008-01-01
Background Natalizumab, a monoclonal humanized antibody targeting the alpha-4 chain of very late activation antigen 4 (VLA-4) exerts impressive therapeutic effects in patients with relapsing-remitting multiple sclerosis. Our objective was to study impacts of Natalizumab therapy on Foxp3+ T regulatory cells (Tregs) in multiple sclerosis (MS) patients. Methodology A combined approach of in vitro and ex vivo experiments using T cells isolated from the peripheral blood of healthy donors and Natalizumab treated MS patients was chosen. We determined binding of Natalizumab and its effects on the frequency, transmigratory behaviour and suppressive function of Tregs. Principal Findings Binding of Natalizumab and expression of CD49d (alpha-4 chain of VLA-4) differed between non-regulatory and regulatory cells. Albeit Foxp3+ Tregs had lower levels of CD49d, Natalizumab blocked the transmigration of Foxp3+ Tregs similar to non-regulatory T cells. The frequency of peripheral blood Tregs was unaffected by Natalizumab treatment. Natalizumab does not alter the suppressive capacity of CD4+CD25highCD127lowFoxp3+ Tregs under in vitro conditions. Furthermore, the impaired function of Tregs in MS patients is not restored by Natalizumab treatment. Conclusions We provide a first detailed analysis of Natalizumab effects on the regulatory T cell population. Our prospective study shows that Foxp3+ Tregs express lower levels of VLA-4 and bind less Natalizumab. We further the understanding of the mechanisms of action of Natalizumab by demonstrating that unlike other immunomodulatory drugs the beneficial therapeutic effects of the monoclonal antibody are largely independent of alterations in Treg frequency or function. PMID:18836525
CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery
2012-01-01
Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). In the murine experimental autoimmune encephalomyelitis (EAE) model of MS, T regulatory (Treg) cell therapy has proved to be beneficial, but generation of stable CNS-targeting Tregs needs further development. Here, we propose gene engineering to achieve CNS-targeting Tregs from naïve CD4 cells and demonstrate their efficacy in the EAE model. Methods CD4+ T cells were modified utilizing a lentiviral vector system to express a chimeric antigen receptor (CAR) targeting myelin oligodendrocyte glycoprotein (MOG) in trans with the murine FoxP3 gene that drives Treg differentiation. The cells were evaluated in vitro for suppressive capacity and in C57BL/6 mice to treat EAE. Cells were administered by intranasal (i.n.) cell delivery. Results The engineered Tregs demonstrated suppressive capacity in vitro and could efficiently access various regions in the brain via i.n cell delivery. Clinical score 3 EAE mice were treated and the engineered Tregs suppressed ongoing encephalomyelitis as demonstrated by reduced disease symptoms as well as decreased IL-12 and IFNgamma mRNAs in brain tissue. Immunohistochemical markers for myelination (MBP) and reactive astrogliosis (GFAP) confirmed recovery in mice treated with engineered Tregs compared to controls. Symptom-free mice were rechallenged with a second EAE-inducing inoculum but remained healthy, demonstrating the sustained effect of engineered Tregs. Conclusion CNS-targeting Tregs delivered i.n. localized to the CNS and efficiently suppressed ongoing inflammation leading to diminished disease symptoms. PMID:22647574
Ocular allergy modulation to hi-dose antigen sensitization is a Treg-dependent process.
Lee, Hyun Soo; Schlereth, Simona; Khandelwal, Payal; Saban, Daniel R
2013-01-01
A reproducible method to inhibit allergic immune responses is accomplished with hi-dose Ag sensitization, via intraperitoneal (IP) injection. However, the role of CD4+ CD25+ FoxP3+ T regulatory cells (Treg) in this process is unknown, as is whether such modulation extends to ocular allergy. We therefore determined herein whether hi-dose sensitization modulates ocular allergy, and whether CD4+ CD25+ FoxP3+ Treg are involved. C57BL/6 mice were IP sensitized via low-dose (100 µg) versus hi-dose (1000 µg) ovalbumin (OVA), in aluminum hydroxide (1 mg) and pertussis-toxin (300 ng). Other mice received anti-CD25 Ab (PC61) to ablate Treg during sensitization. In another experiment, Treg from hi-dose sensitized mice were adoptively transferred into low-dose sensitized mice. Once daily OVA challenges were administered. Clinical signs, IgE, T cell cytokines, and eosinophils were assessed. Data revealed that hi-dose, but not low-dose, sensitization led to allergy modulation, indicated by decreased clinical signs, serum IgE levels, Th2 recall responses, and eosinophil recruitment. T cells from hi-dose sensitized mice showed a robust increase in TGF-b production, and Treg from these mice were able to efficiently suppress effector T cell proliferation in vitro. In addition, in vivo Treg ablation in hi-dose sensitized mice revoked allergy modulation. Lastly, Treg from hi-dose sensitized mice were able to adoptively transfer allergy modulation to their low-dose sensitized counterparts. Collectively, these findings indicate that modulation to hi-dose sensitization, which is extended to ocular allergy, occurs in a Treg-dependent manner. In addition, our data suggest that hi-dose sensitization may henceforth facilitate the further examination of CD4+ CD25+ FoxP3+ Treg in allergic disease.
Hoeppli, Romy E; MacDonald, Katherine N; Leclair, Pascal; Fung, Vivian C W; Mojibian, Majid; Gillies, Jana; Rahavi, Seyed M R; Campbell, Andrew I M; Gandhi, Sanjiv K; Pesenacker, Anne M; Reid, Gregor; Lim, Chinten J; Levings, Megan K
2018-05-15
Cell-based therapy with CD4 + FOXP3 + Regulatory T cells (Tregs) is a promising strategy to limit organ rejection and graft-versus-host disease. Ongoing clinical applications have yet to consider how human Tregs could be modified to direct their migration to specific inflammation sites and/or tissues for more targeted immunosuppression. We show here that stable, homing-receptor-tailored human Tregs can be generated from thymic Tregs isolated from pediatric thymus or adult blood. To direct migration to Th1-inflammatory sites, addition of IFN-γ and IL-12 during Treg expansion produced suppressive, epigenetically-stable CXCR3 + TBET + FOXP3 + Th1-Tregs. CXCR3 remained expressed after injection in vivo and Th1-Tregs migrated efficiently towards CXCL10 in vitro. To induce tissue-specific migration, addition of retinoic acid (RA) during Treg expansion induced expression of the gut-homing receptors α4β7-integrin and CCR9. FOXP3 + RA-Tregs had elevated expression of the functional markers LAP and GARP, increased suppressive capacity in vitro and migrated efficiently to healthy and inflamed intestine after injection into mice. Homing-receptor-tailored Tregs were epigenetically stable even after long-term exposure to inflammatory conditions, suppressive in vivo and characterized by Th1- or gut-homing-specific transcriptomes. Tailoring human thymic Treg homing during in vitro expansion offers a new and clinically-applicable approach to improving the potency and specificity of Treg therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Development of regulatory T cells requires IL-7Rα stimulation by IL-7 or TSLP
Mazzucchelli, Renata; Hixon, Julie A.; Spolski, Rosanne; Chen, Xin; Li, Wen Qing; Hall, Veronica L.; Willette-Brown, Jami; Hurwitz, Arthur A.; Leonard, Warren J.
2008-01-01
Interleukin-7 (IL-7), a cytokine produced by stromal cells, is required for thymic development and peripheral homeostasis of most major subsets of T cells. We examined whether regulatory T (Treg) cells also required the IL-7 pathway by analyzing IL-7Rα−/− mice. We observed a striking reduction in cells with the Treg surface phenotype (CD4, CD25, GITR (glucocorticoid-induced tumor necrosis factor [TNF]-like receptor), CD45RB, CD62L, CD103) or intracellular markers (cytotoxic T-lymphocyte–associated antigen-4, CTLA-4, and forkhead box transcription factor 3, Foxp3). Foxp3 transcripts were virtually absent in IL-7Rα−/− lymphoid tissues, and no Treg cell suppressive activity could be detected. There are 2 known ligands for IL-7Rα: IL-7 itself and thymic stromal lymphopoietin (TSLP). Surprisingly, mice deficient in IL-7 or the other chain of the TSLP receptor (TSLPR) developed relatively normal numbers of Treg cells. Combined deletion of IL-7 and TSLP receptor greatly reduced Treg cell development in the thymus but was not required for survival of mature peripheral Treg cells. We conclude that Treg cells, like other T cells, require signals from the IL-7 receptor, but unlike other T cells, do not require IL-7 itself because of at least partially overlapping actions of IL-7 and TSLP for development of Treg cells. PMID:18664628
Qiu, Jingfan; Zhang, Rong; Xie, Yanci; Wang, Lijuan; Ge, Ke; Chen, Hao; Liu, Xinjian; Wu, Jiangping; Wang, Yong
2018-01-01
Estradiol (E2) plays a crucial and intricate role during pregnancy to mediate several aspects of the pregnancy process. A perplexing phenomenon in congenital toxoplasmosis is that the severity of Toxoplasma gondii ( T. gondii )-mediated adverse pregnancy outcome is closely related with time of primary maternal infection during pregnancy. In this study, the results showed that T. gondii infection in early pregnancy was more likely to induce miscarriage in mice than in late pregnancy, which may be related to inflammation of the maternal-fetal interface. Meanwhile, the T. gondii infection-induced-apoptotic rate of Tregs was higher and the expression of programmed death-1 (PD-1) on Tregs was lower in early pregnancy than in late pregnancy. As the level of E2 in mouse serum gradually increased with the development of pregnancy, we proposed that E2 may contribute to the discrepancy of Tregs at different stages of pregnancy. Thus, we investigated in vitro and in vivo effects of E2 in regulating Tregs. We found that E2 in vitro could protect Tregs against apoptosis and upregulate the expression of PD-1 on Tregs in a dose-dependent manner through ERα. Likewise, the simulated mid-pregnancy level of E2 in nonpregnant mice also alleviated the T. gondii infection-induced apoptosis of Tregs and potentiated the PD-1 expression on Tregs. Therefore, in the pathogenesis of T. gondii -induced abnormal pregnancy, E2 helped maintain the immune balance and improve the pregnancy outcome through regulating Tregs. This finding illustrates the intricate working of hormone-immune system interaction in infection-induced abnormal pregnancy.
Guri, Amir J; Evans, Nicholas P.; Hontecillas, Raquel; Bassaganya-Riera, Josep
2010-01-01
The phytohormone abscisic acid (ABA) has been shown to be effective in ameliorating chronic and acute inflammation. The objective of this study was to investigate whether ABA’s anti-inflammatory efficacy in the gut is dependent on peroxisome proliferator activated receptor γ (PPAR γ) in T cells. PPAR γ-expressing and T cell-specific PPAR γ null mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily, and mice were euthanized on day 7 of the DSS challenge. Colonic inflammation was assessed through macroscopic and histopathological examination of inflammatory lesions and real-time quantitative RT-PCR-based quantification of inflammatory genes. Flow cytometry was used to phenotypically characterize leukocyte populations in the blood and mesenteric lymph nodes (MLN). Colonic sections were stained immunohistochemically to determine the effect of ABA on colonic regulatory T (Treg) cells. ABA’s beneficial effects on disease activity were completely abrogated in T cell-specific PPAR γ null mice. Additionally, ABA improved colon histopathology, reduced blood F4/80+CD11b+ monocytes, increased the percentage of CD4+ T cells expressing the inhibitory molecule cytotoxic T lymphocyte antigen 4 (CTLA4) in blood, and enhanced the number of Treg cells in the MLN and colons of PPAR γ expressing but not T cell-specific PPAR γ null mice. We conclude that dietary ABA ameliorates experimental IBD by enhancing Treg accumulation in the colonic lamina propria through a PPAR γ-dependent mechanism. PMID:21109419
Guri, Amir J; Evans, Nicholas P; Hontecillas, Raquel; Bassaganya-Riera, Josep
2011-09-01
The phytohormone abscisic acid (ABA) has been shown to be effective in ameliorating chronic and acute inflammation. The objective of this study was to investigate whether ABA's anti-inflammatory efficacy in the gut is dependent on peroxisome proliferator-activated receptor γ (PPARγ) in T cells. PPARγ-expressing and T cell-specific PPARγ null mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate. The severity of clinical disease was assessed daily, and mice were euthanized on Day 7 of the dextran sodium sulfate challenge. Colonic inflammation was assessed through macroscopic and histopathological examination of inflammatory lesions and real-time quantitative RT-PCR-based quantification of inflammatory genes. Flow cytometry was used to phenotypically characterize leukocyte populations in the blood and mesenteric lymph nodes. Colonic sections were stained immunohistochemically to determine the effect of ABA on colonic regulatory T (T(reg)) cells. ABA's beneficial effects on disease activity were completely abrogated in T cell-specific PPARγ null mice. Additionally, ABA improved colon histopathology, reduced blood F4/80(+)CD11b(+) monocytes, increased the percentage of CD4(+) T cells expressing the inhibitory molecule cytotoxic T lymphocyte antigen 4 in blood and enhanced the number of T(reg) cells in the mesenteric lymph nodes and colons of PPARγ-expressing but not T cell-specific PPARγ null mice. We conclude that dietary ABA ameliorates experimental inflammatory bowel disease by enhancing T(reg) cell accumulation in the colonic lamina propria through a PPARγ-dependent mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.
Agle, Kimberle; Vincent, Benjamin G; Piper, Clint; Belle, Ludovic; Zhou, Vivian; Shlomchik, Warren; Serody, Jonathan S; Drobyski, William R
2018-05-16
CD8 + Foxp3 + T cells (Tregs) are a potent regulatory population whose functional and ontological similarities to CD4 + Fox3 + T cells have not been well delineated. Using an experimental model of graft versus host disease (GVHD), we observed that CD8 + Tregs were significantly less potent than CD4 + Tregs for the suppression of GVHD. To define the mechanistic basis for this observation, we examined the T cell repertoire and the transcriptional profile of in vivo-derived CD4 + and CD8 + Tregs that emerged early during this disease. Polyclonal and alloantigen-induced CD8 + Tregs had repertoire diversity that was similar to that of conventional CD8 + T cells, indicating that a restricted repertoire was not the proximate cause of decreased suppression. Transcriptional profiling revealed that CD8 + Tregs possessed a canonical Treg transcriptional signature that was similar to that observed in CD4 + Tregs, yet distinct from conventional CD8 + T cells. Pathway analysis, however, demonstrated that CD8 + Tregs had differential gene expression in pathways involved in cell death and survival. This was further confirmed by detailed mRNA sequence analysis and protein expression studies which demonstrated that CD8 + Tregs had increased expression of Bim and reduced expression of Mcl-1. Transplantation with CD8 + Foxp3 + Bim -/- Tregs resulted in prolonged Treg survival and reduced GVHD lethality compared to wild type CD8 + Tregs, providing functional confirmation that increased expression of Bim was responsible for reduced in vivo efficacy. Thus, Bim regulates the survival and suppressive capability of CD8 + Tregs which may have implications for their use in regulatory T cell therapy. Copyright © 2018 American Society of Hematology.
Type 1 diabetes vaccine candidates promote human Foxp3+Treg induction in humanized mice
Serr, Isabelle; Fürst, Rainer W.; Achenbach, Peter; Scherm, Martin G.; Gökmen, Füsun; Haupt, Florian; Sedlmeier, Eva-Maria; Knopff, Annette; Shultz, Leonard; Willis, Richard A.; Ziegler, Anette-Gabriele; Daniel, Carolin
2016-01-01
Immune tolerance is executed partly by Foxp3+regulatory T (Treg) cells, which suppress autoreactive T cells. In autoimmune type 1 diabetes (T1D) impaired tolerance promotes destruction of insulin-producing β-cells. The development of autoantigen-specific vaccination strategies for Foxp3+Treg-induction and prevention of islet autoimmunity in patients is still in its infancy. Here, using human haematopoietic stem cell-engrafted NSG-HLA-DQ8 transgenic mice, we provide direct evidence for human autoantigen-specific Foxp3+Treg-induction in vivo. We identify HLA-DQ8-restricted insulin-specific CD4+T cells and demonstrate efficient human insulin-specific Foxp3+Treg-induction upon subimmunogenic vaccination with strong agonistic insulin mimetopes in vivo. Induced human Tregs are stable, show increased expression of Treg signature genes such as Foxp3, CTLA4, IL-2Rα and TIGIT and can efficiently suppress effector T cells. Such Foxp3+Treg-induction does not trigger any effector T cells. These T1D vaccine candidates could therefore represent an expedient improvement in the challenge to induce human Foxp3+Tregs and to develop novel precision medicines for prevention of islet autoimmunity in children at risk of T1D. PMID:26975663
Bhattacharya, Pradyot; Ghosh, Smriti; Ejazi, Sarfaraz Ahmad; Rahaman, Mehebubar; Pandey, Krishna; Ravi Das, Vidya Nand; Das, Pradeep; Goswami, Rama Prosad; Saha, Bibhuti; Ali, Nahid
2016-01-01
Background Visceral leishmaniasis (VL) is distinguished by a complex interplay of immune response and parasite multiplication inside host cells. However, the direct association between different immunological correlates and parasite numbers remains largely unknown. Methodology/Principal Findings We examined the plasma levels of different disease promoting/protective as well as Th17 cytokines and found IL-10, TGFβ and IL-17 to be significantly correlated with parasite load in VL patients (r = 0.52, 0.53 and 0.51 for IL-10, TGFβ and IL-17, respectively). We then extended our investigation to a more antigen-specific response and found leishmanial antigen stimulated levels of both IL-10 and TGFβ to be significantly associated with parasite load (r = 0.71 and 0.72 for IL-10 and TGFβ respectively). In addition to cytokines we also looked for different cellular subtypes that could contribute to cytokine secretion and parasite persistence. Our observations manifested an association between different Treg cell markers and disease progression as absolute numbers of CD4+CD25+ (r = 0.55), CD4+CD25hi (r = 0.61) as well as percentages of CD4+CD25+FoxP3+ T cells (r = 0.68) all correlated with parasite load. Encouraged by these results, we investigated a link between these immunological components and interestingly found both CD4+CD25+ and CD4+CD25+FoxP3+ Treg cells to secrete significantly (p<0.05) higher amounts of not only IL-10 but also TGFβ in comparison to corresponding CD25- T cells. Conclusions/Significance Our findings shed some light on source(s) of TGFβ and suggest an association between these disease promoting cytokines and Treg cells with parasite load during active disease. Moreover, the direct evidence of CD4+CD25+FoxP3+ Treg cells as a source of IL-10 and TGFβ during active VL could open new avenues for immunotherapy towards cure of this potentially fatal disease. PMID:26829554
Parsons, Emily; Epstein, Judith; Sedegah, Martha; Villasante, Eileen; Stewart, Ann
2016-08-31
Regulatory T (Treg) cells have been shown in some cases to limit vaccine-specific immune responses and impact efficacy. Very little is known about the regulatory responses to the leading malaria vaccine candidate, RTS,S. The goal of this study was to begin to characterize the regulatory responses to the RTS,S vaccine. Using multi-parameter flow cytometry, we examined responses in 13 malaria naïve adult volunteers who received 2 doses of RTS,S given eight weeks apart. Five of these volunteers had previously received 3 doses of a candidate DNA-CSP vaccine, with the final dose given approximately one year prior to the first dose of the RTS,S vaccine. We found that the frequency of CD25(hi)Foxp3(+) Treg cells decreased following administration of RTS,S (p=0.0195), with no differences based on vaccine regimen. There was a concomitant decrease in CTLA-4 expression on CD25(hi)Foxp3(+) Treg cells (p=0.0093) and PD-1 levels on CD8(+) T cells (p=0.0002). Additionally, the frequency of anergic CTLA-4(+)CCR7(+) T cells decreased following vaccination. An inverse correlation was observed between the frequency of Plasmodium falciparum circumsporozoite protein (PfCSP)-specific IFN-γ and PfCSP-specific IL-10, as well as an inverse correlation between IL-10 induced by Hepatitis B surface antigen, the carrier of RTS,S, and PfCSP-specific IFN-γ, suggesting that immunity against the vaccine backbone could impact vaccine immunogenicity. These results have implications for future malaria vaccine design. Copyright © 2016. Published by Elsevier Ltd.
Midkine and multiple sclerosis.
Takeuchi, Hideyuki
2014-02-01
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by inflammatory demyelination with subsequent neuronal damage in the CNS. MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have been thought as autoreactive Th1 and Th17 cell-mediated diseases. CD4(+) CD25(+) FoxP3(+) regulatory T-cell (Treg) plays a pivotal role in autoimmune tolerance, and tolerogenic dendritic cells (DCreg) drive the development of inducible Treg cells. Thus, a dysfunction in the development of Treg and DCreg leads to the development of autoimmune diseases. However, the factors that regulate Treg and DCreg are largely unknown. We recently showed that removal of midkine (MK) suppressed EAE due to an expansion of the Treg cell population as well as a decrease in the numbers of autoreactive Th1 and Th17 cells. MK decreased the Treg cell population by suppressing the phosphorylation of STAT5, which is essential for the expression of Foxp3, the master transcriptional factor of Treg cell differentiation. Furthermore, MK reduces the DCreg cell population by inhibiting the phosphorylation of STAT3, which is critical for DCreg development. Blockade of MK signalling by a specific RNA aptamer significantly elevated the population of DCreg and Treg cells and ameliorated EAE without detectable adverse effects. Therefore, the inhibition of MK may provide an effective therapeutic strategy against autoimmune diseases including MS. This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4. © 2013 The British Pharmacological Society.
Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I; Leadbetter, Elizabeth A; Sant'Angelo, Derek B; von Andrian, Ulrich; Brenner, Michael B
2015-01-01
Invariant natural killer T cells (iNKT cells) are lipid-sensing innate T cells that are restricted by the antigen-presenting molecule CD1d and express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, as well as their targets in adipose tissue, are unknown. Here we found that iNKT cells in adipose tissue had a unique transcriptional program and produced interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lacked PLZF but expressed the transcription factor E4BP4, which controlled their IL-10 production. The adipose iNKT cells were a tissue-resident population that induced an anti-inflammatory phenotype in macrophages and, through the production of IL-2, controlled the number, proliferation and suppressor function of regulatory T cells (Treg cells) in adipose tissue. Thus, iNKT cells in adipose tissue are unique regulators of immunological homeostasis in this tissue.
Following the Fate of One Insulin-Reactive CD4 T cell
Fousteri, Georgia; Jasinski, Jean; Dave, Amy; Nakayama, Maki; Pagni, Philippe; Lambolez, Florence; Juntti, Therese; Sarikonda, Ghanashyam; Cheng, Yang; Croft, Michael; Cheroutre, Hilde; Eisenbarth, George; von Herrath, Matthias
2012-01-01
In diabetic patients and susceptible mice, insulin is a targeted autoantigen. Insulin B chain 9-23 (B:9-23) autoreactive CD4 T cells are key for initiating autoimmune diabetes in NOD mice; however, little is known regarding their origin and function. To this end, B:9-23–specific, BDC12-4.1 T-cell receptor (TCR) transgenic (Tg) mice were studied, of which, despite expressing a single TCR on the recombination activating gene–deficient background, only a fraction develops diabetes in an asynchronous manner. BDC12-4.1 CD4 T cells convert into effector (Teff) and Foxp3+-expressing adaptive regulatory T cells (aTregs) soon after leaving the thymus as a result of antigen recognition and homeostatic proliferation. The generation of aTreg causes the heterogeneous diabetes onset, since crossing onto the scurfy (Foxp3) mutation, BDC12-4.1 TCR Tg mice develop accelerated and fully penetrant diabetes. Similarly, adoptive transfer and bone marrow transplantation experiments showed differential diabetes kinetics based on Foxp3+ aTreg’s presence in the BDC12-4.1 donors. A single-specificity, insulin-reactive TCR escapes thymic deletion and simultaneously converts into aTreg and Teff, establishing an equilibrium that determines diabetes penetrance. These results are of particular importance for understanding disease pathogenesis. They suggest that once central tolerance is bypassed, autoreactive cells arriving in the periphery do not by default follow solely a pathogenic fate upon activation. PMID:22403296
Genetic and epigenetic variation in the lineage specification of regulatory T cells
Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y
2015-01-01
Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014
Singh, Narendra P.; Singh, Udai P.; Rouse, Michael; Zhang, Jiajia; Chatterjee, Saurabh; Nagarkatti, Prakash S.; Nagarkatti, Mitzi
2015-01-01
Aryl hydrocarbon receptor (AhR) has been shown to have profound influence on T cell differentiation and use of distinct AhR ligands has shown that while some ligands induce Tregs, others induce Th17 cells. In the current study, we tested the ability of dietary AhR ligands (indole-3-carbinol; I3C and 3,3'-diindolylmethane; DIM), and an endogenous AhR ligand, 6-Formylindolo(3,2-b)carbazole (FICZ), on the differentiation and functions of Tregs and Th17 cells. Treatment of C57BL/6 mice with indoles (I3C or DIM), attenuated DTH response to mBSA and generation of Th17 cells while promoting Tregs. In contrast, FICZ exacerbated the DTH response and promoted Th17 cells. Indoles decreased the induction of IL-17 while promoted IL-10 and FoxP3 expression. Also, indoles caused reciprocal induction of Tregs and Th17 cells only in wild-type (AhR+/+) but not in AhR knockout (AhR−/−) mice. Upon analysis of microRNA (miR) profile in draining lymph nodes of mice with DTH, treatment with I3C and DIM decreased the expression of several miRs (miR-31, miR-219, and miR-490) that targeted FoxP3, while increasing the expression of miR-495 and miR-1192 that were specific to IL-17. Interestingly, treatment with FICZ had precisely the opposite effects on these miRs. Transfection studies using mature miR mimics of miR-490 and miR-1192 that target FoxP3 and IL-17 respectively or scrambled miR (mock) or inhibitors confirmed that these miRs specifically targeted FoxP3 and IL-17 genes. Our studies demonstrate for the first time that the ability of AhR ligands to regulate the differentiation of Tregs versus Th17 cells may depend on miR signature profile. PMID:26712945
Notch1 Signaling Regulates the Th17/Treg Immune Imbalance in Patients with Psoriasis Vulgaris.
Ma, Lei; Xue, HaiBo; Gao, Tianqin; Gao, MeiLan; Zhang, YuJie
2018-01-01
To evaluate the regulating effect of Notch1 signaling on Th17/Treg immune imbalance in psoriasis vulgaris (PV). Notch1, Hes-1, ROR γ t, Foxp3, IL-17, and IL-10 mRNA expression, as well as Th17 and Treg cell percentages in peripheral CD4 + T cells, were detected by real-time quantitative RT-PCR and flow cytometry, and serum concentrations of IL-17 and IL-10 were detected by ELISA in 36 PV patients and 32 healthy controls. Additionally, CD4 + T cells from 12 PV patients were treated with γ -secretase inhibitor DAPT, and the above indexes were measured. PV patients presented distinct Th17/Treg immune imbalance and highly expressed Notch1 and Hes-1 mRNA levels, which were positively correlated with psoriasis area and severity index (PASI) and the ratios of Th17/Treg and ROR γ t/Foxp3. DAPT treatment resulted in the obvious downregulation of Th17 cell percentage in cocultured CD4 + T cells, ROR γ t and IL-17 mRNA levels, and IL-17 concentration in cell-free supernatant from cocultured CD4 + T cells of PV patients in a dose-dependent manner, while there was no significant influence on Treg cell percentage, Foxp3, and IL-10 expression, therefore leading to the recovery of Th17/Treg immune imbalance. Notch1 signaling may contribute to the pathogenesis of PV by regulating Th17/Treg immune imbalance.
Yaldizli, Ozguer; Kumar, Manoj; Vago, Susanne; Kreuzfelder, Erich; Limmroth, Volker; Putzki, Norman
2009-01-01
The pathophysiology of multiple sclerosis (MS)-associated fatigue is poorly understood. Immunological mechanisms may play a role. Alterations in immunological profile indicate a chronic immune activation in MS patients with fatigue. T-regulatory (Treg) cells seem to play a key role in coordinating autoimmune mechanisms in MS. This is the first study investigating the relationship between Treg cell function and fatigue in MS patients. In this cross-sectional in vitro, ex vivo study, we isolated peripheral blood mononuclear cells (PBMCs) from 20 MS patients with fatigue, determined lymphocyte subsets by flow cytometry and suppressive function of Treg cells in PBMC cultures with antigen stimulation. Forkhead box protein 3 expression was evaluated by PCR. Results were compared with 20 MS patients without fatigue and with 19 healthy controls. Leukocytes and lymphocyte subsets including Treg cell frequency did not differ in patients with and without fatigue. Co-culturing of Treg cells with CD4+CD25- cells did not lead to a significant suppression of myelin basic protein- and pokeweed mitogen-induced proliferation in MS patients in contrast to healthy controls. There were no statistical differences between MS patients with and without fatigue regarding this suppression activity. Fatigue seems not to be associated with impaired function of Treg cells in untreated MS patients.
Laminins affect T cell trafficking and allograft fate
Warren, Kristi J.; Iwami, Daiki; Harris, Donald G.; Bromberg, Jonathan S.; Burrell, Bryna E.
2014-01-01
Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4+ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found that alloreactive T cells traffic distinctly into the tolerant LN and colocalize in exclusive regions with alloantigen-presenting cells, a process required for Treg induction. Extracellular matrix proteins, including those of the laminin family, formed regions within the LN that were permissive for colocalization of alloantigen-presenting cells, alloreactive T cells, and Tregs. We identified unique expression patterns of laminin proteins in high endothelial venule basement membranes and the cortical ridge that correlated with alloantigen-specific immunity or immune tolerance. The ratio of laminin α4 to laminin α5 was greater in domains within tolerant LNs, compared with immune LNs, and blocking laminin α4 function or inducing laminin α5 overexpression disrupted T cell and DC localization and transmigration through tolerant LNs. Furthermore, reducing α4 laminin circumvented tolerance induction and induced cardiac allograft inflammation and rejection in murine models. This work identifies laminins as potential targets for immune modulation. PMID:24691446
Prasad, Suchitra; Kohm, Adam P.; McMahon, Jeffrey S.; Luo, Xunrong; Miller, Stephen D.
2012-01-01
Type 1 diabetes (T1D) is mediated by destruction of pancreatic β cells by CD4 and CD8 T cells specific for epitopes on numerous diabetogenic autoantigens resulting in loss of glucose homeostasis. Employing antigen-specific tolerance induced by i.v. administration of syngeneic splenocytes ECDI cross-linked to various diabetogenic antigens/epitopes (Ag-SP), we show that epitope spreading plays a functional role in the pathogenesis of T1D in NOD mice. Specifically, Ag-SP coupled with intact insulin, Ins B9–23 or Ins B15–23, but not GAD65509–528, GAD65524–543 or IGRP206–214, protected 4–6 week-old NOD mice from the eventual development of clinical disease; infiltration of immune cells to the pancreatic islets; and blocked the induction of DTH responses in a Treg-dependent, antigen-specific manner. However, tolerance induction in 19–21 week-old NOD mice was effectively accomplished only by Ins-SP, suggesting Ins B9–23 is a dominant initiating epitope, but autoimmune responses to insulin epitope(s) distinct from Ins B9–23 emerge during disease progression. PMID:22647732
Dürr, Christoph; Pfeifer, Dietmar; Claus, Rainer; Schmitt-Graeff, Annette; Gerlach, Ulrike V; Graeser, Ralph; Krüger, Sophie; Gerbitz, Armin; Negrin, Robert S; Finke, Jürgen; Zeiser, Robert
2010-12-15
Clinical studies indicate a role of allogeneic hematopoietic cell transplantation (alloHCT) for patients with refractory or recurrent B-cell lymphoma (BCL) indicative of a graft-versus-tumor effect. However, the relevance of local immunosuppression in the BCL microenvironment by donor-derived regulatory T cells (Treg) after alloHCT is unclear. Therefore, we studied Treg recruitment after alloHCT in different murine BCL models and the impact of lymphoma-derived chemoattractive signals. Luciferase transgenic Tregs accumulated in murine BCL microenvironment and microarray-based analysis of BCL tissues revealed increased expression of CXCL9, CXCL10, and CXCL12. In vivo blocking identified the CXCR4/CXCL12 axis as being critical for Treg attraction toward BCL. In contrast to Tregs, effector T cells displayed low levels of CXCR4 and were not affected by the pharmacologic blockade. Most important, blocking CXCR4 not only reduced Treg migration toward tumor tissue but also enhanced antitumor responses after alloHCT. CXCL12 production was dependent on antigen-presenting cells (APC) located in the lymphoma microenvironment, and their diphtheria-toxin receptor (DTR)-based depletion in CD11c.DTR-Tg mice significantly reduced Treg accumulation within BCL tissue. CXCL12 was also detected in human diffuse, large BCL tissues indicative of its potential clinical relevance. In conclusion, we demonstrate that Tregs are recruited toward BCL after alloHCT by infiltrating host APCs in a CXCL12-dependent fashion. Blocking CXCR4 enhanced antitumor effects and prolonged survival of tumor-bearing mice by reducing local Treg accumulation, indicating that CXCR4 is a potential target to interfere with tumor escape after alloHCT. ©2010 AACR.
IL-12 and IL-23 modulate plasticity of FoxP3+ regulatory T cells in human Leprosy.
Tarique, Mohd; Saini, Chaman; Naqvi, Raza Ali; Khanna, Neena; Sharma, Alpana; Rao, D N
2017-03-01
Leprosy is a bacterial disease caused by M. leprae. Its clinical spectrum reflects the host's immune response to the M. leprae and provide an ideal model to investigate the host pathogen interaction and immunological dysregulation. Tregs are high in leprosy patients and responsible for immune suppression of the host by producing IL-10 and TGF-β cytokines. In leprosy, plasticity of Tregs remain unstudied. This is the first study describing the conversion of Tregs into Th1-like and Th17-like cells using in vitro cytokine therapy in leprosy patients. Peripheral blood mononuclear cells from leprosy patients were isolated and stimulated with M. leprae antigen (MLCwA), rIL-12 and rIL-23 for 48h. Expression of FoxP3 in CD4 + CD25 + Tregs, intracellular cytokines IFN-γ, TGF-β, IL-10 and IL-17 in Tregs cells were evaluated by flow cytometry (FACS) after stimulation. rIL-12 treatment increases the levels of pStat4 in Tregs and IFN-γ production. In the presence of rIL-23, pStat3 + and IL-17A + cells increase. rIL-12 and r-IL-23 treatment downregulated the FoxP3 expression, IL-10 and TGF-β production by Tregs and enhances the expression of co-stimulatory molecules (CD80, CD86). In conclusion rIL-12 converts Tregs into IFN-γ producing cells through STAT-4 signaling while rIL-23 converts Tregs into IL-17 producing cells through STAT-3 signaling in leprosy patients. This study may helpful to provide a new avenue to overcome the immunosuprression in leprosy patients using in vitro cytokine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, S Keisin; Green, Linden A; Gutwein, Ashley R; Drucker, Natalie A; Motaganahalli, Raghu L; Gupta, Alok K; Fajardo, Andres; Murphy, Michael P
2018-04-28
The pathogenesis driving the formation of abdominal aortic aneurysms continues to be poorly understood. Therefore, we systemically define the cytokine and circulating immune cell environment observed in human abdominal aortic aneurysm compared with risk-factor matched controls. From 2015 to 2017, a total of 274 patients donated blood to the Indiana University Center for Aortic Disease. Absolute concentrations of circulating cytokines were determined, using enzyme-linked immunosorbent assays while the expression of circulating immune cell phenotypes were assayed via flow cytometric analysis. Human abdominal aortic aneurysm is characterized by a significant depletion of the antigen-specific, CD4 + Tr1 regulatory lymphocyte that corresponds to an upregulation of the antigen-specific, inflammatory Th17 cell. We found no differences in the incidence of Treg, B10, and myeloid-derived suppressor regulatory cells. Similarly, no disparities were noted in the following inflammatory cytokines: IL-1β, C-reactive protein, tumor necrosis factor α, interferon γ, and IL-23. However, significant upregulation of the inflammatory cytokines osteopontin, IL-6, and IL-17 were noted. Additionally, no changes were observed in the regulatory cytokines IL-2, IL-4, IL-13, TNF-stimulated gene 6 protein, and prostaglandin E2, but we did observe a significant decrease in the essential regulatory cytokine IL-10. In this investigation, we systematically characterize the abdominal aortic aneurysm-immune environment and present preliminary evidence that faulty immune regulation may also contribute to aneurysm formation and growth. Copyright © 2018 Elsevier Inc. All rights reserved.
Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.
Richards, Carl D
2017-02-01
Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.
Woodham, Andrew W; Yan, Lisa; Skeate, Joseph G; van der Veen, Daniel; Brand, Heike H; Wong, Michael K; Da Silva, Diane M; Kast, W Martin
2016-12-01
Human papillomavirus type 16 (HPV16) infections are intra-epithelial, and thus, HPV16 is known to interact with Langerhans cells (LCs), the resident epithelial antigen-presenting cells (APCs). The current paradigm for APC-mediated induction of T cell anergy is through delivery of T cell receptor signals via peptides on MHC molecules (signal 1), but without costimulation (signal 2). We previously demonstrated that LCs exposed to HPV16 in vitro present HPV antigens to T cells without costimulation, but it remained uncertain if such T cells would remain ignorant, become anergic, or in the case of CD4+ T cells, differentiate into Tregs. Here we demonstrate that Tregs were not induced by LCs presenting only signal 1, and through a series of in vitro immunizations show that CD8 + T cells receiving signal 1 + 2 from LCs weeks after consistently receiving signal 1 are capable of robust effector functions. Importantly, this indicates that T cells are not tolerized but instead remain ignorant to HPV, and are activated given the proper signals.
Fesel, Constantin; Barreto, Marta; Ferreira, Ricardo C.; Costa, Nuno; Venda, Lara L.; Pereira, Clara; Carvalho, Claudia; Morães-Fontes, Maria Francisca; Ferreira, Carlos M.; Vasconcelos, Carlos; Viana, João F.; Santos, Eugenia; Martins, Berta; Demengeot, Jocelyne; Vicente, Astrid M.
2012-01-01
In human systemic lupus erythematosus (SLE), diverse autoantibodies accumulate over years before disease manifestation. Unaffected relatives of SLE patients frequently share a sustained production of autoantibodies with indiscriminable specificity, usually without ever acquiring the disease. We studied relations of IgG autoantibody profiles and peripheral blood activated regulatory T-cells (aTregs), represented by CD4+CD25bright T-cells that were regularly 70–90% Foxp3+. We found consistent positive correlations of broad-range as well as specific SLE-associated IgG with aTreg frequencies within unaffected relatives, but not patients or unrelated controls. Our interpretation: unaffected relatives with shared genetic factors compensated pathogenic effects by aTregs engaged in parallel with the individual autoantibody production. To study this further, we applied a novel analytic approach named coreferentiality that tests the indirect relatedness of parameters in respect to multivariate phenotype data. Results show that independently of their direct correlation, aTreg frequencies and specific SLE-associated IgG were likely functionally related in unaffected relatives: they significantly parallelled each other in their relations to broad-range immunoblot autoantibody profiles. In unaffected relatives, we also found coreferential effects of genetic variation in the loci encoding IL-2 and CD25. A model of CD25 functional genetic effects constructed by coreferentiality maximization suggests that IL-2-CD25 interaction, likely stimulating aTregs in unaffected relatives, had an opposed effect in SLE patients, presumably triggering primarily T-effector cells in this group. Coreferentiality modeling as we do it here could also be useful in other contexts, particularly to explore combined functional genetic effects. PMID:22479496
Allium sativum-derived allitridin inhibits Treg amplification in cytomegalovirus infection.
Li, Ya-nan; Huang, Fei; Liu, Xing-lou; Shu, Sai-nan; Huang, Yong-jian; Cheng, Huan-ji; Fang, Feng
2013-03-01
This study investigated the effects of allitridin compound on murine cytomegalovirus (MCMV)-induced regulatory T cell (Treg; CD4(+) CD25(+) Foxp3(+) ) amplification in vivo and in vitro. One hundred twenty MCMV-infected mice were allocated at random into two groups for treatment with allitridin or placebo. Another 120 mock-infected mice were randomly allocated as controls for the allitridin treatment and placebo treatment groups. The mice were euthanized at various time points after infection (out to 120 days) to evaluate the effects of treatment on Treg presence and function, as well as MCMV infective load. Co-culture with mouse embryo fibroblasts (MEF) and MCMV was performed to evaluate allitridin-mediated Treg and anti-CMV effects. The maximum tolerance concentration (MTC) of allitridin was used to treat cells for 3 days. Changes in Foxp3 mRNA and protein levels, percentages of T cell subsets, and Treg-related cytokines (IL-10 and TGF-β) were measured. Allitridin treatment did not influence Foxp3 expression and Treg proportion in uninfected mice, but did down-regulate each in infected mice during the chronic infection period. Additionally, allitridin treatment reduced the MCMV load in salivary glands. MTC allitridin treatment of co-cultures partially blocked MCMV induction of Foxp3 mRNA and protein expression. In vitro treatment with allitridin also increased significantly the percentages of Tc1, Tc2, and Th1, reduced the secreted levels of IL-10 and TGF-β1, and significantly suppressed viral loads. In conclusion, allitridin can promote MCMV-induced Treg expansion and Treg-mediated anti-MCMV immunosuppression. Therefore, allitridin may be useful as a therapeutic agent to enhance the specific cellular immune responses against CMV. Copyright © 2013 Wiley Periodicals, Inc.
Sánchez-Díaz, Raquel; Blanco-Dominguez, Rafael; Lasarte, Sandra; Tsilingiri, Katerina; Martín-Gayo, Enrique; Linillos-Pradillo, Beatriz; de la Fuente, Hortensia; Sánchez-Madrid, Francisco; Nakagawa, Rinako; Toribio, María L.
2017-01-01
ABSTRACT Thymus-derived regulatory T (tTreg) cells are key to preventing autoimmune diseases, but the mechanisms involved in their development remain unsolved. Here, we show that the C-type lectin receptor CD69 controls tTreg cell development and peripheral Treg cell homeostasis through the regulation of BIC/microRNA 155 (miR-155) and its target, suppressor of cytokine signaling 1 (SOCS-1). Using Foxp3-mRFP/cd69+/− or Foxp3-mRFP/cd69−/− reporter mice and short hairpin RNA (shRNA)-mediated silencing and miR-155 transfection approaches, we found that CD69 deficiency impaired the signal transducer and activator of transcription 5 (STAT5) pathway in Foxp3+ cells. This results in BIC/miR-155 inhibition, increased SOCS-1 expression, and severely impaired tTreg cell development in embryos, adults, and Rag2−/− γc−/− hematopoietic chimeras reconstituted with cd69−/− stem cells. Accordingly, mirn155−/− mice have an impaired development of CD69+ tTreg cells and overexpression of the miR-155-induced CD69 pathway, suggesting that both molecules might be concomitantly activated in a positive-feedback loop. Moreover, in vitro-inducible CD25+ Treg (iTreg) cell development is inhibited in Il2rγ−/−/cd69−/− mice. Our data highlight the contribution of CD69 as a nonredundant key regulator of BIC/miR-155-dependent Treg cell development and homeostasis. PMID:28167605
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation
Duraes, Fernanda V.; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-01-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. PMID:26341385
Le Buanec, Hélène; Gougeon, Marie-Lise; Mathian, Alexis; Lebon, Pierre; Dupont, Jean-Michel; Peltre, Gabriel; Hemon, Patrice; Schmid, Michel; Bizzini, Bernard; Künding, Thomas; Burny, Arsène; Bensussan, Armand; Amoura, Zahir; Gallo, Robert C.; Zagury, Daniel
2011-01-01
Immune suppressive activities exerted by regulatory T-cell subsets have several specific functions, including self-tolerance and regulation of adaptive immune reactions, and their dysfunction can lead to autoimmune diseases and contribute to AIDS and cancer. Two functionally distinct regulatory T-cell subsets are currently identified in peripheral tissues: thymus-developed natural T regulatory cells (nTregs) controlling self-tolerance and antiinflammatory IL-10–secreting type 1 regulatory T cells (Tr1) derived from Ag-stimulated T cells, which regulate inflammation-dependent adaptive immunity and minimize immunopathology. We establish herein that cell contact-mediated nTreg regulatory function is inhibited by inflammation, especially in the presence of the complement C3b receptor (CD46). Instead, as with other T-cell subsets, the latter inflammatory conditions of stimulation skew nTreg differentiation to Tr1 cells secreting IL-10, an effect potentiated by IFN-α. The clinical relevance of these findings was verified in a study of 152 lupus patients, in which we showed that lupus nTreg dysfunction is not due to intrinsic defects but is rather induced by C3b stimulation of CD46 and IFN-α and that these immune components of inflammation are directly associated with active lupus. These results provide a rationale for using anti–IFN-α Ab immunotherapy in lupus patients. PMID:22065791
Baru, Abdul Mannan; Ganesh, Venkateswaran; Krishnaswamy, Jayendra Kumar; Hesse, Christina; Untucht, Christopher; Glage, Silke; Behrens, Georg; Mayer, Christian Thomas; Puttur, Franz; Sparwasser, Tim
2012-01-01
Regulatory T cells (Tregs) play a non-redundant role in maintenance of immune homeostasis. This is achieved by suppressing both, priming of naïve cells and effector cell functions. Although Tregs have been implicated in modulating allergic immune responses, their influence on distinct phases of development of allergies remains unclear. In this study, by using bacterial artificial chromosome (BAC)-transgenic Foxp3-DTR (DEREG) mice we demonstrate that the absence of Foxp3+ Tregs during the allergen challenge surprisingly does not exacerbate allergic airway inflammation in BALB/c mice. As genetic disposition due to strain specificity may contribute significantly to development of allergies, we performed similar experiment in C57BL/6 mice, which are less susceptible to allergy in the model of sensitization used in this study. We report that the genetic background does not influence the consequence of this depletion regimen. These results signify the temporal regulation exerted by Foxp3+ Tregs in limiting allergic airway inflammation and may influence their application as potential therapeutics. PMID:23071726
Absence of MyD88 Signaling Induces Donor-Specific Kidney Allograft Tolerance
Noordmans, Gerda A.; O’Brien, Maya R.; Ma, Jin; Zhao, Cathy Y.; Zhang, Geoff Y.; Kwan, Tony K.T.; Alexander, Stephen I.; Chadban, Steven J.
2012-01-01
Toll-like receptors (TLRs) play a fundamental role in innate immunity and provide a link between innate and adaptive responses to an allograft; however, whether the development of acute and chronic allograft rejection requires TLR signaling is unknown. Here, we studied TLR signaling in a fully MHC-mismatched, life-sustaining murine model of kidney allograft rejection. Mice deficient in the TLR adaptor protein MyD88 developed donor antigen-specific tolerance, which protected them from both acute and chronic allograft rejection and increased their survival after transplantation compared with wild-type controls. Administration of an anti-CD25 antibody to MyD88-deficient recipients depleted CD4+CD25+FoxP3+ cells and broke tolerance. In addition, defective development of Th17 immune responses to alloantigen both in vitro and in vivo occurred, resulting in an increased ratio of Tregs to Th17 effectors. Thus, MyD88 deficiency was associated with an altered balance of Tregs over Th17 cells, promoting tolerance instead of rejection. This study provides evidence that targeting innate immunity may be a clinically relevant strategy to facilitate transplantation tolerance. PMID:22878960
Nakagawa, Hidetoshi; Sido, Jessica M; Reyes, Edwin E; Kiers, Valerie; Cantor, Harvey; Kim, Hye-Jung
2016-05-31
Expression of the transcription factor Helios by Tregs ensures stable expression of a suppressive and anergic phenotype in the face of intense inflammatory responses, whereas Helios-deficient Tregs display diminished lineage stability, reduced FoxP3 expression, and production of proinflammatory cytokines. Here we report that selective Helios deficiency within CD4 Tregs leads to enhanced antitumor immunity through induction of an unstable phenotype and conversion of intratumoral Tregs into T effector cells within the tumor microenvironment. Induction of an unstable Treg phenotype is associated with enhanced production of proinflammatory cytokines by tumor-infiltrating but not systemic Tregs and significantly delayed tumor growth. Ab-dependent engagement of Treg surface receptors that result in Helios down-regulation also promotes conversion of intratumoral but not systemic Tregs into T effector cells and leads to enhanced antitumor immunity. These findings suggest that selective instability and conversion of intratumoral CD4 Tregs through genetic or Ab-based targeting of Helios may represent an effective approach to immunotherapy.
S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3
Priceman, Saul J.; Shen, Shudan; Wang, Lin; Deng, Jiehui; Yue, Chanyu; Kujawski, Maciej; Yu, Hua
2014-01-01
Summary S1PR1 signaling has been shown to restrain the number and function of Tregs in the periphery under physiological conditions and in colitis models, but its role in regulating tumor-associated T cells is unknown. Here, we show that S1PR1 signaling in T cells drives Treg accumulation in tumors, limits CD8+ T cell recruitment and activation, and promotes tumor growth. S1PR1 intrinsic in T cells affects Tregs, but not CD8+ T cells, as demonstrated by adoptive transfer models and transient pharmacological S1PR1 modulation. We further investigated the molecular mechanism(s) underlying S1PR1-mediated Treg accumulation in tumors, showing that increasing S1PR1 in CD4+ T cells promotes STAT3 activation and JAK/STAT3-dependent Treg tumor migration. Furthermore functionally ablating STAT3 in T cells diminishes tumor-associated Treg accumulation and tumor growth. Our study demonstrates a stark contrast of the consequences by the same signaling receptor, namely S1PR1, in regulating Tregs in the periphery and in tumors. PMID:24630990
Transient Treg depletion enhances therapeutic anti‐cancer vaccination
Aston, Wayne J.; Chee, Jonathan; Khong, Andrea; Cleaver, Amanda L.; Solin, Jessica N.; Ma, Shaokang; Lesterhuis, W. Joost; Dick, Ian; Holt, Robert A.; Creaney, Jenette; Boon, Louis; Robinson, Bruce; Lake, Richard A.
2016-01-01
Abstract Introduction Regulatory T cells (Treg) play an important role in suppressing anti‐ immunity and their depletion has been linked to improved outcomes. To better understand the role of Treg in limiting the efficacy of anti‐cancer immunity, we used a Diphtheria toxin (DTX) transgenic mouse model to specifically target and deplete Treg. Methods Tumor bearing BALB/c FoxP3.dtr transgenic mice were subjected to different treatment protocols, with or without Treg depletion and tumor growth and survival monitored. Results DTX specifically depleted Treg in a transient, dose‐dependent manner. Treg depletion correlated with delayed tumor growth, increased effector T cell (Teff) activation, and enhanced survival in a range of solid tumors. Tumor regression was dependent on Teffs as depletion of both CD4 and CD8 T cells completely abrogated any survival benefit. Severe morbidity following Treg depletion was only observed, when consecutive doses of DTX were given during peak CD8 T cell activation, demonstrating that Treg can be depleted on multiple occasions, but only when CD8 T cell activation has returned to base line levels. Finally, we show that even minimal Treg depletion is sufficient to significantly improve the efficacy of tumor‐peptide vaccination. Conclusions BALB/c.FoxP3.dtr mice are an ideal model to investigate the full therapeutic potential of Treg depletion to boost anti‐tumor immunity. DTX‐mediated Treg depletion is transient, dose‐dependent, and leads to strong anti‐tumor immunity and complete tumor regression at high doses, while enhancing the efficacy of tumor‐specific vaccination at low doses. Together this data highlight the importance of Treg manipulation as a useful strategy for enhancing current and future cancer immunotherapies. PMID:28250921
Transient Treg depletion enhances therapeutic anti-cancer vaccination.
Fisher, Scott A; Aston, Wayne J; Chee, Jonathan; Khong, Andrea; Cleaver, Amanda L; Solin, Jessica N; Ma, Shaokang; Lesterhuis, W Joost; Dick, Ian; Holt, Robert A; Creaney, Jenette; Boon, Louis; Robinson, Bruce; Lake, Richard A
2017-03-01
Regulatory T cells (Treg) play an important role in suppressing anti- immunity and their depletion has been linked to improved outcomes. To better understand the role of Treg in limiting the efficacy of anti-cancer immunity, we used a Diphtheria toxin (DTX) transgenic mouse model to specifically target and deplete Treg. Tumor bearing BALB/c FoxP3.dtr transgenic mice were subjected to different treatment protocols, with or without Treg depletion and tumor growth and survival monitored. DTX specifically depleted Treg in a transient, dose-dependent manner. Treg depletion correlated with delayed tumor growth, increased effector T cell (Teff) activation, and enhanced survival in a range of solid tumors. Tumor regression was dependent on Teffs as depletion of both CD4 and CD8 T cells completely abrogated any survival benefit. Severe morbidity following Treg depletion was only observed, when consecutive doses of DTX were given during peak CD8 T cell activation, demonstrating that Treg can be depleted on multiple occasions, but only when CD8 T cell activation has returned to base line levels. Finally, we show that even minimal Treg depletion is sufficient to significantly improve the efficacy of tumor-peptide vaccination. BALB/c.FoxP3.dtr mice are an ideal model to investigate the full therapeutic potential of Treg depletion to boost anti-tumor immunity. DTX-mediated Treg depletion is transient, dose-dependent, and leads to strong anti-tumor immunity and complete tumor regression at high doses, while enhancing the efficacy of tumor-specific vaccination at low doses. Together this data highlight the importance of Treg manipulation as a useful strategy for enhancing current and future cancer immunotherapies.
Laur, Amandine Marine; Floch, Pauline; Chambonnier, Lucie; Benejat, Lucie; Korolik, Victoria; Giese, Alban; Dubus, Pierre; Mégraud, Francis; Bandeira, Antonio; Lehours, Philippe
2016-01-19
It has been postulated that the emergence of autoimmune gastritis in neonatal thymectomised (d3Tx) BALB/c mice may be a consequence of post-surgery deficit in Tregs. In this study, previously obtained samples from d3Tx mice were used in order to determine whether thymectomy creates a deficit in this T cell subset thereby allowing the emergence of autoimmune phenomena as a prerequisite for GML. The splenic Treg reserve and the local recruitment of these cells in the gastric mucosa were investigated using complementary molecular and immunohistochemistry approaches. Higher Foxp3/CD3 ratios were found in the spleen of non-infected d3Tx mice compared to non-thymectomised (NTx) controls. These results indicate a relative enrichment of Tregs following thymectomy in adult mice. The absence of Treg depletion in d3Tx mice is in line with the absence of auto-immune gastritis in non-infected d3Tx mice. Higher levels of T cell and Treg infiltration were also found in the stomach of GML-developing d3Tx mice versus NTx mice. Surprisingly, inflammatory scores inversely correlated with the bacterial inoculum. The presence of a small Treg containing compartment among gastric biopsies of GML developing d3Tx mice may play a role in perseverance of a minimal bacterial numbers thereby maintaining an antigen-dependent stimulation and proliferation.
Meng, Kai; Zhang, Wei; Zhong, Yucheng; Mao, Xiaobo; Lin, Yingzhong; Huang, Ying; Lang, Mingjian; Peng, Yudong; Zhu, Zhengfeng; Liu, Yuzhou; Zhao, Xiaoqi; Yu, Kunwu; Wu, Bangwei; Ji, Qingwei; Zeng, Qiutang
2014-01-01
Atherosclerosis (AS) is an inflammatory and immune disease. Regulatory T cells (Tregs) suppress the activation of T cells and have been shown to play a protective role during the pathogenesis of AS. However, specific markers for Tregs are lacking. Recently, glycoprotein A repetitions predominant (GARP) was discovered as a specific marker of activated Tregs, and we therefore utilized GARP as a specific surface marker for Tregs in the current study. To assess whether GARP(+) Tregs are downregulated in patients with acute coronary syndrome (ACS), we examined CD4(+)CD25(+)GARP(+) T cell frequencies as well as their associated cytokines and suppressive function. Additionally, we compared GARP expression to that of FOXP3, which may be more sensitive as a marker of activated Tregs in patients with ACS. Patients with ACS demonstrated a significant decrease in circulating CD4(+)CD25(+)GARP(+) Tregs. Moreover, the suppressive function of Tregs and levels of related cytokines were also impaired in ACS patients compared to those with stable angina (SA) or normal coronary artery (NCA). Additionally, after TCR stimulation, peripheral blood mononuclear cells (PBMCs) from patients with ACS exhibited a decrease in CD4(+)CD25(+)GARP(+) Tregs. These fnding indicate that circulating CD4(+)CD25(+)GARP(+) Tregs are impaired in patients withACS. Thus, targeting GARP may promote the protective function of Tregs in ACS. © 2014 S. Karger AG, Basel.
Gurram, Rama Krishna; Kujur, Weshely; Maurya, Sudeep K.; Agrewala, Javed N.
2014-01-01
Cytokines play a very important role in the regulation of immune homeostasis. Regulatory T cells (Tregs) responsible for the generation of peripheral tolerance are under the tight regulation of the cytokine milieu. In this study, we report a novel role of a bipyridyl compound, Caerulomycin A (CaeA), in inducing the generation of Tregs. It was observed that CaeA substantially up-regulated the pool of Tregs, as evidenced by an increased frequency of CD4+ Foxp3+ cells. In addition, CaeA significantly suppressed the number of Th1 and Th17 cells, as supported by a decreased percentage of CD4+/IFN-γ+ and CD4+/IL-17+ cells, respectively. Furthermore, we established the mechanism and observed that CaeA interfered with IFN-γ-induced STAT1 signaling by augmenting SOCS1 expression. An increase in the TGF-β-mediated Smad3 activity was also noted. Furthermore, CaeA rescued Tregs from IFN-γ-induced inhibition. These results were corroborated by blocking Smad3 activity, which abolished the CaeA-facilitated generation of Tregs. In essence, our results indicate a novel role of CaeA in inducing the generation of Tregs. This finding suggests that CaeA has enough potential to be considered as a potent future drug for the treatment of autoimmunity. PMID:24811173
Burns, Jane C.; Touma, Ranim; Song, Yali; Padilla, Robert L.; Tremoulet, Adriana H.; Sidney, John; Sette, Alessandro; Franco, Alessandra
2016-01-01
The activation of natural regulatory T cells (nTreg) recognizing the heavy constant region (Fc) of IgG is an important mechanism of action of intravenous immunoglobulin (IVIG) therapy in Kawasaki disease (KD). Lack of circulating Fc-specific nTreg in the sub-acute phase of KD is correlated with the development of coronary artery abnormalities (CAA). Here, we characterize the fine specificity of nTreg in sub-acute (2- to 8-week post-IVIG) and convalescent (1- to 10-year post-IVIG) KD subjects by testing the immunogenicity of 64 peptides, 15 amino acids in length with a 10 amino acid-overlap spanning the entire Fc protein. About 12 Fc peptides (6 pools of 2 consecutive peptides) were recognized by nTreg in the cohorts studied, including two patients with CAA. To test whether IVIG expands the same nTreg populations that maintain vascular homeostasis in healthy subjects, we compared these results with results obtained in healthy adult controls. Similar nTreg fine specificities were observed in KD patients after IVIG and in healthy donors. These results suggest that T cell fitness rather than T cell clonal deletion or anergy is responsible for the lack of Fc-specific nTreg in KD patients who develop CAA. Furthermore, we found that adolescents and adults who had KD during childhood without developing CAA did not respond to the Fc protein in vitro, suggesting that the nTreg response induced by IVIG in KD patients is short-lived. Our results support the concept that peptide epitopes may be a viable therapeutic approach to expand Fc-specific nTreg and more effectively prevent CAA in KD patients. PMID:25822882
Immunologic treatments for precancerous lesions and uterine cervical cancer
2014-01-01
Development of HPV-associated cancers not only depends on efficient negative regulation of cell cycle control that supports the accumulation of genetic damage, but also relies on immune evasion that enable the virus to go undetected for long periods of time. In this way, HPV-related tumors usually present MHC class I down-regulation, impaired antigen-processing ability, avoidance of T-cell mediated killing, increased immunosuppression due to Treg infiltration and secrete immunosuppressive cytokines. Thus, these are the main obstacles that immunotherapy has to face in the treatment of HPV-related pathologies where a number of different strategies have been developed to overcome them including new adjuvants. Although antigen-specific immunotherapy induced by therapeutic HPV vaccines was proved extremely efficacious in pre-clinical models, its progression through clinical trials suffered poor responses in the initial trials. Later attempts seem to have been more promising, particularly against the well-defined precursors of cervical, anal or vulvar cancer, where the local immunosuppressive milieu is less active. This review focuses on the advances made in these fields, highlighting several new technologies (such as mRNA vaccine, plant-derived vaccine). The most promising immunotherapies used in clinical trials are also summarized, along with integrated strategies, particularly promising in controlling tumor metastasis and in eliminating cancer cells altogether. After the early promising clinical results, the development of therapeutic HPV vaccines need to be implemented and applied to the users in order to eradicate HPV-associated malignancies, eradicating existing perception (after the effectiveness of commercial preventive vaccines) that we have already solved the problem. PMID:24667138
Leepiyasakulchai, Chaniya; Ignatowicz, Lech; Pawlowski, Andrzej; Källenius, Gunilla
2012-01-01
Susceptibility to Mycobacterium tuberculosis is characterized by excessive lung inflammation, tissue damage, and failure to control bacterial growth. To increase our understanding of mechanisms that may regulate the host immune response in the lungs, we characterized dendritic cells expressing CD103 (αE integrin) (αE-DCs) and CD4+ Foxp3+ regulatory T (Treg) cells during M. tuberculosis infection. In resistant C57BL/6 and BALB/c mice, the number of lung αE-DCs increased dramatically during M. tuberculosis infection. In contrast, highly susceptible DBA/2 mice failed to recruit αE-DCs even during chronic infection. Even though tumor necrosis factor alpha (TNF-α) is produced by multiple DCs and macrophage subsets and is required for control of bacterial growth, αE-DCs remained TNF-α negative. Instead, αE-DCs contained a high number of transforming growth factor beta-producing cells in infected mice. Further, we show that Treg cells in C57BL/6 and DBA/2 mice induce gamma interferon during pulmonary tuberculosis. In contrast to resistant mice, the Treg cell population was diminished in the lungs, but not in the draining pulmonary lymph nodes (PLN), of highly susceptible mice during chronic infection. Treg cells have been reported to inhibit M. tuberculosis-specific T cell immunity, leading to increased bacterial growth. Still, despite the reduced number of lung Treg cells in DBA/2 mice, the bacterial load in the lungs was increased compared to resistant animals. Our results show that αE-DCs and Treg cells that may regulate the host immune response are increased in M. tuberculosis-infected lungs of resistant mice but diminished in infected lungs of susceptible mice. PMID:22215739
Díaz, Ariana; Santucci, Natalia; Bongiovanni, Bettina; D'Attilio, Luciano; Massoni, Claudia; Lioi, Susana; Radcliffe, Stella; Dídoli, Griselda; Bottasso, Oscar; Bay, María Luisa
2015-01-01
Tuberculosis (TB) is a major health problem requiring an appropriate cell immune response (IR) to be controlled. Since regulatory T cells (Tregs) are relevant in IR regulation, we analyzed Tregs variations throughout the course of TB treatment and its relationship with changes in immune-endocrine mediators dealing with disease immunopathology. The cohort was composed of 41 adult patients, 20 of them completing treatment and follow-up. Patients were bled at diagnosis (T0) and at 2 (T2), 4 (T4), 6 (T6), and 9 months following treatment initiation. Twenty-four age- and sex-matched healthy controls (HCo) were also included. Tregs (flow cytometry) from TB patients were increased at T0 (versus HCo P < 0.05), showing even higher values at T2 (versus T0 P < 0.01) and T4 (versus T0 P < 0.001). While IL-6, IFN-γ, TGF-β (ELISA), and Cortisol (electrochemiluminescence, EQ) were augmented, DHEA-S (EQ) levels were diminished at T0 with respect to HCo, with cytokines and Cortisol returning to normal values at T9. Tregs correlated positively with IFN-γ (R = 0.868, P < 0.05) at T2 and negatively at T4 (R = −0.795, P < 0.05). Lowered levels of proinflammatory cytokines together with an increased frequency of Tregs of patients undergoing specific treatment might reflect a downmodulatory effect of these cells on the accompanying inflammation. PMID:25969837
Urbanellis, Peter; Shyu, Wendy; Khattar, Ramzi; Wang, Jihong; Zakharova, Anna; He, Wei; Sadozai, Hassan; Amir, Achiya Z; Shalev, Itay; Phillips, M James; Adeyi, Oyedele; Ross, Heather; Grant, David; Levy, Gary A; Chruscinski, Andrzej
2015-01-01
Therapies that promote tolerance in solid organ transplantation will improve patient outcomes by eliminating the need for long-term immunosuppression. To investigate mechanisms of rapamycin-induced tolerance, C3H/HeJ mice were heterotopically transplanted with MHC-mismatched hearts from BALB/cJ mice and were monitored for rejection after a short course of rapamycin treatment. Mice that had received rapamycin developed tolerance with indefinite graft survival, whereas untreated mice all rejected their grafts within 9 days. In vitro, splenic mononuclear cells from tolerant mice maintained primary CD4+ and CD8+ immune responses to donor antigens consistent with a mechanism that involves active suppression of immune responses. Furthermore, infection with lymphocytic choriomeningitis virus strain WE led to loss of tolerance suggesting that tolerance could be overcome by infection. Rapamycin-induced, donor-specific tolerance was associated with an expansion of regulatory T (Treg) cells in both the spleen and allograft and elevated plasma levels of fibrinogen-like protein 2 (FGL2). Depletion of Treg cells with anti-CD25 (PC61) and treatment with anti-FGL2 antibody both prevented tolerance induction. Tolerant allografts were populated with Treg cells that co-expressed FGL2 and FoxP3, whereas rejecting allografts and syngeneic grafts were nearly devoid of dual-staining cells. We examined the utility of an immunoregulatory gene panel to discriminate between tolerance and rejection. We observed that Treg-associated genes (foxp3, lag3, tgf-β and fgl2) had increased expression and pro-inflammatory genes (ifn-γ and gzmb) had decreased expression in tolerant compared with rejecting allografts. Taken together, these data strongly suggest that Treg cells expressing FGL2 mediate rapamycin-induced tolerance. Furthermore, a gene biomarker panel that includes fgl2 can distinguish between rejecting and tolerant grafts. PMID:24990517
Single-cell dynamics of mast cell-CD4+ CD25+ regulatory T cell interactions.
Frossi, Barbara; D'Incà, Federica; Crivellato, Enrico; Sibilano, Riccardo; Gri, Giorgia; Mongillo, Marco; Danelli, Luca; Maggi, Laura; Pucillo, Carlo E
2011-07-01
The biological behavior of immune cells is determined by their intrinsic properties and interactions with other cell populations within their microenvironment. Several studies have confirmed the existence of tight spatial interactions between mast cells (MCs) and Tregs in different settings. For instance, we have recently identified the functional cross-talk between MCs and Tregs, through the OX40L-OX40 axis, as a new mechanism of reciprocal influence. However, there is scant information regarding the single-cell dynamics of this process. In this study, time-lapse video microscopy revealed direct interactions between Tregs and MCs in both murine and human cell co-cultures, resulting in the inhibition of the MC degranulation response. MCs incubated with WT, but not OX40-deficient, Tregs mediated numerous and long-lasting interactions and displayed different morphological features lacking the classical signs of exocytosis. MC degranulation and Ca2+ mobilization upon activation were inhibited by Tregs on a single-cell basis, without affecting overall cytokine secretion. Transmission electron microscopy showed ultrastructural evidence of vesicle-mediated secretion reconcilable with the morphological pattern of piecemeal degranulation. Our results suggest that MC morphological and functional changes following MC-Treg interactions can be ascribed to cell-cell contact and represent a transversal, non-species-specific mechanism of immune response regulation. Further research, looking at the molecular composition of this interaction will broaden our understanding of its contribution to immunity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gyllenhammer, Lauren E; Lam, Jonathan; Alderete, Tanya L; Allayee, Hooman; Akbari, Omid; Katkhouda, Namir; Goran, Michael I
2016-06-01
T-lymphocytes are potential initiators and regulators of adipose tissue (AT) inflammation, but there is limited human data on omental AT. The aim of this study was to assess the relationship between T cells, particularly Foxp3+ regulatory T (Treg) cells, in human subcutaneous (subQ) and omental AT and type 2 diabetes risk. SubQ and deep subQ (DsubQ) abdominal and omental AT biopsies were collected from 44 patients (body mass index, BMI ≥25) undergoing elective abdominal surgery. Flow cytometry was used to quantify CD4+ T cell (T effector and Treg) and macrophages (M1 and M2), and systemic inflammation was measured in fasting blood. Tregs were significantly lower in omental versus subQ and DsubQ AT, and M1 cell counts were significantly higher in the omental and DsubQ depot relative to the subQ. Only omental AT Tregs were negatively associated with fasting glucose and MCP-1 and positively associated with homeostasis model assessment (HOMA)-β. M1 and M2 cell counts across multiple depots had significant relationships with HOMA-insulin resistance, tumor necrosis factor-α, insulin, and HOMA-β. All relationships were consistent across ethnicities. Tregs were significantly lower in omental versus both subQ adipose depots. Fewer omental Tregs may have metabolic implications based on depot-specific relationships with higher fasting glucose and lower β-cell function. © 2016 The Obesity Society.
Iwaya, Yugo; Kobayashi, Motohiro; Momose, Masanobu; Hiraoka, Nobuyoshi; Sakai, Yasuhiro; Akamatsu, Taiji; Tanaka, Eiji; Ohtani, Haruo; Fukuda, Minoru; Nakayama, Jun
2013-10-01
Although Helicobacter pylori eradication is a first-line treatment of gastric MALT lymphoma, roughly 25% of patients do not respond to treatment. CD4⁺ FOXP3⁺ regulatory T (Treg) cells regulate immune responses in physiological conditions and various inflammatory conditions, including H. pylori-associated diseases. Our goal was to determine how Treg cells affect responsiveness to H. pylori eradication therapy. We performed dual immunohistochemistry for CD4 and FOXP3 to evaluate the prevalence of FOXP3⁺ Treg cells in the stomach of 63 patients with MALT lymphoma and 55 patients with chronic active gastritis. Receiver operating characteristic analysis was carried out to determine the best cut-off point in differentiating H. pylori eradication responders from nonresponders. Both the FOXP3⁺/CD4⁺ cell ratio and the absolute number of FOXP3⁺ cells per high-power field in MALT lymphoma were significantly greater in H. pylori eradication responders compared with nonresponders, suggesting that Treg cells function in regression mechanisms of MALT lymphomas. Cut-off points with good sensitivities and specificities were obtained to predict eradication outcome. A high number of Treg cells or a high ratio of Treg cells to the total number of CD4⁺ T cells in gastric MALT lymphoma could predict responsiveness to eradication therapy. © 2013 John Wiley & Sons Ltd.
Adoptive regulatory T cell therapy: challenges in clinical transplantation.
Safinia, Niloufar; Sagoo, Pervinder; Lechler, Robert; Lombardi, Giovanna
2010-08-01
The identification and characterisation of regulatory T cells (Tregs) has recently opened up exciting opportunities for Treg cell therapy in transplantation. In this review, we outline the basic biology of Tregs and discuss recent advances and challenges for the identification, isolation and expansion of these cells for cell therapy. Tregs of thymic origin have been shown to be key regulators of immune responses in mice and humans, preventing autoimmunity, graft-versus-host disease and organ graft rejection in the transplantation setting. To date, a variety of different methods to isolate and expand Tregs ex vivo have been advocated. Although promising, relatively few clinical trials of human Treg cell infusion have been initiated. Many key questions about Treg cell therapy still remain and here we provide an in-depth analysis and highlight the challenges and opportunities for immune intervention with Treg-based therapeutics in clinical transplantation.
Treating atherosclerosis with regulatory T cells.
Foks, Amanda C; Lichtman, Andrew H; Kuiper, Johan
2015-02-01
Regulatory T cells (Tregs) play an important role in the regulation of T-cell-mediated immune responses through suppression of T-cell proliferation and secretion of inhibitory cytokines, such as interleukin-10 and transforming growth factor-β. Impaired Treg numbers and function have been associated with numerous diseases, and an imbalance between proinflammatory/proatherogenic cells and Tregs promotes atherosclerotic disease. Restoration of this balance by inducing Tregs has great therapeutic potential to prevent cardiovascular disease. In addition to suppressing differentiation and function of effector T cells, Tregs have been shown to induce anti-inflammatory macrophages, inhibit foam cell formation and to influence cholesterol metabolism. Furthermore, Tregs suppress immune responses of endothelial cells and innate lymphoid cells. In this review, we focus on the recent knowledge on Treg subsets, their activity and function in atherosclerosis, and discuss promising strategies to use Tregs as a therapeutic tool to prevent cardiovascular disease. © 2014 American Heart Association, Inc.
Maximizing Tumor Immunity With Fractionated Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu; Ratikan, Josephine A.; Iwamoto, Keisuke S.
Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma}more » enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.« less
YAP is essential for Treg mediated suppression of anti-tumor immunity.
Ni, Xuhao; Tao, Jinhui; Barbi, Joseph; Chen, Qian; Park, Benjamin V; Li, Zhiguang; Zhang, Nailing; Lebid, Andriana; Ramaswamy, Anjali; Wei, Ping; Zheng, Ying; Zhang, Xuehong; Wu, Xingmei; Vignali, Paolo D A; Yang, Cuiping; Li, Huabin; Pardoll, Drew; Lu, Ling; Pan, Duojia; Pan, Fan
2018-06-15
Regulatory T cells (Tregs) are critical for maintaining self-tolerance and immune homeostasis, but their suppressive function can impede effective anti-tumor immune responses. Foxp3 is a transcription factor expressed in Tregs that is required for their function. However, the pathways and microenvironmental cues governing Foxp3 expression and Treg function are not completely understood. Herein, we report that Yes-associated protein (YAP), a co-activator of the Hippo pathway, is highly expressed in Tregs and bolsters Foxp3 expression and Treg function in vitro and in vivo. This potentiation stemmed from YAP-dependent upregulation of Activin signaling which amplifies TGFβ/SMAD activation in Tregs. YAP-deficiency resulted in dysfunctional Tregs unable to suppress anti-tumor immunity or promote tumor growth in mice. Chemical YAP antagonism and knockout or blockade of the YAP-regulated Activin Receptor similarly improved anti-tumor immunity. Thus we identify YAP as an unexpected amplifier of a Treg-reinforcing pathway with significant potential as an anti-cancer immunotherapeutic target. Copyright ©2018, American Association for Cancer Research.
Wang, Fang; Chi, Jing; Peng, Guangyong; Zhou, Feng; Wang, Jinfeng; Li, Lingyun; Feng, Dongju; Xie, Fangyi; Gu, Bin; Qin, Jian; Chen, Yun
2014-01-01
Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus. The mechanisms by which HHV-6 establishes latency and immunosuppression in its host are not well understood. Here we characterized HHV-6-specific T cells in peripheral blood mononuclear cells (PBMCs) from HHV-6-infected donors. Our results showed that HHV-6 infection could induce both CD4+ and CD8+ HHV-6-specific regulatory T (Treg) cells. These HHV-6-specific Treg cells had potent suppressive activity and expressed high levels of Treg-associated molecules CD25, FoxP3, and GITR. Both CD4+ and CD8+ Treg cells secreted gamma interferon (IFN-γ) and interleukin-10 (IL-10) but little or no IL-2, IL-4, or transforming growth factor β (TGF-β). Furthermore, HHV-6-specifc Treg cells not only could suppress naive and HHV-6-specific CD4+ effector T cell immune responses but also could impair dendritic cell (DC) maturation and functions. In addition, the suppressive effects mediated by HHV-6-specific Treg cells were mainly through a cell-to-cell contact-dependent mechanism but not through the identified cytokines. These results suggest that HHV-6 may utilize the induction of Treg cells as a strategy to escape antivirus immune responses and maintain the latency and immunosuppression in infected hosts. PMID:24198406
Kondo, Yuya; Yokosawa, Masahiro; Kaneko, Shunta; Furuyama, Kotona; Segawa, Seiji; Tsuboi, Hiroto; Matsumoto, Isao; Sumida, Takayuki
2018-05-01
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation of the joint synovium and infiltration by activated inflammatory cells. CD4+ T cells form a large proportion of the inflammatory cells invading the synovial tissue, and are involved in the RA pathologic process. In general, CD4+ T cells differentiate into various T helper cell subsets and acquire the functional properties to respond to specific pathogens, and also mediate some autoimmune disorders such as RA. Because the differentiation of T helper cell subsets is determined by the expression of specific transcription factors in response to the cytokine environment, these transcription factors are considered to have a role in the pathology of RA. Treg cells control an excess of T cell-mediated immune response, and the transcription factor FoxP3 is critical for the differentiation and function of Treg cells. Treg cell dysfunction can result in the development of systemic autoimmunity. In this review, we summarize how the expression of transcription factors modulates T helper cell immune responses and the development of autoimmune diseases, especially in RA. Understanding the role of transcription factors in the pathogenesis of autoimmunity may lead to novel therapeutic strategies to control the differentiation and function of both T helper cells and Treg cells. © 2017 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.
Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei
2014-09-26
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Maternal-Fetal rejection reactions are unconstrained in preeclamptic women.
Nguyen, Tina A; Kahn, Daniel A; Loewendorf, Andrea I
2017-01-01
The risk factors for preeclampsia, extremes of maternal age, changing paternity, concomitant maternal autoimmunity, and/or birth intervals greater than 5 years, suggest an underlying immunopathology. We used peripheral blood and lymphocytes from the UteroPlacental Interface (UPI) of 3rd trimester healthy pregnant women in multicolor flow cytometry-and in vitro suppression assays. The major end-point was the characterization of activation markers, and potential effector functions of different CD4-and CD8 subsets as well as T regulatory cells (Treg). We observed a significant shift of peripheral CD4 -and CD8- T cells from naïve to memory phenotype in preeclamptic women compared to healthy pregnant women consistent with long-standing immune activation. While the proportions of the highly suppressive Cytokine and Activated Treg were increased in preeclampsia, Treg tolerance toward fetal antigens was dysfunctional. Thus, our observations indicate a long-standing inflammatory derangement driving immune activation in preeclampsia; in how far the Treg dysfunction is caused by/causes this immune activation in preeclampsia will be the object of future studies.
Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M
2017-10-01
Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.
Qeska, V; Barthel, Y; Iseringhausen, M; Tipold, A; Stein, V M; Khan, M A; Baumgärtner, W; Beineke, A
2013-12-15
Canine distemper virus (CDV) infection causes immunosuppression and demyelinating leukoencephalitis in dogs. In viral diseases, an ambiguous function of regulatory T cells (Treg), with both beneficial effects by reducing immunopathology and detrimental effects by inhibiting antiviral immunity, has been described. However, the role of Treg in the pathogenesis of canine distemper remains unknown. In order to determine the effect of CDV upon immune homeostasis, the amount of Foxp3(+) Treg in spleen and brain of naturally infected dogs has been determined by immunohistochemistry. In addition, splenic cytokine expression has been quantified by reverse transcriptase polymerase chain reaction. Splenic depletion of Foxp3(+) Treg was associated with an increased mRNA-expression of tumor necrosis factor and decreased transcription of interleukin-2 in the acute disease phase, indicative of disturbed immunological counter regulation in peripheral lymphoid organs. In the brain, a lack of Foxp3(+) Treg in predemyelinating and early demyelinating lesions and significantly increased infiltrations of Foxp3(+) Treg in chronic demyelinating lesions were observed. In conclusion, disturbed peripheral and CNS immune regulation associated with a reduction of Treg represents a potential prerequisite for excessive neuroinflammation and early lesion development in canine distemper leukoencephalitis. © 2013 Elsevier B.V. All rights reserved.
The Tregs' world according to GARP.
Battaglia, Manuela; Roncarolo, Maria Grazia
2009-12-01
Naturally occurring CD4+CD25(high) regulatory T cells (nTreg) are essential for maintaining tolerance. FOXP3 has been established as a molecular marker of nTreg; however, FOXP3 cannot be used as a reliable marker for bona fide human nTreg since effector T cells also up-regulate FOXP3 expression upon activation. Despite the important function of nTreg, the underlying molecular mechanisms of nTreg-mediated suppression are far from defined. Previous studies have demonstrated that the TGF-beta latency-associated peptide (LAP) is expressed on the surface of nTreg, and that immunosuppression can be mediated by membrane TGF-beta; however, it remains unknown how LAP is bound to nTreg and what is the functional significance of its selective expression on activated nTreg. The nTreg's world may now change according to GARP, an orphan toll-like receptor composed of leucine-rich repeats. In this issue of the European Journal of Immunology, a study provides further demonstration that GARP is selectively expressed only in activated human nTreg and nTreg cell clones but not in activated effector T cells, confirming GARP as a bona fide nTreg marker. In addition, GARP binds directly to LAP; yet, GARP over-expression is insufficient to induce modification of latent TGF-beta into active TGF-beta further clarifying its role in nTreg-mediated suppression.
Kryczek, Ilona; Wei, Shuang; Zou, Linhua; Altuwaijri, Saleh; Szeliga, Wojciech; Kolls, Jay; Chang, Alfred; Zou, Weiping
2007-06-01
Th17 cells play an active role in inflammation and autoimmune diseases. However, the nature and regulation of Th17 in the context of tumor immunity remain unknown. In this study, we show that parallel to regulatory T (Treg) cells, IL-17(+) CD4(+) and CD8(+) T cells are kinetically induced in multiple tumor microenvironments in mice and humans. Treg cells play a crucial role in tumor immune pathogenesis and temper immune therapeutic efficacy. IL-2 is crucial for the production and function of Treg cells. We now show that IL-2 reduces IL-17(+) T cell differentiation in the tumor microenvironment accompanied with an enhanced Treg cell compartment in vitro and in vivo. Altogether, our work demonstrates a dynamic differentiation of IL-17(+) T cells in the tumor microenvironment, reveals a novel role for IL-2 in controlling the balance between IL-17(+) and Treg cells, and provides new insight of IL-17(+) T cells in tumor immune pathology and therapy.
Perspectives on Regulatory T Cell Therapies
Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S.P.; Buer, Jan
2009-01-01
Summary Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (Treg) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, Treg cell therapies and development of drugs that specifically enhance Treg cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human Treg cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 at different levels, hampered such an approach. Recent identification of the orphan receptor glycoprotein-A repetitions predominant (GARP or LRRC32) as Treg cell-specific key molecule that dominantly controls FOXP3 via a positive feedback loop opens up new perspectives for molecular and cellular therapies. This brief review focuses on the role of GARP as a safeguard of a complex regulatory network of human Treg cells and its implications for regulatory T cell therapies in autoimmunity and graft-versus-host disease. PMID:21076548
Perspectives on Regulatory T Cell Therapies.
Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S P; Buer, Jan
2009-01-01
Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (T(reg)) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, T(reg) cell therapies and development of drugs that specifically enhance T(reg) cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human T(reg) cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 at different levels, hampered such an approach. Recent identification of the orphan receptor glycoprotein-A repetitions predominant (GARP or LRRC32) as T(reg) cell-specific key molecule that dominantly controls FOXP3 via a positive feedback loop opens up new perspectives for molecular and cellular therapies. This brief review focuses on the role of GARP as a safeguard of a complex regulatory network of human T(reg) cells and its implications for regulatory T cell therapies in autoimmunity and graft-versus-host disease.
Curcumin up regulates T helper 1 cells in patients with colon cancer.
Xu, Bin; Yu, Lin; Zhao, Li-Zhong
2017-01-01
The therapy for the advanced colon cancer (Cca) is unsatisfactory currently. To regulate the immune effector cell function has shown a positive effect on the treatment of advanced cancers. This study tests a hypothesis that administration with curcumin converts the Cca patient-derived regulatory T cells (Treg) to T helper (Th) 1 cells. In this study, a group of patients with advanced Cca was recruited into this study. The patients were treated with curcumin. The peripheral Tregs and Th1 cells were assessed by flow cytometry. The results showed that, after the curcumin therapy, the forkhead box protein (Foxp) 3 positive Treg frequency was markedly reduced, the frequency of Th1 cells was significantly increased in Cca patients. Treating with curcumin repressed the Foxp3 gene transcription in Tregs; the Tregs were then converted into Th1 cells. The results also revealed that Foxp3 bound T-bet to prevent IFN-γ expression in CD4 + T cells, which was abolished by treating with curcumin. In conclusion, the administration of curcumin can convert Tregs to Th1 cells via repressing Foxp3 expression and enhancing IFN-γ production.
Regulatory T cells in Allergic Diseases
Rivas, Magali Noval; Chatila, Talal A.
2016-01-01
The pathogenesis of allergic diseases entails an ineffective tolerogenic immune response towards allergens. Regulatory T cells (TReg) cells play a key role in sustaining immune tolerance to allergens, yet mechanisms by which TReg cells fail to maintain tolerance in allergic diseases are not well understood. We review current concepts and established mechanisms regarding how TReg cells regulate different components of allergen-triggered immune responses to promote and maintain tolerance. We will also discuss more recent advances that emphasize the “dual” functionality of TReg cells in allergic diseases: how TReg cells are essential in promoting tolerance to allergens but also how a pro-allergic inflammatory environment can skew TReg cells towards a pathogenic phenotype that aggravates and perpetuates disease. These advances highlight opportunities for novel therapeutic strategies that aim to re-establish tolerance in chronic allergic diseases by promoting TReg cell and stability function. PMID:27596705
A Special Population of Regulatory T Cells Potentiates Muscle Repair
Burzyn, Dalia; Kuswanto, Wilson; Kolodin, Dmitriy; Shadrach, Jennifer L.; Cerletti, Massimiliano; Jang, Young; Sefik, Esen; Tan, Tze Guan; Wagers, Amy J.; Benoist, Christophe; Mathis, Diane
2014-01-01
SUMMARY Long recognized to be potent suppressors of immune responses, Foxp3+CD4+ regulatory T (Treg) cells are being rediscovered as regulators of nonimmunological processes. We describe a phenotypically and functionally distinct population of Treg cells that rapidly accumulated in the acutely injured skeletal muscle of mice, just as invading myeloidlineage cells switched from a proinflammatory to a proregenerative state. A Treg population of similar phenotype accumulated in muscles of genetically dystrophic mice. Punctual depletion of Treg cells during the repair process prolonged the proinflammatory infiltrate and impaired muscle repair, while treatments that increased or decreased Treg activities diminished or enhanced (respectively) muscle damage in a dystrophy model. Muscle Treg cells expressed the growth factor Amphiregulin, which acted directly on muscle satellite cells in vitro and improved muscle repair in vivo. Thus, Treg cells and their products may provide new therapeutic opportunities for wound repair and muscular dystrophies. PMID:24315098
Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo
Hsiao, Huey-Wen; Hsu, Tzu-Sheng; Liu, Wen-Hsien; Hsieh, Wan-Chen; Chou, Ting-Fang; Wu, Yu-Jung; Jiang, Si-Tse; Lai, Ming-Zong
2015-01-01
Application of regulatory T cells (Tregs) in transplantation, autoimmunity and allergy has been extensively explored, but how Foxp3 and Treg stability is regulated in vivo is incompletely understood. Here, we identify a requirement for Deltex1 (DTX1), a contributor to T-cell anergy and Foxp3 protein level maintenance in vivo. Dtx1−/− Tregs are as effective as WT Tregs in the inhibition of CD4+CD25− T-cell activation in vitro. However, the suppressive ability of Dtx1−/− Tregs is greatly impaired in vivo. We find that Foxp3 expression is diminished when Dtx1−/− Tregs are co-transferred with effector T cells in vivo. DTX1 promotes the degradation of HIF-1α. Knockout of HIF-1α restores the Foxp3 stability and rescues the defective suppressive activity in Dtx1−/− Treg cells in vivo. Our results suggest that DTX1 exerts another level of control on Treg stability in vivo by sustaining the expression of Foxp3 protein in Tregs. PMID:25695215
Abd Al Samid, May; Chaudhary, Belal; Khaled, Yazan S; Ammori, Basil J; Elkord, Eyad
2016-03-22
Regulatory T cells (Tregs) comprise numerous heterogeneous subsets with distinct phenotypic and functional features. Identifying Treg markers is critical to investigate the role and clinical impact of various Treg subsets in pathological settings, and also for developing more effective immunotherapies. We have recently shown that non-activated FoxP3-Helios+ and activated FoxP3+/-Helios+ CD4+ T cells express GARP/LAP immunosuppressive markers in healthy donors. In this study we report similar observations in the peripheral blood of patients with pancreatic cancer (PC) and liver metastases from colorectal cancer (LICRC). Comparing levels of different Treg subpopulations in cancer patients and controls, we report that in PC patients, and unlike LICRC patients, there was no increase in Treg levels as defined by FoxP3 and Helios. However, defining Tregs based on GARP/LAP expression showed that FoxP3-LAP+ Tregs in non-activated and activated settings, and FoxP3+Helios+GARP+LAP+ activated Tregs were significantly increased in both groups of patients, compared with controls. This work implies that a combination of Treg-specific markers could be used to more accurately determine expanded Treg subsets and to understand their contribution in cancer settings. Additionally, GARP-/+LAP+ CD4+ T cells made IL-10, and not IFN-γ, and levels of IL-10-secreting CD4+ T cells were elevated in LICRC patients, especially with higher tumor staging. Taken together, our results indicate that investigations of Treg levels in different cancers should consider diverse Treg-related markers such as GARP, LAP, Helios, and others and not only FoxP3 as a sole Treg-specific marker.
Lingblom, C.; Wallander, J.; Ingelsten, M.; Bergquist, H.; Bove, M.; Saalman, R.; Welin, A.
2016-01-01
Summary Eosinophilic esophagitis (EoE) is an antigen‐driven T cell‐mediated chronic inflammatory disease where food and environmental antigens are thought to have a role. Human eosinophils express the immunoregulatory protein galectin‐10 and have T cell suppressive capacity similar to regulatory T cells (Tregs). We hypothesized that one function of eosinophils in EoE might be to regulate the T cell‐driven inflammation in the oesophagus. This was tested by evaluating the suppressive capacity of eosinophils isolated from the blood of adult EoE patients in a mixed lymphocyte reaction. In addition, eosinophilic expression of forkhead box protein 3 (FOXP3), the canonical transcription factor of Tregs, was determined by conventional and imaging flow cytometry, quantitative polymerase chain reaction (qPCR), confocal microscopy and immunoblotting. It was found that blood eosinophils from EoE patients had T cell suppressive capacity, and that a fraction of the eosinophils expressed FOXP3. A comparison of EoE eosinophils with healthy control eosinophils indicated that the patients' eosinophils had inferior suppressive capacity. Furthermore, a higher percentage of the EoE eosinophils expressed FOXP3 protein compared with the healthy eosinophils, and they also had higher FOXP3 protein and mRNA levels. FOXP3 was found in the cytosol and nucleus of the eosinophils from both the patients and healthy individuals, contrasting with the strict nuclear localization of FOXP3 in Tregs. To conclude, these findings suggest that the immunoregulatory function of eosinophils may be impaired in EoE. PMID:27921303
Ray, Avijit; Basu, Sreemanti; Williams, Calvin B; Salzman, Nita H; Dittel, Bonnie N
2012-04-01
B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.
Tang, Shao-tao; Wang, Xin-xing; Cao, Guo-qing; Li, Shuai; Lei, Hai-yan; Zhang, Xi
2015-01-01
Several cell types are considered to be effector cells in bile duct injury in rhesus rotavirus (RRV)-induced experimental biliary atresia (BA). Here, we identified an increased T helper 17 (Th17) cell population in a BA mode. By depleting the Th17 cells, the BA symptoms (onset of jaundice, acholic stools and retarded growth) were attenuated and the survival rate was improved. Furthermore, we found that in mice with BA, the percentage of CD4+CD25highFoxp3+ T regulatory (Treg) cells decreased along with the increased percentage of Th17 cells. However, the absolute numbers of Treg and Th17 cells were both increased in liver of RRV-injected mice compared to saline-injected mice. The proportion of Th17 cells at 7 days post-infection was decreased if Treg cells isolated from normal adult mice, but not Treg cells from the livers of mice with BA, were intraperitoneally transferred on day 5 of life. In vitro experiments also showed that Treg cells from mice with BA had a diminished suppressive effect on Th17 cell generation. To determine the mechanisms, we investigated the production of cytokines in the liver. The level of IL-6, which has been shown to be abundantly secreted by activated dendritic cells (DCs), was remarkably elevated. Importantly, in a Treg/Th17 cell suppression assay, IL-6 was demonstrated to paralyze the Treg cells’ suppressive effect on Th17 cells and eventually the unrestrained increase of Th17 cells contributed to bile duct injury. In conclusion, the DC-regulated Treg-Th17 axis, probably in conjunction with other effector T cells, aggravates progressive inflammatory injury at the time of ductal obstruction. PMID:26325187
Li, Hongbo; Wang, Lin; Pang, Yan; Jiang, Zujun; Liu, Zenghui; Xiao, Haowen; Chen, Haijia; Ge, Xiaohu; Lan, Hai; Xiao, Yang
2017-02-14
The standard treatment for aplastic anemia (AA) in young patients is a matched sibling hematopoietic stem cell transplant. Transfusion of a chronic AA patient with allogeneic bone marrow-derived mesenchymal stromal cells (BMMSCs) is currently being developed as a cell-based therapy, and the safety and efficacy of such transfusions are being continuously improved. Nevertheless, the mechanisms by which BMMSCs exert their therapeutic effects remain to be elucidated. In this study, mesenchymal stromal cells (MSCs) obtained from bone marrow donors were concentrated and intravenously injected into 15 chronic AA patients who had been refractory to prior immunosuppressive therapy. We showed that BMMSCs modulate the levels of Th1, Th2, Th17 and Treg cells, as well as their related cytokines in chronic AA patients. Furthermore, the percentages of Th1 and Th17 cells among the H-MSCs decreased significantly, while the percentage Treg cells increased. The Notch/RBP-J/FOXP3/RORγt pathway was involved in modulating the Treg/Th17 balance after MSCs were transfused in vitro. Additionally, the role played by transfused MSCs in regulating the Treg/Th17 balance via the Notch/RBP-J/FOXP3/RORγt pathway was further confirmed in an AA mouse model. In summary, in humans with chronic AA, BMMSCs regulate the Treg/Th17 balance by affecting the Notch/RBP-J/FOXP3/RORγt pathway.
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation.
Duraes, Fernanda V; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-02-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong
2014-03-01
CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.
Saxena, Amit; Dobaczewski, Marcin; Rai, Vikrant; Haque, Zaffar; Chen, Wei; Li, Na
2014-01-01
Regulatory T cells (Tregs) play a pivotal role in suppressing immune responses regulating behavior and gene expression in effector T cells, macrophages, and dendritic cells. Tregs infiltrate the infarcted myocardium; however, their role the inflammatory and reparative response after myocardial infarction remains poorly understood. We used FoxP3EGFP reporter mice to study Treg trafficking in the infarcted heart and examined the effects of Treg depletion on postinfarction remodeling using an anti-CD25 antibody. Moreover, we investigated the in vitro effects of Tregs on cardiac fibroblast phenotype and function. Low numbers of Tregs infiltrated the infarcted myocardium after 24–72 h of reperfusion. Treg depletion had no significant effects on cardiac dysfunction and scar size after reperfused myocardial infarction but accelerated ventricular dilation and accentuated apical remodeling. Enhanced myocardial dilation in Treg-depleted animals was associated with increased expression of chemokine (C-C motif) ligand 2 and accentuated macrophage infiltration. In vitro, Tregs modulated the cardiac fibroblast phenotype, reducing expression of α-smooth muscle actin, decreasing expression of matrix metalloproteinase-3, and attenuating contraction of fibroblast-populated collagen pads. Our findings suggest that endogenous Tregs have modest effects on the inflammatory and reparative response after myocardial infarction. However, the anti-inflammatory and matrix-preserving properties of Tregs may suggest a role for Treg-based cell therapy in the attenuation of adverse postinfarction remodeling. PMID:25128167
Zeng, Wei-Ping; McFarland, Margaret M; Zhou, Baohua; Holtfreter, Silva; Flesher, Susan; Cheung, Ambrose; Mallick, Avishek
2017-02-01
T H 2 responses are implicated in asthma pathobiology. Epidemiologic studies have found a positive association between asthma and exposure to staphylococcal enterotoxins. We used a mouse model of asthma to determine whether staphylococcal enterotoxins promote T H 2 differentiation of allergen-specific CD4 conventional T (Tcon) cells and asthma by activating allergen-nonspecific regulatory T (Treg) cells to create a T H 2-polarizing cytokine milieu. Ovalbumin (OVA)-specific, staphylococcal enterotoxin A (SEA)-nonreactive naive CD4 Tcon cells were cocultured with SEA-reactive allergen-nonspecific Treg or CD4 Tcon cells in the presence of OVA and SEA. The OVA-specific CD4 T cells were then analyzed for IL-13 and IFN-γ expression. SEA-activated Treg cells were analyzed for the expression of the T H 2-polarizing cytokine IL-4 and the T-cell activation markers CD69 and CD62L. For asthma induction, mice were intratracheally sensitized with OVA or cat dander extract (CDE) alone or together with SEA and then challenged with OVA or CDE. Mice were also subject to transient Treg cell depletion before sensitization with OVA plus SEA. Asthma features and T H 2 differentiation in these mice were analyzed. SEA-activated Treg cells induced IL-13 but suppressed IFN-γ expression in OVA-specific CD4 Tcon cells. SEA-activated Treg cells expressed IL-4, upregulated CD69, and downregulated CD62L. Sensitization with OVA plus SEA but not OVA alone induced asthma, and SEA exacerbated asthma induced by CDE. Depletion of Treg cells abolished these effects of SEA and IL-13 expression in OVA-specific T cells. SEA promoted T H 2 responses of allergen-specific T cells and asthma pathogenesis by activating Treg cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma
Hu-Lieskovan, Siwen; Mok, Stephen; Moreno, Blanca Homet; Tsoi, Jennifer; Faja, Lidia Robert; Goedert, Lucas; Pinheiro, Elaine M.; Koya, Richard C.; Graeber, Thomas; Comin-Anduix, Begoña; Ribas, Antoni
2016-01-01
Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA-4 antibody ipilimumab was terminated early due to substantial liver toxicities. MEK inhibitors can potentiate the MAPK inhibition in BRAF mutant cells, while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAFV600E driven melanoma, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors and improved in vivo cytotoxicity. Single agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and MHC expression, and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested combination of dabrafenib, trametinib with anti-PD1 therapy in SM1 tumors, and observed superior anti-tumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAFV600E mutant metastatic melanoma. PMID:25787767
Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer.
Santagata, Sara; Napolitano, Maria; D'Alterio, Crescenzo; Desicato, Sonia; Maro, Salvatore Di; Marinelli, Luciana; Fragale, Alessandra; Buoncervello, Maria; Persico, Francesco; Gabriele, Lucia; Novellino, Ettore; Longo, Nicola; Pignata, Sandro; Perdonà, Sisto; Scala, Stefania
2017-09-29
With the intent to identify biomarkers in renal cell carcinoma (RCC) the functional status of T-regulatory cells (Tregs) was investigated in primary RCC. Tregs were isolated from tumoral-(TT), peritumoral tissue-(PT) and peripheral blood-(PB) of 42 primary RCC patients and function evaluated through effector T cells (Teff) proliferation, cytokines release and demethylation of Treg Specific Region (TSDR). The highest value of Tregs was detected in TT with the uppermost amount of effector-Tregs-(CD4 + CD25 hi FOXP3 hi CD45RA - ). PB-RCC Tregs efficiently suppress Teff proliferation compared to healthy donor (HD)-Tregs and, at the intrapatient evaluation, TT-derived Tregs were the most suppressive. Higher demethylation TSDR was detected in TT- and PB-RCC Tregs vs HD-Tregs ( P <0,001). CXCR4 is highly expressed on Tregs, thus we wished to modulate Tregs function through CXCR4 inhibition. CXCR4 antagonism, elicited by a new peptidic antagonist, Peptide-R29, efficiently reversed Tregs suppression of Teff proliferation. Thus Tregs functional evaluation precisely reflects Tregs status and may be a reliable biomarker of tumoral immune response. In addition, treatment with CXCR4 antagonist, impairing Tregs function, could improve the anticancer immune response, in combination with conventional therapy and/or immunotherapy such as checkpoints inhibitors.
Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer
Santagata, Sara; Napolitano, Maria; D'Alterio, Crescenzo; Desicato, Sonia; Maro, Salvatore Di; Marinelli, Luciana; Fragale, Alessandra; Buoncervello, Maria; Persico, Francesco; Gabriele, Lucia; Novellino, Ettore; Longo, Nicola; Pignata, Sandro; Perdonà, Sisto; Scala, Stefania
2017-01-01
With the intent to identify biomarkers in renal cell carcinoma (RCC) the functional status of T-regulatory cells (Tregs) was investigated in primary RCC. Tregs were isolated from tumoral-(TT), peritumoral tissue-(PT) and peripheral blood-(PB) of 42 primary RCC patients and function evaluated through effector T cells (Teff) proliferation, cytokines release and demethylation of Treg Specific Region (TSDR). The highest value of Tregs was detected in TT with the uppermost amount of effector-Tregs-(CD4+CD25hiFOXP3hiCD45RA-). PB-RCC Tregs efficiently suppress Teff proliferation compared to healthy donor (HD)-Tregs and, at the intrapatient evaluation, TT-derived Tregs were the most suppressive. Higher demethylation TSDR was detected in TT- and PB-RCC Tregs vs HD-Tregs (P <0,001). CXCR4 is highly expressed on Tregs, thus we wished to modulate Tregs function through CXCR4 inhibition. CXCR4 antagonism, elicited by a new peptidic antagonist, Peptide-R29, efficiently reversed Tregs suppression of Teff proliferation. Thus Tregs functional evaluation precisely reflects Tregs status and may be a reliable biomarker of tumoral immune response. In addition, treatment with CXCR4 antagonist, impairing Tregs function, could improve the anticancer immune response, in combination with conventional therapy and/or immunotherapy such as checkpoints inhibitors. PMID:29100374
Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse.
Reichardt, Peter; Dornbach, Bastian; Rong, Song; Beissert, Stefan; Gueler, Faikah; Loser, Karin; Gunzer, Matthias
2007-09-01
Naive B cells are ineffective antigen-presenting cells and are considered unable to activate naive T cells. However, antigen-specific contact of these cells leads to stable cell pairs that remain associated over hours in vivo. The physiologic role of such pairs has not been evaluated. We show here that antigen-specific conjugates between naive B cells and naive T cells display a mature immunologic synapse in the contact zone that is absent in T-cell-dendritic-cell (DC) pairs. B cells induce substantial proliferation but, contrary to DCs, no loss of L-selectin in T cells. Surprisingly, while DC-triggered T cells develop into normal effector cells, B-cell stimulation over 72 hours induces regulatory T cells inhibiting priming of fresh T cells in a contact-dependent manner in vitro. In vivo, the regulatory T cells home to lymph nodes where they potently suppress immune responses such as in cutaneous hypersensitivity and ectopic allogeneic heart transplant rejection. Our finding might help to explain old observations on tolerance induction by B cells, identify the mature immunologic synapse as a central functional module of this process, and suggest the use of naive B-cell-primed regulatory T cells, "bTregs," as a useful approach for therapeutic intervention in adverse adaptive immune responses.
[Autologous regulatory T cells can suppress the proliferation of lymphoma cell line in vitro].
Ying, Zhi-Tao; Guo, Jun; Ren, Jun; Kong, Yan; Yuan, Zhi-Hong; Liu, Xi-Juan; Zhang, Chen; Zheng, Wen; Song, Yu-Qin; Zhang, Yun-Tao; Zhu, Jun
2009-06-01
This study was aimed to investigate the suppressive effect of regulatory T (Treg) cells on the T cell lymphoma EL4 cell line and to explore its mechanism. C57BL/6 Mouse Treg cells were isolated by MACS (magnetic cell sorting). The purity and the expression of Foxp3 were detected by flow cytometry. The suppressive effect of sorted Treg cells on EL4 cells was detected by MTT assay. The secretion of TGF-beta1 and IL-10 was examined by enzyme-linked immunosorbent assay (ELISA). The results showed that CD4(+)CD25(+) T cells could be successfully isolated by MACS with the purity reaching 91.6% and the expression level of Foxp3 was 78.9%. The ratio of viable cells was more than 95%. Regulatory T cells could suppress the proliferation of EL4 cells effectively in the presence of antigen presenting cells (APCs). And the suppressive effect was most significant at 1:1 ratio. In addition, the suppression still existed without APCs. TGF-beta1 and IL-10 could not be detected by ELISA. It is concluded that the Treg cells can suppress T lymphoma cell in vitro. The suppressive effect of Treg cells works in dose-dependent manner, but not in cytokine-dependent manner. The mechanism of this suppression may take effect through cell-cell contact.
Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo.
Ulges, Alexander; Klein, Matthias; Reuter, Sebastian; Gerlitzki, Bastian; Hoffmann, Markus; Grebe, Nadine; Staudt, Valérie; Stergiou, Natascha; Bohn, Toszka; Brühl, Till-Julius; Muth, Sabine; Yurugi, Hajime; Rajalingam, Krishnaraj; Bellinghausen, Iris; Tuettenberg, Andrea; Hahn, Susanne; Reißig, Sonja; Haben, Irma; Zipp, Frauke; Waisman, Ari; Probst, Hans-Christian; Beilhack, Andreas; Buchou, Thierry; Filhol-Cochet, Odile; Boldyreff, Brigitte; Breloer, Minka; Jonuleit, Helmut; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias
2015-03-01
The quality of the adaptive immune response depends on the differentiation of distinct CD4(+) helper T cell subsets, and the magnitude of an immune response is controlled by CD4(+)Foxp3(+) regulatory T cells (Treg cells). However, how a tissue- and cell type-specific suppressor program of Treg cells is mechanistically orchestrated has remained largely unexplored. Through the use of Treg cell-specific gene targeting, we found that the suppression of allergic immune responses in the lungs mediated by T helper type 2 (TH2) cells was dependent on the activity of the protein kinase CK2. Genetic ablation of the β-subunit of CK2 specifically in Treg cells resulted in the proliferation of a hitherto-unexplored ILT3(+) Treg cell subpopulation that was unable to control the maturation of IRF4(+)PD-L2(+) dendritic cells required for the development of TH2 responses in vivo.
Ateyah, Mohamed E; Hashem, Mona E; Abdelsalam, Mohamed
2017-02-01
Acute B lymphoblastic leukaemia (B-ALL) is the most common type of childhood malignancy worldwide but little is known of its origin. Recently, many studies showed both a high incidence of Epstein-Barr virus (EBV) infection and high levels of CD4 + CD25 + Foxp3 + (Treg cells) in children with B-ALL. In our study, we investigated the possible relationship between EBV infection and the onset of B-ALL, and its relation to expression of CD4 + , CD25 high+ Foxp3+ T regulatory cells. We analysed expression and mean fluorescence intensity (MFI) of Treg cells in peripheral blood of 45 children with B-ALL and in 40 apparently healthy children as a control, using flow cytometry. Serum anti-EBV viral capsid antigen (VCA) IgG, anti-EBV nuclear antigen (EBNA) IgG (for latent infection) and anti-EBV VCA IgM (for acute infection) were investigated using ELISA. Analysis of the Treg cells population in patients and controls revealed that expression of CD4 + CD25 high+ T lymphocytes was higher in patients than in controls (mean±SD 15.7±4.1 and 10.61±2.6 in patients and controls, respectively, and MFI of Foxp3 was 30.1±7.1 and 16.7±3.7 in patients and controls, respectively (p<0.001)). There was a high incidence of latent EBV infection in patients (31%) compared with controls (10%) while the incidence of acute infection was 12% in patients and 0% in the control group. To study the role of latent EBV infection in the pathogenesis of acute B-ALL, OR was calculated (OR=4.06, coefficient index 1.2-13.6). These findings suggest a possible role for Treg cells and EBV in the pathogenesis of B-ALL. Further studies are needed on the possible mechanisms of tumour genesis related to Treg cells and EBV in children with B-ALL. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
LI, MINGYUE; XING, SHUGANG; ZHANG, HAIYING; SHANG, SIQI; LI, XIANGXIANG; REN, BO; LI, GAIYUN; CHANG, XIAONA; LI, YILEI; LI, WEI
2016-01-01
Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) treatment is effective for the treatment of primary tumors, but not sufficient for the treatment of metastatic tumors, likely owing to the effects of the tumor microenvironment. In this study, we aimed to determine the therapeutic effects of combined treatment with a matrix metalloproteinase (MMP) inhibitor (MMPI) and anti-CTLA-4 antibody in a breast cancer model in mice. Interestingly, combined treatment with MMPI and anti-CTLA-4 antibody delayed tumor growth and reduced lung and liver metastases compared with anti-CTLA-4 alone or vehicle treatment. The functions of the liver and kidney in mice in the different groups did not differ significantly compared with that in normal mice. The CD8+/CD4+ ratio in T cells in the spleen and tumor were increased after monotherapy or combined anti-CTLA-4 antibody plus MMPI therapy compared with that in vehicle-treated mice. Anti-CTLA-4 antibody plus MMPI therapy reduced the percentage of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and decreased the Treg/Th17 cell ratio in the spleen compared with those in the vehicle-treated group. Additionally, anti-CTLA-4 antibody plus MMPI therapy reduced the percentages of regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and Th17 cells in tumors compared with that in the vehicle-treated group. Moreover, combined treatment with MMPI and anti-CTLA-4 antibody reduced the microvessel density (MVD) in tumors compared with that in vehicle or MMPI-treated mice. There was a negative correlation between MVD and the CD8+ T cell percentage, CD4+ T cell percentage, and CD8+/CD4+ T cell ratio, but a positive correlation with Tregs, Th17 cells, Treg/Th17 cell ratio, and MDSCs. Thus, these data demonstrated that addition of MMPI enhanced the effects of anti-CTLA-4 antibody treatment in a mouse model of breast cancer by delaying tumor growth and reducing metastases. PMID:26752000
Chen, Ying; Liu, Fangwei; Weng, Dong; Song, Laiyu; Li, Cuiying; Tang, Wen; Yu, Ye; Dai, Wujing; Chen, Jie
2013-01-01
1,3-β-glucan is considered a fungal biomarker and exposure to this agent can induce lung inflammation. Complement activation plays an important role in early immune responses to β-glucan. Previous studies showed that T-regulatory cells (Tregs) regulated 1,3-β-glucan-induced lung inflammation by modulating the maintenance of immune homeostasis in the lung. Both interleukin (IL)-17 and TH17 cells play pivotal roles in inflammation associated with lung disease and share reciprocal developmental pathways with Tregs. However, the effect of Tregs on IL-17 and TH17 responses in 1,3-β-glucan-induced lung inflammation remains unclear. In this study, mice were exposed to 1,3-β-glucan by intratracheal instillation. To investigate the effects of Tregs on IL-17 and TH17 cells in the induced lung inflammation, a Treg-depleted mice model was generated by administration of anti-CD25 mAb. The results indicated that Treg-depleted mice showed more severe pathological inflammatory changes in lung tissues. Tregs depletion reduced IL-17 expression in these tissues, and increased those of TH1 cytokines. The expression of IL-17 increased at the early phase of the inflammation response. There were no significant effects of the Tregs on expression of RORγt and IL-6 or the amount of CD4(+)IL-17(+) cells in the lungs. When taken together, the late phase of the 1,3-β-glucan-induced inflammatory response in the mice was primarily mediated by TH1 cytokines rather than IL-17. In contrast, the early phase of the inflammatory response might be mediated in part by IL-17 along with activated complement. Tregs might be required for IL-17 expression during the late phase inflammatory response in mice. The increased IL-17 mRNA observed during the 1,3-β-glucan induced inflammatory response were attributed to cells other than TH17 cells.
Koncz, Gabor; Hueber, Anne-Odile
2012-01-01
Cell death receptors have crucial roles in the regulation of immune responses. Here we review recent in vivo data confirming that the Fas death receptor (TNFSR6) on B cells is important for the regulation of autoimmunity since the impairment of only Fas function on B cells results in uncontrolled autoantibody production and autoimmunity. Fas plays a role in the elimination of the non-specific and autoreactive B cells in germinal center, while during the selection of antigen-specific B cells different escape signals ensure the resistance to Fas-mediated apoptosis. Antigen-specific survival such as BCR or MHCII signal or coreceptors (CD19) cooperating with BCR inhibits the formation of death inducing signaling complex. Antigen-specific survival can be reinforced by antigen-independent signals of IL-4 or CD40 overproducing the anti-apoptotic members of the Bcl-2 family proteins. PMID:22848207
The quantal theory of how the immune system discriminates between "self and non-self"
Smith, Kendall A
2004-12-17
In the past 50 years, immunologists have accumulated an amazing amount of information as to how the immune system functions. However, one of the most fundamental aspects of immunity, how the immune system discriminates between self vs. non-self, still remains an enigma. Any attempt to explain this most intriguing and fundamental characteristic must account for this decision at the level of the whole immune system, but as well, at the level of the individual cells making up the immune system. Moreover, it must provide for a molecular explanation as to how and why the cells behave as they do. The "Quantal Theory", proposed herein, is based upon the "Clonal Selection Theory", first proposed by Sir McFarland Burnet in 1955, in which he explained the remarkable specificity as well as diversity of recognition of everything foreign in the environment. The "Quantal Theory" is built upon Burnet's premise that after antigen selection of cell clones, a proliferative expansion of the selected cells ensues. Furthermore, it is derived from experiments which indicate that the proliferation of antigen-selected cell clones is determined by a quantal, "all-or-none", decision promulgated by a critical number of cellular receptors triggered by the T Cell Growth Factor (TCGF), interleukin 2 (IL2). An extraordinary number of experiments reported especially in the past 20 years, and detailed herein, indicate that the T cell Antigen Receptor (TCR) behaves similarly, and also that there are several critical numbers of triggered TCRs that determine different fates of the T cells. Moreover, the fates of the cells appear ultimately to be determined by the TCR triggering of the IL2 and IL2 receptor (IL2R) genes, which are also expressed in a very quantal fashion. The "Quantal Theory" states that the fundamental decisions of the T cell immune system are dependent upon the cells receiving a critical number of triggered TCRs and IL2Rs and that the cells respond in an all-or-none fashion. The "Quantal Theory" accounts fully for the development of T cells in the thymus, and such fundamental cellular fates as both "positive" and "negative" selection, as well as the decision to differentiate into a "Regulatory T cell" (T-Reg). In the periphery, the "Quantal Theory" accounts for the decision to proliferate or not in response to the presence of an antigen, either non-self or self, or to differentiate into a T-Reg. Since the immune system discriminates between self and non-self antigens by the accumulated number of triggered TCRs and IL2Rs, therapeutic manipulation of the determinants of these quantal decisions should permit new approaches to either enhance or dampen antigen-specific immune responses.
Nakahara, Mami; Nagayama, Yuji; Ichikawa, Tatsuki; Yu, Liping; Eisenbarth, George S; Abiru, Norio
2011-09-01
The nonobese diabetic (NOD) mouse spontaneously develops several autoimmune diseases, including type 1 diabetes and to a lesser extent thyroiditis and sialitis. Imbalance between effector T cells (Teffs) and regulatory T cells (Tregs) has recently been proposed as a mechanism for the disease pathogenesis in NOD mice, but previous studies have shown the various outcomes by different timing and methods of Treg-depletion. This study was, therefore, designed to compare the consequences of Treg-depletion by the same method (anti-CD25 antibody) on the spectrum of organ-specific autoimmune diseases in NOD mice of different ages. Treg-depletion by anti-CD25 antibody at 10 days of age accelerated development of all three diseases we examined (insulitis/diabetes, thyroiditis, and sialitis); Treg-depletion at 4 weeks of age accelerated only diabetes but not thyroiditis or sialitis; and Treg-depletion at 12 weeks of age hastened only development of thyroiditis and exhibited little influence on diabetes or sialitis. Increased levels of insulin autoantibodies (IAA) were, however, observed in mice depleted of Tregs at 10 days of age, not in those at 4 weeks. Thus, the consequences of Treg-depletion on the spectrum of organ-specific autoimmune diseases depend on the timing of anti-CD25 antibody injection in NOD mice. Aging gradually tips balance between Teffs and Tregs toward Teff-dominance for diabetes, but this balance for thyroiditis and sialitis likely alters more intricately. Our data also suggest that the levels of IAA are not necessarily correlated with diabetes development.
Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells.
Hernandez, Amanda L; Kitz, Alexandra; Wu, Chuan; Lowther, Daniel E; Rodriguez, Donald M; Vudattu, Nalini; Deng, Songyan; Herold, Kevan C; Kuchroo, Vijay K; Kleinewietfeld, Markus; Hafler, David A
2015-11-02
FOXP3+ Tregs are central for the maintenance of self-tolerance and can be defective in autoimmunity. In multiple sclerosis and type-1 diabetes, dysfunctional self-tolerance is partially mediated by a population of IFNγ-secreting Tregs. It was previously reported that increased NaCl concentrations promote the induction of proinflammatory Th17 cells and that high-salt diets exacerbate experimental models of autoimmunity. Here, we have shown that increasing NaCl, either in vitro or in murine models via diet, markedly impairs Treg function. NaCl increased IFNγ secretion in Tregs, and reducing IFNγ - either by neutralization with anti-IFNγ antibodies or shRNA-mediated knockdown - restored suppressive activity in Tregs. The heightened IFNγ secretion and loss of Treg function were mediated by the serum/glucocorticoid-regulated kinase (SGK1). A high-salt diet also impaired human Treg function and was associated with the induction of IFNγ-secreting Tregs in a xenogeneic graft-versus-host disease model and in adoptive transfer models of experimental colitis. Our results demonstrate a putative role for an environmental factor that promotes autoimmunity by inducing proinflammatory responses in CD4 effector cells and Treg pathways.
Regulatory T Lymphocytes in Periodontitis: A Translational View
2018-01-01
Periodontitis is a chronic immuno-inflammatory disease in which the disruption of the balance between host and microbiota interactions is key to the onset and progression of the disease. The immune homeostasis associated with periodontal health requires a regulated immuno-inflammatory response, during which the presence of regulatory T cells (Tregs) is essential to ensure a controlled response that minimizes collateral tissue damage. Since Tregs modulate both innate and adaptive immunity, pathological conditions that may resolve by the acquisition of immuno-tolerance, such as periodontitis, may benefit by the use of Treg immunotherapy. In recent years, many strategies have been proposed to take advantage of the immuno-suppressive capabilities of Tregs as immunotherapy, including the ex vivo and in vivo manipulation of the Treg compartment. Ongoing research in both basic and translational studies let us gain a better understanding of the diversity of Treg subsets, their phenotypic plasticity, and suppressive functions, which can be used as a substrate for new immunotherapies. Certainly, as our knowledge of Treg biology increases, we will be capable to develop new therapies designed to enhance the stability and function of Tregs during periodontitis.
The Alternative NF-κB Pathway in Regulatory T Cell Homeostasis and Suppressive Function.
Grinberg-Bleyer, Yenkel; Caron, Rachel; Seeley, John J; De Silva, Nilushi S; Schindler, Christian W; Hayden, Matthew S; Klein, Ulf; Ghosh, Sankar
2018-04-01
CD4 + Foxp3 + regulatory T cells (Tregs) are essential regulators of immune responses. Perturbation of Treg homeostasis or function can lead to uncontrolled inflammation and autoimmunity. Therefore, understanding the molecular mechanisms involved in Treg biology remains an active area of investigation. It has been shown previously that the NF-κB family of transcription factors, in particular, the canonical pathway subunits, c-Rel and p65, are crucial for the development, maintenance, and function of Tregs. However, the role of the alternative NF-κB pathway components, p100 and RelB, in Treg biology remains unclear. In this article, we show that conditional deletion of the p100 gene, nfkb2 , in Tregs, resulted in massive inflammation because of impaired suppressive function of nfkb2 -deficient Tregs. Surprisingly, mice lacking RelB in Tregs did not exhibit the same phenotype. Instead, deletion of both relb and nfkb2 rescued the inflammatory phenotype, demonstrating an essential role for p100 as an inhibitor of RelB in Tregs. Our data therefore illustrate a new role for the alternative NF-κB signaling pathway in Tregs that has implications for the understanding of molecular pathways driving tolerance and immunity. Copyright © 2018 by The American Association of Immunologists, Inc.
Pido-Lopez, Jeffrey; Kwok, William W.; Mitchell, Timothy J.; Heyderman, Robert S.; Williams, Neil A.
2011-01-01
The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4+ T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4+ T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25hi T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4+ T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines. PMID:22144893
Beers, David R; Zhao, Weihua; Wang, Jinghong; Zhang, Xiujun; Wen, Shixiang; Neal, Dan; Thonhoff, Jason R; Alsuliman, Abdullah S; Shpall, Elizabeth J; Rezvani, Katy; Appel, Stanley H
2017-03-09
Neuroinflammation is a pathological hallmark of ALS in both transgenic rodent models and patients, and is characterized by proinflammatory T lymphocytes and activated macrophages/microglia. In ALS mouse models, decreased regulatory T lymphocytes (Tregs) exacerbate the neuroinflammatory process, leading to accelerated motoneuron death and shortened survival; passive transfer of Tregs suppresses the neuroinflammation and prolongs survival. Treg numbers and FOXP3 expression are also decreased in rapidly progressing ALS patients. A key question is whether the marked neuroinflammation in ALS can be attributed to the impaired suppressive function of ALS Tregs in addition to their decreased numbers. To address this question, T lymphocyte proliferation assays were performed. Compared with control Tregs, ALS Tregs were less effective in suppressing responder T lymphocyte proliferation. Although both slowly and rapidly progressing ALS patients had dysfunctional Tregs, the greater the clinically assessed disease burden or the more rapidly progressing the patient, the greater the Treg dysfunction. Epigenetically, the percentage methylation of the Treg-specific demethylated region was greater in ALS Tregs. After in vitro expansion, ALS Tregs regained suppressive abilities to the levels of control Tregs, suggesting that autologous passive transfer of expanded Tregs might offer a novel cellular therapy to slow disease progression.
Qian, Jinfeng; Zhang, Na; Lin, Jing; Wang, Caiyan; Pan, Xinyao; Chen, Lanting; Li, Dajin; Wang, Ling
2018-05-13
The aim of the current study was to determine the pattern of immune cells and related functional molecules in peripheral blood and at the maternal-fetal interface in women with unexplained recurrent spontaneous abortion (URSA). In part I, 155 women were included and divided into four groups: non-pregnant controls with no history of URSA (NPCs), pregnant controls with no history of URSA (PCs), non-pregnant women with a history of URSA (NPUs), and pregnant women with a history of URSA (PUs). Venous blood samples were collected and analyzed. In part II, 35 subjects with URSA and 40 subjects in the early stage of normal pregnancy who chose to undergo an abortion were recruited. Samples of the decidua were collected, and the proportion of immune cells and the expression of related molecules were evaluated. Peripheral regulatory T cells (Treg cells) increased in PCs compared to NPCs, but in women with URSA the flux of Treg cells disappeared when pregnancy occurred. Levels of interleukin-10 (IL-10), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and IL-17 and the ratio of Th17/Treg cells in peripheral blood remained stable among the four groups. At the maternal-fetal interface, the percentage of Treg cells, the level of CTLA-4 of CD4 + CD25 + CD127 lo cells and CD4 + Foxp3 + cells were significantly lower in women with URSA compared to controls, respectively. Levels of transforming growth factor-β1 (TGF-β1) mRNA and protein in the decidua significantly decreased in URSA while levels of IL-6 and tumor necrosis factor-ɑ (TNF-ɑ) and the Th17/Treg ratio significantly increased. In conclusion, peripheral Treg cells did not increase in pregnant women with URSA. The decrease in Treg cells and levels of CTLA-4 and TGF-β1 and as well as the increase in levels of IL-6 and TNF-ɑ, and the Th17/Treg ratio at the maternal-fetal interface might contribute to inappropriate maternal-fetal immune tolerance in URSA.
He, Lijie; Wang, Jing; Chang, Dandan; Lv, Dandan; Li, Haina; Zhang, Heping
2018-02-01
The present study investigated the aptness of assessing the levels of progastrin-releasing peptide (Pro-GRP) in addition to the T lymphocyte subpopulation in lung cancer patients prior to and after therapy for determining immune function. A total of 45 patients with lung cancer were recruited and stratified in to a non-small cell lung cancer (NSCLC) and an SCLC group. Prior to and after treatment by combined biological therapy comprising chemotherapy or chemoradiotherapy followed by three cycles of retransformation of autologous dendritic cells-cytokine-induced killer cells (DC-CIK), the peripheral blood was assessed for populations of CD3 + , CD4 + , CD8 + and regulatory T cells (Treg) by flow cytometry, and for the levels of pro-GRP, carcinoembryonic antigen, neuron-specific enolase and Cyfra 21-1. The results revealed that in NSCLC patients, CD8 + T lymphocytes and Treg populations were decreased, and that CD3 + and CD4 + T lymphocytes as well as the CD4 + /CD8 + ratio were increased after therapy; in SCLC patients, CD3 + , CD4 + and CD8 + T lymphocytes were increased, while Treg cells were decreased after treatment compared with those at baseline. In each group, Pro-GRP was decreased compared with that prior to treatment, and in the SCLC group only, an obvious negative correlation was identified between Pro-GRP and the T lymphocyte subpopulation. Furthermore, a significant correlation between Pro-GRP and Tregs was identified in each group. In conclusion, the present study revealed that the immune function of the patients was improved after biological therapy. The results suggested a significant correlation between Pro-GRP and the T lymphocyte subpopulation in SCLC patients. Detection of Pro-GRP may assist the early clinical diagnosis of SCLC and may also be used to assess the immune regulatory function of patients along with the T lymphocyte subpopulation. Biological therapy with retransformed autologous DC-CIK was indicated to enhance the specific elimination of tumor cells and improve the immune surveillance function in cancer patients, and also restrained the immune evasion of the tumor, leading to decreased Pro-GRP levels.
Carbo, Adria; Hontecillas, Raquel; Kronsteiner, Barbara; Viladomiu, Monica; Pedragosa, Mireia; Lu, Pinyi; Philipson, Casandra W.; Hoops, Stefan; Marathe, Madhav; Eubank, Stephen; Bisset, Keith; Wendelsdorf, Katherine; Jarrah, Abdul; Mei, Yongguo; Bassaganya-Riera, Josep
2013-01-01
Differentiation of CD4+ T cells into effector or regulatory phenotypes is tightly controlled by the cytokine milieu, complex intracellular signaling networks and numerous transcriptional regulators. We combined experimental approaches and computational modeling to investigate the mechanisms controlling differentiation and plasticity of CD4+ T cells in the gut of mice. Our computational model encompasses the major intracellular pathways involved in CD4+ T cell differentiation into T helper 1 (Th1), Th2, Th17 and induced regulatory T cells (iTreg). Our modeling efforts predicted a critical role for peroxisome proliferator-activated receptor gamma (PPARγ) in modulating plasticity between Th17 and iTreg cells. PPARγ regulates differentiation, activation and cytokine production, thereby controlling the induction of effector and regulatory responses, and is a promising therapeutic target for dysregulated immune responses and inflammation. Our modeling efforts predict that following PPARγ activation, Th17 cells undergo phenotype switch and become iTreg cells. This prediction was validated by results of adoptive transfer studies showing an increase of colonic iTreg and a decrease of Th17 cells in the gut mucosa of mice with colitis following pharmacological activation of PPARγ. Deletion of PPARγ in CD4+ T cells impaired mucosal iTreg and enhanced colitogenic Th17 responses in mice with CD4+ T cell-induced colitis. Thus, for the first time we provide novel molecular evidence in vivo demonstrating that PPARγ in addition to regulating CD4+ T cell differentiation also plays a major role controlling Th17 and iTreg plasticity in the gut mucosa. PMID:23592971
Miller, Michelle M.; Fogle, Jonathan E.; Ross, Peter
2013-01-01
Abstract Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP+TGFb+ Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP+ Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb+ Treg-mediated T cell immune suppression during lentivirus infection. PMID:23373523
Miller, Michelle M; Fogle, Jonathan E; Ross, Peter; Tompkins, Mary B
2013-04-01
Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP(+)TGFb(+) Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP(+) Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb(+) Treg-mediated T cell immune suppression during lentivirus infection.
Liu, Zhuqing; McMichael, Elizabeth L; Shayan, Gulidanna; Li, Jing; Chen, Kevin; Srivastava, Raghvendra M; Kane, Lawrence P; Lu, Binfeng; Ferris, Robert L
2018-04-30
Regulatory T (Treg) cells are important suppressive cells among tumor infiltrating lymphocytes (TIL). Treg express the well-known immune checkpoint receptor PD-1, which is reported to mark "exhausted" Treg with lower suppressive function. T cell immunoglobulin mucin (Tim)-3, a negative regulator of Th1 immunity, is expressed by a sizeable fraction of TIL Tregs, but the functional status of Tim-3+ Tregs remains unclear. CD4+CTLA-4+CD25high Treg were sorted from freshly excised head and neck squamous cell carcinoma (HNSCC) TIL based on Tim-3 expression. Functional and phenotypic features of these Tim-3+ and Tim-3- TIL Tregs were tested by in vitro suppression assays and multi-color flow cytometry. Gene expression profiling and NanoString analysis of Tim-3+ TIL Treg were performed. A murine HNSCC tumor model was used to test the effect of anti-PD-1 immunotherapy on Tim-3+ Treg. Results: Despite high PD-1 expression, Tim-3+ TIL Treg displayed a greater capacity to inhibit naïve T cell proliferation than Tim-3- Treg. Tim-3+ Treg from human HNSCC TIL also displayed an effector-like phenotype, with more robust expression of CTLA-4, PD-1, CD39 and IFN-γ receptor. Exogenous IFN-γ treatment could partially reverse the suppressive function of Tim-3+ TIL Treg. Anti-PD-1 immunotherapy downregulated Tim-3 expression on Tregs isolated from murine HNSCC tumors, and this treatment reversed the suppressive function of HNSCC TIL Tregs. Tim-3+ Treg are functionally and phenotypically distinct in HNSCC TIL, and are highly effective at inhibiting T cell proliferation despite high PD-1 expression. IFN-γ induced by anti-PD-1 immunotherapy may be beneficial by reversing Tim-3+ Treg suppression. Copyright ©2018, American Association for Cancer Research.
Gu, Ai-Di; Wang, Yunqi; Lin, Lin; Zhang, Song S; Wan, Yisong Y
2012-01-17
TGF-β modulates immune response by suppressing non-regulatory T (Treg) function and promoting Treg function. The question of whether TGF-β achieves distinct effects on non-Treg and Treg cells through discrete signaling pathways remains outstanding. In this study, we investigated the requirements of Smad-dependent and -independent TGF-β signaling for T-cell function. Smad2 and Smad3 double deficiency in T cells led to lethal inflammatory disorder in mice. Non-Treg cells were spontaneously activated and produced effector cytokines in vivo on deletion of both Smad2 and Smad3. In addition, TGF-β failed to suppress T helper differentiation efficiently and to promote induced Treg generation of non-Treg cells lacking both Smad2 and Smad3, suggesting that Smad-dependent signaling is obligatory to mediate TGF-β function in non-Treg cells. Unexpectedly, however, the development, homeostasis, and function of Treg cells remained intact in the absence of Smad2 and Smad3, suggesting that the Smad-independent pathway is important for Treg function. Indeed, Treg-specific deletion of TGF-β-activated kinase 1 led to failed Treg homeostasis and lethal immune disorder in mice. Therefore, Smad-dependent and -independent TGF-β signaling discretely controls non-Treg and Treg function to modulate immune tolerance and immune homeostasis.
Okano, Takaichi; Saegusa, Jun; Nishimura, Keisuke; Takahashi, Soshi; Sendo, Sho; Ueda, Yo; Morinobu, Akio
2017-02-10
Recent studies have shown that cellular metabolism plays an important role in regulating immune cell functions. In immune cell differentiation, both interleukin-17-producing T (Th17) cells and dendritic cells (DCs) exhibit increased glycolysis through the upregulation of glycolytic enzymes, such as hexokinase-2 (HK2). Blocking glycolysis with 2-deoxyglucose was recently shown to inhibit Th17 cell differentiation while promoting regulatory T (Treg) cell generation. However, 2-DG inhibits all isoforms of HK. Thus, it is unclear which isoform has a critical role in Th17 cell differentiation and in rheumatoid arthritis (RA) pathogenesis. Here we demonstrated that 3-bromopyruvate (BrPA), a specific HK2 inhibitor, significantly decreased the arthritis scores and the histological scores in SKG mice, with a significant increase in Treg cells, decrease in Th17 cells, and decrease in activated DCs in the spleen. In vitro, BrPA facilitated the differentiation of Treg cells, suppressed Th17 cells, and inhibited the activation of DCs. These results suggested that BrPA may be a therapeutic target of murine arthritis. Although the role of IL-17 is not clarified in the treatment of RA, targeting cell metabolism to alter the immune cell functions might lead to a new therapeutic strategy for RA.
Ontogeny and localization of the cells produce IL-2 in healthy animals.
Yamamoto, Mutsumi; Seki, Yoichi; Iwai, Kazuyuki; Ko, Iei; Martin, Alicia; Tsuji, Noriko; Miyagawa, Shuji; Love, Robert B; Iwashima, Makio
2013-03-01
IL-2 is a growth factor for activated T cells and is required for maintenance of naturally arising regulatory T cells (nTregs). Mice defective in IL-2/IL-2 receptor signaling pathways have impaired nTregs and suffer from lymphoproliferative disorders, suggesting that IL-2 is present and functional in healthy animals. However, the cellular source of IL-2 is currently unknown. To determine which cells produce IL-2 in healthy animals, we established mice carrying cre gene knock in at the il-2 locus (termed IL-2(cre)). When IL-2(cre) mice were crossed with EGFP reporter mice, EGFP was exclusively expressed by a fraction of CD4 T cells present in both lymphoid and non-lymphoid tissues. Live imaging of IL-2(cre) mice that carry the luciferase reporter showed concentrated localization of luciferase(+) cells in Peyer's patches. These cells were not observed in new born mice but appeared within 3days after birth. Reduction of antigen receptor repertoire by transgene expression reduced their number, indicating that recognition of environmental antigens is necessary for generation of these IL-2 producers in healthy animals. A substantial fraction of EGFP(+) cells also produce IL-10 and IFN-γ, a characteristic profile of type 1 regulatory T cells (Tr1). The data suggest that a group of Tr1 cells have addition roles in immune homeostasis by producing IL-2 along with other cytokines and help maintaining Tregs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Immunotherapy with iTreg and nTreg Cells in a Murine Model of Inflammatory Bowel Disease.
Haribhai, Dipica; Chatila, Talal A; Williams, Calvin B
2016-01-01
Regulatory T (Treg) cells that express the transcription factor Foxp3 are essential for maintaining tolerance at mucosal interfaces, where they act by controlling inflammation and promoting epithelial cell homeostasis. There are two major regulatory T-cell subsets, "natural" CD4(+) Treg (nTreg) cells that develop in the thymus and "induced" Treg (iTreg) cells that develop from conventional CD4(+) T (Tconv) cells in the periphery. Dysregulated Treg cell responses are associated with autoimmune diseases, including inflammatory bowel disease (IBD) and arthritis. Adoptive transfer of Treg cells can modulate innate and adaptive immune responses and cure disease in animal models, which has generated considerable interest in using Treg cells to treat human autoimmune disease, prevent rejection of transplanted organs, and to control graft-versus-host disease following hematopoietic stem cell transplantation. Herein, we describe our modifications of a treatment model of T-cell transfer colitis designed to allow mechanistic investigation of the two major Treg cell subsets and to compare their specific roles in mucosal tolerance.
The β-galactoside-binding protein galectin-9 is critical in regulating the immune response, but the mechanism by which it functions remains unclear. We have demonstrated that galectin-9 is highly expressed by induced regulatory T cells (iTreg) and was crucial for the generation and function of iTreg cells, but not natural regulatory T (nTreg) cells. Galectin-9 expression
Grille, Sofía; Brugnini, Andreína; Nese, Martha; Corley, Esteban; Falkenberg, Frank W; Lens, Daniela; Chabalgoity, José A
2010-04-01
Therapeutic vaccination holds great potential as complementary treatment for non-Hodgkin's lymphoma. Here, we report that a therapeutic whole cell vaccine formulated with IL-2 adsorbed onto aluminum hydroxide as cytokine-depot formulation elicits potent antitumor immunity and induces delayed tumor growth, control of tumor dissemination and longer survival in mice challenged with A20-lymphoma. Therapeutic vaccination induced higher numbers of tumor's infiltrating lymphocytes (CD4(+) and CD8(+) T cells and NK cells), and the production of IFN-gamma and IL-4 by intratumoral CD4(+) T cells. Further, strong tumor antigen-specific cellular responses were detected at systemic level. Both the A20-derived antigenic material and the IL-2 depot formulation were required for induction of an effective immune response that impacted on cancer progression. All mice receiving any form of IL-2, either as part of the vaccine or alone as control, showed higher numbers of CD4(+)CD25(+/high)Foxp3(+) regulatory T cells (Treg) in the tumor, which might have a role in tumor progression in these animals. Nevertheless, for those animals that received the cytokine as part of the vaccine formulation, the overall effect was improved immune response and less disseminated disease, suggesting that therapeutic vaccination overcomes the potential detrimental effect of intratumoral Treg cells. Overall, the results presented here show that a simple vaccine formulation, that can be easily prepared under GMP conditions, is a promising strategy to be used in B-cell lymphoma and may have enough merit to be tested in clinical trials.
Zhang, Lin; Reckling, Stacie; Dean, Gregg A
2015-10-01
Numerous studies suggest dendritic cell (DC) dysfunction is central to the dysregulated immune response during HIV infection; however, in vivo studies are lacking. In the present study we used feline immunodeficiency virus (FIV) infection of cats as a model for HIV-1 infection to assess the maturation and function of dendritic cells, in vivo and in vitro. We compared CD1a+ DC migration, surface phenotype, endocytosis, mixed leukocyte reaction (MLR) and regulatory T cell (Treg) phenotype induction by CD1a+ cells isolated from lymph nodes of FIV-infected and control cats. Results showed that resident CD1a+ DC in lymph nodes of chronically FIV-infected cats are phenotypically mature, can stimulate normal primary T cell proliferation, override Treg suppression and do not skew toward Treg induction. In contrast, FIV infection had deleterious effects on antigen presentation and migratory capacity of CD1a+ cells in tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Bei; Dou, Yannong; Wang, Ting
Norisoboldine (NOR), the main active ingredient of the dry root of Lindera aggregata, was previously proven to have substantial therapeutic effects on collagen-induced arthritis (CIA) in mice by oral administration. However, it exhibited a very poor bioavailability in normal rats. The pharmacokinetic–pharmacodynamics disconnection attracts us to explore its anti-arthritic mechanism in more detail. In this study, NOR, administered orally, markedly attenuated the pathological changes in CIA rats, which was accompanied by the down-regulation of pro-inflammatory cytokines and the up-regulation of anti-inflammatory cytokine IL-10. Pharmacokinetic studies demonstrated that the plasma concentration of NOR was moderately elevated in CIA rats compared withmore » normal rats, but it was still far lower than the minimal effective concentration required for inhibiting the proliferation and activation of T lymphocytes in vitro. Interestingly, NOR was shown to regulate the balance between Th17 and regulatory T (Treg) cells in the intestinal lymph nodes more strikingly than in other tissues. It could increase the expression of Foxp3 mRNA in both gut and joints, and markedly up-regulate the number of integrin α4β7 (a marker of gut source)-positive Foxp3{sup +} cells in the joints of CIA rats. These results suggest that the gut might be the primary action site of NOR, and NOR exerts anti-arthritis effect through regulating the balance between Th17 and Treg cells in intestinal lymph nodes and yielding a trafficking of lymphocytes (especially Treg cells) from the gut to joint. The findings of the present study also provide a plausible explanation for the anti-arthritic effects of poorly absorbed compounds like NOR. - Highlights: • Norisoboldine, administered orally, markedly attenuates the clinical signs of CIA. • Norisoboldine regulates the balance of Th17/Treg cells in the intestinal lymph node. • Norisoboldine induces the migration of Treg cells from the gut to joint.« less
Kurose, Koji; Ohue, Yoshihiro; Sato, Eiichi; Yamauchi, Akira; Eikawa, Shingo; Isobe, Midori; Nishio, Yumi; Uenaka, Akiko; Oka, Mikio; Nakayama, Eiichi
2015-01-01
Tregs infiltrate tumors and inhibit immune responses against them. We investigated subpopulations of Foxp3 CD4 T cells previously defined by Miyara et al. (Immunity 30, 899-911, 2009) in peripheral blood mononuclear cells (PBMCs) and tumor infiltrating lymphocytes (TILs) in lung cancer. We also showed that Tregs in healthy donors that express CCR4 could be efficiently eliminated in vitro by cotreatment with antihuman (h) CCR4 mAb (KM2760) and NK cells. In lung cancer, the number of activated/effector Tregs and non-Tregs, but not resting/naive Tregs, was increased in TILs compared with the number of those cells in PBMCs. The non-Treg population contained Th2 and Th17. CCR4 expression on activated/effector Tregs and non-Tregs in TILs was down-regulated compared with that on those cells in PBMCs. Chemokinetic migration of CD25 CD4 T cells containing the Treg population sorted from the PBMCs of healthy donors to CCL22/MDC was abrogated by pretreatment with anti-hCCR4 mAb (KM2760). The inhibitory activity of CD25 CD127 CD4 Tregs on the proliferative response of CD4 and CD8 T cells stimulated with anti-CD3/CD28 coated beads was abrogated by adding an anti-hCCR4 mAb (KM2760) and CD56 NK cells to the culture. The findings suggested the CCR4 on activated/effector Tregs and non-Tregs was functionally involved in the chemokinetic migration and accumulation of those cells to the tumor site. In vitro findings of efficient elimination of Tregs may give the basis for implementation of a clinical trial to investigate Treg depletion by administration of an anti-hCCR4 mAb to solid cancer patients.
Tan, Jian; McKenzie, Craig; Vuillermin, Peter J; Goverse, Gera; Vinuesa, Carola G; Mebius, Reina E; Macia, Laurence; Mackay, Charles R
2016-06-21
The incidence of food allergies in western countries has increased dramatically in recent decades. Tolerance to food antigens relies on mucosal CD103(+) dendritic cells (DCs), which promote differentiation of regulatory T (Treg) cells. We show that high-fiber feeding in mice improved oral tolerance and protected from food allergy. High-fiber feeding reshaped gut microbial ecology and increased the release of short-chain fatty acids (SCFAs), particularly acetate and butyrate. High-fiber feeding enhanced oral tolerance and protected against food allergy by enhancing retinal dehydrogenase activity in CD103(+) DC. This protection depended on vitamin A in the diet. This feeding regimen also boosted IgA production and enhanced T follicular helper and mucosal germinal center responses. Mice lacking GPR43 or GPR109A, receptors for SCFAs, showed exacerbated food allergy and fewer CD103(+) DCs. Dietary elements, including fiber and vitamin A, therefore regulate numerous protective pathways in the gastrointestinal tract, necessary for immune non-responsiveness to food antigens. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Beers, David R.; Zhao, Weihua; Wang, Jinghong; Zhang, Xiujun; Wen, Shixiang; Neal, Dan; Thonhoff, Jason R.; Alsuliman, Abdullah S.; Shpall, Elizabeth J.; Rezvani, Katy
2017-01-01
Neuroinflammation is a pathological hallmark of ALS in both transgenic rodent models and patients, and is characterized by proinflammatory T lymphocytes and activated macrophages/microglia. In ALS mouse models, decreased regulatory T lymphocytes (Tregs) exacerbate the neuroinflammatory process, leading to accelerated motoneuron death and shortened survival; passive transfer of Tregs suppresses the neuroinflammation and prolongs survival. Treg numbers and FOXP3 expression are also decreased in rapidly progressing ALS patients. A key question is whether the marked neuroinflammation in ALS can be attributed to the impaired suppressive function of ALS Tregs in addition to their decreased numbers. To address this question, T lymphocyte proliferation assays were performed. Compared with control Tregs, ALS Tregs were less effective in suppressing responder T lymphocyte proliferation. Although both slowly and rapidly progressing ALS patients had dysfunctional Tregs, the greater the clinically assessed disease burden or the more rapidly progressing the patient, the greater the Treg dysfunction. Epigenetically, the percentage methylation of the Treg-specific demethylated region was greater in ALS Tregs. After in vitro expansion, ALS Tregs regained suppressive abilities to the levels of control Tregs, suggesting that autologous passive transfer of expanded Tregs might offer a novel cellular therapy to slow disease progression. PMID:28289705
He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong
2014-01-01
CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290
Differential requirement of PKC-θ in the development and function of Natural Regulatory T cells
Gupta, Sonal; Manicassamy, Santhakumar; Vasu, Chenthamarakshan; Kumar, Anvita; Shang, Weirong; Sun, Zuoming
2008-01-01
CD4+CD25+ natural Treg cells, which are developed in the thymus, migrate to the periphery to actively maintain self-tolerance. Similar to conventional T cells, TCR signals are critical for the development and activation of Treg cell inhibitory function. While PKC-θ-mediated TCR signals are required for the activation of peripheral naïve T cells, they are dispensable for their thymic development. Here, we show that mice deficient in PKC-θ had a greatly reduced number of CD4+Foxp3+ Treg cells, which was independent of PKC-θ-regulated survival, as transgenic Bcl-xL could not restore the Treg cell population in PKC-θ−/− mice. Active and WT PKC-θ markedly stimulated, whereas inactive PKC-θ and dominant negative NFAT inhibited Foxp3 promoter activity. In addition, mice-deficient in calcineurin Aβ had a decreased Treg cell population, similar to that observed in PKC-θ deficient mice. It is likely that PKC-θ promoted the development of Treg cells by enhancing Foxp3 expression via activation of the calcineurin/NFAT pathway. Finally, Treg cells deficient in PKC-θ were as potent as WT Treg cells in inhibiting T cell activation, indicating that PKC-θ was not required for Treg cell-mediated inhibitory function. Our data highlight the contrasting roles PKC-θ plays in conventional T cell and natural Treg cell function. PMID:18842300
Lee, Hyang-Mi; Fleige, Anne; Forman, Ruth; Cho, Sunglim; Khan, Aly Azeem; Lin, Ling-Li; Nguyen, Duc T.; O'Hara-Hall, Aisling; Yin, Zhinan; Hunter, Christopher A.; Muller, Werner; Lu, Li-Fan
2015-01-01
IFNγ signaling drives dendritic cells (DCs) to promote type I T cell (Th1) immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg) cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population. PMID:25658840
PPAR-γ contributes to immunity by cancer vaccines that secrete GM-CSF.
Goyal, Girija; Wong, Karrie; Nirschl, Christopher J; Souders, Nicholas; Neuberg, Donna; Anandasabapathy, Niroshana; Dranoff, Glenn
2018-04-18
Peroxisome proliferator activated receptor-γ (PPARγ) is a lipid-activated nuclear receptor that promotes immune tolerance through effects on macrophages, dendritic cells (DCs), and regulatory T cells (Tregs). Granulocyte-macrophage colony stimulating factor (GM-CSF) induces PPARγ expression in multiple myeloid cell types. GM-CSF contributes to both immune tolerance and protection, but the role of PPARγ in these pathways is poorly understood. Here we reveal an unexpected stimulatory role for PPARγ in the generation of antitumor immunity with irradiated, GM-CSF-secreting tumor-cell vaccines (GVAX). Mice harboring a deletion of PPARγ in lysozyme M (LysM)-expressing myeloid cells showed a decreased ratio of CD8+ T effectors to Tregs and impaired tumor rejection with GVAX. Diminished tumor protection was associated with altered dendritic cell responses and increased production of the Treg attracting chemokines CCL17 and CLL22. Correspondingly, the systemic administration of PPARγ agonists to vaccinated mice elevated the CD8+ T effector to Treg ratio through effects on myeloid cells and intensified the antitumor activity of GVAX combined with cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibody blockade. PPARγ agonists similarly attenuated Treg induction and decreased CCL17 and CCL22 levels in cultures of human peripheral blood mononuclear cells (PBMCs) with GM-CSF-secreting tumor cells. Together, these results highlight a key role for myeloid cell PPARγ in GM-CSF stimulated antitumor immunity and suggest that PPARγ agonists might be useful in cancer immunotherapy. Copyright ©2018, American Association for Cancer Research.
Halim, Timotheus Y F; Rana, Batika M J; Walker, Jennifer A; Kerscher, Bernhard; Knolle, Martin D; Jolin, Helen E; Serrao, Eva M; Haim-Vilmovsky, Liora; Teichmann, Sarah A; Rodewald, Hans-Reimer; Botto, Marina; Vyse, Timothy J; Fallon, Padraic G; Li, Zhi; Withers, David R; McKenzie, Andrew N J
2018-06-19
The local regulation of type 2 immunity relies on dialog between the epithelium and the innate and adaptive immune cells. Here we found that alarmin-induced expression of the co-stimulatory molecule OX40L on group 2 innate lymphoid cells (ILC2s) provided tissue-restricted T cell co-stimulation that was indispensable for Th2 and regulatory T (Treg) cell responses in the lung and adipose tissue. Interleukin (IL)-33 administration resulted in organ-specific surface expression of OX40L on ILC2s and the concomitant expansion of Th2 and Treg cells, which was abolished upon deletion of OX40L on ILC2s (Il7ra Cre/+ Tnfsf4 fl/fl mice). Moreover, Il7ra Cre/+ Tnfsf4 fl/fl mice failed to mount effective Th2 and Treg cell responses and corresponding adaptive type 2 pulmonary inflammation arising from Nippostrongylus brasiliensis infection or allergen exposure. Thus, the increased expression of OX40L in response to IL-33 acts as a licensing signal in the orchestration of tissue-specific adaptive type 2 immunity, without which this response fails to establish. Copyright © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.
Saini, Chaman; Siddiqui, Anisuddin; Ramesh, Venkatesh; Nath, Indira
2016-01-01
Background 50% of leprosy patients suffer from episodes of Type 1/ reversal reactions (RR) and Type 2/ Erythema Nodosum Leprosum (ENL) reactions which lead to morbidity and nerve damage. CD4+ subsets of Th17 cells and CD25+FOXP3+ regulatory T cells (Tregs) have been shown to play a major role in disease associated immunopathology and in stable leprosy as reported by us and others. The aim of our study was to analyze their role in leprosy reactions. Methodology and Principle Findings Quantitative reverse transcribed PCR (qPCR), flowcytometry and ELISA were used to respectively investigate gene expression, cell phenotypes and supernatant levels of cytokines in antigen stimulated PBMC cultures in patients with stable disease and those undergoing leprosy reactions. Both types of reactions are associated with significant increase of Th17 cells and associated cytokines IL-17A, IL-17F, IL-21, IL-23 and chemokines CCL20, CCL22 as compared to matching stable forms of leprosy. Concurrently patients in reactions show reduction in FOXP3+ Treg cells as well as reduction in TGF-β and increase in IL-6. Moreover, expression of many T cell markers, cytokines, chemokines and signaling factors were observed to be increased in RR as compared to ENL reaction patients. Conclusions Patients with leprosy reactions show an imbalance in Th17 and Treg populations. The reduction in Treg suppressor activity is associated withhigherTh17cell activity. The combined effect of reduced TGF-β and enhanced IL-6, IL-21 cytokines influence the balance between Th17 or Treg cells in leprosy reactions as reported in the murine models and autoimmune diseases. The increase in Th17 cell associated cytokines may contribute to lesional inflammation. PMID:27035913
Tang, Jiayou; Zhou, Xiaohui; Liu, Jie; Meng, Qingshu; Han, Yang; Wang, Zhulin; Fan, Huimin; Liu, Zhongmin
2015-10-01
Interleukin (IL)-25, also known as IL-17E, belongs to the IL-17 family of cytokines. Unlike other IL-17 family members, IL-25 promotes Th2-type immune responses, stimulating IL-4, IL-5, and IL-13 production. Here, we employed murine models of skin graft to explore the role of IL-25 in suppression of graft rejection. We found that IL-25 expression is increased during allograft rejection, and allograft rejection was enhanced in IL-25 KO mice. IL-25 KO was associated with down-regulation of Foxp3 expression in CD4+ T cells. Further, while adoptive transfer of WT regulatory T cells (Tregs) protected against allograft rejection, adoptive transfer of IL-25 deficient Tregs failed to protect against allograft rejection. Exogenous IL-25 restored Foxp3 expression and Treg function in vitro. Moreover, IL-25 promoted phosphorylation of NFAT2. Thus, IL-25 may enhance Treg function by up-regulating NFAT2 phosphorylation. Our findings suggest that IL-25 can sustain Foxp3 expression, enhance the suppressive function of Tregs, and prolong skin-graft survival. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Jee H; Elly, Chris; Park, Yoon; Liu, Yun-Cai
2015-06-16
Foxp3(+) regulatory T (Treg) cells play a critical role in immune homeostasis; however, the mechanisms to maintain their function remain unclear. Here, we report that the E3 ubiquitin ligase VHL is essential for Treg cell function. Mice with Foxp3-restricted VHL deletion displayed massive inflammation associated with excessive Treg cell interferon-γ (IFN-γ) production. VHL-deficient Treg cells failed to prevent colitis induction, but converted into Th1-like effector T cells. VHL intrinsically orchestrated such conversion under both steady and inflammatory conditions followed by Foxp3 downregulation, which was reversed by IFN-γ deficiency. Augmented hypoxia-inducible factor 1α (HIF-1α)-induced glycolytic reprogramming was required for IFN-γ production. Furthermore, HIF-1α bound directly to the Ifng promoter. HIF-1α knockdown or knockout could reverse the increased IFN-γ by VHL-deficient Treg cells and restore their suppressive function in vivo. These findings indicate that regulation of HIF-1α pathway by VHL is crucial to maintain the stability and suppressive function of Foxp3(+) T cells. Copyright © 2015 Elsevier Inc. All rights reserved.
β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice.
Johnson, Mark C; Garland, Alaina L; Nicolson, Sarah C; Li, Chengwen; Samulski, R Jude; Wang, Bo; Tisch, Roland
2013-11-01
Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.
T-Reg Comparator: an analysis tool for the comparison of position weight matrices.
Roepcke, Stefan; Grossmann, Steffen; Rahmann, Sven; Vingron, Martin
2005-07-01
T-Reg Comparator is a novel software tool designed to support research into transcriptional regulation. Sequence motifs representing transcription factor binding sites are usually encoded as position weight matrices. The user inputs a set of such weight matrices or binding site sequences and our program matches them against the T-Reg database, which is presently built on data from the Transfac [E. Wingender (2004) In Silico Biol., 4, 55-61] and Jaspar [A. Sandelin, W. Alkema, P. Engstrom, W. W. Wasserman and B. Lenhard (2004) Nucleic Acids Res., 32, D91-D94]. Our tool delivers a detailed report on similarities between user-supplied motifs and motifs in the database. Apart from simple one-to-one relationships, T-Reg Comparator is also able to detect similarities between submatrices. In addition, we provide a user interface to a program for sequence scanning with weight matrices. Typical areas of application for T-Reg Comparator are motif and regulatory module finding and annotation of regulatory genomic regions. T-Reg Comparator is available at http://treg.molgen.mpg.de.
Zhu, Qiang; Li, Changyong; Wang, Kunpeng; Yue, Shi; Jiang, Longfeng; Ke, Michael; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhang, Feng; Lu, Ling; Ke, Bibo
2017-06-01
The phosphatase and tensin homolog (PTEN) deleted on chromosome 10 plays an important role in regulating T cell activation during inflammatory response. Activation of β-catenin is crucial for maintaining immune homeostasis. This study investigates the functional roles and molecular mechanisms by which PTEN-β-catenin signaling promotes regulatory T cell (Treg) induction in a mouse model of liver ischemia/reperfusion injury (IRI). We found that mice with myeloid-specific phosphatase and tensin homolog knockout (PTEN M-KO ) exhibited reduced liver damage as evidenced by decreased levels of serum alanine aminotransferase, intrahepatic macrophage trafficking, and proinflammatory mediators compared with the PTEN-proficient (floxed phosphatase and tensin homolog [PTEN FL/FL ]) controls. Disruption of myeloid PTEN-activated b-catenin promoted peroxisome proliferator-activated receptor gamma (PPARγ)-mediated Jagged-1/Notch signaling and induced forkhead box P3 (FOXP3)1 Tregs while inhibiting T helper 17 cells. However, blocking of Notch signaling by inhibiting γ-secretase reversed myeloid PTEN deficiency-mediated protection in ischemia/reperfusion-triggered liver inflammation with reduced FOXP3 + and increased retinoid A receptor-related orphan receptor gamma t-mediated interleukin 17A expression in ischemic livers. Moreover, knockdown of β-catenin or PPARγ in PTEN-deficient macrophages inhibited Jagged-1/Notch activation and reduced FOXP3 + Treg induction, leading to increased proinflammatory mediators in macrophage/T cell cocultures. In conclusion, our findings demonstrate that PTEN-β-catenin signaling is a novel regulator involved in modulating Treg development and provides a potential therapeutic target in liver IRI. Liver Transplantation 23 813-825 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.
Innate and adaptive immunity in experimental glomerulonephritis: a pathfinder tale.
Artinger, Katharina; Kirsch, Alexander H; Aringer, Ida; Moschovaki-Filippidou, Foteini; Eller, Philipp; Rosenkranz, Alexander R; Eller, Kathrin
2017-06-01
The role of innate and adaptive immune cells in the experimental model of nephrotoxic serum nephritis (NTS) has been rigorously studied in recent years. The model is dependent on kidney-infiltrating T helper (TH) 17 and TH1 cells, which recruit neutrophils and macrophages, respectively, and cause sustained kidney inflammation. In a later phase of disease, regulatory T cells (Tregs) infiltrate the kidney in an attempt to limit disease activity. In the early stage of NTS, lymph node drainage plays an important role in disease initiation since dendritic cells present the antigen to T cells in the T cell zones of the draining lymph nodes. This results in the differentiation and proliferation of TH17 and TH1 cells. In this setting, immune regulatory cells (Tregs), namely, CCR7-expressing Tregs and mast cells (MCs), which are recruited by Tregs via the production of interleukin-9, exert their immunosuppressive capacity. Together, these two cell populations inhibit T cell differentiation and proliferation, thereby limiting disease activity by as yet unknown mechanisms. In contrast, the spleen plays no role in immune activation in NTS, but constitutes a place of extramedullary haematopoiesis. The complex interactions of immune cells in NTS are still under investigation and might ultimately lead to targeted therapies in glomerulonephritis.
Reduced MHC Alloimmunization and Partial Tolerance Protection With Pathogen Reduction Of Whole Blood
Jackman, Rachael P.; Muench, Marcus O.; Inglis, Heather; Heitman, John W.; Marschner, Susanne; Goodrich, Raymond P.; Norris, Philip J.
2017-01-01
BACKGROUND Allogeneic blood transfusion can result in an immune response against major histocompatibility complex (MHC) antigens, potentially complicating future transfusions or transplants. We have previously shown that pathogen reduction of platelet-rich plasma (PRP) with riboflavin and UV light (UV+R) can prevent alloimmunization in mice. A similar pathogen reduction treatment is currently under development for the treatment of whole blood using riboflavin and a higher dose of UV light. We sought to determine the effectiveness of this treatment in prevention of alloimmunization. STUDY DESIGN AND METHODS BALB/c mice were transfused with untreated or UV+R treated allogeneic C57Bl/6 whole blood with or without leukoreduction. Mice were evaluated for donor specific antibodies and ex vivo splenocyte cytokine responses, as well as for changes in the frequency of regulatory T (Treg) cells. RESULTS UV+R treatment blocked cytokine priming and reduced anti-MHC alloantibody responses to transfused whole blood. Leukoreduction reduced alloantibody levels in both the untreated and UV+R groups. Mice transfused with UV+R treated whole blood had reduced alloantibody and cytokine responses when subsequently transfused with untreated blood from the same donor type. This reduction in responses was not associated with increased Treg cells. CONCLUSIONS Pathogen reduction of whole blood with UV+R significantly reduces, but does not eliminate the alloimmune response. Exposure to UV+R treated whole blood transfusion does appear to induce tolerance to alloantigens resulting in reduced anti-MHC alloantibody and cytokine responses to subsequent exposures to the same alloantigens. This tolerance does not appear to be driven by an increase in Treg cells. PMID:27859333
Tian, Shenghe; Liu, Zuqiang; Donahue, Cara; Falo, Louis D; You, Zhaoyang
2012-02-01
In vivo dendritic cells (DC) targeting is an attractive approach with potential advantages in vaccine efficacy, cost, and availability. Identification of molecular adjuvants to in vivo "modulate " DC to coordinately render improved Th1 and CD8 T cell immunity, and attenuated deleterious Treg effects, is a critical challenge. Here, we report that in vivo genetic targeting of the active transcription factor XBP1s to DC (XBP1s/DC) potentiated vaccine-induced prophylactic and therapeutic antitumor immunity in multiple tumor models. This immunization strategy is based on a genetic vaccine encoding both cytomegalovirus (CMV)-driven vaccine Aghsp70 and DC-specific CD11c-driven XBP1s. The novel targeted vaccine induced durable Th1 and CD8 T cell responses to poorly immunogenic self/tumor antigen (Ag) and attenuated tumor-associated Treg suppressive function. Bone marrow (BM)-derived DC genetically modified to simultaneously overexpress XBP1s and express Aghsp70 upregulated CD40, CD70, CD86, interleukin (IL)-15, IL-15Rα, and CCR7 expression, and increased IL-6, IL-12, and tumor necrosis factor (TNF)-α production in vitro. XBP1s/DC elevated functional DEC205(+)CD8α(+)DC in the draining lymph nodes (DLN). The data suggest a novel role for XBP1s in modulating DC to potentiate tumor vaccine efficacy via overcoming two major obstacles to tumor vaccines (i.e., T cell hyporesponsiveness against poorly immunologic self/tumor Ag and tumor-associated Treg-mediated suppression) and improving DEC205(+)CD8α(+)DC.
T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function
Li, Ming O.; Rudensky, Alexander Y.
2016-01-01
Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074
Jenabian, M-A; Patel, M; Kema, I; Vyboh, K; Kanagaratham, C; Radzioch, D; Thébault, P; Lapointe, R; Gilmore, N; Ancuta, P; Tremblay, C; Routy, J-P
2014-01-01
CD40/CD40-ligand (CD40L) signalling is a key stimulatory pathway which triggers the tryptophan (Trp) catabolizing enzyme IDO in dendritic cells and is immunosuppressive in cancer. We reported IDO-induced Trp catabolism results in a T helper type 17 (Th17)/regulatory T cell (Treg) imbalance, and favours microbial translocation in HIV chronic infection. Here we assessed the link between sCD40L, Tregs and IDO activity in HIV-infected patients with different clinical outcomes. Plasmatic sCD40L and inflammatory cytokines were assessed in anti-retroviral therapy (ART)-naive, ART-successfully treated (ST), elite controllers (EC) and healthy subjects (HS). Plasma levels of Trp and its metabolite Kynurenine (Kyn) were measured by isotope dilution tandem mass spectrometry and sCD14 was assessed by enzyme-linked immunosorbent assay (ELISA). IDO-mRNA expression was quantified by reverse transcription–polymerase chain reaction (RT–PCR). The in-vitro functional assay of sCD40L on Treg induction and T cell activation were assessed on peripheral blood mononuclear cells (PBMCs) from HS. sCD40L levels in ART-naive subjects were significantly higher compared to ST and HS, whereas EC showed only a minor increase. In ART-naive alone, sCD40L was correlated with T cell activation, IDO-mRNA expression and CD4 T cell depletion but not with viral load. sCD40L was correlated positively with IDO enzymatic activity (Kyn/Trp ratio), Treg frequency, plasma sCD14 and inflammatory soluble factors in all HIV-infected patients. In-vitro functional sCD40L stimulation induced Treg expansion and favoured Treg differentiation by reducing central memory and increasing terminal effector Treg proportion. sCD40L also increased T cell activation measured by co-expression of CD38/human leucocyte antigen D-related (HLA-DR). These results indicate that elevated sCD40L induces immunosuppression in HIV infection by mediating IDO-induced Trp catabolism and Treg expansion. PMID:24924152
Jenabian, M-A; Patel, M; Kema, I; Vyboh, K; Kanagaratham, C; Radzioch, D; Thébault, P; Lapointe, R; Gilmore, N; Ancuta, P; Tremblay, C; Routy, J-P
2014-10-01
CD40/CD40-ligand (CD40L) signalling is a key stimulatory pathway which triggers the tryptophan (Trp) catabolizing enzyme IDO in dendritic cells and is immunosuppressive in cancer. We reported IDO-induced Trp catabolism results in a T helper type 17 (Th17)/regulatory T cell (Treg ) imbalance, and favours microbial translocation in HIV chronic infection. Here we assessed the link between sCD40L, Tregs and IDO activity in HIV-infected patients with different clinical outcomes. Plasmatic sCD40L and inflammatory cytokines were assessed in anti-retroviral therapy (ART)-naive, ART-successfully treated (ST), elite controllers (EC) and healthy subjects (HS). Plasma levels of Trp and its metabolite Kynurenine (Kyn) were measured by isotope dilution tandem mass spectrometry and sCD14 was assessed by enzyme-linked immunosorbent assay (ELISA). IDO-mRNA expression was quantified by reverse transcription-polymerase chain reaction (RT-PCR). The in-vitro functional assay of sCD40L on Treg induction and T cell activation were assessed on peripheral blood mononuclear cells (PBMCs) from HS. sCD40L levels in ART-naive subjects were significantly higher compared to ST and HS, whereas EC showed only a minor increase. In ART-naive alone, sCD40L was correlated with T cell activation, IDO-mRNA expression and CD4 T cell depletion but not with viral load. sCD40L was correlated positively with IDO enzymatic activity (Kyn/Trp ratio), Treg frequency, plasma sCD14 and inflammatory soluble factors in all HIV-infected patients. In-vitro functional sCD40L stimulation induced Treg expansion and favoured Treg differentiation by reducing central memory and increasing terminal effector Treg proportion. sCD40L also increased T cell activation measured by co-expression of CD38/human leucocyte antigen D-related (HLA-DR). These results indicate that elevated sCD40L induces immunosuppression in HIV infection by mediating IDO-induced Trp catabolism and Treg expansion. © 2014 British Society for Immunology.
Ali, Niwa; Rosenblum, Michael D
2017-11-01
Foxp3 + CD4 + regulatory T (Treg) cells are a subset of immune cells that function to regulate tissue inflammation. Skin is one of the largest organs and is home to a large proportion of the body's Treg cells. However, relative to other tissues (such as the spleen and gastrointestinal tract) the function of Treg cells in skin is less well defined. Here, we review our understanding of how Treg cells migrate to skin and the cellular and molecular pathways required for their maintenance in this tissue. In addition, we outline what is known about the specialized functions of Treg cells in skin. Namely, the orchestration of stem cell-mediated hair follicle regeneration, augmentation of wound healing, and promoting adaptive immune tolerance to skin commensal microbes. A comprehensive understanding of the biology of skin Treg cells may lead to novel therapeutic approaches that preferentially target these cells to treat cutaneous autoimmunity, skin cancers and disorders of skin regeneration. © 2017 John Wiley & Sons Ltd.
Wang, Yan; Nag, Mukta; Tuohy, Joanne L; De Paris, Kristina; Fogle, Jonathan E
2018-03-01
Polyfunctional CD8 + T cells play a critical role in controlling viremia during AIDS lentiviral infections. However, for most HIV-infected individuals, virus-specific CD8 + T cells exhibit loss of polyfunctionality, including loss of IL2, TNFα, and IFNγ. Using the feline immunodeficiency virus (FIV) model for AIDS lentiviral persistence, our laboratory has demonstrated that FIV-activated Treg cells target CD8 + T cells, leading to a reduction in IL2 and IFNγ production. Furthermore, we have demonstrated that Treg cells induce expression of the repressive transcription factor, Foxp3, in CD8 + T cells. Based upon these findings, we asked if Treg-induced Foxp3 could bind to the IL2, TNFα, and IFNγ promoter regions in virus-specific CD8 + T cells. Following coculture with autologous Treg cells, we demonstrated decreased mRNA levels of IL2 and IFNγ at weeks 4 and 8 postinfection and decreased TNFα at week 4 postinfection in virus-specific CD8 + T cells. We also clearly demonstrated Treg cell-induced Foxp3 expression in virus-specific CD8 + T cells at weeks 1, 4, and 8 postinfection. Finally, we documented Foxp3 binding to the IL2, TNFα, and IFNγ promoters at 8 weeks and 6 months postinfection in virus-specific CD8 + T cells following Treg cell coculture. In summary, the results here clearly demonstrate that Foxp3 inhibits IL2, TNFα, and IFNγ transcription by binding to their promoter regions in lentivirus-specific CD8 + T cells. We believe this is the first description of this process during the course of AIDS lentiviral infection.
Beyer, Marc; Schumak, Beatrix; Weihrauch, Martin R.; Andres, Bettina; Giese, Thomas; Endl, Elmar; Knolle, Percy A.; Classen, Sabine; Limmer, Andreas; Schultze, Joachim L.
2012-01-01
Regulatory T cells (Treg cells) are increased in context of malignancies and their expansion can be correlated with higher disease burden and decreased survival. Initially, interleukin 2 (IL-2) has been used as T-cell growth factor in clinical vaccination trials. In murine models, however, a role of IL-2 in development, differentiation, homeostasis, and function of Treg cells was established. In IL-2 treated cancer patients a further Treg-cell expansion was described, yet, the mechanism of expansion is still elusive. Here we report that functional Treg cells of a naïve phenotype - as determined by CCR7 and CD45RA expression - are significantly expanded in colorectal cancer patients. Treatment of 15 UICC stage IV colorectal cancer patients with IL-2 in a phase I/II peptide vaccination trial further enlarges the already increased naïve Treg-cell pool. Higher frequencies of T-cell receptor excision circles in naïve Treg cells indicate IL-2 dependent thymic generation of naïve Treg cells as a mechanism leading to increased frequencies of Treg cells post IL-2 treatment in cancer patients. This finding could be confirmed in naïve murine Treg cells after IL-2 administration. These results point to a more complex regulation of Treg cells in context of IL-2 administration. Future strategies therefore might aim at combining IL-2 therapy with novel strategies to circumvent expansion and differentiation of naïve Treg cells. PMID:22276195
Ebrahimnezhad, Salimeh; Amirghofran, Zahra; Karimi, Mohammad Hossein
2016-01-01
18α-Glycyrrhetinic acid (18α-GA), a bioactive component of Glycyrrhiza glabra, has been shown in vitro immunomodulatory effects on dendritic cells (DCs). The aim of the present study is to evaluate the in vivo effect of 18α-GA on DCs and T cell responses. 18α-GA was intraperitoneally administered to mice and splenic DCs were evaluated for expression of co-stimulatory molecules using flow cytometry. Isolated DCs were added to mixed lymphocyte reaction (MLR) and the proliferation of T cells was measured using BrdU assay. The level of IFN-γ in the MLR supernatant was determined by enzyme-linked immunosorbent assay. The in vivo effect of isolated DCs on antigen-specific delayed type hypersensitivity (DTH) response, and the number of regulatory T (Treg) cells in mice spleen by flow cytometry, were investigated. DCs isolated from 18α-GA-treated mice expressed lower levels of CD40 (p < 0.05) and MHC II (p < 0.01) compared to those of control group. In MLR assay isolated DCs decreased T cell proliferation to 83.54% ± 4.3% of control (p < 0.05). The level of IFN-γ in the MLR supernatant was declined to 25.2% ± 6.8% of control. In DTH test, DCs isolated from 18α-GA-treated mice significantly suppressed antigen-specific cell mediated immune response (3.3 ± 1 mm in test group versus 6.5 ± 1.2 mm in control group, ρ < 0.01). The percentage of Treg cells in spleen of 18α-GA-treated mice (6.37% ± 2.3%) was lower than that of control group (13.85% ± 0.4%, ρ < 0.05). In vivo administration of 18α-GA resulted in inhibition of DCs maturation and T cell-mediated responses, the effects that may candidate this compound for its possible benefits in immune-mediated diseases.
Mikkelsen, S Rochelle; Long, Julie M; Zhang, Lin; Galemore, Erin R; VandeWoude, Sue; Dean, Gregg A
2011-02-25
Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4(+)CD25(hi)FoxP3(+) immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4(+) T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection.
Li, Yue; Chen, Hung-Lin; Bannick, Nadine; Henry, Michael; Holm, Adrian N; Metwali, Ahmed; Urban, Joseph F; Rothman, Paul B; Weiner, George J; Blazar, Bruce R; Elliott, David E; Ince, M Nedim
2015-02-01
Donor T lymphocyte transfer with hematopoietic stem cells suppresses residual tumor growth (graft-versus-tumor [GVT]) in cancer patients undergoing bone marrow transplantation (BMT). However, donor T cell reactivity to host organs causes severe and potentially lethal inflammation called graft-versus-host disease (GVHD). High-dose steroids or other immunosuppressive drugs are used to treat GVHD that have limited ability to control the inflammation while incurring long-term toxicity. Novel strategies are needed to modulate GVHD, preserve GVT, and improve the outcome of BMT. Regulatory T cells (Tregs) control alloantigen-sensitized inflammation of GVHD, sustain GVT, and prevent mortality in BMT. Helminths colonizing the alimentary tract dramatically increase the Treg activity, thereby modulating intestinal or systemic inflammatory responses. These observations led us to hypothesize that helminths can regulate GVHD and maintain GVT in mice. Acute GVHD was induced in helminth (Heligmosomoides polygyrus)-infected or uninfected BALB/c recipients of C57BL/6 donor grafts. Helminth infection suppressed donor T cell inflammatory cytokine generation and reduced GVHD-related mortality, but maintained GVT. H. polygyrus colonization promoted the survival of TGF-β-generating recipient Tregs after a conditioning regimen with total body irradiation and led to a TGF-β-dependent in vivo expansion/maturation of donor Tregs after BMT. Helminths did not control GVHD when T cells unresponsive to TGF-β-mediated immune regulation were used as donor T lymphocytes. These results suggest that helminths suppress acute GVHD using Tregs and TGF-β-dependent pathways in mice. Helminthic regulation of GVHD and GVT through intestinal immune conditioning may improve the outcome of BMT. Copyright © 2015 by The American Association of Immunologists, Inc.
Eschborn, Melanie; Weigmann, Benno; Reissig, Sonja; Waisman, Ari; Saloga, Joachim; Bellinghausen, Iris
2015-07-01
Recently, we developed a humanized mouse model of allergen-induced IgE-dependent gut inflammation in PBMC-engrafted immunodeficient mice. In the present study, we wanted to investigate the role of regulatory T (Treg) cells and their activation status in this model. Nonobese diabetic-severe combined immunodeficiency-γc(-/-) mice were injected intraperitoneally with human PBMCs from allergic donors together with the respective allergen or NaCl as control in the presence or absence of different concentrations of CD4(+)CD25(+) Treg cells of the same donor. After an additional allergen boost 1 week later, mice were challenged with the allergen rectally on day 21 and gut inflammation was monitored by a high-resolution video mini-endoscopic system evaluating translucency, granularity, fibrin production, vascularity, and stool. Allergen-specific human IgE in mouse sera, which was detectable only in PBMC plus allergen-treated mice, was strongly inhibited by coinjection of Treg cells at a ratio of at least 1:10. Consequently, the presence of Treg cells significantly decreased IgE-dependent allergen-induced gut inflammation after rectal allergen challenge. In addition, Treg cells reduced allergen-specific proliferation and cytokine production of recovered human CD4(+) T cells in vitro. Activation of Treg cells before injection further increased all inhibitory effects. Prevention of gut inflammation also occurred by the administration of glycoprotein A repetitions predominant, a molecule expressed by activated Treg cells, whereas its blockade completely abrogated inhibition by Treg cells. These results demonstrate that allergen-specific gut inflammation in human PBMC-engrafted mice can be avoided by enhancing the numbers or activity of autologous Treg cells, which is of great interest for therapeutic intervention of allergic diseases of the intestine. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Choi, Yoon Seok; Jung, Min Kyung; Lee, Jeewon; Choi, Seong Jin; Choi, Sung Hoon; Lee, Hyun Woong; Lee, Jong-Joo; Kim, Hyung Joon; Ahn, Sang Hoon; Lee, Dong Hyeon; Kim, Won; Park, Su-Hyung; Huh, Jun R; Kim, Hyoung-Pyo; Park, Jun Yong; Shin, Eui-Cheol
2018-03-01
CD4 + CD25 + Foxp3 + T-regulatory (Treg) cells control immune responses and maintain immune homeostasis. However, under inflammatory conditions, Treg cells produce cytokines that promote inflammation. We investigated production of tumor necrosis factor (TNF) by Treg cells in patients with acute hepatitis A (AHA), and examined the characteristics of these cells and association with clinical factors. We analyzed blood samples collected from 63 patients with AHA at the time of hospitalization (and some at later time points) and 19 healthy donors in South Korea. Liver tissues were collected from patients with fulminant AHA during liver transplantation. Peripheral blood mononuclear cells were isolated from whole blood and lymphocytes were isolated from liver tissues and analyzed by flow cytometry. Cytokine production from Treg cells (CD4 + CD25 + Foxp3 + ) was measured by immunofluorescence levels following stimulation with anti-CD3 and anti-CD28. Epigenetic stability of Treg cells was determined based on DNA methylation patterns. Phenotypes of Treg cells were analyzed by flow cytometry and an RORγt inhibitor, ML-209, was used to inhibit TNF production. Treg cell suppression assay was performed by co-culture of Treg-depleted peripheral blood mononuclear cells s and isolated Treg cells. A higher proportion of CD4 + CD25 + Foxp3 + Treg cells from patients with AHA compared with controls produced TNF upon stimulation with anti-CD3 and anti-CD28 (11.2% vs 2.8%). DNA methylation analysis confirmed the identity of the Treg cells. TNF-producing Treg cells had features of T-helper 17 cells, including up-regulation of RORγt, which was required for TNF production. The Treg cells had reduced suppressive functions compared with Treg cells from controls. The frequency of TNF-producing Treg cells in AHA patients' blood correlated with their serum level of alanine aminotransferase. Treg cells from patients with AHA have altered functions compared with Treg cells from healthy individuals. Treg cells from patients with AHA produce higher levels of TNF, gain features of T-helper 17 cells, and have reduced suppressive activity. The presence of these cells is associated with severe liver injury in patients with AHA. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Bégin, Philippe; Schulze, Janika; Baron, Udo; Olek, Sven; Bauer, Rebecca N; Passerini, Laura; Baccheta, Rosa; Nadeau, Kari C
2015-01-01
The FOXP3 gene is the master regulator for T regulatory cells and is under tight DNA methylation control at the Treg specific demethylated region (TSDR) in its first intron. This said, methylation of its promoter region, the significance of which is unknown, has also been associated with various immune-related disease states such as asthma, food allergy, auto-immunity and cancer. Here, we used induced T regulatory cells (iTreg) as a target cell population to identify candidate hypomethylated CpG sites in the FOXP3 gene promoter to design a DNA methylation quantitative assay for this region. Three CpG sites at the promoter region showed clear demethylation pattern associated with high FOXP3 expression after activation in presence of TGFβ and were selected as primary targets to design methylation-dependent RT-PCR primers and probes. We then examined the methylation of this 'inducible-promoter-demethylated-region' (IPDR) in various FOXP3+ T cell subsets. Both naïve and memory thymic-derived Treg cells were found to be fully demethylated at both the IPDR and TSDR. Interestingly, in addition to iTregs, both CD25- and CD25(lo) conventional memory CD4+CD45RA- T cells displayed a high fraction of IPDR demethylated cells in absence of TSDR demethylation. This implies that the fraction of memory T cells should be taken in account when interpreting FOXP3 promoter methylation results from clinical studies. This approach, which is available for testing in clinical samples could have diagnostic and prognostic value in patients with immune or auto-inflammatory diseases.
[Regulatory T cells inhibit proliferation of mouse lymphoma cell line EL4 in vitro].
Zhang, Chen; Kong, Yan; Guo, Jun; Ying, Zhi-Tao; Yuan, Zhi-Hong; Zhang, Yun-Tao; Zheng, Wen; Song, Yu-Qin; Li, Ping-Ping; Zhu, Jun
2010-10-01
This study was aimed to investigate the effect of regulatory T (Treg) cells on the T cell lymphoma EL4 cells and its mechanism in vitro. C57BL/6 mouse Treg cells were isolated by magnetic cell sorting (MACS). The purity of Treg cells and their expression of Foxp3 were identified by flow cytometry (FCM) and PT-PCR respectively. The suppression of Treg cells on EL4 cells was detected by 3H-TdR method. At the same time, enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of cytokine TGF-β1 and IL-10. The results showed that CD4+CD25+ T cells could be successfully isolated by MACS with the purity reaching 94.52% and the expression of Foxp3 reaching 84.72%. After sorting, the expression of Foxp3 mRNA could be detected by RT-PCR. 3H-TdR assay confirmed that regulatory T cells could suppress the proliferation of EL4 cells with or without antigen presenting cells (APC) or dendritic cells (DC), APC or DC might effectively enhance the suppression. In addition, DC alone also suppressed the proliferation. TGF-β1 and IL-10 could be detected in the supernatant by ELISA. It is concluded that the Treg cells can obviously suppress the proliferation of T cell lymphoma cells in vitro, APC or DC can enhance this suppressive effect, while the DC alone also can suppress the proliferation of EL4 cells, the TGF-β1 and IL-10 cytokine pathway may be one of the mechanisms of suppression.
Tilahun, Ashenafi Y.; Chowdhary, Vaidehi R.; David, Chella S.; Rajagopalan, Govindarajan
2014-01-01
Life-threatening infections caused by Staphylococcus aureus, particularly the community-acquired methicillin-resistant strains of S. aureus (CA-MRSA), continue to pose serious problems. Greater virulence and increased pathogenicity of certain S. aureus strains are attributed to higher prevalence of exotoxins. Of these exotoxins, the superantigens (SAg) are likely most pathogenic because of their ability to rapidly and robustly activate the T cells even in extremely small quantities. Therefore, countering SAg-mediated T cell activation using T regulatory cells (Tregs) might be beneficial in diseases such as toxic shock syndrome (TSS). As the normal numbers of endogenous Tregs in a typical host are insufficient, we hypothesized that increasing the Treg numbers by administration of IL2-anti-IL2 antibody complexes (IL2C) or by adoptive transfer of ex vivo expanded Tregs might be more effective in countering SAg-mediated immune activation. HLA-DR3 transgenic mice that closely recapitulate human TSS, were treated with IL2C to increase endogenous Tregs or received ex vivo expanded Tregs. Subsequently, they were challenged with SAg to induce TSS. Analyses of various parameters reflective of TSS (serum cytokine/chemokine levels, multiple organ pathology and SAg-induced peripheral T cell expansion) indicated that increasing the Tregs failed to mitigate TSS. On the contrary, serum IFN-γ levels were increased in IL2C treated mice. Exploration into the reasons behind the lack of protective effect of Tregs revealed IL-17 and IFN-γ-dependent loss of Tregs during TSS. In addition, significant upregulation of GITR on conventional T cells during TSS could render them resistant to Treg mediated suppression, contributing to failure of Treg-mediated immune regulation. PMID:25092888
Parasitic Nematode-Induced CD4+Foxp3+T Cells Can Ameliorate Allergic Airway Inflammation
Kang, Shin Ae; Park, Mi-Kyung; Cho, Min Kyoung; Park, Sang Kyun; Jang, Min Seong; Yang, Bo-Gie; Jang, Myoung Ho; Kim, Dong-Hee; Yu, Hak Sun
2014-01-01
Background The recruitment of CD4+CD25+Foxp3+T (Treg) cells is one of the most important mechanisms by which parasites down-regulate the immune system. Methodology/Principal Findings We compared the effects of Treg cells from Trichinella spiralis-infected mice and uninfected mice on experimental allergic airway inflammation in order to understand the functions of parasite-induced Treg cells. After four weeks of T. spiralis infection, we isolated Foxp3-GFP-expressing cells from transgenic mice using a cell sorter. We injected CD4+Foxp3+ cells from T. spiralis-infected [Inf(+)Foxp3+] or uninfected [Inf(-)Foxp3+] mice into the tail veins of C57BL/6 mice before the induction of inflammation or during inflammation. Inflammation was induced by ovalbumin (OVA)-alum sensitization and OVA challenge. The concentrations of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchial alveolar lavage fluid and the levels of OVA-specific IgE and IgG1 in the serum were lower in mice that received intravenous application of Inf(+)Foxp3+ cells [IV(inf):+(+) group] than in control mice. Some features of allergic airway inflammation were ameliorated by the intravenous application of Inf(-)Foxp3+ cells [IV(inf):+(-) group], but the effects were less distinct than those observed in the IV(inf):+(+) group. We found that Inf(+)Foxp3+ cells migrated to inflammation sites in the lung and expressed higher levels of Treg-cell homing receptors (CCR5 and CCR9) and activation markers (Klrg1, Capg, GARP, Gzmb, OX40) than did Inf(-)Foxp3+ cells. Conclusion/Significance T. spiralis infection promotes the proliferation and functional activation of Treg cells. Parasite-induced Treg cells migrate to the inflammation site and suppress immune responses more effectively than non-parasite-induced Treg cells. The adoptive transfer of Inf(+)Foxp3+ cells is an effective method for the treatment and prevention of allergic airway diseases in mice and is a promising therapeutic approach for the treatment of allergic airway diseases. PMID:25522145
Xia, Siyuan; Wei, Jun; Wang, Jingya; Sun, Huayan; Zheng, Wenting; Li, Yangguang; Sun, Yanbo; Zhao, Huiyuan; Zhang, Song; Wen, Ti; Zhou, Xinglong; Gao, Jian-Xin; Wang, Puyue; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan
2014-05-01
Tregs (Foxp3 + CD4 + ) are enriched in tumors to foster a tolerant microenvironment that inhibits antitumor immune response. IL-27 is reported to regulate the development and function of Tregs in vitro and in vivo; however, the effects of endogenous IL-27 on Tregs in the tumor microenvironment remain elusive. We demonstrated that in the absence of DC-derived IL-27, Tregs were decreased significantly in transplanted B16 melanoma, transplanted EL-4 lymphoma, and MCA-induced fibrosarcoma by using IL-27p28 conditional KO mice. Further studies revealed that IL-27 promoted the expression of CCL22, which is established to mediate the recruitment of peripheral Tregs into tumors. Tumor-associated DCs were identified as the major source of CCL22 in tumor sites, and IL-27 could induce CCL22 expression in an IL-27R-dependent manner. Intratumoral reconstitution of rmCCL22 or rmIL-27, but not rmIL-27p28, significantly restored the tumor infiltration of Tregs in IL-27p28 KO mice. Correlated with a decreased number of Tregs, tumor-infiltrating CD4 T cells were found to produce much more IFN-γ in IL-27p28 KO mice, which highlighted the physiological importance of Tregs in suppressing an antitumor immune response. Overall, our results identified a novel mechanism of action of IL-27 on Tregs in the context of cancers. © 2014 Society for Leukocyte Biology.
Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts.
Azuma, H; Isaka, Y; Li, X; Hünig, T; Sakamoto, T; Nohmi, H; Takabatake, Y; Mizui, M; Kitazawa, Y; Ichimaru, N; Ibuki, N; Ubai, T; Inamoto, T; Katsuoka, Y; Takahara, S
2008-10-01
The ultimate goal of organ transplantation is to establish graft tolerance where CD4+CD25+FOXP3+ regulatory T (Treg) cells play an important role. We examined whether a superagonistic monoclonal antibody specific for CD28 (CD28 SA), which expands Treg cells in vivo, would prevent acute rejection and induce tolerance using our established rat acute renal allograft model (Wistar to Lewis). In the untreated or mouse IgG-treated recipients, graft function significantly deteriorated with marked destruction of renal tissue, and all rats died by 13 days with severe azotemia. In contrast, 90% of recipients treated with CD28 SA survived over 100 days, and 70% survived with well-preserved graft function until graft recovery at 180 days. Analysis by flow cytometry and immunohistochemistry demonstrated that CD28 SA induced marked infiltration of FOXP3+ Treg cells into the allografts. Furthermore, these long-surviving recipients showed donor-specific tolerance, accepting secondary (donor-matched) Wistar cardiac allografts, but acutely rejecting third-party BN allografts. We further demonstrated that adoptive transfer of CD4+CD25+ Treg cells, purified from CD28 SA-treated Lewis rats, significantly prolonged allograft survival and succeeded in inducing donor-specific tolerance. In conclusion, CD28 SA treatment successfully induces donor-specific tolerance with the involvement of Treg cells, and thus the therapeutic value of this approach warrants further investigation and preclinical studies.
D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A.; Mathis, Diane; Benoist, Christophe
2011-01-01
Foxp3+ regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4+ T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility. PMID:21543717
D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A; Mathis, Diane; Benoist, Christophe
2011-05-24
Foxp3(+) regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4(+) T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility.
Yang, Hui; Guo, He-Zhou; Li, Xian-Yang; Lin, Jian; Zhang, Wu; Zhao, Jun-Mei; Zhang, Hong-Xin; Chen, Sai-Juan; Chen, Zhu; Zhu, Jiang
2017-07-01
Innate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4 + T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of Rig-I -/- CD4 + T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance. Mechanistically, apo-Rig-I physically associates with Stat3, thereby inhibiting Jak1's association with Stat3 while facilitating Shp2's association to inhibit p-Stat3 levels. Interestingly, inhibition of Stat3 ameliorates the Treg/Th17 imbalance and the colitis observed in Rig-I -/- mice. Collectively, these results uncover an independent functional contribution of the apo-Rig-I/Stat3 interaction in the maintenance of Treg/Th17 cell balance. Copyright © 2017 by The American Association of Immunologists, Inc.
S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3.
Priceman, Saul J; Shen, Shudan; Wang, Lin; Deng, Jiehui; Yue, Chanyu; Kujawski, Maciej; Yu, Hua
2014-03-27
S1PR1 signaling has been shown to restrain the number and function of regulatory T (Treg) cells in the periphery under physiological conditions and in colitis models, but its role in regulating tumor-associated T cells is unknown. Here, we show that S1PR1 signaling in T cells drives Treg accumulation in tumors, limits CD8(+) T cell recruitment and activation, and promotes tumor growth. T-cell-intrinsic S1PR1 affects Treg cells, but not CD8(+) T cells, as demonstrated by adoptive transfer models and transient pharmacological S1PR1 modulation. An increase in S1PR1 in CD4(+) T cells promotes STAT3 activation and JAK/STAT3-dependent Treg tumor migration, whereas STAT3 ablation in T cells diminishes tumor-associated Treg accumulation and tumor growth. Our study demonstrates a stark contrast between the consequences of S1PR1 signaling in Treg cells in the periphery versus tumors. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
T-Reg Comparator: an analysis tool for the comparison of position weight matrices
Roepcke, Stefan; Grossmann, Steffen; Rahmann, Sven; Vingron, Martin
2005-01-01
T-Reg Comparator is a novel software tool designed to support research into transcriptional regulation. Sequence motifs representing transcription factor binding sites are usually encoded as position weight matrices. The user inputs a set of such weight matrices or binding site sequences and our program matches them against the T-Reg database, which is presently built on data from the Transfac [E. Wingender (2004) In Silico Biol., 4, 55–61] and Jaspar [A. Sandelin, W. Alkema, P. Engstrom, W. W. Wasserman and B. Lenhard (2004) Nucleic Acids Res., 32, D91–D94]. Our tool delivers a detailed report on similarities between user-supplied motifs and motifs in the database. Apart from simple one-to-one relationships, T-Reg Comparator is also able to detect similarities between submatrices. In addition, we provide a user interface to a program for sequence scanning with weight matrices. Typical areas of application for T-Reg Comparator are motif and regulatory module finding and annotation of regulatory genomic regions. T-Reg Comparator is available at . PMID:15980506
Tregs: Where We Are and What Comes Next?
Zhao, Hai; Liao, Xuelian; Kang, Yan
2017-01-01
Regulatory T cells are usually recognized as a specialized subset of CD4 + T cells functioning in establishment and maintenance of immune tolerance. Meanwhile, there is emerging evidence that regulatory T cells (Tregs) are also present in various non-lymphoid tissues, and that they have unique phenotypes credited with activities distinct from regulatory function. Their development and function have been described in plenty of manuscripts in the past two decades. However, with the deepening of research in recent years, emerging evidence revealed some novel mechanisms about how Tregs exert their activities. First, we discuss the expanding family of regulatory lymphocytes briefly and then, try to interpret how fork-head box P3 (Foxp3), a master regulator of the regulatory pathway in the development and function of regulatory T cells, functions. Subsequently, another part of our focus is varieties of tissue Tregs. Next, we primarily discuss recent research on how Tregs work and their faceted functions in terms of soluble mediators, functional proteins, and inhibitory receptors. In particular, unless otherwise noted, the term "Treg" is used here to refer specially to the "CD4 + CD25 + Foxp3 +" regulatory cells.
Zhang, H.; Guo, H.; Lu, L.; Zahorchak, A. F.; Wiseman, R. W.; Raimondi, G.; Cooper, D. K. C.; Ezzelarab, M. B.; Thomson, A. W.
2016-01-01
Ex vivo-expanded cynomolgus monkey CD4+CD25+CD127− regulatory T cells (Treg) maintained Foxp3 demethylation status at the Treg-Specific Demethylation Region (TSDR), and potently suppressed T cell proliferation through 3 rounds of expansion. When CFSE- or VPD450-labeled autologous (auto) and non-autologous (non-auto) expanded Treg were infused into monkeys, the number of labeled auto-Treg in peripheral blood declined rapidly during the first week, but persisted at low levels in both normal and anti-thymocyte globulin plus rapamycin-treated (immunosuppressed; IS) animals for at least 3 weeks. By contrast, MHC-mismatched non-auto-Treg could not be detected in normal monkey blood or in blood of two out of the three IS monkeys by day 6 post-infusion. They were also more difficult to detect than auto-Treg in peripheral lymphoid tissue. Both auto- and non-auto-Treg maintained Ki67 expression early after infusion. Sequential monitoring revealed that adoptively-transferred auto-Treg maintained similarly high levels of Foxp3 and CD25 and low CD127 compared with endogenous Treg, although Foxp3 staining diminished over time in these non-transplanted recipients. Thus, infused ex vivo-expanded auto-Treg persist longer than MHC-mismatched non-auto-Treg in blood of non-human primates and can be detected in secondary lymphoid tissue. Host lymphodepletion and rapamycin administration did not consistently prolong the persistence of non-auto-Treg in these sites. PMID:25783759
Myelin basic protein priming reduces the expression of Foxp3 in T cells via nitric oxide.
Brahmachari, Saurav; Pahan, Kalipada
2010-02-15
Regulatory T cells (Tregs) play a vital role in autoimmune disorders. Among several markers, forkhead box p3 (Foxp3) is the most specific with regard to Treg activity. Therefore, understanding mechanisms that regulate Foxp3 expression is a critical step for unraveling the complicacy of autoimmune pathophysiology. The present study was undertaken to investigate the crosstalk between NO and Tregs. Interestingly, after myelin basic protein (MBP) priming, the expression of Foxp3 decreased in MBP-primed T cells. However, blocking NO either by inhibiting inducible NO synthase with l-N(6)-(1-iminoethyl)-lysine hydrochloride or through scavenging with PTIO or by pharmacological drugs, such as pravastatin, sodium benzoate, or gemfibrozil, restored the expression of Foxp3 in MBP-primed T cells. However, this restoration of Foxp3 by pharmacological drugs was reversed by S-nitrosoglutathione, an NO donor. Similarly, NO also decreased the populations of Tregs characterized by CD4(+)CD25(+) and CD25(+)FoxP3(+) phenotypes. We have further confirmed this inverse relationship between NO and Foxp3 by analyzing the mRNA expression of Foxp3 and characterizing CD25(+)FoxP3(+) or CD4(+)Foxp3(+) phenotypes from inducible NO synthase knockout mice. Moreover, this inverse relation between NO and Foxp3 also was observed during priming with myelin oligodendrocyte glycoprotein, another target neuroantigen in multiple sclerosis, as well as collagen, a target autoantigen in rheumatoid arthritis. Finally, we demonstrate that NO inhibited the expression of Foxp3 in MBP-primed T cells via soluble guanylyl cyclase-mediated production of cGMP. Taken together, our data imply a novel role of NO in suppressing Foxp3(+) Tregs via the soluble guanylyl cyclase pathway.
Takahashi, Ryo; Sato, Yohei; Kurata, Maiko; Yamazaki, Yoshimi; Kimishima, Momoko; Shiohara, Tetsuo
2014-02-01
It remains unknown why the occurrence of eczema herpeticum (EH) caused by an extensive disseminated cutaneous infection with HSV-1 or HSV-2 is associated with the exacerbation of atopic dermatitis lesions after withdrawal of treatment. Although regulatory T cells (Tregs) limit the magnitude of HSV-specific T cell responses in mice, their role in the induction and resolution of EH has not been defined. We initially investigated the frequencies, phenotype, and function of Tregs in the peripheral blood of atopic dermatitis with EH (ADEH) patients at onset and after clinical resolution, atopic dermatitis patients without EH, and healthy controls. Tregs with the skin-homing phenotype and the activated/induced phenotype were expanded at onset and contracted upon resolution. Treg-suppressive capacity was retained in ADEH patients and, the expanded Tregs suppressed IFN-γ production from HSV-1-specific CD8(+) and CD4(+) T cells. The increased frequency of CD14(dim)CD16(+) proinflammatory monocytes (pMOs) was also observed in the blood and EH skin lesions. Thus, pMOs detected in ADEH patients at onset were characterized by an increased ability to produce IL-10 and a decreased ability to produce proinflammatory cytokines, unlike their normal counterparts. Our coculture study using Tregs and pMOs showed that the pMOs can promote the expansion of inducible Tregs. Tregs were detected frequently in the vicinity of HSV-expressing and varicella zoster virus-expressing CD16(+) monocytes in the EH lesions. Expansions of functional Tregs, together with pMOs, initially required for ameliorating excessive inflammation occurring after withdrawal of topical corticosteroids could, in turn, contribute to the initiation and progression of HSV reactivation, resulting in the onset of EH.
TGF-β: the sword, the wand, and the shield of FOXP3(+) regulatory T cells.
Tran, Dat Q
2012-02-01
Since its rediscovery in the mid-1990s, FOXP3(+) regulatory T cells (Tregs) have climbed the rank to become commander-in-chief of the immune system. They possess diverse power and ability to orchestrate the immune system in time of inflammation and infection as well as in time of harmony and homeostasis. To be the commander-in-chief, they must be equipped with both offensive and defensive weaponry. This review will focus on the function of transforming growth factor-β (TGF-β) as the sword, the wand, and the shield of Tregs. Functioning as a sword, this review will begin with a discussion of the evidence that supports how Tregs utilize TGF-β to paralyze cell activation and differentiation to suppress immune response. It will next provide evidence on how TGF-β from Tregs acts as a wand to convert naïve T cells into iTregs and Th17 to aid in their combat against inflammation and infection. Lastly, the review will present evidence on the role of TGF-β produced by Tregs in providing a shield to protect and maintain Tregs against apoptosis and destabilization when surrounded by inflammation and constant stimulation. This triadic function of TGF-β empowers Tregs with the responsibility and burden to maintain homeostasis, promote immune tolerance, and regulate host defense against foreign pathogens.
DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma
Maes, Wim; Rosas, Georgina Galicia; Verbinnen, Bert; Boon, Louis; De Vleeschouwer, Steven; Ceuppens, Jan L.; Van Gool, Stefaan W.
2009-01-01
We studied the feasibility, efficacy, and mechanisms of dendritic cell (DC) immunotherapy against murine malignant glioma in the experimental GL261 intracranial (IC) tumor model. When administered prophylactically, mature DCs (DCm) ex vivo loaded with GL261 RNA (DCm-GL261-RNA) protected half of the vaccinated mice against IC glioma, whereas treatment with mock-loaded DCm or DCm loaded with irrelevant antigens did not result in tumor protection. In DCm-GL261-RNA–vaccinated mice, a tumor-specific cellular immune response was observed ex vivo in the spleen and tumor-draining lymph node cells. Specificity was also shown in vivo on the level of tumor challenge. Depletion of CD8+ T-cells by anti-CD8 treatment at the time of tumor challenge demonstrated their essential role in vaccine- mediated antitumor immunity. Depletion of CD25+ regulatory T-cells (Tregs) by anti-CD25 (aCD25) treatment strongly enhanced the efficacy of DC vaccination and was itself also protective, independently of DC vaccination. However, DC vaccination was essential to protect the animals from IC tumor rechallenge. No long-term protection was observed in animals that initially received aCD25 treatment only. In mice that received DC and/or aCD25 treatment, we retrieved tumor-specific brain-infiltrating cytotoxic T-lymphocytes. These data clearly demonstrate the effectiveness of DC vaccination for the induction of long-lasting immunological protection against IC glioma. They also show the beneficial effect of Treg depletion in this kind of glioma immunotherapy, even combined with DC vaccination. PMID:19336528
Romano, Emanuela; Kusio-Kobialka, Monika; Foukas, Periklis G.; Baumgaertner, Petra; Meyer, Christiane; Ballabeni, Pierluigi; Michielin, Olivier; Weide, Benjamin; Romero, Pedro; Speiser, Daniel E.
2015-01-01
Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4–specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14++CD16− monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68+/CD163+ macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti–CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients. PMID:25918390
Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts.
Bhattacharyya, Sankar; Md Sakib Hossain, Dewan; Mohanty, Suchismita; Sankar Sen, Gouri; Chattopadhyay, Sreya; Banerjee, Shuvomoy; Chakraborty, Juni; Das, Kaushik; Sarkar, Diptendra; Das, Tanya; Sa, Gaurisankar
2010-07-01
Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8(+) cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4(+) T cells are essential for helping this CD8(+) T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (T(CM))/effector memory T cell (T(EM)) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-beta and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-beta and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.
Hu, Zenglei; Jiao, Xinan; Liu, Xiufan
2017-01-01
Severe H7N9 avian influenza virus (AIV) infections in humans have public health authorities around the world on high alert for the potential development of a human influenza pandemic. Currently, the newly-emerged highly pathogenic avian influenza A (H7N9) virus poses a dual challenge for public health and poultry industry. Numerous H7N9 vaccine candidates have been generated using various platforms. Immunization trials in animals and humans showed that H7N9 vaccines are apparently poorly immunogenic because they induced low hemagglutination inhibition and virus neutralizing antibody titers. However, H7N9 vaccines elicit comparable levels of total hemagglutinin (HA)-reactive IgG antibody as the seasonal influenza vaccines, suggesting H7N9 vaccines are as immunogenic as their seasonal counterparts. A large fraction of overall IgG antibody is non-neutralizing antibody and they target unrecognized epitopes outside of the traditional antigenic sites in HA. Further, the Treg epitope identified in H7 HA may at least partially contribute to regulation of antibody immunity. Here, we review the latest advances for the development of H7N9 vaccines and discuss the influence of serological criteria on evaluation of immunogenicity of H7N9 vaccines. Next, we discuss factors affecting antibody immunity induced by H7N9 vaccines, including the change in antigenic epitopes in HA and the presence of the Treg epitope. Last, we present our perspectives for the unique features of antibody immunity of H7N9 vaccines and propose some future directions to improve or modify antibody response induced by H7N9 vaccines. This perspective would provide critical implications for rational design of H7N9 vaccines for human and veterinary use. PMID:29018438
Yun, Juan; Xiao, Tong; Zhou, Lei; Beuerman, Roger W.; Li, Juanjuan; Zhao, Yuan; Hadayer, Amir; Zhang, Xiaomin; Sun, Deming; Kaplan, Henry J.
2018-01-01
Purpose To investigate the role of damage-associated molecular patterns (DAMPs) in recurrent experimental autoimmune uveitis (EAU). Methods Recurrent EAU was induced in Lewis rats by interphotoreceptor retinoid-binding protein (IRBP) R16-peptide specific T cells (tEAU). Aqueous humor and serum samples were kinetically collected and DAMPs examined by quantitative proteomics, Western blot analysis, and ELISA. tEAU rats were treated with S100 inhibitor paquinimod followed by disease evaluation. The functions of T effector cells and T regulatory cells (Tregs) were compared between treated and nontreated groups. The expression of costimulatory molecules on antigen-presenting cells was examined by flow cytometry. Results S100A8, but not high mobility group box 1 (HMGB1), in the eye was found to be correlated with intraocular inflammatory episodes. Administration of paquinimod significantly protected tEAU rats from recurrence. Treated tEAU rats had fewer R16-specific Th1 and Th17 cells, but increased numbers of Tregs. R16-specific T cells from treated tEAU rats into naïve recipients prevented induction of tEAU by R16-specific T cells from nontreated tEAU rats. Moreover, APCs from treated tEAU rats expressed higher levels of a negative costimulatory molecule, CD200R, and lower levels of CD80, CD86, and MHC class II molecules compared to APCs from nontreated tEAU rats. An opposite pattern of expression of these molecules was observed on APCs incubated in vitro with recombinant S100A8. Conclusions Our data demonstrate a link between local expression of DAMPs and autoimmune responses, and suggest that complete S100A8/A9 blockade may be a new therapeutic target in recurrent autoimmune uveitis. PMID:29625456
Vaeth, Martin; Schliesser, Ulrike; Müller, Gerd; Reissig, Sonja; Satoh, Kazuki; Tuettenberg, Andrea; Jonuleit, Helmut; Waisman, Ari; Müller, Martin R.; Serfling, Edgar; Sawitzki, Birgit S.; Berberich-Siebelt, Friederike
2012-01-01
Several lines of evidence suggest nuclear factor of activated T-cells (NFAT) to control regulatory T cells: thymus-derived naturally occurring regulatory T cells (nTreg) depend on calcium signals, the Foxp3 gene harbors several NFAT binding sites, and the Foxp3 (Fork head box P3) protein interacts with NFAT. Therefore, we investigated the impact of NFAT on Foxp3 expression. Indeed, the generation of peripherally induced Treg (iTreg) by TGF-β was highly dependent on NFAT expression because the ability of CD4+ T cells to differentiate into iTreg diminished markedly with the number of NFAT family members missing. It can be concluded that the expression of Foxp3 in TGF-β–induced iTreg depends on the threshold value of NFAT rather than on an individual member present. This is specific for iTreg development, because frequency of nTreg remained unaltered in mice lacking NFAT1, NFAT2, or NFAT4 alone or in combination. Different from expectation, however, the function of both nTreg and iTreg was independent on robust NFAT levels, reflected by less nuclear NFAT in nTreg and iTreg. Accordingly, absence of one or two NFAT members did not alter suppressor activity in vitro or during colitis and transplantation in vivo. This scenario emphasizes an inhibition of high NFAT activity as treatment for autoimmune diseases and in transplantation, selectively targeting the proinflammatory conventional T cells, while keeping Treg functional. PMID:22991461
Ma, Yanna; Dawicki, Wojciech; Zhang, Xiaobei
2018-01-01
IL-10-differentiated dendritic cells (DC10) can reverse the asthma phenotype in mice, but how they suppress the asthmatic B cell response is unclear. Herein we assessed the mechanism(s) by which DC10 and DC10-induced Treg affect IgG1 production in asthma. We observed a rapid decline in lung-resident OVA-specific IgG1-secreting B cells on cessation of airway allergen challenge, and intraperitoneal DC10 therapy did not amplify that (p>0.05). It did however increase the loss of IgG1-B cells from the bone marrow (by 45+/-7.2%; p≤0.01) and spleen (by 65+/-17.8%; p≤0.05) over 2 wk. Delivery of OVA-loaded DC10 directly into the airways of asthmatic mice decreased the lung IgG1 B cell response assessed 2 dy later by 33+/-9.7% (p≤0.01), while their co-culture with asthmatic lung cell suspensions reduced the numbers of IgG1-secreting cells by 56.5+/-9.7% (p≤0.01). This effect was dependent on the DC10 carrying intact allergen on their cell surface; DC10 that had phagocytosed and fully processed their allergen were unable to suppress B cell responses, although they did suppress asthmatic Th2 cell responses. We had shown that therapeutic delivery of DC10-induced Treg can effectively suppress asthmatic T and B cell (IgE and IgG1) responses; herein CD4+ cells or Treg from the lungs of DC10-treated OVA-asthmatic mice suppressed in vitro B cell IgG1 production by 52.2+/-8.7% (p≤0.001) or 44.6+/-12.2% (p≤0.05), respectively, but delivery of DC10-induced Treg directly into the airways of asthmatic mice had no discernible impact over 2 dy on the numbers of lung IgG1-secreting cells (p≥0.05). In summary, DC10 treatment down-regulates OVA-specific B cell responses of asthmatic mice. While DC10 that carry intact allergen on their cell surface can dampen this response, DC10-induced Treg are critical for full realization of this outcome. This suggests that infectious tolerance is an essential element in regulatory DC control of the B cell response in allergic asthma. PMID:29293622
Durand, Maxim; Dubois, Florian; Dejou, Cécile; Durand, Eugénie; Danger, Richard; Chesneau, Mélanie; Brosseau, Carole; Guerif, Pierrick; Soulillou, Jean-Paul; Degauque, Nicolas; Eliaou, Jean-François; Giral, Magali; Bonnefoy, Nathalie; Brouard, Sophie
2018-05-01
Regulatory T cells were recently proposed as the central actor in operational tolerance after renal transplantation. Tolerant patients harbor increased FoxP3hi memory Treg frequency and increased demethylation in the Foxp3 Treg-specific demethylated region when compared to stable kidney recipients and exhibit greater memory Treg suppressive capacities and higher expression of the ectonucleotidase CD39. However, in this particular and unique situation the mechanisms of action of Tregs were not identified. Thus, we analyzed the ability of memory Tregs to degrade extracellular ATP in tolerant patients, healthy volunteers, and patients with stable graft function under immunosuppression and determined the role of immunosuppressive drugs on this process. The conserved proportion of memory Tregs leads to the establishment of a pro-tolerogenic balance in operationally tolerant patients. Memory Tregs in tolerant patients display normal capacity to degrade extracellular ATP/ADP. In contrast, memory Tregs from patients with stable graft function do not have this ability. Finally, in vitro, immunosuppressive drugs may favor the lower proportion of memory Tregs in stable patients, but they have no effect on CD39-dependent ATP degradation and do not explain memory Treg lack of extracellular ATP/ADP degradation ability. Thus, intrinsic active regulatory mechanisms may act long after immunosuppressive drug arrest in operationally tolerant patients and may contribute to kidney allograft tolerance via the maintenance of CD39 Treg function. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.
Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L
2016-02-04
Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.
Immunology mini-review: the basics of T(H)17 and interleukin-6 in transplantation.
Nakagiri, T; Inoue, M; Minami, M; Shintani, Y; Okumura, M
2012-05-01
The outcomes of organ transplantation are determined by graft rejection, the mechanisms of which are some of the most important areas of study in the transplantation field. The main cause of rejection is the immunologic response of the recipient toward the transplanted organ. The immunologic responses are regulated by T-cell subsets, especially helper T-cells, which have been characterized as T(H)1 or T(H)2 cells according to their profiles of cytokines production. A unique subset of recently identified lymphocytes, the regulatory T cells (T(reg)s), seem to play a role in tolerance. The recently identified T(H)17 cells are a subset of effector-helper lymphocytes that specifically secrete interleukin (IL) 17. Interestingly, T(H)17 and T(reg) both develop from naïve T cells on stimulation by transforming growth factor β. The difference is only the existence of IL-6, a proinflammatory cytokine. T(H)17 clears pathogens that are not adequately handled by T(H)1 and T(H)2 elements, as well as contributing to autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory diseases. Autoimmune diseases are caused by reactions to self-antigens. T(H)17 (or IL-17) and IL-6 are also thought to be involved in rejection after organ transplantation. We examined the contributions of T(H)17 and IL-6 in bronchiolitis obliterans (BO), the histologic finding in chronic rejection of lung transplantations. Earlier studies have reported that T(H)17 and IL-6 contribute not only to chronic rejection of lung transplantations, but also to the rejection of other solid organs, e.g., heart, liver, and kidney. In addition, prospective avenues of research on T(H)17 and IL-6 in transplantation have emerged from the perspectives of recent studies. Copyright © 2012 Elsevier Inc. All rights reserved.
Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila
2013-02-01
Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.
Trojan, Karina; Unterrainer, Christian; Weimer, Rolf; Bulut, Nuray; Morath, Christian; Aly, Mostafa; Zhu, Li; Opelz, Gerhard; Daniel, Volker
2017-01-01
There is circumstantial evidence that IFNy+ Treg might have clinical relevance in transplantation. IFNy+ Treg express IFNy receptors and are induced by IFNy. In the present study we investigated in kidney transplant recipients with good long-term stable graft function the absolute cell counts of IFNy+ Treg subsets and whether their expression of Foxp3 is stable or transient. Helios expression determined by eight-color-fluorescence flow cytometry and methylation status of the Foxp3 Treg specific demethylation region (TSDR) served as indicators for stability of Foxp3 expression. Methylation status was investigated in enriched IFNy+ and IFNy- Treg preparations originating from peripheral blood using high resolution melt analysis. A total of 136 transplant recipients and 52 healthy controls were studied. Proportions of IFNy+ Treg were similar in patients and healthy controls (0.05% and 0.04% of all CD4+ lymphocytes; p = n.s.). Patients also had similar absolute counts of IFNy producing Helios+ and Helios- Treg (p = n.s.). Most of the IFNy+ and IFNy- Treg in transplant recipients had a methylated Foxp3 TSDR, however, there was a sizeable proportion of IFNy+ and IFNy- Treg with demethylated Foxp3 TSDR. Male and female patients showed more frequently methylated IFNy+ and IFNy- Treg than male and female controls (all p<0.05). Kidney transplant recipients with good long-term stable graft function have similar levels of IFNy+ Treg as healthy controls. IFNy+ and IFNy- Treg subsets in patients consist of cells with stable and cells with transient Foxp3 expression; however, patients showed more frequently methylated IFNy+ and IFNy- Treg than controls. The data show increased levels of Treg subsets with stable as well as transient Foxp3 expression in patients with stable allograft acceptance compared to healthy controls.
The IL-33-ST2-MyD88 axis promotes regulatory T cell proliferation in the murine liver.
Xu, Lei; Li, Wei; Wang, Xiaofan; Zhang, Lina; Qi, Qianqian; Dong, Liyang; Wei, Chuan; Pu, Yanan; Li, Yalin; Zhu, Jifeng; Zhou, Sha; Liu, Feng; Chen, Xiaojun; Su, Chuan
2018-05-05
Hepatic Foxp3 + regulatory T (Treg) cells are crucial for maintaining local immune homeostasis in the liver. However, the environmental cues required for hepatic Treg cell homeostasis are unclear. In this study, we showed that the IL-33 receptor ST2 was preferentially expressed on Treg cells in the mouse liver, but it was more lowly expressed in the spleen, mesenteric lymph nodes, and blood. More importantly, we found that IL-33 promoted the proliferation of hepatic Treg cells through myeloid differentiation factor MyD88 signaling concomitant with increased CDK4 and cyclin D1 expression. These results suggested that IL-33 is a potential tissue-specific factor controlling Treg cell homeostasis via increased Treg proliferation in the liver. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Bhaumik, Suniti; Basu, Rajatava
2017-01-01
After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs. PMID:28408906
Abron, Jessicca D; Singh, Narendra P; Mishra, Manoj K; Price, Robert L; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Singh, Udai P
2018-04-19
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that affects millions of people with high morbidity and health-care cost. The precise etiology of IBD is unknown, but clear evidence suggests that intestinal inflammation is caused by an excessive immune response to mucosal antigens. Recent studies have shown that activation of the aryl hydrocarbon receptor (AhR) induces regulatory T cells (Tregs) and suppresses autoimmune diseases. In the current study, we investigated if nontoxic ligand of AhR, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), can attenuate dextran sodium sulphate (DSS)-induced colitis. Our studies demonstrated that in mice that received ITE treatment, in-vivo colitis pathogenesis, including a decrease in body weight, was significantly reversed along with the systemic and intestinal inflammatory cytokines. ITE increased the expression of Tregs in spleen, mesenteric lymph nodes (MLNs) and colon lamina propria lymphocytes (cLPL) of mice with colitis when compared to controls. This induction of Tregs was reversed by AhR antagonist treatment in-vitro. ITE treatment also increased dendritic cells (DCs; CD11c+) and decreased F4/80+ (macrophage) from the spleen, MLNs and cLPL in mice with colitis. ITE also reversed the systemic and intestinal frequency of CD4+T cells during colitis and suppressed inflammatory cytokines including IFN-γ, TNF-α, IL-17, IL-6 and IL-1 as well as induced IL-10 levels. These findings suggest that ITE attenuates colitis through induction of Tregs and reduction in inflammatory CD4+ T cells and cytokines. Thus, our work demonstrates that the nontoxic endogenous AhR ligand ITE, may serve as a therapeutic modality to treat IBD.
FOXP3 Expression in GARP-Transduced Helper T Cells Is Not Associated with FOXP3 TSDR Demethylation
Kehrmann, Jan; Zeschnigk, Michael; Buer, Jan; Probst-Kepper, Michael
2011-01-01
Aim: Glycoprotein A repetitions predominant (GARP or LRRC32) represents a human regulatory CD4+ CD25hi FOXP3+ T (Treg) cell-specific receptor that controls FOXP3. Ectopic expression of GARP in helper T (Th) cells has been shown to be sufficient for the induction of FOXP3 and generation of a stable regulatory phenotype. Since expression of FOXP3 in Treg cells is epigenetically controlled by a conserved motif, the so-called Treg-specific demethylated region (TSDR), we asked whether GARP-mediated upregulation of FOXP3 in Th cells is similarly accompanied by demethylation of the TSDR. Methods: DNA methylation of the FOXP3 TSDR was analyzed by direct sequencing of polymerase chain reaction (PCR) products from bisulfite-treated genomic DNA. Results: Although GARP-transduced Th cells exhibit constitutive FOXP3 expression and a regulatory phenotype, the FOXP3 TSDR is completely methylated as in naive Th cells. GARP-mediated FOXP3 upregulation in Th cells is not associated with Treg-specific demethylation of the FOXP3 TSDR. Conclusion: Although GARP-engineered Th cells exhibit stable FOXP3 expression and a phenotypic reprogramming towards Treg cells in vitro, these cells do not completely mimic the epigenotype of natural Treg cells. Thus, concepts based on the genetic modification of Th cells as cellular therapies to treat autoimmune diseases or to control transplantation tolerance should be critically tested before any clinical application. PMID:22670117
Franckaert, Dean; Dooley, James; Roos, Evelyne; Floess, Stefan; Huehn, Jochen; Luche, Herve; Fehling, Hans Joerg; Liston, Adrian; Linterman, Michelle A; Schlenner, Susan M
2015-04-01
Costimulatory signals by CD28 are critical for thymic regulatory T-cell (Treg) development. To determine the functional relevance of CD28 for peripheral Treg post thymic selection, we crossed the widely used Forkhead box protein 3 (Foxp3)-CreYFP mice to mice bearing a conditional Cd28 allele. Treg-specific CD28 deficiency provoked a severe autoimmune syndrome as a result of a strong disadvantage in competitive fitness and proliferation of CD28-deficient Tregs. By contrast, Treg survival and lineage integrity were not affected by the lack of CD28. This data demonstrate that, even after the initial induction requirement, Treg maintain a higher dependency on CD28 signalling than conventional T cells for homeostasis. In addition, we found the Foxp3-CreYFP allele to be a hypomorph, with reduced Foxp3 protein levels. Furthermore, we report here the stochastic activity of the Foxp3-CreYFP allele in non-Tregs, sufficient to recombine some conditional alleles (including Cd28) but not others (including R26-RFP). This hypomorphism and 'leaky' expression of the Foxp3-CreYFP allele should be considered when analysing the conditionally mutated Treg.
Li, Jin; Yang, Mei; Liu, Yuan; Guo, Xiaodong; Li, Hanwei; Liu, Zhenwen; Zhao, Jingmin
2015-01-01
Objective To longitudinally investigate the role of FoxP3+ Regulatory T cells (Treg) and interleukin17-producing T helper 17 cells (Th17) in De Novo Hepatitis B Virus infection after orthotopic Liver Transplantation (DNHB-OLT), and analyze the possible correlation between these cells and HBV clearance of the disease. Methods We enrolled 12 control cases after orthotopic Liver Transplantation (OLT) and 24 patients, including 12 diagnosed with DNHB-OLT and 12 diagnosed with Acute Hepatitis B Virus infection (AHB), into the study from the liver transplantation and research center at Beijing 302 Hospital. Flow cytometry was used to detect the frequencies of Treg and Th17, and ELISA was applied to detect the concentration of IL6, IL22, TGF-β and IL2 in peripheral blood. We also measured the gene expression level by real time-quantitative PCR and protein expression using immunohistochemistry and western-blot. Furthermore, we divided DNHB-OLT patients into the clearance and non-clearance groups and examined longitudinally Th17, Treg cells at different times. Results The percentage of Treg cells, expression of FoxP3 mRNA and related anti-inflammatory cytokines such as IL2 and TGF-β1 in the DNHB-OLT group were significantly higher than that in the AHB and OLT groups. The percentage of Th17 cells, expression of RORγt mRNA and related pro-inflammatory cytokines such as IL17 and IL22 in the DNHB-OLT group were significantly lower than that in the AHB group, but the levels of these cytokines are very similar to the OLT group. The ratios of Treg to Th17 in the DNHB-OLT group were significantly higher than that in the OLT and AHB groups. Treg frequencies significantly correlated with HBV DNA, whereas IL17 frequencies didn’t significantly correlate with ALT. In DNHB-OLT patients, the clearance group was accompanied by a rapid increase in the Th17 cells during the first 4th week and afterwards continuously decrease to the control group, together with a continuously decrease in Treg cells from the onset time point, which lead to a significant reduction in the ratios of Treg to Th17. The non-clearance group was accompanied by an increase in the Treg cells during the first 4th week and afterwards sharply decrease, together with a relatively stable and unchanged Th17 cells, which lead to a significant change in the ratios. In addition, compared to clearance group, the ratios of Treg to Th17 in non-clearance group were significantly higher at the onset point, 4th and 12th week, but no difference at 24th week. Conclusion DNHB-OLT patients possessed a favorable Treg differentiation environment, accompanied by a sustained higher preferentially Treg frequencies and up-regulation of related anti-inflammatory cytokines. The immune imbalance of the ratios between Treg and Th17 existed in DNHB-OLT patients. The changes of the ratios during the DNHB-OLT events were associated with HBV clearance, which suppressed immune inflammation reaction as well as inhibited ability of specific HBV clearance and led to immune escape and chronicity. PMID:26367459
Peterson, Lisa K; Shaw, Laura A; Joetham, Anthony; Sakaguchi, Shimon; Gelfand, Erwin W; Dragone, Leonard L
2011-02-15
To test if manipulating TCR complex-mediated signaling (TCR signaling) could treat autoimmune disease, we generated the double SKG Src-like adapter protein (SLAP) knockout (DSSKO) mouse model. The SKG mutation in ZAP70 and SLAP have opposing functions on the regulation of TCR signaling. The combination of these two mutations alters TCR signaling in the context of a defined genetic background, uniform environmental conditions, and a well-characterized signaling disruption. In contrast to SKG mice, DSSKO mice do not develop zymosan-induced chronic autoimmune arthritis. This arthritis prevention is not due to significant alterations in thymocyte development or repertoire selection but instead enhanced numbers of regulatory T cells (Tregs) and decreased numbers of Th17 cells skewing the ratio of Tregs to autoreactive effector T cells. Treg depletion and/or functional blockade led to the development of arthritis in DSSKO mice. In vitro suppression of effector T cell proliferation was also enhanced, demonstrating that DSSKO mice have increased numbers of Tregs with increased function. Understanding how TCR signals influence development, expansion, and function of Tregs in DSSKO mice could advance our ability to manipulate Treg biology to treat ultimately autoimmune disease.
Peterson, Lisa K.; Shaw, Laura A.; Joetham, Anthony; Sakaguchi, Shimon; Gelfand, Erwin W.; Dragone, Leonard L.
2011-01-01
To test if manipulating TCR complex-mediated signaling (TCR signaling) could treat autoimmune disease, we generated the double SKG Src-like adapter protein (SLAP) knockout (DSSKO) mouse model. The SKG mutation in ZAP70 and SLAP have opposing functions on the regulation of TCR signaling. The combination of these two mutations alters TCR signaling in the context of a defined genetic background, uniform environmental conditions, and a well-characterized signaling disruption. In contrast to SKG mice, DSSKO mice do not develop zymosan-induced chronic autoimmune arthritis. This arthritis prevention is not due to significant alterations in thymocyte development or repertoire selection but instead enhanced numbers of regulatory T cells (Tregs) and decreased numbers of Th17 cells skewing the ratio of Tregs to autoreactive effector T cells. Treg depletion and/or functional blockade led to the development of arthritis in DSSKO mice. In vitro suppression of effector T cell proliferation was also enhanced, demonstrating that DSSKO mice have increased numbers of Tregs with increased function. Understanding how TCR signals influence development, expansion, and function of Tregs in DSSKO mice could advance our ability to manipulate Treg biology to treat ultimately autoimmune disease. PMID:21248251
Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya
2008-07-16
Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.
Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.
Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit
2016-03-01
Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo. .
Two SHIPs passing in the middle of the immune system.
Corey, Seth J; Mehta, Hrishikesh M; Stein, Paul L
2012-07-01
Immunity requires a complex, multiscale system of molecules, cells, and cytokines. In this issue of the European Journal of Immunology, Collazo et al. [Eur. J. Immunol. 2012. 42: 1785-1796] provide evidence that links the lipid phosphatase SHIP1 with the coordination of interactions between regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSCs). Using conditional knockouts of SHIP1 in either the myeloid or T-cell-lineage of mice, the authors show that the regulated development of Treg cells is controlled directly by cell-intrinsic SHIP1, and indirectly by extrinsic SHIP1 control of an unknown myeloid cell. Regulation of MDSCs is also determined by SHIP1 in an extrinsic manner, again via an as-yet-unknown myeloid cell. Furthermore, this extrinsic control of Treg cells and MDSCs is mediated in part by increased production of G-CSF, a growth factor critical for the production of neutrophils, in SHIP1-deficient mice. Thus, a physiologically important implication of this report is the collaboration between the innate and adaptive immune systems in fine tuning of Treg cells as discussed in this commentary. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Krishnamoorthy, Nandini; Burkett, Patrick R; Dalli, Jesmond; Abdulnour, Raja-Elie E; Colas, Romain; Ramon, Sesquile; Phipps, Richard P; Petasis, Nicos A; Kuchroo, Vijay K; Serhan, Charles N; Levy, Bruce D
2015-02-01
Asthma is a chronic inflammatory disease that fails to resolve. Recently, a key role for type 2 innate lymphoid cells (ILC2s) was linked to asthma pathogenesis; however, mechanisms for ILC2 regulation remain to be determined. In this study, metabololipidomics of murine lungs identified temporal changes in endogenous maresin 1 (MaR1) during self-limited allergic inflammation. Exogenous MaR1 reduced lung inflammation and ILC2 expression of IL-5 and IL-13 and increased amphiregulin. MaR1 augmented de novo generation of regulatory T cells (Tregs), which interacted with ILC2s to markedly suppress cytokine production in a TGF-β-dependent manner. Ab-mediated depletion of Tregs interrupted MaR1 control of ILC2 expression of IL-13 in vivo. Together, the findings uncover Tregs as potent regulators of ILC2 activation; MaR1 targets Tregs and ILC2s to restrain allergic lung inflammation, suggesting MaR1 as the basis for a new proresolving therapeutic approach to asthma and other chronic inflammatory diseases. Copyright © 2015 by The American Association of Immunologists, Inc.
B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex.
Wallace, Caroline H; Wu, Bill X; Salem, Mohammad; Ansa-Addo, Ephraim A; Metelli, Alessandra; Sun, Shaoli; Gilkeson, Gary; Shlomchik, Mark J; Liu, Bei; Li, Zihai
2018-04-05
GARP, a cell surface docking receptor for binding and activating latent TGF-β, is highly expressed by platelets and activated Tregs. While GARP is implicated in immune invasion in cancer, the roles of the GARP-TGF-β axis in systemic autoimmune diseases are unknown. Although B cells do not express GARP at baseline, we found that the GARP-TGF-β complex is induced on activated human and mouse B cells by ligands for multiple TLRs, including TLR4, TLR7, and TLR9. GARP overexpression on B cells inhibited their proliferation, induced IgA class-switching, and dampened T cell-independent antibody production. In contrast, B cell-specific deletion of GARP-encoding gene Lrrc32 in mice led to development of systemic autoimmune diseases spontaneously as well as worsening of pristane-induced lupus-like disease. Canonical TGF-β signaling more readily upregulates GARP in Peyer patch B cells than in splenic B cells. Furthermore, we demonstrated that B cells are required for the induction of oral tolerance of T cell-dependent antigens via GARP. Our studies reveal for the first time to our knowledge that cell surface GARP-TGF-β is an important checkpoint for regulating B cell peripheral tolerance, highlighting a mechanism of autoimmune disease pathogenesis.
B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex
Wallace, Caroline H.; Wu, Bill X.; Salem, Mohammad; Ansa-Addo, Ephraim A.; Metelli, Alessandra; Sun, Shaoli; Gilkeson, Gary; Shlomchik, Mark J.
2018-01-01
GARP, a cell surface docking receptor for binding and activating latent TGF-β, is highly expressed by platelets and activated Tregs. While GARP is implicated in immune invasion in cancer, the roles of the GARP-TGF-β axis in systemic autoimmune diseases are unknown. Although B cells do not express GARP at baseline, we found that the GARP-TGF-β complex is induced on activated human and mouse B cells by ligands for multiple TLRs, including TLR4, TLR7, and TLR9. GARP overexpression on B cells inhibited their proliferation, induced IgA class-switching, and dampened T cell–independent antibody production. In contrast, B cell–specific deletion of GARP-encoding gene Lrrc32 in mice led to development of systemic autoimmune diseases spontaneously as well as worsening of pristane-induced lupus-like disease. Canonical TGF-β signaling more readily upregulates GARP in Peyer patch B cells than in splenic B cells. Furthermore, we demonstrated that B cells are required for the induction of oral tolerance of T cell–dependent antigens via GARP. Our studies reveal for the first time to our knowledge that cell surface GARP-TGF-β is an important checkpoint for regulating B cell peripheral tolerance, highlighting a mechanism of autoimmune disease pathogenesis. PMID:29618665
Probst-Kepper, M; Balling, R; Buer, J
2010-08-01
FOXP3 is essential for the development and function of regulatory CD4(+)CD25(hi) T (T(reg)) cells. However, recent evidence suggests that FOXP3 alone is not sufficient to completely explain the regulatory phenotype of these key players in autoimmunity and inflammation: after being activated, conventional human CD4(+) T cells transiently up-regulate FOXP3 without acquiring a regulatory function. Researchers have recently found that glycoprotein A repetitions predominant (GARP, or LRRC32) is a T(reg)-specific receptor that binds latent TGF-beta and dominantly controls FOXP3 and the regulatory phenotype via a positive feedback loop. This finding provides a missing link in our molecular understanding of FOXP3 in T(reg) cells. This viewpoint focuses on GARP as safeguard of FOXP3 and the regulatory phenotype.
Yu, Jin; Heck, Susanne; Patel, Vivek; Levan, Jared; Yu, Yu; Bussel, James B.
2008-01-01
Immune thrombocytopenic purpura (ITP) is characterized by the presence of antiplatelet autoantibodies as a result of loss of tolerance. CD4+CD25+ regulatory T cells (Tregs) are important for maintenance of peripheral tolerance. Decreased levels of peripheral Tregs in patients with ITP have been reported. To test whether inefficient production or reduced immunosuppressive activity of Tregs contributes to loss of tolerance in patients with chronic ITP, we investigated the frequency and function of their circulating CD4+CD25hi Tregs. We found a com-parable frequency of circulating CD4+CD25hiFoxp3+ Tregs in patients and controls (n = 16, P > .05). However, sorted CD4+CD25hi cells from patients with chronic ITP (n = 13) had a 2-fold reduction of in vitro immunosuppressive activity compared with controls (n = 10, P < .05). The impaired suppression was specific to Tregs as shown by cross-mixing experiments with T cells from controls. These data suggest that functional defects in Tregs contribute to breakdown of self-tolerance in patients with chronic ITP. PMID:18420827
Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict.
Samstein, Robert M; Josefowicz, Steven Z; Arvey, Aaron; Treuting, Piper M; Rudensky, Alexander Y
2012-07-06
Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance. Copyright © 2012 Elsevier Inc. All rights reserved.
Alvarez Salazar, Evelyn Katy; Cortés-Hernández, Arimelek; Alemán-Muench, Germán Rodrigo; Alberú, Josefina; Rodríguez-Aguilera, Jesús R.; Recillas-Targa, Félix; Chagoya de Sánchez, Victoria; Cuevas, Eric; Mancilla-Urrea, Eduardo; Pérez García, María; Mondragón-Ramírez, Guillermo; Vilatobá, Mario; Bostock, Ian; Hernández-Méndez, Erick; De Rungs, David; García-Zepeda, Eduardo A.; Soldevila, Gloria
2017-01-01
Regulatory T cells (Tregs) are considered key players in the prevention of allograft rejection in transplanted patients. Belatacept (BLT) is an effective alternative to calcineurin inhibitors that appears to preserve graft survival and function; however, the impact of this drug in the homeostasis of Tregs in transplanted patients remains controversial. Here, we analyzed the phenotype, function, and the epigenetic status of the Treg-specific demethylated region (TSDR) in FOXP3 of circulating Tregs from long-term kidney transplant patients under BLT or Cyclosporine A treatment. We found a significant reduction in the proportion of CD4+CD25hiCD127lo/−FOXP3+ T cells in all patients compared to healthy individual (controls). Interestingly, only BLT-treated patients displayed an enrichment of the CD45RA+ “naïve” Tregs, while the expression of Helios, a marker used to identify stable FOXP3+ thymic Tregs remained unaffected. Functional analysis demonstrated that Tregs from transplanted patients displayed a significant reduction in their suppressive capacity compared to Tregs from controls, which is associated with decreased levels of FOXP3 and CD25. Analysis of the methylation status of the FOXP3 gene showed that BLT treatment results in methylation of CpG islands within the TSDR, which could be associated with the impaired Treg suppression function. Our data indicate that analysis of circulating Tregs cannot be used as a marker for assessing tolerance toward the allograft in long-term kidney transplant patients. Trial registration number IM103008. PMID:28316600
Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation.
Bonnefoy, Francis; Perruche, Sylvain; Couturier, Mélanie; Sedrati, Abdeslem; Sun, Yunwei; Tiberghien, Pierre; Gaugler, Béatrice; Saas, Philippe
2011-05-15
Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.
Impact of hyperlipidemia on alloimmunity.
Bagley, Jessamyn; Yuan, Jin; Iacomini, John
2017-02-01
Hyperlipidemia is a comorbidity affecting a significant number of transplant patients despite treatment with cholesterol lowering drugs. Recently, it has been shown that hyperlipidemia can significantly alter T-cell responses to cardiac allografts in mice, and graft rejection is accelerated in dyslipidemic mice. Here, we review recent advances in our understanding of hyperlipidemia in graft rejection. Hyperlipidemic mice have significant increases in serum levels of proinflammatory cytokines, and neutralization of interleukin 17 (IL-17) slows graft rejection, suggesting that IL-17 production by Th17 cells was necessary but not sufficient for rejection. Hyperlipidemia also causes an increase in alloreactive T-cell responses prior to antigen exposure. Analysis of peripheral tolerance mechanisms indicated that this was at least in part due to alterations in FoxP3 T cells that led to reduced Treg function and the expansion of FoxP3 CD4 T cells expressing low levels of CD25. Functionally, alterations in Treg function prevented the ability to induce operational tolerance to fully allogeneic heart transplants through costimulatory-molecule blockade, a strategy that requires Tregs. These findings highlight the importance of considering the contribution of inflammatory comorbidities to cardiac allograft rejection, and point to the potential importance of managing hyperlipidemia in the transplant population.
Xue, Haibo; Yu, Xiurong; Ma, Lei; Song, Shoujun; Li, Yuanbin; Zhang, Li; Yang, Tingting; Liu, Huan
2015-12-01
Hashimoto thyroiditis (HT) is a prototypic organ-specific autoimmune thyroid disease, for which the exact etiology remains unclear. The aim of this study was to investigate dynamic changes in regulatory T cell (Treg) and T helper 17 cell (Th17) populations in patients with HT at different stages of thyroid dysfunction, as well as to analyze the possible correlation between the Treg/Th17 cell axis and autoimmune status in HT. We assessed thyroid function and autoantibody serology both in HT patients and in healthy controls (HCs) and divided HT patients into three subgroups according to thyroid function. We then determined the percentages of Treg and Th17 cells in peripheral blood mononuclear cells and analyzed mRNA expression of the Treg and Th17 cell-defining transcription factors Foxp3 and RORγt. In addition, serum levels of TGF-β and IL-17A were assessed. We found that the percentage of Treg cells, Foxp3 mRNA levels, and the ratio of Treg/Th17 cells were all significantly lower in HT patients, while Th17 cell percentages and RORγt mRNA levels were significantly higher. Interestingly, we also observed significant differences in these measurements between HT patient subgroups. Serum IL-17A levels were markedly increased in HT patients, while serum concentrations of TGF-β were lower, compared to HCs. The ratio of Treg/Th17 cells was negatively correlated with the levels of serum thyroperoxidase antibody, thyroglobulin antibody, and thyrotropin (TSH) in HT patients. Taken together, our data suggest that the balance between Treg and Th17 cells shifts in favor of Th17 cells during clinical progression of HT, which is negatively correlated with levels of thyroid-specific autoantibodies and TSH, implying that Treg/Th17 cell imbalance may contribute to thyroid damage in HT.
Kunzmann, Volker; Kimmel, Brigitte; Herrmann, Thomas; Einsele, Hermann; Wilhelm, Martin
2009-02-01
Tumour growth promotes the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) which suppress various arms of immune responses and might therefore contribute to tumour immunosurveillance. In this study, we found an inverse correlation between circulating Treg frequencies and phosphoantigen-induced gammadelta T-cell proliferation in cancer patients, which prompted us to address the role of Tregs in controlling the gammadelta T-cell arm of innate immune responses. In vitro, human Treg-peripheral blood mononuclear cell (PBMC) co-cultures strongly inhibited phosphoantigen-induced proliferation of gammadelta T cells and depletion of Tregs restored the impaired phosphoantigen-induced gammadelta T-cell proliferation of cancer patients. Tregs did not suppress other effector functions of gammadelta T cells such as cytokine production or cytotoxicity. Our experiments indicate that Tregs do not mediate their suppressive activity via a cell-cell contact-dependent mechanism, but rather secrete a soluble non-proteinaceous factor, which is independent of known soluble factors interacting with amino acid depletion (e.g. arginase-diminished arginine and indolamine 2,3-dioxygenase-diminished tryptophan) or nitric oxide (NO) production. However, the proliferative activity of alphabeta T cells was not affected by this cell-cell contact-independent suppressive activity induced by Tregs. In conclusion, these findings indicate a potential new mechanism by which Tregs can specifically suppress gammadelta T cells and highlight the strategy of combining Treg inhibition with subsequent gammadelta T-cell activation to enhance gammadelta T cell-mediated immunotherapy.
Peres, Raphael Sanches; Liew, Foo Y.; Talbot, Jhimmy; Carregaro, Vanessa; Oliveira, Rene D.; Almeida, Sergio L.; França, Rafael F. O.; Donate, Paula B.; Pinto, Larissa G.; Ferreira, Flavia I. S.; Costa, Diego L.; Demarque, Daniel P.; Gouvea, Dayana Rubio; Lopes, Norberto P.; Queiroz, Regina Helena C.; Silva, Joao Santana; Figueiredo, Florencio; Alves-Filho, Jose Carlos; Cunha, Thiago M.; Ferreira, Sérgio H.; Louzada-Junior, Paulo; Cunha, Fernando Q.
2015-01-01
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by joint destruction and severe morbidity. Methotrexate (MTX) is the standard first-line therapy of RA. However, about 40% of RA patients are unresponsive to MTX treatment. Regulatory T cells (Tregs, CD4+CD25+FoxP3+) are thought to play an important role in attenuating RA. To investigate the role of Tregs in MTX resistance, we recruited 122 RA patients (53 responsive, R-MTX; 69 unresponsive, UR-MTX) and 33 healthy controls. Three months after MTX treatment, R-MTX but not UR-MTX showed higher frequency of peripheral blood CD39+CD4+CD25+FoxP3+ Tregs than the healthy controls. Tregs produce adenosine (ADO) through ATP degradation by sequential actions of two cell surface ectonucleotidases: CD39 and CD73. Tregs from UR-MTX expressed a lower density of CD39, produced less ADO, and had reduced suppressive activity than Tregs from R-MTX. In a prospective study, before MTX treatment, UR-MTX expressed a lower density of CD39 on Tregs than those of R-MTX or control (P < 0.01). In a murine model of arthritis, CD39 blockade reversed the antiarthritic effects of MTX treatment. Our results demonstrate that MTX unresponsiveness in RA is associated with low expression of CD39 on Tregs and the decreased suppressive activity of these cells through reduced ADO production. Our findings thus provide hitherto unrecognized mechanism of immune regulation in RA and on mode of action of MTX. Furthermore, our data suggest that low expression of CD39 on Tregs could be a noninvasive biomarker for identifying MTX-resistant RA patients. PMID:25675517
Peres, Raphael Sanches; Liew, Foo Y; Talbot, Jhimmy; Carregaro, Vanessa; Oliveira, Rene D; Almeida, Sergio L; França, Rafael F O; Donate, Paula B; Pinto, Larissa G; Ferreira, Flavia I S; Costa, Diego L; Demarque, Daniel P; Gouvea, Dayana Rubio; Lopes, Norberto P; Queiroz, Regina Helena C; Silva, Joao Santana; Figueiredo, Florencio; Alves-Filho, Jose Carlos; Cunha, Thiago M; Ferreira, Sérgio H; Louzada-Junior, Paulo; Cunha, Fernando Q
2015-02-24
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by joint destruction and severe morbidity. Methotrexate (MTX) is the standard first-line therapy of RA. However, about 40% of RA patients are unresponsive to MTX treatment. Regulatory T cells (Tregs, CD4(+)CD25(+)FoxP3(+)) are thought to play an important role in attenuating RA. To investigate the role of Tregs in MTX resistance, we recruited 122 RA patients (53 responsive, R-MTX; 69 unresponsive, UR-MTX) and 33 healthy controls. Three months after MTX treatment, R-MTX but not UR-MTX showed higher frequency of peripheral blood CD39(+)CD4(+)CD25(+)FoxP3(+) Tregs than the healthy controls. Tregs produce adenosine (ADO) through ATP degradation by sequential actions of two cell surface ectonucleotidases: CD39 and CD73. Tregs from UR-MTX expressed a lower density of CD39, produced less ADO, and had reduced suppressive activity than Tregs from R-MTX. In a prospective study, before MTX treatment, UR-MTX expressed a lower density of CD39 on Tregs than those of R-MTX or control (P < 0.01). In a murine model of arthritis, CD39 blockade reversed the antiarthritic effects of MTX treatment. Our results demonstrate that MTX unresponsiveness in RA is associated with low expression of CD39 on Tregs and the decreased suppressive activity of these cells through reduced ADO production. Our findings thus provide hitherto unrecognized mechanism of immune regulation in RA and on mode of action of MTX. Furthermore, our data suggest that low expression of CD39 on Tregs could be a noninvasive biomarker for identifying MTX-resistant RA patients.
Nogueira, Jeane de Souza; Canto, Fábio Barrozo do; Nunes, Caroline Fraga Cabral Gomes; Vianna, Pedro Henrique Oliveira; Paiva, Luciana de Souza; Nóbrega, Alberto; Bellio, Maria; Fucs, Rita
2016-02-01
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment. © 2015 John Wiley & Sons Ltd.
Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid
2017-05-01
Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Pasztoi, Maria; Pezoldt, Joern; Beckstette, Michael; Lipps, Christoph; Wirth, Dagmar; Rohde, Manfred; Paloczi, Krisztina; Buzas, Edit Iren
2017-01-01
Abstract Intestinal regulatory T cells (Tregs) are fundamental in peripheral tolerance toward commensals and food‐borne antigens. Accordingly, gut‐draining mesenteric lymph nodes (mLNs) represent a site of efficient peripheral de novo Treg induction when compared to skin‐draining peripheral LNs (pLNs), and we had recently shown that LN stromal cells substantially contribute to this process. Here, we aimed to unravel the underlying molecular mechanisms and generated immortalized fibroblastic reticular cell lines (iFRCs) from mLNs and pLNs, allowing unlimited investigation of this rare stromal cell subset. In line with our previous findings, mLN‐iFRCs showed a higher Treg‐inducing capacity when compared to pLN‐iFRCs. RNA‐seq analysis focusing on secreted molecules revealed a more tolerogenic phenotype of mLN‐ as compared to pLN‐iFRCs. Remarkably, mLN‐iFRCs produced substantial numbers of microvesicles (MVs) that carried elevated levels of TGF‐β when compared to pLN‐iFRC‐derived MVs, and these novel players of intercellular communication were shown to be responsible for the tolerogenic properties of mLN‐iFRCs. Thus, stromal cells originating from mLNs contribute to peripheral tolerance by fostering de novo Treg induction using TGF‐β‐carrying MVs. This finding provides novel insights into the subcellular/molecular mechanisms of de novo Treg induction and might serve as promising tool for future therapeutic applications to treat inflammatory disorders. PMID:28833065
Alloreactive Regulatory T Cells Allow the Generation of Mixed Chimerism and Transplant Tolerance.
Ruiz, Paulina; Maldonado, Paula; Hidalgo, Yessia; Sauma, Daniela; Rosemblatt, Mario; Bono, Maria Rosa
2015-01-01
The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant (NM-BMT) protocol using retinoic acid (RA)-induced alloantigen-specific Tregs, clinically available immunosuppressive drugs, and lower doses of irradiation. We demonstrate that RA-induced alloantigen-specific Tregs in addition to a NM-BMT protocol generates stable mixed chimerism and induces tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation.
Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis
Pereira, Leonn Mendes Soares; Gomes, Samara Tatielle Monteiro; Ishak, Ricardo; Vallinoto, Antonio Carlos Rosário
2017-01-01
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance. PMID:28603524
Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.
Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D
2017-06-01
The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of T regs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.
George, Parakkal Jovvian; Anuradha, Rajamanickam; Kumaran, Paramasivam Paul; Chandrasekaran, Vedachalam; Nutman, Thomas B.; Babu, Subash
2013-01-01
Hookworm infections and tuberculosis are co-endemic in many parts of the world. It has been suggested that infection with helminth parasites could suppress the predominant Th1 (IFN-γ-mediated) response needed to control Mycobacterium tuberculosis (Mtb) infection and enhance susceptibility to infection and/or disease. To determine the role of coincident hookworm infection on responses at steady state and on Mtb – specific immune responses in latent tuberculosis (TB), we examined the cellular responses in individuals with latent TB with or without concomitant hookworm infection. By analyzing the expression of Th1, Th2 and Th17 subsets of CD4+ T cells, we were able to demonstrate that the presence of coincident hookworm infection significantly diminished both spontaneously expressed and Mtb – specific mono – and dual – functional Th1 and Th17 cells. Hookworm infection, in contrast, was associated with expanded frequencies of mono – and dual – functional Th2 cells at both steady state and upon antigen – stimulation. This differential induction of CD4+ T cell subsets was abrogated upon mitogen stimulation. In addition, coincident hookworm infection was associated with increased adaptive T regulatory (aTreg) cells but not natural regulatory T cells (nTregs) in latent TB. Finally, the CD4+ T cell cytokine expression pattern was also associated with alterations in the systemic levels of Th1 and Th2 cytokines. Thus, coincident hookworm infection exerts a profound inhibitory effect on protective Th1 and Th17 responses in latent tuberculosis and may predispose toward the development of active tuberculosis in humans. PMID:23576678
Breckpot, Karine; Escors, David
2009-12-01
Tumour immunotherapy has become a treatment modality for cancer, harnessing the immune system to recognize and eradicate tumour cells specifically. It is based on the expression of tumour associated antigens (TAA) by the tumour cells and aims at the induction of TAA-specific effector T cell responses, whilst overruling various mechanisms that can hamper the anti-tumour immune response, e.g. regulatory T cells (Treg). (Re-) activation of effector T cells requires the completion of a carefully orchestrated series of specific steps. Particularly important is the provision of TAA presentation and strong stimulatory signals, delivered by co-stimulatory surface molecules and cytokines. These can only be delivered by professional antigen-presenting cells, in particular dendritic cells (DC). Therefore, DC need to be loaded with TAA and appropriately activated. It is not surprising that an extensive part of DC research has focused on the delivery of both TAA and activation signals to DC, developing a one step approach to obtain potent stimulatory DC. The simultaneous delivery of TAA and activation signals is therefore the topic of this review, emphasizing the role of DC in mediating T cell activation and how we can manipulate DC for the pill-pose of enhancing tumour immunotherapy. As we gain a better understanding of the molecular and cellular mechanisms that mediate induction of TAA-specific T cells, rational approaches for the activation of T cell responses can be developed for the treatment of cancer.
2011-01-01
Introduction Ankylosing spondylitis (AS) is a chronic autoimmune disease, and the precise pathogenesis is largely unknown at present. Bone marrow-derived mesenchymal stem cells (BMSCs) with immunosuppressive and anti-inflammatory potential and Th17/Treg cells with a reciprocal relationship regulated by BMSCs have been reported to be involved in some autoimmune disorders. Here we studied the biological and immunological characteristics of BMSCs, the frequency and phenotype of CCR4+CCR6+ Th/Treg cells and their interaction in vitro in AS. Methods The biological and immunomodulation characteristics of BMSCs were examined by induced multiple-differentiation and two-way mixed peripheral blood mononuclear cell (PBMC) reactions or after stimulation with phytohemagglutinin, respectively. The interactions of BMSCs and PBMCs were detected with a direct-contact co-culturing system. CCR4+CCR6+ Th/Treg cells and surface markers of BMSCs were assayed using flow cytometry. Results The AS-BMSCs at active stage showed normal proliferation, cell viability, surface markers and multiple differentiation characteristics, but significantly reduced immunomodulation potential (decreased 68 ± 14%); the frequencies of Treg and Fox-P3+ cells in AS-PBMCs decreased, while CCR4+CCR6+ Th cells increased, compared with healthy donors. Moreover, the AS-BMSCs induced imbalance in the ratio of CCR4+CCR6+ Th/Treg cells by reducing Treg/PBMCs and increasing CCR4+CCR6+ Th/PBMCs, and also reduced Fox-P3+ cells when co-cultured with PBMCs. Correlation analysis showed that the immunomodulation potential of BMSCs has significant negative correlations with the ratio of CCR4+CCR6+ Th to Treg cells in peripheral blood. Conclusions The immunomodulation potential of BMSCs is reduced and the ratio of CCR4+CCR6+ Th/Treg cells is imbalanced in AS. The BMSCs with reduced immunomodulation potential may play a novel role in AS pathogenesis by inducing CCR4+CCR6+ Th/Treg cell imbalance. PMID:21338515
Zhu, Yi; Zhang, Jing-Jing; Liang, Wen-Biao; Zhu, Rong; Wang, Bin; Miao, Yi; Xu, Ze-Kuan
2014-04-01
Tumor-associated MUC4 mucin has considerable potential as an immunotherapy target for pancreatic cancer. In previous studies, we developed dendritic cell (DC) vaccines which elicited MUC4 antigen-specific cytotoxic T lymphocyte (MS-CTL) response against tumor cells in vitro. Due to the observation that MS-CTL apoptotic rate increased significantly when co-cultured with MUC4+ tumor cells compared with T2 cells, we investigated whether high expression levels of MUC4 in pancreatic cancer cells would have an effect on the significant increase of apoptosis rate of MS-CTLs. First, the adverse influence of regulatory T cells (Tregs) was eliminated by CD8+ T lymphocyte sorting before the induction of MS-CTLs. Then, we constructed clonal MUC4-knockdown HPAC pancreatic cancer sublines with different MUC4 expression for co-incubation system. By utilizing appropriate control to rule out the possible apoptosis-induced pathway of intrinsic activated cell-autonomous death (ACAD) and analogous antigen-dependent apoptosis of CTL (ADAC) in our study system, further analysis of the effect of MUC4 membrane-expression, supernatants and blockade of CTL surface Fas receptor on MS-CTL apoptosis was carried out. The results demonstrated that the level of MUC4 membrane expression strongly positively correlated with MS-CTL apoptosis and the influence of supernatants and Fas-blockade did not significantly correlate with MS-CTL apoptosis. This evidence suggested that there may be a novel counterattack pathway of pancreatic cancer cells, which is a MUC4-mediated, cell contact-dependent and Fas-independent process, to induce CTL apoptosis. Therefore, further exploration and understanding of the potential counterattack mechanisms is beneficial to enhance the efficacy of MUC4 specific tumor vaccines.
CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis.
Safari, Fatemeh; Farajnia, Safar; Arya, Maryam; Zarredar, Habib; Nasrolahi, Ava
2018-06-01
Rheumatoid arthritis (RA), as one of the most disabling autoimmune diseases, is a common health problem that progressively reduces the life quality of patients. Although various biologics have been introduced for RA, attempts to establish an efficient long-term therapies failed due to the heterogeneity of this disease. In the last decade, immunomodulatory approaches such as T cell adoptive therapy have been developed for controlling autoimmunity. Regulatory T cells (Tregs), the major self-tolerance mediator, are crucial for down-regulation of aberrant immune stimulations. Hence, recruiting ex vivo Tregs emerged as a promising therapy for a variety of autoimmune diseases. The major bottleneck of the Treg adoptive therapy is maintaining the in vivo stability and plasticity of these fascinating cells. Recent progress in genome editing technology clustered regularly interspaced short palindromic repeats (CRISPR) in combination with CRISPR-associated (Cas) 9 system provided a new solution for this bottleneck. The present paper discusses RA pathogenesis and the potential application of new developments in CRISPR-mediated Treg genome editing in personalized therapy of RA.
Katz, Gil; Voss, Kelsey; Yan, Toria F; Kim, Yong Chan; Kortum, Robert L; Scott, David W; Snow, Andrew L
2018-05-01
Restimulation-induced cell death (RICD) is an apoptotic program that regulates effector T cell expansion, triggered by repeated stimulation through the T cell receptor (TCR) in the presence of interleukin-2 (IL-2). Although CD4 + regulatory T cells (Tregs) consume IL-2 and experience frequent TCR stimulation, they are highly resistant to RICD. Resistance in Tregs is dependent on the forkhead box P3 (FOXP3) transcription factor, although the mechanism remains unclear. T cells from patients with X-linked lymphoproliferative disease (XLP-1), that lack the adaptor molecule SLAM-associated protein (SAP), are also resistant to RICD. Here we demonstrate that normal Tregs express very low levels of SAP compared to conventional T cells. FOXP3 reduces SAP expression by directly binding to and repressing the SH2D1A (SAP) promoter. Indeed, ectopic SAP expression restores RICD sensitivity in human FOXP3 + Tregs. Our findings illuminate the mechanism behind FOXP3-mediated RICD resistance in Tregs, providing new insight into their long-term persistence. Published by Elsevier Inc.
Mai, Jietang; Wang, Hong; Yang#, Xiao-Feng
2010-01-01
Interleukin-17 (IL-17)-secreting T helper 17 cells (Th17) are a recently identified CD4+ T helper subset that has been implicated in various inflammatory and autoimmune diseases. Th17, along with CD4+CD25high Foxp3+ regulatory T cells (Tregs) and other newly emergent T helper subsets, Th9 and Tfh, have expanded the Th1-Th2 paradigm. Although this newly proposed six-subset paradigm significantly improved our understanding on the differentiation of CD4+ T helper cell subsets and the regulation of T helper cells in inflammation and autoimmunity, many questions remain to be answered. In this overview, we will briefly review the following issues: a) Old Th1-Th2 paradigm versus new multi-subset paradigm; b) Structural features of IL-17 family cytokines; c) Th17 cells; d) Effects of IL-17 on various cell types and tissues; e) IL-17 receptor and signaling pathways; f) Th17-mediated inflammations; and g) Protective mechanisms of IL-17 in infections. Lastly, we will look into the interaction of Th17 and Treg in autoimmune diseases and inflammation: Th17 cells interplay with Tregs. Regulation of autoimmunity and inflammation lies in the interplays of the different T helper subsets, therefore, better understanding of these subsets’ interactions with one another would greatly improve our approaches in developing therapy to combat inflammatory and autoimmune diseases. PMID:20515737
Kraft, Anke R. M.; Wlodarczyk, Myriam F.; Kenney, Laurie L.
2013-01-01
Prior immunity to influenza A virus (IAV) in mice changes the outcome to a subsequent lymphocytic choriomeningitis virus (LCMV) infection and can result in severe lung pathology, similar to that observed in patients that died of the 1918 H1N1 pandemic. This pathology is induced by IAV-specific memory CD8+ T cells cross-reactive with LCMV. Here, we discovered that IAV-immune mice have enhanced CD4+ Foxp3+ T-regulatory (Treg) cells in their lungs, leading us to question whether a modulation in the normal balance of Treg and effector T-cell responses also contributes to enhancing lung pathology upon LCMV infection of IAV-immune mice. Treg cell and interleukin-10 (IL-10) levels remained elevated in the lungs and mediastinal lymph nodes (mLNs) throughout the acute LCMV response of IAV-immune mice. PC61 treatment, used to decrease Treg cell levels, did not change LCMV titers but resulted in a surprising decrease in lung pathology upon LCMV infection in IAV-immune but not in naive mice. Associated with this decrease in pathology was a retention of Treg in the mLN and an unexpected partial clonal exhaustion of LCMV-specific CD8+ T-cell responses only in IAV-immune mice. PC61 treatment did not affect cross-reactive memory CD8+ T-cell proliferation. These results suggest that in the absence of IAV-expanded Treg cells and in the presence of cross-reactive memory, the LCMV-specific response was overstimulated and became partially exhausted, resulting in a decreased effector response. These studies suggest that Treg cells generated during past infections can influence the characteristics of effector T-cell responses and immunopathology during subsequent heterologous infections. Thus, in humans with complex infection histories, PC61 treatment may lead to unexpected results. PMID:24049180
Interleukin-35: Expanding Its Job Profile
Sawant, Deepali V.; Hamilton, Kristia
2015-01-01
Counter-regulation afforded by specialized regulatory cell populations and immunosuppressive cytokines is critical for balancing immune outcome. The inhibitory potential of the established suppressive cytokines, IL-10 and TGFβ, has been well elucidated in diverse inflammatory scenarios in conjunction with their key roles in Treg development and function. Despite the early predictions for an immunomodulatory role for the Ebi3/p35 heterodimer in placental trophoblasts, IL-35 biology remained elusive until 2007 when it was established as a Treg-restricted inhibitory cytokine. Since then, Treg-derived IL-35 has been shown to exhibit its suppressive activities in a range of autoimmune diseases and cancer models. Recent studies are beginning to explore other cellular sources of IL-35, such as Bregs and CD8+ Tregs. Despite these new cellular sources and targets, the mode of IL-35 suppression remains restricted to inhibition of proliferation and induction of an IL-35-producing induced regulatory T cell population referred to as iTr35. In this review, we explore the early beginnings, status quo, and future prospects of IL-35 biology. The unparalleled opportunity of targeting multiple immunosuppressive populations (Tregs, Bregs, CD8+ Tregs) through IL-35 is highly exciting and offers tremendous promise from a translational standpoint, particularly for cancer immunotherapies. PMID:25919641
Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els
2003-12-01
Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.
Tumor infiltrating lymphocytes in ovarian cancer
Santoiemma, Phillip P; Powell, Daniel J
2015-01-01
The accumulation of tumor infiltrating lymphocytes (TILs) in ovarian cancer is prognostic for increased survival while increases in immunosuppressive regulatory T-cells (Tregs) are associated with poor outcomes. Approaches that bolster tumor-reactive TILs may limit tumor progression. However, identifying tumor-reactive TILs in ovarian cancer has been challenging, though adoptive TIL therapy in patients has been encouraging. Other forms of TIL immunomodulation remain under investigation including Treg depletion, antibody-based checkpoint modification, activation and amplification using dendritic cells, antigen presenting cells or IL-2 cytokine culture, adjuvant cytokine injections, and gene-engineered T-cells. Many approaches to TIL manipulation inhibit ovarian cancer progression in preclinical or clinical studies as monotherapy. Here, we review the impact of TILs in ovarian cancer and attempts to mobilize TILs to halt tumor progression. We conclude that effective TIL therapy for ovarian cancer is at the brink of translation and optimal TIL activity may require combined methodologies to deliver clinically-relevant treatment. PMID:25894333
Moon, Su-Jin; Park, Jin-Sil; Woo, Yun-Ju; Lim, Mi-Ae; Kim, Sung-Min; Lee, Seon-Yeong; Kim, Eun-Kyung; Lee, Hee Jin; Lee, Weon Sun; Park, Sang-Hi; Jeong, Jeong-Hee; Park, Sung-Hwan; Kim, Ho-Youn; Cho, Mi-La; Min, Jun-Ki
2014-04-01
Rebamipide, a gastroprotective agent, has the ability to scavenge reactive oxygen radicals. Increased oxidative stress is implicated in the pathogenesis of rheumatoid arthritis (RA). We undertook this study to investigate the impact of rebamipide on the development of arthritis and the pathophysiologic mechanisms by which rebamipide attenuates arthritis severity in a murine model of RA. Collagen-induced arthritis (CIA) was induced in DBA/1J mice. Anti-type II collagen antibody titers and interleukin-17 (IL-17) levels were determined using enzyme-linked immunosorbent assay. The expression of transcription factors was analyzed by immunostaining and Western blotting. Frequencies of IL-17-producing CD4+ T cells (Th17 cells) and CD4+CD25+FoxP3+ Treg cells were analyzed by flow cytometry. Rebamipide reduced the clinical arthritis score and severity of histologic inflammation and cartilage destruction in a dose-dependent manner. The joints isolated from rebamipide-treated mice with CIA showed decreased expression of nitrotyrosine, an oxidative stress marker. Rebamipide-treated mice showed lower circulating levels of type II collagen-specific IgG, IgG1, and IgG2a. Whereas the number of Th17 cells in spleens was decreased in rebamipide-treated mice with CIA, a significant increase in the number of Treg cells in spleens was observed. In vitro, rebamipide inhibited Th17 cell differentiation through STAT-3/retinoic acid receptor-related orphan nuclear receptor γt and reciprocally induced Treg cell differentiation through FoxP3. Rebamipide increased Nrf2 nuclear activities in murine CD4+ T cells and LBRM-33 murine T lymphoma cells. Heme oxygenase 1 (HO-1) expression in the spleens was markedly increased in rebamipide-treated mice. The inhibitory effects of rebamipide on joint inflammation are associated with recovery from an imbalance between Th17 cells and Treg cells and with activation of an Nrf2/HO-1 antioxidant pathway. Copyright © 2014 by the American College of Rheumatology.
Quiroga, Maria Florencia; Angerami, Matias Tomas; Santucci, Natalia; Ameri, Diego; Francos, Jose Luis; Wallach, Jorge; Sued, Omar; Cahn, Pedro; Salomón, Horacio; Bottasso, Oscar
2012-01-01
Tuberculosis (TB) remains the most frequent cause of illness and death from an infectious agent, and its interaction with HIV has devastating effects. We determined plasma levels of dehydroepiandrosterone (DHEA), its circulating form DHEA-suphate (DHEA-s) and cortisol in different stages of M. tuberculosis infection, and explored their role on the Th1 and Treg populations during different scenarios of HIV-TB coinfection, including the immune reconstitution inflammatory syndrome (IRIS), a condition related to antiretroviral treatment. DHEA levels were diminished in HIV-TB and HIV-TB IRIS patients compared to healthy donors (HD), HIV+ individuals and HIV+ individuals with latent TB (HIV-LTB), whereas dehydroepiandrosterone sulfate (DHEA-s) levels were markedly diminished in HIV-TB IRIS individuals. HIV-TB and IRIS patients presented a cortisol/DHEA ratio significantly higher than HIV+, HIV-LTB and HD individuals. A positive correlation was observed between DHEA-s and CD4 count among HIV-TB individuals. Conversely, cortisol plasma level inversely correlated with CD4 count within HIV-TB individuals. M. tuberculosis-specific Th1 lymphocyte count was increased after culturing PBMC from HIV-TB individuals in presence of DHEA. We observed an inverse correlation between DHEA-s plasma level and Treg frequency in co-infected individuals, and CD4+FoxP3+ Treg frequency was increased in HIV-TB and IRIS patients compared to other groups. Strikingly, we observed a prominent CD4+CD25-FoxP3+ population across HIV-TB and HIV-TB IRIS patients, which frequency correlated with DHEA plasma level. Finally, DHEA treatment negatively regulated FoxP3 expression without altering Treg frequency in co-infected patients. These data suggest an enhancing role for DHEA in the immune response against M. tuberculosis during HIV-TB coinfection and IRIS.
Quiroga, Maria Florencia; Angerami, Matias Tomas; Santucci, Natalia; Ameri, Diego; Francos, Jose Luis; Wallach, Jorge; Sued, Omar; Cahn, Pedro; Salomón, Horacio; Bottasso, Oscar
2012-01-01
Tuberculosis (TB) remains the most frequent cause of illness and death from an infectious agent, and its interaction with HIV has devastating effects. We determined plasma levels of dehydroepiandrosterone (DHEA), its circulating form DHEA-suphate (DHEA-s) and cortisol in different stages of M. tuberculosis infection, and explored their role on the Th1 and Treg populations during different scenarios of HIV-TB coinfection, including the immune reconstitution inflammatory syndrome (IRIS), a condition related to antiretroviral treatment. DHEA levels were diminished in HIV-TB and HIV-TB IRIS patients compared to healthy donors (HD), HIV+ individuals and HIV+ individuals with latent TB (HIV-LTB), whereas dehydroepiandrosterone sulfate (DHEA-s) levels were markedly diminished in HIV-TB IRIS individuals. HIV-TB and IRIS patients presented a cortisol/DHEA ratio significantly higher than HIV+, HIV-LTB and HD individuals. A positive correlation was observed between DHEA-s and CD4 count among HIV-TB individuals. Conversely, cortisol plasma level inversely correlated with CD4 count within HIV-TB individuals. M. tuberculosis-specific Th1 lymphocyte count was increased after culturing PBMC from HIV-TB individuals in presence of DHEA. We observed an inverse correlation between DHEA-s plasma level and Treg frequency in co-infected individuals, and CD4+FoxP3+ Treg frequency was increased in HIV-TB and IRIS patients compared to other groups. Strikingly, we observed a prominent CD4+CD25-FoxP3+ population across HIV-TB and HIV-TB IRIS patients, which frequency correlated with DHEA plasma level. Finally, DHEA treatment negatively regulated FoxP3 expression without altering Treg frequency in co-infected patients. These data suggest an enhancing role for DHEA in the immune response against M. tuberculosis during HIV-TB coinfection and IRIS. PMID:22431997
Mao, Chaoming; Wang, Shu; Xiao, Yichuan; Xu, Jingwei; Jiang, Qian; Jin, Min; Jiang, Xiaohua; Guo, Hua; Ning, Guang; Zhang, Yanyun
2011-04-15
Graves' disease (GD) is one of the most common autoimmune diseases. The immune dysfunction in GD involves the generation of thyroid-stimulating hormone receptor (TSHR) autoantibodies that presumably arise consequent to interactions among dendritic cells (DCs), T cells, and regulatory T (Treg) cells. However, the immunological mechanisms of interactions between them that lead to the induction and regulation of this autoimmune disease are poorly defined. In this study, we investigated whether DCs are the main cause of the defective activity of Treg cells in GD patients. We found a significant decrease in the percentage of circulating CD4(+)CD25(+)FOXP3(+) Treg cells in untreated GD patients (uGD), which was negatively correlated with the concentration of TSHR autoantibodies. uGD-derived DCs were polarized to increase the number of plasmacytoid DCs (pDCs) and conferred the ability to abrogate the suppressive function of Treg cells through inducing apoptosis of CD4(+)CD25(+) Treg cells in an IFN-α-dependent manner, and elevated thyroid hormones further exacerbated the effect. The nucleotide UDP, which inhibits IFN-α secretion of pDCs through P2Y6 receptor signaling, restored the suppressive function of CD4(+)CD25(+) Treg cells. Collectively, uGD-derived DCs through pDC polarization and elevated thyroid hormones act in concert to impair the regulatory capacity of Treg cells, facilitating the production of TSHR autoantibodies in the pathogenesis of GD.
Suppression of Inflammatory Arthritis by Human Gut-Derived Prevotella histicola in Humanized Mice.
Marietta, Eric V; Murray, Joseph A; Luckey, David H; Jeraldo, Patricio R; Lamba, Abhinav; Patel, Robin; Luthra, Harvinder S; Mangalam, Ashutosh; Taneja, Veena
2016-12-01
The gut microbiome regulates host immune homeostasis. Rheumatoid arthritis (RA) is associated with intestinal dysbiosis. This study was undertaken to test the ability of a human gut-derived commensal to modulate immune response and treat arthritis in a humanized mouse model. We isolated a commensal bacterium, Prevotella histicola, that is native to the human gut and has systemic immune effects when administered enterally. Arthritis-susceptible HLA-DQ8 mice were immunized with type II collagen and treated with P histicola. Disease incidence, onset, and severity were monitored. Changes in gut epithelial proteins and immune response as well as systemic cellular and humoral immune responses were studied in treated mice. When treated with P histicola in prophylactic or therapeutic protocols, DQ8 mice exhibited significantly decreased incidence and severity of arthritis compared to controls. The microbial mucosal modulation of arthritis was dependent on regulation by CD103+ dendritic cells and myeloid suppressors (CD11b+Gr-1+ cells) and by generation of Treg cells (CD4+CD25+FoxP3+) in the gut, resulting in suppression of antigen-specific Th17 responses and increased transcription of interleukin-10. Treatment with P histicola led to reduced intestinal permeability by increasing expression of enzymes that produce antimicrobial peptides as well as tight junction proteins (zonula occludens 1 and occludin). However, the innate immune response via Toll-like receptor 4 (TLR-4) and TLR-9 was not affected in treated mice. Our results demonstrate that enteral exposure to P histicola suppresses arthritis via mucosal regulation. P histicola is a unique commensal that can be explored as a novel therapy for RA and may have few or no side effects. © 2016, American College of Rheumatology.
Li, Yue; Chen, Hung-lin; Bannick, Nadine; Henry, Michael; Holm, Adrian N.; Metwali, Ahmed; Urban, Joseph F.; Rothman, Paul B.; Weiner, George J.; Blazar, Bruce R.; Elliott, David E.; Ince, M. Nedim
2014-01-01
Donor T lymphocyte transfer with hematopoietic stem cells suppresses residual tumor growth (graft-versus-tumor; GVT) in cancer patients undergoing bone marrow transplantation (BMT). However, donor T cell reactivity to host organs causes severe and potentially lethal inflammation, called graft-versus-host disease (GVHD). High dose steroids or other immune suppressives are used to treat GVHD that have limited ability to control the inflammation while incurring long-term toxicity. Novel strategies are needed to modulate GVHD, preserve GVT and improve the outcome of BMT. Regulatory T cells (Tregs) control alloantigen-sensitized inflammation of GVHD, sustain GVT and prevent mortality in bone marrow transplantation. Helminths colonizing the alimentary tract dramatically increase the Treg activity, thereby modulating intestinal or systemic inflammatory responses. These observations led us to hypothesize that helminths can regulate GVHD and maintain GVT in mice. Acute GVHD was induced in helminth (Heligmosomoides polygyrus)-infected or uninfected Balb/C recipients of C57BL/6 donor grafts. Helminth infection suppressed donor T cell inflammatory cytokine generation along with reduction in GVHD lethality and maintenance of GVT. H. polygyrus colonization promoted the survival of TGFβ generating recipient Tregs after a conditioning regimen with total body irradiation and led to a TGFβ-dependent in vivo expansion/maturation of donor Tregs after BMT. Helminths did not control GVHD, when T cells unresponsive to TGFβ-mediated immune regulation were used as donor T lymphocytes. These results suggest that helminths suppress acute GVHD, employing regulatory T cells and TGFβ-dependent pathways in mice. Helminthic regulation of GVHD and GVT through intestinal immune conditioning may improve the outcome of BMT. PMID:25527786
An essential role for IL-2 receptor in regulatory T cell function
Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.
2016-01-01
Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233
Klaver, Elsenoor J.; Kuijk, Loes M.; Lindhorst, Thisbe K.; Cummings, Richard D.; van Die, Irma
2015-01-01
Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses. PMID:25897665
Klaver, Elsenoor J; Kuijk, Loes M; Lindhorst, Thisbe K; Cummings, Richard D; van Die, Irma
2015-01-01
Schistosomiasis is a common debilitating human parasitic disease in (sub)tropical areas, however, schistosome infections can also protect against a variety of inflammatory diseases. This has raised broad interest in the mechanisms by which Schistosoma modulate the immune system into an anti-inflammatory and regulatory state. Human dendritic cells (DCs) show many phenotypic changes upon contact with Schistosoma mansoni soluble egg antigens (SEA). We here show that oxidation of SEA glycans, but not heat-denaturation, abrogates the capacity of SEA to suppress both LPS-induced cytokine secretion and DC proliferation, indicating an important role of SEA glycans in these processes. Remarkably, interaction of SEA glycans with DCs results in a strongly increased expression of Suppressor Of Cytokine Signalling1 (SOCS1) and SH2-containing protein tyrosine Phosphatase-1 (SHP1), important negative regulators of TLR4 signalling. In addition, SEA induces the secretion of transforming growth factor β (TGF-β), and the surface expression of the costimulatory molecules Programmed Death Ligand-1 (PD-L1) and OX40 ligand (OX40L), which are known phenotypic markers for the capacity of DCs to polarize naïve T cells into Th2/Treg cell subsets. Inhibition of mannose receptor (MR)-mediated internalization of SEA into DCs by blocking with allyl α-D-mannoside or anti-MR antibodies, significantly reduced SOCS1 and SHP1 expression. In conclusion, we demonstrate that SEA glycans are essential for induction of enhanced SOCS1 and SHP1 levels in DCs via the MR. Our data provide novel mechanistic evidence for the potential of S. mansoni SEA glycans to modulate human DCs, which may contribute to the capacity of SEA to down-regulate inflammatory responses.
Trujillo-Ochoa, Jorge L; Corral-Jara, Karla F; Charles-Niño, Claudia L; Panduro, Arturo; Fierro, Nora A
2018-04-01
Bilirubin (BR), a metabolite with increased concentrations in plasma during viral hepatitis, has been recognized as a potential immune-modulator. We recently reported that conjugated BR (CB) augments regulatory T cell (Treg) suppressor activity during acute hepatitis A virus (HAV) infection. However, the mechanisms related to the effects of CB on Treg function in the course of hepatotropic viral diseases have not been elucidated. T cell immunoglobulin domain and mucin domain 3 (TIM-3), via its interactions with galectin-9 (GAL-9), is a receptor associated with enhanced Treg function. Thus, TIM-3 expression may be related to the crosstalk between CB and Tregs during HAV infection. Herein, in vitro treatment with high concentrations of CB upregulated TIM-3 expression on Tregs from healthy donors. CB treatment in vitro did not induce de novo Treg generation, and in vitro stimulation with TGF-β, which shows increased secretion during HAV infection, resulted in a trend toward increased TIM-3 expression on Tregs and CD4 + T lymphocytes (TLs) from healthy donors. Interestingly, an upregulation of TIM-3 expression on CD4 + CD25 + T cells and an increase in the proportion of CD4 + TLs expressing GAL-9 were found in HAV-infected patients with abnormal CB values relative to healthy controls. In addition, a statistically significantly reduction in IL-17F production was observed after treatment of CD4 + TLs from healthy donors with high doses of CB in vitro. In summary, our results suggest that CB might regulate Treg activity via a TIM-3-mediated mechanism, ultimately leading to an anti-inflammatory hepatoprotective effect.
Weinberg, Adriana; Muresan, Petronella; Fenton, Terence; Richardson, Kelly; Dominguez, Teresa; Bloom, Anthony; Petzold, Elizabeth; Anthony, Patricia; Cunningham, Coleen K.; Spector, Stephen A.; Nachman, Sharon; Siberry, George K.; Handelsman, Edward; Flynn, Patricia M.
2013-01-01
HIV-infected individuals have poor responses to inactivated influenza vaccines. To evaluate the potential role of regulatory T (Treg) and B cells (Breg), we analyzed their correlation with humoral and cell-mediated immune (CMI) responses to pandemic influenza (pH1N1) monovalent vaccine in HIV-infected children and youth. Seventy-four HIV-infected, 4- to 25-y old participants in a 2-dose pH1N1 vaccine study had circulating and pH1N1-stimulated Treg and Breg measured by flow cytometry at baseline, post-dose 1 and post-dose 2. Concomitantly, CMI was measured by ELISPOT and flow cytometry; and antibodies by hemagglutination inhibition (HAI). At baseline, most of the participants had pH1N1-specific IFNγ ELISPOT responses, whose magnitude positively correlated with the baseline pH1N1, but not with seasonal H1N1 HAI titers. pH1N1-specific IFNγ ELISPOT responses did not change post-dose 1 and significantly decreased post-dose 2. In contrast, circulating CD4+CD25+% and CD4+FOXP3+% Treg increased after vaccination. The decrease in IFNγ ELISPOT results was marginally associated with higher pH1N1-specific CD19+FOXP3+ and CD4+TGFβ+% Breg and Treg, respectively. In contrast, increases in HAI titers post-dose 1 were associated with significantly higher circulating CD19+CD25+% post-dose 1, whereas increases in IFNγ ELISPOT results post-dose 1 were associated with higher circulating CD4+/C8+CD25+FOXP3+%. In conclusion, in HIV-infected children and youth, influenza-specific Treg and Breg may contribute to poor responses to vaccination. However, robust humoral and CMI responses to vaccination may result in increased circulating Treg and/or Breg, establishing a feed-back mechanism. PMID:23370281
More significance of TB-IGRA except for the diagnose of tuberculosis.
Xu, Jun-Chi; Li, Ze-Yi; Chen, Xin-Nian; Shi, Cui-Lin; Wu, Mei-Ying; Chen, Hui; Zhu, Xiao-Yan; Song, Hua-Feng; Wu, Min-Juan; Xu, Ping
2018-01-01
Tuberculosis (TB)-interferon gamma release assay (IGRA) test has the characteristics of short time, high specificity, and high sensitivity, but it lacks the correlation research between TB-IGRA test results and body's immune cells, disease progression and prognosis, which is explored in this study. A retrospective study was carried out on positive TB-IGRA patients who were infected with TB and diagnosed at our hospital from January 2014 to June 2015. The TB-IGRA, routine blood test, T-cell subgroup data were collected for statistical analysis. TB-IGRA results were in positive proportion to the lymphocytes, CD4 + T cells and CD4 + CD28 + T cells, whereas negative to the Treg cells. Patient with unilateral pulmonary lesion had higher TB-IGRA than those with bilateral pulmonary lesions. After the stimulation of TB-specific antigen, the proportion of CD4 + IFN-γ + and CD8 + IFN-γ + T Tcells were both increased and the CD4 + IFN-γ + T had positive correlation with the value of TB-IGRA. IFN-γ was tested with TB-IGRA in patients with TB by the specific TB T cells and correlated with the lymphocytes, while the lymphocytes also closely related to the host's anti-TB immunity and disease outcome. Hence the result of TB-IGRA could reflect the specific anti-TB immunity ability of the host, disease progression and prognosis. This study further expands the application scope of TB-IGRA technology in the diagnosis of TB and lays a foundation for clinical practice to understand the immunity state of the patients with TB and the application of auxiliary clinical immunity regulators. © 2017 Wiley Periodicals, Inc.
Kato, Hiroshi; Perl, Andras
2018-03-01
The mechanistic target of rapamycin (mTOR) has become a therapeutic target in systemic lupus erythematosus (SLE). In T cells, mTOR plays a central role in lineage specification, including development of regulatory cells (Treg cells). This study sought to investigate whether mTOR is activated within Treg cells and whether this contributes to the depletion and dysfunction of Treg cells in patients with SLE. Activities of mTOR complexes 1 (mTORC1) and 2 (mTORC2) were examined by quantifying phosphorylation of translation initiation factor 4E-binding protein 1, S6 kinase, and Akt in SLE patients relative to age- and sex-matched female healthy control subjects. Polarization of Treg cells from naive CD4+ T cells was assessed in the presence of interleukin-6 (IL-6), IL-17, and IL-21. The suppressor function of sorted CD4+CD25+ Treg cells was measured by determining their impact on the proliferation of autologous CD4+CD25- responder T cells. Treg cell expression of FoxP3, GATA-3, and CTLA-4 was monitored by flow cytometry. Autophagy was assessed using immunoblotting of light chain 3 lipidation. The effect of mTOR blockade was evaluated by testing the impact of rapamycin treatment on Treg cell function. SLE Treg cells exhibited increased activities of mTORC1 and mTORC2, whereas autophagy, the expression of GATA-3 and CTLA-4, and the suppressor function of Treg cells were diminished. IL-21, but not IL-6 or IL-17, blocked the development of Treg cells. IL-21 stimulated mTORC1 and mTORC2, and it abrogated the autophagy, differentiation, and function of Treg cells. Moreover, IL-21 constrained the expression of GATA-3 and CTLA-4 selectively in Treg cells. In turn, blockade of mTORC1 by 3-day rapamycin treatment enhanced transforming growth factor β production, while dual blockade of mTORC1 and mTORC2 by 4-week rapamycin treatment induced autophagy, restored the expression of GATA-3 and CTLA-4, and corrected Treg cell function. IL-21-driven mTOR activation is a pharmacologically targetable checkpoint of the deficient autophagy that underlies Treg cell dysfunction in SLE. © 2017, American College of Rheumatology.
Kleinschnitz, Christoph; Kraft, Peter; Dreykluft, Angela; Hagedorn, Ina; Göbel, Kerstin; Schuhmann, Michael K; Langhauser, Friederike; Helluy, Xavier; Schwarz, Tobias; Bittner, Stefan; Mayer, Christian T; Brede, Marc; Varallyay, Csanad; Pham, Mirko; Bendszus, Martin; Jakob, Peter; Magnus, Tim; Meuth, Sven G; Iwakura, Yoichiro; Zernecke, Alma; Sparwasser, Tim; Nieswandt, Bernhard; Stoll, Guido; Wiendl, Heinz
2013-01-24
We have recently identified T cells as important mediators of ischemic brain damage, but the contribution of the different T-cell subsets is unclear. Forkhead box P3 (FoxP3)-positive regulatory T cells (Tregs) are generally regarded as prototypic anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. In the present study, we examined the role of Tregs after experimental brain ischemia/reperfusion injury. Selective depletion of Tregs in the DEREG mouse model dramatically reduced infarct size and improved neurologic function 24 hours after stroke and this protective effect was preserved at later stages of infarct development. The specificity of this detrimental Treg effect was confirmed by adoptive transfer experiments in wild-type mice and in Rag1(-/-) mice lacking lymphocytes. Mechanistically, Tregs induced microvascular dysfunction in vivo by increased interaction with the ischemic brain endothelium via the LFA-1/ICAM-1 pathway and platelets and these findings were confirmed in vitro. Ablation of Tregs reduced microvascular thrombus formation and improved cerebral reperfusion on stroke, as revealed by ultra-high-field magnetic resonance imaging at 17.6 Tesla. In contrast, established immunoregulatory characteristics of Tregs had no functional relevance. We define herein a novel and unexpected role of Tregs in a primary nonimmunologic disease state.
Tan, Marcus C. B.; Goedegebuure, Peter S.; Belt, Brian A.; Flaherty, Brian; Sankpal, Narendra; Gillanders, William E.; Eberlein, Timothy J.; Hsieh, Chyi-Song; Linehan, David C.
2013-01-01
Tumors evade immune destruction by actively inducing immune tolerance through the recruitment of CD4+CD25+Foxp3+ regulatory T cells (Treg). We have previously described increased prevalence of these cells in pancreatic adenocarcinoma, but it remains unclear what mechanisms are involved in recruiting Treg into the tumor microenvironment. Here, we postulated that chemokines might direct Treg homing to tumor. We show, in both human pancreatic adenocarcinoma and a murine pancreatic tumor model (Pan02), that tumor cells produce increased levels of ligands for the CCR5 chemokine receptor, and, reciprocally, that CD4+ Foxp3+ Treg, compared with CD4+ Foxp3− effector T cells, preferentially express CCR5. When CCR5/CCL5 signaling is disrupted, either by reducing CCL5 production by tumor cells or by systemic administration of a CCR5 inhibitor (TAK-779), Treg migration to tumors is reduced and tumors are smaller than in control mice. Thus, this study demonstrates the importance of Treg in immune evasion by tumors, how blockade of Treg migration may inhibit tumor growth, and, specifically in pancreatic adenocarcinoma, the role of CCR5 in the homing of tumor-associated Treg. Selective targeting of CCR5/CCL5 signaling may represent a novel immunomodulatory strategy for the treatment of cancer. PMID:19155524
Ren, Shurong; Wang, Qiubo; Zhang, Yanli; Lu, Cuixiu; Li, Ping; Li, Yumei
2017-02-01
Objective To investigate the therapeutic effect of Toll-like receptor 7 (TLR7) agonist imiquimod combined with dendritic cell (DC)-based tumor vaccine on melanoma in mice and the potential mechanism. Methods Melanoma-bearing mouse models were established by subcutanous injection of B16-OVA cells into C57BL/6 mice. DCs were isolated from mouse bone marrow and propagated in culture medium with recombinant mouse granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant mouse interleukin-4 (rmIL-4). DC vaccine (OVA-DC) was prepared by overnight incubation of DCs added with chicken ovalbumin. C57BL/6 mice were separated into four groups which were treated with PBS, topical imiquimod application, OVA-DC intradermal injection and imiquimod plus OVA-DC, respectively. The tumor size was calculated by digital vernier caliper. Peripheral blood CD4 + FOXP3 + Tregs of the tumor-bearing mice was detected by flow cytometry. The cytotoxicity of splenic lymphocyte against B16-OVA was assessed in vitro by CCK-8 assay. Results Compared with the other three groups, B16-OVA-bearing mice treated with imiquimod plus DC vaccine had the smallest tumor volume. The percentage of CD4 + FOXP3 + Tregs decreased significantly in the combined treated mice. The combined treatment enhanced significantly cytotoxicity of splenic lymphocytes against B16-OVA cells. Conclusion Imiquimod combined with antigen-pulsed-DC vaccine could reduce CD4 + FOXP3 + Treg proportion and promote anti-tumor effect in mice with melanoma.
Brenz, Yannick; Eschbach, Marie-Luise; Hartmann, Wiebke; Haben, Irma; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Breloer, Minka
2014-01-01
Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3+ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3+ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6 mice. PMID:24516385
Blankenhaus, Birte; Reitz, Martina; Brenz, Yannick; Eschbach, Marie-Luise; Hartmann, Wiebke; Haben, Irma; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Breloer, Minka
2014-02-01
Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3⁺ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3⁺ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6 mice.
Sucher, Robert; Fischler, Klaus; Oberhuber, Rupert; Kronberger, Irmgard; Margreiter, Christian; Ollinger, Robert; Schneeberger, Stefan; Fuchs, Dietmar; Werner, Ernst R.; Watschinger, Katrin; Zelger, Bettina; Tellides, George; Pilat, Nina; Pratschke, Johann; Margreiter, Raimund; Wekerle, Thomas; Brandacher, Gerald
2011-01-01
Co-stimulatory blockade of CD28-B7 interaction with CTLA4Ig is a well-established strategy to induce transplantation tolerance. Although previous in vitro studies suggest that CTLA4Ig up-regulates expression of the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in dendritic cells, the relationship of CTLA4Ig and IDO in in vivo organ transplantation remains unclear. Here we studied if concerted immunomodulation in vivo by CTLA4Ig depends on IDO. C57BL/6 recipients receiving a fully MHC-mismatched BALB/c heart graft treated with CTLA4Ig + donor specific transfusion (DST) showed indefinite graft survival [>100 days] without signs of chronic rejection or donor specific antibody formation. Recipients with long-term surviving grafts had significantly higher systemic IDO activity as compared to rejectors, which markedly correlated with intragraft IDO and Foxp3 levels. IDO inhibition with 1-methyl-DL-tryptophan, either at transplant or at POD 50, abrogated CTLA4Ig+DST-induced long-term graft survival. Importantly, IDO1 knock-out recipients experienced acute rejection and graft survival comparable to controls. In addition, αCD25 mAb-mediated depletion of Tregs resulted in decreased IDO activity and again prevented CTLA4Ig+DST induced indefinite graft survival. Our results suggest that CTLA4Ig-induced tolerance to murine cardiac allografts is critically dependent on synergistic cross-linked interplay of IDO and Tregs. These results have important implications for the clinical development of this co-stimulatory blocker. PMID:22131334
Jayaraman, Padmini; Alfarano, Matthew G; Svider, Peter F; Parikh, Falguni; Lu, Geming; Kidwai, Sarah; Xiong, Huabao; Sikora, Andrew G
2014-12-15
Expression of inducible nitric oxide synthase (iNOS) in different cellular compartments may have divergent effects on immune function. We used a syngeneic tumor model to functionally characterize the role of iNOS in regulation of CD4(+)FOXP3(+) regulatory T cells (Treg), and optimize the beneficial effects of iNOS inhibition on antitumor immunity. Wild-type (WT) or iNOS knockout mice bearing established MT-RET-1 melanoma were treated with the small-molecule iNOS inhibitor L-NIL and/or cyclophosphamide alone or in combination. The effect of iNOS inhibition or knockout on induction of Treg from mouse and human CD4(+) T cells in ex vivo culture was determined in parallel in the presence or absence of TGFβ1-depleting antibodies, and TGFβ1 levels were assessed by ELISA. Whereas intratumoral myeloid-derived suppressor cells (MDSC) were suppressed by iNOS inhibition or knockout, systemic and intratumoral FOXP3(+) Treg levels increased in tumor-bearing mice. iNOS inhibition or knockout similarly enhanced induction of Treg from activated cultured mouse splenocytes or purified human or mouse CD4(+) T cells in a TGFβ1-dependent manner. Although either iNOS inhibition or Treg depletion with low-dose cyclophosphamide alone had little effect on growth of established MT-RET1 melanoma, combination treatment potently inhibited MDSC and Treg, boosted tumor-infiltrating CD8(+) T-cell levels, and arrested tumor growth in an immune-dependent fashion. iNOS expression in CD4(+) T cells suppresses Treg induction by inhibiting TGFβ1 production. Our data suggest that iNOS expression has divergent effects on induction of myeloid and lymphoid-derived regulatory populations, and strongly support development of combinatorial treatment approaches that target these populations simultaneously. ©2014 American Association for Cancer Research.
Chen, Hannah H; Händel, Norman; Ngeow, Joanne; Muller, James; Hühn, Michael; Yang, Huei-Ting; Heindl, Mario; Berbers, Roos-Marijn; Hegazy, Ahmed N; Kionke, Janina; Yehia, Lamis; Sack, Ulrich; Bläser, Frank; Rensing-Ehl, Anne; Reifenberger, Julia; Keith, Julia; Travis, Simon; Merkenschlager, Andreas; Kiess, Wieland; Wittekind, Christian; Walker, Lisa; Ehl, Stephan; Aretz, Stefan; Dustin, Michael L; Eng, Charis; Powrie, Fiona; Uhlig, Holm H
2017-02-01
Patients with heterozygous germline mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) experience autoimmunity and lymphoid hyperplasia. Because regulation of the phosphoinositide 3-kinase (PI3K) pathway is critical for maintaining regulatory T (Treg) cell functions, we investigate Treg cells in patients with heterozygous germline PTEN mutations (PTEN hamartoma tumor syndrome [PHTS]). Patients with PHTS were assessed for immunologic conditions, lymphocyte subsets, forkhead box P3 (FOXP3) + Treg cell levels, and phenotype. To determine the functional importance of phosphatases that control the PI3K pathway, we assessed Treg cell induction in vitro, mitochondrial depolarization, and recruitment of PTEN to the immunologic synapse. Autoimmunity and peripheral lymphoid hyperplasia were found in 43% of 79 patients with PHTS. Immune dysregulation in patients with PHTS included lymphopenia, CD4 + T-cell reduction, and changes in T- and B-cell subsets. Although total CD4 + FOXP3 + Treg cell numbers are reduced, frequencies are maintained in the blood and intestine. Despite pathogenic PTEN mutations, the FOXP3 + T cells are phenotypically normal. We show that the phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP) downstream of PTEN is highly expressed in normal human Treg cells and provides complementary phosphatase activity. PHLPP is indispensable for the differentiation of induced Treg cells in vitro and Treg cell mitochondrial fitness. PTEN and PHLPP form a phosphatase network that is polarized at the immunologic synapse. Heterozygous loss of function of PTEN in human subjects has a significant effect on T- and B-cell immunity. Assembly of the PTEN-PHLPP phosphatase network allows coordinated phosphatase activities at the site of T-cell receptor activation, which is important for limiting PI3K hyperactivation in Treg cells despite PTEN haploinsufficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Expression of GRIM-19 in unexplained recurrent spontaneous abortion and possible pathogenesis.
Yang, Yang; Cheng, Laiyang; Deng, Xiaohui; Yu, Hongling; Chao, Lan
2018-05-08
Is aberrant expression of gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) associated with unexplained recurrent spontaneous abortion (URSA)? GRIM-19 deficiency may regulate regulatory T cell/ T helper 17 cell (Treg/Th17) balance partly through reactive oxygen species (ROS) - mammalian target of rapamycin (mTOR) signaling axis in URSA. Immunological disorders may cause impaired maternal immune tolerance to the fetus and result in fetal rejection. The differentiation of Treg and Th17 cells is controlled by phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling pathway. GRIM-19 participates in the immune response, but its role in URSA is largely unknown. The current study included 28 URSA patients and 30 non-pregnant healthy women. The proportion of Treg and Th17 cells in peripheral blood of URSA patients and control subjects were assessed with flow cytometry. The expression of GRIM-19 in peripheral blood lymphocytes (PBLs) was measured with quantitative real-time PCR and western blot analysis. Furthermore, the ROS level in the PBLs of URSA patients and control subjects were assessed by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Then, Akt/mTOR expression in the PBLs was measured. Downregulation of GRIM-19 in Jurkat cells was performed by specific small interfering RNA (siRNA). Then, intracellular ROS production and the expression of p-mTOR, which is known to enhance Th17 differentiation and decrease Treg cell differentiation, were detected. Finally, N-acetylcysteine (NAC) was used to decrease the intracellular ROS level, and the expression of p-mTOR was measured. The proportion of Treg cells was reduced in URSA patients, whereas the proportion of Th17 cells was increased. The expression of GRIM-19 was significantly lower in PBLs of URSA patients. Furthermore, there is a considerable increase in intracellular ROS production and a high level of p-Akt and p-mTOR expression in the PBLs of URSA patients compared with the control subjects. In parallel to this, downregulation of GRIM-19 in the Jurkat cells by siRNA results in an increased ROS production and an increased expression of p-mTOR. Importantly, the upregulation of p-mTOR resulting from GRIM-19 loss was significantly reversed in the cells treatment with ROS inhibitor N-acetyl-L-cysteine (NAC), indicating that ROS was indeed required for GRIM-19 depletion induced p-mTOR expression. None. A large number of researches have confirmed that the differentiation of Treg and Th17 cells is controlled by PI3K/Akt/mTOR signaling pathway. We have not shown the regulatory role of ROS and PI3K/Akt/mTOR in Treg and Th17 differentiation in this study. Our study has demonstrated that GRIM-19 deficiency may play a role in regulating Treg/Th17 balance partly through ROS - mTOR signaling axis in URSA. The present study offers a new perspective to the roles of GRIM-19 in immunoregulation. This work was supported by the National Natural Science Foundation of China (grant numbers 81571511, 81701528, 81370711 and 30901603), the Shandong Provincial Natural Science Foundation (grant number ZR2017PH052 and ZR2013HM090) and the Science Foundation of Qilu Hospital of Shandong University, Fundamental Research Funds of Shandong University (grant numbers 2015QLQN50 and 2015QLMS24). The authors declare that there is no conflict of interest that could prejudice the impartiality of the present research.
Li, Xia; Wang, Bin; Li, Yuzhu; Wang, Li; Zhao, Xiangzhong; Zhou, Xianbin; Guo, Yuqi; Jiang, Guosheng; Yao, Chengfang
2013-01-09
The Th1/Th2/Th17/Treg paradigm plays an important role in achieving maternal-fetal immunotolerance and participates in RU486-induced abortion. Excessive uterine bleeding is the most common side effect of RU486-induced abortion; however, its etiopathogenesis has not been fully understood. Therefore, elucidating the correlation between the Th1/Th2/Th17/Treg paradigm and the volume of uterine bleeding may offer novel therapeutic target for reducing uterine bleeding in RU486-induced abortion. Leonurus sibiricus has been used in clinics to reduce postpartum hemorrhage with low toxicity and high efficiency; however, the effective constituents and therapeutic mechanism have not been described. Stachydrine hydrochloride is the main constituent of L. sibiricus, therefore L. sibiricus is regarded as a candidate for reducing uterine bleeding in RU486-induced abortion mice by regulating the Th1/Th2/Th17/Treg paradigm. The purpose of this study was to determine the Th1/Th2/Th17/Treg paradigm in uterine bleeding of RU486-induced abortion mice and to elucidate the immunopharmacologic effects of stachydrine hydrochloride on inducing the Th1/Th2/Th17/Treg paradigm in reducing the uterine bleeding volume in RU486-induced abortion mice. To investigate the Th1/Th2/Th17/Treg paradigm in uterine bleeding during RU486-induced abortion mice, pregnant BALB/c mice were treated with high- and low-dose RU486 (1.5mg/kg and 0.9 mg/kg, respectively), and the serum progesterone (P(4)) protein level, uterine bleeding volume, and proportions of Th1/Th2/Th17/Treg cells in mice at the maternal-fetal interface were detected by ELISA assay, alkaline hematin photometric assay, and flow cytometry, respectively. To determine the regulatory effect of stachydrine hydrochloride on the Th1/Th2/Th17/Treg paradigm in vitro, splenocytes of non-pregnant mice were separated and treated with P(4,) RU486, and/or stachydrine hydrochloride (10(-5)M, 10(-4)M, and 10(-3)M, respectively). The proportions of Th1/Th2/Th17/Treg cells were analyzed using flow cytometry. To evaluate the effect of stachydrine hydrochloride in reducing uterine bleeding via regulation of the Th1/Th2/Th17/Treg paradigm, pregnant mice were treated with RU486 (1.5mg/kg) and/or stachydrine hydrochloride (2.5mg/kg, 5mg/kg, and 10mg/kg). The serum P(4) level, uterine bleeding volume, and proportions of Th1/Th2/Th17/Treg cells at the mice maternal-fetal interface were detected. Moreover, the protein levels of cytokines (IL-12 and IL-6) and the cytokine soluble receptors were analyzed by ELISA assay, and the mRNA expression of transcription factors (T-bet, GATA-3, RORγt, and Foxp3) were detected by RT-PCR assay. Th1- and Th17-biased immunity was observed in RU486-induced abortion mice. The volume of uterine bleeding during RU486-induced abortion was negatively related to the proportions of Th1 and Th17 cells, as well as the ratios of Th1:Th2 cells and Th17:Treg cells, and positively related to the proportions of Th2 and Treg cells. Stachydrine hydrochloride promoted the protein expression of IL-12 and IL-6, as well as the mRNA expression of T-bet and RORγt, while inhibiting the mRNA expression of GATA-3 and Foxp3. Therefore, the Th1/Th2/Th17/Treg paradigm in RU486-induced abortion mice shifted to Th1 and Th17 after stachydrine hydrochloride administration. The volume of uterine bleeding during RU486-induced abortion was reduced significantly after stachydrine hydrochloride administration. The Th1/Th2/Th17/Treg paradigm is closely related to the volume of uterine bleeding in RU486-induced abortion mice. The Th1/Th2/Th17/Treg paradigm induced by stachydrine hydrochloride contributed to the reduction in uterine bleeding in RU486-induced abortion mice. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Erfani, Nasrollah; Mehrabadi, Shayesteh Mofakhami; Ghayumi, Mohammad Ali; Haghshenas, Mohammad Reza; Mojtahedi, Zahra; Ghaderi, Abbas; Amani, Davar
2012-08-01
We hypothesized that the increased percentages of Regulatory T (Treg) cells, as well as over expression of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) by lymphocyte subsets might be associated with lung cancer. Accordingly, peripheral blood of 23 new cases with non-small cell lung cancer (NSCLC) and 16 healthy volunteers were investigated, by follow cytometry, for the prevalence of CD4+CD25+FoxP3+ Treg cells as well as surface (sur-) and intracellular (In-) expression of CTLA-4 by the main lymphocyte subsets (CD4+, CD8+ and CD19+). Results indicated that NSCLC patients had an increased percentage of Treg cells than controls (7.9±4.1 versus 3.8±1.8, P=0.001). The proportion of Treg cells was observed to be increased by stage increase in patients (stage II=5.2±2.4, stage III=7.9±4.4, stage IV=12.0±2.2), and also significantly higher in metastatic than non-metastatic stages (12.0±2.2 versus 6.8±3.9, P=0.023). Increase of SurCTLA-4- as well as InCTLA-4-expressing lymphocytes in patients were observed in nearly all investigated subsets, but significant differences between patients and controls were observed about InCTLA-4+CD4+ lymphocytes (8.6±7.1 and 3.8±5.3 respectively, P=0.006) as well as SurCTLA-4+CD8+ lymphocytes (0.3±0.2 and 0.2±0.1 respectively, P=0.047). In conclusion, the results suggest that immunotherapy regimen targeting CTLA-4 and Treg cells might be beneficial in lung cancer patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Li, Liwen; Han, Lei; Sun, Fan; Zhou, Jingjiao; Ohaegbulam, Kim C; Tang, Xudong; Zang, Xingxing; Steinbrecher, Kris A; Qu, Zhaoxia; Xiao, Gutian
2018-01-01
Activation of the inflammatory transcription factor NF-κB in tumor-associated macrophages (TAMs) is assumed to contribute to tumor promotion. However, whether and how NF-κB drives the antitumor macrophages to become pro-tumorigenic have not been determined in any cancer type yet. Similarly, how TAMs repress CD8 + cytotoxic T lymphocytes (CTLs) remains largely unknown, although their importance in regulatory T (Treg) cell regulation and tumor promotion has been well appreciated. Here, using an endogenous lung cancer model we uncover a direct crosstalk between TAMs and CTLs. TAMs suppress CTLs through the T-cell inhibitory molecule B7x (B7-H4/B7S1) in a cell-cell contact manner, whereas CTLs kill TAMs in a tumor antigen-specific manner. Remarkably, TAMs secrete the known T-cell suppressive cytokine interleukin-10 (IL-10) to activate, but not to repress, CTLs. Notably, one major role of cell-intrinsic NF-κB RelA is to drive TAMs to suppress CTLs for tumor promotion. It induces B7x expression in TAMs directly, and restricts IL-10 expression indirectly by repressing expression of the NF-κB cofactor Bcl3 and subsequent Bcl3/NF-κB1-mediated transcription of IL-10. It also renders TAMs resistant to CTLs by up-regulating anti-apoptotic genes. These studies help understand how immunity is shaped in lung tumorigenesis, and suggest a RelA-targeted immunotherapy for this deadliest cancer.
Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J
2017-08-01
CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Hong-Ren; Tsai, Ching-Chang; Chang, Ling-Sai; Huang, Hsin-Chun; Cheng, Hsin-Hsin; Wang, Jiu-Yao; Sheen, Jiunn-Ming; Kuo, Ho-Chang; Hsieh, Kai-Sheng; Huang, Ying-Hsien; Yang, Kuender D.; Hsu, Te-Yao
2017-01-01
A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL)-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs) function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs) produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs) by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency. PMID:28487700
Regulatory T cells and type 2 innate lymphoid cell-dependent asthma.
Aron, J L; Akbari, O
2017-08-01
Group 2 innate lymphoid cells (ILC2s) are a recently identified group of cells with the potent capability to produce Th2-type cytokines such as interleukin (IL)-5 and IL-13. Several studies suggest that ILC2s play an important role in the development of allergic diseases and asthma. Activation of pulmonary ILC2s in murine models lacking T and B cells induces eosinophilia and airway hyper-reactivity (AHR), which are cardinal features of asthma. More importantly, numerous recent studies have highlighted the role of ILC2s in asthma persistence and exacerbation among human subjects, and thus, regulation of pulmonary ILC2s is a major area of investigation aimed at curbing allergic lung inflammation and exacerbation. Emerging evidence reveals that a group of regulatory T cells, induced Tregs (iTregs), effectively suppress the production of ILC2-driven, pro-inflammatory cytokines IL-5 and IL-13. The inhibitory effects of iTregs are blocked by preventing direct cellular contact or by inhibiting the ICOS-ICOS-ligand (ICOSL) pathway, suggesting that both direct contact and ICOS-ICOSL interaction are important in the regulation of ILC2 function. Also, cytokines such as IL-10 and TGF-β1 significantly reduce cytokine secretion by ILC2s. Altogether, these new findings uncover iTregs as potent regulators of ILC2 activation and implicate their utility as a therapeutic approach for the treatment of ILC2-mediated allergic asthma and respiratory disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tregs: Where We Are and What Comes Next?
Zhao, Hai; Liao, Xuelian; Kang, Yan
2017-01-01
Regulatory T cells are usually recognized as a specialized subset of CD4+ T cells functioning in establishment and maintenance of immune tolerance. Meanwhile, there is emerging evidence that regulatory T cells (Tregs) are also present in various non-lymphoid tissues, and that they have unique phenotypes credited with activities distinct from regulatory function. Their development and function have been described in plenty of manuscripts in the past two decades. However, with the deepening of research in recent years, emerging evidence revealed some novel mechanisms about how Tregs exert their activities. First, we discuss the expanding family of regulatory lymphocytes briefly and then, try to interpret how fork-head box P3 (Foxp3), a master regulator of the regulatory pathway in the development and function of regulatory T cells, functions. Subsequently, another part of our focus is varieties of tissue Tregs. Next, we primarily discuss recent research on how Tregs work and their faceted functions in terms of soluble mediators, functional proteins, and inhibitory receptors. In particular, unless otherwise noted, the term “Treg” is used here to refer specially to the “CD4+CD25+Foxp3+” regulatory cells. PMID:29225597
Vanherberghen, M; Bureau, F; Peters, I R; Day, M J; Lynch, A; Fievez, L; Billen, F; Clercx, C; Peeters, D
2013-08-15
The causal agent of sino-nasal aspergillosis is usually Aspergillus fumigatus, which is a saprophytic and ubiquitous fungus that causes a severe rhinosinusitis in apparent healthy dogs. Affected dogs do not have systemic immuno-suppression. It has been shown previously that dogs affected by this disease have local over-expression of interleukin (IL)-10 and Th1 cytokines in nasal mucosal tissue. The aim of the present study was to assess the response of peripheral blood mononuclear cells (PBMC) from affected and unaffected dogs to antigen-specific stimulation with heat-inactivated Aspergillus spp. conidia, by quantifying gene expression for specific Th1, Th2, Th17 and Treg cytokines and their related transcription factors. Quantification of IL-4 and IFN-γ protein in culture supernatant was performed by enzyme-linked immunosorbent assay (ELISA). PBMC from dogs with SNA produced adequate mRNA encoding IFN-γ and IFN-γ protein. The expression of IL-17A mRNA was significantly greater in PBMC of affected compared with unaffected dogs. The amount of IL-10 mRNA in PBMC from affected dogs decreased after antigen-specific challenge. These results suggest that the incapacity of affected dogs to clear these fungal infections is not related to a defect in Th1 immunity or to an overwhelming regulatory reaction, but rather to an uncontrolled pro-inflammatory reaction driven by Th17 cells. Copyright © 2013 Elsevier B.V. All rights reserved.
Mondoulet, Lucie; Dioszeghy, Vincent; Busato, Florence; Plaquet, Camille; Dhelft, Véronique; Bethune, Kevin; Leclere, Laurence; Daviaud, Christian; Ligouis, Mélanie; Sampson, Hugh; Dupont, Christophe; Tost, Jörg
2018-05-19
Epicutaneous immunotherapy (EPIT) is a promising method for treating food allergies. In animal models, EPIT induces sustained unresponsiveness and prevents further sensitization mediated by Tregs. Here, we elucidate the mechanisms underlying the therapeutic effect of EPIT, by characterizing the kinetics of DNA methylation changes in sorted cells from spleen and blood and by evaluating its persistence and bystander effect compared to oral immunotherapy (OIT). BALB/c mice orally sensitized to peanut proteins (PPE) were treated by EPIT using a PPE-patch or by PPE-OIT. Another set of peanut-sensitized mice treated by EPIT or OIT were sacrificed following a protocol of sensitization to OVA. DNA methylation was analysed during immunotherapy and 8 weeks after the end of treatment in sorted cells from spleen and blood by pyrosequencing. Humoral and cellular responses were measured during and after immunotherapy. Analyses showed a significant hypermethylation of the Gata3 promoter detectable only in Th2 cells for EPIT from the 4 th week and a significant hypomethylation of the Foxp3 promoter in CD62L + Tregs, which was sustained only for EPIT. In addition, mice treated with EPIT were protected from subsequent sensitization and maintained the epigenetic signature characteristic for EPIT. Our study demonstrates that EPIT leads to a unique and stable epigenetic signature in specific T cell compartments with down regulation of Th2 key regulators and upregulation of Treg transcription factors, likely explaining the sustainability of protection and the observed bystander effect. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Induction of Colonic Regulatory T Cells by Mesalamine by Activating the Aryl Hydrocarbon Receptor.
Oh-Oka, Kyoko; Kojima, Yuko; Uchida, Koichiro; Yoda, Kimiko; Ishimaru, Kayoko; Nakajima, Shotaro; Hemmi, Jun; Kano, Hiroshi; Fujii-Kuriyama, Yoshiaki; Katoh, Ryohei; Ito, Hiroyuki; Nakao, Atsuhito
2017-07-01
Mesalamine is a first-line drug for treatment of inflammatory bowel diseases (IBD). However, its mechanisms are not fully understood. CD4 + Foxp3 + regulatory T cells (Tregs) play a potential role in suppressing IBD. This study determined whether the anti-inflammatory activity of mesalamine is related to Treg induction in the colon. We examined the frequencies of Tregs in the colons of wild-type mice, mice deficient for aryl hydrocarbon receptor ( AhR -/- mice), and bone marrow-chimeric mice lacking AhR in hematopoietic cells (BM- AhR -/- mice), following oral treatment with mesalamine. We also examined the effects of mesalamine on transforming growth factor (TGF)-β expression in the colon. Treatment of wild-type mice with mesalamine increased the accumulation of Tregs in the colon and up-regulated the AhR target gene Cyp1A1 , but this effect was not observed in AhR -/- or BM- AhR -/- mice. In addition, mesalamine promoted in vitro differentiation of naive T cells to Tregs, concomitant with AhR activation. Mice treated with mesalamine exhibited increased levels of the active form of TGF-β in the colon in an AhR-dependent manner and blockade of TGF-β signaling suppressed induction of Tregs by mesalamine in the colon. Furthermore, mice pretreated with mesalamine acquired resistance to dextran sodium sulfate-induced colitis. We propose a novel anti-inflammatory mechanism of mesalamine for colitis: induction of Tregs in the colon via the AhR pathway, followed by TGF-β activation.
NASA Astrophysics Data System (ADS)
Atho'illah, Mochammad Fitri; Widyarti, Sri; Rifa'i, Muhaimin
2017-05-01
Obesity is a metabolic disorder characterized by the central distribution of abdominal fat, hyperglycemia, hyperlipidemia, and hypertension. A high-fat diet can lead to overnutrition and directly trigger inflammation in adipose tissue. Regulatory T cells (Tregs) are essential negative regulators of inflammation. Soybean (Glycine max L.) has a variety of beneficial health. It contains isoflavones, particularly daidzein and genistein which can be transformed using microbial and physical stimuli to enhance bioactivity. The aim of this study was to analyze the effect of elicited soybean extract (ESE) on Treg activity in high fat-fructose (HFFD) mice. Twenty-eight female Balb/C mice were divided into seven groups: normal diet (ND) only, ND + ESE 104 mg/kg BW, HFFD only, HFFD + Simvastatin 2.8 mg/kg, HFFD + ESE 78 mg/kg BW, HFFD + ESE 104 mg/kg BW, and HFFD + ESE 130 mg/kg BW. The high fat-fructose diet was given over a period of 20 weeks, and ESE was administered orally per day after 20 weeks for four weeks. At week 24, the animals were sacrificed and the spleen was collected. Tregs were labeled as CD4+CD25+CD62L+ and the relative Treg number was measured using flow cytometry. The HFFD treatment significantly decreased Treg number (p < 0.05) compared to a normal diet. The ESE treatment in HFFD mice could improve Treg numbers compared to HFFD mice. Our results suggest that ESE has potential to be used as a supplement to suppress chronic inflammation via increased Treg number.
Zhang, Baihao; Chikuma, Shunsuke; Hori, Shohei; Fagarasan, Sidonia; Honjo, Tasuku
2016-07-26
PD-1 (programmed-death 1), an immune-inhibitory receptor required for immune self-tolerance whose deficiency causes autoimmunity with variable severity and tissue specificity depending on other genetic factors, is expressed on activated T cells, including the transcription factor FoxP3(+) Treg cells known to play critical roles in maintaining immune tolerance. However, whether PD-1 expression by the Treg cells is required for their immune regulatory function, especially in autoimmune settings, is still unclear. We found that mice with partial FoxP3 insufficiency developed early-onset lympho-proliferation and lethal autoimmune pancreatitis only when PD-1 is absent. The autoimmune phenotype was rescued by the transfer of FoxP3-sufficient T cells, regardless of whether they were derived from WT or PD-1-deficient mice, indicating that Treg cells dominantly protect against development of spontaneous autoimmunity without intrinsic expression of PD-1. The absence of PD-1 combined with partial FoxP3 insufficiency, however, led to generation of ex-FoxP3 T cells with proinflammatory properties and expansion of effector/memory T cells that contributed to the autoimmune destruction of target tissues. Altogether, the results suggest that PD-1 and FoxP3 work collaboratively in maintaining immune tolerance mostly through nonoverlapping pathways. Thus, PD-1 is modulating the activation threshold and maintaining the balance between regulatory and effector T cells, whereas FoxP3 is sufficient for dominant regulation through maintaining the integrity of the Treg function. We suggest that genetic or environmental factors that even moderately affect the expression of both PD-1 and FoxP3 can cause life-threatening autoimmune diseases by disrupting the T-cell homeostasis.
Zhang, Baihao; Chikuma, Shunsuke; Hori, Shohei; Fagarasan, Sidonia; Honjo, Tasuku
2016-01-01
PD-1 (programmed-death 1), an immune-inhibitory receptor required for immune self-tolerance whose deficiency causes autoimmunity with variable severity and tissue specificity depending on other genetic factors, is expressed on activated T cells, including the transcription factor FoxP3+ Treg cells known to play critical roles in maintaining immune tolerance. However, whether PD-1 expression by the Treg cells is required for their immune regulatory function, especially in autoimmune settings, is still unclear. We found that mice with partial FoxP3 insufficiency developed early-onset lympho-proliferation and lethal autoimmune pancreatitis only when PD-1 is absent. The autoimmune phenotype was rescued by the transfer of FoxP3-sufficient T cells, regardless of whether they were derived from WT or PD-1–deficient mice, indicating that Treg cells dominantly protect against development of spontaneous autoimmunity without intrinsic expression of PD-1. The absence of PD-1 combined with partial FoxP3 insufficiency, however, led to generation of ex-FoxP3 T cells with proinflammatory properties and expansion of effector/memory T cells that contributed to the autoimmune destruction of target tissues. Altogether, the results suggest that PD-1 and FoxP3 work collaboratively in maintaining immune tolerance mostly through nonoverlapping pathways. Thus, PD-1 is modulating the activation threshold and maintaining the balance between regulatory and effector T cells, whereas FoxP3 is sufficient for dominant regulation through maintaining the integrity of the Treg function. We suggest that genetic or environmental factors that even moderately affect the expression of both PD-1 and FoxP3 can cause life-threatening autoimmune diseases by disrupting the T-cell homeostasis. PMID:27410049
The Potential of Nano-Vehicle Mediated Therapy in Vasculitis and Multiple Sclerosis.
In't Veld, R Huis; Da Silva, C G; Kaijzel, E L; Chan, A B; Cruz, L J
2017-01-01
The induction of immune tolerance towards self-antigens presents as a viable future strategy in the treatment of auto-immune diseases, including vasculitis and multiple sclerosis (MS). As specific targets are currently lacking for vasculitis due to incomplete understanding of the pathologies underlying this disease, current treatment options are based on modalities that induce general immune suppression. However, many immune suppressants used in the clinic are known to display wide biodistribution and are thus often accompanied by several adverse effects. Nano-vehicles (NVs) possess the ability to overcome such limitations by enabling more specific delivery of their content through modifications with targeting moieties. In this review, we describe the latest insights in the pathology of vasculitis that may function as potential targets for NV carrier systems, allowing more specific delivery of currently used immune suppressants. In addition, we describe the existing strategies to induce artificial immune tolerance and explore the feasibility of inducing regulatory T cell (Treg) mediated tolerance for MS, possibly mediated by NVs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wang, Fan; Xiao, Mi; Chen, Ru-Juan; Lin, Xiao-Jie; Siddiq, Muhammad; Liu, Li
2017-02-01
To evaluate the effect of regulatory T cells (Tregs) on the inflammation resulting from lipopolysaccharide (LPS) challenge in prenatal brain tissue, Tregs isolated from pregnant mice were transferred into model mice, and the expression levels of fork head family transcription factor (Foxp3), interleukin-6 (IL-6), CD68 (a marker of microglia), and toll-like receptor 4 (TLR-4) were assessed in the fetal brain tissue. Foxp3, IL-6, and TLR-4 expression were detected by polymerase chain reaction and Western blot; CD68 expression level was detected using immunochemical analysis. Foxp3, IL-6, TLR-4, and CD68 expressions in fetal brain were significantly induced by maternal LPS administration, and the increased expression levels were markedly reduced by adoptive transfer of Tregs. Maternal LPS exposure significantly induced inflammation in perinatal brain tissue, and Tregs negatively regulated this LPS-induced inflammation. © 2016 International Federation for Cell Biology.
Bestard, Oriol; Cruzado, Josep M; Mestre, Mariona; Caldés, Anna; Bas, Jordi; Carrera, Marta; Torras, Joan; Rama, Inés; Moreso, Francesc; Serón, Daniel; Grinyó, Josep M
2007-10-01
Exploring new immunosuppressive strategies inducing donor-specific hyporesponsiveness is an important challenge in transplantation. For this purpose, a careful immune monitoring and graft histology assessment is mandatory. Here, we report the results of a pilot study conducted in twenty renal transplant recipients, analyzing the immunomodulatory effects of a protocol based on induction therapy with rabbit anti-thymocyte globulin low doses, sirolimus, and mofetil mycophenolate. Evolution of donor-specific cellular and humoral alloimmune response, peripheral blood lymphocyte subsets and apoptosis was evaluated. Six-month protocol biopsies were performed to assess histological lesions and presence of FOXP3+ regulatory T cells (Tregs) in interstitial infiltrates. After transplantation, there was an early and transient apoptotic effect, mainly within the CD8+ HLADR+ T cells, combined with a sustained enhancement of CD4+ CD25(+high) lymphocytes in peripheral blood. The incidence of acute rejection was 35%, all steroid sensitive. Importantly, only pretransplant donor-specific cellular alloreactivity could discriminate patients at risk to develop acute rejection. Two thirds of the patients became donor-specific hyporesponders at 6 and 24 mo, and the achievement of this immunologic state was not abrogated by prior acute rejection episodes. Remarkably, donor-specific hyporesponders had the better renal function and less chronic renal damage. Donor-specific hyporesponsiveness was inhibited by depleting CD4+ CD25(+high) T cells, which showed donor-Ag specificity. FOXP3+ CD4+ CD25(+high) Tregs both in peripheral blood and in renal infiltrates were higher in donor-specific hyporesponders than in nonhyporesponders, suggesting that the recruitment of Tregs in the allograft plays an important role for renal acceptance. In conclusion, reaching donor-specific hyporesponsiveness is feasible after renal transplantation and associated with Treg recruitment in the graft.
Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury
Li, Li; Huang, Liping; Ye, Hong; Song, Steven P.; Bajwa, Amandeep; Lee, Sang Ju; Moser, Emily K.; Jaworska, Katarzyna; Kinsey, Gilbert R.; Day, Yuan J.; Linden, Joel; Lobo, Peter I.; Rosin, Diane L.; Okusa, Mark D.
2012-01-01
DC-mediated NKT cell activation is critical in initiating the immune response following kidney ischemia/reperfusion injury (IRI), which mimics human acute kidney injury (AKI). Adenosine is an important antiinflammatory molecule in tissue inflammation, and adenosine 2A receptor (A2AR) agonists protect kidneys from IRI through their actions on leukocytes. In this study, we showed that mice with A2AR-deficient DCs are more susceptible to kidney IRI and are not protected from injury by A2AR agonists. In addition, administration of DCs treated ex vivo with an A2AR agonist protected the kidneys of WT mice from IRI by suppressing NKT production of IFN-γ and by regulating DC costimulatory molecules that are important for NKT cell activation. A2AR agonists had no effect on DC antigen presentation or on Tregs. We conclude that ex vivo A2AR–induced tolerized DCs suppress NKT cell activation in vivo and provide a unique and potent cell-based strategy to attenuate organ IRI. PMID:23093781
Park, Jin-Sil; Choi, Jeong Won; Jhun, JooYeon; Kwon, Ji Ye; Lee, Bo-In; Yang, Chul Woo; Park, Sung-Hwan; Cho, Mi-La
2018-03-01
Disruption of the balance among the microbiota, epithelial cells, and resident immune cells in the intestine is involved in the pathogenesis of inflammatory bowel disease (IBD). Probiotics exert protective effects against IBD, and probiotic commensal Lactobacillus species are common inhabitants of the natural microbiota, especially in the gut. To investigate the effects of Lactobacillus acidophilus on the development of IBD, L. acidophilus was administered orally in mice with dextran sodium sulfate (DSS)-induced colitis. DSS-induced damage and the therapeutic effect of L. acidophilus were investigated. Treatment with L. acidophilus attenuated the severity of DSS-induced colitis. Specifically, it suppressed proinflammatory cytokines such as interleukin (IL)-6, tumor necrosis factor-α, IL-1β, and IL-17 in the colon tissues, which are produced by T helper (Th) 17 cells. Moreover, in vitro L. acidophilus treatment directly induced T regulatory (Treg) cells and the production of IL-10, whereas the production of IL-17 was suppressed in splenocytes. In addition, we found that L. acidophilus treatment decreased the levels of α-smooth muscle actin, a marker of activated myofibroblasts, and type I collagen compared with control mice. These results suggest that L. acidophilus may be a novel treatment for IBD by modulating the balance between Th17 and Treg cells, as well as fibrosis development.
Wan, Cheng-Fu; Zheng, Li-Li; Liu, Yan; Yu, Xue
2016-01-01
Oxaliplatin is a widely used anti-advanced colorectal cancer drug, while it could induce neuropathy. Houttuynia cordata Thunb (HCT) has a wide range of biological activities, such as anti-inflammation, anti-cancer, and immune regulation. In the present study, we investigated the effect of HCT on oxaliplatin-induced neuropathy in rat models. HCT (1000 mg/kg/day) significantly decreased the number of withdrawal responses and the withdrawal latency in oxaliplatin-treated rats. HCT could down-regulated the serum levels of Interleukin-6 (IL-6) and macrophage inflammatory protein1-α (MIP-1α) in oxaliplatin-treated rats. Th17/Treg balance was reversed by HCT in oxaliplatin-treated rats by regulating PI3K/Akt/mTOR signaling pathway. The present results suggest that HCT is useful as a therapeutic drug for oxaliplatin-induced neuropathic pain.
Wan, Cheng-Fu; Zheng, Li-Li; Liu, Yan; Yu, Xue
2016-01-01
Oxaliplatin is a widely used anti-advanced colorectal cancer drug, while it could induce neuropathy. Houttuynia cordata Thunb (HCT) has a wide range of biological activities, such as anti-inflammation, anti-cancer, and immune regulation. In the present study, we investigated the effect of HCT on oxaliplatin-induced neuropathy in rat models. HCT (1000 mg/kg/day) significantly decreased the number of withdrawal responses and the withdrawal latency in oxaliplatin-treated rats. HCT could down-regulated the serum levels of Interleukin-6 (IL-6) and macrophage inflammatory protein1-α (MIP-1α) in oxaliplatin-treated rats. Th17/Treg balance was reversed by HCT in oxaliplatin-treated rats by regulating PI3K/Akt/mTOR signaling pathway. The present results suggest that HCT is useful as a therapeutic drug for oxaliplatin-induced neuropathic pain. PMID:27186286
Zhang, Weiying; Nilles, Tricia L; Johnson, Jacquett R; Margolick, Joseph B
2016-04-01
The role of CD4(+) regulatory T cells (Tregs) and their subsets during HIV infection is controversial. Cryopreserved peripheral blood mononuclear cells (PBMC) are an important source for assessing number and function of Tregs. However, it is unknown if PBMC isolation and cryopreservation affect the expression of CD120b and CD39, markers that identify specific subsets of Tregs. HIV-uninfected (HIV-) and -infected (HIV+) men were randomly selected from the Multicenter AIDS Cohort Study (MACS). Percentages of CD120b(+) and CD39(+) Tregs measured by flow cytometry in whole blood and in corresponding fresh and cryopreserved PBMC were compared. Percentages of CD120b(+) Tregs were significantly lower in a) fresh PBMC relative to whole blood, and b) freshly thawed frozen PBMC relative to fresh PBMC when the recovery of viable cryopreserved cells was low. When present, low expression of CD120b in frozen PBMC was reversible by 4h of in vitro culture. In contrast, expression of CD39 on Tregs was not affected by isolation and/or cryopreservation of PBMC, or by relative recovery of cryopreserved PBMC. These findings were unaffected by the HIV status of the donor. The data suggest that percentages of CD120b(+) Tregs and CD39(+) Tregs can be validly measured in either whole blood or PBMC (fresh and frozen) in HIV- and HIV+ men. However, for measurement of CD120b(+) Tregs one type of sample should be used consistently within a given study, and thawed frozen cells may require in vitro culture if recovery of viable cells is low. Copyright © 2016 Elsevier B.V. All rights reserved.
El-Asrar, Mohamed Abo; Hamed, Ahmed El-Saeed; Darwish, Yasser Wagih; Ismail, Eman Abdel Rahman; Ismail, Noha Ali
2016-01-01
A rapidly growing evidence showed that regulatory T cells (Tregs) play a crucial role in tolerance to coagulation factors and may be involved in the pathogenesis of inhibitor formation in patients with hemophilia. We determined the percentage of Tregs (CD4CD25CD127) in 45 children with hemophilia A compared with 45 healthy controls, and assessed their relation to the clinical characteristics of patients and factor VIII (FVIII) inhibitors. Patients were studied stressing on frequency of bleeding attacks, joint pain, history of viral hepatitis, and the received therapy (FVIII precipitate/cryotherapy). FVIII activity and FVIII inhibitors were assessed with flow cytometric analysis of CD4CD25CD127 Tregs. According to residual FVIII activity levels, 30 patients (66.7%) had mild/moderate hemophilia A, whereas 15 (33.3%) patients had severe hemophilia A. The frequency of Tregs was significantly lower among all patients with hemophilia A compared with controls (2.59 ± 1.1 versus 3.73 ± 1.12%; P = 0.002). Tregs were significantly decreased among patients with FVIII inhibitors compared with the inhibitor-negative group (P < 0.001). Patients with hematuria or severe hemophilia A had lower Tregs levels than those without (P = 0.34 and P = 0.011, respectively). A significant positive correlation was found between the percentage of Tregs and FVIII among hemophilia A patients. ROC curve analysis revealed that the cut-off value of Tregs at 1.91% could differentiate patients with and without FVIII inhibitors, with a sensitivity of 100% and a specificity of 91.3%. We suggest that alteration in the frequency of Tregs in young patients with hemophilia A may contribute to inhibitor formation and disease severity.
Zhao, Huan; Zhang, Xuan; Han, Zhifeng; Xie, Wenjing; Yang, Wei; Wei, Jun
2018-06-29
Natural autoantibody is a key component for immune surveillance function. Regulatory T (Treg) cells play indispensable roles in promoting tumorigenesis via immune escape mechanisms. Both CD25 and FOXP3 are specific markers for Treg cells and their natural autoantibodies may be involved in anticancer activities. This work was designed to develop an in-house enzyme-linked immunosorbent assay (ELISA) to examine plasma natural IgG against CD25 and FOXP3 in non-small cell lung cancer (NSCLC). Compared with control subjects, NSCLC patients had significantly higher levels of plasma IgG for CD25a (Z = -8.05, P < 0.001) and FOXP3 (Z = -4.17, P < 0.001), lower levels for CD25b (Z = -3.58, P < 0.001), and a trend toward lower levels for CD25c (Z = -1.70, P = 0.09). Interestingly, the anti-CD25b IgG assay had a sensitivity of 25.0% against a specificity of 95.0% in an early stage patients (T 1 N 0 M 0 ) who showed the lowest anti-CD25b IgG levels among 4 subgroups classified based on staging information. Kaplan-Meier survival analysis showed that patients with high anti-FOXP3 IgG levels had shorter survival than those with low anti-FOXP3 IgG levels (χ 2 = 3.75, P = 0.05). In conclusion, anti-CD25b IgG may be a promising biomarker in terms of screening individuals at high risk of lung cancer.
Kitazawa, Yusuke; Sawanobori, Yasushi; Ueno, Takamasa; Ueha, Satoshi; Matsushima, Kouji; Matsuno, Kenjiro
2018-01-01
Abstract Donor-specific blood transfusion is known to induce alloresponses and lead to immunosuppression. We examined their underlying mechanisms by employing fully allogeneic rat combinations. Transfused recipients efficiently produced alloantibodies of the IgM and IgG subclasses directed against donor class I MHC. The recipients exhibited active expansion of CD4+ T cells and CD4+FOXP3+ regulatory T cells (Treg cells), followed by CD45R+ B cells and IgM+ or IgG subclass+ antibody-forming cells mainly in the spleen. From 1.5 days, the resident MHCII+CD103+ dendritic cells (DCs) in the splenic T-cell area, periarterial lymphocyte sheath, formed clusters with recipient BrdU+ or 5-ethynyl-2′-deoxyuridine+ cells, from which the proliferative response of CD4+ T cells originated peaking at 3–4 days. Transfusion-induced antibodies had donor passenger cell-depleting activity in vitro and in vivo and could suppress acute GvH disease caused by donor T cells. Furthermore, Treg cells significantly suppressed mixed leukocyte reactions in a donor-specific manner. In conclusion, single blood transfusion efficiently induced a helper T-cell-dependent anti-donor class I MHC antibody-forming cell response with immunoglobulin class switching, and a donor-specific Treg cell response mainly in the spleen, probably by way of the indirect allorecognition via resident DCs. These antibodies and Treg cells may be involved, at least partly, in the donor-specific transfusion-induced suppression of allograft rejection. PMID:29361165
Romano, Emanuela; Rossi, Marco; Ratzinger, Gudrun; de Cos, Maria-Angeles; Chung, David J.; Panageas, Katherine S.; Wolchok, Jedd D.; Houghton, Alan N.; Chapman, Paul B.; Heller, Glenn; Yuan, Jianda; Young, James W.
2013-01-01
Purpose We compared the efficacy of human Langerhans cells (LCs) as tumor immunogens in vivo with monocyte-derived DCs (moDCs) and investigated how IL15 supports optimal DC-stimulated antitumor immunity. Experimental Design AJCC stage III/IV melanoma patients participated in this first clinical trial comparing melanoma peptide-pulsed LC with moDC vaccines (NCT00700167,www.ClinicalTrials.gov). Correlative studies evaluated mechanisms mediating IL15 support of DC-stimulated antitumor immunity. Results Both DC vaccines were safe and immunogenic for melanoma antigens. LC-based vaccines stimulated significantly greater tyrosinase-HLA-A*0201 tetramer reactivity than did moDC-based vaccines. The two DC subtypes were otherwise statistically comparable, in contrast to extensive prior data in vitro demonstrating LC superiority. LCs synthesize much more IL15 than moDCs and stimulate significantly more antigen-specific lymphocytes with a cytolytic IFN-gamma profile even without exogenous IL15. When supplemented by low dose IL15, instead of IL2, moDCs stimulate 5-6 logs more tumor antigen-specific effector memory T-cells (TEMRA) over 3-4 weeks in vitro. IL2 and IL15 can be synergistic in moDC stimulation of cytolytic T-cells. IL15 promotes T-cell expression of the antiapoptotic bcl-2 and inhibits candidate regulatory T-cell (Treg) expansion after DC stimulation, countering two effects of IL2 that do not foster tumor immunity. Conclusions MoDC-based vaccines will require exogenous IL15 to achieve clinical efficacy. Alternatively, LCs can couple the endogenous production of IL15 with potent T-cell stimulatory activity. Optimization of full length tumor antigen expression for processing into multiple immunogenic peptides for presentation by both class I and II MHC therefore merits emphasis to support more effective antitumor immunity stimulated by LCs. PMID:21355077
Flanagan, Katie L; Wilson, Kirsty L; Plebanski, Magdalena
2016-01-01
The pre-erythrocytic stage of infection by malaria parasites represents a key target for vaccines that aim to eradicate malaria. Two important broad immune evasion strategies that can interfere with vaccine efficacy include the induction of dendritic cell (DC) dysfunction and regulatory T cells (Tregs) by blood-stage malaria parasites, leading to inefficient priming of T cells targeting liver-stage infections. The parasite also uses 'surgical strike' strategies, whereby polymorphism in pre-erythrocytic antigens can interfere with host immunity. Specifically, we review how even single amino acid changes in T cell epitopes can lead to loss of binding to major histocompatibility complex (MHC), lack of cross-reactivity, or antagonism and immune interference, where simultaneous or sequential stimulation with related variants of the same T cell epitope can cause T cell anergy or the conversion of effector to immunosuppressive T cell phenotypes.
Yang, Jiezuan; Yan, Dong; Guo, Renyong; Chen, Jiajia; Li, Yongtao; Fan, Jun; Fu, Xuyan; Yao, Xinsheng; Diao, Hongyan; Li, Lanjuan
2017-03-01
Effective antiviral therapy plays a key role in slowing the progression of chronic hepatitis B (CHB). Identification of serum indices, including hepatitis B e antigen (HBeAg) expression and seroconversion, will facilitate evaluation of the efficacy of antiviral therapy in HBeAg-positive CHB patients. The biochemical, serological, virological parameters, and the frequency of circulating CD4CD25 regulatory T cell (Treg) in 32 patients were measured at baseline and every 12 weeks during 96 weeks of tenofovir disoproxil fumarate (TDF) treatment. The relationship between the hepatitis B virus (HBV) deoxyribonucleic acid (DNA) and Treg and alanine aminotransferase (ALT) levels was analyzed, respectively. The molecular profiles of T-cell receptor beta variable chain (TRBV) were determined using gene melting spectral pattern. For the seroconverted 12 patients, ALT declined to normal levels by week 24 and remained at this level in subsequent treatment; moreover, the predictive cutoff value of ALT for HBeAg seroconversion (SC) was 41.5 U/L at week 24. The positive correlation between HBV DNA and Treg and ALT was significant in SC patients, but not in non-SC patients. Six TRBV families (BV3, BV11, BV12, BV14, BV20, and BV24) were predominantly expressed in SC patients at baseline. The decline of ALT could be used to predict HBeAg seroconversion for CHB patients during TDF treatment. In addition, the profile of Tregs and TRBVs may be associated with HBeAg seroconversion and could also be a potential indicator for predicting HBeAg SC and treatment outcome for CHB patients.
The effects of cryopreservation on the expression of canine regulatory T-cell markers.
Tarpataki, Noemi; Wawrzyniak, Marcin; Akdis, Cezmi A; Rückert, Beate; Meli, Marina L; Fischer, Nina M; Favrot, Claude; Rostaher, Ana
2017-08-01
Regulatory T (Treg) cells have been described as key regulators in various immunological processes and are of growing interest in veterinary allergy. Cryopreservation of immune cells is performed routinely in human basic science research and in clinical studies. As such, it allows batch testing of collected samples at a single time point, resulting in a significant reduction in sample variability. Data which describe the effects of cryopreservation on Treg cell frequency and functionality in the canine species are important to inform future research. The purpose of this study was to establish a robust freeze/thaw procedure and flow cytometric staining protocol for canine Treg cells, and to compare the frequencies of different canine Treg cell phenotypes before and after cryopreservation. Nine privately owned dogs. Peripheral blood mononuclear cells were isolated and Treg cells stained and analysed by flow cytometry, before and after three months of cryopreservation. The recovery percentages and the corresponding correlations (fresh versus cryopreserved) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations were calculated. A high recovery rate of 97.2 (r = 0.94, P < 0.0001), 93.9 (r = 0.77, P < 0.01) and 101.7% (r = 0.99, P < 0.0001) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations, respectively, was observed. This study demonstrates an optimized protocol for freezing, thawing and quantifying canine Treg cells. These results indicate that cryopreservation does not substantially affect the expression of surface and intracellular markers of canine Treg cells; however, additional studies will be necessary to assess whether functionality of the cells is also maintained. © 2017 ESVD and ACVD.